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S U M M A R Y
We describe novel hybrid algorithms for inversion of electromagnetic geophysical data, com-
bining the computational and storage efficiency of a conjugate gradient approach with an
Occam scheme for regularization and step-length control. The basic algorithm is based on
the observation that iterative solution of the symmetric (Gauss-Newton) normal equations
with conjugate gradients effectively generates a sequence of sensitivities for different linear
combinations of the data, allowing construction of the Jacobian for a projection of the original
full data space. The Occam scheme can then be applied to this projected problem, with the
tradeoff parameter chosen by assessing fit to the full data set. For EM geophysical problems
with multiple transmitters (either multiple frequencies or source geometries) an extension of
the basic hybrid algorithm is possible. In this case multiple forward and adjoint solutions (one
each for each transmitter) are required for each step in the iterative normal equation solver,
and each corresponds to the sensitivity for a separate linear combination of data. From the
perspective of the hybrid approach, with conjugate gradients generating an approximation to
the full Jacobian, it is advantageous to save all of the component sensitivities, and use these
to solve the projected problem in a larger subspace. We illustrate the algorithms on a simple
problem, 2-D magnetotelluric inversion, using synthetic data. Both the basic and modified
hybrid schemes produce essentially the same result as an Occam inversion based on a full
calculation of the Jacobian, and the modified scheme requires significantly fewer steps (rela-
tive to the basic hybrid scheme) to converge to an adequate solution to the normal equations.
The algorithms are expected to be useful primarily for 3-D inverse problems for which the
computational burden is heavily dominated by solution to the forward and adjoint problems.
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1 I N T RO D U C T I O N

Among the most widely applied, and practical, approaches to inver-
sion of electromagnetic (EM) geophysical data (e.g., magnetotel-
lurics; MT) in two and three dimensions are regularized schemes
based on minimizing a penalty functional of the form

�(m, d) = (d − f(m))TC−1
d (d − f(m))

+ λ(m − m0)TC−1
m (m − m0), (1)

(e.g. see Avdeev (2005) and Siripunvaraporn (2012) for reviews).
In (1) Cd and Cm are data and model covariances; as these are
not central to our focus we assume the simplest form for both
(Cd = I, Cm = I), and we take the a priori model parameter m0 =
0. Treatment of the more general case complicates notation, but
presents no essential difficulty for the ideas discussed here (see
the Appendix for details). We consider in particular methods for
minimization of (1) based on linearization of the non-linear model-
data mapping f(m), that is, that make use of the derivative of f, the

N × M Jacobian J (so Ji j = ∂ fi/∂m j ; N = #data; M = # model
parameters). Two general approaches, each with many variants, can
be distinguished. In a Gauss-Newton approach (e.g. Parker 1994) the
full Jacobian is used to approximate the second-order (Taylor series)
expansion of the penalty functional around a current estimate of the
model solution. The resulting quadratic form is then minimized,
leading to a standard linear least-squares problem, defined (at least
formally) by the system of normal equations

(JTJ + λI)δm = JT(d − f(mn)) − λmn, (2a)

which can be solved for the model update

mn+1 = mn + δm. (2b)

The whole procedure must be iterated, with the Jacobian recom-
puted for the updated model parameter, to achieve the minimum of
(1). As described in Parker (1994) some form of step-length con-
trol is required (e.g. setting mn+1 = mn + μδm with 0 < μ ≤ 1
determined by line search). The second approach is epitomized by
non-linear conjugate gradients (NLCG; e.g. Rodi & Mackie 2001):
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the minimum of (1) is found by direct optimization, computing the
gradient of the penalty functional

1

2

∂�

∂m

∣∣∣∣
mn

= −JT(d − f(mn)) + λmn, (3)

and using this to define a search direction in the model space. � is
then minimized along this search direction, the model parameter is
updated to mn+1 and the whole process is repeated. Both approaches
are reviewed and compared in the context of EM geophysics prob-
lems of the sort considered here in Rodi & Mackie (2001). Limited
memory quasi-Newton (Liu & Nocedal 1989) represents an alter-
native direct optimization approach, which has also been used for
EM inverse problems (e.g. Avdeev & Avdeeva 2009).

The forward problem f(m) for a frequency-domain EM induction
problem, such as 2-D or 3-D MT, involves solving elliptic partial
differential equations (PDEs), derived from Maxwell’s equations.
For example, in quasi-static 3-D EM problems the governing equa-
tions formulated in terms of the electric field E are:

∇ × ∇ × E − iωμσE = s. (4)

The forward mapping f(m) requires solving (4) subject to ap-
propriate boundary conditions, and using the solution, evaluated at
observation locations, to compute predicted data. In (4) σ is the
spatially varying electrical conductivity of the medium, which we
assume is defined through the unknown discrete model parameter
m, ω is angular frequency and s represents the sources (which may
vanish, as for MT where the system is forced through the boundary
conditions). In most realistic problems data are available for N f

frequencies, and Ns source geometries, so a total of N f Ns PDEs
must be solved to evaluate f(m) for a single model parameter. As
shown in general by Newman & Hoversten (2000), Pankratov &
Kuvshinov (2010), and Egbert & Kelbert (2012) and previously for
numerous specific examples referenced therein, computing one row
(or one column) of J requires solving the governing PDE (or more
precisely, its adjoint; though (4) is essentially self-adjoint) once.
Evaluating a matrix-vector product such as JTr (e.g. in the gradient
of data misfit used in (3)) requires essentially the same computations
as one forward problem.

A GN approach would appear at first blush to be much less ef-
ficient than NLCG: to implement (2) directly, one must apparently
first compute all of J (requiring N = N f Ns Nr (where Nr is the
number of receivers) solutions of the appropriate PDE, one for each
row of the Jacobian), and then form and solve the M × M system
of equations. In contrast, a single iteration with (3) requires a sin-
gle gradient computation, followed by a line search to minimize
over the search direction (generally requiring 2–4 additional solu-
tions of the forward problem). However, as Rodi & Mackie (2001)
show, NLCG requires many more iterations (typically 50–100 or
more) compared to a GN scheme (typically 5–10 or less; see ex-
amples below). Furthermore, for ‘multitransmitter’ problems (i.e.
with multiple frequencies and/or source geometries) each forward
solution or gradient evaluation actually requires solving the gov-
erning PDE N f Ns times. Accounting for the significantly greater
number of iterations needed for convergence (each requiring a line
search) direct minimization with NLCG may require as many or
more PDE solutions as a GN scheme based on full calculation of
J (Siripunvaraporn & Egbert 2007; Siripunvaraporn & Sarakorn
2011). However, NLCG still avoids forming and solving the large
system of normal equations of (2), so this and related approaches
are now used in almost all implementations of 3-D inversion (e.g.
Commer & Newman 2008; Avdeev & Avdeeva 2009); the efforts of

Sasaki (2001), Siripunvaraporn et al. (2005) and Siripunvaraporn
& Egbert (2009) are exceptions.

It is of course possible to use a GN approach without explic-
itly forming the normal equations of (2a), but instead solve this
symmetric linear system of equations iteratively using conjugate
gradients (CG). This approach, which has been used fairly exten-
sively for EM inversion (e.g. Mackie & Madden 1993; Alumbaugh
& Newman 1997; Rodi & Mackie 2001) is a variant on the trun-
cated Newton approach to optimization (e.g. Dembo et al. 1982;
Nash 2000), with the Hessian replaced by the GN approximation
(e.g. Newman & Hoversten 2000).

To be concrete, and to set the stage for coming developments, we
consider a variant on the GN equations of (2):

(JJT + λI)b = d̂ = d − f(mn) + Jmn (5a)

mn+1 = JTb. (5b)

This data space scheme (e.g. Siripunvaraporn & Egbert 2000;
Siripunvaraporn & Sarakorn 2011), which requires solving the
N × N system of normal equations in the data space (instead of
the M × M system in the model parameter space), can be shown to
be equivalent to (2). Instead of actually making the full dense ma-
trix, one can again use CG, which requires multiplying an arbitrary
vector by the coefficient matrix (JJT + λI). This in turn requires
multiplication of data space vectors by JT and model space vec-
tors by J, essentially the same sort of computations as required by
NLCG. This approach also avoids calculation of the full Jacobian
and eliminates the need to form the normal equations. As shown in
Siripunvaraporn & Egbert (2007) the total number of PDE solutions
is, however, still typically comparable to that required for a full cal-
culation of J. And the CG scheme has an apparent disadvantage:
once the full Jacobian is calculated, solving (5a) for different values
of the tradeoff parameter λ is fairly fast—in particular no further
PDE solutions are required.

The Occam approach (Constable et al. 1987; see also Parker
1994) exploits this efficiency, varying λ both for step length con-
trol, and as a damping parameter, to search for minimum norm
inverse solutions, which fit the data to a prescribed tolerance. Once
J is computed (5) is used to compute a series of trial solutions cor-
responding to a range of λ, and the forward problem is then solved
for each to evaluate the actual data misfit achieved as a function
of λ. Initially, λ is chosen to minimize data misfit; as the scheme
converges λ is chosen to minimize the model norm while keeping
the misfit constant at the target value (Constable et al. 1987; Parker
1994). With this approach λ is determined as part of the search
process, and at convergence one is assured that the solution attains
at least a local minimum of the model norm, subject to the data fit
attained (Parker 1994). With a straightforward application of CG
all of the PDE solution steps must be repeated for each new trial
value of λ (Siripunvaraporn & Egbert 2007). The same situation
holds for NLCG: the penalty functional is minimized with λ fixed,
and the entire (or at least much of ) the iterative process must be
repeated with each new trial value. Thus, if one has to vary the reg-
ularization parameter—and often this is critical, even if one does
not have the precise information about data error levels required to
rigorously provide an a priori target misfit—GN schemes based on
full calculation of J would appear to have some advantages.

We make two points in this paper. The first is in fact rather
obvious: at the cost of a modest increase in memory requirements,
CG schemes can be easily modified to allow the Occam approach
to be implemented without computing the full Jacobian. The idea
is closely related to the so-called hybrid algorithms, which have
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previously been discussed in the context of damped least-squares
problems (O’Leary & Simmons 1981; Kilmer & O’Leary 2001;
Hanke 2001). It can also be viewed as a special case of the subspace
inversion methods of Oldenburg et al. (1993), in which a small and
effective model subspace is generated by the iterative CG solver.

Our second point is more novel, and is specific to multitransmitter
inverse problems where computational costs are dominated by the
need for multiple expensive forward solutions. Such problems are
the norm in EM geophysics, and arise also in other geophysical
problems, such as full waveform seismic inversion (e.g. Tape et al.
2010). We show that for such problems iterative solution of the
data space normal eq. (5a) can be modified to achieve substantially
more rapid convergence (in particular, with fewer required forward
solutions). Both ideas follow from a more careful examination of
the iterative CG algorithms used to solve (5a). We thus review the
basis for the CG solution approach—that is, the Lanczos process—
in Section 2, and demonstrate how the standard solution scheme
can be easily modified to implement a hybrid CG-Occam scheme.
In Section 3, we develop a modification to the Lanczos process
that uses the multiplicity of forward and adjoint solutions required
in multitransmitter EM geophysical inverse problems to accelerate
convergence of the solution to the normal equations, leading to a
modified hybrid CG-Occam algorithm. In Section 4, we demonstrate
the efficacy of the new schemes using the 2-D MT inverse problem
as a simple illustrative example. Although this simple problem is
sufficient to demonstrate the effectiveness of the new algorithms,
we stress that these schemes are likely to be most useful for 3-D
problems where computational costs are dominated by expensive
forward and adjoint solutions required for gradient calculations.
Results and possible extensions are discussed in Section 5.

2 A H Y B R I D C G - O C C A M S C H E M E

To motivate and describe the hybrid schemes we begin with a review
of the Lanczos bi-diagonalization algorithm of Paige & Saunders
(1982a), which forms the basis for standard CG solution methods.
Here the algorithm ‘BIDIAG1’ is applied to the Jacobian J, with the
ultimate objective of solving the system of normal eq. (5a), initially
taking λ = 0. In the first step of the Lanczos process unit vectors in
the data and model space are computed

β1u1 = d̂ ‖u1‖ = 1 (6a)

α1v1 = JTu1 ‖v1‖ = 1. (6b)

A key point to note here is that the model space vector α1v1 =
JTu1 is just the sensitivity of a particular linear combination of data
components, namely uT

1 d (ignoring noise ∂uT
1 d/∂m = ∂uT

1 f/∂m =
uT

1 ∂f/∂m = uT
1 J = α1vT). Next compute

Jv1 = α1u1 + β2u2, (7)

where u2 is orthogonal to u1. Now if β2 = 0, JJT[β1/α
2
1]u1 =

β1u1 = d̂ so b1 = (β1/α
2
1)u1 would be an exact solution to (5a).

In general, this will not be the case, and this initial estimate of b
must be refined. We thus continue for k = 2, . . . , K (where K is
determined by the stopping criterion discussed below)

βkuk = Jvk−1 − αk−1uk−1 ‖uk‖ = 1 (8a)

JTuk − βkvk−1 = αkvk ‖vk‖ = 1, (8b)

generating sequences of data and model space vectors (which
can be saved as orthogonal matrices UK = [u1 · · · uK ] and

VK = [v1 · · · vK ], respectively) and scalars αk, βk which can be
organized as the bi-diagonal matrix

BK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2 · · · 0

0 α2

. . .
...

...
. . .

. . . βK

0 · · · 0 αK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Then (6)–(8) can be expressed in matrix notation as

JTUK = VK BK (10)

JVK = UK BT
K + βK+1uK+1êT

K , (11)

where êK is the unit vector for coordinate K in R
K and JvK =

αK uK + βK+1uK+1. The original system JJTb = d̂ can be solved
approximately by first projecting into the K -dimensional data sub-
space spanned by the columns of UK ; i.e.

UT
K JJTUK b̃K = UT

K d̂ = β1ê1. (12)

The last equality follows from (6a) and orthonormality of the
columns of UK . On the other hand, from the orthonormality of VK

and (10), the system to be solved can be seen to be symmetric,
positive definite and tri-diagonal

BT
K BK b̃ =β1ê1, (13)

and hence easily solved. The vector bK = UK b̃ then provides an
approximate solution to the original system. Indeed we have from
(10–13) and (6a)

JJTbK = JJTUK b̃ = JVK BK b̃ = [
UK BT

K + βK+1uK+1êT
K

]
BK b̃

= UK BT
K BK b̃ + βK+1uK+1

[
êT

K BK b̃
]

= β1UK ê1 + βK+1

[
αK êT

K b̃
]
uK+1 (14)

= β1u1 + αK βK+1b̃K uK+1 = d̂ + αK βK+1b̃K uK+1, (15)

where b̃K is the K th component of the vector b̃.
In standard implementations of CG the system (12) is not ac-

tually formed and solved. Rather, the approximate solution bK is
updated ’on the fly’, starting from b1 = (β1/α

2
1)u1. Iterations can

be terminated when the residual in the solution to (eq. 5a; i.e.
JJTbK − d̂ = αK βK+1b̃K uK+1) is sufficiently reduced, for exam-
ple, when ‖αK βK+1b̃K uK+1‖/‖d̂‖ < ε. More generally, memory
efficient and numerically stable schemes for damped least squares
problems (e.g., LSQR) have been developed based on Lanczos bi-
diagonalization (Paige & Saunders 1982b). With these approaches
memory requirements are minimal—only the most recent uk, vk

need be retained, and solutions (and residuals) are updated at each
step k. However, by actually saving all of UK , VK and BK (or in fact
UK and JTUK ) it is possible to form and solve the small (K ×K ) sys-
tem [UT

k JJTUK + λI]bλ = UT
K d̂ (analogous to (12)) for any value

of the regularization parameter λ. It is readily verified that the same
error estimate (15) applies to this modified system. This approach,
which allows an efficient implementation of the Occam scheme, is
an example of a hybrid algorithm, of the sort previously discussed
extensively in the numerical linear algebra literature (O’Leary &
Simmons 1981; Kilmer & O’Leary 2001; Hanke 2001).

A hybrid Occam-CG scheme is thus obvious: (1) Apply Lanczos
bi-diagonalization to J, saving the orthonormal matrix UK , and the
K model space vectors JTUK . (2) Use these to form the K × K
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= − + −

β = =

α = =
=

β α− − −= − =

β α − < ε

β α−− = =

[ ]=

λ λ
× + λ λ =

λ = λ

λ − λ

λ − λ =

Figure 1. Pseudo-code for hybrid Occam-DCG.

cross-product matrix R = UT
K JJTUK . This matrix is in principal tri-

diagonal, but round-off error will cause increasing large deviations
as K increases, so it is best to retain and work with the matrix
JTUK . (3) Optimize the regularization parameter by solving the
projected system [R + λI]bλ = UT

K d̂ for a series of values of λ,
and minimize the misfit ‖d − f(mλ)‖2, where mλ = JTbλ; after the
target misfit is achieved, choose λ to minimize the penalty functional
subject to achieving the target misfit. Pseudo-code for the scheme
is given in Fig. 1. This hybrid scheme effectively uses the Lanczos
process to generate a subset of sensitivities (i.e. the columns of
UT

K J), corresponding to the data subspace spanned by UK . The
Occam scheme is then applied to this projected problem, with the
tradeoff parameter chosen by assessing fit to the full data set.

The basic hybrid algorithm solves the linear subproblem in the
model subspace spanned by the columns of VK , and can thus be
viewed as a special case of the subspace inversion methods dis-
cussed in Oldenburg et al. (1993). Although we have focused on a
data space Occam approach, the same ideas are readily adapted to al-
ternative G-N formulations in the model space, for example, to solve
(2) for δm. From this perspective the Lanczos bi-diagonalization can
be viewed as a scheme for generating a particular model subspace,
which approximates the row span of J, and thus should be partic-
ularly efficient for finding approximate solutions to the full system
of normal equations (with any value of the regularization parame-
ter). Note that the Lanczos process already generates the sensitivity
matrix-model parameter products JVK needed to generate the re-
duced normal equations for the subspace inversion approach (see

Oldenburg et al. 1993), so a subspace inversion based on saving the
full set of Lanczos vectors would be quite efficient.

3 A M O D I F I E D H Y B R I D S C H E M E

In most EM inverse problems data are available for multiple fre-
quencies, or more generally, with multiple transmitters (different
frequencies and/or different source geometries). In this case the
data vector and Jacobian can be decomposed into J (= number of
transmitters) blocks as

d =

⎛
⎜⎜⎜⎝

d1

...

dJ

⎞
⎟⎟⎟⎠ , (16)

JT = [
JT

1 · · · JT
J

]
. (17)

A product such as JTr = ∑
j JT

j r j actually entails separate com-
putations for each transmitter (each requiring solution of the gov-
erning PDE appropriate for that frequency), followed by summing
the results (a sequence of J model space vectors). Details of the
Jacobian calculation are somewhat different for the case of multiple
transmitters (with a common frequency), but the decompositions of
(16) and (17) remain valid and the required number of forward and
adjoint solutions remains the same. Each one of the model space
vectors JT

j r j gives the sensitivity of a linear combination of data
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for a single transmitter. The basic idea behind the modified hybrid
algorithm is to save all of these separate sensitivities, and use these
to solve a projected data-space system analogous to (12). The key
modification is actually to the Lanczos scheme, which we will show
in Section 4 results in convergence of the normal equations in fewer
iterations (i.e. with fewer matrix-vector products JTu and Jv).

The scheme is motivated by the observation that if we saved the
individual transmitter data-space vectors and corresponding sen-
sitivities uk j , JT

j uk j generated by the Lanczos bi-diagonalization
discussed earlier, we could project (5) into a much larger
(JK-dimensional) data subspace (which would contain the K-
dimensional space spanned by the vectors uk), perhaps leading to
a more accurate solution—or rather, allowing an equally accurate
solution for a smaller value of K . We have found a modification to
this simple idea to be significantly more effective.

As for the standard Lanczos bi-diagonalization, the modified
scheme generates a sequence of data space vectors which we denote
as ũ1, . . . , ũK , subdivided into individual transmitter components
as ũT

k = [wT
1k · · · wT

Jk], with each now normalized separately so
‖wT

jk‖ = 1. As for standard Lanczos schemes the process is started

from the right hand side d̂ of the system (5), but now with each
block of the data vector normalized separately w j1 = d̂ j/‖d̂ j‖.
Leaving aside for the moment how the vectors w jk are generated
for k > 1, let � jk = [w j1 · · · w jk] be the matrix constructed from
the first ksubvectors for transmitter j , and define the block diagonal
matrix

Wk = diag (�1k, . . . , �Jk) . (18)

Then the columns of JT
j � jk are model parameter vectors corre-

sponding to the sensitivity for the k linear combinations of data
defined by �T

jkd j , and

JTWK = [
JT

1 �1K · · · JT
J �J K

]
, (19)

is the M × (KJ ) matrix containing all of the sensitivities generated
by the first K steps. We show by induction that, with the scheme
for generating ũk described next, �T

jk� jk = I for all k (i.e. for
fixed j the vectors w jk, k = 1, . . . , K are orthonormal) so that
WT

K WK = I.
Orthonormality of WK certainly holds for K = 1. Supposing it

holds also for K , we can use the computed sensitivities to solve the
projected problem
(
WT

K JJTWK + λ0I
)

b̃ = WT
K d̂ (20)

for any fixed λ0. This is analogous to (12), but the matrix WK

has KJ instead of K columns, so the projected problem is solved
in a larger subspace. Given the solution to (20) we next compute
m̃K = JTbK = JTWk b̃. If iterative solution of the linear subproblem
(5a) were truncated at this point, m̃K would be the model update
for the next iteration given in eq. (5b). To continue iterations we
compute

Jm̃K = JJTWK b̃K = WK WT
K JJTWK b̃K + eK+1, (21)

where eK+1 is orthogonal to all of the columns of WK , that is,
WT

K eK+1 = 0. But then we have �T
j K e j,K+1 = 0, so setting

w j,K+1 = e j,K+1/‖e j,K+1‖, this vector is orthogonal to w jk, k =
1, . . . , K . Thus, � j,K+1, j = 1, . . . , J , and hence WK+1, are all or-
thonormal matrices, as claimed. Note that eK+1 is analogous to uK+1

in (8a)—that is, it represents the next data-space search direction,
but blocks for each transmitter will be used separately.

Note that WK WT
K d̂ = d̂, and thus (20–21) imply that

(
JJT + λ0I

)
bK = d̂ + eK+1, (22)

Figure 2. Pseudo-code for modified hybrid scheme.

so that bK provides a good approximate solution to (5a) provided
‖eK+1‖ is small enough. This can thus serve as a stopping criterion.
If the residual is not sufficiently reduced, eK+1 can be used to gen-
erate the data space vectors w j,K+1, j = 1, . . . , J , along with the
corresponding model space vectors JT

j w j,K+1 for the next iteration.
Pseudo-code for the modified hybrid scheme is given in Fig. 2.

A key point to note is that a full solution to the projected linear
subproblem is required at each step—that is, (20) is solved, and m̃K

formed for the computation of (21). In fact this is what is required
to verify that the solution in the projected subspace (i.e. bK ) solves
the unprojected system (22) with sufficiently small residual. How-
ever, forming and solving the projected normal equations will not
represent a serious computational challenge as long as KJ remains
a small fraction of the total number of data. In particular, for 3-D
problems where computational effort is dominated by solving the
3-D forward and adjoint problems, these extra steps will typically
be negligible.

Note that the modified scheme depends on the initial tradeoff
parameter selected λ0. This is because the intermediate solution
m̃k , which is used through (21) to compute the next data space
search vectors ek+1, w j,k+1, depends on λ0. The trade-off parameter
should scale with the eigenvalues of the matrix JJT, and we can
very roughly estimate this scale from

Tr
[
WT

1 JJTW1

] =
∑

j

∥∥JT
j w j1

∥∥2
/J = η0, (23)
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which is computed in the first step of the modified Lanczos process,
before λ0 is required.

In our tests we have taken λ0 = 0.01η0 for the first loop of
the Occam scheme, and then used the optimal λ from the previous
iteration for subsequent iterations.

As with the standard scheme, the modified Lanczos scheme gen-
erates a model subspace, now spanned by the KJ columns of JTWK .
However, the connection to the model subspace inversion methods
of Oldenburg et al. (1993) is now somewhat weaker than for the
standard hybrid scheme. To solve the model space equations of (2)
projected into this subspace it would be necessary to compute Jv
for all KJ model space vectors, but in the modified Lanczos scheme
the Jacobian is only applied to the K intermediate model solution
vectors m̃k . The modified hybrid scheme developed here is thus
more clearly rooted in the data space perspective, with the inverse
problem solved for a projection of the full data vector. It is also
worth noting that the sequence of data subspaces that we solve the
problem in are not the usual Krylov subspaces generated by repeated
application of JJT. Indeed the actual sequence of projected spaces
depends to some extent on λ0.

4 E X A M P L E : 2 - D M T

As an illustration of the above ideas we consider the 2-D MT inverse
problem. While the more complicated modified hybrid scheme for
multitransmitter problems can hardly be justified for such a prob-
lem, where computational costs associated with forward and adjoint
calculations are relatively low, this simple problem is sufficient to
demonstrate the two main points we wish to make: (1) even for
modest values of K the hybrid schemes essentially reproduce re-
sults obtained with a full Occam scheme based on a full Jacobian
calculation, and (2) the modified hybrid scheme accomplishes this
with fewer iterations of the Lanczos schemes, and hence fewer for-
ward and adjoint solutions.

For 2-D MT electrical conductivity is assumed to be a function
of depth z and ’cross-strike’ distance y, with no variation along the
x-direction (e.g. Fig. 3a), and source magnetic fields are assumed
to be uniform (constant in x and y at z = −∞). The magnetic
source can be polarized either perpendicular or parallel to strike,
corresponding to TE and TM modes, with induced currents flow-
ing along and across strike, respectively (i.e. in the x direction and
in the y–z plane). Data for this problem are complex impedances
(Zxy = Ex/By for TE mode; Z yx = Ey/Bx for TM mode) observed

at a series of Ns y-locations at the surface z = 0, for a set of N f

frequencies. With this setup the total number of ‘transmitters’, each
requiring solution of a separate forward problem, is J = 2N f , and
the total number of (complex) data is N = 2N f Ns . We have im-
plemented the inversion schemes outlined above (a standard data
space Occam approach, plus the hybrid scheme of Fig. 1 and the
modified hybrid scheme of Fig. 2) and tested these on a range of
synthetic data sets; we show results from two cases here. Forward
and adjoint problems were solved numerically using a finite differ-
ence approach, essentially identical to that used in Siripunvaraporn
& Egbert (2000), with the actual inversion procedures implemented
in Matlab. In our implementation the regularization term was es-
sentially as in (1), with deviations from a prior model (m − m0)
penalized using a model space covariance similar to that described
by Siripunvaraporn & Egbert (2000). See the Appendix for further
details.

The test case I (Fig. 3a) is fairly simple, consisting of a series of
blocks (three relatively conductive, one resistive) buried in a 100
ohm-m half-space. TE and TM mode data were generated for Ns =
40 sites evenly spaced between −30 ≤ y ≤ 30 km, at N f = 16
frequencies logarithmically spaced between 0.00033 and 3.3 Hz.
We thus have a total of 1280 complex (2560 real) synthetic obser-
vations, to which we add 5 per cent random noise. Results of ap-
plying the data space Occam inversion scheme, using a 100 ohm-m
half-space as a prior (and starting) model, are shown in Fig. 3(b).
The algorithm converges in four outer loop iterations, and struc-
tures in the synthetic model are recovered accurately. Trade-off
curves, showing misfit as a function of the regularization param-
eter λ used in (5), are shown for each of the four outer-loop
Occam iterations in Fig. 4(a). Note that the minimum in the trade-
off curve occurs because of nonlinearity of the inverse problem;
for a linear problem the misfit would converge to zero as λ is
reduced.

Test case II (Fig. 5a) presents greater challenges, with a more
complex pattern of near-surface heterogeneity, and more spatially
extensive deep conductivity variations. Synthetic data for this model
were generated in the same way as for case one (Ns = 40, N f = 16,
5 per cent noise added). Starting from the 100 ohm-m prior the
initial misfit is much greater (650 vs. 23.5 normalized rms), and
the Occam scheme does not quite achieve the target misfit, stalling
with a normalized rms of 2.4 after eight iterations (Fig. 6a). The
model achieving this misfit is shown in Fig. 5(b). Many features are
recovered (e.g. the alternating pattern of conductive and resistive
near-surface blocks, the deep vertical conductor in the middle of

Figure 3. Synthetic 2-D MT test case I. (a) Resistivity model used to generate synthetic data. (b) Resistivity model recovered by Occam algorithm, based on
full Jacobian calculation. Results obtained with the hybrid and modified hybrid schemes are indistinguishable, and are not plotted.
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Figure 4. Trade-off curves for test case I, for (a) full Occam scheme; (b) hybrid scheme; (c) modified hybrid scheme.

Figure 5. Synthetic 2-D MT test case II. Resistivity models (a) used to generate synthetic data; (b) recovered by Occam algorithm; (c) with the Hybrid scheme,
and (d) with modified hybrid scheme. Essentially the same solution is recovered in all cases.

the domain, lateral variations in deep resistivity), although in detail
the result deviates somewhat from the model used to generate the
data,

For the hybrid Occam scheme we terminated the inner-loop
(BIDIAG1) algorithm when the relative error in the solution to
(5) (i.e. ‖(JJT + λI)b − d̂‖/‖d̂‖ dropped below ε = 10−2, or the
number of iterations exceeded Kmax = 30. Using these conver-
gence criteria the hybrid scheme reproduced results obtained with
the standard Occam scheme based on the full Jacobian for both test
cases. The final hybrid-scheme solution for case II (also fitting to
a normalized rms of 2.4) is shown in Fig. 5(c). For case I results
from the hybrid scheme are indistinguishable from the full Occam
solution, and are not shown. Trade-off curves for the hybrid scheme
are shown in Figs 4(b) and 6(b) for the two synthetic test cases. The
behaviour as a function of iteration is very similar to that obtained

with the full Jacobian, though the minima of the trade-off curves
become somewhat narrower with the hybrid scheme.

For each iteration the hybrid solution is constructed as a linear
combination of the model space vectors JTuk, k = 1, . . . , K . The
first three of these, computed for the first iteration of test case I (i.e.
with the Jacobian calculated for a 100 ohm-m half-space) are plot-
ted in Figs 7(a)–(c). Note this Jacobian depends only on the uniform
distribution of sites (and the frequencies), and the spatial patterns
that dominate the basis functions are determined by the data (which
determine the data-space vectors uk). In particular, the large positive
feature in Fig. 7(a) coincides with the near-surface conductor be-
tween kilometres 10 and 20 (Fig. 1a), which has severely distorted
the synthetic data from nearby sites.

The basis for the modified hybrid scheme is illustrated through the
two lower rows of Fig. 7, where some of the individual transmitter
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Figure 6. Trade-off curves for test case II, for (a) full Occam scheme; (b) Hybrid scheme; (c) Modified hybrid scheme.

Figure 7. Sensitivity components JTu generated by the hybrid and modified hybrid schemes. (a–c) First three model space vectors generated by BIDIAG1 on
the first (outer loop) iteration for test case I (i.e. with the Jacobian calculated for a 100 ohm-m half-space). In the lower two rows selected individual transmitter
component sensitivities (again for the first iteration test case) are plotted for three frequencies (3.3, 0.5, 0.02 Hz) for (d–f) the TE mode and (g–i) the TM mode.

component sensitivities are plotted. More specifically, the model
space vector derived at the first step (plotted for test case I in Fig. 7a)
can be expanded

JTu1 =
J∑

j=1

JT
j u1 j , (24)

where the index j = 1, . . . , J indicates transmitter number. For
our examples, with TE and TM mode data for 16 periods, the total
number of transmitters is J = 32. Component sensitivities for

three frequencies (3.3, 0.5, 0.02 Hz) are plotted for the TE mode
in Figs 7(d)–(f). Sensitivities for the same three frequencies for
the TM mode are shown in Figs 7(g)–(i). Note that the sensitivities
generally vary fairly smoothly with frequency. The lowest frequency
TM mode sensitivities (e.g. Fig. 7i) are very similar by themselves
to the sum of (24). Evidently, fitting the large static shifts associated
with the near-surface conductor is the first priority in the iterative CG
solution. Other model features are evident in the larger set of basis
functions available to the multitransmitter scheme. In particular the
large conductive block on the left side of the model at 5–30 km
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depth (Fig. 1a), corresponds to a clear peak in the same area in
the longest period TE mode sensitivity (Fig. 7f). We anticipate
that the additional model space basis functions will allow better
approximation of the solution after fewer inner-loop steps.

This expectation is confirmed in Fig. 8, where we plot conver-
gence to the solution of (5) for the inner loop of the standard and
modified CG Occam schemes. For both test cases I and II the mod-
ified scheme converges more rapidly, with comparable reduction in
the normal equation residual in roughly half the number of itera-
tions required of the standard CG scheme. Convergence of the outer
loop of the modified hybrid Occam scheme remains comparable to
the standard data space Occam implementation based on the full
Jacobian (Figs 4c and 6c). Final model results are also virtually
identical for both case I (not shown) and case II (Fig. 5d).

It is well know that numerical round-off causes orthogonality of
the sequence of vectors uk, vk generated by the Lanczos process
to break down as k increases, degrading convergence of the CG

solver (e.g. Gollub & Van Loan 1989). The modified hybrid scheme
explicitly enforces orthogonality of the sequence ũk , and perhaps
this is at least in part responsible for the more rapid convergence
seen in Fig. 8. To test this we repeat the Lanczos bi-diagonalization,
modified so that the sequence uk, k = 1, . . . , K remains exactly
orthonormal, as in, for example, the generalized conjugate residual
scheme of Eisenstat et al. (1983). For both cases I and II convergence
of the CG scheme with explicit orthogonalization at each step shows
significant improvement, but is still significantly slower compared
to the modified scheme of Section 3 (Fig. 9).

In Fig. 10 we further compare the convergence behaviour of
the hybrid schemes for a set of eight test cases (including cases I
and II). Here we plot the number of inner-loop iterations required
for each outer-loop step in the Occam scheme for the Lanczos bi-
diagonalization with explicit orthogonalization, and for the mod-
ified multitransmitter scheme. Black filled symbols are used for
the first scheme, and grey open symbols for the modified scheme,

Figure 8. Convergence of the solution to the linear subproblem (5), for the hybrid scheme of Section 2 (solid lines) and for the modified hybrid scheme of
Section 3 (dashed lines). Different line shadings correspond to different outer-loop Occam iterations, which are numbered near the end of each curve. Panels (a)
and (b) give results for test cases I and II, respectively. In both cases the iterative solution is terminated when the relative error in the solution to eq. (5a; defined
as ‖(JJT + λ0I)bk − d̂‖/‖d̂‖) drops below 10−2, or k exceeds 30. In all cases the multifrequency scheme converges significantly faster than the standard CG
iterative solution.

Figure 9. As in Fig. 8, but using a modified Lanczos bi-diagonalization scheme with explicit orthogonalization of all saved data-space vectors uk for the
standard hybrid scheme (solid lines). Dashed lines are as in Fig. 8. Explicit orthogonalization improves the convergence, although the multifrequency scheme
still performs better.
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Figure 10. Total number of inner-loop iterations required for each outer-
loop step in the Occam scheme for eight different synthetic model test cases.
Different symbol styles are used for each case, with black filled and grey
open symbols used for the standard (with explicit orthogonalization) and
modified hybrid schemes, respectively. The lines give the averages (over test
cases) for each outer-loop iteration: solid black line denotes standard hybrid
scheme, dashed grey denotes modified scheme.

with different symbol styles used for each of the different synthetic
model tests. The lines give the averages (over test cases) for each
of the outer-loop iterations. The greatest increase in efficiency for
the modified approach occurs on the first iteration, where the av-
erage number of steps decreases from 30 to 11. More modest, but
still significant, improvement is seen for later iterations. Overall,
the modified multitransmitter scheme reduces the total number of
inner-loop iterations by a bit less than half, compared to Lanczos
bi-diagonalization with explicit re-orthogonalization.

5 D I S C U S S I O N A N D C O N C LU S I O N S

We have discussed two hybrid schemes, which approximate the
Occam scheme almost exactly without full calculation of the for-
ward data mapping Jacobian. Both are based on the observation that
iterative solution of the symmetric normal equations in the Gauss-
Newton scheme effectively generates a sequence of sensitivities for
different linear combinations of data, allowing construction of the
Jacobian for a projection of the full data space. The Occam scheme
can then be applied to this projected problem, with trade-off param-
eters chosen by assessing fit to the full data set. For EM geophysical
problems with multiple transmitters (either multiple frequencies
or source geometries) multiple forward solutions are required for a
search step in the Lanczos process. Each of these solutions generates
the sensitivity for a linear combination of data from the correspond-
ing transmitter. From the perspective of the hybrid approach, with
the Lanczos process generating an approximation to the full Jaco-
bian, it is advantageous to save all of the component sensitivities,
and use these to solve the projected problem in a larger subspace.
This forms the basis for our second scheme, the modified hybrid
algorithm.

Compared to standard CG schemes the proposed hybrid meth-
ods require substantially more storage, as the full sequence of data
and model space vectors generated by the Lanczos process must be

saved (K (M + N ) real numbers). For the modified approach stor-
age requirements are even greater, as separate model space vectors
are saved for each transmitter and each step in the solution pro-
cess (K J M + K N real numbers). However, as long as KJ � N
the additional memory required even for the modified scheme will
be small compared to the M N real numbers required for storage
of the full Jacobian. For our examples we have KJ ≈ 500 while
N = 2560.

Note also that a key component of the modified hybrid scheme is
to explicitly solve the normal equations for the projected problem
at each step in a modified Lanczos process, construct a ‘trial’ solu-
tion m̃, and then apply the Jacobian J to this solution (i.e. compute
J j m̃, j = 1, . . . , J ) to generate the next set of data-space search
vectors. Thus, additional computation is also required with the mod-
ified scheme [to compute m̃; the equivalent multiplication by J is
already required for the Lanczos process, e.g. in (8a)]. However, the
projected system of normal eqs (12) or (20) will generally be small
enough to be solved very rapidly—the largest system in our test
cases was about 500 × 500, and the size of this system would not
change significantly for a large 3-D inverse problem. Even so, this
extra computation probably only makes sense when a single vector
matrix multiply such as JTr is sufficiently expensive, as it would be
for something like the 3-D-MT inverse problem, where this single
multiplication represents solving J independent 3-D PDEs. Indeed,
for the 2-D-MT example we have used for illustration, solution of
forward problems is sufficiently fast that justification for the modi-
fied scheme is at best marginal. Note also that one could apply the
modified algorithm of Fig. 2 to any matrix J, artificially divided
into row blocks. However the extra computations required for each
step of this scheme would in general overwhelm any saving due to
reduction in the number of Lanczos steps that could be achieved.

The hybrid schemes described here are likely to be especially
useful for joint inversion, for example, of MT and controlled source
EM (e.g. Commer & Newman 2009), or EM and seismic travel-
time data (e.g. Gallardo & Meju 2007). In the first place, multiple
data types require running multiple forward models, and this can
also be exploited within the framework developed here (as it was
in the 2-D MT example, where TE and TM model solutions are
computed). Furthermore, experience inverting multiple data types
(e.g. Commer & Newman 2009) demonstrates that multiple trade-
off parameters may be required to allow for differential weighting
of disparate data types. And, one approach to joint inversion is to
enforce structural similarity between two or more distinct physical
parameters (e.g. conductivity and seismic velocity) by minimizing
the norm of parameter gradient cross products (Gallardo & Meju
2004). Structural similarity defined in this way can be enforced
by introducing another term into the penalty functional (1), with
yet another adjustable weight. Efficient schemes for choosing these
weights, as may be offered by hybrid schemes, are thus likely to
prove valuable for joint inversion.

There are a number of potential extensions and refinements of the
ideas presented here. First, we have focused on basic ideas, ignor-
ing details that might make the schemes numerically more stable or
efficient. For example, the cross product matrices in the projected
normal eqs (12) and (20) need not be formed explicitly. Instead
the singular value decomposition of the projected sensitivity ma-
trix (e.g. WT

K J) could be used, both for efficient and stable solution
of the normal equations, and to reduce storage requirements. And
with the projected Jacobian saved, forming an approximation to the
linearized resolution matrix would be straightforward (e.g. Minkoff
1996). In this application the additional sensitivity vectors provided
by the modified scheme would improve the approximation of the
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resolution matrix (e.g. see discussion on approximations to the res-
olution matrix in Deal & Nolet 1996). Another possible extension
worth exploring would be to use the approximated Jacobian com-
puted in a hybrid scheme as a preconditioner for the next outer loop
iteration of the Occam inversion scheme.

Finally, we have focused on making the data-space Occam
scheme efficient for even very large problems. The basic idea be-
hind this scheme could be adapted to a more general truncated
Gauss–Newton scheme. More generally, it would be worth con-
sidering how (or if) the individual transmitter gradient components
generated in each evaluation of the penalty functional gradient might
be used in other search algorithms such as NLCG or quasi-Newton.
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A P P E N D I X : I N C LU D I N G M O D E L
A N D DATA C OVA R I A N C E S

Here we briefly sketch treatment of the general form of the penalty
functional (1) where model and data covariances are not the identity.
We follow the approach used by Siripunvaraporn & Egbert (2000)
where the model covariance Cm = C1/2

m C1/2
m is implemented as a
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positive definite symmetric smoothing operator; applying half the
smoothing steps essentially provides the square root of the oper-
ator. Examples of such covariance operators are given in Egbert
et al. (1994), Siripunvaraporn & Egbert (2000), and Purser et al.
(2003a,b). Defining a transformed model parameter m̃ implicitly
through

m = C1/2
m m̃ + m0, (A1)

and transforming the data vector in the usual way as d̃ = C−1/2
d d =

C−1/2
d f + C−1/2

d ε (so that the data error covariance is the identity),
the Jacobian for the transformed problem can be written as

J̃ = ∂ f̃

∂m̃
= C−1/2

d

∂f

∂m
C1/2

m = C−1/2
d JC1/2

m , (A2)

where J is the original sensitivity for the untransformed problem.
Dropping the tildes the penalty functional (1) is reduced to the sim-
pler form used throughout the paper, and the methods described

can be applied to invert the transformed data for the transformed
model parameter m̃. This can be converted back to the physical
model parameter using (A1). Note that only multiplication by
the model covariance operator C1/2

m and the inverse data error covari-
ance square root C−1/2

d are required; the inverse model covariance
is never directly used. Although we have focused on data space
solution methods, the same approach can be used for model space
solution approaches, such as NLCG—that is, the penalty functional
can be minimized with respect to m̃, with the gradient derived from
the transformed Jacobian J̃.

The principal limitation of the approach described here is that
multiplication by C1/2

m must be implemented, and for some classi-
cal regularization operators this may not be so straightforward. For
example, if the regularization term is taken to be ‖∇2m‖2, applying
the smoothing operator C1/2

m amounts to solving Poisson’s equation;
boundary conditions are a complicating, although not insurmount-
able, issue. Such details are beyond the scope of this paper.

C© 2012 The Author, GJI, 190, 255–266

Geophysical Journal International C© 2012 RAS




