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MODIFICATION OF BEALE'S METHOD FOR
QUADRATIC PROGRAMMING PROBLEMS

I. INTRODUCTION

Introduction

Mathematical programming is generally applied to solve

problems dealing with the use or allocation of scarce resources in a

"best" way. These resources can be material, time, labor, machines,

capital, etc., and typically their best use is in such a way as to mini-

mize total cost or maximize net profit. The scarcity of these

resources yields a set of constraints relating their combined use to a

set of preset limits. When this measure of effectiveness--called the

objective function--and the constraints can be written as algebraic

inequalities and equations, techniques of mathematical programming

can be applied to solve the allocation problem.

The simplest form of mathematical programming problem is

one where the objective function and the constraints can be expressed

as linear functions of the decision variables. This type of problem is

called a linear programming (LP) problem and specific techniques

have been developed for solving them, most notably different varia-

tions of the LP simplex method [5] and the complementary techniques

[6].
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The first applications of mathematical programming on

nonlinear problems was naturally in the area of quadratic program-

ming [3,9]. This problem iavolves the minimization of a convex

quadratic objective function of the variables, subject to a set of linear

constraints. This definition can be extended to finding the local mini-

mum of any quadratic objective function subject to the linear con-

straints. However this extension cannot always be applied, because

many present methods require a strictly convex function. The method

discussed in this paper has the advantage of the more general defini-

tion of the problem.

Quadratic Programming Problems

The general quadratic programming (QP) problem can be stated

in mathematical form as:

minimize

1) f(x) = clx + x'Qx

subject to

2) Ax > b; x> 0

where c is an n x 1 cost vector, x is an n x 1 solution vec-

tor, Q is an n x n symmetric matrix, A is an m x n con-

straint matrix and b is an m x 1 positive vector.



3

The solution of any quadratic problem must satisfy the well

known Kuhn- Tucker conditions for that problem. The Kuhn- Tucker

conditions for the above general (QP) problem are as follows:

3) v - 2Qx + A'u = c

4) Ax y =b

5) v x = 0

6) u'y = 0

7) x, y, u, v >0 x,veRn, u,yeIRm

where x and y are primal variables with y an m x 1 primal

slack vector and u and v are the dual variables with u an

m x 1 dual solution vector and v an n x 1 dual slack vector.

Quadratic Programming Methods

Existing11 Methods

Since quadratic programming is the natural first step past

linear programming in complexity, much attention has been devoted

to it and many methods devised for the solution of the QP problem.

Of these methods, probably the most widely used and accepted are

Dantzig's, Lemke's, Wolfe's and Beale's.

Some methods, such as Lemke's, Wolfe's and Dantzig's are

directly based on the solution of the Kuhn-Tucker conditions, whereas
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Beale's is based on modifications to the LP simplex method. Only a

short review of these methods will be given, but references for a

more detailed description of each method are included.

Lemke's method [6] solves the QP problem by forming and

solving from the Kuhn-Tucker conditions, a "complementary problem"

of the form,

where

and

_w Mz + q; w z 0; w, z > 0

q =
A 0 -b]

w is set equal to q except that a w, which equals the mini-

mum qi is replaced by an artificial variable z0. The next step is

to continue through a sequence of "almost" complementary solutions

until the artificial variable is driven from the basis, whence the method

terminates with a complementary solution and thus the QP solution.

For a more detailed description see [8].

Wolfe's method [13] starts by adding a set of artificial variables

to equations 3 and 4 of the Kuhn-Tucker conditions and then uses the

Phase-1 simplex method [5] to get a solution to equations 3, 4 and 7.
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The objective of this procedure is to minimize the sum of these

artificial variables. A modification to the Phase-1 simplex method,

the "restricted basis entry' is required so that the entering variable

does not violate Kuhn-Tucker conditions 5 and 6.

In Dantzig's method [5] the first initial step is the same as in

Wolfe's but the objective is to minimize the true objective function of

the quadratic problem. This is done by successive LP simplex type

iterations except for a modification to the entering and leaving basic

variable criterion. These modifications are either to maintain the

solution of the K-T conditions or to restore their feasibility.

Beale's method [3] is quite different from the previous methods

in that it does not work on the Kuhn-Tucker conditions, rather it

works directly on the objective function and the constraint equations.

An initial feasible basis is selected and expressions for the basic

variables in terms of the nonbasic variables are substituted into the

objective function and constraint equations. The objective function is

then represented in a symmetric tableau where the first row contains

one-half the partial derivative of the objective function with respect

to the corresponding nonbasic variable. Then a variable is selected

to enter the basis and is increased in value until either its derivative

vanishes or it drives some basic variable to zero. If the latter is

encountered then a simple simplex iteration is done on the objective

function and the constraint matrix. But if the former occurs then a
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new nonbasic "free variable" is introduced. A restriction on the

entering basic variable states that all free variables having nonzero

derivatives must be entered before a regular variable is brought in

the basis. The method terminates when no variable can be added to

the basis to lower the value of the objective function.

Comparison of Existing Methods

Some comparisons of these methods have been done which point

out their differences and relative effectiveness. Van de Panne and

Whinston [11] compare the solution paths (i.e., the direction taken

toward optimization of the objective function) and effectiveness of

Dantzig's method with Beale's method. They point out that solutions

of successive iterations in Dantzig's method do appear in Beale's

method but Beale's may have extra iterations between these solutions.

This would correspond to when, in Beale's method, free variables are

introduced and later removed. So they conclude that based on the

number of iterations, Dantzig's method has a definite advantage over

Beale's method.

A comparison of the relative effectiveness of Dantzig, Wolfe,

Beale and a modified version of Wolfe's was done by Braitsch [4].

Braitsch notes that based on average iteration numbers, both Dantzig

and Beale are more efficient than both versions of Wolfe. He also

concludes that although Dantzig has a slight edge over Beale, this
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advantage is decreased greatly as the quadratic effect is reduced,

i.e. , the problem becomes more linear.

In a more recent paper by Ravindran and Lee [9] a comparison

was done of Lemke, Wolfe, complex simplex, quadratic differential

and a general nonlinear program, SUMT. They draw the conclusion

that Lemke's method is superior over the other methods included in

their study. The criterion for their conclusion was the average

number of iterations and mean execution time. Since their paper

dealt with a comparison of more recently developed methods and the

classical method of Wolfe, no direct comparison can be made of

Lemke and Dantzig or Beale because these methods are also con,

sidered more efficient than Wolfe's.

Objectives of Thesis

Some statement should be made here about the direction and

objectives of this paper. Basically this paper has two main objectives.

The first is to examine Beale's method in detail and develop a modifi-

cation to the method so as to solve some of the problems this method

encounter s.

The second objective of the paper is to do a small experimental

computational study on the computer to test and compare this modified

method with the original Beale's method and some other quadratic

programming methods.



8

II. BEALE'S METHOD AND PROPOSED MODIFICATION

Beale's Method

Beale outlines in [3] two new versions of his original method

which first appeared in Beale [1]. Since the first method introduced

is the version applied in the computer algorithm used for this study,

it will be explained in more detail than already given. The practical

version of Beale's method, originally presented briefly in Beale [2]

is discussed in detail in [3]. A detailed description of this method

here is unnecessary for the purpose of this paper, but basically this

version is the same as the original except the objective function is

written as a sum of squares.

The second version Beale presents deals with incorporating the

product form of the inverse matrix method into Beale's method, and is

also outlined in [3]. This revision can be applied to either the original

or practical version of Beale's method.

Beale's original method is one application of the ordinary LP

simplex method extended to quadratic problems. One advantage of

Beale's method is that it reduces to the LP simplex method for purely

linear problems, which most QP simplex methods do not.

In general the simplex method deals with the minimization or

local minimization of an objective function C, of n variables x.

that are restricted to be nonnegative and must satisfy a set of m
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linear independent equations, called constraints, of the form

J= 1

a..x. = b. (i = 1, ...,m) m < n
13 1

= 1, ...,n,

such that all the constraint equations are satisfied) then we can find

some basic feasible solution in which m of the n variables take

on non-negative values and the rest are zero. Using the constraints

we can now express these basic variables in terms of the nonbasic

ones to give us the equations

n-m

xb abkxm+k
k=1

is the bthwhere xb basic variable.

(b = 1, ...,m)

This solution is generally expressed in tableau form called the

A or constraint matrix. At this solution the basic variables xb

take on the value alp() and all the nonbasic variables are zero.

These expressions for the basic variables in terms of the non-

basic ones are now used in the objective function to express it in

terms of the nonbasic variables only. With the objective function in

this form, the partial derivative of C with respect to any nonba sic

variable can be considered by keeping all other nonbasic variables at

zero.
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In examining this partial derivative, if we find ac > 0,

then a small increase in will not decrease the value of C.

But if, however, aClaxm+j < 0, then some increase in xrnti will

reduce the value of C.

In the linear programming problem where C is linear and

aCiaxm+j < 0, then it will be profitable to increase xrn+i to the

point where one has to stop before some basic variable is driven

negative.

In the case where C is a nonlinear function, when

ac /axm+j < 0, it will be profitable to increase xm+j. until either

1) some basic variable is about to be made negative, or

2) 8C Mx vanishes and is about to become positive.
m+j

No problem is encountered in the first case, one simply makes a

change of basis. If we are examining, say, the partial ac /ax , x

nonbasic, and it is profitable to increase its value from 0 until the

basic variable x is about to go negative, then the change of basis
q

is made by making x basic and x nonbasic, using the equation

n -m

xq = a.q0 + 5cif xm+1

= 1

to substitute for x in terms of x and the other nonbasic vari-

ables in the constraint equations and objective function. The geometric

interpretation of this transformation is to move (along an extreme
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edge) from one extreme point of the constraint space to an adjacent

extreme point.

When the second case is encountered, one has a more

difficult problem if the objective function is generally nonlinear but

when (as in our case) it is at most quadratic, the problem becomes

very manageable. Because C is quadratic the partial derivative of

C, ac/ax , is a linear function of the nonbasic variables.
p

The most useful way to express the objective function (which

shall be used for this research) is to write C in a symmetric

form

n-m n-m
C = Cki xm+kxm+1

k=0 f =0

where xm+k = xm+/ = 1 when k or f = 0.

With the objective function expressed in this form the partial

derivative of C is directly observable in the matrix as

n-m
1 ac
2

ax cpo + cpkxm+k
p k=1

When, as in the second case pointed out earlier, this ac /ax
p

vanishes before some basic variable is driven to zero then x is
p

made basic and a new nonbasic variable u. is introduced such that



u. = C +
P0

n-m

k=1

Cpkxm+k

12

hwhere the subscript i designates the .t such variable introduced.

These u variables are not restricted to nonnegative values

and are therefore called free variables in contrast to the original x

variables (which are so restricted and are now called restricted

variables).

Geometrically, what happens in this second case when a u

variable is introduced, is that instead of moving from one extreme

point of the constraint space to another, one now moves to a new

feasible point that is not an extreme point of the original problem.

As a u variable is introduced we are generating a new constraint

to move us in a direction conjugate to the previous directions with

respect to the objective function. The problem here occurs, as Beale

points out in [3], that having introduced u, and forcing 8C/8xp = 0

we would like to have it remain so, and continue in these conjugate

directions. But Beale's method (in any form) as it is now, cannot

maintain these properties. If, when moving along one of these

conjugate directions, another original constraint is encountered, then

one has to remove all the free variables introduced thus far before

scontinuingthe iterations. This involves making all previous u.'

basic and discarding them as they are now of no use to us. This
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fact is explained in more detail by Beale in [3]. Even with this

problem the process will terminate in a finite number of steps and

a proof of this is also given in [3].

Proposed Modification

It is with this problem outlined in the previous section that the

main purpose of this paper is concerned. When searching for some

nonbasic x variable to enter the basis, different criteria can be

used without any real modification to the method of Beale. Some of

the criteria that have been used [4] are

1) The first nonbasic x variable encountered with its partial

with respect to C, negative

2) The x variable that will decrease the value of C at

the fastest initial rate.

Neither of these criteria are aimed at solving the problem described

although they do effect the average number of steps to complete the

problem.

In this paper the author proposes a new criterion which

attempts to solve this problem so that when a free variable is

introduced, no other original constraints will be encountered before

a solution is found. This new criterion is simply to search the
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nonbasic x variables that have a negative partial with respect to

the objective function until one is found that can be increased in value

until it is about to drive some basic variable negative. When this

type of iteration is not available then some other criterion is used for

the entering basic variable.

This proposed criterion is now presented in detail. From the

very first iteration on, the nonbasic variables are searched until one

is found such that its partial is negative (i. e., ac /ax < 0) and

x can be increased, say to some value D1 > 0, before the partial

vanishes. Now looking to see to what value x can be increased

before it drives some basic x variable to zero, we find that we can

increase xp to say, D2> 0. Now if D
2

< D
1

then xp is

made basic with the value D2 and some x variable is taken out of

the basis and the process starts again. But if DI < D2, then

is not allowed to enter the basis and the search for an entering vari-

able continues until one is found such that D2 < Dl. If after search-

ing the nonbasic variables, none are found that meet the criteria of

D2 < D1'
then a variable is entered that has D1 < D2. At this

point we are now creating a free variable and hopefully all subsequent

iterations will be of this type until a solution is found, if one exists.

A geometric explanation would be to always move from one

extreme point of the constraint space to an adjacent extreme point

until this type of movement is no longer available. By doing this first
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you will now hopefully be at an extreme point that will allow you to

move in conjugate directions towards the solution without encountering

another original constraint.

Illustrative Example Problem

An example is given here to demonstrate the steps taken by

both the original and modified Beale's method. This example is pre-

sented by Beale and solved using Beale's method in [3].

The example problem is

minimize

C = 9 - 8x
1 1 2 3

- 6x
2

- 4x
3

z 2
2+ 2x + 2x + x + 2x

1
x2 + 2x

1
x3

subject to the constraints

x
1

+ x2 + 2x
3

< 3 x1' x2' x3> 0.

The first step is to introduce the slack variable x4 and get

x4 = 3 - xj. - x2 = 2x3 .

Now the objective function is written as a symmetric matrix as

follows:
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C= ( - 9 - 4x1 - 3x2 - 2x3)

+(-4 + 2x1 + x2 + x3 )xi

+(-3 + x
1

+ 2x
2

)x2

+(-2 + x1 + x3 )x3

Solution by Beale's Method

From the symmetric matrix of the objective function given in

the previous section, we can see that an increase in any of the vari-

ables x
1,

x2 or x3 will decrease the value of C. But x
1

is

chosen because it is the variable that will decrease the value of the

objective function at the fastest rate. Increasing x
1

decreases x4

but x4 will stay positive until x1 = 3. But now looking at the par-

tial of xl we find 1 C /8x1 = -4 + 4x1 + x2 + x3, and this becomes

zero when x
1

= 2. So a free variable u
1

is introduced such that

u
1

= -4 + 2x
1

+ x2 + x3 and is now our new nonbasic variable.

Since x
1

is now basic we have

x
1

= 2 +
2

u
1

-
1 x2 - 1 x3

1 1 3x4 = 1 -
2

u
1

- x2 - x3 .

Solving our objective function in terms of our new nonbasic

variables, we now have
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C = (1

+ (

+ (-1

+ (

_1
2 1

- x2

)u1

3 1
+ - x3)xz

1 1- 2 x2 + x3)x3

Now it can be seen that by increasing x2 we decrease the

value of C. We can increase x2 to 2 before we drive x4 to

1 3 1zero, but 2 8C /ax2 = -1 + 2 x2 - x3, so we can only increase

x2 to 2/3 before the partial vanishes and again we are stopped by

the partial going to zero. So again we introduce a free variable

3 1uz = -1 +
2

x
2 2

- x
3

.

By making u2 a new nonbasic variable and x2 our new basic vari-

able we have

2
+ u

2
+

1
x2

33 2 2
x3

5 1 1 2xi = 3 + 2 ul - u2 - 3x3

2 1 1 5

x4 - u1 - u2 - x3 ,

and C becomes
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1 1C= (-3- - 3 x3)
1+( )u2 1 )u1

+ (
1

2

u2 )u
23

1+ (-i. +
3

x
3

)x
3

Again we notice that C can be decreased by increasing x3,

but now we have a problem.

This time x3 can be increased to 2/5 before
x4

becomes zero but it can be increased to 1 before the partial van-

ishes. Therefore, performing a simplex pivot yields

and

2 3 1 3
- u

2x3 5 10 u1 5 5- x4

4 1 3 1

x2 5 10u11 5- x4

7
= + 7 1 2

x
1 5 10

u
1 5 u2 5 x4

3 3 1 3
C = +

L1
u

n 50 1 + 2 5 2
+ 2

5
x4)

'50
53 1 3

100 ul + 5 0 u2 50 x4'ul

1 1 34 1
+ ( +

25 50 ul 50 u2 25 xe)u2

3 3
f

1 3+(-- +
25 50 ul 25 u2 25 x4'x4

Now we must remove u1 and u2 from the basis. The

partial ac /au
1

becomes zero when ui = -6/53 and all basic
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variables remain positive.

u3 as nonbasic we have

3

and so,

u1

x3

x2

So by making u1 basic and introducing

3 53 1

50

6

53

23
53

43
53

70
53

( 56

, +
100 1

+
50

u
2 50

x
4

100 2 6

53 u3 53 u2 53 x4

_
30 10 30
53 u3 53 u2 53 x4

_
10 32 10
53 u3 53 u2 53 x4

70 12 17
53 u3 5-3 uZ + 53 x4 '

2 6+ 53 + 53 x4)

100
53

u3 )u
3

2

53
36

+ u,
2

x
53 53 4

)u
2

6 2 6

53
+ 5-3 u

2 53 x4/x4

Next we must remove u 2
from the set of nonbasic variables. We

find u2 can be decreased to -1/18 until the partial vanishes so

we now have



20

2 36 2
u4 53 53 + 53 x4

and so
1 53 1

U2
18 36 u4 18 x4

and

x3

x
2

C

4
9

7

9

4
3

(

+(

+(

(

1

9

19

30 5

18 u4

8
+ u

9 4

1- u
3 4

53
35 u4

5

9
x4

2
-

9
x4

1
+ x

3 4

1

9 x4)

)u
3

)u
4

1

x4)x4

-
53

u3

10
53

u3

7 0
+

53
u

3

100
u3

We are now at the optimum solution of C = 1 /9 with x1 = 4/3,

= 7/9 an 4/9.d = Note that it took five iterations of the

method to reach this optimal solution.

Solution by Modified Version of Beale's Method

As in the example solved using the original Beale's method, we

start with x4 the basic variable and xl, x2, x3 as the nonbasic

variables. From the symmetric matrix of the objective function we

find that C can be decreased by increasing x1, x2 or x3.
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By first examining xl we find that it can be increased to 3

x4

21

becomes negative. Examining the objective function we

find x
1

can only be increased to a value of 2 before the partial

derivative vanishes. So, because we are stopped by the derivative

before we are stopped by a constraint (i. e. , 2 < 3 or DI < D2),

we abandon xl and investigate x2.

Here again we find x2 is stopped by the partial vanishing

because we can increase x
2

to 3 before x4 is negative but the

partial vanishes when x2 is increased to 3/2. So again we must

abandon x2 and investigate x3.

Now investigating x3 we find that we can increase x3 to a

value of 3/2 before x4 becomes negative and to a value of 2

before the partial vanishes. So (because 3/2 < 2 or D2 < D1)

we can now bring in x3 as our new basic variable and

the new nonbasic variable.

We now have

3 1 1 1

x3 2 2 xl 2x2 2x4

and our objective function becomes

x4 becomes
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21 9 11 1C= ( x2
)

4 4 xl 4 2 4 4

9 5 3 1+( + x
4 4 1 4 x2 -4- "ei
1 3 9 1

x4'x2(-41
+ 4

+ 4 x2 + 4x 1

1 1 1 1
( _

4
"1

1 4 '2 +4
x4)x4

Now by reexamining xi and x2 we find both have negative

partials but both are stopped by their partials vanishing before

driving x3 to zero. Since there are no other variables with nega-

tive partials x1 will be made basic and a free variable ul will

be introduced. This gives us

and

9 4 3 1
-xl 5 5 ul 5 x2

+ 5 x4

3 2 1 3
x3 -5u1 5- x2 - x4

30 8 7
C = ( + u1 - x2 +5x4)

2 x4)

8 4 8

5 5
u

1 25 x2
+ )ul

+
7 8 9 2

Z5 ul 5 x2
5 x4)x2

3 2 1
(

5
+

5
+

4 5 x4)x4

Looking at the objective function matrix we see that x2 is the

only nonbasic variable with a negative partial, but again this partial
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vanishes before a basic variable is driven negative. So x2 will be

made basic and another free variable, u
2

will be introduced.

Doing this we now have

7 8 5 2
x2 9 45 ul ;112 9x4

4 52 1 1

xl 3 75 ul 3 112
+

3- x4

4 98 1 5
-x3 9 --.222ul 9 Liz x4

and our objective function matrix is

1 304 41
C = (

u
+

x4)9 225 l 45 4

304 836+ ( + u225 n25 l
16

+ 225 x4'ul

5
( 9 u2 )u

2

41 16 1
)

45 225 u
1

+ 9 x4 x4

which indicates we are at the optimal solution with C = 1/9, x1 = 4/3,

x3 = 4/9,x2 = 7/9 and x the same values obtained when solved

using the original Beale's method. An important feature of this

method is that we reached this solution in only three steps of the modi-

fied method whereas the original required five.
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A Counterexample

Further investigation has proven that the proposed advantages

of the new criterion do not always hold. It is possible that while

using the new criterion, a free variable is introduced and then

another original constraint is encountered. This was the problem

the new criterion was proposed to solve. An illustrative example

of this follows.

Consider the following problem:1

Minimize

subject to

C = -16x
1

16x2 + x12 + x22

4x
1

+ 7x
2

70

3x
1

+ x2 < 27 x1, x2> 0

The proposed method begins by introducing slack variables

x3 and x4 as basic variables to get

x3 = 70 - 4x
1

- 7x
2

x4 = 27 - 3x1 - x2 .

The objective function corresponding to this basis is

1 Problem by Dr. Butler
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C = ( - 8x1 - 8x2 )

+(-8 + xl ) xl

+(-8 x2 ) x2 .

Both x
1

and x2 can be made basic but both are restricted

in value by their partial derivative with respect to C, so a free

variable must be introduced. By making x
1

basic and introducing

u
1,

the constraint equations become

xl = 8 + u
1

x3 = 38 - 4u
1

- 7x
2

x4 3 3u1 x2

The objective function is now

C = (-64 - 8x
2

)

+( u
1

) ul

+(-8 + x2) x2 .

Now x2 is the only candidate for the entering basic variable.

We see that x2 can be increased to 8 before the partial vanishes

but can only be increased to 3 before encountering another

constraint. So x2 must be made basic with a value of 3. Further-

more the next iteration must remove the free variable introduced

in the first step. This is the same problem that the original method
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encountered when it was used to solve the previous example, and is

the exact problem that the modification was proposed to solve.

It should be pointed out that this example problem has a convex

objective function (i. e. , the Q matrix is positive definite),

therefore convexity does not guarantee that the modification will

work as proposed.
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III. COMPUTATIONAL STUDY

Methods Used for Study

As a test of the usefulness and effectiveness of the modification

to Beale's method, a comparative study was done that also includes

Beale's original method, Lemke's, Wolfe's and a method called the

Symmetric Quadratic method (Sym. Q) which is a method developed

by Van De Panne and Whinston [12] and is based on Dantzig's method.

Beale's method and the other methods used are available on a

computer package by Northwestern University, called the Multi-

Purpose Optimization System (MPOS) [7]. The modified Beale's

method was tested by taking Beale's method as coded on MPOS and

making the appropriate change for selecting the entering basic

variable. 2 Since all 5 algorithms used for the comparison are based

on the similarly coded package by Northwestern Univ., it seems

reasonable to be able to analyze the results by comparing both calcu-

lation times and iteration counts.

2 With permission from Northwestern University for changes to
be made for the purpose of this study only.
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Problems Used in Study

The problems used for the comparison were randomly generated

using a computer code provided by A. Ravindran at Purdue University

and is based on a method by Rosen and Suzuki [10]. The code used

for this algorithm is provided in Appendix I.

This method of producing problems starts with a randomly

generated solution, then proceeds to generate a specified number of

constraints and an objective function corresponding to the original

solution. By generating problems in this manner the problem always

has a bounded feasible region with a specific optimal value, because

the technique used for generating the constraints and objective func-

tion are based on the Kuhn-Tucker conditions.

The problems used for the comparison were of six different

dimensions, all of the form, minimize the objective function, subjec-,

to a set of less than or equal to constraints. Ten problems of each

dimension were randomly generated so as to give a better estimate of

their relative efficiencies. One dimension of problems used was with

5 variables and 5 constraints (5 x 5). Problems of 10 variables were

generated with 5, (10 x 5) and 10, (10 x 10) constraints. Finally

problems of 15 variables and 5 (15 x 5), 10 (15 x 10), and 15 (15 x 15)

constraints were used for a total of 60 problems in all.
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One difficulty with generating the problems by the method

described is that the quadratic (Q) matrix may not be (and in fact is

usually not) a positive definite matrix which can cause some problems

with the algorithms, as we shall see later.

The results for each problem of each dimension are given for

each method. The results given are the number of iterations required

and the time taken for execution of those iterations. Table I contains

the actual data from each problem and Table II is a summary of the

average results on each method for each problem set.

Initial Results

In evaluating the data given in Table II we find that Sym. Q is

almost always the fastest in terms of number of iteration and terms of

the time required for those iterations. Generally the second fastest is

Beale's original method, in both time and number of iterations. The

modified Beale's method is usually third in number of iterations but

the time required per iteration is consistantly higher than for the orig-

inal. Beale' s method. This, the author feels, is due to the programming

of the change and not due to the theoretical method involved. This point

is made more apparent when both the original and modified methods

follow the exact same solution paths but the modified method requires

more time in doing so than does the original. The modification to Beale' s

was done on the same code in MPOS as the original, the code was just



30

Table I. Results of computational study.
Method

Problem Modified Regular
Number Beale Beale Lemke Wolfe Sym. Q

5 variables and 5 constraints
1 .047/3 .050/5 .068/9 * . 049 /3
2 .170/5 .132/15 .172.23 * .151/9
3 .127/10 .121.14 .137/19 * .149/9
4 .096/7 .067/7 .054/17 .136/18 .115/7
5 .099/7 . 073 /8 . 069 /9 * .085/5
6 .124/10 .107/12 .100/13 * .114/7
7 .168/14 .138/15 .097/13 * .119/7
8 .137/11 .108/12 .083/11 * .118/7
9 .118/9 .050/5 .040/5 .083/9 .048/3
10 .121/9 .080/9 .114/15 * .116/7

37 .121/8.5 .093/10.2 .093/12 4 .110/13.5 .106/6.4

10 variables and 5 constraints
1 .245/11 .063/4 .219/19 * .151/7
2 .353/16 .277/20 .198/16 * .196/9
3 .481/22 .075/5 .152/13 .203/13 .071/4
4 .231/16 .219.10 .222/18 * .191/9
5 .239/11 .113/8 .204/16 * .118/6
6 .512/24 .212/20 .284/25 * .197/9
7 .331/16 .221/16 .230/19 * .202/9
8 .228/10 .076/5 . 063 /5 * . 063 /3
9 .304/14 .195/14 .354/29 * .199/9
10 .464/22 .103/7 .166/12 .230/15 .120/6

x .339/16.2 .154/11.5 .209/17 2 .217/14 .151/7.1

10 variables and 10 constraints
1 .910/35 .210/13 .417/24 .213/8
2 .146/5 .105/6 .150/8 .290/13 .122/5
3 .753/29 .416/27 .632/33 .458/16
4 .893/35 .658/41 .591/37 * .557/20
5 .716/28 .401/26 .370/21 .437/15
6 .845/33 .395/25 .647/37 .403/14
7 .431/16 .228/14 .398/22 . 243 /9
8 . 686/27 . 451/27 . 502 /28 .428/15
9 1. 087/43 . 682/43 . 675/39 . 733 /25
10 .790/30 .286/18 .470/28 .273/10

. 725/28. 1 . 383 /24 . 485/27. 7 .290/13 .387/13.7

Data given as^ CP seconds of execution time/number of iterations.
*Solution not found because Q not positive definite.
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Table I. Continued .

Problem
Number

Method
Modified

Beale
Regular
Beale Lemke Wolfe Sym. Q

15 variables and 5 constraints
.480/29
.330/19
. 762/44
.419/24

*
*

*
*

. 392/14

.375/13

. 470/17

. 122/5

1

2

3

4

.963/29

.575/17

. 888 /27

. 700/21

.515/26

.437/23

. 634/31

. 144 /7
5 .320/9 .221/11 .560/30 * . 179 /7
6 .722/22 . 612/30 .396/23 * . 453 /16
7 .958/29 .611/32 .436/25 * . 529/19
8 1. 240/37 . 658/33 . 805/47 * . 424/15
9 .566/17 .157/8 .246/13 .510/21 .164/6
10 .466/14 .323/16 .390/21 .820/34 .267/10

3"7 .740/22 2 .431/21.7 .482/27 5 . 665/27.5 .338/12 2

15 variables and 10 constraints
1 1.281/33 .375/16 .598/25 * .375/10
2 2.004/53 .655/28 1.661/72 * .480/13
3 1. 170/28 .960/42 . 5 60 /24 * . 885 /24
4 1.361/35 .788/35 1.592/64 * .753/21
5

6

1.537/41
1. 525/39

.920/41
. 855 /3 5

.535/23
1. 206/49

*
* : 88=

7 2.046/52 1.027/46 .725/31 * .982/27
8 .751/19 .434/19 .699/30 * . 421/12
9 1. 136/29 . 548/24 1. 011/43 * . 512/14
10 1. 783 /46 . 781/35 1. 551/72 * . 727/20

1.460/37.5 .734/32.1 1.013/43.3 .675/18 5

15 variables and 15 constraints
1 2.069/46 1.131/45 .577/17 * 1. 220/26
2 2.459/53 1.232/49 3. 192/101 1.394 /29
3 1.750/32 .947/37 1.507/50 1.021 /22
4 3. 192/71 1.574/62 1. 659/56 1.600/34
5 2. 143 /46 1. 169 /46 1. 781/60 1.257 /27
6 3. 151/70 I. 738/69 2. 110/73 1.710/36
7 1. 729/36 1.318/52 2. 532/86 1.485/31
8 1. 153 /24 . 700/27 1. 345/42 . 867 /18
9 2. 216/48 1. 276/50 1. 169 /39 1. 182/26
10 2. 521/55 1. 435/55 2. 060/72 1.286/27

TE 2.238/48.1 1. 252/49.2 1.793/59.6 1.302/27.6
*Solution not found because Q not positive definite.



Table II. Average completion summary.
Average Average Average

Execution Number Execution Time
Method Time of Iterations per Iteration

5 variables and 5 constraints
Modified Beale . 121 8.5 .014
Beale .093 10.2 . 009
Lemke .093 12.4 .008
Wolfe .110 13.5 . 008
Sym. Q .106 6.4 .017

10 variables and 5 constraints
Modified Beale .338 16.2 .021
Beale .154 11.5 .013
Lemke .209 17.2 .012
Wolfe .217 14 .016
Sym. Q .151 7.1 .021

10 variables and 10 constraints
Modified Beale .725 28.1 .026
Beale .383 24.0 .016
Lemke .485 27.7 .018
Wolfe .290 13 .022
Sym. Q .387 13.7 .028

15 variables and 5 constraints
Modified Beale .740 22.2 .033
Beale .431 21.7 .020
Lemke .482 27.5 . 018
Wolfe .665 27.5 .024
Sym. Q .338 12.2 .028

15 variables and 10 constraints
Modified Beale 1.460 37.5 .039
Beale .734 32.1 .023
Lemke 1.013 43.3 .023
Wolfe * * *

Sym. Q .675 18.5 .036

15 variables and 15 constraints
Modified Beale 2.238 4 8.1 .047
Beale 1.252 49.2 .025
Lemke 1.793 59.6 .030
Wolfe * * *

Sym. Q 1.302 27.6 .047

*No problems had positive definite Q.
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modified to meet the criteria of the modification and not completely

rewritten, and was compiled at different times at possibly different

levels. So it does not seem unreasonable to assume that the modified

method should have only slightly higher time per iteration than the

original method.

A summary of the average results where the calculation time

for the modified Beale's method is estimated by multiplying the aver-

age number of iteration it requires by the average time per iteration

that the original method requires, is given in Table III. Evaluation

of this data gives a more consistent result. With some exceptions,

it appears that the order of efficiency of the methods would be;

Sym. Q, Original Beale's, Modified Beale's, Lemke's and finally

Wolfe's. It should be said here that since Wolfe's method required a

positive definite Q matrix, which was obtained on only seven problems

out of 60 used, no real comparison can be made about its relative

efficiency although it is generally accepted to be the least efficient of

the five methods used.

Since the modification to Beale's method was for an improve-

ment on the original Beale's, some comparison is needed here.

Since the calculation time per iteration should be approximately the

same, the methods will be compared strictly on number of iterations.

Table III shows us that the modified method has fewer average itera-

tions than the original method does for problems of 5 variables and 5
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Table III. Estimated average execution times for modified Beale's
method.

Average
Execution Time

Method per Iteration

Average
Number

of Iteration

Estimated
Average

Execution Time

5 variables and 5 constraints
Modified Beale .009 8.5 .077
Beale .009 10.2 .092

10 variables and 5 constraints

Modified Beale .013 16.2 .211
Beale .013 11.5 .150

10 variables and 10 constraints
Modified Beale .016 28.1 .450
Beale .016 24.0 .384

15 variables and 5 constraints
Modified Beale .020 22.2 .444
Beale .020 21.7 .434

15 variables and 10 constraints
Modified Beale .023 37.5 .863
Beale .023 32.1 .738

15 variables and 15 constraints
Modified Beale .025 48.1 1.203
Beale .025 49.2 1.230
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constraints (5 x 5). As we move toward larger problems this

advantage is lost. On the problems of dimension 10 x 5 and 10 x 10,

the original method appears significantly better, but only slightly so

on problems of 15 x 5. For problems of 15 x 10 the original method

has the advantage but for problems of 15 x 15 the modified method

does better. One explanation for ineffectiveness of the modification

could be that the Q matrix was not positive definite. Examining the

solution paths of the modified method for problems with a positive

definite Q we find the method works as described in Chapter II,

but in light of the counterexample, further study of problems with

positive definite Q's will be examined. Problems without a positive

definite Q do not always work as the proposed modification is

described. In these problems regular iterations are made until a free

variable must be made a nonbasic variable, but regular iterations

again occur before the optimum is reached. It appears that in this

case a regular variable may always have positive partial derivatives

with respect to Q before a free variable is brought in, and then

have a negative partial after, indicating it can be made basic forcing

out the free variable.

Another possible explanation for the results is as follows. On

some problems the original and modified method followed the same

solution path to a point where the original method made nonbasic a

free variable and the optimum was reached. At that point the modified
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method was forced to perform regular iterations until a free variable

could be made nonbasic and the optimum reached. A geometric

interpretation of this could be that when the present solution is at an

extreme point where the optimal solution can be reached without

encountering another original constraint, the original method may

find the free variable as the best improvement in the objective func-

tion. However, the modified method is forced to find the "best"

extreme point from which we can reach the optimum without encounter-

ing another original constraint, thus taking extra iterations.

One significant problem encountered when doing this computa-

tional study was a difference in the values of the variables at the

optimum solution. The different methods were generally consistent

in their solutions but these were almost always different from those

given by the problem generator. The optimum value of the objective

function, though, is agreed upon by all methods and the problem gen-

ator with differences of .001 to .5, but for problems of 15 variables

and 20 to 60 iterations, this does not seem unreasonable.

There are two possible causes for this difference in the solution

values. One explanation is round-off error at each iteration that

causes the methods to continue past the optimum point with iterations

that cause only minute changes in the objective function value, forcing

variables that should be basic according to the problem generator to be

made nonbasic. This is recognizable in many results based on Beale's
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method. In both the original and modified methods, 1V2 to 3/ 4 of the

iterations seem to be of this type. The other methods do not allow

an easy calculation of their solution paths sd as to see when the

optimum solution given by the problem generator is reached. Since

the methods based on Beale do not stop at this "optimum" solution and

because only the objective function value is given at each iteration

(not the value of the variables) it cannot be definitely stated when or

if this optimum solution is ever reached.

Another possibility for this difference is that there could exist

multiple optima. A problem with multiple optima is one that has more

than one set of solutions for the variables with all giving the same

optimal value of the objective function. The method used by the prob-

lem generator could allow this to happen.

Still despite this problem, since the solutions are almost always

the same among the methods and the objective functions value agrees

with the problem generator, the comparison and analysis of the

methods would be valid.

Additional Study

The results of the initial computational study indicate that the

proposed modification is not, in general, an improvement. The

counterexample shows some of the problems the modified method can

encounter even with a positive definite Q matrix. However, the
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initial study contained only seven problems with a positive definite

Q, all of which were solved as proposed by the modified method.

These results indicated the need for additional study to investigate

how well the modified method works on problems with a positive

definite Q.

The problems used in this additional study were of 2 variables,

2 constraints and 5 variables, 5 constraints. The same problem

generator was used but in order to increase the possibility of

generating a positive definite Q, the Q was formed to have on the

average, 50% positive values on the diagonal, 25% positive values

off the diagonal and the remaining values zero. This compares with

the 100% positive Q's used in the initial study.

Fifty problems of each dimension were generated for this part

of the study. Of the 50 problems generated for the 2 by 2's, 45 had

positive definite Q's. All 45 of these problems were solved by the

original and modified methods using the same solution path. In other

words, the two methods solved the problems identically except for

the time required. The modified method encountered the trouble

illustrated by the counterexample on 6 of the 45 problems.

The fifty 5 by 5 problems generated produced only 11 with a

positive definite Q. Of these 11, five encountered the problem shown

in the counterexample. Only one of the 11 was solved differently by
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the two methods. In this particular problem the original method

required 13 iterations to find the solution where as the modified

method required only 10 iterations for completion.
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IV. CONCLUSIONS

The main purpose of this thesis was to propose a modification

to the entering variable criterion in order to get an improvement in

the number of iterations required to solve problems using Beale's

method. It was proposed that the criterion of always choosing a

regular iteration over a free variable iteration when possible would

force the solution path to never hit a constraint after a free variable

was introduced. It has been shown by the counterexample and the

computational study that this proposed advantage of the new criterion

does not always hold. It was shown by the initial study that it does

not always hold for problems without a positive definite Q. The

counterexample and the further study done, illustrate that the require-

ment of a positive definite Q is not always enough for the criterion

to work as proposed.

It also appears that the modification may not always improve

the number of iterations and can in fact increase the number even

when the Q matrix is positive definite. This seems to occur when

the present solution is an extreme point where the optimal solution

can be reached without encountering another original constraint. The

modification forces the solution path to the "best" extreme point from

which we can reach the optimum without hitting another original

constraint. The regular method could possibly move directly from

the present solution toward the optimum using free variables.
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The results of the computational studies seem to indicate that

the modification is not a significant improvement on the original

method. The average number of iterations and the increased time

per iteration indicate that the modified method will usually require

more time to solve problems than the original method. A possibility

exists for further study on larger problems with the number of

variables much larger than the number of constraints. This is

because the regular method would be greatly affected by the partials

and continually use free variables, then have to remove them when a

constraint is hit; whereas the modified method might continually use

the constraints until it was close to the optimum.

In conclusion, this study proposed a modification to Beale's

method which attempted to avoid one of the problems encountered

during the solution process. The results indicate that the modification

does not always avoid this problem, even when the objective function

is convex. It is felt, however that the modified method may be

advantageous under certain circumstances. Further investigation

is necessary to verify this.
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Appendix I: Problem Generator Code

The computer code for the problem generator was provided by

A. Ravindran of Purdue University. Only some slight modifications

were made to make the output compatible with the MPOS system.

The code is as follows:

PROGRAM RANDOM (INPOT,OUTPUT,TAPE5=INPUT.TAPE6=OUTPOTJAPE8)
DIMENSION X(75).U(75),A(75,75),O(75,75),D(75),C(75).1105)
NI=5

NO=6

NP=8

Evs=10.0L-06
READ (NI.201) NVAR.NCUN,NPROB.XLERO.LIZERO.ANEG.ALLRu.ONEG.OZERO
READ (01,200) ISEED

USUm=ONEG+OZERO
ASUM=ANEG+AZERO
lEmP=RANF(ISEED)

IP=1

5 DU 10 I=1.NVAR
X(1)=0.0

IF (RANF(0) .LE. XLERO) GO TO 10
X(I)=10.0*RANF(0)

10 CONTINUE

DU 20 i=1.14CON

U(I)=0.0

IF (RANF(0) .LE. ULERO) GO TO 20
U(I)=10.0*RANF(0)

20 CONTINUE

GENERATE THE CONSTRAINT MATRIX AND THE RIGHT HAND GIDE VECTOR.
DO 40 1=1.NCON
K=0

DO SO J=1.NVAR

AY=RANF(0)
IF (AY .LT. ANEG) GO TO

IF (AY .LT. ASUM) GO TO 24

A(I.J)=10.0*RANF(0)
GO TO 30

22 A(I,J)= -10.0*RANF(0)
GU 10 30

24 A(I.J)=0.0
30 CONTINUE
31 TEmP=0.0

DO 35 J=1.NVAR

ItmP=A(I.J)(X(J)+TEmr
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35 CONTINUE
IF (TEMP .LE. 0.0) 60 ro 38

36 K=B+1
IF (A(I,K) .LT. EPS) 60 TO 36

A(I,g) = -A(I,i()

GO TO 31

38 B(I)=TEMP
IF IU(I) .6i. EPS) 60 TO 40

B(li =B(1)-10.01RANF(0)

LONTiNUE
GENERATE THE OJADRATIC FORM MATRIX.

DU 50 I=1,NVAR

DY=RANF(6)
IF (Di .LT. am_b) 00 10 42

iF (DY .LT. OHM) GO TO 44
D(I)=RAW0)
GO TO 50

42 11(1)= -RANF(0)
uu IU 50

44 8(I)=0.0
50 CONTINUE

DO 70 I=1,NVAR
DO 60 J=1.NVAR

U(I.J)=0(I)ID(J)I(50.0)
60 CON1INUE
/0 CON1INUE

DO 90 1=1.NVAR
lEtw=0.0

DU 80 J=1NVA8
ILMF=TEMP -2.04.U(I.J)1A(J)

SO CONIINUf
DO 85 J=1,NLON

C(I)=101F+U(J)IA(J.1)
(A(n .61. EPS) 00 TO 85

L :A=C(1)4-11..04.RANI-(0)

85 CONTINUE
90 CONTINUE

Du 94 1.=1,NLON

B(I)=-B(i)

VO 93

93 CONTINUE

94 CONTINUE
WRIT- (NP.212)
WRITE (N0.209) IP

WRITE (NU,203)
DO 100 J=1.NVAR

WRIE INO.2025) (QII,J),I=1,NVAR)
WRi'E NF.2(22i U,I.J.1=1,14y4C
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100 CONTINUE

WRITE (N0,204)

WRITE (NP,202) (C(I),I=1,NVAR)
DO 110 I=1,NCON

WRITE (N0,2025) (A(I,J),J=1,NVAR)
WRITE (NP,202) (A(I,J),J=1,NVAR)

110 CONTINUE

WRITE (N0,205)
WRITE (N0,2025) (C(I),I=1,NVAR)

WRITE (N0,206)
WRITE (N0,2025) (B(I),I=1,NCON)
WRITE (NP,202) (D(I),I=1,NCON)
WRITE (NF'.213)

WRITE (N0,207)
WRITE (N0,2025) (X(I),I=1,NVAR)
WRITE (N0,208)

WRITE (N0,2025) (U(I),I=1,NCON)

TEmP=0.0
DO 130 1=1,NvAR
TEMP =1Em(:,+12(1)*x(1)

Du 120 J=1,NvAR

TEMP =TEmP4-@(1,J)*)((I)*X(J)

1'.2.0 CONTINUE

130 CONTINUE

WRITE (N0,211) TEmP
WRITE (0,210) IP
IP=1P+1

IF (IP .LE. 5) 00 TO 5
WRITE (NF,214)

STOP

200 FORmAT (10X,020)
201 FORMAT (315,6F5.3,020)

202 FORMAT (8F10.4)
2025 FORMAT (11-10,13(F10.4,2X))

203 FORMAT (26HOTHE QUADRATIC FORM MATRIX

204 FORMAT (22HOTHE CONSTRAINT MATRIX
205 FORMAT (16HOTHE COST VECTOR
206 FORMAT (2?HOTHE RIGHT HAND SIDE VECTOR )

20;, FORmAT (2;HO1HE PRIMAL SOLUTION VECTO

208 FORmAC (25HOTHE DUAL SOLUTION VEC !ffl

209 FORMAT 25H1DATA FOR PROBLEM NUMBER
210 FORMAT (32HOEND OF DATA FOR PROBLEM NUMBER ,I3)

211 FORMAT (41HOTHE OPTIMAL OBJECTIVE FUNCTION VAL::.

212 FORMO(*BFALE*/*!ITLI:*/4.TEST PROBIEmS,ti*VARIABIL.
1*X1 TO X5 */*mATRIX*/*miNimI7L44*CONSITS
1*+++++*/*:,ORmAT*/*(5F10.4)*/*READ*)

213 FORMAT (*OPTIMILE*)
':,14 FORMAT (*STOP*)

END

E01 ENCOUNTERED.
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Appendix II: Example Problem Input

A feature of the MPOS package that was used was the alternate

input format. The problems were input to MPOS in the matrix format

that they were generated in by the problem generator. An example

input is given as follows:

BEALE

TITLE

!EST PROBLEMS

VARIABLES
X1 10 X5

MATRIX

MINIMIZE
CONS1RAINTS 5

+++++

FORMAI

(5F10.4)

READ

11.4/58 0.0000 5.0903 0.0000 7.7717

0.0000 0.0000 0.0000 0.0000 0.0000
5.0903 0.0000 2.2579 0.0000 3.4473

0.0000 0.0000 0.0000 0.0000 0.0000
7.7717 0.0000 3.4473 0.0000 5.2632

-413.4877 -22.1462 -219.6347 79.8471 -226.5278
9.6663 9.5625 2.6964 3.0187 -2.2771

7.7783 4.6520 4.8758 -.5346 -7.4025
1.8853 7.9461 0.0000 3.5325 -4.8380
1.3073 0.0000 7.9717 0.0000 -2.9753
4.4793 2.7158 6.4290 -9.7917 -3.5269

109.9115 29.8151 16.3481 33.6562 11.8874

(!CHECK STOP

OPTIMIZE


