INTERACTIVE CHOROPLETH MAPPING
USING HIGH RESOLUTION COLOR GRAPHICS

by

Julie B. Spielman

A RESEARCH PAPER
submitted to
THE DEPARTMENT OF GEOGRAPHY

in partial fulfillment of the
requirements for the
degree of
MASTER OF SCIENCE

July 1986

Directed by
Dr. A. Jon Kimerling
Table of Contents

Introduction .. 1
Software Development ... 3
 Map design ... 5
 The Use of Color ... 9
Computer Technology .. 15
 The CRT .. 15
 Computer Processing .. 17
Challenges and Concerns ... 18
CCMS - An Example Mapping Program 20
 Program Characteristics 21
 Program Usage .. 35
Conclusion .. 39
References .. 42
Appendix -- Listing of Program CCMS 45

Illustrations

Figure

1. RGB Color Cube .. 13
2. Notation for RGB System .. 13
3. Menus displayed by CCMS 22
4. Subroutine hierarchy for program CCMS 23
5. Color reproduction of additive primary color
 palettes produced by CCMS 27
6. Color reproduction of subtractive primary color
 palettes produced by CCMS 27
7. Color reproduction of seven optional letter
 sizes for text size in CCMS 30
8. Color reproduction of plotted polygons and the
 Polygon menu produced by CCMS 30
9. Color reproduction of manual classification using
 the "Fill Area" instruction in CCMS 32
10. Color reproduction of manual legend generation
 in CCMS .. 32
11. Color reproduction of final map (with vertical
 legend) using the Assisted Classification option
 of CCMS .. 34
12. Color reproduction of final map (with horizontal
 legend) using the Assisted Classification option
 of CCMS .. 34
13. Flowchart of program CCMS 36
14. System components of CCMS 38
Table

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CCMS Subroutine Explanation</td>
</tr>
<tr>
<td>2.</td>
<td>Example of input file for polygon data points</td>
</tr>
<tr>
<td>3.</td>
<td>Example of input file for observation data</td>
</tr>
<tr>
<td>4.</td>
<td>Example of input file for polygon centroid data points .</td>
</tr>
</tbody>
</table>
ABSTRACT: A program, Color Choropleth Mapping System (CCMS), has been developed to provide high quality color choropleth maps at the Geography Department at Oregon State University. The program operates interactively and is menu-driven. When developing the software for mapping programs, programmers need to be aware of cartographic theory, as well as the relationship between maps, computers, and users. If color is utilized, the programmer should be familiar with color theory, perception and specification. By understanding more than the basics of computer science and programming, programmers will be able to develop software to produce high quality maps that will convey the information intended, and provide decision makers with a valuable and powerful problem-solving and planning tool.

INTRODUCTION

Mark Monmonier states in his book Computer-Assisted Cartography: Principles and Prospects (1982) that there are three general approaches to making computer-assisted cartography operational. First is the software package or "canned program" purchased by an individual or group, such as a university, to do one or more mapping procedures. The software package usually exists in a computer program library where a wide number of users can access it. Second is the turnkey system that includes both software and hardware and comes ready to run. It is designed to be used exclusively for a specific mapping task by a private firm or governmental agency. An example of this is the Decision Information Display System (DIDS) designed to provide federal
administrators and legislators with high quality color choropleth maps. The third approach is the small multipurpose system consisting of a small mini-computer, CRT unit, pen plotter, and digitizer. The system is set up to be used by a variety of users for a wide range of tasks.

The mapping program is the backbone of all three systems and will be the focus of this paper. Mapping programs can be separated into two broad categories - single purpose and multipurpose programs (Lai, 1985). The single purpose program contains one mapping procedure such as choropleth mapping, contouring, or map projections. Examples of the former include DIDS, STATMAP, and MULTIMAP I. The multipurpose software package contains several mapping applications. DISSPLA, a multipurpose software package, contains several cartographic routines that produce contour maps and map projections along with a variety of graphs and charts (Carter, 1984).

Both categories of mapping programs are most often written for a certain class of display device such as a cathode-ray tube (CRT) unit or line printer (Monmonier, 1982). SYMAP is a well-known software package developed at Harvard Laboratory of Computer Graphics which produces choropleth, isopleth and trend surface maps on a line printer (Carter, 1984).

Mapping software packages can be designed, programmed and debugged by and for an individual user, a group of users, or an institution, and the process of developing one requires careful
consideration. Software packages can be written to stimulate trial-and-error thought or they can be designed to facilitate the decision making process. A wide variety of cartographic techniques and methods can be incorporated in mapping software giving "map-makers access to the most current cartographic wisdom" (Monmonier, 1982).

SOFTWARE DEVELOPMENT

There are five primary components of a cartographic system: digitizing, storage, interactive display, edit, and drafting (Boyle, 1975). Mapping software would be of little use without mappable data, therefore the digitizing and storage of spatial data are of prime importance. It is the interactive display and edit facilities, however, that are the main concern when developing mapping software. These two components are the main interface between a digital system and the cartographer, and enable the cartographer to use his skills to guide the mapping process.

When developing a computer program, it is important to make the program as "user friendly" as possible. It may involve more programming, but ease in the use of a package reduces user frustration, and promotes the correct outcome of the programming task (in this case mapping). Computer programs can be written using methods which allow the computer and user to interact. In such a system, the computer rapidly responds to the program user's instructions, and the user can then react to the
computer's response. The interactive display portion of a mapping program lets the user judge the maps appearance step by step, and change or alter (edit) portions of the map as needed.

When developing a mapping program it is not sufficient to understand just the basics of computer science and programming. Cartographic theory, as well as the relationship between maps and computers, and humans and computers, need to be considered. Computer generated maps are viewed differently than traditional paper maps. Map design and the process of designing maps has changed with computer use. For instance, the classification in choropleth mapping is not longer a necessity, but an option available to the user due to the classless choropleth map presented by Waldo Tobler (1973). Tobler proposed that cross-line patterns with proportional graytones were more appropriate for choropleth maps than a small number of graytones assigned to discrete categories (Monmonier, 1982).

The use of color on maps has been affected. Research on colors displayed on CRTs, conducted by Steike and Little (1984), concluded that the attribute of brightness is more important than hue when map-readers made judgments of the visual importance of colors. Computer technology is changing rapidly and it is important that programmers developing mapping software be aware of these changes and their effects on maps and cartographic techniques.
Map Design

The development of mapping software can facilitate the map design process. Designing maps is a decision making process and "decisions are more likely to be good if they are rational rather than intuitive" (Robinson, 1975).

Menus

Menus are one technique that a software developer can incorporate into a mapping program to promote good map design. Menu-driven programs can provide the user with rational choices while facilitating the usage of the program. A program user needs certain skills to give commands to a computer in an orderly manner. Menus reduce user frustration by making it a simple task to give computer instructions (Lai, 1985). Menus also limit the choices of a user, preventing the inexperienced user from making wrong choices for a certain task. Menus can be arranged in a hierarchical order and display cartographic tasks in sequential order, both of which will assist the user in constructing a map.

Perception

During the map design process, the cartographer is faced with the problem of creating the best solution (design) to convey the message of the map. One of the keys to the utility of thematic maps is that spatial phenomena are organized within a spatial framework, and organized material is perceived, understood, and retained better than unorganized material. The cartographer enhances basic image organization by selecting
certain graphic techniques and design dimensions that further organize the image (Dobson, 1984).

Careful attention must be given to the communication aspects of a map. The perception of cartographic features must be considered in the design process. Michael Dobson states that the "key to understanding design requirements of cartographic displays lies in appreciating the visual processing needs of the map reader" (Dobson, 1983). Certain variables such as size, shape, color, pattern, direction, and location affect how the map is perceived. To promote communication, cartographic programmers need to be aware of the perceptual consequences these variables have when placed on a map. The perception of computer generated cartographic variables is especially important because there is usually no human review process of map displays before they are presented to the map reader.

New research needs to be undertaken on the interface between maps, map task performance, and the capabilities of digital display systems (Dobson, 1984). The cartographer-programmer needs to consider the nature of the technology (e.g. line printer, CRT, pen-plotter) under which a map is produced. In the case of the CRT, Human Factor specialists have been studying the perception of real-time computer displays, but so far have offered few insights relating to the complexities and presentation requirements of maps (Swezey and Davis, 1983).

Cartographic literature on theoretical mapping covers the perception of maps, but only in traditional format. A gap exists
in display design guidelines between the cartographic requirements for representing spatial data, and the human factors related to efficient map use. The solution is obviously an interdisciplinary approach in which cartographers "determine the appropriate form for mapped elements" and human factor specialists "determine the constraints that may influence the visual processing" of cartographic data (Dobson, 1983). As guidelines are created for computer-generated maps, it will be important that mapping software provides a reliable link between the map displayed and the display technology.

Interactive map design

As stated, mapping software can be developed to take advantage of the user's ability to interact with a computer. Interactive mapping takes advantage of the computer's ability to rapidly perform sequential processes, and gives the cartographer control over the processes not easily performed in a sequential manner (Dudycha, 1981). For instance, plotting points and drawing lines are easily performed by a computer because of the mathematical nature of the task and the repetition inherent to the task. However, the placement of text on a map can vary between maps or within the same map. This procedure can be assisted by the cartographer who can instruct the computer as to where to place the text (Rase, 1975). In recent years, research has been undertaken to automate the labeling of maps. One system still under development at ESL (Environmental Systems Laboratory)
is ACES, which currently can solve moderately complex map labeling tasks involving point, line, and areal features (Pfefferkom et. al., 1985).

Interactive map design allows the user to find the best alternative for a specific map. The user can display a map on a CRT in several different formats and the data can be mapped using different methods to find the best solution. Different colors and symbols can be previewed by the map designer (Monmonier, 1985). An interactive mapping program allows the user to participate in an interactive design loop, inserting human creativity into the decision-making process.

Interactive display maps can be more valuable and powerful as a problem-solving and planning tool because they are able to show updated and changing information in a dynamic form (Anderson and Shapiro, 1980). Interactive display maps can show the results of complex computations rapidly and efficiently. In an interactive system the user can selectively choose what needs to be displayed. Often, these maps are created for private use to be used for analytical purposes. Maps produced on paper are usually designed for a large audience. The cartographer designing these maps must deal with displaying all the information necessary for public view, and therefore must balance clutter with the omission of needed information (Anderson and Shapiro, 1980).

A wide variety of needs and constraints can be incorporated in mapping software, providing map makers with the most current cartographic techniques and methodologies.
Currently, many professionals (businessmen, engineers, social scientists, and planners), who once only had access to printed maps, are generating new maps tailored to their specific needs. Such people rarely have the cartographic expertise to create maps, and therefore it becomes imperative that mapping programs be able to guide the user in designing and producing maps that will convey the information intended. Such programs might be written to mimic the ideal response to various design problems. 'Expert' systems based on Artificial Intelligence (AI) techniques are being developed in the field of geography to accomplish tasks such as this. Expert systems offer 'intelligent advice' or make an 'intelligent decision' about a processing function (Robinson and Jackson, 1985). Proper map design is necessary in digital cartography and must extend to the mapping software (Monmonier, 1982). The design of computer-generated maps could benefit considerably from the development of such systems.

The Use of Color

Color on a map can enhance and clarify the portrayal of information. Color allows greater detail, adds visual interest and increases the design possibilities (Heyn, 1985). There are three basic purposes color can serve on a map. First, it can represent the distribution of mapped variables. Second, color can be used to disassociate the foreground (thematic data) from the background (geographical space). And third, color can be used
to annotate (the non-target) part of the display (e.g. grids and lettering). In these three purposes, color serves as an organizer and can affect the hierarchy of the image elements. In order to select colors effectively for a computer mapping system, it is necessary for the program developer to be familiar with color theory, perception and specification. It is also important to understand color production technology so that the desired colors can be produced.

Color Theory

White light is produced when a light source emits the full range of visible wavelengths. When white light passes through a prism, it is broken into the wavelengths forming the color spectrum. The various wavelengths create the different hues (e.g. blue, red, yellow) of the spectrum. Six of the hues are referred to as the primary colors because other hues can be created from their combinations.

The six primaries are broken into two sets. The first, consisting of red, green, and blue, are referred to as the additive primaries, so named because all other colors can be created on a "white" surface by adding or mixing light of these three colors in varying intensities (Robinson et. al., 1984). Colors on paper are created by applying pigments to a surface. The second set of primary colors, subtractive primaries, consist of yellow, cyan, and magenta. When these colors are applied to a surface, while light illuminating the surface is absorbed or subtracted by the colors, and what is reflected is the color
seen. Most colors can be created by a mixture of these colors. Cartographers use the method of mixing subtractive primaries in map production (Robinson et. al., 1984).

There are three perceptual dimensions of color. The first is hue which, as discussed, is the dimension relating to the wavelength. The second characteristic is value, which describes the lightness or darkness of a pure color or hue. On a printed map, value indicates the amount of reflectance perceived to be given off by a surface. The term parallel to value used to describe the luminous intensity of a CRT surface is brightness. Saturation, the third characteristic, is a measure of the purity of a hue. Chroma is the perceptual term used to describe the purity of a color (Heyn, 1984).

Color Perception

As noted, color is a perceptual as well as a physical phenomenon. Different color systems have been developed that take into consideration how a color is perceived. The Munsell System is an example of a system in which colors are described using the three perceptual attributes—hue, value and chroma. Each characteristic is divided into a sequence of steps which are perceived to be equal (Robinson et. al., 1984).

Color production on a CRT

There are several ways color can be identified on a CRT. The simplest form is by a name or number. On the Apple II, color is specified by the assignment of a number. The numbers range
from 0 to 15; 0 representing black, 7 representing light blue, and 15 representing white for example (Poole, 1981).

Some systems allow the user to produce the color. The RGB (Red, Blue, Green) color model is a common system used. The physical representation of the RGB model is usually a cube (Figure 1). The intensity for each color varies along one axis of the cube. The faces of the cube represent a combination of two of the three colors (Sibert, 1980).

In the RGB system the three primary colors are transmitted on three different channels. Through mixing the colors, a wide gamut of colors can be created. The intensity of the hue is calibrated electronically by assigning values, usually ranging from 0 to 255, 0 being no color, and 255 being the greatest intensity of the hue. The primary colors are transmitted by the individual color channel, and by specifying more than one channel, the primary colors are mixed and produce new colors (Figure 2), (Traeger, 1982). Each RGB system is dependent upon the color display device used for output (Robertson, 1986).

Alternative models exist to the RGB model. Most of these are variations on the HSL (hue, saturation, lightness) model. In an HSL system, each color is considered a pure hue modified by a saturation and a value (i.e. lightness), (Berk et. al., 1982). Algorithms have been published which transform the HSL and other models to RGB (Sibert, 1980).
Figure 1. RGB color cube

Figure 2. Notation for RGB system
Phenomena and Color

System developers should be aware of the effects phenomena and associated data characteristics have in selecting colors. Four such characteristics are the scaling system, spatial dimension of the variables, data collection units, and the color connotations of the data (White, 1979).

An important distinction to make in using color is whether qualitative or quantitative differences exist between mapped variables (Cuff, 1975). In mapping nominally scaled phenomena (no ranking intended) the colors chosen should carry little or no magnitude implications. Quantitative changes are usually indicated by value and/or chroma differentiation. It is important for the colors or chromas to be distinctive for each class and be arranged in an obvious progression. The colors should be sufficiently distinct so that the reader can easily identify an area's class by referring to the legend.

The physical size of mapping units affects color choice. When displaying relatively large areas, the color contrast between neighboring polygons can change the color perception (White, 1979). Certain colors also generate an emotional response, called the affective value of color, which must be taken into consideration. "Warm" reds and "cool" blues carry with them inherent connotations. For certain phenomena these two variables are difficult to incorporate into a mapping program, but an interactive system would permit the user to take advantage of this.
Mapping with color

Conceivably, hundreds of thousands of different colors could be produced using an RGB monitor. But, to facilitate the program-user it is important for the mapping software to limit the colors available, and to present them in some orderly and functional fashion.

Little research has been undertaken on the perception of colors on CRTs, but algorithms have been written to create color palettes with intensity and value varying along the x and y axes. Once a color palette is established, it can be located at either the top or bottom of the image frame, and using a pointing technique, the color can be assigned to areas and symbols within the body of the map (Traeger, 1982). The color palette, if created with adequate differences within it, can help the user to determine color progressions. Some mapping programs allow the user to choose a hue, and will generate the chroma progression automatically (Carter, 1984).

COMPUTER TECHNOLOGY

The CRT

Display technology has prompted an increase in the sophistication in which computerized information can be accessed (Infante, 1975). The development of the CRT in the 1970s allowed maps to be displayed and edited at a terminal (MacDonald and Crain, 1985). When output is displayed on a CRT, additional cartographic and visual process factors must be considered.
The methods of handling color, the amount of information displayed, and whether a system can be interactive in nature are all factors in software development due to variations among CRTs.

Resolution

Important characteristics of a CRT include resolution, color control, and internal memory structure (White, 1979). Resolution is probably the most important factor when choosing a display device for a certain application (Infante, 1975). The resolution affects the complexity of the display. It currently varies from high resolution (1024 X 1024) to low values (40 X 50) where the pixel size may be a large fraction of an inch. Low resolution display devices restrict the annotation capabilities, therefore, maps must be relatively simple and small in area (MacDonald and Crain, 1985). Because of the variety between different types of CRTs, mapping systems must be developed for the specific display device.

Colors

The colors that can be displayed on a CRT are referred to as the displayable colors. The number of colors available can range from 4 to 16 million or more. The displayable colors may be fixed or variable. Presently the CRT is the only technology available with a full gamut of colors (Infante, 1975). Resolution of a screen affects the color perceived. The effect of mosaic fusion exists when small regular grid cells of color
are merged by the eye into an additive color mixture. The fusion effect may significantly alter the perception of data variation (White, 1979) and therefore should be compensated for in the software.

Refresh and storage tubes

The resolution of the system, and the number of colors and shades that can be created are related to the memory dedicated to refreshing the image (Carter, 1979). It is the refresh nature of CRTs that permit images to be changed and modified in real time. An image will disappear from a screen unless it is "refreshed" by a pass of an electron beam (at least 30 times a second). On storage tubes, the display image is stored on the screen for several minutes or longer. To change or modify an image on a storage tube CRT, the image must be erased and completely recreated by the program. This is not well suited to highly interactive applications (Dudycha, 1981).

Computer Processing

The speed of computer processing is important for the interaction between the user and mapping system to take place. Before 1970, software development did not require great speed in operations. Reliability was the most important criterion. Before the 1970s though, the CRT was not in common use. Interactive displays, and editing of cartographic data showed that the ease and flexibility of handling cartographic data was not enough. Speed became essential for true interaction to take
place (Boyle, 1975).

CHALLENGES AND CONCERNS

The "electronic" map has changed many aspects of cartography. A little over a decade ago, maps were only conveniently available on paper. Today geographic data are stored, edited, distributed, and displayed electronically with the use of computers (Monmonier, 1985).

Computer cartography has forced cartographers to re-evaluate some of the basic cartographic techniques. Fundamental cartographic problems such as scale and generalization need to be re-examined, since scale changes greatly affect map quality (Taylor, 1973). Before the advent of computer-assisted cartography, the effective use of a map projection was a central problem in cartography. With the aid of computers, it has become a simple task to select from a wide range of projections or to create a combination of projection, scale, and projection orientation best suited for a particular cartographic problem (Dudycha, 1981).

Line printer, plotter, and CRT maps present new challenges. As stated, perception of CRT-displayed maps is a largely unexamined field. The visual processing of real-time cartographic displays is extremely complex and research on graphic techniques that will increase task performance (e.g. rapid information retrieval, target identification, and temporal changes across displays) for cartographic displays needs to be
developed (Dobson, 1984).

Human Factor guidelines governing the man-computer interface are greatly needed. To develop an effective system it is important to understand the cognitive areas of this interface. Such areas include input devices (joystick, graphics tablet), interactive dialog (menu selection or query language), and design decisions relating to dynamic displays (zoom, scrolling) (Swezey and Davis, 1983). The lack of knowledge in these areas adversely affects the development of computer-assisted cartographic systems.

Little analysis has been done on the types of display designs that could promote useful and timely decision making. In 1978, the Decision Information Display System (DIDS) was implemented to provide decision makers with statistical data in a form that could be easily understood. The system, however, had some major shortcomings that should be noted by others trying to accomplish a similar task.

One of the drawbacks to DIDS was that the color raster display technology did not support an inexpensive or easy method to produce hardcopy products (Cowen, 1984). Presently, hardcopies of images on color CRTs can only be generated by photographing the screen to obtain slides or glossy prints, both of which are expensive and useless for providing reports with maps. COM units (computer output on microfilm units) or plotter and printer-plotters with the proper software can record images from a CRT. COM plots can be enlarged providing press plates for
offset printing, but COM units are expensive ($120,000-$300,000) and only practical for reproducing large quantities. Ink jet plotters can provide rapid hardcopy color maps, but the problem of reproducing color accurately from the CRT screen still exists (Monmonier, 1982 and Orr, 1980). Research needs to be undertaken in the area of reproducing color faithfully and effectively from a CRT display.

CCMS - AN EXAMPLE MAPPING PROGRAM

Choropleth mapping is one of the simplest cartographic techniques used to represent a variety of themes from land use patterns to population characteristics. A program, Color Choropleth Mapping System (CCMS), has been developed to provide high quality color choropleth maps for a Hitachi CRT controlled by a Raster Technologies Model One/25 display driver.

The program was developed on a Gould S.E.L. 32/67 computer at the Oregon State University Geography Department. The program is written in FORTRAN 77 and uses the Raster Technologies graphic firmware.

Many concerns of software development discussed in this paper were incorporated into this mapping program. CCMS operates interactively and is menu-driven. The Main menu displays the possible options the program offers. Subsequent menus display instructions. Figure 3 illustrates the menus displayed by CCMS. The different options and instructions have been written to
minimize confusion, making the program "user friendly".

The program offers options which allow the user to create choropleth maps step by step. The user can specify almost every aspect of choropleth mapping from the size of the text letters and legend boxes, to a specific chroma progression used in classification. Or, if the user is unfamiliar with the design aspects of choropleth mapping, an assisted classification option is available. The user must simply provide the observations or statistical data used in classification.

Program Characteristics

Format

CCMS consists of 30 subroutines, each with a specific function. Six of the subroutines create the menus that appear at the bottom of the screen. The main portion of the program determines which option has been chosen by the user from the Main menu. These eight options, each a subroutine, call upon additional subroutines to carry out the tasks specified. Figure 4 illustrates this hierarchy. An explanation of each subroutine can be seen in Table 1.

Hitachi CRT and Raster Technologies Display Driver

The Hitachi CRT is a high resolution (512 X 512) color monitor. The refresh nature of the CRT (30 times a second) permits the image to be changed and or modified in real time. The colors are specified using the RGB model. The numerical range is from 0 to 255, providing 255 or 16,581,375 combinations
<table>
<thead>
<tr>
<th>MAIN MENU</th>
<th>TEXT</th>
<th>POLYGON DRAW</th>
<th>COLOR FILL</th>
<th>LEGEND</th>
<th>ASSISTED CLASSIFICATION</th>
<th>BORDER</th>
<th>CLEAR & RESTART</th>
<th>EXIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT MENU</td>
<td>LETTER SIZE</td>
<td>ENTER TEXT</td>
<td>GIVE TEXT LOCATION AND WRITE TO SCREEN</td>
<td>EXIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOR MENU</td>
<td>SEE COLORS</td>
<td>CHOOSE COLOR</td>
<td>FILL AREA</td>
<td>EXIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEGEND MENU</td>
<td>NUMBER OF CLASSES</td>
<td>BOX WIDTH, HEIGHT AND SPACING</td>
<td>POSITION ON SCREEN</td>
<td>ENTER TEXT</td>
<td>EXIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYGON MENU</td>
<td>SCALE</td>
<td>MOVE</td>
<td>EXIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLEAR MENU</td>
<td>CLEAR PORTION OF SCREEN</td>
<td>CLEAR ENTIRE SCREEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Menus displayed by CCMS
Figure 4. Subroutine hierarchy for program CCMS
Table 1. CCMS Subroutine Explanation

<table>
<thead>
<tr>
<th>Subroutine Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>Writes program title to screen.</td>
</tr>
<tr>
<td>MMENU</td>
<td>Writes main menu to screen.</td>
</tr>
<tr>
<td>TEXPROG</td>
<td>Reads text entered by user.</td>
</tr>
<tr>
<td>LTRSIZE</td>
<td>Displays various letter sizes for the user to choose from and reads the size chosen.</td>
</tr>
<tr>
<td>Writex</td>
<td>Writes text to screen.</td>
</tr>
<tr>
<td>POLDRAW</td>
<td>Plots polygons on screen. Reads polygon data file and scale entered by user. Changes scale and position of polygons at user's request.</td>
</tr>
<tr>
<td>POLYMENU</td>
<td>Writes polygon menu to screen.</td>
</tr>
<tr>
<td>COLOR</td>
<td>Fills areas (polygons) with color specified by the user from a color palette.</td>
</tr>
<tr>
<td>COLRCHOS</td>
<td>Displays possible hues and reads the hue choice made by the user.</td>
</tr>
<tr>
<td>COLRPLT</td>
<td>Displays color palettes.</td>
</tr>
<tr>
<td>LEGEND</td>
<td>Reads in the number of classes (boxes) for legend generation.</td>
</tr>
<tr>
<td>LEGMENU</td>
<td>Displays legend menu on screen.</td>
</tr>
<tr>
<td>BOX</td>
<td>Reads dimensions of legend box (height, width), spacing between boxes, and the direction the boxes are to be plotted (horizontal or vertical) specified by the user.</td>
</tr>
</tbody>
</table>
Table 1 continued.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOXDRAW</td>
<td>Draws legend boxes on screen. Allows the user to move boxes around screen.</td>
</tr>
<tr>
<td>AUTOCLS</td>
<td>Reads statistical data file and polygon centroid data file. Reads the number of classes, color choice, and classification method specified by the user.</td>
</tr>
<tr>
<td>AUTOLGND</td>
<td>Automatically writes legend boxes on screen.</td>
</tr>
<tr>
<td>COLRVAL</td>
<td>Determines color progression for chosen hue.</td>
</tr>
<tr>
<td>BORDER</td>
<td>Reads lower left corner and right upper corner of border area and draws map border.</td>
</tr>
<tr>
<td>CLRPTN</td>
<td>Clears a portion of screen or the entire screen dependent upon the user's specification.</td>
</tr>
<tr>
<td>CENMAP</td>
<td>Calculates the center of the map body and moves the map to the screen center.</td>
</tr>
<tr>
<td>CLRMENU</td>
<td>Clears a window at the bottom of the screen where the menus are displayed.</td>
</tr>
</tbody>
</table>

EQSTPS, NORMDIS, NSTMEANS, QUANTIL, LIMITS - see text.
of the three additive primary colors.

The Raster Technologies graphics firmware provides the programmer with very powerful graphic commands. The commands are specified in a manner similar to how subroutines are called (Parameters for the graphic commands are placed in parentheses after the command name).

Color Specification

As stated, the Raster Technologies display driver uses the RGB system to specify colors on the screen. Another model previously described is the HSL or HSV (Hue, Saturation, Value) model. In CCMS, a subroutine is called which transforms HSV to RGB to create the color palettes used in classification. The hue co-ordinate is determined by the RGB model (Figure 2). The equations used for the transformation for creating the chroma progression are

\[
V = 90.48 \times (10.0^a)^{.45/255} \\
S = 1.0 - 90.48 \times (10.0 \times (1.0 - s))^{.45/255}
\]

where \(s\) and \(a\) are incremented between 0 and 1 by .1 to determine the steps in the chroma progression (Kimerling, 1985).

Six color palettes of the additive and subtractive primary colors (Red, Green, Blue, Yellow, Cyan and Magenta) are created in the program (Figures 5 and 6). Users may see the color palettes by specifying the "See Colors" instruction in the color menu (Figure 3) and then choose the hue they wish to use. The user can pick from the color palette a chroma progression to fill and classify the areas (polygons).
Figure 5. Color reproduction of additive primary color palettes produced by CCMS.

Figure 6. Color reproduction of subtractive primary color palettes produced by CCMS.
In the Assisted Classification option of the program, the color progressions have been predetermined to provide visually contrasting steps within the progression. Research presently being undertaken at O.S.U. on color perception on CRTs will provide a better method of determining color progressions on the Raster Technologies display driven CRT.

Menus

Upon developing CCMS, it was decided that the simplest and easiest way for a program user to give instructions to a program was by pointing to options and instructions displayed in a menu. CCMS utilizes six menus (Figure 3). The Main menu or first menu displayed consists of eight options. Each option assists the user in creating some aspect of the map, except for the last two.

The Text option, as it implies, assists the user in writing text to the screen. When this option is requested, the Text menu appears on the screen displaying four instructions. The "Letter Size" instruction allows the user to choose the letter size from seven different sizes, each demonstrated with an example (Figure 7). The "Enter Text" instruction directs the user's attention to the computer terminal where the user is instructed to type in a text string. The "Give Text Location And Write To Screen" prompts the user to move the cursor to the desired position for writing the text on the screen. The crosshair position will determine the bottom lefthand corner of the first letter in the text string. The "Exit" instruction, as in all exit instructions found in other menus (except for the Main menu), leaves the
current option and returns to the previous menu.

The Polygon Draw option plots the polygons on the screen. The user must enter the polygon data file and scale factor. Currently, the scale is entered on the basis of pixels (e.g. 250). The Polygon menu is displayed after the polygons are plotted permitting the user to change the scale or move the polygons to a new position on the screen (Figure 8). (Note: If the screen has been cleared, the program will not request a new polygon data file, but will display the polygon menu requesting a scale or position.)

The Color Fill option is used to fill the polygons and legend boxes with color chosen by the user. In the Color menu, the user can request to see the possible color palettes (Figures 5 and 6), and then choose the hue or color desired. The "Fill Area" instruction will display instructions on how the user can fill areas (e.g. polygons or legend boxes) with colors selected from the color palette (Figure 9).

The Legend option assists the user in creating the legend boxes. When specifying the "Enter Number of Classes" instruction, the user enters the number of classes, or boxes, enters the box dimensions (width and height) in pixels (e.g. 15 X 15) and gives the spacing between the boxes, also in pixels (e.g. 10), and the direction used for plotting the boxes, either vertically or horizontally. The user can then request to position the string of boxes on the screen by using the crosshair to specify the
Figure 7. Color reproduction of seven optional letter sizes for text size of CCMS.

Figure 8. Color reproduction of plotted polygons and the Polygon menu produced by CCMS.
lower lefthand corner (Figure 10). The Legend menu permits the user to enter the Text option to write the legend text to the screen.

An Assisted Classification option is provided in CCMS which allows the user to choose among five different classification methods to determine class intervals. The five classification methods are:

(1) Equal Steps - divides the statistical data into n number of equal distant steps.

(2) Normal Distribution - class intervals are determined by calculating the mean and standard deviation, and one standard deviation is then added to the mean and subtracted from the mean to determine the class limits.

(3) Nested Means - the mean of the data is calculated dividing the data into two parts. Means are then calculated for the two parts which create the class limits along with the original mean.

(4) Quantiles - ranks the data from lowest to highest and then divides the ranked data into n number of intervals.

(5) Class Limits Entered Manually - lower and upper limits for each class are entered by the user.

The user is queried for the number of classes and for a hue from the computer terminal. The program determines the color progression and classifies each polygon with the appropriate chroma according to the classification method specified (Figure 11).

The legend is automatically written to the screen using this option. The legend is placed vertically on the screen on
Figure 9. Color reproduction of manual classification using the "Fill Area" instruction of CCMS.

Figure 10. Color reproduction of manual legend generation of CCMS.
the side of the map body with the largest margin (Figure 11). If both margins are too narrow to accommodate a legend, the legend is written horizontally underneath the map body (Figure 12).

The Border option instructs the user in creating a map border. Borders can be created for other aspects of the map (i.e. the legend or map body), but it is important to note that the program uses the map border to determine the map center when centering the map on the screen. So if more than one border is drawn, the last border created should be the border surrounding the entire map.

The Clear and Restart and Exit options perform screen support. The Clear and Restart option displays the Clear menu. The user can clear, or erase a portion of the screen by defining a rectangle surrounding the area, or the entire screen can be cleared, allowing the user to create a new map, and restart without exiting the program. The Exit option exits the program. Upon exiting, the use is queried if the map should be centered on the screen, or left alone.

These options and instructions have just been described in the order in which they occur on the menus. This is not necessarily the order in which they should be specified. An improvement could be made to CCMS by reorganizing the options and instructions displayed in the menus into the logical order in which they should be requested.
Figure 11. Color reproduction of final map (with vertical legend) using the Assisted Classification option of CCMS.

Figure 12. Color reproduction of final map (with horizontal legend) using the Assisted Classification option of CCMS.
Program Usage

A generalized flowchart of the program is shown in Figure 13. To run CCMS, a digitizer tablet and cursor need to be connected to the system. Figure 14 shows all the system components of CCMS.

Menus

As stated, the program is menu-driven. The first menu to appear is the main menu displaying the options the program provides. To request an option the user moves the cursor on the digitizer table, which in turn moves a crosshair on the CRT screen. When the crosshair falls on the menu box containing the desired option, the user then presses a button on the cursor. The next menu to appear on the screen will contain the instructions for the option. Sometimes the user's attention will be directed to the computer terminal to enter data files or answer a question. All the menus in the program can be seen in Figure 3.

Data Input

The first option the user should specify is to draw (plot) the polygons on the graphics screen. The program will request an input file containing the topological data describing the polygons. A sample of this input file is shown in Table 2, and consists of four types of records. The first record type contains the line number and the number of points describing a line. The second record type contains the numbers labeling the polygons to the right and left of the line. The third record
Figure 13. Flowchart of program CCMS
Figure 13 continued.
Figure 14. System components of CCMS
type contains the maximum and minimum x and y co-ordinate values for the line. The fourth record type contains a x and y co-ordinate of the line.

Other input files are requested come from the Assisted Classification option of the program. In the Assisted Classification option, the user needs to have two input files. The first file requested is the statistical or observation data file. An example is given in Table 3. Each record contains the data for one area or polygon. The second input file requested contains the centroid of each polygon (Table 4). The statistical data file and centroid data file must be arranged in the same order (e.g. the statistical data for polygon 12 and the centroid for polygon 12 are both the first records in each data file). All other data are entered interactively either from the keyboard or using the cursor buttons.

Output

Presently the only form of output is the map displayed on the screen (Figures 11 and 12). Hardcopies may be acquired by photographing the screen, or using the Rembrandt digital camera.

CONCLUSIONS

The challenge to software developers in years to come will be to incorporate an intelligent set of commands that will enable users to quickly produce maps that will not only please decision makers, but will not offend cartographer's sensibilities. To accomplish this it will be important to have efficient, well-
Table 2. Example of input file for polygon data points

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>16670</td>
<td>5869</td>
</tr>
<tr>
<td>23</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26984</td>
<td>26721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26984</td>
<td>5869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26721</td>
<td>16670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>12</td>
<td>16723</td>
<td>15670</td>
</tr>
<tr>
<td>26721</td>
<td>16723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26721</td>
<td>16670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26707</td>
<td>16723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18525</td>
<td>17683</td>
<td>23706</td>
<td>23350</td>
</tr>
<tr>
<td>17683</td>
<td>23350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18082</td>
<td>23450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18183</td>
<td>23450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18375</td>
<td>23650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18525</td>
<td>23706</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Example of input file for observation data

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11.25</td>
</tr>
<tr>
<td>39.7</td>
</tr>
<tr>
<td>47.72</td>
</tr>
<tr>
<td>82.07</td>
</tr>
<tr>
<td>59.93</td>
</tr>
<tr>
<td>56.0</td>
</tr>
<tr>
<td>10.49</td>
</tr>
<tr>
<td>83.35</td>
</tr>
</tbody>
</table>

Table 4. Example of input file for polygon centroid data points

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28309</td>
<td>18913</td>
</tr>
<tr>
<td>8954</td>
<td>18202</td>
</tr>
<tr>
<td>12983</td>
<td>21283</td>
</tr>
<tr>
<td>8322</td>
<td>25233</td>
</tr>
<tr>
<td>10297</td>
<td>25075</td>
</tr>
<tr>
<td>6347</td>
<td>11961</td>
</tr>
<tr>
<td>19224</td>
<td>16227</td>
</tr>
</tbody>
</table>
documented, sound mapping software to provide a reliable link between the user, the data software, and the display hardware.

Monmonier commented that computers have given "aesthetically insensitive, geographically ignorant people the opportunity to create cartographic monstrosities with unprecedented ease" (Monmonier, 1984). To combat this, mapping software will need to become sophisticated enough to detect and prevent cartographic blunders. This is why it is important for software developers to know more than cartographic basics and computer programming. Color theory and production, map design processes, computer and computer peripheral technology, and the interface of humans and computers needs to be understood and taken into consideration when creating computer-assisted cartographic systems.
References

PROGRAM CCMS

COLOR CHOROPLETH MAPPING SYSTEM (CCMS) IS WRITTEN IN
FORTAN 77 ON A GOULD S.E.L. 32/67 MINI COMPUTER FOR THE
RASTER TECHNOLOGIES HIGH RESOLUTION CRT. THE PROGRAM
UTILIZES THE RASTER TECHNOLOGIES GRAPHIC FIRMWARE.

TO RUN CCMS, A DIGITIZER TABLET AND CURSOR NEED TO BE
CONNECTED TO THE RASTER TECHNOLOGIES CRT.

CCMS IS RUN INTERACTIVELY. MENU INSTRUCTIONS APPEAR AT
THE BOTTOM OF THE SCREEN. USING A DIGITIZER TABLET AND CURSOR
THE USER ENTERS THE DESIRED COMMAND BY PLACING A CROSSHAIR
OVER THE INSTRUCTION AND PRESSING A CURSOR BUTTON. CCMS THEN
WILL DISPLAY THE NEXT MENU CONTAINING THE NEXT SET OF
INSTRUCTIONS AND SO ON AND SO FORTH. THE NAME OF EACH MENU
DISPLAYED APPEARS IN THE LOWER LEFTHAND CORNER.

INTEGER*2 IX, IY, IY1, IBUT, IPOSX, PX, PY, BCNTRX, BCNTRY
INTEGER*2 ACFLAG, HFLG, UBXFUYF, IX1
INTEGER*4 MX, MIX, MY, MIY, PRX, PRY
CHARACTER*15 STR1, STR2, STR3, STR4
DATA STR1/'CLEAR PORTION'/
DATA STR2/'OF SCREEN'/
DATA STR3/'CLEAR ENTIRE'/
DATA STR4/'SCREEN'/
CC=0
BCNTRX=-250
BCNTRY=-250

ENTER GRAPHICS MODE AND CLEAR SCREEN
CALL RTINIT
CALL ENGRA
CALL VAL8(255)
CALL FLOOD
CALL VAL8(0)
CALL PRMFL1(0)
CALL WARM

WRITE TITLE OF PROGRAM ON SCREEN
CALL TITLE

WRITE MENU
CALL MMENU

ACTIVATE CROSSHAIR
CALL MACDEF(5)
CALL CMOVE(5,2)
CALL MACEND
CALL XHAIR(0,1)
CALL BUTT3L(0,5)
CALL FLUSH

READ COMMAND AND CALL APPROPRIATE SUBROUTINE
CALL READBU(I1, I3UT, IX, IY)
CALL CLRMENU

IF (IX .LT. -205) THEN
CALL TEXPROG
CALL MMENU
ELSE IF (IX .LT. -140) THEN
 CALL POLDRAW(IPOSY, IPOSX, MAXX, MINX, MAXY, MINY, IPROARX, IPROARY, *UBX, UEY)
 PX = IPOSX
 PY = IPOSY
 MX = MAXX
 MINTX
 MX = MINX
 MY = MAXY
 MIY = MINY
 PRX = IPROARX
 PRY = IPROARY
 CALL MMENU
ELSE IF (IX .LT. -90) THEN
 CALL COLOR(IPOSY, IY1, CC)
 CALL MMENU
ELSE IF (IX .LT. -40) THEN
 ACFLAG = 0
 CALL LEGEND(IPOSY, IY1, IX1)
 CALL MMENU
ELSE IF (IX .LT. 75) THEN
 ACFLAG = 1
 CALL AUTOCLS(PY, PX, MX, MINTX, MY, MIY, PRX, PRY, HFLG)
 CALL MMENU
ELSE IF (IX .LT. 130) THEN
 CALL SORDER(BCNTRX, 3CNTRY)
 CALL MMENU
ELSE IF (IX .LT. 190) THEN
 CALL CLRMENU
 C WRITE CLEAR MENU
 CALL MOVABS(-100, -236)
 CALL RECTAN(0, -206)
 CALL RECTAN(100, -206)
 CALL MOVABS(-95, -213)
 CALL TEXT1(STR1)
 CALL MOVABS(-80, -230)
 CALL TEXT1(STR2)
 CALL MOVABS(10, -218)
 CALL TEXT1(STR3)
 CALL MOVABS(20, -230)
 CALL TEXT1(STR4)
 C DETERMINE COMMAND OF CLEAR ROUTINE
 CALL READBU(1, 1, I3UT, IX, IY)
 IF (IX .LT. 0) THEN
 CALL CLRPRTN
 CALL MMENU
 ELSE
 CALL VAL(255)
 CALL FLOCQ
 CALL VAL(0)
 CALL MMENU
 END IF
ELSE
 CALL GENMAP(BCNTRX, 3CNTRY, PX, PY, UBX, UBY, IX1, IY1, HFLG, ACFLAG)
GO TO 99
END IF
C READ NEXT COMMAND
GO TO 11
C
C CLEAR MENU, TURN CROSSHAIR OFF AND END PROGRAM
99 CALL CLRMENU
CALL XHAIR(0,0)
CALL QUIT
END
C
C SUBROUTINE TITLE
C ***
C SUBROUTINE TO WRITE TITLE ON SCREEN
C ***
CHARACTER*1 TSTR5, TSTR6, TSTR7, TSTR8
CHARACTER*5 TSTR1
CHARACTER*6 TSTR4
CHARACTER*7 TSTR3
CHARACTER*10 TSTR2
C
DATA TSTR1/'JULIE'/
DATA TSTR2/'AUTOMATED'/
DATA TSTR3/'MAPPING'/
DATA TSTR4/'SYSTEM'/
DATA TSTR5/'S'/
DATA TSTR3/'A'/
DATA TSTR5/'M'/
DATA TSTR7/'S'/
C
CALL VALUE(255, 125, 125)
CALL TEXT(7C, 0)
CALL MOVA3S(-150, 150)
CALL TEXT1(TSTR1)
C
CALL MOVA3S(-100, 50)
CALL TEXT1(TSTR2)
C
CALL MOVA3S(-50, -50)
CALL TEXT1(TSTR3)
C
CALL MOVA3S(0, -150)
CALL TEXT1(TSTR4)
C
CALL VALUE(255, 30, 30)
CALL MOVA3S(-150, 150)
CALL TEXT1(TSTR5)
C
CALL MOVA3S(-100, 50)
CALL TEXT1(TSTR3)
CALL MOVA3S(-50, -50)
CALL TEXT1(TSTR6)
CALL MOVA3S(0, -150)
CALL TEXT1(TSTR7)
C
C MAKE FIRST CHARACTER OF EACH WORD LARGER
CALL VALUE(255, 30, 30)
CALL TEXTC(110,0)
CALL MOVABS(-160,140)
CALL TEXT1(TSTR5)
CALL MOVABS(-110,40)
CALL TEXT1(TSTR8)
CALL MOVABS(-60,-60)
CALL TEXT1(TSTR6)
CALL MOVABS(-10,-160)
CALL TEXT1(TSTR7)
CALL EMPTYB

WRITE("UT",*) "ENTER A RETURN TO START PROGRAM"
READ("UT",5) R

CALL VAL8(255)
CALL FLOOD
CALL VAL8(0)
RETURN
END

SUBROUTINE MMENU

SUBROUTINE DRAWS MAIN MENU

CHARACTER*4 MSTR1,MSTR3,MSTR5,MSTR10,MSTR12
CHARACTER*5 MSTR4
CHARACTER*6 MSTR6,MSTR14
CHARACTER*7 MSTR2,MSTR8,MSTR9
CHARACTER*8*MSTR11
CHARACTER*14 MSTR7,MSTR15

DATA MSTR1/"TEXT"/
DATA MSTR2/"POLYGON"/
DATA MSTR3/"DRAW"/
DATA MSTR4/"COLOR"/
DATA MSTR5/"FILL"/
DATA MSTR6/"LEGEND"/
DATA MSTR7/"CLASSIFICATION"/
DATA MSTR8/"CLEAR &"/
DATA MSTR9/"RESTART"/
DATA MSTR10/"EXIT"/
DATA MSTR11/"ASSISTED"/
DATA MSTR12/"MAP"/
DATA MSTR14/"BORDER"/
DATA MSTR15/"MAIN MENU"/

CALL MOVABS(-240,-236)
CALL RECTAN(-205,-206)
CALL RECTAN(-140,-206)
CALL RECTAN(-90,-206)
CALL RECTAN(-40,-206)
CALL RECTAN(75,-206)
CALL RECTAN(130,-206)
CALL RECTAN(190,-206)
CALL RECTAN(240,-206)
CALL TEXTC(18,-C)
CALL MOVABS(-235,-223)
CALL TEXT1(MSTR1)
CALL MOVABS(-197,-218)
CALL TEXT1(MSTR2)
CALL MOVABS(-186,-230)
CALL TEXT1(MSTR3)
CALL MOVABS(-135,-218)
CALL TEXT1(MSTR4)
CALL MOVABS(-130,-230)
CALL TEXT1(MSTR5)
CALL MOVABS(-35,-223)
CALL TEXT1(MSTR6)
CALL MOVABS(-5,-218)
CALL TEXT1(MSTR11)
CALL MOVABS(-25,-230)
CALL TEXT1(MSTR7)
CALL MOVABS(95,-218)
CALL TEXT1(MSTR12)
CALL MOVABS(85,-230)
CALL TEXT1(MSTR14)
CALL MOVABS(138,-213)
CALL TEXT1(MSTR3)
CALL MOVABS(138,-230)
CALL TEXT1(MSTR9)
CALL MOVABS(199,-223)
CALL TEXT1(MSTR10)
CALL MOVABS(-220,-246)
CALL TEXT1(MSTR15)

RETURN
END

SUBROUTINE TEXPROG

SUBROUTINE TO ENTER TEXT ON THE SCREEN

INTEGER*2 IX, IY, IXSZ
INTEGER*2 ITXSZ
LOGICAL*1 FLAG1, FLAG2
CHARACTER*25 TSTR1
CHARACTER*80 TEXSTR

DATA TSTR1/"ENTER TEXT AT TERMINAL"
FLAG1=.FALSE.
FLAG2=.FALSE.
C CREATE RECTANGLES
CALL MOVABS (-170,-236)
CALL RECTAN (-110,-206)
CALL RECTAN (-55,-206)
CALL RECTAN (95,-206)
CALL RECTAN (155,-206)
C
CALL TEXTC (20,0)
CALL MOVABS (-159,-218)
CALL TEXT1 (STR4)
CALL MOVABS (-155,-230)
CALL TEXT1 (STR5)
C
CALL MOVABS (-101,-218)
CALL TEXT1 (STR6)
CALL MOVABS (-97,-230)
CALL TEXT1 (STR7)
C
CALL MOVABS (-45,-218)
CALL TEXT1 (STR1)
CALL MOVABS (-50,-230)
CALL TEXT1 (STR2)
C
CALL MOVABS (110,-223)
CALL TEXT1 (STR9)
C
CALL MOVABS(-220,-246)
CALL TEXT1 (STR10)
C
RETURN
END
C
SUBROUTINE LTRSIZE(ISZ)
C ****** ******k***
C SUBROUTINE TO DETERMINE LETTER SIZE OF TEXT
C **
INTEGER*2 IBIJT,IX,IY,ISZ
CHARACTER*2 STR1,STR2
C
DATA STR1 /"SaI
DATA STR2 /"Choose size of lettering"/
C
DRAW LETTER SIZE EXAMPLES
CALL MOVABS (-200,-236)
CALL TEXTC (16,0)
CALL TEXT1 (STR1)
CALL MOVREL (-2,-2)
CALL RECREL (14,10)
C
CALL MOVABS (-176,-236)
CALL TEXTC (20,0)
CALL TEXT1 (STR1)
CALL MOVREL (-2,-2)
CALL RECREL (18,11)
C
CALL MOVABS (-148,-236)
CALL TEXTC (25,0)
CALL TEXT1 (STR1)
CALL MOVREL (-2,-2)
CALL RECREL (20,13)

CALL MOVABS (-118,-236)
CALL TEXTC (30,0)
CALL TEXT1 (STR1)
CALL MOVREL (-2,-2)
CALL RECREL (24,15)

CALL MOVABS (-84,-236)
CALL TEXTC (35,0)
CALL TEXT1 (STR1)
CALL MOVREL (-2,-2)
CALL RECREL (26,17)

CALL MOVABS (-48,-236)
CALL TEXTC (45,0)
CALL TEXT1 (STR1)
CALL MOVREL (-2,-2)
CALL RECREL (32,22)

CALL MOVASS (-6,-236)
CALL TEXTC (55,0)
CALL TEXT1 (STR1)
CALL MOVREL (-2,-2)
CALL RECREL (38,26)

C ASK FOR SIZE OF LETTER
CALL MOVABS (40,-224)
CALL TEXTC (20,0)
CALL TEXT1 (STR2)
CALL EMPTYB

C DETERMINE LETTER SIZE
CALL READBU (11, IBUT, IX, IY)
IF (IX .GT. -8) THEN
 ISZ=55
ELSE IF (IX .GT. -50) THEN
 ISZ=45
ELSE IF (IX .GT. -85) THEN
 ISZ=35
ELSE IF (IX .GT. -120) THEN
 ISZ=30
ELSE IF (IX .GT. -150) THEN
 ISZ=25
ELSE IF (IX .GT. -178) THEN
 ISZ=20
ELSE
 ISZ=16
END IF

CALL CLRMENU
RETURN
END
SUBROUTINE WRITEX(ITXSZ,TEXSTR)
C ***
C SUBROUTINE TO LOCATE AND WRITE TEXT ON SCREEN
C ***
INTEGER*2 IX, IY, IX1, IY1, IBUT, ITXSZ
CHARACTER*20 WSTR1, WSTR2
CHARACTER*60 TEXSTR
C
DATA WSTR1/PRESS F TO END/
DATA WSTR2/PRESS A TO DELETE/
IX1 = -255
IY1 = -255
C
CALL MOVABS(C,-200)
CALL TEXTC(2C,0)
CALL TEXT1(WSTR1)
CALL MOVABS(C,193)
CALL TEXT1(WSTR2)
C
201 CALL READBU(1,1,IBUT,IX,IY)
 IF (IBUT .EQ. 10) GO TO 215
 IF (IBUT .EQ. 15) THEN
 203 CALL VAL8(255)
 CALL MOVABS(0, -200)
 CALL TEXTC(20, 0)
 CALL TEXT1(WSTR1)
 CALL MOVABS(0, -190)
 CALL TEXT1(WSTR2)
 CALL VAL8(0)
 RETURN
 END IF
215 CALL VAL8(255)
 CALL MOVABS(IX1, IY1)
 CALL TEXTC(ITXSZ, 0)
 CALL TEXT1(TEXSTR)
 IF (IBUT .EQ. 10) GO TO 203
C
CALL MOVABS(IX, IY)
CALL VAL8(0)
CALL TEXT1(TEXSTR)
CALL EMPTY8
IX1 = IX
IY1 = IY
GO TO 201
END
C
SUBROUTINE POLDRAW(IPOSY, IPOSX, MAXX, MINX, MAXY, MINY, IPROARX, *IPROARY, UBX, UBY)
C ***
C SUBROUTINE TO DRAW POLYGONS ON SCREEN
C ***
INTEGER*4 MAXX, MINX, MAXY, MINY, MAXXL, MINXL, MAXYL, MINYL
INTEGER*2 LNUM, NUMPTS, ISTOP, ISTART, RPOLY, LPOLY
INTEGER*2 IX, IY, IPROPX, IPROPY, IPOSX, IPOSY, ISZ, L3X, LBY, UBX, UBY
INTEGER*4 PTS(3025, 2), INDX(256, 2)
REAL*4 RPROPX, RPROPY
CHARACTER*8 DATAFIL
CHARACTER*45 PSTR2
C
CHARACTER*65 PSTR4

DATA PSTR2 /"ENTER DATA FILE AND SCALE AT TERMINAL"/
DATA PSTR4 /"MOVE CROSSTRAIN TO THE DESIRED BOTTOM LEFT HAND CORNER OF MAP"/

C CHECK IF SUBROUTINE HAS BEEN CALLED AND IF TRUE SKIP TO POLYMEN
IF (IFLAG .EQ. 1) GO TO 205

C IFLAG=0
MAXX=0
MAXY=0
MINX=100000
MINY=100000
ISTART=1

CALL MOVABS(-200,-200)
CALL TEXT1(PSTR2)
CALL EMPTYB

C READ IN POLYGON DATA
WRITE(UT,*)ENTER POLYGON DATA FILE:
READ(UT,100) DATAFIL
100 FORMAT(A3)
OPEN(CUNIT=1GFILE=DATAFILFBLOCKED=.TRUE.,IOSTAT=ISTAT,
*STATUS="OLD")
IF (ISTAT .EQ. 10) GOTO 900

C CALL VALB(255)
CALL MOVABS(-200,-200)
CALL TEXT1(PSTR2)
CALL VALB(0)

C READ IN DATA
DO 1 I=1,500
READ(10,101,END=201,ERR=902) LNUM NUMPTS
READ(10,101,END=901,ERR=902) RPOLY LPOLY
101 FORMAT(2(I16))
READ(10,102,END=901,ERR=902) MAXXL MINXL MAXYL MINYL
102 FORMAT(4(I6))

C DETERMINE MINIMUM AND MAXIMUM POINTS
MAXX=MAXO(MAXX,MAXXL)
MAXY=MAXO(MAXY,MAXYL)
MINX=MINO(MINX,MINXL)
MINY=MINO(MINY,MINYL)

C STORE BEGINNING AND ENDING POINTERS FOR EACH LINE
ISTOP=ISTART + (NUMPTS-1)
INX(I-1)=ISTART
INX(I-2)=ISTOP

C READ IN POLYGON POINTS
DO 2 J=ISTART ISTOP
READ(10,101,END=901,ERR=902) PTS(J,1)PTS(J,2)
2 CONTINUE
ISTART=ISTOP+1
1 CONTINUE
C DETERMINE SCALE FACTOR FOR DATA
201 WRITE("UT","*""ENTER THE MAP SIZE IN PIXELS: "
 READ(UT,103) ISZ
103 FORMAT(I3)
 MXDIS=MAXX-MINX+1
 MYDIS=MAXY-MINY+1
 RPROPX=FLOAT(MXDIS)/FLOAT(MYDIS)
 RPROPY=FLOAT(MYDIS)/FLOAT(MXDIS)
 IF (RPROPX .GT. 1.0) RPROPX=1.0
 IF (RPROPY .GT. 1.0) RPROPY=1.0
C
C SCALE THE PLOT AREA TO THE PROPORTION OF THE DATA
 IPROPX=INT(ISZ*RPROPX) + 1
 IPROPY=INT(ISZ*RPROPY) + 1
 IPR0ARX=MXDIS/IPROPX
 IP0ARY=MYDIS/IPROPY
C DETERMINE BOTTOM LEFTHAND CORNER OF PLOT
 IPOSX=-(ISZ/2) + (ISZ-IPROPX)/2
 IPOSY=-(ISZ/2) + (ISZ-IPROPY)/2
C
C CLEAR JUST THE POLYGON WINDOW
202 IF (IFLAG .EQ. 1) THEN
 CALL VAL8(255)
 CALL WINDOW(L3X,LBY,UBX,UBY)
 CALL CLEAR
 CALL VAL8(C)
 CALL WINDOW(-256,-256,255,255)
END IF
C
 IFLAG=1
 CALL XHAIR(0,0)
C PLOT POLYGONS
 DO 4 I=1,LNUM
 ISTART=INDEX(I,1)
 ISTOP=INDEX(I,2)
C MOVE TO BEGINNING OF LINE
 IX=(PTS(I/start,1)-MINX)/IPROARX + IPOSX
 IY=(PTS(I/start,2)-MINY)/IPROARY + IPOSY
 CALL MOVABS(IX,IY)
C DRAW LINE
 DO 5 K=I/start+1,ISTOP
 IX=(PTS(K,1)-MINX)/IPROARX + IPOSX
 IY=(PTS(K,2)-MINY)/IPROARY + IPOSY
 CALL DRWAES(IX,IY)
5 CONTINUE
4 CONTINUE
 CALL EMPTYB
C
C DETERMINE POLYGON WINDOW
 L3X=IPOSX
 L3Y=IPOSY
 UBX=(MAXX-MINX)/IPROARX+IPOSX
 UBY=(MAXY-MINY)/IPROARY+IPOSY
C
 CALL XHAIR(0,1)
205 CALL POLYMENU
C
54
CALL READBU(IUT1,IX,IVY)
IF (IX.LT.40) THEN
 C CHANGE SCALE
 GO TO 201
ELSE IF (IX.LT.10) THEN
 C MOVE POLYGONS TO NEW POSITION
 CALL MOVABS(-220,-206)
 CALL TEXT1(PSTR4)
 CALL READBU(IUT1,IX,IVY)
 IPGXS=IX
 IPGYS=IVY
 CALL VALF(255)
 CALL MOVABS(-220,-206)
 CALL TEXT1(PSTR4)
 CALL VALF(C)
 GO TO 202
ELSE
 CALL CL'ENJ
 END IF
GOTO 999
C C WRITE ERROR STATEMENTS
900 WRITE("UT",*) "ERROR ENCOUNTED WHILE ATTEMPTING TO OPEN FILE"
 GOTO 999
901 WRITE("UT",*) "ERROR! END OF FILE REACHED"
 GOTO 999
902 WRITE("UT",*) "ERROR ENCOUNTERED WHILE READING FILE "DATAFIL
C 999 CLOSE(I10)
RETURN
END
C
C SUBROUTINE POLYMENU
C **
C SUBROUTINE TO DRAW POLYGON MENU ON SCREEN
C **
C CHARACTER*4 PCT2,PCT3
C CHARACTER*5 PCTR1
C
DATA PCTR1 /"SCALE"/
DATA PCTR2 /"MOVE"/
DATA PCTR3 /"EXIT"/
C
CALL MOVABS(-100,-236)
CALL RECTAN(-40,-206)
CALL RECTAN(10,-206)
CALL RECTAN(70,-206)
C
CALL TEXTC(2C,C)
CALL MOVABS(-3E,-223)
CALL TEXT1(PSTR1)
C
CALL MOVABS(-29,-223)
CALL TEXT1(PSTR2)
CALL MOVABS(25,-223)
CALL TEXT1(PSTR3)
C
RETURN
END
SUBROUTINE COLOR(IPOSY, IY1, CC)
C***
C SUBROUTINE TO COLOR MAP
C***
INTEGER*2 IY, IY1, IY2, IPOSY, IY1, MINY, CC, FLAG3
CHARACTER*27 STR1
CHARACTER*40 STR2, STR3, STR4, STR5, STR6
C
DATA STR1 /"PRESS F TO END"/
DATA STR2/"TO FILL AN AREA WITH COLOR"/
DATA STR3/"1. Move crosshair to color"/
DATA STR4/"2. Press a cursor button"/
DATA STR5/"3. Move crosshair to area"/
DATA STR6/"4. Press a cursor button"/
FLAG3=0
C DETERMINE MINIMUM Y POSITION ON MAP (IPOSY->POLYGON, IY1->LEGEND)
IF (IPOSY .LT. IY1) THEN
 MINY=IPOSY
ELSE
 MINY=IY1
ENDIF
C
CALL TEXTC(CC, CC)
CALL COLORMENU
C READ INSTRUCTION
CALL TEXT1(IY, IBUT, CC, IY)
IF (IX .LT. -35) THEN
C DRAW ALL COLOR PALETTES TO SCREEN
C
CALL COLORMENU
FLAG3=0
CALL COLRPLT(MINY, FLAG3, CC, IYWDOW)
CALL PPMFIL(CC)
CALL COLORMENU
ELSE IF (IX .LT. 25) THEN
C READ IN COLOR CHOICE
CALL COLORMENU
CALL COLRCO3(CC, FLAG3)
CALL COLORMENU
ELSE IF (IX .LT. 75) THEN
C FILL AREAS WITH COLOR FROM A COLOR PALETTE
IF (CC .EQ. 0) THEN
 WRITE("UT",*)"ERROR! NO COLOR HAS BEEN CHOSEN"
 GO TO 44
ENDIF
CALL COLORMENU
CALL MOVABS(100,-223)
CALL TEXT1(STR1)
CALL COLRPLT(MINY, FLAG3, CC, IYWDOW)
C WRITE DIRECTIONS ON HOW TO FILL AN AREA WITH COLOR TO SCREEN
CALL VAL8(CC)
CALL TEXT1(16,0)
CALL MOVABS(-250,-200)
CALL TEXT1(STR2)
CALL MOVABS(-250,-210)
CALL TEXT1(STR3)
CALL MOVABS(-250,-220)
CALL TEXT1(STR4)
CALL MOVABS(-250,-230)
CALL TEXT1(STR5)
CALL MOVABS(-250,-240)
CALL TEXT1(STR6)
CALL TEXTC(20,0)

C
C DEFINE MACRO TO FILL AN AREA
CALL MACDEF(10)
CALL CMOVE(O,2)
CALL AREA1
CALL MACEND

C
C READ COLOR FROM PALETTE
50 CALL READBU(1,1,IBUT,IX,IY)
 IF (IBUT .EQ. 15) GO TO 54
 CALL CMOVE(O,2)
 CALL RDPIXR(O)

C READ POSITION OF AREA TO BE FILLED
CALL READBU(1,1,IBUT,IX,IY)
IF (IBUT .EQ. 15) GO TO 54
CALL MACRO(10)
GO TO 50

C
C CLEAR COLOR PALETTE FROM SCREEN
54 CALL WINDOW(-256,-256,250,255)
 CALL VAL8(255)
 CALL CLEAR
 CALL VAL8(O)
 CALL WINDOW(-256,-256,255,255)
 CALL PRMFL(0)
 CALL CLRMENU
ELSE
 GO TO 901
END IF
GO TO 44

C
901 CALL CLRMENU
RETURN
END

C
SUBROUTINE CLRMENU

C ***
C SUBROUTINE TO DRAW COLOR MENU
C ***
CHARACTER*4 CSTR4,CSTR5,CSTR6
CHARACTER*6 CSTR2,CSTR3
CHARACTER*10 CSTR1,CSTR7

DATA CSTR1 /"SEE COLORS/
DATA CSTR2 /"CHOOSE/
DATA CSTR3 /"COLOR/
DATA CSTR4 /"FILL/
DATA CSTR5 /"AREA/
DATA CSTR6 /"EXIT/
DATA CSTR7/"COLOR MENU/

CALL MOVABS(-125,-236)
CALL RECTAN(-35,-206)
CALL RECTAN(25,-206)
CALL RECTAN(75,-206)
CALL RECTAN(125,-206)
CALL MOVABS(-115,-223)
CALL TEXT1(CSTR1)
CALL MOVABS(-26,-21B)
CALL TEXT1(CSTR2)
CALL MOVABS(-24,-230)
CALL TEXT1(CSTR3)
CALL MOVABS(35,218)
CALL TEXT1(CSTR4)
CALL MOVABS(35,230)
CALL TEXT1(CSTR5)
CALL MOVABS(83,223)
CALL TEXT1(CSTR6)
CALL MOVABS(220,246)
CALL TEXT1(CSTR7)
RETURN
END

SUBROUTINE COLRCHOS(CC,FLAG3)
C ***
C SUBROUTINE TO CHOOSE COLOR
C ********** ************** ***
INTEGER*2 CC,FLAG3
CHARACTER*7 CCSTR1,CCSTR2,CCSTR3,CCSTR4,CCSTR5,CCSTR6
DATA CCSTR1 /"RED"/
DATA CCSTR2 /"GREEN"/
DATA CCSTR3 /"BLUE"/
DATA CCSTR4 /"YELLOW"/
DATA CCSTR5 /"CYAN"/
DATA CCSTR6 /"MAGENTA"/
WRITE COLORS AVAILABLE TO USER
CALL MOVABS(-160,-236)
CALL RECTAN(-125,-206)
CALL RECTAN(-95,-206)
CALL RECTAN(-65,-206)
CALL RECTAN(-35,-206)
CALL MOVABS(-153,-223)
CALL TEXT1(CCSTR1)
CALL MOVABS(-120,-223)
CALL TEXT1(CCSTR2)
CALL MOVABS(-67,-223)
CALL TEXT1(CCSTR3)

CALL MOVABS(-23,-223)
CALL TEXT1(CCSTR4)

CALL MOVABS(43,-223)
CALL TEXT1(CCSTR5)

CALL MOVABS(90,-223)
CALL TEXT1(CCSTR6)

C READ COLOR CHOSEN AND ASSIGN TO VARIABLE CC
CALL READBU(1,1,IBUT,IX,IY)
IF (IX .LT. -120) THEN
 CC=1
ELSE IF (IX .LT. -90) THEN
 CC=2
ELSE IF (IX .LT. -30) THEN
 CC=3
ELSE IF (IX .LT. 30) THEN
 CC=4
ELSE IF (IX .LT. 95) THEN
 CC=5
ELSE
 CC=6
ENDIF
C
FLAG3=1
CALL CLRMENU
RETURN
END

SUBROUTINE COLRPLT(MINY,FLAG3,CC,IYWDOW)
C **
C SUBROUTINE TO DRAW COLOR PALETTE ON SCREEN
C **
INTEGER *2 X, Y, XO, YO, R, G, B, RD, IDIFF, CC, FLAG3, IYWDOW, MINY
CHARACTER*20 CPSTR1
C
DATA CPSTR1/'PRESS F TO CONTINUE'/
C SCALE COLORS TO FIT ON SCREEN
RD=7
M=10
IYWDOW=-121
IF(MINY .LT. -122) THEN
 IDIFF=IABS(-130 - MINY)
 IDIFF=FLOAT(IDIFF)/10.0 + 0.5
 M=M-IDIFF
 RD=RD-IDIFF
 IYWDOW=-252 + 10*M + 2 + RD
ENDIF
C CALCULATE COLOR PALETTE
YO=-252
\(k3=1 \)
\(ymc=0 \)
C INITIALIZE HUE
DO 34 J=1,2
 CALL XHAIR(0,0)
 DO 35 I=1,3

C DRAW COLOR PALETTE FOR CHOSEN COLOR USED TO FILL AN AREA
IF (FLAG3 .EQ. 1) THEN
 IF (CC .LT. 4) THEN
 I=CC
 ELSE
 YMC=-5
 I=CC-3
 END IF
 XO=-69
 GO TO 40
END IF

X0 = \(-210 + 141 \times (I-1)\)
40 \(H = ((I+YMC)-1) \times 120 \)
C CALCULATE VALUE
DO 36 J=1,10
 H=FLOAT(J)/10
 Y = Y0 + J*M + 2
C CALCULATE SATURATION
DO 37 K=0,10
 S=FLOAT(K)/10.
 X = XO + K*M + 2
C CALCULATE R,G,B VALUES AND DRAW PALETTE
 CALL VALUE(R, G, B)
 CALL MOVABS(X, Y)
 CALL PRMFIL(1)
 CALL RECRELCRD(RD, RD)
37 \(\text{CONTINUE} \)
36 \(\text{CONTINUE} \)
IF (FLAG3 .EQ. 1) THEN
 FLAG3=0
 CC=0
 CALL XHAIR(0,1)
 RETURN
35 \(\text{CONTINUE} \)
C
C SHOW COLORS UNTIL BUTTON IS PUSHED
 CALL MOVABS(-220,-250)
 CALL TEXT1(CPSTR1)
 CALL XHAIR(0,1)
 CALL READBU(1,1,IBUT, IX, IY)
 CALL WINDOW (-240,-255,240, IYWDOw)
 CALL VAL8(255)
 CALL CLEAR
 CALL VAL8(0)
 CALL WINDOW(-256,-256,255,255)
 YMC=-5
34 \(\text{CONTINUE} \)
SUBROUTINE HSV2RGB(H, S, A, R, G, B, K)
C **
C SUBROUTINE TO CALCULATE COLOR PALETTE
C **
REAL*4 H, A, S, R, G, B, K
INTEGER*2 P, G, B

10 IF (K .EQ. 0) GO TO 8
 S=1.0-30.45*(1.0*(1.0-S)**0.45/255.
 IF (H .NE. 360.) GO TO 11
 H1=H.
 GO TO 12
11 H1=H/360.
12 I=INT(H1)
 F=1-I
 P=V*(1.0-S)**0.45
 Q=V*(1.0-S*(1.0-F))**0.45
 T=V*(1.0-S*(1.0-F))**0.45
 R=V*255.

C BRANCH TO HUE CHOSEN
GO TO (3/2/3/4/5/6/8)
C RED
1 R=V1
G=T
B=P
RETURN
C GREEN
2 R=Q
G=V1
B=P
RETURN
C BLUE
3 R=P
G=V1
B=T
RETURN
C YELLOW
4 R=P
G=Q
B=V1
RETURN
C CYAN
5 R=T
G=Q
B=V1
RETURN
RETURN
SUBROUTINE LEGEND(IPOSY,IY1,IX1)

C ******** **
C SUBROUTINE TO CREATE LEGEND OF MAP
C ******** **

INTEGER*2 IX, IY, I3UT, IBUT, IBH, IBW, IBSP, IDIR, NB
CHARACTER*60 LSTR10, LSTR11

DATA LSTR10/'Give number of classes by pressing cursor'/
DATA LSTR11/"(f to end)"/

CALL TEXTC(16,0)
CALL LEGMENU
205 CALL READBU(1,1,IBUT,IX1,IY1)

C IF (IX .LT. -115) THEN
CALL MOVA3S(-200,-200)
CALL TEXT1(LSTR10)
CALL MOVA3S(70,-200)
CALL TEXT1(LSTR11)
CALL READBU(1,1,IBUT,IX1,IY1)
NB=IBUT
201 CALL READBU(1,1,IBUT,IX1,IY1)
IF (IBUT .NE. 15) THEN
NB=NB*10 + IBUT
GO TO 201
END IF
CALL VAL8(235)
CALL MOVA3S(-200,-200)
CALL TEXT1(LSTR10)
CALL MOVA3S(70,-200)
CALL TEXT1(LSTR11)
CALL VAL8(0)

C CREATE LEGEND BOXES
ELSE IF (IX .LT. 3) THEN
CALL CLRMENU
CALL BOX(IBH,IBW,IBSP,IDIR)
CALL LEGMENU
C POSITION BOXES ON SCREEN
ELSE IF (IX .LT. 70) THEN
CALL 3CDRAW(IBH,IBW,IBSP,IDIR,NE,IY1,IX1)
C TEXT LEGEND
ELSE IF (IX .LT. 120) THEN
CALL CLRMENU
CALL TEXPREG
CALL TEXTC(16,0)
CALL LEGMENU
C EXIT AND CLEAR LEGEND MENU
ELSE
GO TO 999
END IF
GO TO 205

C 999 CALL CLRMENU
RETURN
END

C

SUBROUTINE LEGMENU
C ***
C SUBROUTINE TO DRAW LEGEND MENU
C ***
CHARACTER*4 LSTR8, LSTR9, LSTR6
CHARACTER*5 LSTR7
CHARACTER*6 LSTR1
CHARACTER*8 LSTR5
CHARACTER*9 LSTR3, LSTR10
CHARACTER*10 LSTR2
CHARACTER*11 LSTR11
CHARACTER*18 LSTR4

C
DATA LSTR1 /"NUMBER"/
DATA LSTR2 /"OF CLASSES"/
DATA LSTR3 /"BOX WIDTH"/
DATA LSTR4 /"HEIGHT AND SPACING"/
DATA LSTR5 /"POSITION"/
DATA LSTR6 /"TEXT"/
DATA LSTR9 /"EXIT"/
DATA LSTR10 /"ON SCREEN"/
DATA LSTR11 /"LEGEND MENU"/

C
CALL MOVABS(-186,-236)
CALL RECTAN (-115,-206)
CALL RECTAN (0,-206)
CALL RECTAN (70,-206)
CALL RECTAN (120,-206)
CALL RECTAN (170,-206)

C
CALL MOVABS (-170,-213)
CALL TEXT1 (LSTR1)
CALL MOVABS (-130,-230)
CALL TEXT1 (LSTR2)

C
CALL MOVABS (-85,-213)
CALL TEXT1 (LSTR3)
CALL MOVABS (-110,-230)
CALL TEXT1 (LSTR4)

C
CALL MOVABS (12,-218)
CALL TEXT1 (LSTR5)
CALL MOVABS (10,-230)
CALL TEXT1 (LSTR10)

C
CALL MOVABS (82,-223)
CALL TEXT1 (LSTR6)

C
CALL MOVABS (133,-223)
CALL TEXT1 (LSTR9)

CALL MOVABS(-200,-246)
CALL TEXT1(LSTR11)

RETURN
END

SUBROUTINE BOX(IBW,IBM,IBSP,IDIR)

SUBROUTINE TO DETERMINE BOX SIZE (WIDTH, HEIGHT AND SPACING)

INTEGER*2 IX, IY, I3UT, IBM, IBW, IBSP, IDIR, IRMDR, IDIG(4), ND
INTEGER*2 IRETURN
CHARACTER*3 LCHAR, LBCHAR(3)
CHARACTER*40 LSTR11, LSTR12, LSTR13, LSTR14, LSTR15, LSTR16
CHARACTER*60 LSTR17

DATA LSTR11 /'(F TO END)'/
DATA LSTR12 /'GIVE BOX WIDTH'/
DATA LSTR13 /'GIVE BOX HEIGHT'/
DATA LSTR14 /'GIVE SPACING BETWEEN BOXES'/
DATA LSTR15 /'PRESS 1 FOR HORIZONTAL SPACING'/
DATA LSTR16 /'PRESS 2 FOR VERTICAL SPACING'/
DATA LSTR17 /'BOX EXAMPLE, (TO CONTINUE PRESS F)'/

C ENTER LEGNED BOX WIDTH
CALL MOVABS (-200,-210)
CALL TEXT1 (LSTR12)
CALL MOVABS (-50,-210)
CALL TEXT1(LSTR11)

CALL READBU(1,1,I3UT,IX,IY)
I3W=I3UT
202 CALL READBU(1,1,I3UT,IX,IY)
IF (I3UT .NE. 15) THEN
 IBW=IBW*10 + I3UT
END IF

C CORRECT FOR ZERO CURSOR BUTTON NOT WORKING
IF (IBM .EQ. 1 .OR. IBM .EQ. 2) IBW=IBW*10

C SET VARIABLES FOR INTEGER->CHARACTER CONVERSION AND WRITE TO SCREEN
IRMDR=I3W
IRETURN=1
GOTO 206

207 CALL MOVABS(100,-210)
CALL TEXT1(LBCHAR(IRETURN))

C ENTER LEGEND BOX HEIGHT
CALL MOVABS(-200,-220)
CALL TEXT1(LSTR13)
CALL MOVABS(-50,-220)
CALL TEXT1(LSTR11)

CALL READBU(1,1,I3UT,IX,IY)
IBM=IBW
ISUT=0

203 CALL READBU(1,1,ISUT,IX,IY)
 IF (ISUT .NE. 15) THEN
 IBH=IBH*10 + IBUT
 GO TO 203
 END IF

C CORRECT FOR ZERO CURSOR BUTTON NOT WORKING
 IF (IBH .EQ. 1 .OR. IBH .EQ. 2) IBH=IBH*10

C SET VARIABLES FOR INTEGER->CHARACTER CONVERSION AND WRITE TO SCREEN
 IRMOR=IBH
 IRETURN=2
 GOTO 206

208 CALL MOVABS(10G,-220)
 CALL TEXT1(LBCHAR(IRETURN))

C
C ENTER SPACING BETWEEN LEGEND BOXES
 CALL MOVABS(-200,-230)
 CALL TEXT1(LSTR14)
 CALL MOVABS(10,230)
 CALL TEXT1(LSTR11)
 CALL READBU(1,1,ISUT,IX,IY)
 ISBP=IBUT
 IBUT=0

204 CALL READBU(1,1,ISUT,IX,IY)
 IF (ISUT .NE. 15) THEN
 ISBP=ISBP*10 + IBUT
 GO TO 204
 END IF

C CORRECT FOR ZERO BUTTON NOT WORKING
 IF (ISBP .EQ. 1 .OR. ISBP .EQ. 2) ISBP=ISBP*10

C SET VARIABLES FOR INTEGER->CHARACTER CONVERSION AND WRITE TO SCREEN
 IRMOR=ISBP
 IRETURN=3
 GOTO 206

209 CALL MOVABS(10G,-230)
 CALL TEXT1(LBCHAR(IRETURN))

C
C ENTER HORIZONTAL OR VERTICAL SPACING

205 CALL CLRMENU
 CALL MOVABS(-200,-210)
 CALL TEXT1(LSTR15)
 CALL MOVABS(-200,-220)
 CALL TEXT1(LSTR16)
 CALL READBU(1,1,ISUT,IX,IY)
 IDIR=IBUT
 IF (IDIR .NE. 1 .AND. IDIR .NE. 2) GOTO 205

C
C DRAW BOXES TO SHOW USER WHAT THEY HAVE CHOSEN
 CALL CLRMENU
 CALL MOVABS(C,250)
 CALL RECREL(IBW,13H)
 IF (IDIR.EQ.1) THEN
 IX=IBW+IBSP
 CALL MOVABS (IX,-250)
 ELSE
 IY=-250 + 13H + IBSP
 CALL MOVABS (0,IY)

65
C CLEAR CHARACTER ARRAY
206 DO 4 I=1,3
 LCHAR(I:I)=" "
4 CONTINUE
C *****CALCULATE NUMBER OF DIGITS*****
 DO 1 I=0,10
 IF (10**I .GT. IRMDR) GOTO 101
1 CONTINUE
C SEPARATE NUMBERS INTO DIGITS
101 ND=I
 DO 2 IND,1,-1
 IDIG(I)= INT(IRMDR/10**(I-1))
 IRMDR=IRMDR-(IDIG(I)*10**(I-1))
2 CONTINUE
C CONVERT DIGITS TO CHARACTERS
 DO 3 IND,1,-1
 LCHAR(N:N)=CHAR(IDIG(I) + 48)
 N=N+1
3 CONTINUE
 LBCHAR(IRETURN)=LCHAR
 GOTO (207,208,209) IRETURN
C CLEAR WINDOW
99 CALL CLRMENU
 RETURN
END
C
SUBROUTINE BOXCRAW(IBH,IBW,IBSP,IDIR,NB,IY1,Ix1)
C **
C SUBROUTINE TO DRAW LEGEND BOXES ON SCREEN
C **
INTEGER*2 IX, IY, I8UT, IX1, IX2, IY1, IY2, IBH, IEB, IBSP, IDIR, NB
CHARACTER*25 LSTR19
CHARACTER*70 LSTR18
C
DATA LSTR18 /"PLACE CROSSHAIR IN LOWER LEFTHAND CORNER OF LEFT
*OR BOTTOM BOX"/
DATA LSTR19 /"(PRESS F TO END)"/
C
IX1=-255
IY1=-255
C
CALL MOVABS(-230,-200)
CALL TEXTC(16,0)
CALL TEXT1(LSTR18)
CALL MOVABS (160,-200)

66
CALL TEXT1(LSTR19)

C205 CALL READBU(1,1,IBUT,IX,IY)
C ERASE DIRECTIONS AND RETURN
IF (IBUT.EQ.15) THEN
 CALL VAL8(255)
 CALL MOVABS(-230,-200)
 CALL TEXT1(LSTR18)
 CALL MOVABS(160,-200)
 CALL TEXT1(LSTR19)
 CALL VAL8(0)
 RETURN
END IF
C ERASE OLD BOXES
 CALL VAL8(255)
 CALL MOVABS(IX1,IY1)
 CALL RECREL(IBW,IBH)
 IF (IDIR.EQ.1) THEN
 DO 1 J=1,NB-1
 IX2=IX1 + IBW*J + IBSP*J
 CALL MOVABS(IX2,IY1)
 CALL RECREL(IBW,IBH)
 CONTINUE
 ELSE
 DO 2 J=1,NB-1
 IY2=IY1 + IBH*J + IBSP*J
 CALL MOVABS(IX1,IY2)
 CALL RECREL(IBW,IBH)
 CONTINUE
 END IF
C PLOT BOXES
 CALL VAL8(0)
 CALL MOVABS(IX,IY)
 CALL RECREL(IBW,IBH)
 IF (IDIR.EQ.1) THEN
 DO 3 J=1,NB-1
 IX2=IX + IBW*J + IBSP*J
 CALL MOVABS(IX2,IY)
 CALL RECREL(IBW,IBH)
 CONTINUE
 ELSE
 DO 4 J=1,NB-1
 IY2=IY + IBH*J + IBSP*J
 CALL MOVABS(IX,IY2)
 CALL RECREL(IBW,IBH)
 CONTINUE
 END IF
IX1=IX
IY1=IY
GO TO 205
END
C
SUBROUTINE AUTOCLS(PY,PX,MX,MIX,MY,MICY,PRX,PRY,HFLG)
C *** SUBROUTINE TO ASSIST CLASSIFICATION ***
C
INTEGER*2 IX,IY,IBUT,ACFLAG,LDND(2,15),IST,HFLG,DASHLEN,NDG(30)
INTEGER*2 N8,CC,R,G,B,NP,IDIG(15),LTX,LTY,ICLAS(100),PX,PY,IC
INTEGER*4 PCNTR,FIL,2),Mx,MIx,MY,MIY,px,py,IC,
REAL*4 RMDR,C3(20),STAT(100),STATMIN,STATMAX,DIV
CHARACTER*1 CDIG(10),DASH
CHARACTER*10 LGTXT(20),TEXT
CHARACTER*60 ACSTRI,ACSTR2
CHARACTER*8 STATFIL,PCNTRFIL

DATA ACSTR1/"ASSISTED CLASSIFICATION, ENTER DATA AT TERMINAL!"
DATA ACSTR2/"USE CURSOR TO ENTER CLASSIFICATION METHOD!"
DATA DASH/"-"/

HFLG=0
DFLAG=0
NP=0
NDMAX=0
STATMAX=-99999.
STATMIN=100000.

C INITIALIZE ARRAYS
DO 16 INT=1,15
IDIG(INT)=0
16 CONTINUE

C ENTER DATA FOR CLASSIFICATION
CALL TEXTC(20,0)
CALL MOVAS(-150,223)
CALL TEXT1(ACSTR1)
CALL EMPTYB

C WRITE("UT",*) "ENTER STATISTICAL DATA FILE: "
READ("UT",100) STATFIL
100 FORMAT(A8)
OPEN(UNIT=11,FILE=STATFIL,BLOCKED=.TRUE.,ERR=991,STATUS="OLD", *IOSTAT=ISTAT)
IF (ISTAT .NE. 10) GOTO 991

C WRITE("UT",*) "ENTER POLYGON CENTROID FILE: "
READ("UT",100) PCNTRFIL
OPEN(UNIT=12,FILE=PCNTRFIL,BLOCKED=.TRUE.,ERR=991,STATUS="OLD", *IOSTAT=ISTAT)
IF (ISTAT .NE. 10) GOTO 991
C READ STATISTICAL DATA
C 1 J=1,100
 READ(11,110) ENG=ENG, ERR=ERR, STAT(J)
110 FORMAT(3,2)
 IF (STAT(J) .EQ. -9999.) GOTO 115
 STATMAX=A MAX1(STATMAX, STAT(J))
 STATMIN=A MIN1(STATMIN, STAT(J))
115 NP=NP+1
 1 CONTINUE
C
C ENTER POLYGON CENTER POINTS
C 9 J
 DO 2 K=1,NP
 READ(12,120) EN0, ENG, PCNT(K,1), PCNT(K,2)
120 FORMAT(2(1X,4F))
 2 CONTINUE
C
C SCALE POLYGON CENTER POINTS TO SCREEN
C IF (MAX .EQ. C .AND. PX .EQ. 0) THEN
 WRITE("UT","*") "ERROR! POLYGON DRAW MUST BE CALLED FIRST"
 GO TO 999
END IF
C
C DO 3 J=1,NP
 PCNT(K,1)=(PCNT(K,1)-MIX)/PRX+PX
 PCNT(K,2)=(PCNT(K,2)-MIY)/PRY+PY
3 CONTINUE
C
C ENTER NUMBER OF CLASSES
C WRITE("UT","*"") "ENTER NUMBER OF CLASSES FOR CLASSIFICATION:"
C READ("UT",130) N=
130 FORMAT(I)
C
C ENTER COLOR CHOICE
C WRITE("UT","*"") "RED=1/ GREEN=2/ BLUE=3"
C WRITE("UT","*"") "YELLOW=4/ CYAN=5/ MAGENTA=6"
C WRITE("UT","*"") "ENTER COLOR CHOICE:"
C READ("UT",140) CC
140 FORMAT(I)
C
C WRITE("UT","*"") "ENTER CLASSIFICATION METHOD AT SCREEN"
C
C SET CLASS BOUNDARIES WITH LOWEST AND HIGHEST STAT VALUES
C B(1)=STATMIN
C B(N+1)=STATMAX
C
C PICK CLASSIFICATION TYPE AND CLASSIFY
C CALL CLMEND
C CALL PCMENU
C CALL MOVACS(-200, -245)
C CALL TEXT1(ACS712)
CALL READBU(I1,13UT,I1X,I1Y)
IF (IX .LT. -1.5) THEN
CALL EQTRPS(STAT,STXMN,STXMX,NE,NP,ICLASS,NE)
ELSE IF (IX .LT. -155) THEN
CALL NORMEQS(STAT,NP,ICLASS,NE)
ELSE IF (IX .LT. 55) THEN
CALL NSTMEAN(STAT,NP,ICLASS,NE)
ELSE IF (IX .LT. 125) THEN
CALL QUANTIL(NB,STAT,NP,ICLASS,NE)
ELSE
CALL LIMITS(STAT,ICLASS,NP,NE)
END IF

C FILL POLYGONS WITH CLASS COLOR
DO 4 K=1,NP
IF (STAT(K) .EQ. -9999.) THEN
R=0
G=0
B=0
GOTO 135
END IF
IC=ICLASS(K)
CALL COLORVAL(IC,CC,R,G,B)
CALL VALUE(R,G,B)
IX=PCNTR(K,1)
IY=PCNTR(K,2)
CALL MOVASS(IX,IY)
CALL AREA1
4 CONTINUE
CALL EMPTYB

C DRAW LEGEND BOXES
CALL CLRMENU
CALL AUTOLGND(NP,IX,PY,MIX,MY,IY,PRX,PRY,LLX,LLY,LEGND,HFLG)

C FILL LEGEND BOXES WITH CLASS COLOR
DO 12 I=1,N3
IC=I
CALL COLORVAL(IC,CC,R,G,B)
CALL VALUE(R,G,B)
IX=LGNP(1,I)
IY=LGNP(2,I)
CALL MOVASS(IX,IY)
CALL AREA1
12 CONTINUE
CALL EMPTYB

C CONVERT CLASS BOUNDARIES TO TEXT AND WRITE TO LEGEND
CALL VAL8(C0)
DO 5 K=1,NB+1
IST=1
TEXT=""
C CALCULATE NUMBER OF DIGITS IN EACH NUMBER
RMCRABS(CB(K))
DO 6 J=0,10
 IF (10**J .GT. RMDR) GOTO 65
6 CONTINUE

65 ND=J
 IF(CB(K) .GT. -1 .AND. CB(K) .LT. 1) THEN
 ND=1
 END IF
 J=1
END IF
C SEPARATE NUMBERS INTO DIGITS
DO 7 L=ND,1,-1
 IDIG(L)=INT(RMDR/10**(L-1))
 RMDR=RMDR-(IDIG(L)*10**(L-1))
7 CONTINUE
RMDR=RMDR*10
C DETERMINE FRACTIONAL PORTION OF NUMBER
IF(RMDR .NE. 0) THEN
 ND=ND+2
 IST=IST+2
 CDIG(1)=CHAR(INT(RMDR)+48)
 CDIG(2)="."
END IF
C DETERMINE IF NUMBER IS NEGATIVE AND ADD NEGATIVE SIGN
IF (CB(K) .LT. 0) THEN
 ND=ND+1
 CDIG(ND)=DASH
END IF
C CONVERT TO CHARACTER
DO 8 N=1,ND
 CDIG(IIST)=CHAR(IDIG(N) + 48)
 IIST=IIST+1
8 CONTINUE
C
DO 9 N=1,ND
 TEXT(N:N)=CDIG(ND-(N-1))
9 CONTINUE
LGTXT(K)=TEXT
NDG(K)=ND
 IF (ND .GT. NOMAX) NOMAX=ND
5 CONTINUE
DASHLEN=NOMAX*7+5
C WRITE LEGEND TEXT TO SCREEN
CALL TEXTC(16,0)
C DETERMINE HORIZONTAL OR VERTICAL LEGEND
IF (HFLG .NE. 1) THEN
C CHECK WHICH MARGIN AND SET BEGINNING COORDINATES
 LTX=LLX+21
 LTY=LLY+4
DO 11 J=1,NB
 IF (LLX .LT. PX) THEN
 LTX=LLX-(NDG(J)*6)-DASHLEN-2
 END IF
 CALL MOVABS(LTX,LTY)
 CALL TEXT1(LGTXT(J))
 CALL MOVABS(LLX-DASHLEN,LTY)
 CALL TEXT1(DASH)
 CALL MOVABS(LLX-DASHLEN+8,LTY)
 CALL TEXT1(LGTXT(J+1))
 LTY=LTY+24
11 CONTINUE
C WRITE HORIZONTAL LEGEND
ELSE
 LTX=LLX+21
 LTY=LLY+4
 NT=INT(FLOAT(NB)/2. + .5)
 N=1
 DO 15 J=1,NT
 DO 14 K=1,2
 CALL MOVABS(LTX,LTY)
 CALL TEXT1(LGTXT(N))
 CALL MOVABS(LTX+NDG(N)*6+1,LTY)
 CALL TEXT1(DASH)
 CALL MOVABS(LTX+NDG(N)*6+8,LTY)
 CALL TEXT1(LGTXT(N+1))
 LTY=LTY-24
 IF (N .EQ. NB) GOTO 150
 N=N+1
14 CONTINUE
 LTX=LTX+85
 LTY=LTY+48
15 CONTINUE
150 END IF
GOTO 999
C
991 WRITE("UT",*) "ERROR OCCURED WHILE OPENING A FILE"
GOTO 999
992 WRITE("UT",*) "ERROR OCCURED WHILE READING A FILE"
C
999 CLOSE (11)
CLOSE (12)
CALL CLRMENU
RETURN
END
C
SUBROUTINE PCMENU
C ***
C SUBROUTINE TO CREATE MENU OF CLASSIFICATION METHODS
C ***
CHARACTER*5 PCSTR1,PCSTR2
CHARACTER*11 PCSTR7
CHARACTER*16 PCSTR5,PCSTR6
CHARACTER*20 PCSTR3,PCSTR4,PCSTR8
SUBROUTINE EQSTPS(STAT, STATMIN, STATMAX, NB, NP, ICLASS, CB)

C SUBROUTINE TO CALCULATED EQUAL STEPPED INTERVALS FOR CLASSES
C
INTEGER*2 NB, NP, NUMSTP, EQSTP, ICLASS(100)
REAL*4 STAT(100), STATMIN, STATMAX, CB(20)
C
C CALCULATE STEP
ESTP=INT((STATMAX-STATMIN)/NE)
CD 1 M=1/4P
C CLASSIFY EACH POLYGON
CD 2 J=1/4P
NUMSTP=NE-J
CB(NUMSTP+1)=STATMIN+NUMSTP*EQSTP
IF (STAT(J) .LE. STATMIN+NUMSTP*EQSTP) THEN
ICLASS(J)=NUMSTP+1
GOTO 1
END IF
2 CONTINUE
1 CONTINUE
RETURN
END
C
C SUBROUTINE NORMDIS(STAT,NP,ICLASS,C3)
C **
C SUBROUTINE TO CALCULATE CLASS INTERVALS USING NORMAL DISTRIBUTION
C **
INTEGER*2 ICLASS(100),NP
REAL*4 MEAN,STANDEV,SUMSTAT,SUMSQ,STAT(100),C3(20)
C
SUMSQ=C
SUMSTAT=0
C
C CALCULATE SUM Squared AND TOTAL SUM OF STAT DATA
DO 1 N=1,NE
 1= (STAT(N) <= -9999) GOTO 1
 SUMSQ=SUMSQ+STAT(N)**2
 SUMSTAT=SUMSTAT+STAT(N)
1 CONTINUE
C
C CALCULATE MEAN AND STANDARD DEVIATION OF DATA
MEAN=SUMSTAT/FLOAT(NP)
C3(2)=MEAN
STANDEV=SQR((SUMSQ-SUMSTAT**2/FLOAT(NP))/FLOAT(NP-1))
CLIMIT1=MEAN-STANDEV
C3(3)=CLIMIT1
CLIMIT2=MEAN+STANDEV
C3(4)=CLIMIT2
C
C ASSIGN POLYGON TO APPROPRIATE CLASS
DO 2 J=1,NE
 IF (STAT(J) .LE. CLIMIT1) THEN
 ICLASS(J)=1
 ELSE IF (STAT(J) .LE. MEAN) THEN
 ICLASS(J)=2
 ELSE IF (STAT(J) .LE. CLIMIT2) THEN
 ICLASS(J)=3
 ELSE
 ICLASS(J)=4
 END IF
2 CONTINUE
C
RETURN
END

C
SUBROUTINE NSTMEAN(STAT, NP, ICCLASS, NB, C)

C SUBROUTINE TO CALCULATE CLASS INTERVALS USING NESTED MEANS

INTEGER*2 NP, NE\CLASS(100)
REAL*4 STAT(100), C(20), MEAN, SUMSTAT, MEAN1, MEAN2, SS1, SS2

C DETERMINE MEAN
DO 1 N=1, NP
 IF (STAT(N) .EQ. -9999) GOTO 1
 SUMSTAT=SUMSTAT + STAT(N)
1 CONTINUE
 MEAN=SUMSTAT/NP
 C(1)=MEAN
 K1=0
 K2=0

C DETERMINE NESTED MEANS
DO 2 J=1, NP
 IF (STAT(J) .EQ. -9999) GOTO 2
 IF (STAT(J) .LT. MEAN) THEN
 SS1=SS1+STAT(J)
 K1=K1+1
 ELSE
 SS2=SS2+STAT(J)
 K2=K2+1
 END IF
2 CONTINUE
 MEAN1=SS1/K1
 MEAN2=SS2/K2
 C(2)=MEAN1
 C(4)=MEAN2

C ASSIGN POLYGON TO CLASS
DO 3 N=1, NP
 IF (STAT(N) .LE. MEAN1) THEN
 ICCLASS(N)=1
 ELSE IF (STAT(N) .LE. MEAN) THEN
 ICCLASS(N)=2
 ELSE IF (STAT(N) .LE. MEAN2) THEN
 ICCLASS(N)=3
 ELSE
 ICCLASS(N)=4
 END IF
3 CONTINUE

C
RETURN
END

C
SUBROUTINE QUANTILE(NE, STAT, NP, IC, CLASS, CE)
C ***
C SUBROUTINE TO CALCULATE CLASS LIMITS USING QUANTILES
C ***
INTEGER*2 PART, NP, N, IP, SN, ISTP, PCLYORC(100), ICLASS(100)
INTEGER*2 ITEMP, IRANK(100), NM
REAL*4 STAT(100), CE(20), TEMP, STAT(100)
N=J
C
C INITIALIZE RANK ARRAY
DO 3 K=1, NP
IRANK(K)=K
STAT1(K)=STAT(K)
C COUNT NUMBER OF POLYGONS WITH MISSING DATA
IF (STAT(K) .EQ. -9999.) NM=NM+1
3 CONTINUE
C
C PLACE POLYGONS IN ASCENDING ORDER ACCORDING TO STAT DATA
DO 6 I=1, NP
J=I
DO 2 I2=I+1, NP
IF (STAT(I2) .LT. STAT(I)) J=I2
2 CONTINUE
ITEMP=STAT1(I)
STAT1(I)=STAT1(J)
STAT1(J)=ITEMP
ITEMP=IRANK(I)
IRANK(I)=IRANK(J)
IRANK(J)=ITEMP
C
C SET DIVISION OF NUMBER OF OBSERVATIONS
PART=(NP-NM)/NE
IP=1+NM
ISTP=PART+NM
C ASSIGN POLYGONS TO CLASS
DO 4 J=1, NE
DO 1 K=IP, ISTP
ICLASS(IRANK(K))=J
1 CONTINUE
C
J=(J+1) = STAT(IRANK(ISTP))
IP=ISTP+1
ISTP=ISTP+2*IT
IF (J .EQ. NP-1) ISTP=NP
4 CONTINUE
C
RETURN
END
C
SUBROUTINE LIMITS(STAT, ICLASS, NP, NB, CB)
C***
C SUBROUTINE TO ENTER CLASS LIMITS SEPARATELY
C***
INTEGER ICLASS(1000), NP, NB
REAL STAT(1000), CB(20)
CHARACTER LSTR1

DATA LSTR1/'ENTER CLASS LIMITS AT TERMINAL'/

CALL CLRMENU
CALL MOVABS(-200,-218)
CALL TEXT1(LSTR1)
CALL EMTPYS

C READ IN CLASS LIMITS
K=1
DO 1 1=N8
 WRITE('UT',*) 'ENTER CLASS LIMITS FOR CLASS'/'I'/
 READ('UT') CB(K), CB(K+1)
C110 FORMAT(F5.1, F5.1)
 K=K+2
 1 CONTINUE

C ASSIGN POLYGON TO CLASS
DO 2 I=1,NP
 DO 3 I2=2,NB*2,2
 IF (STAT(I) .GE. ICLASS(I) AND STAT(I) .LE. CB(I2)) THEN
 ICLASS(I)=I2/2
 END IF
 3 CONTINUE
2 CONTINUE

C RENUMBER CLASS BOUNDARIES FOR AUTO-LEGEND
J=1
DO 4 I=3,NB+2
 CB(I)=CB(I+J)
 J=J+1
4 CONTINUE

C RETURN
END

C**
C SUBROUTINE CCLRVAL(IC, CC, R, G, B)
C**
INTEGER BL(3, 8), GRN(3, 8), Rd(3, 8), yLw(3, 8), IC, CC, R, G, B

C INITIALIZE COLOR ARRAYS
DATA RD/255,23O,23O,255,202,202,243,178,178,243,141,141,230,111,111,217,0,0,202,0,0,168,0,0,0,0/,
DATA GRN/243,255,243,217,255,217,186,255,186,152,230,152,0,217,0,0,186,0,0,148,0,0,90,123,90/,
DATA BL/230,230,255,202,202,255,168,168,255,123,123,255,0,0,243
*0,0,217,0,0,186,0,0,148/
DATA YLW/255,255,217,255,255,168,255,255,123,255,255,0,243,243
*0,230,230,81,217,217,77,202,202,71/ ,
*0,202,0,186,186,98,168,168,0,148,143/
*217,202,98,202,168,0,168,148,52,148/

C
C
GOTO(10,20,30,40,50,60)CC

10 R=RD(1,IC)
 G=RD(2,IC)
 B=RD(3,IC)
 GOTO 99

C
20 R=GRN(1,IC)
 G=GRN(2,IC)
 B=GRN(3,IC)
 GOTO 99

C
30 R=BL(1,IC)
 G=BL(2,IC)
 B=BL(3,IC)
 GOTO 99

C
40 R=YLW(1,IC)
 G=YLW(2,IC)
 B=YLW(3,IC)
 GOTO 99

C
50 R=CYN(1,IC)
 G=CYN(2,IC)
 B=CYN(3,IC)
 GOTO 99

C
60 R=MGT(1,IC)
 G=MGT(2,IC)
 B=MGT(3,IC)

C
99 RETURN
END

C
SUBROUTINE AUTOLGND(NB,PX,PY,MX,MY,MX,MY,Ix,IX,II,Y,*)
*LGND,HFLAG)
C***
C SUBROUTINE FOR AUTOMATED LEGEND GENERATOR
C***
INTEGER*2 ISH,IBW,IBSP, IID,R,N5,PX,PY,MX,MIX,MY,MIY,PRX,PRY,LLX,LLY,
*LGND,HFLAG)
REAL*4 ODD

C MFLAG=0

C SET LEGEND BOX PARAMETERS
IBW=16
IBSP=8
IDIR=2

C DETERMINE SCALE OF MAP
NMAXX=(MX-MIX)/PRX+PX
NMAXY=(MY-MIY)/PRY+PY

C CALCULATE LEFT AND RIGHT MARGIN OF MAP
LMARG= IABS(-255 - PX)
RMARG= 255 - NMAXX

C VERTICAL OR HORIZONTAL LEGEND
IF (LMARG .GT. 100 .OR. RMARG .GT. LGNDLEN) THEN
NYDIS = NMAXY - PY
NYCNTR = NYDIS/2 + PY
LLY = NYCNTR - LGNDLEN/2

C PLACE LEGEND ON SIDE WITH LARGEST LEGEND
IF (LMARG .GT. RMARG) THEN
LLX = PX - 30
ELSE
LLX = NMAXX + 20
END IF

C DRAW VERTICAL LEGEND BOXES
IX=LLX
IY=LLY
CALL MOVABS(IX,IY)
CALL RECREL(IBW,ISH)
LGND(1,1)=IX + IBW/2
LGND(2,1)=IY + IBH/2
IF (IDIR .EQ. 1) THEN
DO 3 J=1,NB-1
IX2=IX + IBW*J + IBSP*J
CALL MOVA3S(IX2,IY)
CALL RECREL(IBW,ISH)
LGND(1,J+1)=IX2 + IBW/2
LGND(2,J+1)=IY + IBH/2
3 CONTINUE
ELSE
DO 4 J=1,NB-1
IY2=IY + IBH*J + IBSP*J
CALL MOVA3S(IX,IY2)
CALL RECREL(IBW,IBH)
LGND(1,J+1)=IX + IBW/2
LGND(2,J+1)=IY2 + IBH/2
4 CONTINUE
END IF
ELSE
HFLAG=1
NXCNTR=(NMAXX-PX)/2 + PX
ODD=FLOAT(NB)/2.
NROW=NB/2
IF (NROW .NE. ODD) THEN
NROW=NROW+1
END I=
LLX1=NXCNTR - 50 - (NROW*10 + (NROW-2)*20)
LLY1=PY+45
LLX=LLX1
LLY=LLY1
N=1
DO 5 J=1,NROW
DO K=1,2
CALL MOVA3S(LLX,LLY)
CALL RECREL(I3W,I2H)
C CALCULATE CENTER POINT FOR LEGEND BOX
LNX1(1,4)=LLX+I3W/2
LNX1(3,4)=LLY+I3H/2
LLY=LLY+23
IF (K.EQ. N) GO TO 101
N=N+1
5 CONTINUE
C REPOSITION CO-ORDINATES FOR NEXT ROW
LLX=LLX+5
LLY=LLY+45
5 CONTINUE
101 LLX=LLX1
LLY=LLY1
END IF
C
CALL EMPTY
RETURN
END
C
C SUBROUTINE BORDER(3CNTRX,3CNTRY)
C***
C SUBROUTINE TO DRAW BORDER AROUND MAP
C***
CHARACTER*1 LPOS
CHARACTER*50 BSTR1,BSTR2,BSTR3,BSTR4
INTEGER*2 UBX,UBY,LBX,LBY,LX,Y,IX,Y,IX,Y,IX,Y,UUT,3CNTRX,3CNTRY
C
DATA LP05/*.*/
DATA BSTR1/*"MOVE CROSSHAIR TO LOWER LEFTHAND CORNER OF BORDER"*/
DATA BSTR2/*"AND PRESS CUPSOH BUTTON"*/
DATA BSTR3/*"MOVE CROSSHAIR TO UPPER RIGH'THAND CORNER OF BORDER"*/
DATA BSTR4/*"PRESS F TO END, A TO START OVER"*/
C
101 CALL CLRMENU
CALL MOVA3S(-20),-210)
CALL TEXT1(5STR1)
CALL MOVA3S(-20),-220)
CALL TEXT1(5STR2)
C
C ENTER LOWER LEFT CORNER OF BORDER
CALL READBU(1,1,IUT,IX,Y)
LX=IX
LY=IY
CALL MOVA3S(LX,LY)
IF (LY .LT. -75) LEX=-175
CALL TEXT1(LP05)
C
CALL MOVA3S(-20),-230)
CALL TEXT1(5STR3)
80
CALL TEXT1(CLSTR3)

CALL READBU(1,1,IBUT,IX,IY)
UBX=IX
UBY=IY

C DRAW RECTANGLE AROUND AREA TO BE CLEARED
CALL MOVABS(UBX,UBY)
CALL RECTAN(UBX,UBY)

CALL CLRMENU
CALL MOVA3S(-200,-210)
CALL TEXT1(CLSTR4)
CALL MOVABS(-200,-220)
CALL TEXT1(CLSTR5)
CALL MOVABS(-200,-230)
CALL TEXT1(CLSTR6)

CALL READBU(1,1,IBUT,IX,IY)
C
IF (IBUT .EQ. 15) THEN
CALL WINDOW(LBX,LBY,UBX,UBY)
CALL VALB(255)
CALL CLEAR
CALL VALB(0)
CALL WINDOW(-256,-256,255,255)
ELSE
CALL VALB(255)
CALL MOVABS(LBX,LBY)
CALL RECTAN(UBX,UBY)
CALL VALB(0)
IF (I3UT .EQ. 10) GOTO 101
END IF

CALL CLRMENU
RETURN
END

SUBROUTINE CENMAP(BCNTRX, BCNTRY, PX, PY, UBX,UBY, IX, IY, I3UT, ACFLG, ACF)
C***
C SUBROUTINE TO CENTER MAP ON SCREEN
C***
INTEGER*2 BCNTRX, BCNTRY, PX, PY, UBX, UBY, IX, IY, I3UT, ACFLG
INTEGER*2 ICX, ICY
CHARACTER*60 CMSTR1, CMSTR2
DATA CMSTR1/"PRESS C TO CENTER MAP ON SCREEN AND EXIT PROGRAM"/
DATA CMSTR2/"PRESS E TO ONLY EXIT PROGRAM (LEAVE MAP ALONE)"/
ICX=0
ICY=0

CALL CLRMENU
CALL MOVABS(-200,-210)
CALL TEXT1(CMSTR1)
CALL MOVABS(-200,-220)
C ENTER UPPER RIGHT CORNER OF BORDER
 CALL READBU(1,1,I3UT,I3X,I3Y)
 UBX=IX
 U3Y=IY
C
C DRAW BORDER ON SCREEN
 CALL MOVABS(UBX,U3Y)
 CALL RECTAN(U3X,U3Y)
C
 CALL MOVABS(-200,250)
 CALL TEXT1(CLSTR4)
C
C READ INSTRUCTION
 CALL READBU(1,1,I3UT,I3X,I3Y)
 IF (I3UT.EQ.13) THEN
 CALL VALS(255)
 CALL MOVABS(L3X,L3Y)
 CALL RECTAN(U3X,U3Y)
 CALL VAL3(C)
 GO TO 131
 END IF
C
C CALCULATE CENTER OF AREA IN BORDER
 BCNTRX=IA3S(UBX-L3X)/2 + L3X
 BCNTRY=IA3S(U3Y-L3Y)/2 + L3Y
 CALL CLMENU
 RETURN
END
C
C SUBROUTINE CLPRTN
C ***
C SUBROUTINE TO CLEAR A PORTION OF THE SCREEN
C ***
 INTEGER*2 I3UT,I3X,I3Y,L3X,L3Y,UBX,U3Y
 CHARACTER*80 CLSTR1,CLSTR2,CLSTR3,CLSTR4,CLSTR5,CLSTR6
C
 DATA CLSTR1/' MOVE CROSSHAIR TO LOWER LEFTHAND CORNER OF AREA'/'
 DATA CLSTR2/' MOVE CROSSHAIR TO UPPER RIGHHAND CORNER OF AREA'/'
 DATA CLSTR3/' PRESS CURSOR BUTTON'/'
 DATA CLSTR4/' PRESS E TO CLEAR AREA OUTLINED'/'
 DATA CLSTR5/' PRESS 4 TO START OVER'/'
 DATA CLSTR6/' PRESS E TO ABORT AND EXIT'/'
C
131 CALL CLMENU
 CALL MOVABS(-200,-210)
 CALL TEXT1(CLSTR1)
 CALL MOVABS(-200,-220)
 CALL TEXT1(CLSTR3)
C
C ENTER LOWER LEFT CORNER OF RECTANGLE TO BE CLEARED
 CALL READBU(1,1,I3UT,I3X,I3Y)
 L3X=IX
 L3Y=IY
C
 CALL MOVABS(-200,-230)
 CALL TEXT1(CLSTR2)
 CALL MOVABS(-200,-240)
CALL TEXT1(CMSTR2)

C READ COMMAND AND DETERMINE IF MAP IS TO BE CENTERED
CALL READBU(I1,IBUT,IX,IY)
IF (IBUT .EQ. 12) THEN
 IF (BCNTRX .NE. -250 .AND. BCNTRY .NE. -250) THEN
 CALL SCRORG(BCNTRX,BCNTRY)
 GOTO 99
 END IF
END IF

C DETERMINE IF ASSISTED CLASSIFICATION WAS USED
IF (ACFLAG .EQ. 1) THEN
 IF (HFLG .EQ. 1) THEN
 ICX=IAABS(UBX-PX)/2 + PX
 Icy=(IAABS(UBY-PY)+63)/2 + (PY-63)
 ELSE
 ICX=(IAABS(UBX-PX)+100)/2 + (PX-100)
 Icy=IAABS(UBY-PY)/2 + PY
 END IF
ELSE
 C MANUAL LEGEND WAS USED
 IF (IY1 .LT. PY) THEN
 ICY=IAABS(UBY-IY1)/2 + IY1
 ELSE
 ICY=IAABS(UBY-PY)/2 + PY
 END IF
 IF (IX1 .LT. PX) THEN
 ICX=IAABS(UBX-IX1)/2 + IX1
 ELSE
 ICX=IAABS(UBX-PX)/2 + PX
 END IF
END IF
CALL SCRORG(ICX,ICY)

99 RETURN
END

C

SUBROUTINE CLRMENU

C **
C SUBROUTINE TO ERASE MENU FROM SCREEN
C **
CALL WINDOW(-256,-256,255,-200)
CALL VAL8(255)
CALL CLEAR
CALL VAL8(0)
CALL WINDOW(-256,-256,255,255)
RETURN
END

83