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The following work is concerned with a numerical solution 

to the dynamic response of a simply supported beam under a moving 

mass load. 

Basis for these investigations is a linear integral equation 

of the first kind developed by C. E. Smith. Its general form is: 

(t 
I 

R(T)Kt,T)d'T = G(t) 

where R(T) is the unknown reaction between the mass and the beam, 

and K(t. T) and 0(t) are known functions. 

Solution of the above equation was accomplished by approxi- 

mating the integral by a finite sum, and setting N equations for 

N different values of t. Trajectories of the mass were then obtained 

once the reactive force was known. 

Results were also obtained for approximate solutions 

obtained previously by Stokes and inglis and comparisons drawn 



between these and the results from the above integral equation. 

The numerical solution of the integral equation presented 

its difficulties because of the nature and peculiar behavior of the 

kernel, which includes an infinite series whose terms are products 

of sine functions. Solutions for a large number of terms in this 

series are impracticable because of the increasing "waviness" of 

the function and the excessive amount of computer time involved. 

However, it is possible for some ranges of the parameters to 

determine by trial runs a number of terms that will yield suffici- 

ently accurate results without using an excessive amount of corn- 

pute r time. 

The numerical procedure pr esented here requires large 

computing facilities (digital) and it can become impracticable 

beyond a certain range of the parameters. However, in spite of 

these limitations this method presents a definite improvement over 

the approximate solutions of Stokes and Inglis. 
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A NUMERICAL SOLUTION TO THE DYNAMIC 
RESPONSE OF A SIMPLY SUPPORTED 
BEAM UNDER A MOVING MASS LOAD 

I. INTRODUCTION 

The following studies will be concerned with a numerical solu- 

tion to the dynamic behavior of a simply supported beam over which a 

heavy mass particle is constrained to move at constant speed. 

The problem of moving masses and loads over beams has been 

under investigation for over a hundred years and even at the present 

time is still the subject of much research. Although a solution has 

been found for the case oÍ a traveling constant force, no exact* analytic 

solution exists as yet for the more complicated case where the inertia 

of the moving mass is taken into account. The difficulty arises from 

the interaction between the mass and the beam, since beam displace- 

ments depend on the reactive force which in turn depends on the accel- 

eration imparted to the mass by the beam in motion. 

Several approximate methods have been devised since interest 

in the problem was first aroused in 1847. All of these methods in- 

volve some sort of simplifying assumption made either in the 

An exact solution usually means that assumptions of the Bernoulli- 
Euler beam theory are made, and that rotatory inertia of the beam 
and deflections due to shear are neglected. 
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differential equation, in its solution, or both. 

Earliest analytical work was motivated by railway bridge vi- 

brations under passing locomotives and it was started by R. Willis (9) 

who set up a differential equation for a mas sless beam system; he 

assumed that for heavy locomotives and very light bridge structures 

the mass of the latter could be neglected without introducing an appre- 

ciable error in the solution. Stokes (9) found a rigorous solution to 

this equation and on further work analyzed a system in which the mass 

of the beam was accounted for; however, he constrained the beam to 

deflect retaining the shape of a simply supported beam under an uni-. 

formly distributed load which is very similar to a half sine curve. 

Kriloff (5) also included the mass of the beam in his analysis, 

but neglected the inertia of the moving mass, thus reducIng his solu- 

tion to that of a moving constant force, which he assumed to be a close 

approximation for the case of a slowly moving mass. 

Schallemkamp (7) approximated the reaction by a finite sine 

series with n unknown coefficients and obtained independently, ex- 

pressions for mass displacements and beam deflections; he then con- 

verted the latter into an expression for mass deflections, equated it 

to the first one for n different time intervals and solved for the un- 

known coefficients. 

One of the most extensive studies ever made on the subject is 

due to C.E. Inglis (3). His analysis was based on the assumption 
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that the support structure deflects retaining the general shape of a 

half sine curve, that is, he neglected all modes of vibration higher 

than the first. Most of his work was oriented towards railway bridge 

vibrations where excitation due to the out-of-balance forces of the 

locomotive's mechanism plays a dominant role. However, he also 

studied the response to the moving weight itself and from measure- 

ments of natural frequencies of an average railway bridge concluded 

that higher modes than the first could not be excited by a locomotive 

even at its highest speed. His solutions for mid span deflections 

were found in fairly close agreement with experimental values; how- 

ever, he did not investigate the reactive force nor the trajectory of 

the mass which in Stokes' massless beam solution approached the end 

of the span vertically, thus suggesting the existence of an infinite re- 

action at that point. 

With the advent of the electronic digital computer emphasis 

has shifted to numerical solutions of rigorously developed equations 

of motion. Basis for this study ìs a linear integral equation of the 

first kind rigorously developed by C. E. Smith (8. p. 3, 14), which, 

although it appears that it cannot be solved analytically, lends itself 

to a rather straight forward numerical solution that yields the reac- 

tive force acting on the beam. Trajectories and bending moments 

can be readily obtained by a similar numerical procedure once the 

force is known. 



4 

This work investigates the advantages and possible limitations 

of this method and attempts are also made to evaluate the approximate 

solutions by Stokes and Inglis. 
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II. DERIVATION OF INTEGRAL EQUATION 

Unsprung Traveling Mass 
(8, p. 3-30) 

A brief outline of the derivation of C. E. Smith's integral 

equation shall be presented here as it applies to a simply supported 

beam. 

The differential equation for the general response of a simply 

supported beam to a general loading function is obtained from the 

beam theory and second law: 

4 
EI + 

M a2w q(x,t) (I) 
Dx 

where q(x,t) is a general time-varying distributed load which with 

a suitable limiting process can be made to represent a variable con- 

centrated force traveling at constant speed (8, p. 3). 

By means of the theory of forced vibrations of statically 

coupled, linearsystems(4, p. 170-178) an expression is obtained 

for the beam displacements: 

w(x,t) w (x,t) + w (x,t) + w (x). (Z) 
o p s 

The term oc 2 

w (x,t) = VA nirx n Trct 

o L1 n L L n 
n=l 

represents initial free vibrations of the beam; 
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ZL i fl1TX 

\ R(T) sin flit VT w(x, t) z -t-- .Jo L 
11=1 

Z 
n rrc(t-T) sin dT L 

represents forced vibrations; and w(x) is the shape of the beam 

when unloaded and at rest. 

Letting x=vt in equation (2) gives an expression for mass 

dispiâcements as a function of time: 

y(t) = y(t) + y(t) + y(t) (3) 

which is a superposition of mass displacements due to initial vibra- 

tions, forced vibrations and static beam deflections respectively: 

00 
t 

¿L \' i nlTvt 
ÇR('T) 

flhTVI y(t) 
cL ¿ 

Sfl L Sìfl 
L 

n= i 

n2iîc(t-T) dT (3a) L 

y (t) = w (vt,t) 
o o 

y5(t) = w(vt) 

A second expression for y(t) is obtained independently by 

superposition of mass displacements due to its initiai vertical 

velocity plus those caused by each force acting on the mass. 



Assuming y(o) = O: 

where 
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1 2! ÇR(T)(t)d (4) y(t)j(o)t+-gt m 

Combination and re-arrangement of (3) and (4) gives: 

(t 
R(TK(t«r)d'T= G(t) 

'0 
(5) 

00 
t-T ¿L \' nirvt nnvT K(t,1) + ' L L m M7yc ¿ 

z 
n irc(t-I) 

Slfl L (5a) 

12 
G(t) jr(o)t + -gt -[y(t) + ya)] (Sb) 

For an unsprung mass, ,r(o) cannot be set arbitrarily. If the 

reaction is to remain finite at t o the mass must be moving tangent 

to the beam as it passes over the first support. 

Therefore. ir(o) = [ ,r(t) + ,r (t)] (5c) 
o t=o 

In order to draw meaningful comparisons between solutions by 

this method and those by Stokes where the beam cannot have any initial 

deflection nor motion, only solutions for these initial conditions shall 

be obtained here. 

Equations (4) and (5) reduce to: 



and 

E] 

t 
1 2 1 

Ç R(T) (t_1)d1 (6) 4- y(t) -gt m 

t 12 Ç R(T)K(t,'T)d= gt (7) 
t-o 

For convenience equations (6) and (7) can be expressed in 

nondimensional form: 

whe r e 

and 

where 

and 

¿ 2 2 - 
Ç T(z) (:z)dz] (8) 

48 [i Z 

1)0 
r pX 

i() mgL3 m 
- - ' - 48E1 ' 

X = , T(z) R(T) Vt 

c mg 

vT 
z=T- 

Equation (7) transforms into: 

T(z)H(,,z)dz = F() 
o 

(9) 

H(r, z) = 
T:, _ Z + I-I (9a) 

s 
2 

H - ZpX .1 n Tr(-Z) 
s ir 

sinnirsinnrz.sjn 
X 

(9b) 
n=1 n 

12 F()= 



Sprung Traveling Mass 

Although no numerical solution shall be obtained for the travel- 

ing sprung mass, a brief analysis is included here which leads to the 

incorporation into the integral equation (5) of terms that will account 

for a suspension system composed of spring and damper connecting 

the mass and the beam. This gives a better model of a vehicle tray- 
* ersing a bridge and allows a greater choice of initial conditions 

since jr(o) is no longer constrained to value in equation (5c) 

Consider mass m supported 

by spring and dashpot as 

shown in Figure 1. 

The differential equation for 

Figure 1 the mass 

+ u'1 + Icy1 - u - ky = O 

Also, the reactive force on the beam is: 

R(t)= mg-uy-ky+ur1+ky1 

which can be re-arranged into: 

uT + ky -uy1 - ky1 mg - R(t) = p(t) 

* Experimental measurements of mid span deflections of highway 
bridges traversed by heavy trucks have shown that initial motions of 
both truck and bridge have a great bearing on the structure's 
response (1, p. 15). 



Using the Laplace transform the following set of algebraic 

equations is obtained: 

k Zu k u 
s + -) Y (s) + (s + - s + -) Y(s) = jr i(o) 

(us + k) Y (s) (us + k) Y1(s) F(s) 

where Y(s), Y1(s) and P(s) are the Laplace transforms of y(t), 

y1(t) and p(t) respectively. 

Solution gives: 

r 

i ] 

Y(s) = + 
2 2 + us+k P(s) 

s L ms 

Its inverse transform is: 

y(t) jr1(o)t 

çt Í i -(t)] +-e U p(1)dT 
m m 

from which the following expression for y(t) is obtained: 

k' 
12 

y(t) = 1(o)t + gt + 
(iet) 

- i U t 1 +-e d 
So [m u 

Combining and rearranging equations (10) and (3) a new 

integrai equation is obtained: 

t 
Ç R() K (t,1)d1 = G (t) 
'o s 

whe r e 
-(t- T) 

.1 u 
K (t. 1) = KU, 1) + - e 

s U 

lo 

( 10) 

([1) 

(lia) 
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and 
k 

G(t) = G(t) + 
-(iet) (lib) 

Introduction of a suspension system composed of spring and 

dashpot leads therefore to an integrai equation which is essentially 

of the same form as that for the unsprung mass; consequently, a 

numerical solution similar to that described in Chapter IV would 

also yield the unknown reactive force and the trajectory of the sprung 

mass for any given set of initiai conditions. 
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III. DISCUSSION OF APPROXIMATE METHODS 

Stokes' Massless Beam 
(9, p. 178-220) 

In a hypothetical massless beam system, motion of the beam 

due to its own inertia does not exist. Therefore, its configuration is 

at any time that of a simply supported beam statically loaded by a 

concentrated force. 

Mass deflections can then be expressed in terms of the re- 

active force and a flexibility coefficient which is a function of time: 

3 
L vi2 vt 2 

y(t) R(t)3E1 (-r) (1 - ) (12) 

Also from Newton's second law: 

2 

R(t) mg - m (13) 
dt 

Substitution of the latter expression for R(t) into (12) leads 

to the following differential equation: 

d2y 3E1 

dt2 L3 Vt Z vi Z '' 
mg (14) m + 

'-r 

Expressed in terms of the dimensionless variables defined in 

the previous chapter this becomes: 

dr , (l_t,) 

= l6 (15) 
2 2 2 



where 

13 

3E1 
p 

mLv 

This is, essentially, R. Willis differential equation for which 

Stokes found the following particular solution: 

= 16 [fifzzdzfzfiLdz] 

whe re 

i f (y) 

for < ! 
f (r) =) 4 

z ' V ¿D l-r 
J 

D = 

sin [s Log 

for >! 
cos[SLog] I 

1-ç, J 

s=JJ 

16) 

(16a) 

( i 6b) 

Similarly, a dimensionless expression can also be obtained 

from equation (12): 

T() = where T() (17) 
162(1)2 - mg 

Zimmerman (11, p. 249) conducted detailed studies of Stokes' 

solution in order to determine the general shape of the trajectory of 

the mass. 

For p smaller than 1/ 4 he found it to be tangent to the 
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horizontal and vertical at r O and Y = i respectively. This ob- 

viously implies that the reaction approaches infinity as the mass ap- 

proaches the second support. 

For 3 greater than 1/ 4 the motion of the mass was found to 

be oscillatory with its frequency approaching infinity near both ends. 

The envelope of these oscillations also approached the first and 

second support tangentially to the horizontal and vertical respectively. 

Trajectories and reactions plotted in Graphs I and ii in Chap- 

ter V are all for values of 3 greater than 1/ 4, and were obtained by 

numerical approximations of equations (16) and (17). 

The length of the beam was divided into ZOO equal increments 

and the integrals approximated by finite sums: 

where 

and 

i i 

11 
n() 16 

[ 
f (Y 

) f (z -f ( )f (z ) _ o] i i ¿__. Z -ö-- n 
n=l fl:l 

i = 
11i- ¿00 

. - - 1 V 

n Z : rn-I 

Consequently: 

T(' ) = 
i 

The Fortran program that produced results presented in 

Chapter V is included in the Appendix. 
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Inglis' First Mode 

A previously stated, the assumptions leading to Inglis' ap- 

proximate solutions admit beam deflections only in the configuration 

of its fundamental mode of free vibration. This follows from his as- 

sumption that components of the reactive force from the moving mass, 

in the directions of higher modes, are negligible. 

A brief outline of the development of his differential equation 

for the case of a concentrated mass will be presented here (3, p. 1-9, 

45,46), and it will be shown that it is equivalenttoC. E. Smith's integral 
* 

equationwhenonlythefirst termof the series is retainedinits kernel. 

Inglis arrived at a series representation of the time varying 

traveling load by considering a concentrated force to be a limiting 

case of a Fourier series representation (Z, p. 53-60) of a load uni- 

formly distributed over a segment of the beam (See Figure 2). 

g b fl_I 

HaH 
x<a 

W(x) h ac.x<b 

Uffl1W11 
W(x) O t 

A X 
Figure 2 

In general it can be shown that the number of terms in H is 
equal to the number of vibration modes considered (8, p. 3-3g), 
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The Fourier series representation of load in Figure Z is: 

W(x) B sin (19) 

B 
_4h nu nu [sin(b+a) sin(b-a)] (l9a) 

By making b approach a and letting 

h(b-a) R (constant) 

he obtained the following expression for a concentrated force R ap- 

pliedat xa: 
oc 

2 nn-a mix 
r R 

1:1 
L sin (20) 

For a time varying force traveling with speed y the ex- 

pression becomes; 
00 

nrrvt nux R(t)- 
L 

n= i 

Taking then only the first harmonic of the force he set his dif- 

ferential equation: 

EI R(t)- sin -fl-sin --t-- (22) ______ 
. iivt . ïrx 

Ox at 

A particular solution 10 this equation is of the formS 

w(x,t) = f(t) sin 
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Newton's second law, then, may be written: 

d irvt R(t) = mg-m -i [f(t) sin 
dt 

Substitution of these two expressions into equation (2k) led 

him to a linear differential equation in f(t) with variable coefficients 

for which he obtained a series solution by means of a rather lengthy 

procedure. 

Equation (22) can be readily transformed into the one-term- 

s cries integral equation, Substituting f(t)sin for w(x, t) into 

(22), differentiating and rearranging gives: 

where 

Trvt f +w f 
2 

= -R(t)sin 
_ (23) 

Z EI'rr4 îrc 2 
(A) 

= ML 

The solution of equation (23) is: 

f(t) =; (24) . rrvr. 

for a beam initially straight and at rest (10, p. 49-50). 

It then follows that: 

r 
Z w(x,t)=- R(1) îrx Try'1 

M sin.L__ sin L 
sin(t-'1)d'1 (25) 

and consequently: 

Çt 

Z 
R('I) TrVt 1TV'1 

y(tY 
-j sin__E-. sin 

L 
.sin(t-'I)d1 (26) 



where 

1g 

Combining (26) with (6) yields: 

1t 

R(T)K1(t,T)dT gt2 (27) 

T) = + 
2L rrvt . irvT . rrc(t-l) -sin- sin sin m Mirc L L L 

(27w 

Comparison of equations (27) and(27a) with equations (7) and 

(5a) shows that Inglis' differential equation is equivalent to C. E. 

Smith's integral equation with only the first term present in the 

kernel. The results obtained by numerical approximations of equa- 

tions (26) and (27) are for this reason labeled as Inglis' in graphs 

in Chapter V. 
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IV. NUMERICAL SOLUTION OF THE INTEGRAL EQUATION 

A numerical solution of the integral equation can be obtained 

by approximating the integral by a finite sum. 

Equation (9) can then be expressed as: 
i 

T(z ) H(.,z)(-1) = F(.) (28) n 
n L 

where, with the length of the beam divided into N equal increments: 

= 

z = 

= - 

By letting i = 1, 2, 3 . . . , N, successively, a system of N 

equations in N unknowns is then obtained which will yield the re- 

actions at the middle of each increment. 

Let C. H(r, z)- (28a) 

T = T(z 
n n 

and F. = 
i -1 

The system of equations is then: 
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C11 T1 F1 

C21T1+C22T2 F2 

C31 T1 + C32 T2 + C33 T3 F3 

CT +C T +C T4-...fC T Nl 1 N2 Z N3 3 NN N N 

Values of the unknown were obtained by solving directly for 

T1 in the first equations substituting into the second and so on. A 

Fortran program (See Appendix) was specially written for this solu- 

tion since no subroutines were available for the particular case 

where [C.] is a triangular matrix. This eliminated the pointless 

manipulations and storage of the zero terms in the upper right half 

of the matrix which could be costly in computer time and would also 

limit the size of the matrix the computer could handle. 

Displacements were also obtained by approximating an inte- 

gral expression by a finite sum. 

Equation (8) becomes: 

48 [!2 i 
l 

ii = Z 2 2 i 

T(Z)(i_Z).f] (29) 
Tr pX 

n= 1 

where 1 = (r) , and gives mass displacements at the end of each 

increment. 
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The procedure outlined above suggests that in theory, values 

of T and î that are arbitrarily close to the exact solutions can be 

obtained if a sufficiently large number of increments is used and if 

coefficients C. are calculated for a large number of terms in the 'n 

series H (9b). 
s 

In practice, however, the method proved to have its limita- 

tions because of the nature and peculiar behaviour of the kernel in 

equation (9). Term-by-term differentiation of H (9b) with re- 

spect to z gives the following: 

NT aH 
s sin nirr[ -- cos nirz Z 

= ¿p n 
sin -n (t,.-z) 

n=l 

-sin nrrz cos n (,-zfl (30) 

The lack of convergence of expression above indicates that 

for large values of NT H(r,, z) is not smooth. Plots of H versus 

z for T = . 5 and several values of NT showed that the function, 

although perfectly smooth for NT i became increasingly "wavy" as 

more terms were added to the series: for NT = 50 H exhibited 
s 

extremely rapid oscillations of significant magnitude. 

In order to obtain reasonably accurate results with NT 

greater than one it became necessary to increase N. This, 
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however, also has a practical limit imposed not only by the speed 

and storage capacity of the computer, but also by the amount of er- 

ror the type of solution used introduces when solving for the unknown 

reaction; this solution is essentially a form of Gauss' "successive 

elimination of the unknowns" (6, p- 528), which requires for greater 

accuracy that coefficients C.. be the largest of each row, since 

each one becomes the denomìnator of each pivotal equation: 

r j-1 i 
T. ---- I 

F. - c. T 
I 

(31) ciii i L. iflnJ 
L n1 

it can be noticed by inspection o equations (9a) and (9b) that 

the diagonal terms of the matrix [C.] are not only the smallest of 

each corresponding row but they actually approach zero as N be- 

comes very large. Truncation errors re then greatly magnified 

during computation, and the result is the appearance of an error 

which is alternately positive and negative; this can be noticed in 

plots for Inglis' solutions in Graph I. Although also present in 

computations for p = 1, the above mentioned error is not visible 

because of the chosen scale; for reactions much larger than one 

(as is the case for most of the plots in Graph II) the error is corn- 

paratively negligible. 

It is believed that the use of double-precision arithmetic* 

* Double-precision arithmetic is a technique for carrying out cal- 
culations with twice the normal number of significant figures. 
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could eliminate or at least greatly reduce the above difficulty. Since 

double-precision requires twice as many storage locations as 

single-precision, a reduction in N would be necessary in order to 

prevent "core overlap". * Computer runs (single-precision) that 

yielded results presented in Chapter V used nearly all of the core of 

a 7094 IBM digital computer. 

It is not possible, therefore, with the computing facilities 

available to obtain exact results (very large NT) by means of the 

nun-ierical procedure used here. 

A series of trial runs was made in order to determine 

values of N and NT that would give reasonably accurate results 

without using an excessive amount of computer time; plots of the 

kernel function were also obtained in order to assure an adequate 

number of increments. 

Results in Chapter V were obtained with N 200 and NT 9 

(C. E. Smith solution), and used a total of 6. 23 minutes of a 7094 

IBM digital computer; . 55 minutes of this time was taken by corn- 

putation for the massless beam. 

3:C 

Storage of more than one quantity in one memory location. 
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V. RESULTS AND DISCUSSION 

Results obtained by the numerical approximations described 

in Chapters III and IV are plotted in graphs in pages 27 and ¿8. 

A discussion of results by Stokes' and Inglis' methods is pre- 

sented below as they compare with those obtained by C. E. Smith. 

Stokes' Method 

The results from C. E. Smith's equation indicate first of all 

that although reactions near the second support became large in sorne 

cases, unlike the results implied by Stokes' analysis, they remained 

finite. For p 1 (Graph I)the peak value was J.. 84 and, as might be 

expected, occurred at the highest speed ratio(Xl. 1). Much larger 

values were obtained for p 1(Graph II) where the reactions reached 

a maximum of 72 and a minimum of -91, also at the highest speed 

ratio. In every case reactions for the massless beam reached much 

greater values than by the other two methods; the highest computed 

reaction was 1478 at . . 9975. (No attempt was made to compute re- 

actions at =l in order to avoid certain "overflow"of the machineS 

It can also be noticed that reactions by C. E. Smith'; method show, 

especially for the higher speed ratios, some high frequency, small 

amplitude oscillations which are absent in Stokes' solution even for the 

few cases where there is some general agreement between both solutions. 

Computation of a quantity larger than the greatest the computer can 
handle. 
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Results by Stokes' method depend exclusively on the param- 

3 EI eter 3( ). For the"heavy" beam 3 can also be expressed as a 

function oip ()and X() which are independent from eachother. 

Any given 3 can, therefore, be obtained by an infinite number of corn- 

binations of p and , each one of them leading to a different solutior 

there is obviously one combination that will give better correlation 

with Stokes' results obtained with the same 3. 

It is possible, by simple visualization of a simply supported 

beam traversed by a heavy particle, to gain some general idea of 

what combination of p and X would lead to better agreement be- 

tween results by both methods. These parameters should: 

1. Describe a system very close, physicallytoamasslessbearn. 

z. Minimize the influence that the beam!s mas s has on the results. 

The first condition requires small M and large m while the 

second one calls for large and small y. Large results in smaller 

deflections which tend to make inertia effects of the beards mass neg- 

ligible. The same effect results from a very low speed (small V); it 

can be visualized that in the limit as y approaches zero, the beam 

will have at every time its static equilibrium configuration regard- 

less of whether it is massless or not. 

Since all above conditions will result in small X and large 

p it can be concluded that only in this case will Stokes' solution 

approximate that of C. E. Smith. Although only two values of p 
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were used in this work, the above conclusion is generally 

corroborated by the plots: there is fairly good agreement for 

p 1 and X = .3 while results for p = . i and X = 1. 1 differ 

considerably. 

Inglis' Method 

Results by Inglis' method show remarkably good correlation 

with those by G.E. Smith's method for low values of p and k. 

For p = . i and X 3 the reactive forces and trajectories are 

almost identical; this is to be expected from simple inspection of 

the integral equation (9); small values of p and X tend to make 

H negligible thus reducing equation (9) to: 

i z 
ST(z) (-z)dz (32) 

where value of NT becomes immaterial. 

The solution of (32) is T(z) i which is very nearly the 

answer arrived at by both methods for p = . i and X = . 3 

It can also be noticed that the high frequency, small ampli-. 

tude oscillations in the force present in C. E. Smith's solutions are 

altogether missing in Inglis' results. However, while the discrep-. 

ancy is relatively small for p . 1, considerable error can be 

observed in Inglis' solutions for p = 1 and higher values of X, 

especially at points near the second support. 
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VI. SUMMARY AND CONCLUSIONS 

The preceeding work shows that C. E. Smith's integral equa- 

tion, although not suitable for an unlimited range of the parameters 

(see paragraphs 4 and 5 below), does provide a good basis for ob- 

taming numerical results. Furthermore, as shown in Chapter II 

(sprung traveling mass), refinements can be easily added to the 

original equation, permitting the solution to be obtained for more 

complex systems and with a greater variety of initial conditions. 

Conclusions may be summarized as follows: 

1, For smaller values of p and K., 

constant force method (5) provides a much 
simpler solution that is nevertheless sufficiently 
accurate. 

2. For a combination of a large p and a small X, 
Stokes' method will give accurate results at a 
much lesser amount of computer time than it 
would take by C. E. Smith's method. 

3. Inglis method can give fairly accurate results 
at low values of p and X. Use of large values 
of these parameters results in a considerable 
amount of error. 

4. For very large values of p and X , resulting 
I wavines s " of the kernel function could po s sibly 
require a higher N thus making this type of 
solution impracticable. However, values of 

p and X. larger than those used ìn this work 
are not very commonly encountered in engineer- 
ing applications of these investigations. 
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5. Because of the time involved in the computation 
of the series terms this numerical approxima- 
tion is not suited for small, nor even medium 
sized digital computers. Large computers like 
the IBM 7094 or the UNIVAC 1107 are necessary. 
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FORTRAN PROGRA1 FOR C. E. SLIITH'S AND INGLIS' METHODS 

X(2O),(2OÛ),(9,7OU),NI.(Q'2UO)I 
1SXZ,2C),CC2C1C) r('(u), 1(21J0),H(230) 

¿fC (lOF11.) 
FCAT (10H R::ACTIc' frö.?,1,rd.Z) 

2 FCAT (14ROI5PLACEENT F3.2,L6F8.2) 
PI=.141927 

c CLCULTION OF SINES 
i 1=1,233 

7=1 
V I T % _r 
¡\ £J''' 
7( I ) X( I )-.O25 

( I ) X( I )2/2. 
': ' p9 

= 

srx ': , r ) =5 - NR ( L'P I *X ( i ) 

NZ(I ) =SIF('-P1Z( I)) 
C7LL 
TO ?2 IV=,112 
:vr;= 1V7 
U) -' i i 
.-,J ' _j_'.0 

0=71/VR 

oj=( P!*V-) 2/2. 
T'O 2 1=,2CO 
rc 2 =' 
Lj= 

2 S\XZ(., I I ) 

C CLCULATICIS' 5ErIEs TERMS 
DC 30 ?T=i, 9, S 

- 

:: i=1,203 
:c 

5= . 

X L, N=,NT 

L 

.:=v+ 1 

C CLCLJLT1L) L,r rPCT1JiS ANL) L)ILAc1.T 
O ?2 I.=llC'9 

I: 

01=2 

i: - ,-n 

00 15 J=1I 

1F 1'.- ) 14 '1h' 1 
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(continuation) 

(J) ) 
*3J5) I)Z( J) 

T 15 

C (K) = C CC K) '1+X( I)-Z(J) )*.005 

,- CCTINJE 
T C i ) P ( i ) /C C i ) 

N=2 
DO 20 I=1199 r- J-,_. I 
:3 18 J1,I 
5S+C(M)4T (J) 

: 

1(1+1 )=(P1 1+1 -5)/C(N) 

2 C\TF1UE 
:o 24 1=1,200 
5=0. 
DO 22 J=1.I 

22 S=ST(J)*(X(I )-Z,(J))*.0C 
Hl 

) =(X( I )*2/2.-S)/ (8.*QJ1k) 
HC I ) 1G.*H( I) 

24 CONTINU - 

C P.INT RESULTS 
iJRIT OUTPUT lAPE 6,50,VR,NF,WR 
DO 26 1=1,200,10 
'!RJT OUTPUT TAPE 6,40,T(1),T(I+1),T(I+2) ,i(I+3) 

i T C I+L. ) T C 1+5 ) , T ( I+ ) , T C 1+7 ) , T C 1+b ) . 
T C ¡+9) 

25 CONTINUE 
,iRIT OUTPUT TARE 5,52,V,NTiN 
C 2B 1=1,200,10 
:!ITE OJT7UT TAPE ,&2n(I),r-1(I--1),rl(J+2),r1(I+3), 

iH(1-,-4),H(1+),riCÏ),H(j+7),h(1-4-b),r1(i+9) 

TXIT 
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FORTRAN PROGRAM FOR STOKES' METHOD 

H(.C) ,..(J),L(2)U),C(2j) ,(7j) 

43 FYAT (:.o,5XI2 
o FCÁTCCH REACTIO5 DIspLAcE;ENis 2F9.1,F11.3) 

)C' 
2 I=]7O3 

r = I 

XCI) = /2OO. 
Z(I) =X(I)-.0025 

2 CONTINUE 
DO 2 IV3112 
L:v7 C 

v°=uvR/1c:. 
DO 2G IW=II9 
u; = 

:: 3 / C ( 3 1 41 5::*J ) 

S.Tr(b./4.) 
DO 3 I:1,1Ç9 
:A.x C I ) =Tr- U'( ( i 1 X ( I ) ) 

¡'c 

AZ ( z ( L C t ) C 1 L ( I ) ) / 

SLX ( : X I ) / .-X( I ) ) ) 

I /fl_.-L( I) ) ) ) 

CLX C : HÇO5F ( R*L:2GF C X C i ) I ( 1 s-X C I ) ) ) 

(LZ C r ) :sF ( LOGF ( Z I L ) I C i .-L C I ) ) ) 

D . \I T 
J .__/ . 

S(J=RÁZ(1)*CLL(1).C1 
Z?)S(1 )=kAZ(1 )*LL(] )::- 

H C ) = *:AX.( i ) - ( .LX C 
2. ) C i ) 

-CLX ( i ) 
*53 ( ) 

T ( ) =H I } I C ( X ( i ) 
C i -X C 1 ) ) ) ) 

:i(I): 54ç-() 
O 24 I=2,19? 
(( j J. )*CLL( I )*.Cì1+C( I-.1) 

SS( )fL C I )LL( ).C1+S( 1-1) 
C I ) = AX C I ) 

* 
( SLX ( I ) ( I } -CLX C I) SS ( I ) 

T C I ) =- ( I ) I C Ç X ( I ) ( ,-X C J ) ) ) k*?) 
H( )= IS.*H( I) 

2.L ONTI.:UE 
/\L O 

1UTPUT T,A-E 

TJ 20 I=1199 
..ÇITE L)UTPUT TAPE 6,40,T(),H(I),I 
(K-I )2,32,2O 

2 CO\LL PAGE 

20 CONTINUE 
C4LL EXIT 
E ND 


