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A CONSTRUCTIVE PROOF
OF
THE FUNDAMENTAL THEOREM OF ALGEBRA

I
INTRODUCT ION

The fundamental theorem of algebra states that
every algebraic ecquation with complex coefficients
has at least one complex root. We note that any

such equation is equivalent to:

n
k
1) a, z- =0,
RZ; k

where each a, is a complex number, ., = l, and n

is a positive integer. The fundamental theorem of

algebra is proved by showing that the left side of

(1) has a factor (z-r), where r is a complex number.
In this paper it is proved that the left side

of (1) is the product of n factors (z-ri). i= 1,

2, 3, «ssy Nno This is done by constructing the

sequences:



(r}i(r)i(r)lo..
k1 0 ki 1 k, 2

(rk’)o. (r, ) ; (r, ) s wde

s ? 2 ®
2) (rka)o. (rk’);' (rk')s. o

(rkn)o, (rkn)x' (rkn)a’ o

showing that each sequence converges, and that the
limits of the sequences are the roots of (1). (For
each column of (2), the set, koo ko eoes ko ds
a reordering of the set 1, 2, ..., n.)

We choose each (rk)o. e B wese Ble Tt
the first member of each secquence above, to be an
arbitrary complex number.

For t =0, 1, 2, «.., we define (ak)t and (f)t

sos
n n .
3) TTletn )= ] (a)y 25
(), = ¢ [(rl)t. (r‘)t. coey (r )]
4)

n=-1

Z I(a) ), -2, [® 2 0.

The sequences (2) are constructed so that

lim (£f), = 0. This implies that as t—w, (ak) - a

treo k
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(k = 0,1, 2, «esp n), and hence that {making a proper
designation of k , k , ««., k; for each value of t)
the sequences in (2) converge, and that the limits
thereof are the roots of (1), as is proved in Chapter
v,
The construction of the (rk)t £k = 1. 24 wens

n ¢t =1, 2; 3, oo!)! is such that

ke
5) (£, =(£)y 2 k()2 ,

where k5 and k6 are constant for a given problenm,

so that lim (f)t =0, If (Case 1) tha valuas of

§ A

(rk)tm1 are all sufficiently distant from each other,
it is shown that we can fulfill (5) by letting (rk)t
= (rk)t-1 for all k, except that the real or imaginary
part of some (rk)t is chosen so as to minimize (f)t.

If this scheme does not work due to a condition (Case
2) that (rk)t-;' k =1, 2, «es, N, contains some
equal quantities, but yet all unecual quantities

are sufficiently distant from each other, then

1ettingT;T[z-(rk)t_1] be the product of some set

of equal factors [z'(rk)t-;]' we show that by letting

[ Ttamte) 1 = [ Tantr )y 73 + o2,
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where AP is a real or pure imaginary number, but other-

wise letting (r,), = (r,), , (5) can be fulfilled.
k't kit=y

For proof of this see equations (6)=(11) and inter=
vening discussion. (Note that Case 1 ic z trivial
variation of Case 2,) If (Case 3) some unecual quan-

tities from (rk)t-i’ k =1, 2, «es, n, are too close

to each other, they are adjusted to values equal to

or distant from each other and other (rk)t_l. The
new values are designated (rk)I:;' k = 1, 2 seey RNe
Then the (rk)t are determined from the new values
(rk)l:x' This is done in such a way that in spite
of the fact that (f)I:L may be greater than (f)t-l'
(f)I:L - (f)t is large enough so (5) holds.

Using the above method of choosing [(r1)t’ (r.)t.
eees (r )y], given the values of (e )y (r.)t-;’

n

eee, (T )t-xj' then, by induction on t, all values

in the sequences (2) may be obtained. As indicated
above, by proper ordering of each column of (2), n
sequences, each converging to a root of (1), are
obtained.

Note: It is assumed throughout that n 2 2,
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THE ITERATION (ry )y = (£, ),
We shall "round-off" the real and imaginary parts
of each (rk)t_1 to the nearest integral multiple of

M

40 8 cuantity defined in Chapter 111, and call the

result (rk)I:L' Thus any two unequal quantities of

the set, [(rx)S:L' (r ) ], will have

2 m' a0y rnfu

a difference of modulus not less than ”4‘
Let the set [(!‘ ) , (r )I_L. seey (r )I_L]

divided into equivalence classes so that two elements
of the set are in the same class if and only if they
are equal. Since the ordering of the set {(rk):_ }.

k =1, 2, ¢ee, N, is arbitrary, let us redistribute
the subscripts k so that all the members of any equiva-

lence class are adjacently located in the set [(ra)I:;'

(t')m. sewy (rn)m

2lternative notation useful. The veth element of the

J. ¥e will find the following

u=th eocuivalence class we call (ru.v)i;t' If (rk)1:; =

(=, .vth. we say that k = n(uo.ve). that u = u(k),

and that v, - v(k). Also, in general, we let m denote

n(uo,vo). Consequently: m(u..v‘J > u(u:.vl) if and
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only if u >u, oru =u and v. > v ; and, if m(u,v +
2 1 2 1 3 1 1
1) exists, it equals m(u.vl) + 1,

For any g, (g), and (g)i (¢t =0, 1, 2, ooe) shall
*
be considered as particular values of a variable, g .
Conversely, if g or g* is some function, and given

some s, (g), means the value of said function when

*

r. = (rm)s. m=1, 2, ees, Ne We also define:

L *
6) - ‘]:[(z'ru,j)‘
An mo(l im 3 n), and consequently, th, = u(mo),
and vo = v(mo), are chosen, We define:

b s ™ (ruvv)i:L ifufu orv>v.

The other (rm)t are so defined that the increment of

)

*
Pp » 38 eachr, | (3 =1, 2, esey, v ) goes from (r
° ol 0

uo.J 1=

to (ru j)t‘ is apm » which is defined as the optimum real
o' 0

or optimum pure imaginary value of the increment of

Pm s for the minimization of (f)t. under the given

conditions. A wise choice of m e and whether APm
0

should be real or imaginary, are discussed in Chapter
III.

* % s
Let f = £ (rl. Tor eees r ). The symbol
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8
d Re F_. or 3 f£ E shall indicate differenti=

u,v u L,V
o' o o' o

ation with all r‘ for which u #u or v > v , held
u,v 0 0

constant, but with the real or imeginary pert of the
term, which does not involve z, of the polynomial

vy @ Yariable,
o' o

expansion of Pu
Using the notation-

7) At,; r = (rm)t - (rmyi:;'

we apply the increment A P (here called A) to
1

c o

Puo,vo by letting: (when v = 1, 2, ..., V°-1)t

v
8) B,y Ty /A cis (35:1 w), if A > 0
v
9) A, , T = 9/<A cis (2 w), 1f A < O
1 uotv Vo
v
10) Ay xy = Yasets (RS2 0, a5 a/1 < o5
+] 0
v
11) B s By g /A/=1 cis (3%142 ), if A/i < 0.
0 0
Theorem 1: If APm is real,
[¢]
-(—‘pa 5 )
ne
m ~—
12) AP = e
mo .az £
8
3 (Re Pm )

4]



and if ﬁPm is a pure imaginary,
o

13) AP = e
I'Ilo gg £

8(Im 8 )8
0

Proof: We define a; o(u,v) (E 5.0, )i oue; B=})

in such a manner that:

n
: {z=r n=1
14) _k_—r—[_p_k Zo k_
m k k,m

From egquation (4).
n=1 .

15) f -kzo {(Re (ay = 2,)1% + [In (ay - 2,)1%}.

These equai.ons follow:

n=1
e 2 Re (ay~a, ) R“‘g +21 )aIm“E
o m gzo [ i (ak *k 0 Re m(a 8 Re
n=1 ;
16) = Zi;o [Rc(a;-lk) Re a:’m + Im(a:-ak) Im a:'m]=
3 "= “‘“k+21(' )aIma:
= ! kzo [2 Re (ak-ak) oy 8y B e %

-1
17) - ;Z; [-Re (a:-lk) In a:'m + Im (a:-nk) Re a:’m]i



3* £ 22f

3 (Re pm)8 8 (Im Pm)’

18)

n-1
* * n}
= EZO {[Re ak,m] + [Im ak.m] 5
*
We note that - and the two second partial deriva=-
| Bt |

*
tives above, are independent of Pm. Since - (k =
’

0, 1, «ee, n=v(m)) are the coefficients of the poly-
*®
nomial representation of the product of all (z-r,)

%

for which u(k) # u(m) or v(k) > v(m), an-v(m),m =

1,

and due to equation (18),

1) SR = ST rE 2 2 0.

The function f will be minimized with respect to

the variable AP v and hence with respect to Re P
oo 0

or Im Pm » if and only if R or sﬂtﬁ,p vanishes,
0 m m
0o 0

due to (16) = (19). Then by definition of - 2

3]
20) ('a—ge—pm—)t = 0 if AP is real;

t!

o [+]
and
8
21) (3—%5;),‘ =0 if APmo is imaginary.
0

Hence if APm is real:
o
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2
22) a—gﬁgfw. [(Py )y, = (P )¢ -(ﬁg—gm—)m.
[¢)

0

and if AP~ is imaginary:
0

23) 3 (%{m yz [Im (Pmo)m - Im (P“‘o)t] & (B_Ig_l%n—)

0 0

$=2°
The theorem follows from equations (22) and (23)

and the fact that APmo = (p"‘o)t - (Pmo)m.

Theorem 23

2
(£)y = (£),. = 1/2 ‘E‘&ﬁ;"h TRET, )2» 1f
0

APmo is real;

(0 = (1) - 172 EE—L, EE £ 4, if
m
[¢] 0

APm is imaginary.

*]

Proof: The expansion of f, considered as a func-

tion of the real variable, Re P or Im P, by Taylor's
0 0

series, about Pmo = (Pmo)t' yields:

o k
%) (£, =) {(b—-?a—eip;o)k)t +Rolle, )y, -

(Pmo)t]k’:_ k!} if APmo is real;
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o k
25) (f)I:L ng; {13—f35£§;27k)t o[Im (Pmo)I:L - Im

(Pm )t]k-f-k!} if APm is imaginary. By ecuations
0 0

(20) and (21), the terms in (24) and (25) for which
k = 1 vanish. The terms for which k > 2 vanish by

the remark following (18). Hence?

2

26) (f),_, =(f), +1/2 57me —)s (APmo]' if
0

APmo is real; and

27)  (f) = (f]t - 1/2 3 am )8 (6Pm )® if

L¢]

1=

0

APm is imaginary. Theorem 2 then follows from equa-

1]
tions (12), (13), (26), and (27).
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III
THE CONVERGENCE OF £ TO ZERO,

Let A

ks
k,m denote the matrix of elements A m* with

n rows (k =0, 1, «ee n=1) and n columns (m =1, 2,
*

k,m; p the resulting

*
and a

see n). We denote bY A k,l‘n;p

matrix, and an element thereof, after p elementary

*
transformations of the first type on Ak qe 25 follows
]

(p=0,1, 2, vee)t Ifp<m<Enandl<vim < p:

* * * [
28) q,mp (ak,m;p-l Tk, mel1; p-lyj“
* *

(x, = rp+1-v(m));
if p<mZ<nand vim) = 13

*

* * -
2) A p ™ (A nipa1 = Sk ppp-1) T

(r; - r;);

if 1< m<por vim) > gs

30) a:;m;p = a;.m;p-l
We define:
n=1
31) Sm;p =kzg ';.m;pzk'
with the understanding that A‘ = A. a* =
k,m; o k,m, "k,m;o

*
S .
ay me nd %rs ™ %
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Lemma 1:

If1<mgptl,
n

32) s =11 (z=-1);

WP k=m+l

ifp<m=nand 1 {vim) S p +1,

n m
* . *
33) S, = [lj;-m-v(m) (z =, )]+ [Em_v(m)(z - )],
and if vim) > p,
* . *
34) Sm;p '[EII (z - rk)]—r-[31;+l-v(m (z - rk)].

(Note: The product of the elements of a null set is
defined to be unity.)

Proof: We note that (6) is equivalent to:

m *

35) P =T (z =)
™ k=m+l-v(m) k

We then prove the lemma by induction on p.

Suppose p = 0. Then (32), interpreted by (31),

says that:
n=1 " 1 n :
36) Z 8.1 2 =T_T (z = rk).
k=0 k=2

Because v(1) =1, (35) says that P, = (z - r;].

Using this fact, (14) shows the truth of (36), and
hence of (32) when p = 0.

The truth of equations (33) and (34) in the case
p = 0 is established by (35), (14), and (31). Hence

Lemma 1 is true in the case p = 0.
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Assume the lemma is true when p = P, = 1. The

following paragraphs prove that this implies the truth

of the lemma when p = pol

First we note that as a consequence of (31),

*
equations (28) - (30) retain their validity when 3 m
*
is replaced by Sm' or ay m.) is replaced by sm-l'

Due to the assumption that {(32) is true when p =
P, -1, and applying (30):
37) ifl<m<p s_ = (2 =2.)
o’ Po ‘l;];ﬂ‘l k

By the assumption that (33) is true when p = Py

-1, and applying (28), and the fact that vim) > 1,
vim=1) = v(m) - 1: if P, <mSand 1< vim) < Py

. £ *®
Sm:po = (sm;po-l - sm-l;p ) g - rp+1-v(m))

{k-p - -rkn—[Tr (z - 1))

k=m+l-v(m)
m=1 "
-[1_[;-v(m) e r ]‘_-[;Elll-v(m) b rk)]}

“‘(r - rp +1-v(m))

(z - n——t‘rr (2 = )]
{[ +2-v(m) "7 k=m*+1l=v(m) . }



o[(z . rp°+1-v(m)) (Z - r )]_(r - °+1_v(m)c

So, if p. <m < n and 1< vim) < Py

38) S 1 = [Egpo+2_v(m) (z - r:)]":"

m *
oT (z - rk)]

k=m+l-v(m)

Consider the case Py <m<nand vim) = 1, By (33)

and (29):

. * *
szpo i (Sm:r -1 © Sp PP )=z - rpo)

{[TT (z=1)]=(z=1)

k*p
n p

* .
- EI:§°+1-v(po)(z “ e hl (z

k-po+1-v(p°)

. * *
—(z_ =-r_)
m Py

= {(TT (z-e1= (2 - ).

k=p°+1

Po

((z - r; ) = (z = r;)]“?'(r; w2 Y
0

Since this is equivalent to (38) in the case v(m) =

the validity of (38) is extended to the case:

m<nand 1< vim)< Py

*

)}



16

By the assumption that (34) is true when p = P

- 1, and applying (30): if v(m) > Py?

n
L e [T fn e r;)]

39) S_.
m;p, A S
m *
":- ( - )]c
- [;(r'll-n*l-v( m 7 Tk

Suppose v(m) = Py + 1. Then, by (39):

n " m @
Spp = (T (z =1+ (1T (2 -1,

B3 Py k=1 k-ll-p°
which, if v(m) = po+ 1, is equivalent to (38). So
equation (38) is true if Po <mSnandlg vim) £
+ 1.
P *1
Suppose m = p_+ 1. Then 1 < vim) < P, + 1s 50

(38) holds. In this case (38) implies:

n m

* *
= o '%‘ - ) s
Smp° [II;G+2-v(m)(z r )] [II;°+2-v{m)(z r, )]

which is

s, =TT (z=1)
m;p, '-[1;+1 W= Bt

Hence equation (37) is true when 1 < m < Py * B

Due to equations (27) - (39), and the cases for
which their validity is established, the lemma is true
when p = Po = l. Hence the lemma is proved by induction
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on p.

As a consequence of Lemma 1,

n e
40) m;n"'l -En.‘.l (Z t rk). m= l. 2, ssey Ns
We let:
41) '(9)' 4 $ and A‘(o) = A‘

,m = %k,m3n-1 k,m k,m;n=1l
We then define elementary transformations of the sec=

ond type as follows:

42) Ifm<n - p, a'fg) *(p-1) . *(p-1),

k = %, m m+p 'k.m+1 '
*(p) _ . *(p-1)
43) ifm>n=-p, g aom

We make a definition similar to (31):

n=1
(p) *(p) .k
44) smp = z:.o .k,g L &
Lemma 2:
(p) P *
- S = = .
45) Ifmgn=p, S z 'EL+p+1(z rk),
46) 1fm2n-p, s{P) = om,

Proof: A comparison of (31), (41), and (44) shows

that S(g) =S Hence when p = 0, (40) establishes

min=1°
the truth of (45), If p=0, and m2 n = p, then m
= n, since m is limited to (1, 2, «.., n). Hence in

the case p = 0, statement (46) reduces to S(g) =],

S sn-1 = 1» by (40). Sinces_ . _, = s(g). (46) and
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hence the lemma, is true when p = O.
Suppose the lemma is true when p = Po” l. The

lemma will be proved for the case p = Po? completing

its proof by induction.

We note that (44) permits the substitution of
S(g) for a;(g). etc., in (42) and (43). By (42) and
1 ]

(45), letting p = Py = 1 in (45), ifm<n - Py

s(zo) - S(E°-1) + r; s(po-l)

+po m+l
p -1
=z 9 (z - r:)
k=m+p +1
p=-1ln
+ r;+ z © (z - r)
Po k=m+p +1
= [zp°-1 r] {gor) Ilzsx tre, ]
k=mip +1 . Ny T
or
P
47) s(70) 2 ;70 (z-r:)
k=m+p +1

By (43) and (46), letting p = P, = 1dn (46),
ifm>n-p, (This inequality is equivalent to m >
ne= (Po - 1)0) ’

-] )
48) S(:o)- s(:o ) = zn-m
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P P
If m=n-=-p, then by (47): S& o) o z %, which is
equivalent to (48) in the casem =n - Po* So equation
(48) is true whenm > n = P+ Equations (47) and (48),

and the cases for which they are established, prove
that the truth of the lemma in the case p = Y, - 1

implies its truth in the p = po. This completes the

proof of the lemma by induction.

A‘(“'l) has one's everywhere

Lemma 3¢ The matrix
in the non=-principal diagonal and zeros everywhere
else, i.e.,

lifk =n = m.
a

*(n-1) _ {
kom 0ifk £n = m.

Proof: By (46), if m =1, 2, ..., n,

S = z

n-l
s(g ) = Z&O a*(:.uli) X

*(p-1)

k,m must

In order to reconcile the nkove equetions a

be unity when k = n-m, but otherwise zero. The lemma
is proved.

Lemma 4:

49) (f)_,ﬁ_:JL -(£), 2
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2n-21:,2n=3 2 2 4+ 1)4n=6
[(f)mma Y2 n® M_ (M 1) ‘
for at least one choice of m° and whether APm is real
0

or imaginary, where:
50) “1 = max Iakl' k = (0’ 1’ eeey n-l):

51) ua = min £2' “rj tey = (rk L,_'!l

egdios #lndyo s 1S5 8m 1Sk Sy
52) M, = max {1, (n-1) («/(t'),c_1 + Ml)}.

Further calculations depend on the fact that the M's
are positive.

Proof: Due to (4):

Max l(ak).t_; -al*2 (f) / nj

53) Max I(ak s * akl >'\/(f}1'._|. / Ne

Due to (3):
n

* * X
k&] ak (rm)k — 0’ 1f m= l. 2, eesy Ne

« *
Since a_ = 1, if r, # O:

B * o kker 0L e #ipek
1= kg: (-a,) (r) Skz—-‘o la 1€ )™ |

Then, if [(r])] 2 1:

1 £ (n - 1) max Ia:Pflr;I;

* *
lr | £ (n = 1) max Iakl.

Hence, in particular,
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54 ) |(r )t | € max {1, (n=1) I(ak - I}
But due to (4):

max | a: - akl2 S £

55) max | a: - a,l <At
mex {lay | = la |} SV
max | a, | = max |a | S~%7

max | a; | <A/F + max | akl;

In particular:

max l(ak)t-;l SNf)  + M.

Hence (54) becomes, with the aid of (52), and the fact

that each (r ) will be defined so max I(r )

m =y 3.1' E

max I(rm) Y Iy (m =1, 2, vee, N)2

56) max |(r )L_xl <max |[(zr.), | £ Mgy (m =1, 2,

m tey
ssey n]o

Define the matrices:

\-
57) Ak - (ao’ 31' esey an-iJ,
_ (ot 8~ 8
58) Fm (s-ﬁl. 2, veep n)'
an
59) whereb—-g-ﬂg—g—p—i'i%—p—.
m e "m 8 m

Due to (16) and (17):
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* -
60) 2 (Ak - Ak) ﬁk.m =F.,
* « * =

61) where Ak = (ao' al| seay an'l)-
Hence:

*(n-1) *(n-1)

*
62) 2 [A -4l Xk'm o :
*(ne1) *(n-1)
where Kk - and F are the results after (n-1)
?

elementary column transformations of the first type
followed by (n-l) elementary column transformations

of the second type on K: n 2nd F;. respectively.
L

(n-1)

*(n-1)
n k.m and hence,

is the complex conjugate of A
]

by Lemma 3, consists of one's in the noneprincipal

diagonal and zeros everywhere else. Hence if the

ES
elements of 2 [A e Ak] are arranged in reverse order,

*(n-1) _
re results. Hence by (53), the greatest magnitude

of any element of F;("'I) is at least 2/f 4+ n. Hence,

63) .max (F;n-ll)h ?_ Mf)m_:- Ne
Let
o) emmax (3D, n=1, 2 e

Then an upper bound for the magnitude of the elements

of (Fm;o);;; = (FN)S:L is €. A corresponding bound
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for (F is ¢ (—ﬁ——)p. To show this, we remark
2

m'po'l)&:i
that the statement is true when p = O, Suppose it is
true for p = P l, i.e., that a corresponding bound

for (F ) is ¢ (_g__)Po' The p _~th transfor-
m;po-l t-1 M2 E Po -

mation of the first type consists of altering some
elements by subtracting other elements from them, then

dividing the results by some (rJ)Szl - (rk)S:L'
Ty # r s in magnitude at least M,, see (51). Since

M2 2 2, a corresponding bound for the resulting

( is ¢ (,—f;)po'l (ﬁ-a-) =e (ﬁ;)po « This proves

Fm'po)ﬁzl
the earlier statement. and that a corresponding bound

for (F ) = (F_ ) is ¢ (%—) « A corresponding

mijn=1

t-1 "

(o )

bound for (F ) is e(%—)n-l (M3 + 1)P . To show this
2

statement, we observe that it is true for p =0 and

suppose it is true for p = p - l. Then the correspond-
(p -1) " Pyl
ing bound for (F )sp_ is e (%2)" A (Mg + 1) °

The P,~th transformation of the second type consists
of altering some elements by adding to each of them

the product of some (rm)!_1 and some other element.

Since (r_) £ M, , the corresponding bound for the
m'te1 3



(p - p -1
resulting (FN)E:: is ¢ (ﬁ_)n 1 (Ms + 10 4
2

Hs £ (rﬁ) (MS + 1) s wWhich is ¢ (_M') (M’ 1) 9,

Said statement is true for p = Py and is therefore

true, by induction. Hence a corresponding bound for

re

(Fm)(g:l) is € ‘M (M + 1171, Then, by (63):

. [5; (Mg + 1) 2 2(6), =g

€ = max (Ig—h-.éml)t_! 2 2f(f)j;;_ [ 'E:E_-Fl)]n-l;
n 3

» (f) M
max ”H;]z)m >4 _ _i“*:_ ( 'il"il_zs-l-ljlzn-zt

and, due to (59):

max{(\%&n;);;d (g_'}“—pm);:‘-} 2

(f)

Note: The importance of (65) lies in the fact

that we may choose u such that
2 i) 2
(TR'LF) or (547 )i,
°

equals or exceeds the right side of the inequality.
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Let Ty be chosen arbitrarily in the closed interval:
[(rk)t'g' (rk)S:;]' k=1, 2, vas, n. By (56), max IFLl <
MS' Hence the statement, "The magnitudes of the co-
efficients of the polynomial expansion of the product
of p factors [x = ;L], are bounded by Ha(ls +1)PLn
is true when p = 1. Suppose it is true when p = po.

If the polynomial
Py P

0
Lo b =1z =50,
=0 k=1 k
then
Po-
lbkl s ua(“s + 1) ’ k = 0. 1' ee ey p°.
If
-
p°+1 po 1
Lo o =Tl tz-z, 1,
=0 k=1 k
then
¢, =b _, * bk(rp°+1);;;’ where bpo*l = 0,
Since

l(rp°+l)m| £ “3.

p -1
leg | S Mg(My + 1)7° (Mg + 1) = My(M, + 1)Pg
where k = 0, 1, ..., B l. Hence said statement

is true when p = p°+ l, and is always true. Since
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:;,m is a coefficient of a polynomial equal to the

product of not more than (n - 1) factors (z = ;; ) 2
k

where ‘m.k

B3 kS ~
= .lll.k Vo‘hOn rk = rk’ k = 1. 2. LE B ] I'l,
-~ n=2
66) max I‘k,ml‘s My(My + 1)
Noting that if we choose ;L = (rk);;;' k=1, 2, eeey

n, then g;,m = (.k:ﬂ)izx' and due to (16) and (66):

2 2
3 3
® 2]

67) max [ 72y, = max [3

T2y

< 20 M2 (My + 1)%"4

Due to (65), (67), and Theorem 2; the lemma is proved.
The decrease of f from (f’j:; to (f)t can be made

sufficiently large by making M, sufficiently large.
This is why, when each (rk)t-1 is "rounded off" to
-(rk)izx' the possibility of a too small but non=-zero

l(rkl)I:L - (rkg)lle must be eliminated.

We will define M, 2
68) 2 max {h (rk)m - (rk)t«-i‘l'

IIm (rk)s:; - (rk)t-;ﬂ, ko 1, B casy NS

We will define M, more exactly later in this chapter,
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Lemma 5
(£)y., = (), < n?Mghy(uy + 1)"22(5), _

Proof: If (f)I:L - (£) £ 0, lemma is proved,

t=s
so only the case, (f)I:L - (f)t_1 > 0 is considered.
For purpose of this proof, let

£(0) = £[r1(0), £(8), vuv, £(6)]
where

r(8) = (m)y. # 0Ll ), = (r) Do k=1, 2, couy im0

Then by (4),
£(0) = (f)t_1 and f(1) = i

80, in the case being considered,
69) £(0) < £(1).
Since, due to (4), f is continuous in the (a;,

a;. - l:) hyperplane, and hence, by (3), in the

(r;. r;. iy r:) hyperplane, and 1ikewiso(%—£:-).
’ €

k = 1. 2. saey N, exist:

af(0) _ T (0 £(0) aRe [ry(0)
8 k=1 @ Re [r;(e)] de

8 £(8) dIm [r;(e)]]
5 Im [r,(0)] o

S




28
The existence of dﬁﬁﬂl for 0 £ 6 £1 is also assured,

Since

d Re [r, (0)]

T

= Re (1.-1()."‘,:;L - Re (rk)t-g'

dIm [r‘(e)] w La (rk)

3 gmg ~ I (mdeey

and each of these quantities is, by (68), not more
than 1/2 My

M B
d f IQI (5 e}
70) d < Eﬁkz; 7 re lré iﬁil Y7 Im ok Je

By (6), for each k(k = 1, 2, 444, n) there exists an

m such thatt

iy L .. 8F o0 f __ 0f
8 (Rcﬂrk) ? (Re Pm) 8( Im rk) 8 (Im P_)

Due to (59):

72) {Iggrﬁg—p;yl + |5'T%E£F;)|}'5i/?r|“%:;ml'

For k =1, 2, ¢eey, N, we let pk(e) denote the wvalues
of P, when r# = r:(e). Due to (70), (71), and (72),

73) 931%91‘%v;§f4 max |§:§;L%&TI.

When 0 < ¢ £ 1, #2(8) 1s in the closed interval [(rk)t-;'

(rk)s:‘]. Under this condition, we have, by applying

(55), (66), and (58) to (60):

74) max |2 (8) ¢ on Ma(My + 1)"%/F,
o™



Due to (73) and (74):
ﬂiﬁﬁl 5~/§hzh My(My + 1)"=2 /¥,
Let
L =~/2n2MM, (M, + 1)""2 ana g(8) =/%(0).

Since f(8) 2 O3

L. g cur ety ()
2 g (0) d-ﬂ—ﬁﬂl <L g(8);
dall) ¢1/21,

By the law of the mean:
g(1) - g(o0) < 1/2 L.
Multiplying by [g(1) + g(0)]:

[9(1)1% - [g(0)]® < 1/2 L [g(1) + g(0)1.
Since, due to (69), in the case being considered,
g(1) > g(0):
£(1) - £(0) < Lg(1) =~/2n% MM, (M, + 1)"Z/F(1).

This implies the lemma.
Lemma 6 : If:

P ]

then for at least one choice of m‘ and whether APm
0

ap-3 _2
75) Hg > 4n=-4 nn 'ﬁnL'i

(f

is real or imaginary,
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76) (£)y., = (£), 2 [(£),_ u3""%]
22022 (u, + 1)%""°

Proof: Inequality (76) is true for said choice
if
(g, = (£ 2172 [f),_ = ()],

by Lemma 4.
This is true if and only if
(£)y_, = (£, 172 [(£),, - (£ ],

By Lemma 4 and 5, this is true for said choice if:

n? My M, (M3 + 1)"2/208), <

172 [(f) s M2”'2] 92n=3 2 2 (My + 1)4n=6,

This is true if:

3
2n==
77) 2 n M: M, (Ms + 1) 5“/“)1_; %
This is true if (75) is true and (f)t_l £ (f)1=1. 0
the lemma is true in this case. We note that:
_ (u2=2 ,2n=3 g .3 4n-6
(f).t.-.l {1 (M7 2 n® M3 (M + 1) 1}
2(f), 20

by Lemma 4; and since (f)t > 0, the first member in

above inequality is positive, and since (f),_

positive, the quantity in braces is positive; so,
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(£),., {1 - [Mf""2 22n=3 2 us (M + 1)4n-633 > (£),.

This implies (76). Q. E, Ds

Note: We choose mo and whether ﬁPm should be
[}

real or imaginary so that (f)t_1 - (f), is maximized.,
We define "4,n-1 as the greatest quantity not

more than 2 which satisfies (75) if M, is replaced

by 2 and My is replaced by “4.n-1' If =1, 2, «60

n -1, we define l4.j_1 as the largest number such

that (u4.j - u4.3_1) is an integral multiple of M, ;)

satisfying (75), when (M, 4 = “4,3-1) and M, ) are

substituted for M, and H4, respectively.
Lemma 7t If (75) cannot be satisfied, when M,

=M, ;5 (for any j =0, 1, «c0, n=2) and My 2 M, | -
M4.0. then, given j = 0, 1, «see, n = 1, it is possible
to divide the complex plane into squares of side H4 3
?
so that all (rk)t-;' k =1, 2, vesy n, are contained

by at most n = j such squares, (called, in this case,
containing squares) where a square consists of its
interior, its lower and left sides, and its lower left

corner.
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Proof by induction: Divide the plane into squares
of side M, o* S° that the axes from the boundaries of
’

of squares. Since there are n (rk) 's, there are

t-1

at most n containing squares of side M4’0. Hence the

lemma is true when j = 0.
Suppose the plane is divided into squares of side

“4,50 (where 0 < j° <ne=1lj, not more than n = j.

of which are containing sguares. We define the hub

of a square as a point z, so that

Izl £ max I(rk)t-1l' k=1, 2, seey Ny

and, for each (rk) in the sguare,

t-3

<
| £ 1/2 M"Jo and

|Im z «Im (’k)t-,l €1/2 M4’Jo.

|[Re z - Re (rk)t_1

We choose each (rlezx at the hub of the square of side
M4.0, containing (rk)t-g. Then, in accordance with

(68), we let M, = M, j - Hence the hypothesis of the
]
0

lemma implies that either (75) cannot be satisfied,
or that H2 <f14’1 - H4.0. In either case,

Mz <M 3 91 = Mayy <Mapny £ 2
due to the definition of M, je1° (In applying this
’

definition to the former case, we let j = j° + 1; in
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the latter case, we note that H4.j° £ “4,j°+1 - “4'50.

where 1 £ jo £ n = 2)., Consequently, we can state

that H4 j 41 is at least the second integral multiple
1 ]
°
of M , greater than M,. Also, due to (51),
4.jo 2
Mﬂ = min [l(rj)m - (rk)hl]i

(rJ)I:L # (rk)I:;' 1 &35 h, 1<KELN

Let A and B be distinct squares of side M2 j
L
0

containing (r ), . and (ra)I=L » and (ry ),  and (rh)E:L'
respectively, where | (ra)I:L - (rb)I:*I = My. Then,

because “4,j°*1 is at least the second integral multiple
of H4,j°' greater than M,, the plane can be (and is)
divided into squares of side “4,j°+1’ each consisting
only of entire squares of side H4.j°. such that A and

B are in the same square of side “4'jo+1. Hence (ra)t-;

and (rb)t-;’ contained by different squares of side

“4,30' are contained in the same square of side “4,j.+1.

Since there are at most n = j° containing squares of

side “u,j s there are at most n = jo - 1 containing
[

squares of side M4 3 +1° Hence the lemma is true when
]
o
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j= jo 4+ 1 if true when j = j. and j° <n -1, Hence

the lemma is true,
Lemma 8: The inequality (76) can be satisfied

for at least one of the choices of H2 and H4l
78) M2 My, - M4'0, and
“4 = M4.J (:’ = 0, 1, eeey n= 1).
Proof: Due to the note at the end of the proof
of Lemma 6, (76) is true if (75) is true. Hence:

if it is proved that if (75) cannot be satisfied
when M, > H4,l - “a,o and M, = M4.j (for some j = 0,

l. seey N = 2), (75) can be satisfied by‘ H4 = “4.11"'1
and some M,: M, 2 N4’1 - H4,0‘ then Lemma 8 follows.

Lemma 7 further reduces the proof of Lemma 8 to proving
that the conclusion of Lemma 7 implies that (75) can
be satisfied by M, = M4,n-1 and some My3 M, 2 u4'1 -

H4’0.

By the conclusion of Lemma 7, one square of side

My pey Contains all (rk)t-;’ Koy 25 onns Bs W
then define each (rk)izx as the hub of this square.

Since each (r,) is within 1/2 M, __, of this hub

t-s
in each of its real and imaginary parts, the designation
My = 4,n=1 is permitted. Since all (rk)$:1 are equal,

and due to (51), M, = 2. By definition of My ney @nd
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>My 4 = M and (75)

Ma,3-1, a,n-1 24,1 7 ¥4,

is satisfied. Q. E. D.

Note: If other attempts at finding M, and M,
fail, divide the plane into squares of side H4 0,
My g (the squares of side M, o are constructed
arbitrarily), as in the proof of Lemma 7, until an M4,j

is found such that if M, = M4,j, and all (rk)1;1 are
computed after the manner of said proof, M2 and N4

satisfy (75) and (78). The method of said proof may be
used to compute (rk)l:l even if M,, the sidelength of

the squares, is chosen as some number, other than

“4,3, for some integer j, as long as (75) is satis-
fied and M, 2 M4.1 - M4,O‘ So we choose (rk);:.l

(k=1,2,+++, n) and m, and let AP~ be real or
)

imaginary, in such a way as to satisfy (76) and (78).
Define
79)

kl 4!1-4 FgT Elj-ﬁ (f) (Ma‘fl)%:g "
Note that kl > Oy

Lemma Ot

1-
2k, "1 M 2 (1

4.j"1 4 ’ j = Olla ...l Ne
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Proof: By definition, M, ne] 1s the greatest
L

number not more than 2 sctisfying:

b

k) Mg,n-1 £ 2
which is equivalent to
=1\2n=-2
80) My ne1 S (2k37) .
My 5-1 (j = 0,1, *++,n), may replace

Mg poy in (80), because by definition it is no larger.
]

Then:
l_
4,35-1 3 1 i
) = 5%__
2 k7" My 4y £ (2k77) .

Since n > 2 (Chapter I), 2n=2 > 2, and it need only

-1

be proved that 2 ki' <% .

T T 8-5n
81) 2xte=2 8 0ol W2 (63014 (uye1) 2072

Note that all factors in (8l) are positive if f ¥ 0.

Because, by (51), My 2 max{1, V(f)I:l } s

(f)% Mzl <1 g M3Z <1 3

t-1
4 = TR
82) (£)5.; M3 <1 (£)307° My P8 gy
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Since 328 < - 1, and My > li
Si 1 2
nce Zr—z and n-1 are positive:

84) 2 <3 3 n
-1

By (8l)-(84), 2k,

83) (Mg + 1) £ % .

< % » and the lemma is proved.
Lemma 10¢ If j =1, 2, ***, n-l,

s

4 =1
My g1 > (B k7 My
Proof: By definition, M4.J-1 is the largest

number such that ”4,1 is an integral multiple of

H4,j-1 and

2n-2
89) Mgyt Mg ger 2Ky Meyly

which is equivalent to

5%:5 ik e |

Meod 7 Ma 01 20 My 50

So M4’j Vs M4.j_1 is the least 1ntegerlsuch that

M 73 - ! : ~
4 - M l -
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Note: SinCQ 4’.1 > M4'J_l’ bY (85)’ M4’J / M4.J-1> 1.

Therefore
M -1 M l -
el )k u‘”ﬁ (od— - 1) 24
4’j"l 1 ’ 4._1'1
§l—§ -1 M & - 5%25
n=- 4,3
<k My g (@ ) #1
1 ’ 4.3-1
% - 1
—4 2n-
k1 M4,j ¢ X
Hence

M

=3
Hffi:; <k M4.j_1§%:§ + 23

M
4,5 X My g ’

1
M
4,53 <% Mg, 50

(1+ 2 k1 M4.j-l

By Lemma 9:
M <2k M Eﬁ-z .
4lj 4 i 43J'1
From this follows Lemma 10,
Lemma 11: If j =0, 1, ees, n=l,

-1,(2n-2)3*1
M4,n-j-1 2 (2k1 ) ( 1

Ui

1

.

3 k
" ), ey (20-2)
k")
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Note: The sum of the elements of a null set is defined

as zero.
Proof by induction: Since 2k:1 < % , and
SRR 1
2n-2 > 2, (2k1 ) < 7 . Hence, by (80), Mg 0157
so M, ..y 1is the greatest number satisfying (80).
Hence:
~1,2n=2
and the lemma is true when j =0 .
Suppose the lemma is true when Jj = jo < n=1l,
Then, by Lemma 10:
4 -1 2n=-2
Ya,n-3 27 (g k= My pay 1)
(2n-2)0""
2n-2
2087t (a7t
3
R N L
(2x7h ]
1
j 41 k
-1,(2n=-2) 4 -1
= (2% 7) (k) ] .

Hence the lemma is true when j = J° + 1 if true when

j=jo<n-1- Q-E.DQ
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Let Ma be defined as M' is defined in (52),

except that “tfjt-l be replaced by J!fso. As (76)

is established by Lemma 8 and the note following its
proof, so (f),_ , = (f)t >0 if t 21, then

(£)g 2 (fy ) so M_2M_ .

Define:

4n-3

2 3
86) ky = 2 4n=4 nE:T mgn' (Mg + 1)

3 ;

-2 k
: Z n=l (o o)k N=%( 2n-2)

n-1 = k=0
87) ky= k,  K=O 2{ =207 4

n=2

88) ky=30[) , .. (2:-2%1-24-,

89) kg = ky (2n=2) + 13

2n- 2 n-2 2,2 4n=-6
90) kg = k3 -2 3 (Mg + 1) "

Note that all k's are positive.

Lemma 12:

kg
(f)t - (f@ 2 kg (f) 1 & 1,88, cu0

Proof: Due to Lemma 11,

n=1 (2"-2)k
a(20e2)t ) Lok=l
My o2 (2k1 ) (3 k? ) .
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Due to (78)and (85),

. n=2 (on.2)k
o1y 2me=2)P"t 4 1, k=0
) (g k1 )

My 2 My g = My o2k (2%

n-1 k n-2 k
2n-2 (2n-2)
1'X k=0 ( ) 2(2n-2)““1(%) k=0

91) = k1

Since M, > M_, and due to (79), (86)-(88):

© 4n-4
k Sk, (£l ;
bY(gl).
n=1 k ne2 k
2n=-2 1 1 (2n=-2)
M > Kk 1'E ksO( ) (£) “an-4 T 2 Z k==1
5 8 t-1

N=2(2n-2)k

o(20-2)""1 ( § P

kq
M2k (fly, 3
By the above and (76):

k,(2n=2)+1 v -
(g = 10 2 () k272 2 220°2 pa

(Ms+l)4n-6 ;

then, since M’ > Ma' and due to (89) and (90), the
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lemma is proved.

The lemma may be written

k
(£g oy = (£lg 2 Kkglfly ¥i & =08 v n

Consider (f)t as a function of t which de-

creases at a uniform rate as t goes from t - 1 to

t

0
Theorem 3: If t 2 O:

lek, 1=k

92) (f), < [(kg=1) k,t + (f)o ’

% ;

l-k 1-k
5 59 ¢
if § >0 and t>06 " % - (£) " °1 2 Kglkgo1),

93) then (f), < 51 ;
94) tim (f)t =0 .

Proof: If to -1 t: < t. £¢ 1

Kk
5
(f)t1 - (f)ts ¥ (1:,l - t;) ke (f)to' 13
(f)y - (f),
- - 8 k (f)ks H
t -t -8 to-1
2 i

and, since the function on the left is constant, and be-

cause (f)to-l > (f)tl > (f)ta 2 (f)to due to the way



43
(f), is defined for t-lstst,

- lim
t -+t T, 2k (fly 12 iim 6(f)
2 b | 2 1 2
- d(f) k
t 5
gt 2 kelf)y™ 3
-d(f)t "
(f)t

Integrating and using the value of (f)o as a boundary

condition,

95) —l—I (f) s, kgt + EI—I (f

Due to (89), and the fact that kg > 0,

Hence

1-k 1-k
(g ° 2 (kg -llkg t + (£) "~ °

This establishes (92). Because kg > 0, and due to
(95):
1-k5 1-k5 3

If the hypothesis of (93) is true, then by (97),
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1-k5

le . » 1-k
(£)," 752 (80 7 1% kglkgrl) 2 £ > [ §25-(6), 5] 2
kg (kg = 1) 3
and, because kg > O and due to (96),

l-ks ]

1=k 1-k 1-k
[(£)y =08} “¥sL§ ®=-in ;

and, because 1 =~ k5 <0 ,
(£), < 5; ;

This proves (93), and from (93) follows (94). Q.E.D.
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v
CONCLUS ION

Lemma 1: If, for arbitrary positive e, and

non-negative integers t1 and ts’

max |(ak)t - (ak)t | € 6;. {k = 0, 1 «sny Bls
1 2

where

n - n

then given any m, (m =1, 2, «.., n), there axists at
least one j, (j =1, 2, «+e, n), such that

l(rm)t . (rj)t l <8
1 2
Note: Since t1 and ta are interchangeable in the

hypothesis, they also are so in the conclusion, of the

lemma.

Proof: Under hypothesis of lemma, since Ma and

n are positive,
98) e” > nmax [(ay), - (a,), | m".
j t‘ J t1 8

Due to (56),

3
My 2 M3 2 M) 2 | (r)y | for m=1,2, coon.

Hence, by (98),
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-1 J
> T e Magly = (o) Hileg)y |

-1 j
99) 51T ias ((agly - (agly 1zt |

The last inequality follows from the triangular
inequality. Since (a ), = (a ), =1, the upper limit,
2 1

n -1, of the above sunmations may be changed to n.

BY (3)0
n 3 n
ZJ,O (a5)y (rg)e = Ty [lrg)y -
1 1 . |
( ) ] =0 ,
I‘j ti

By adding the first member above (equal to zero) to a
quantity in absolute value signs in (99), and applying
(3), we obtain,

n 3 n
"3 |} yu0 (a3 (r)y | =T Tjalra)y -
(r,) | »
3 t8
From this the conclusion of the lemma follows.

Lemma 2: If, for t = tx' t..

s 2-2% 1-k. .
100) t> (=) °-(f) " °13%kg (ke 1),

the hypothesis (and hence the conclusion) of Lemma 1
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follow.
Proof: Applying (93) to the hypothesis of this
2
lemma, and letting 81 =-41- Ss ’

(£, <3 £
By (4),

mex [(a), = (3)1" s (£)y <4 £2, k = 0,1,...,

n,
max I(ak)t - (ak)l <% &‘ o
Since the above is true for ¢t = t;’ t.,
max | (a ), = (a,)4 | £ l(ak)t - (a,) |
1 2 1
+ | (a ), = (a,) | < ‘
k t. k ga

But this is the hypothesis of Lemma 1. Q,E.D.
Lemma 2, together with the note after Lemma 1,
implies that if t  and t satisfy (100), there is

a one-to-one correspondence between the sets {(rk)t }
and {(rk)t }, (k=1, 2, «e., n), such that given
2
any corresponding elements, such as (rm)t and
1
(rj)t'. |(tm)t1 - (rj)t’ | < € . Reorder each set,

(r;)t’ (r.)t, s (rn)t (. =0, 1; B snals A8 (rki)t.
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(rk )t’ Kabn (rk )t' so that for each m(m = 1,2,.44,n),
8 n

(r, ) and (r, ) correspond with each other in the
k 't k 't
m 3 m g
above one-to-one correspondence. Then, if t1 and t'
satisfy (100) , for any kg,
101) Iz, )y = (2y Jo | <€
k., t1 Kn ts

Since, given (rk)o. "a' ka, ks. koo kg ko, and

6. may be determined, using only their respective de-

finitions and (3) and (4). Hence the right member of
(100) is computable, and if t and t  exceed this

member, (100) is satisfied. Hence for each

m(m=1, 2, .v., n), the sequence {(rk )t], u0,1,2, o545
m

converges. Define

102 lim = » = sos o
) 't 5w (rkm)t (rkm)' m l, 2, s NN
Then, if t satisfies (100), and since any
t,f t >t, satisfies (100) and (101),
(e, ), =-(r, ) | L€
km t1 km o

Theorem 4: If 8, = 1,

n
E :-0 3k 2 'hTT-m=l [ 2 - (x) )- 1.
m

so that (rkl)m. (rka)u. — (rkn)n are the zeros of



49
this polynomial.
Proof: Due to (4) and (94):
103) lim [ (r, Jgo (rp ) 4 eeey (rp )y 1 =0
t*w> 1 2 n
Because ‘r;}t’ (rs)t. ey (£ )t, may be

reordered as (rkl}ti (rk’)to sney (rkn)tb (3} may be

written:

n n
= - ¥ = \-‘ k
104) [ me=l [z (rkn;t] ) kmo (O)e 2 o
We may similarly rewrite the second member of (4).

Due to (4) and (104), f 4is a continuous

function of (rk )t' (m=1, 2, «esy, N)s Due to this fact,
m

(102), and (103),
105) f[(rk ]..(l'k ).'tl'l(rk J-]‘lh f[(rk )tl
1 2 n t " e i
(rk )tgtoo.(rk )t] = 0.
a2 n
we define (‘k). by (104). Due to (4) and (10%),
n-l
T w0 1) = 8,1 =0

Hence ('k). = a, vhen k=1,2,,..,n-1, and

(ay) =2, =1, by (1)e Substituting a, for (akJ“
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in the definition of the latter, the theorem is proved.

We define rm = (I‘k )ﬂ. (I'II » 1. 2. evey n)c
m

If we wish to insure that

Ir, = (rkm)t | <,

we iterate the method outlined in section 2, t times,
where t satisfies (100).

Theorem 4 not only implies the Fundamental Theorem
of Algebra, (that a polynomial of n-th degree has at
least one zero in the complex field), but also that said
polynomial has n linear factors, a method for the

approximation of which is given in this paper.
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A
EXAMPLE

Suppose we wish to solve:

106) 2% + 3,14 i z® + (-1-2,51) z+ 142i = 0,
We begin with the trial roots:
(r1)° = 1. (ra)o = 1"'31' (I‘s)o = 1-1 .
The method applicable to Case 1 in the Introduction

is used. In each cycle of six iterations, first the real
and then the imaginary parts of f irst r*. and then
1

" *
T, and r . are "improved".

ks
Since Case 1 is used, Pm = p, for m=1,2,3.

(See (6) and preceeding discussion.) In each iteration,

we use (12) or (13), (16) or (17), and (18).
Calculations were done on Alwac III-E, a digital

computer, to four decimal places past the decimal point.
The result after one cycle (six iterations) was

(’;)6 = -1.0000-0.34961,(r')6 = 0,8489 + 0,4010i,
(r )6 = 1.0954‘10034210
8

The algebraic equation having the above roots was found

to be
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z% 4 (~0.9444 + 1,0329i) 2z® + (-0.8186 - 0.47791i) 2
+ (1.5329 - 0000‘411) = 0 .

After some more cycles, the result was

-0.9396-2.83591, r: = 0.4473 + 0.5857i,

* = %

r 0-4954 - 0088741 .

8
These are the roots of
z® 4+ (-0,0030 + 3.1376 i) z® + (-1.0000 = 2,4965% i) z
+ (0.9991 + 2,0020i) = 0 .

After more cycles, the result was

* *
(rl = =0,9422-2,83991, (ra) = 0.4476 + 0,.5853i,
*
(ra) = 0,4946-0.885%41 .

These are the roots of

z® + 3,1400iz® + (~1.0000-2,4999i)z + 1.000042,0001i=0,
After yet more cycles, the trial roots and the
corresponding equation remain the same, so the last

given values for (rk)*. k = 1,2,3, are accepted as

the final approximations to the roots of (106). In
fact, when one computes the equation having said approxi-
mations for roots, one does, as is seen above, obtain
coefficients differing by not more than 0,0001 from
those in (106).
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Vi
A NON-CONSTRUCTIVE PROOF OF THE THEOREM

Another proof of the Fundamental Theorem of
Algebra, is as follows [1,p.201-207] .
Consider the polynomial:

a k
107)  plz) = ) yog 82" § 0= 1,2,3,0005 2 0 .

We show that |p(z)| attains a minimum value for some
complex value of z. Suppose plz) = N. Consider all
z such that p(z) < N. Then, if |z| 21

n
K
| L go 2 2 1 SN

n=1
llnznl-zkuolakzklsﬂl

l'l-l k

n
| a, z | <N+ X — | a, z | 3

n=1
lzlsINe)  ola | 1818, 1.
Call the right member of the last above inequality, Nz'
So, if |p(z)| £ N, then |z| <1 or |z| £ Nz' Then
the closed region |z| < max {1, Nl}. called region A,

contains all z such that |[p(z)| < N. Since A is a
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closed region and |p(z)| a continuous function of z,
the Bolzano-Weierstrass Theorem establishes that there

exists zoe A such that for all other 2z € A,

le(z)| 2 Ip(z,)|s Since z €A, N = Ip(z,) [21p(25) |

n
Since, for z not in A, |p(z)] > N,
108) Ip(2)|2 | plzy)]

whether or not 2z is in A. Let pl(z) = p(z + zo).
Then, by (108), for any z,

109) [p(z+z,)| = Ip,(2)] 2 Ip,(O)] = Iplzg)l -

The function pl(z) is, due to its definition, a poly-

nomial of n-th degree, say

n
110) p (2) = ) ywo B 25 0 b, £ 0.
Then:
111) plz ) = p (0) = b, ;
112) lp, (z)] 2 |b | «

If b, =0, then (111) establishes the theorem. So

we consider the case, b, # 0 . Due to (110), there
is a least k such that by #0 and n2k >0.

Call this k, kge Then, by (112), for all z:

n
k
b | < Ip(2)] = |b_ +Zk,k° b, z°| 3
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k n
0 k
113) byl S Iby* by 2 °] +Zk-k°+1lbk ] -

Since by # 0, and bO# 0, there exists 2z such
0

that:
114) arg z = (7w + arg b -arg bko) 2k 3
b, | -
k b k
115) |z| < min { = 2 ; Is;g-l BB }
) kek +1 P! '

n
If, because k = n, z ol L lbkl = 0, the first
0

quantity in braces is » and the minimum of the other
cuantities is taken. If (114) and (11%) are
satisfied:

n
2l ) e a1 il < IRy |
0 ]

and, because |z| <1,

n k-ko
) k=k +1 by 2z 7| - lbkol <0;
k

Multiplying by [z °|

n k
k
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n
16) [ ey a1 1% 21 1 = Iy 261+ Ing] < gl

Since

L
b k
2l < | 5= |
k
0

k
117) |p, z° | <l by | .
2]

By (114),

arg b, = -m + arg b, + k_arg z
9 D ko o

k
= -7 + arg [ by z L3 [
0
Due to (117) and (118) ,

k

k
0| - - 0
119)  Iby + bz °| = Ibg| = Ity 29| .

kO

Due to (116) and (119),

k )
0 k
|bg + by 2 | + ), k=k 41 b z°| < | b | .
This contradicts (113), so the case, b° #£ 0, 1is

impossible. Hence bo = 0. The proof is completed.
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