Plasma metabolites altered by sulforaphane in humans

Kim Kelsey1, Lauren L. Atwell1,2, John D. Clarke3, Anna Hsu1, Deborah Bella1, Jan F. Stevens2,3, Roderick H. Dashwood4, David E. Williams2,4, and Emily Ho1,2

1School of Biological and Population Health Sciences, 2Linus Pauling Institute, 3Department of Pharmaceutical Sciences, 4Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331

I. Introduction

• Consuming cruciferous vegetables such as broccoli sprouts, kale, Brussels sprouts, and bok choy is associated with several health benefits, including a decreased risk of certain cancers. 1
• Cruciferous vegetables contain the glucosinolate glucoraphanin (GFN). 2
• Cutting, chopping, or chewing these vegetables releases GFN and the enzyme myrosinase, which transforms GFN into sulforaphane (SFN). 2
• SFN has many demonstrated health benefits in cell and animal models, including anticarcinogenic, antioxidant, and antibacterial properties. 3
• SFN has been shown to target biological pathways leading to:
 • apoptosis and the excretion of carcinogens
 • cell cycle arrest
 • eradication of H. pylori infections4,5
• In humans, SFN is metabolized to yield four bioactive metabolites via the mercapturic acid pathway (Fig. 1).
• Specific SFN metabolites may be responsible for some of the health benefits of consuming SFN.
• In humans, SFN metabolites peak in the plasma at 3 hours following consumption and are mostly excreted by 24 hours.6

II. Study Goal

Identify plasma metabolites altered in humans following sulforaphane consumption using novel, unbiased metabolomic technology.

III. Significance

Understanding mechanisms responsible for SFN’s health benefits is critical for developing dietary strategies using SFN to promote health and prevent disease. This work will provide information for directing future human studies to understand mechanisms by which SFN and cruciferous vegetable consumption promote health.

IV. Design

The metabolome of plasma samples from each time point was analyzed by HPLC tandem mass spectrometry.

Plasma Processing for Metabolomic Analysis:
• Plasma collected from Histopaque separation 110 and after sprout determination
• Consuming 3 of what of In humans, from GTP 125
• More cell cycle arrest

V. Methods

The metabolome of plasma samples from each time point was analyzed by HPLC tandem mass spectrometry.

Plasma Processing for Metabolomic Analysis:
• Plasma collected from Histopaque separation procedure & stored at -80°C
• Metabolites extracted from plasma by addition of 150 µl ice-cold 50:50 (v/v) methanol:ethanol.
• Samples centrifuged for 15 minutes & stored at -80°C until analysis.
• Quality control (QC) samples prepared by combining 15 µl of each sample into a single vial.

Metabolomic Analysis:
• High-performance liquid chromatography (HPLC) information/setting:
 • HPLC Column: Inertsil ® Phenyl
• Biochemical pathways affected may involve creatinine from the plasma metabolome was altered in human subjects following SFN consumption. 48 hours after SFN consumption, SFN is metabolized to yield four bioactive metabolites via the mercapturic acid pathway (Fig. 1).}

VI. Results

Figure 2. Human study timeline. Healthy adults (n=10), ages 20-60 years, consumed a single dose of 200 µmol SFN equivalents from fresh broccoli sprouts. Subsequently provided blood samples at time 0, 6, 12, 24, & 48 hours after sprout consumption to determine what changes occur early and what changes occur later.

Figure 3. Changes in human plasma metabolome were detected following SFN consumption from broccoli sprouts. (A) PCA-DA plot showing separation of time points based on all features detected in subjects at each time point. B) Number of features significantly altered (p<0.05, fold change > 2) over time after consuming sprouts (n=10). PCA-DA, principal components analysis – discriminant analysis.

Creatine possibly increased 48 hours after SFN consumption.

Figure 4. Fragment spectra from MS/MS experiments. Fragment spectra for A) feature with mass-to-charge ratio of 114.065 from study data, and B) creatinine from Human Metabolome Database (HMDB) showing matching m/z values (relative intensity varies from one machine to another).

VII. Discussion

Biochemical pathways affected may involve creatinine:
• To our knowledge, SFN has not previously been reported to alter plasma creatinine levels in humans.
• Creatinine plays a large role in muscle metabolism.
• High creatinine levels may indicate decreased risk of type 2 diabetes.
• Molecular pathways involving creatinine may signify a novel mechanism of SFN in promoting human health.

VIII. Summary and Conclusions

• The plasma metabolome was altered in human subjects following SFN consumption from broccoli sprouts.
• Altered features were observed in the plasma at each time point following sprout consumption.
• Some alterations were transient, while others were sustained through multiple time points.
• Biochemical pathways affected by consumption of broccoli sprouts may involve creatinine:
 • Fragment spectra of a feature significantly altered at 48 hours following sprout consumption was visually matched to the fragment spectra of creatinine from the database.
 • Future directions:
 • Additional experiments were needed to validate the feature’s identity.
 • More work is needed to understand the full potential of SFN in human health.

References:

Acknowledgements:
This work was supported by NIH grants CA5006890, CA122906, NIEHS grant P30 ES000210. We gratefully acknowledge technical assistance from Lauren Atwell, Dr. Carmen Wong, Dr. Laura Beaver, Karin Hardin and Jeff Morris. Broccoli sprouts were provided by Sprouters NW, Inc.