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A CCNSTRLCTIVE PROOF 

OF 

THE FUNDAMENTAL THECREM OF ALGEBRA 

I 

INTRODLCT IGS 

The fund amental theorem of algebra states that 

every algebraic equation with complex coefficients 

has at lea s t one complex root. We note tha t any 

such equation is equivalent to: 

n 
\' k 1) L ak z - 0,

k=O 

where each ak is a complex number, an = 1, and n 

is a positive integer. The fundamental theorem of 

algebra is proved by showing that the left side of 

(1) has a factor (z-r), where r i s a complex number. 

In this paper it is proved that the left side 

of (1) is the product of n factors (z-ri), i = 1, 

2, 3, ••• , n. This is done by constructing the 

sequences a 



• • • 
• • • 

• • 
• 

2 

(rk ) • (rk ) • ( r k ) • • • • 
1 0 1 1 1 2 

(rk ) • ( rk ) • (rk ) , • • • 
a o a 1 a a 

2) (rk ) • ( rk ) • (rk ) . ••• 
8 0 8 1 a 2 

(rk ) , (rk ) , ( r k ) , ••• 
n o n 1 n a 

showing that each sequenc e converges, and t hat the 

limits of the sequenc es are the roots of (1 ) . (For 

each column of (2 } , the set, k , k , ••• , k , is 
1 a 0 

a reordering of the set 1, 2, ••• , n.) 

We choose each (rk) , k = 1, 2 , ••• , n) • i.e., 
0 

the first member of each sequence above , to be an 

arbitrary complex number . 

For t = 0, 1, 2, •••• we define (ak)t and (f)t 

so a 

n n 
3) ~[z-(rk)t)= [ (ak)t zk 

k=l k-0 

(f)t = f [(r1)t' (ra)t' •••• (rn)t] 

4) 

The sequences {2) are constructed so that 

lim (f)t = o. This implies that as ~~. (ak)t ~ ak 
t-+~ 
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(k = 0,1, 2, ••• , n), and henc e t hat (maki ng a proper 

designation of k , k , ••• , kn for each value oft)
1 2 

the sequences in (2) converge, and that the limits 

thereof are the r oots of ( 1 ) , a& is proved in Chapter 

IV. 

The construction of the (rk)t ( k = 1, 2 , ••• , 

n; t = 1, 2, 3, ··~), is such t h· t 

5) 

where k5 Dnd k6 are constant for a given p~oblem, 

so that l im (f)t = 0. If (Case 1 ) tha val u ~s of 
t-+ao 

(rk)t_ are all sufficiently distant from each other,
1 

it is shown that we cun fulfill (5) by l et t ing (rk}t 

= (rk )t_ for all k, except that the real or imaginary
1 

part of some (rk)t is chosen so as to minimize (f}t. 

If this scheme does not work ~ue to a condition (Case 

2) that (rk)t_ , k = 1, 2, ••• , n, contains some 
1 

equal quantities, but yet all unequal quantities 

are sufficiently distant from each other, then 

letting~(z-(rk)t ] be the product of some set
k -1 

of equal factors [z-(rk)t_ ], we show that by letting
1 

TJ [z-(rk)t] = f[Tcz-(rk)t_ JJ + 6P,
1 
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where 6P is a real or pure imaginary number, but other

wise letting (rk)t = (rk)t_ , (5) can be fulfilled. 
1 

For proof of this see equations (6 )- ( 11 ) and inter

vening discussion. (Note that Case 1 is z trivial 

variation of Case 2.) If (Case 3) some uneoual quan

tities from (rk)t_ , k = 1, 2, ••• , n, are too close 
1 

to each other, t ·hey are adjusted to va lues equal to 

or distant from each other and other (rk)t_ • The 
1 

new values are designcted (rk )~, k = 1, 2, ••• , n. 

Then the (rk)t ar e determined from the new values 

(rk )i:L. This is done i n such a way that in spite 

of the fact that (f)~ may be greater than (f)t_ , 
1 

(f)~- (f)t is large enough so (5) holds. 

Using the above method of choosing ((r }t' (ra)t•
1 

•••• (rn)t)' given the values of ((r )t , (r )t ,
1 •t a •t 

• • • • (rn)t_ ), th en, by induction on t, all values 
1 

in the sequences (2) may be obtained. As indicated 

above, by proper ordering of each column of ( 2) , n 

sequences, each converging to a root of (1), are 

obtained. 

Note: It is assumed throughout that n 1 2. 
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II 

THF. lTE~ATION (rk )t_ ~ (rk)t
1 

We shall "round- off" tho real and i maginary parts 

of each (rk )t_ tn the nearest integral multiple of 
1 

M4 , a auantity defined in Chapt or III , and call the 

result (rk)~. Thus any twn unequal quantities of 

the set, [ (r )1:.l., (r ).1::J., ••• , lrn }.b,)' will have 
1 1 

a difference of modulus not leas than ~ 4 • 

Let the sot [(r1 )~, (r ).b' •••• {rn )~) be
1 

divided into equivalence classes so that t wo elements 

of the set are in the same cla ss if and only if they 

are 9qual. Since the ordering of the set {<rk>~}· 

k = 1, 2, ••• , n, is arbitrary, let us redistribute 

the subscript s k so that all the members of any equiva

lence class are adjacently located in the set ((r )•-~• 
1 ~ 

(r1 )~, ••• , (rn )~]. We will find the following 

alternat ive notation useful. The v- th el ement of the 

u-th et1uiva1Pnce class we call (r )+-·, If (rk)+ •.- = ' u,v..:.. ~ 

(ru v )+. ~' we say that k =m(u ,v ) , that u
0 

a u( k) , 
o' o ~ o o 

and that v = v( k) . Also, in general, we let m denote 
0 0 

m(u ,v }. Consequently: m(u ,v ) > m(u , v ) if and 
o o a a 1 1 
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only if u > u , or u = u and v > v · ?nd , if m(u,v +1 a 1 a 1 3 1 1 

1) exists, it equals m(u,v ) + 1. 
1 

For any g, (g)t and (g)i (t = 0, 1, 2 , ••• ) shall 
•be considered as particular values of a variable, g • 

Conversely, if g or g• is some function, and given 

some s, (g)s means the value of said function when 

•rm = (rm)s, m • 1, 2, ••• , n. We also define: 
v . 

6) P =~(z-r
4 

j).u,v j=l u , 

An m ( 1 ~ m ~ n), and consequent!y, u = u( m ) , 
0 0 0 0 

and v = v(m ), are chosen. We define: 
0 0 

( ) ( ) if u J u or v > v •ru,v t = ru, v .i:J. r o o 

The other (rm)t ar e so defined that the increment of 

•Pm , as each ru j (j = 1, 2, ••• , v ) goes from (ru ,j)+-~ 
o o' 0 o ~ 

to (ru j)t' is ~pm , which is defined as the optimum real 
o' o 

or optimum pure imaginary value of the increment of 

Pm , for the minimization of (f)t, under the given 
0 

conditions. A wise choice of m , and whether ~P o m 
0 

should be real or imaginary, are discussed in Chapter 

III. 
* ... •Let f = f ( r , r , ••• , rn). The symbol 
1 2 
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0 f a t 
0 Re P . or a Im P shall indicate differentiu ,v u ,v

0 0 0 0 

*ation with all ru,v for which u # u or v > v , held 
0 0 

constant, but with tte real ~r imaginary part of the 

term, which does not involve z, of the polynomial 

expansion of Pu v ! variable. 
. . 0. "0 

Using thP. notat~ o~~ 

7) 6t, 1 rm = (rm)t - (rm )!:L, 

we apply th"e increment 6 Pu v (here called 6) to 
o' o 

pu ,v by letting (when v = l , 2, ••• , v -1)a
0 0 0 

8) 6t,l ru v = v~cis ( 2~-1 TT) t if 6 > 0; 
o' 0 

9) = vv:6 cis (ZL. 7T)v • if 6 < 0;6t,l r u ,v 
0 0 

10) 6 r =~ cis ( 2 v ~ 112 TT). if W i < 0 Jt,1 u ,v
0 0 

11) 6 r =~cis ( 2v + 112 TT), if 6/1 < 0.t,1 u ,v v 
0 0 

Theorem 1: If LlPm i s r eal , 

=-{
0 

a~e \ J1:J. 
12) 6P m 

0 

a (Re P m ) 1 

0 
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and if APm is a pure imaginary, 
0 

13 ) AP = m 
0 

)1a(Im P m 
0 

•Proof: We define a k , m(u , v) (k = 0, 1, •••• n-1) 

in such a manner that: 

n-1 
14 ) \' a • zk.

=k~ k,m 

From equation (4), 
n-1 • 

1~) f =k~ {[Re (a: - ak)) 1 + [Im (a: - ak)J'}· 

These equa~~ons foll~w: 

n-1 * 
a R! p a L (2 Re (a=-ak) aRe ak 

m k~ a Re P_. 

16) 

•n-1 A Re a· • aim ak
af • u k + 2 Im(ak-ak) ]

8 I m P = L [ 2 R e ( ak- ak ) a Im pm 
m k=O a lm Pm 

17) 
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=_ __..;a._•..£_18) 
) 88 (Re P 6 (ImP )a

m m 

n-1 
~ {E * ]8 [ * Ja}= Re ak,m + Im ak,m •~~0 

•We note that a and the two second partial derivak,m, 
•tives above, are independent of Pm. Since a (k = k,m 

0, 1, ••• , n-v(m)) ar e the coefficients of the poly

*nomial representation of t he product of all (z-rk ) 

•for which u(k) ~ u(m} or v(k} > v(m), an-v(m),m = 1, 

and due to equation (18), 

aa f _ aa f19) 6 (Re Pm) 1 - 6 (Im Pm* ~ 2 > 0. 

The .function f will be minimized with respect to 

the variable 6Pu v , and hence with respect toRe Pm 
o' o o 

8or Im Pm , if and only if 8 ~efP or f vanishes,
8 Im Pmo m 

00 

due to (16) - (19). Then by definition of r m, tz 

( "!-8~f~-)20) 0 if 6Pm is real;8 Re P t = m 0
0 

and 

21) (~ Imp )t = 0 if 6Pm is imaginary. 
mo o 

Hence if 6Pm is real: 
0 



10 

22) 

and if 6Pm is imaginary: 
0 

23) 

The theorem follows from equations ( 22) and ( 23) 

and the fact that 6Pm = ('P )m t ( P m )!:.J.: 
0 0 0 

Theorem 2: 

al f(f ) =(f) - 112 < a f )I ift .:t.::J.. a Re P 1:J.. a (Re Pm )2 ' 
m 

0 0 

is real;ll.Pm 
0 

~~ f(f) t = (f) t -, - 1/2 (~ imfPm )1
1:J.. a (Im Pm )a, i.f 

0 0 

6Pm is imaginary. 
0 

Proof: The expans ion of f, considered as a func

tion of the real variable, Re Pm or I m Pm , by Taylor's 
0 0 

series, a bout Pm = ( Pm )t, yields: 
0 0 

24) f { ak f 
( f ) 1::.1. =it=o ( a ( Re Pm ) k ) t • Re [(Pm ).1::.1. 

0
0 

(Pm )tJk7k!} if 6Pm i s rea l; 
0 0 
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(Pm )t]k -;- k!} if ~Pm is imaginary. By eauations 
0 0 

(20) and (21), the terms in (24) and (25) for which 

k = 1 vanish . The terms for which k > 2 vanish by 

the remark following ( 18). Hence~ 

26) ( f ) 1::J.. = (f ) t + 1/2 8 
88 

( R 
f 
e p )a 

m 
0 

6Pm is real; and 
0 

a8 f )827) (f)!:L = (f)t - 1/2 8 (Im pm )8 (6P if m 
0

0 

~pm is imaginary. Theorem 2 then follows from equa
o 

tions (12), (13), (26), and (27). 
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• • 

• • 

12 

III 

THE CONVERGE~E OF f TO ZERO, 

Let Ak,m denote the matrix of elements ak,m ' with 

n rows (k = 0, 1, ••• n-1 ) and n c olumns ( m = 1, 2, 

* *••• n) . We denote by Ak,m;pand ak , m;p the resulting 

matrix , and an element thereof, after p elementary 

transformations of the first type on Ak * , as follows, m 

( p = 0, 1, 2 , ••• ) : If p < m~ n and 1 < v( m) ~ p: 

28) a* = (a* •-k,m;p k , m; p-1 ak , m-1; p-1 >-+ 
(rm - r p+l-v( m)); 

i f p < m ~ n and v(m) = 1: 

• . ) .29) a• k,m;p = (ak, m; p-1 - ak , p; p-1 -.

(rm - rp); 

if 1 ~ m ~ p or v( m} > J'): 

30) 8 k,m; p 
• 

-l 

We define: 

31) sm;p 

with the understanding that A• =A• a• = k, m; o k,m, k , m;o 

• ds = s .a k , m' an m;o m 
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Lemma 1: 

If 1 ~ m ~ p + 1, 
n 

32) = n (z- r~);
k=m+l 

if p < m = n and 1 ~ v( m) ,S p + 1, 
n m 

33) s = [n (z - r~)] 7 (ff (z - r:) ], 
m;p k=p+2-v(m ) k=m+l-v(m) 

and if v(m) > p, 

n • . m * 
34) s . =m ( z - rk)] -. [1T ( z - r k) ]. 

m,p k=l k=m+l-v(m) 

(Note: The product of the elements of a null set is 

defined to be unity.) 

Proof: We note that (6) is equivalent to: 

m * 35) P =TT (z - rk). 
m k=m+1-v(m) 

We then prove the lemma by induction on P• 

Suppose p = 0. Then (32) , interpreted by (31 ) , 

s ays that: 
n-1 n

• zk •36) I ak,l =n <z - rk) • 
k=O k=2 

Because v(1) = 1, ( 35) says that p1 = (z- r 1 
•). 

Using this fact, (14) shows t he truth of ( 36), and 

hence of ( 32) when p = 0. 

The truth of equations (33) and (34) in the case 

p =0 is established by ( 35) , (14), and (31). Hence 

Lemma 1 is true in the case p = 0. 



14 

Assume the lemma is true when p = p - 1. The 
0 

followin g paragraphs prove that this implies the truth 

of the lemma when p = p 1 
0 

First we note that as a consequence of (31), 

•equations ( 28) - (30 ) retain their validity when ak , m 
•is replaced by Sm, or ak,m-l is replaced by Sm-l• 

Due to the assumption that (32) is true when p = 
p -1, and applying (30):

0 

n 

37 ) if 1 ~ m ~ p , sm. P =n (z - rk). 
. 

0 
t 0 k=m+l 

By the assumption that ( 33) is true when p = p
0 

-1, and applying ( 28) , and the fact that v(m) > 1, 

v(m-1) = v( m) - 1: if p < m~ and 1 < v(m) ~ p ,
0 0 

5 ( s )-· ( • • )
m;p = 5 m;p - l - m-l;p -l ' rm- rp+l- v(m)

0 0 0 

n m 
= {(TT (z - r •) J+ (TI (z - r •) J 

kap +1-v( m) k k=m+l -v( m) k 
0 

n m-1 
-(TI <z- r*)]7 CIT <z- r:)J}

p +2-v(m) k k=m+l-v( m)
0 
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• [(z- r : +1-v( m)} - (z- r:)J -7-(r: - r : +1-v( m)• 
0 0 

So , if p < m ~ n and 1 < v(m ) ~ p ,
0 0 

38) 

m •[JT (z - rk)]
k=m+1-v(m) 

Con s i der the case p < m~n and v( m) = 1. By ( 33) 
0 

and ( 29) : 

. ( . .)
- r - r. m 

Po 

[ ( z - r ) - ( z - r } ]- • ( r - r ) • p m • m p
0 0 

Sinc e this is equival ent to (38 ) in the ca se v( m) = 1, 

the va lidity of ( 38) is extended to the case: p < 
0 
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By the assumption that (34) is true when p = p
0 

and applying ( 30) & if v(m) > p • - 1, 0 

n •39) s =S = en (z- rk)Jm·p m·p -1 
' 0 ' 0 k=l 

m •-· (Tf (z- rk)]. 
· k-m+l-v(m) 

Suppose v(m) = p + 1. Then, by (39)1
0 

n m 
sm• p = [Tf ( z - r:)) -7- en (z - r:) J. 

' o k•l kram-p
0 

which, if v(m) = p + 1, is equivalent to (38). So 
0 

equation (38) is true if p < m ~ n and 1 ~ v(m) ~ 
0 

Po + 1. 

Suppose m = p + 1. Then 1 ~ v(m) ~ p + 1, so 
0 0 

(38) holds. In this case (38) implies: 
n m 

S = [Tf ( z - r •)) 7- [TT (z - rk•) J. 
m;po k•p +2-v(m) k k•p +2-v(m)

0 0 

which is 

Hence equation (37) is true when 1 ~ m ~ p + 1. 
0 

Due to equations (37) - (39), and the cases for 

which their validity is established, the lemma is true 

when p = p - 1. Hence the lemma is proved by induction 
0 
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on p. 

As a consequence of Lemma 1, 

n •
40) S •TT (z- rk), m = 1, 2, ••• , n.

m;n-1 k=m+l 

We let: 

41) *(Q). * and A*(O) =A*
ak,m 8 k,m;n-l: k,m k, m;n-1 

We then define elementary transformations of the sec

ond type as follows: 

•( p) - *( p-1) • *(p-1)42) If m .S n - p, - ak + rm+p 8 k,m+l ; 8 k,m ,m 

*(p) *(p-1)43) if m > n - p, ak,m • ak,m • 

We maRe a definition similar to (31 )& 
n-1

s< p) )44) 
rn = fc=o 

Lemma 2 : 

45) 

n•m46) = z • 

Proof: A comparison of (31), (41), and (44) shows 

that S(O) =S Hence when p = 0, (40) establishes m m;n-1· 

the truth of (4~). If p = 0, and m~ n - p , then m 

= n, since m is limit ed to (1, 2 , ••• , n). Hence in 

the case p = 0, statement (46) reduces to S(~) • 1. 

Sn·,n-l = 1, by (40). Since s = s<o), (46) andn;n-1 n 
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henc e the lemma, is true when p = 0. 

Suppose the lemma is true when p = p - 1. The 
0 

lemma will be proved for the case p = p , completing
0 

its proof by induction. 

We note that (44 ) permits the substitution of 

S(~) for a=~~). etc., in (4 2) and (43). By (42) and 

(45), letting p = p - 1 in (45), if m ~ n - p ,
0 0 

s<Po) =s<Po-1) 
m m 

p -1 n • 
• z o TT (z - rk)

k=m+p +1 
0 

p -1 n •+ • z 0 n ( z rk)rm+p 
0 kllfn+p +1 

0 

p0 -1 n • • • 
• [z TT (z - rk) ] [z - rm+p + rm+p ], 

~-m+p +1 0 0 
0 

or 

47) 

By (43) and (46), letting p =p - 1 in (46),
0 

if m > n - p (This inequality is equivalent to m ~ 
0 

n • (p - 1).) , 
0 

48) = z n-m • 
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If m = n - p , then by (47): s<Po) = zp0 , which is o m 

equivalent to (48) in the case m • n • p • So equation
0 

(48) is true when m 2 n - p • Equations (47) and (48),
0 

and the cases for which they are established , prove 

that the truth of the lemma in the case p = p - 1 
0 

implies its truth in the p = p • This completes the 
0 

proof of the lemma by induction. 

Lemma 3: The matrix A•(n-l) has one's everywhere 

in the non-principal diagonal and zeros everywhere 

else, i.e., 

•(n-l) {1 if k • n - m. 
a = 

k,m 0 if k ~ n - m. 

Proof: By ( 4 6) , if m • 1, 2, ••• , n, 

5 (n-l) n-m• z • m 

But by (44), 
n-1 - r •(n-1} zk. 

- ~'=o a k,m 

In order to reconcile the ~tove equ?tions a•(n-l ) must k,m 

be unity when k • n-m, but otherwise zero. The lemma 

is proved. 

Lemma 4: 
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( (f) M2n-2J.;.22n-3 n2 M2 (M + 1)4n-6
1.:J. 2 s s • 

for at least one choice of m and whether ~m is real 
0 0 

or imaginary, where& 

50) M =max lakj' k = (0, 1, ••• , n•l);
1 

51) M =min ~2 , j(rj~b - (rk)b.IJ,
2 

(rj).t::.J. 1 (rk)!=J.' .1. ~ j ~ n, 1 ~ k ~ n; 

52) M = max ll , ( n-1 } (.j( f ) t + M ) J • s •t 1 

Further calculations depend on the f act that the M's 

are positive. 

Proof: Due to (4): 

Ma x l(ak}t_ - akla ~(f)~ In;
1 

53) Max l(ak)t_
1 

- akl ~.j(f)t-, In. 

Due to (3) : 
n 

* *>kak (rm = O, if m = 1, 2, ••• , n. 
k-0E 

Since an = 1, if rm I 0: 

nrtl * 
1 = L (-ak)

k=O 

*Then, if I ( r m} I ~ 1: 

1 ~ ( n- 1) ma x Ia~ 171r: I: 
* •lrml ~ (n- 1) max lakl. 

Hence, in particular, 
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54 ) l<r:)t_ 1~max {1, (n-1) j( ak)t_ 1}·
1 1 

But due to (4): 

max ak• - ak 1
2 .S f; 

•55) max ak - akl .s$; 

max {Ia: I ·- iakl } .S$; 

max ak• I - rna x Iak I ~ .Jf: 

•max ak ~ J£"" + max I ak I; 

In particulars 

max l(ak)t_ 1 ~J(f)t_1 + Ml. 
1 

Hence (54) becomes , with the ai d of (52), and the fact 

that each (rm)~ will be defined so max l (rm )t_ 1 ~ 
1 

rna x I ( r m) t _ I , ( m = 1 , 2 , ••• , n ) : 
1 

56) max l(rm)t_ 1 ~ max l(rm)t_ 1 ~ M3, (m = 1, 2, 
1 1 

• • • • n) • 

Define the matrices : 

57) Ak = (ao' a 1 • •••• a 
-1 

,,' . n 

58) 

-a f a f59) where 8r = a R8 p 
m m 

Due to (16) and (17): 



22 

60) 

61) 

Hence: 
• •(n-1) *(n-1)

62) 2 = ,[Ak - Ak] Ak,m Fm, 

• (n-1 ) *(n-1 ) 
where Ak,m and Fm are the results after (n-1 ) 

elementary column tr~nsformations of the first type 

followed by (n-1 ) elementary column transformations 

of the second type on -· Ak,m and Fm.' respectively. 

1~~~-l) is the complex conjugate of A=~~- ) and henc~ , 

by Lemma 3, consists of one ' s i n the non-princi~al 

diagonal and zeros everywhere else. Hence if the 

•elements of 2 [A k - Ak ] are arranged in reverse order , 

F: (n-l) results . Hence by (53), the greatest magnitude 

of any element of F:(n-l) is at l east ~ Hence, 

63) max 

Let 

""' 
64) £=max (Jg p l>t-, m = 1, 2, ••• , n. 

m ..!:..:.l. 

Then an upper bound for the magnitude of the elements 

of (Fm;o)~ = (Fm)t-a is £. A cor responding bound 
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for (Fm; p _1)t - t is £ ( ~2 )P. To show t his, we remark 
0 -

that the statement is true when p = 0. Suppose it is 

true for p = p
0 

- 1, i.e. , that a corresponding bound 

f or ( )Fm ap _1 1:1 is £ 
o 

(_M2 
2 

p -1 
) o • The p

0 
-th transfor

mation of the first type consists of altering some 

elements by subtracting other elements from them, then 

dividing the results by some (rj)!:!- (rk )!:!' 

rj Irk ' in magnitude at least M2, see (51). Since 

~ 2, a corresponding bound for the resultingM2 

This proves 

the earlier statement , and that a corresponding bound 
( 0 ) n-1 

for (fman-l)!:1 = (Fm)~ is £ (~) • A corresponding 

( 0) 4- 1
bound for (Fm)t_ is £(M )n- (M l)P • To show this

1 3 + 
2 

statement, we observe that it is true for p = 0 and 

suppose it is true for p = p - 1. Then the correspond
0 

ing bound for (F ) (po- l ) is £ ( j-)n - 1 ( M3 + 1 ) 
p 

o 
-1 

•m!=.! 2 

The p -th transformation of the second type consists 
0 

of altering some elements by adding to each of them 

the product of some (rm )t - l and some other element.-
Since (rm )!:! ~ M , the corresponding bound for the3 



2A 

(p ) p -1 
1 i (F } o is ... (-M2)n-1 (M + 1} o +resu t ng m t-

4 
~ 

- 2 s 

Said statement i ~ true ff)r p = p • and is therefore 
0 

true, by induction. Hence a co::responding bound for 
1 

2( F ) ( n-ll is £ [ -M ( M 1- l D ]n-l. Th~n, by ( 63 }I
m.i:,! 1 s 

a 

and, due to (59)1 

(£)._ .. 
2 ~J_ L 

n 

Note: The importance of (65) lies in the fac t 

that we may choose m suc h that 
0 

equals or exceeds the right side of the inequality. 
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-Let rk be chosen arbitrarily in the closed intervals 

((rk)t_ , (rk)t_,J, k = 1, 2, •••• n. By (56}, max lrkl ~ 
1 

M3 • Hence the statement , "The magnitudes of the co

efficients of the polynomial expansion of the product 

of p factors (x - rk), are bounded by M3(M3 + l)P-l,n 

is true when p m 1. Suppose it is true when p = p • 
0 

then 

If 
p +1 

0 

=TT [z - rm ],
k•l k 

then 

Since 

where k =O, 1, ••• , p - 1. Hence said statement 
0 

is true when p z p + 1, and is always true. Since 
0 
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-ak,m is a coefficient of a polynomial equal to the 

product of not more than (n - 1) factors (z-; ),
mk 

- . . where am,k • am,k when rk • rk, k =1, 2, ••• , n, 

66) 

Noting that if we choose ;k • (rk)!:L. k = 1, 2, ••• , 

-n, then ak,m • (ak,m)~, and due to (16) and (66)a 

67) max 

< 2n M2 (M + 1)2n-4 
- 3 3 

Due to (65), (67), and Theorem 2; the lemma is proved. 

The decrease of f from (f)~ to (f)t can be made 

sufficiently large by making M2 sufficiently large. 

This is why, when each (rk)t- is "rounded off" to 
1 

_(rk)~, the possibility of a too small but non-zero 

l(rk 1)~ - (rk2)~1 must be eliminated. 

We will define M ~4 

68) 2 max fRe (rk)~ • (rk)t_1 1, 

lim ' (rk)~- (rk)t_1~, k • 1, 2, ••• , n. 

We will define M more exactly later in this chapter.4 
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Lemma 5: 

(f)~- (f)t_ ~ n 2 MjM4 (M3 + l)n-2~2(f)~. 
1 

Proof: If (f}~- (f)t_ ~ 0, lemma is proved,
1 

so only the case, (f)~- (f)t_ > 0 is considered. 
1 

For purpose of this proof, let 

where 

•rk(e). (rk>t-1 + e[(rk)~- (rk)t_l], k. 1, 2, ••• , n. 

Then by (4), 

f(O) • (f}t_ and f(l) ~ f~,
1 

so, in the case being considered , 

69) f(O) < f(l). 

Since, due to (4), f is continuous in the (a• 1, 

a 2 , •••• a ) hyperplane, and hence , by (3), in the
0 

hyperplane, and likewise(: f; ),. r , 
1': 

k • 1, 2, ••• , n, exist: 

+ 6 f(e) 

6 1m [rk(• e) J 



28 

The existence of ~ f or 0 ~ 9 ~ 1 is also assured. 

Since 

and each of these quantities is, by (68), not more 

than 1/2 M4 , 

n 
d f tel ~) a f Ce) a f (&) J 

70) d 9 ~ 2k='l [aRe (r~ {9)) +a lmrk {9)] • 

By (6), f or each k(k • 1, 2, ••• , n) there exists an 

m such thats 
6 f a f o f & f 

71) * • .. ----and--~;~ • ---- • 
& (Re rk) e (Re Pm) 6(Im rk) 6 (Im Pm) 

Due to (59)1 

Por k • 1, 2, ••• , n, we let Pk(e) denote the va lues 

of Pk when rk • rk(e). Due to (70), (71), and (72), 

73) 

(rk)!:L]. Under this condition, we have , by applying 

(55), (66), and (58) to (60)s 

74) max I 8 f( e),~ 2n M (M + l)n-Vt; 

~ 3 3 
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Due to (73) and (74)1 

~ ~J2n2x3M4(M3 + l)n•2,Jf: 

Let 

L •../2n~~4(M3 + l)n-2 and g(9) •Jif9). 

Since f( 9) ~ Os 

d [gd(®)]3= ddf(~') ~ U/f • L 9 (9); 

2 g (e) d ~ bel ~ L g <e>: 

d d ~e) ~ 1/2 L. 

By the law of the meana 

g(l) - g(O) ~ 1/2 L. 

Multiplying by [q(l) + g(O)]a 

[g(l)J2 - [9<o>J2 ~ 112 L (g(l) + g(o)u. 
Since, due to (69), in the case being considered, 

g(l) > g(0)1 

2f(l) • f(O) < Lg(l) -~ M3M4 (M3 
+ l)n-~. 

This implies the lemma. 

Lemma 6 : If: 

4n-3 2 3 -1 ~ _l_ 
75) M > 24n-4 nn-1 M 2n-2 ( f)4n-4 (M + 1)~ M~ 

a - s t-1 s 4 • 

then for at least one choic e of m and whether 6Pm 
0 0 

is real or imaginary, 
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76) (f)t-1 • (f)t ~ [(f)t_1M~-2] 

22n-2n4M~ (M3 + l)4n•6 

Proof: Inequality (76) is true for said choice 

if 

by Lemma 4. 

This is true if and only if 

(f)~- (f)t-1 ~ 1/2 [(f)~- (f)t]. 

By Lemma 4 and ~. this is true for said choice ifa 

n2 M3 M4 (M3 + 1)n-2~' ~ 

1/2 [(f) M2n·2] 22n-3 n2 M32 (M3 + 1)4n·6.
ki. 2 

This is true if: 
3

2n--2 4 
(M + l)5n-8 < ~ M2n·2.77) 2 n M: M4 s -"'-/' x 'b a 

This is true if (75) is true and (f)t_ ~ (f)i:L' so 
1 

the lemma i s true in this case. We note that: 

by Lemma 4; and since (f) t ~ 0, the fi~rst member in 

above inequality is positive, and since (f)t is 
-1 

positive, the quantity in braces is positive; so, 
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if (f)t-1 > (f)~, 

(f)t-1 {1- [M;n-2 22n-3 n• M: (Ms + 1 )4n-6]J > (f)t. 

This implies (76). Q. E. D. 

Note: We choose m and whether ~Pm should be 
0 0 

real or imaginary so that (f)t•t - (f)t is maximized. 

We define M 1 as the greatest quantity not4 ,n

more than 2 which satisfies (75) if M is replaced2 

by 2 and M4 is replaced by M4 ,n-l• If j = 1, 2, ••• 

n - 1, we define M4 ,j·l as the largest number such 

that (M4,j - M4,j•l) is an integral multiple of M4 ,j-l 

satisfying (7~). when (M4 ,j - M4 ,j_1) and M4 , j-l are 

substituted for M2 and M4 , respectively. 

Lemma 71 If (75) cannot be satisfied, when M4 

• M4,j (for any j = 0, 1, ••• , n-2) and M2 ~ M4 , 1 

M4 , 0 , then, given j = 0, 1, • • • • n - 1, it is possible 

to divide the complex plane int o squares of side M4 ,j' 

so that all (rk)t_
1

, k • 1, 2, ••• , n, are contained 

by at most n - j such squares, (called, in this case, 

containing squares) where a square consists of its 

interior, its lower and left sides, and its lower left 

corner. 
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Proof by induction: Divide the plane into squares 

of side M4 , 0 , so that the axes from the boundaries of 

of squares. Since there are n (rk)t_ 's, there are 
1 

at most n contai.ning squares of side M4 , • Hence the0 

lemma is true when j • o. 
Suppose the plane is divided into squares of side 

M4 j (where 0 ~ j < n - 1), not more than n - j 
0

' 0 0 

of which are containing squares. We define the hub 

of a square as a point z, so that 

lzl ~max l(rk)t_ 1, k = 1, 2, •••• n,
1 

and , f or each (rk )t_ in the square , 
1 

IRe z - Re (rk}t_ I ~ 1/2 M4 j and 
1 

' 0 

lim z -Im (rk)t_ I 
1 

We choose each (rk)~ at the hub of the square of side 

M4 , 0 , containing (rk)t_ • Then, in accordance with 
1 

(68), we let M c M • Hence the hypothesis of the4 4 j 
• 0 

lemma implies that either (75) cannot be satisfied , 

or that M2 <114 , 1 - M4 , 0• In either case, 

M2 < M4,j +1 - M4 ,j < M4,n•l ~ 2• 
0 0 

due to the definition of M4 ,j_1• (In applying this 

definition to the former case, we let j • j + 1: in 
0 
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the latter case, we note that M4 j ~ M4 j +l - M4 j , 
• 0 • 0 • 0 

where 1 ~ j ~ n - 2). Consequent ly, we can state 
0 

that M4 j +l is at least the second integral multiple 
• 0 

of M4 j , greater than M2• Also, due to (51), 
t 0 

M
2 

=min (l(rj)t-s - (rk)~IJ, 

(rj)~ I (rk)t-l• 1 ~ j ~ n, 1 ~ k ~ n. 

Let A and B be distinct squares of side M2 j 
• 0 

containing (r8 )t_ and (ra)t•s , and (rb)t_ and (rh)t-,•
1 1 

respectively, where I (r )b - (rb)!:.J.I • M2• Then,
8 

because M4 j +l is at least the second integral multiple 
• 0 

of M4 j , greater than M2, the plane can be (and is) 
' 0 

divided into squares of side M4 j +l' each consisting 
' 0 

only of ent ire squares of side M4 j , such that A and 
' 0 

Bare in the same square of side M4 j +l• Hence (r )ta ·1 
' 0 

and (rb)t_ , contained by different squares of side 
1 

M4 ,j ' are contained in the same square of side M4 ,j +l. 
0 0 

Since there are at most n - j containing squares of 
0 

side M j , there are at most n - j - 1 containing 4 • 0 0 

squares of side M4 j +l• Hence the lemma is true when 
• 0 
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j = j + 1 if true when j = j and j < n - 1. Hence 
0 0 0 

the lemma i s t r ue. 

Lemma 8: The inequality (76) can be satisfied 

for at lea st one of the choic es of M2 and M4 & 

78) M ~ M - M4 , 0 , and 
8 4 •1 

M = M4 ,j (j = 0, 1, •••• n - 1).4 

Proof: Due to the note at t he end of t he proof 

of Lemma 6, (76) is true if (7~) is true. Hence: 

if it is proved t ha t if (7~} cannot be satisfied 

when M2 ~ M - M4 , 0 and M = M4 ,j (for some j • 0,4 , 1 4 

1, ••• , n - 2), (75) can be satisfied by M4 • M4 ,n-l 

and some M2a ~ M - M4 , 0, then Lemma 8 follows.M2 4 , 1 

Lemma 7 further reduces the proof of Lemma 8 to proving 

that the concl~sion of Lemma 7 implies that (75) can 

be satisfied by M =M4 ,n-l and some M2: M2 ~ M 4 4 , 1 

By the conclusion of Lemma 7, one square of s ide 

M 1 contains all (rk)t , k = 1, 2, ••• , n. We4 ,n- •1 

then define each (rk)~ as the hub of this square. 

Since each (rk)t_ is within 1/2 M4,n-l of this hub 
1 

in each of its real and imaginary parts, the designation 

M4 • M4 ,n•l is permitted. Since all (rk)!:L are equal, 

and due to (51), M2 • 2. By definition of M4 ,n-l and 
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M4 ,j-l, M2 = 2 2 M4 ,n-l 2 M4 ,l > M4 ,l - M4 ,0, and (75) 

is satisfied. Q. E. D. 

Note: If other attempts at finding M2 and M4 

fail, divide the plane into squares of side M4 , 0 , 

M ••• (the squares of side M4 , are constructed4,1, 0 

arbitrarily) , as in the proof of Lemma 7, until an M4 ,j 

is found such that if = M4 ,j, and all (rk)t-l areM4 

computed after the manner of said pr oof, M2 and M4 

satisfy (75) and (78) . The method of said proof may be 

used to compute (rk )!:l even if M4 , the sidelength of 

the squares, is chosen as some number, other than 

M for some integer j, as long as (75 ) is satis·4,j, 

fied and M2 2 M4 , 1 - M4 , 0 • So we choose (rk )t-l 

(k•l,2,•••, n) and m , and let 6Pm be real or 
0 

0 

imaginary, 1n such a way as to satisfy (76) and (78). 

Define 

79) 4n·3~~- 4*~ ~ 
kl = 24n-4 nn·l M;n-2 (f)t-1 (M3+1)2ri-2 • 

Note that k1 > 0. 

Lemma 9: 

2 k -l M l - 2~-:2 < l j = 0 1 •••, n. 
1 4,j~l 4 ' t ' 
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· Proof: By definition, M4 ,n-l is the greatest 

number not more than 2 s~ tisf)ings 

....L_ 
2n-2 

kl M4,n-l ~ 2• 

which is equivalent to 

80) M ~ (2 k•l)2n·2 •
4,n·l ~ 1 

M4 ,j-l (j = 0,1, •••,n ), may replace 

M4 ,n-l in ( 80 ), because by definition it is no larger. 

Thenz 

1 
1 - -2n-2 1 2n 3M ~ (2 k1• ) • J4,j·l 

1- ....L_ 
2 k•l M 2n-2 _< (2 k•ll)2n-2 •

4,j-l 

Since n ~ 2 (Chapter I), 2n•2 ~ 2, and it need only 

-1 1be proved that 2 kl < 2 • 

_ _1_ .. ..l_ .. ...1_ _L 8-5n 
81) 2 kil = 2 4n-4 n n-1 M3 2n-2 (f )1~i4(M3+1)2n-2 

Note that all factors in (81) are positive if f I o. 

Because, by (51), M3 ~max{!, ~(f)t-l J : 

1 
M·l < 1 M- 2 < 1(f)~-1 3 - 3 - ; 

l _!_ 3 
2 Mj 3 ( f )4n-4 M.. 2jl:2

82) (f)t-1 .$ 1 ; < 1 • - !=.! 3 
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Since ~n59 ~- 1, and M3 ~ lz 

~ 
83) (M3 + 1) 2n-2 < 1 •- 2 

1 2Since and are positives4n.=4 -n-1 

1 2 
2- 4rl-4 - n:r84) < 1 n < 1 • 

By 2 k-1' 1( 81) -( 84). < ~ • and the lemma is proved.1 4 

Lemma 10: If j = 1, 2 , •••, n-1, 

M > (~ k-1 M )2n-2
4,j-l 5 1 4,j • 

Proofs By definition, is the largestM4,j-1 

number such that M4 ,j is an integral multiple of 

M4 ,j-l and 

85) 

which is equivalent to 

~-2- 1 
M4,j I M4 ,j-1 ~ kl M4 ,j-l + 1 • 

So M4 ,j I M4 ,j _ is the least integer such that1 

1M 1 14 •j > k M 2n=2 - ( M4 ,j 1 - 2n-2M4,j-1 - 1 4,j M....... ) + 1 •~ _ 
4,j-1 
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Note: Since M4 ,j > M4 ,j-l' by ( 85) , M4 ,j I M4 ,j_1> 1. 

Therefore 

l 1 M 1- _l_M4,j ... 1 < k M 2n-2 - ( 4.j 1) 2n-2 + 1M4,j-l 1 4,j M4 ,j-l 

1.....L ... 1 - ..L2n-2 
2 2 ( M4 .j )< k M . n- -- + 1 

1 4,J M4,j-l 

Hence 

1 
M4.j M ~- 1
M < k1 4,j-l + 2 J
4,j-l 

M4,j < k1 

...L. 
M 2n-2 (

4 ,j-l 1 + 2 k-1 
1 

1- _!__ 
M 2n-2).
4,j-l 

By Lemma 9: 

M4,j < :2 
4 

k 
1 

_!_ 
M 2n-2 

4 ,j-l • 

From this follows Lemma 10 . 
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Note: The sum of the elements of a null set is defined 

as zero. 
-1 1Proof by induction: Since 2k < 2 , and 
1 

-1 2n-2 1 1
2n-2 ~ 2, (2k ) < 4. Hence, by (80), M4 , n_1< 4,

1 

so M4 ,n-l is the greatest number satisfying (80) . 

Hencet 

and the lemma is true when j = 0 • 

Suppose the lemma is true when j = j < n-1. 
0 

Then, by Lemma 10: 

M > ( ~ k-1 M )2n-2 
4,n-j -2 5 1 4,n-j -1 

0 0 

j +1 
-1 1 ( 2n-2) 0

> [-4 k (2k- )
- 5 1 1 

2n-2 

( 5 4 

2n-2 
] • 

Hence the lemma is true when j = j 
0 

+ 1 if true when 

j = j < n - 1. Q.E.D.
0 
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Let M be defined as M is defined in (52 ) , 
8 8-

except that JffTt-l be replaced by ~0• As (76) 

is established by Lemma 8 and the note following its 

proof, so (f)t-l - (f)t > 0 if t ~ 1, then 

(f) ~ (f)t-l, so M ~ M •0 8 8-
Define: 

86) 

87) 

1 ~ n-2 k
88) k4 =2 [ L k = -1 (2n-2) ] - 4~-4 1 

89 ) k 5 = k4 ( 2n-2) + 1 ; 

90) 

Note that all k's are positive. 

Lemma 121 

Proof: Due to Lemma 11, 

~ n-1 ( 2n-2)k 
·1 (2n-2)n 4 -1 L k=l 

(2k ) ( ~ k ) • 
1 ~ 1 
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Due to (78 )and (85 ) , 

91) 

Since M > M , and due to (79), (86)-(88):
8 - 3 

1 
k < k (f) - 4n-4 ; 

1 - a t•1 

by (91). 

Ln-1( 2n-2)k 1 1 Ln-2 ( 2n-2)k
1- - _.__ + 

M > k k=O (f) 4n-4 2 k=-1 
.- 2 t-1 

k4 
Ma ~ ka (f )t-1 ; 

By the above and (76): 

(M +1 )4n-6 I 
3 

then, since M > M , and due to (89) and (90), the 
a - a-

I 
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lemma is proved. 

The lemma may be written 

k5 
(f)t _ - (f)t ~ k6(f)t ; t = 1,2,3, ••••1 _1 0

0 0 0 

Consider (f)t as a function of t which de

creases at a uniform rate as t goes from t 0 - 1 to 

Theorem 3: If t ~ 0: 

93) then (f) t < 6 ;
1 

94) lim ( f)t = 0 • 
t .... ., 

Proof: If t - 1 < t < t < t : o - 1 a 

J 

and, since the function on the l eft is constant, and be

cause (f )t ~ (f )t > (f)t ~ (f)t due to the way_1 
o 1 a o 
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is defined for t -1 < t < t ,
0 - - 0 

(f)t - (f)t k5 
a 1- lim 

t -+ t t - t ~ k6 (f)t -1 > lim 
a 1 a 1 o t -+ t 

a 1 

Integrating and using the value of (f ) as a boundary
0 

condition, 

1-k 1-k 
95 ) ~ (f )t 5 ~ k6t + ~ (f) 5 

05 5 

Due to (89), and the fact that > 0, k4 

96) k5 - 1 > o. 

Hence 

This establishes (92). Because k6 > 0, and due to 

( 95): 

97 ) 

If the hypothesis of (93) is true , then by (97 ) , 



and, because k6 > 0 and due to (96), 

1-k 1-k 1-k 1-k 
[ {f) 5_ {f) 5) > ( (' 5 - (f) 5 ] J 

t 0 0°1 

and, because 1 - k5 < 0 , 

6 . 
1 

This proves (93), and from (93 ) follows (94 ) . Q.E.D. 
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CONCLUSIOO 

Lemma 1: If, for arbitrary positive E, and 

non-negative integers t and 
1 t a ' 

where 

•- n M n
• ' .! 

then given any m, (m = 1, 2, .. . , n), there axists at 

least one j' ( j = 1, 2, •••• n) , such that 

< E • 

Note: Since t and t are interchangeable in the 
1 a 

hypothesis, they also are so in the conclusion, of the 

lemma. 

Proof: Under hypothesis of lemma, since M and 
8 

n are positive, 

98) M n • 
8 

Due to (56), 

j
Mn > Mn > Mj > (rm )t I, for m = 1, 2, ••• , n • .!-a- a

1 

Hence, by ( 98) , 
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99} 

The last inequality follows from the triangular 

inequality. Since (an )t = (an ) t = 1, the upper limit, 
a 1 

1, of the above summations may be changed to n.n 

By ( 3). 

n j nLj=O (aj )t (rm)t = ITj=l ((rm)t 
1 1 1 

By add ing the first member above (equal to zero ) to a 

quantity in absolute value signs in (99}, and applying 

(3), we obtain, 

n ~ n j n 
£ > I L j=O ( 8 j )t (rm)t I = T1J=ll(rm)t 

a 1 1 

From this the conclusion of the lemma follows. 

Lemma 2: If, for t = t • t ,
1 a 

100 ) 

the hypothesis (and hence the conclusion ) of Lemma 1 
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follow. 

Proof: Applying (93) to the hypothesis of this 

lemma t and letting r = 1 r a4 o a t0 1 

By (4 ) , 

n, 

Since the above is true for t = t , t ,
1 a 

+ I ( ak) t .. ( ak) I < Sa • 
a 

But this is the hypothesis of Lemma 1. Q.E.D. 

Lemma 2, together with the note after Lemma 1, 

implies that if t and t satisfy (100), there is 
1 a 

a one-to-one correspondence between the sets {(rk)t J 
1 

and { ( rk )t J • ( k = 1' 2 , ... ' n), such that given 
a 

any corresponding elements , such as (rm)t and 
1 

(rj )t , l(rm)t - (rj)t < £ • Reorder each set, 
a 1 a 

(rt )t' (ra)t, •••• (rn)t (t = 0, 1, 2, ••• ), as (rk )t • 
1 
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••• , (rk )t' so that for each m(m = 1,2, ••• ,n), 
n 

and (rk )t correspond with each other in the 
m a 

above one-to-one correspondence . Then, if t and t 
1 a 

satisfy (100) , for any km' 

101) < E • 

C may be determined , using only their respective deOa 

finitions and (3) and (4) . Hence the right member of 

(100) is computable , and if t and t exceed this 
1 a 

member, ( 100) is satisfied. Hence for each 

m (m = 1, 2, ••• , n), the sequence ({rk )tJ, t=0, 1,2, ••• , 
m 

converges. Define 

102) lim (rk )t = (rk ) , m = 1, 2, ••• , n • 
m 00t-+oo m 

Then, if t satisfies { 100 ) • and s ince any
1 

t : t > t • satisfies {100) and (101),
a 1• 

l{rk )t - (rk ) I ~ E • 
m oom 1 

Theorem 4: If an = 1, 

_n
L~aO ak zk = II m=l ( Z - (rk 

m 
) 

m 
] • 

so that (rk ) • (rk ) 
00 • ••• {rk ) are the zeros of 

Q) 

1 8 ' n oo 
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this polynomial . 

Proof• Due to (4) and (94)r 

Bec a us • ( r ) t , ( r a ) t . • •• , ( r n ) t , may be 
1 

reordered aa (rk }t , (rk )t, ••• , (rk )t• (3 } may be 
t a n 

written• 

We may similarly rewrite the aecond meaber of (4 ) . 

Due to (4) and (104 ) , f 11 a continuous 

function of (rk )t , (mal , 2, •••• n) . Due to this fact , 
m 

(102), and (103 ) , 

10~ ) f((rk ).,(rk )., ••• , (rk ).J•ltm f((rk )t , 
1 a n t ~ • 1 

We define (ak >. by (104) . Due to (4 ) and (1~ ) , 

n-1 a 
), k•O j(ak ).- akl • 0 • 
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in the definition of the latter, the theorem is proved. 

We define rm = (rk ) , (m = 1, 2, ••• , n). 
m~ 

If we wish to insure that 

we iterate the method outlined in section 2, t times, 

where t satisfies (100). 

Theorem 4 not only implies the Fundamental Theorem 

of Algebra, (that a polynomial of n-th degree has at 

least one zero in the complex field ) , but also that said 

polynomial has n linear factors, a method for the 

approximation of which is give~ in this paper. 
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v 
EXAMPLE 

Suppose we wish to solve: 

106) zS + 3.14 i z8 + ( -1-2.5 i) z + 1+21 = 0 • 

We begin with the trial roots: 

(r ) = 1, (r ) = 1+3i, (r ) = 1-i • 
1 o a o s o 

The method applicable to Case 1 in the Introduction 

is used . In each cycle of six iterations, first the real 

and then the imaginary parts of first r * and then 
1 ' 

r * and * are "improved".
a 

r a • 

Since Case 1 is used, p = * for m=l,2 , 3 . rmm 

(See (6) and preceeding discussion.) In each iteration, 

we use (12) or (13), (16) or (17), and (18). 

Calculations were done on Alwac III-E, a digital 

computer, to four dec i mal places past the decimal point. 

The result after one cycle (six iterations) was 

(r = -l.0000-0.3496i ,{r = 0.8489 + 0.4010i,
1

) 6 8
) 6 

(r = 1.0954-l.0842i. 
8 

) 6 

The algebraic equation having the above roots was found 

to be 
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z8 z8+ (-0.9444 + 1.03291) + (-0 . 8186 - 0.47791) z 

+ (1.5329 - o.004li) = 0 • 

After some more cycles, the result was 

r • = - 0 .9396- 2. 8359i , r * = 0.4473 + 0.58571. 
1 2 

r * = 0.4954 • 0 . 88741 • 
8 

These are t he roots of 

z8 z8+ (-0.0030 + 3.1376 i) + (-1.0000 - 2.4965 1) z 

+ {0. 9991 + 2.00201) = 0 • 

Aft er more cycles, the result was 

(r)* = -0.9422- 2.83991 , (r )* = 0.4476 + 0.5853i,
1 a 

(r )* = 0 .4946- 0 . 88541 • 
8 

These are the roots of 

z8 + 3.1400iz8 + (-l . 0000-2 .4999i)z + 1.0000+2. 00011=0 . 

After yet more cycles, the trial roots and the 

corresponding equation remain the same, so the last 

given values for (rk) * , k = 1,2, 3 , are accepted as 

the final approximations to the roots of (106). In 

fact, when one computes the equation having said approxi

mations for roots , one does, as is seen above, obtain 

coefficients differing by not more than 0.0001 from 

those in {106) . 
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VI 

A NOO..COOSTRU:TIVE PROOF OF THE THECREM 

Another proof of the Fundamental Theorem of 

Algebra , is as follows [l,p.20l-207] • 

Consider the polynomial: 

n 
107) p(z ) = Lk=O 

We show that jp(z)l attains a minimum value for some 

complex value of z. Suppose p(zN ) = N. Consider all 

z such that p(z) ~ N. Than, if lzl ~ 1 

\' n k
I L k=O ak z I ~ N ; 

ka Zk 

n \' n-1 
an z ~ N + L k=O 

n-1 
I z I ~ ( N + Lk=O I ak I ] : I an I • 

Call the right member of the las t above inequality, N • 

So, if lp(z)I_$N, then lzl < 1 or lzl < N • Then 
- 1 

the closed region lzl ~max [1, N } , called region A. 
1 

contains all z such that jp(z)l ~ N. Since A is a 

1 
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closed r egion and jp(z)l a continuous function of z, 

the Bolzano- Weierstra ss Theorem establishes that there 

exists z £ A such that for all other z £ A, 
0 

Since, f or z not in A, jp(z)l > N, 

1o8 > I p( z >I ~ I p( z o >I , 

whether or not z is in A. Let p (z ) = p(z + z ).
1 0 

Then, by (108 ) , for any z, 

The function p (z) is, due to its definition, a poly
1 

nomia1 of n-th degree, say 

110) 

Then: 

111 ) p(z ) = p (0) = b .•0 1 0 

112) IP ( z) I > Ib I • 
1 - 0 

If b
0 

= 0, then (111) establishes the theorem. So 

we consider the case, b F 0 • Due to (110), there0 

is a least k such that bk I 0 and n ~ k > 0 • 

Call this k, k0 • Then, by (112), for all z: 
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Since bk ~ 0, and b l 0, there exists z such
0 

0 

that: 

114 ) arg z = ( 1T + arg b •arg bk ) : k J 
0 0

0 

Llbk 
115) lzl <min { n • ~~(o, 1 } 

[ k=k +llbkl 0 
0 

n 
If, because k = n, Lkck +l lbkl = 0, the first 

0 

quantity in braces is ~ and the minimum of the other 

auantities is taken. If (114 ) and (115 ) are 

satisfied: 

and, because lzl < 1, 

Multiplying by 

r n k ko
( L k=k +1 lbk z I J - lbk z I < 0 ;

0 0 
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Since 
1 
~ lzl < 

k 
117) z 0 • 

By ( 114), 

= -" + arg bk + arg zk0
0 

k 
0 = - " + arg [ bk z ] • 

0 

Due to (117) and (118) , 

119 ) Ib + bk z k 0 I = Ib o I - Ibk z k 0 I • 
0 

0 0 

Due to (116) and (119), 

This contradicts (113 ) , so the case, b ! 0 , is
0 

impossible. Hence b = 0 . The proof is completed.
0 
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