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1 –Introduction 

In an attempt to gain further insight and understanding of submerged plate vibration, a 

suite of experiments were conducted at Oregon State University (OSU) to characterize 

the natural frequencies of a set of plates, vibrating in both air and water. Since 

experimental testing can be a tedious and time consuming endeavor, it is desirable to 

have different methods available for the purpose of calculating the natural frequency 

of any given plate, under the desired boundary conditions. Various analytic equations 

do exist; however they are often limited in scope and accuracy. Numeric analysis is 

becoming increasingly powerful; although, it too has a large share of uncertainty and 

can easily become error prone due to inconsistencies between a model and reality. 

In order to improve the accuracy of numeric methods, it is desirable to benchmark 

numeric results against both analytic and experimental data sets. For submerged 

vibration, numeric modeling is challenging due to the coupled nature of the plate and 

fluid domain; therefore the ability to solve submerged vibration problems numerically, 

in a simple and timely manner, is of even greater interest. The submerged plate 

modeling in this study employs the method outlined in the previous study Charac

terizing Virtual Mass Effects of a Submersed Body Using Pseudo-Fluid Elements 

[1], which was developed for submerged body vibration responses and has not been 

benchmarked against experimental submerged plate vibration. 

1.1 Motivation  

It is the intent of the National Nuclear Security Agency, through their Global Threat 

Reduction Initiative, to convert all civilian research and test reactors from highly 

enriched Uranium fuel to low enriched Uranium fuel. In recent cases, such conversions 

require the qualification of a new fuel material. In 2012, an irradiation test in 

the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) 
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resulted in a plate, at the end of the test assembly, sheering off in-pile. This was later 

hypothesized to be the result of vortex shedding off an upstream element near the 

fundamental frequency of the plate.[2] Due to the unexpected nature of this failure, 

a series of experiments were conducted at OSU with the goal of characterizing the 

natural frequencies of a set of small test plates that are geometrically similar to the 

prototypical low enriched Uranium fuel plates, to ensure that such a failure will not 

occur. These experiments, called the Vibration in Thin Fluid Channel Bench-Top 

Experiment (VFC), [3] are the basis of all work performed during this study. 

The VFC experiments involve a set of small plates, approximately 1 inch wide, 

with lengths varying between 0.35 inches and 4 inches. Fourteen of the plates are 

comprised of either homogeneous Aluminum or Inconel, with an additional laminate 

plate; consisting of a thin Depleted Uranium (DU) – Molybdenum foil, encased within 

Aluminum cladding, which will be referred to herein as the DU Plate. Each plate was 

held in a clamping device and vibration data was collected by a strain gage while the 

plate was plucked with a guitar pick. The temporal strain gage data was transformed 

into the frequency domain through use of a Fast Fourier Transform, and the natural 

frequency was identified through observation of the first prominent peak of the range 

of frequencies. [3] 

The plate holders, shown in Figure 1.1, were designed to represent idealized 

boundary conditions and employed three different designs, all of which clamped the 

plates along their ‘length’ (l ), leaving the 1 inch ‘width’ (w) of the plate free to vibrate 

on both ends. The first two holders clamped down securely on the plate, and are thus 

referred to as ‘clamped plate’ holders; one of which compressed the plate between two 

flat surfaces, as shown in Figure 1.2, the other of which compressed the plate at a 

single point down the length of the plate, providing a pined line, shown in Figure 1.3. 

These two are respectively referred to as the ‘flat-edge’ and the ‘knife-edge’ clamping 

devices. The last holder, called the ‘sinusoidal slot,’ employed two grooves cut into the 

sides, which the plate slid into. Each of these grooves follows a very slight sinusoidal 

wave, with the intent of simulating point contacts where the groves impinged upon 

the plate, shown in Figure 1.4. 
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Figure 1.1: VFC Plate Holders - Flat edge holder with gap inserts, knife edge holder,
 
and the sinusoidal clamping device with arrows indicating the In-Phase configuration
 

Figure 1.2: Flat Edge Clamping Device - Section through the width of the flat 
edge clamping device with plate. 

Figure 1.3: Knife Edge Clamping Device - Section through the width of the knife 
edge clamping device with plate. 
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Figure 1.4: Sinusoidal Slot Clamping device - Section showing the Sinusoidal Slot 
and a non-deformed plate. 

1.2 Objectives 

It is the objective of this study to examine the accuracy with which a set of numeric 

techniques may be employed to calculate the fundamental frequency of a plate vibrating 

in air and water, under a variety of boundary conditions and plate materials. The bulk 

of the results will focus on comparisons with the set of vacuum simulation results and 

between the results and experimental data, in order to establish trends. Submerged 

work will focus on the ability of the numeric solver to simulate the pseudo-fluid 

elements and the interaction these elements create with the plate. Comparisons 

between submerged numeric results and experimental data will be made; however 

it is beyond the scope of this work to perform a rigorous error analysis upon the 

pseudo-fluid simulations. Ultimately the comparisons presented will yield a qualitative 

level of confidence in the ability to predict the natural frequency of plates via numeric 

means. 

1.3 Document Overview 

This document opens with a literature review, before discussing the set-up of the 

simulated models and going into the details of simulation work. The methods section 

provides the details behind the analytic and numeric work, first deriving the analytic 

equations used in model verification, then emphasizing the analytic methods used 
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to check the numeric solution accuracy, before detailing numeric modeling methods 

and assumptions. The results section contains an overview of the results, comparing 

them against each other and experimental data in order to discuss the validity of 

the methods. The paper closes with concluding remarks and suggestions for further 

work. All tabulated values from numeric, analytic, and experimental data are listed in 

Appendix A and detailed error analysis calculations, including supporting calculations 

and intermediate calculated values, are shown in Appendix B. 
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2 –Survey of Literature 

Vibration is a common topic for research within the field of engineering that has a long 

history and a well developed theory for many common circumstances. However, the 

transition from theory to application, through equations or correlations, is an ongoing 

study. Plate vibration in particular, is a common subdivision for research, due to the 

plethora of plates found in everyday structures, as well as the many commonalities 

between plates and two dimensional beams. A plate is defined as any structure in 

which one of the dimensions is substantially shorter than the other two dimensions; 

[4] helpfully allowing analytic plate theory to be derived with the same approach 

used to derive beam theory. Beam theory is widely understood, and represents some 

of the original vibration theory for solid bodies; it was first derived by Bernoulli, 

and then improved upon by Euler, creating what is commonly called Euler-Bernoulli 

Beam Theory. This theory is widely applicable and, due to its simplicity and relative 

accuracy, is still in widespread use. [5] Considering a plate to be a beam with an 

extra dimension, the same methods outlined in beam theory may be applied, yielding 

differential equations that describe plate vibration. [6] As with any analytic work, 

certain assumptions are required to derive the Euler-Bernoulli Beam equations, and 

the corresponding limitations of these assumptions limit the applicability of beam 

theory; chiefly, the assumption of a slender beam, or correspondingly, a thin plate. 

Other approaches have been derived to allow analysis of thick plates, such as an 

expansion upon The Timoshenko Beam Theory, which assumes a non-slender beam, 

ultimately yielding Midlin-Timoshenko Plate Theory. [6] In either approach, once 

the assumptions have been identified, the equations of motion are combined with 

an analytic description of the boundary conditions to arrive at a set of differential 

equations. Once solved, these equations will yield the hypothetically exact analytic 

solutions for certain plate frequencies, at which the corresponding wavelengths are 

integer multiples of the plate’s length, allowing the development of standing waves. 
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However, in the best of cases, solving these differential equations is complicated, and 

for some boundary conditions, impossible. Silva, in Vibration Fundamentals shows 

one such solution, ultimately requiring an educated guess and yielding an infinite sum. 

[7] 

Due to the complexities of purely analytic solutions, other means have been 

developed to an analytic approach, without the complex mathematics, often through 

the use of tabulated Eigen values. One such set of equations and tabulated values is 

provided by Blevins in Formulas for Natural Frequency and Mode Shape [8], which 

lists Eigen values for a wide range of boundary conditions, plate modes, and plate 

geometries. The tabulated Eigen values are multiplied into a base equation, describing 

the plate’s material properties. Belivin’s employs the equation for flexural rigidity, 

with density divided out, as the base equation for plates vibrating in air. While this 

method is far easier to use, it is limited by the extent of the reference, and has no 

error estimate applied to it which could lead to questionable accuracy. Furthermore, 

since the multiplication factors are listed only at explicit plate geometries, care must 

be taken when extrapolating or interpolating to the geometry of interest. 

Finite element analysis is another method commonly utilized in vibration analysis, 

and is becoming increasingly powerful. Kerboua et al. [9] and Hamedani et al. 

[10], both derive and write their own computational codes to numerically solve for 

the fundamental frequencies of flat plates vibrating in air. Hamedani compares the 

accuracy of traditional rectangular elements against ‘super elements’ for stiffened 

flat rectangular plates, finding that the traditional elements had better accuracy and 

convergence characteristics than the ‘super elements,’ though the solution was slower. 

[10] Kerboua derived a finite element code for non-uniform isotropic and anisotropic 

plates, finding good agreement with experimental results. [9] 

The relative complexity of plate vibration is further increased by submergence 

of the plate in a fluid medium. Since air has a low density, its effect on vibration is 

minor and normally ignored. Solving for plates submerged in a damping fluid does 

not allow this luxury. The inertial and viscous properties of water provide resistance 

to movement of the plate, substantially changing the natural frequency of vibration 
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for any submerged object. Typically this resistance is analytically treated as added 

mass, where the mass of the water can be added to the plates mass and the frequency 

analytically solved using the new mass in the same manner as an isolated plate. This 

approach was first taken by Horace Lamb [11], in which the added mass effects of water 

on a circular plate were analytically derived and used to calculate the frequencies of 

submerged circular plates. A similar approach is taken by Haddara and Cao [12] who 

find good correlations between their analytic results and the experimental studies of 

Fu and Price. Further consensus is seen with another paper by Vu et al. [13] For both 

of these papers and their cited experimental work, it is seen that any submergence of 

a plate results in a decrease in frequency for all modes, with the damped frequencies 

asymptotically approaching some lower value as the depth of submergence increases; 

reaching an approximately constant value once the plate is submerged to about 50% 

of its length, with the exact depth varying slightly for differing plate edge ratios 

and different modes. Vu et al. further note that the first mode is the most effected 

by submergence, with higher modes seeing a decreasing effect from the added mass 

dampening.[13] 

A paper by Pal et al. [14] also examines added mass effect on a laminate plate 

using an in-house finite element analysis software to model both the plate and the fluid 

domain. Their results are in good agreement with experimental data, and their ability 

to model laminated plates is a major advantage over previous mathematical treatments. 

However, their report did not include any information about submerged modeling, 

which they eventually intend to perform. Taking numeric modeling of submerged 

plate vibration a step further, Howard et al. model the plate and fluid domain in the 

commercial, off-the-self, finite element analysis software system, ABAQUS. In order 

to reduce the uncertainties associated with numerical computation of fluid-structure 

interactions, which are often solved by coupling a computational structural mechanics 

(CSM) solver to a computational fluid dynamics (CFD) solver, the water domain was 

modeled as a solid “pseudo-fluid” which was broken into discrete solid elements to be 

solved purely in the CSM domain. [1] Their findings are also in good agreement with 

experimental results; however, difficulties were encountered when modeling a fluid in 
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the solid domain and suggest that further experimental work is necessary to establish 

the limitations and uncertainties of the method. 

In this study, the method outlined by Howard et al. will be used for modeling 

submerged plate vibration. Initially the ABAQUS frequency solver will be used to 

numerically find the fundamental frequencies of the plates. The associated accuracy 

of this method may be determined from comparison against experimental data, and 

the most accurate models will be coupled with pseudo-fluid elements for submerged 

plate modeling. This should allow for an acceptable comparison between numeric and 

experimental data, lending insight to the technique’s accuracy. Further comparisons 

will be drawn from analytic equations provided by Blevins in Formulas for Natural 

Frequency and Mode Shape, for air vibration, in order to provide an additional resource 

for comparison in the case of discrepancies. 
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3 –System Design 

The Vibration in Fluid Film Bench-top Experiment employs 15 small plates, which 

have the dimensions and material properties given in Table 3.1. Plates 1-9 and 15 

(the DU Plate) employ a length to width ratio of 4:1, while plates 10-14 have varying 

aspect ratios that were chosen to fall within the set of ratios given in Formulas for 

Natural Frequency and Mode Shape [8], in order to provide analytic solutions for 

comparison against numeric results. The first 7 plates are homogeneous Aluminum, 

with varying thicknesses, and plates 8-14 are homogeneous Inconel of varying lengths. 

The plates were modeled in ABAQUS/CAE, version 6.13-2, by Dassault Systèms-

Simula Corp. as discrete, deformable, homogeneous bodies with the material properties 

shown in Table 3.1. To ensure continuity across all simulations, copies of the original 

set of plate models simulated for vacuum vibration, were used in subsequent submerged 

simulations, with different boundary conditions applied as needed. 

3.1 Clamped Plate Models 

The modeled boundary conditions attempt to mimic the conditions applied to the 

plates by the plate holders. Both of the clamped plate holders, shown in Figure 3.1, 

applied boundary conditions that could be simulated in similar fashions. They both 

have identical free span widths of 0.88 inches and clamp along the entire plate length. 

The free span of each plate was instrumented with a strain gage across the plate’s 

width, and the plate was plucked by the experimenter on one of the short edges; thus 

it was assumed the free span was the only area of the plate vibrating, allowing the 

clamped plates to be modeled as having a width equivalent to the free span. The 

clamped boundary conditions were applied down the plate’s length, at the reduced 

plate width, and were assumed to be ideal, such that the knife edge holder would only 

allow the plate to rotate at the boundary condition, limiting any translation, while the 
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flat edge holder was assumed to restrict both rotation and translation. In reality, the 

knife edge holder clamps down on both faces of the plate, greatly hindering rotation, 

so it is reasonable to assume that although the plate extends beyond the boundary, 

this small extension is unlikely to impact the natural frequency of the plate. This 

demonstrates the complexity of modeling boundary conditions; which, in order to gain 

as much insight as possible, were modeled for the clamped plate holders using three 

different sets of ideal boundary conditions: 

• Fixed–Fixed (F-F) 

• Fixed–Pinned (F-P) 

• Pinned–Pinned (P-P) 

Figure 3.1: Flat and Knife Edge Plate Holders - The two clamping fixtures with 
plates installed showing the difference in boundary conditions 

In ABAQUS, ideal conditions are set up such that a Pinned boundary condition, 

restricts all translation, but puts no limit on rotation. A Fixed condition, called 

“Encastered” in ABAQUS, completely restricts both translation and rotation. One 

caveat does arise when using these ideal conditions, the Pinned boundary must be 
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applied to a line; otherwise the conflicting translation restrictions prevent rotation, 

effectively creating a fixed condition. Unfortunately, line contacts result in high local 

stress concentrations, which decreases the accuracy of the computation. To help 

alleviate some of the issues, the Pinned condition was applied down the middle of the 

boundary face and the decreased accuracy was taken into consideration by performing 

all error analysis calculations on the P-P boundary condition. 

Table 3.1: Plate Dimensions and Materials 

Young’s 
Length Width Thickness Poison’s Density 

Plate Modulus 
(mm) (mm) (mm) Ratio (kg/mˆ3)

(Pa) 
1 102.2 25.40 1.524 6.89 E+10 0.33 2700 
2 101.4 25.40 1.524 6.89 E+10 0.33 2700 
3 101.6 25.40 1.194 6.89 E+10 0.33 2700 
4 101.6 25.40 0.940 6.89 E+10 0.33 2700 
5 101.6 25.50 1.524 6.89 E+10 0.33 2700 

6 101.6 25.58 1.194 6.89 E+10 0.33 2700 
7 101.6 25.48 1.194 6.89 E+10 0.33 2700 
8 101.5 25.40 1.245 2.05 E+11 0.32 8200 
9 101.5 25.40 1.245 2.05 E+11 0.32 8200 
10 56.31 25.32 1.245 2.05 E+11 0.32 8200 

11 33.38 25.32 1.245 2.05 E+11 0.32 8200 
12 22.61 25.32 1.245 2.05 E+11 0.32 8200 
13 14.99 25.32 1.245 2.05 E+11 0.32 8200 
14 8.890 25.32 1.245 2.05 E+11 0.32 8200 

15 Cladding 101.6 25.32 1.245 6.89 E+10 0.33 2700 
15 DU Foil 82.55 19.05 0.330 8.73 E+10 0.324 17130 
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3.2 Sinusoidal Slot Models
 

The Sinusoidal Slot boundary conditions were created by a groove cut into the side 

of the plate holder block, which the plate slides into. The groove shape is effectively 

a sine wave, which undergoes a complete period over the plate length; giving a free 

vibration span of 0.88 inches. The two opposing sides of the plate holder may be 

taken apart, so that the grooves may be flipped relative to one another, allowing 

both grooves to bend the same direction, labeled ‘In–Phase,’ or bend opposite of one 

another, labeled ‘Out–of–Phase,’ as shown in Figures 3.2 and 3.3. The sinusoidal 

shape of the groove deforms the plate slightly, and the resulting contact between 

the holder and the plate is not continuous – as seen in the clamped cases. Instead, 

the contacts can be modeled as line contacts across the depth of the groove at the 

locations where the holder and plate meet, shown in Figure 3.4. 

Figure 3.2: In Phase Sinusoidal Holder - In Phase slot paths shown for both sides 
of the holder 



14 

Figure 3.3: Out of Phase Sinusoidal Holder - Out of Phase slot paths shown for 
oth sides of the holder b

Figure 3.4: Flat Plate in Sinusoidal Clamping - Plate with the slot depth sectioned 
out, showing line contact 
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Ultimately, the complex interactions between the plate and the Sinusoidal Slot 

holder require further analysis than the simple line contacts from Figure 3.4. The plate 

is held securely enough that translation is unlikely; however it may still chatter because 

the slot is cut taller than the thickness of the plate. Additionally, the exact shape of 

the plate within the holder is unknown, and dependent upon numerous conditions, 

including plate thickness. The the Sinusoidal Slot holder was manufactured to mimic 

ideal line contacts on an undeformed plate, where the line would be infinitely thin, 

touching across the depth of the grove. However, to address the observed behavior 

of the holder, two simulation methods were attempted; the first modeled the ideal 

design of the slot, considering the plate to be lying flat, with line contacts at the 

exact location where the groove impinged upon the plate, as given by a sine wave 

undergoing a complete period over the plates length; shown in Figure 1.4. To further 

refine results, the second set of simulations considered a deformed plate; first taking 

the original plate and bending it into a shape similar to the sinusoidal slot. A series of 

translating boundary conditions at the contact locations were used to deform the plate 

‘up’ or ‘down’ relative to the plate’s thickness (along the Z-axis), before solving for the 

frequency. However, the translating boundary conditions cause far too much stress 

for line contacts to be used, instead relying on a more physically representative ‘area 

contact’ to account for the expectation that the slot contacts the plate over a small 

area. Additionally, it was established that larger area contacts caused the solutions 

to converge upon the clamped plate results; so a contact length of 1/8 inch were 

chosen, applied as shown in Figure 3.5. The area contacts did not result in unrealistic 

stress concentrations, but did cause the plate to translate along its length slight while 

bending into the sinusoidal shape; eliminating the use of ABAQUS’s pre-programmed 

Encastered or Pinned conditions. Instead limitation boundary conditions were used, 

restricting motion along the plate’s Z-axis after the boundary translation was complete. 

The exact Z displacement did not have a major impact on the frequency, so long as 

the distance was small relative to the plate thickness. X and Y (width and length) 

limitations were also employed at the respective plate center-lines, to eliminate rigid 

body vibration of the plate. Applying the limitations at the plate centerline was found 
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to be preferable to the more simple application of an Encastered condition on a single 

corner, since the plate is allowed to deform towards the center of mass. 

Figure 3.5: Contact location detail - Detail showing the contact area across which 
the boundary condition is applied for the deformed plate sinusoidal simulations. 

3.3 Submerged Plates 

Modeling submerged vibration of a plate is challenging, due to the added resistance of 

the fluid medium. While air does in fact add resistance, its effect is normally neglected 

due to the air’s low density and viscosity; a luxury not permissible for submersion 

in water. Instead, the method outlined by Howard et al. [1] was applied, where the 

water domain was numerically modeled as a solid body. 

This solid ‘water’ is created by examining the properties required to define a 

material in ABAQUS, which at minimum, consist of: density, Poison’s Ratio, and 

Young’s Modulus. Defining: mass, deformation characteristics, and stiffness. Density 

is a property of fluids, and may be directly applied to the ‘water’ material. Poison’s 

Ratio is likewise simple, since it measures the resulting deformation along an axis, 

resulting from deformation along an orthogonal axis. Water will displace an equal 

volume, since it is roughly incompressible; giving a Poison’s Ratio of 0.5. Young’s 

Modulus of Elasticity must be treated differently; Howard et al. first examined the 

major difference between fluids and solids, noting that fluids do not propagate sheer 
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waves, having a sheer modulus of zero. The Elastic modulus may be calculated
 

from the sheer modulus and Poisson’s Ratio, leading to a Young’s Modulus of zero. 

However, fluids do posses a property called the bulk modulus, which measures the 

compressibility of a fluid in response to a change in pressure. It was found to be 

necessary to calculate an effective Young’s Modulus from the fluids bulk modulus, in 

order for the expected vibration damping to occur. The values used for the ‘water’ 

properties, are listed in Table 3.2, in which Poison’s Ratio has to be modified to 

ν = 0.4999999, to avoid a divide by zero error. 

The ‘water’ models were created in the same fashion as the plate; discrete, de

formable, homogeneous bodies, coupled to the X-Y surfaces of the plate using ABAQUS 

‘Tie’ conditions, shown in Figure 3.6. Two separate ‘water’ bodies had to be modeled, 

since the submerged experiment used different channel gap inserts to narrow the gap 

between the faces of the plate and the inner surfaces of the holder. The experimenter 

designated the gaps either A or B, with the A gap being slightly thinner than the B 

gap. The size of the gap for clamped and sinusoidal holders differs slightly, with the 

measured values listed in Table 3.3. The ‘water’ was confined by boundary conditions 

designed to mimic the interior walls of the holder. The ‘top’ and ‘bottom’ faces of 

the water was subject to a Z axis limitation, while the ‘left’ and ‘right’ sides, were 

subject to X axis limitations; the pseudo-fluid bodies were still free to deform along 

the plate’s length, the Y axis, since the holder is open on both ‘ends’ of the plate. 

Table 3.2: Material Properties of Solid ‘Water’
 

Property Simulated Value Units 
ρ 1000 [kg/m3] 
E 13 200 [Pa] 
ν 0.4999999 
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Figure 3.6: Model of Plate and Water - Model showing the plate, in red, coupled 
to the ‘water,’ in blue. 
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Table 3.3: Channel Gap Sizes
 

Designation Clamped (mm) Sinusoidal (mm) 
A 2.90 1.70 
B 3.78 2.60 

3.4 General Considerations 

Once the methods for simulating the plates were established, a final set of models 

were created with the given material properties from Table 3.1, copies of which were 

then modified for the applicable boundary conditions. Simulations with symmetric 

boundary conditions, P-P, F-F, and In–Phase, were modeled at half width, using an 

X-axis symmetry condition in place of the F, SS, or In-Phase contacts, dramatically 

reducing computation time, but limiting results to symmetric modes. The Sinusoidal 

Slot simulations had an additional limiting factor because only the plates that were 4 

inches long and thin enough to fit in the slot could be tested, limiting these simulations 

to plates 3, 4, 6-9 and the DU plate. 

The plates were meshed in ABAQUS using the default cubic mesh; a C3D8R hex 

mesh with first order linear extrapolation. The default conditions primarily were 

chosen for simplicity and in part to avoid additional separate effects studies, for 

the purpose of examining the effects of varying the mesh parameters. The laminate 

structure of the DU plate model prevented the use of a Hex mesh on the Aluminum 

cladding, which was instead meshed using the default C3D4R tetrahedral mesh, with 

first order accuracy and linear extrapolation. The DU foil was meshed with the 

default Hex mesh to maintain continuity. The pseudo-fluid models were modeled 

in an identical manner to the plates, with a C3D8R linear hex mesh to maintain 

continuity with the plate modeling and to ensure the model was solvable with the 

available computational resources. More advanced meshes were considered, such 

as a quadratic extrapolation elements, C3D20R, and hybrid elements, which allow 

ABAQUS to directly solve for the pressure loading on each element, C3D8RH or 

C3D20RH. Unfortunately the increased computational requirements of these mesh 
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elements greatly increased the solution time, making an extensive study of this analysis 

method impractical. 



4 –Methods 
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Verification of the numeric models involved comparison against analytic solutions for 

air vibration. Clamped plate air vibration frequencies were readily calculated, using 

available equations from literature; however no analytic solution could be found for 

the sinusoidal holders. To address this, the numeric results for the clamped plates 

were compared for accuracy before any of the Sinusoidal Slot simulations were run, 

using the same set of plates. 

4.1 Analytic Solutions 

As accompaniment to the vacuum simulations, analytic work was performed to provide 

a set of verification solutions. Equation 4.1, presented by Blevins in Formulas for 

Natural Frequency and Mode Shape [8], was chosen to calculate the analytic solutions 

for the fundamental mode of a clamped plate vibrating in air, with either a P-P, F-P, 

or F-F boundary condition. 

1 
2λ2 Et3 

fij = 
2πa2 12γ(1 − ν)

(4.1)

  
In this equation γ is the area density, equal to the plate density, ρ, multiplied by 

the plate thickness, t. E is the modulus of elasticity, a is the ‘free span width’ of the 

plate, and ν is Poisson’s Ratio. The λ2 value is a unitless number given in Natural 

Frequency and Mode Shape corresponding to: plate dimensions, clamping method, 

and plate vibration mode; where the plate mode is a combination of the number of 

half-waves along the plate’s length, denoted by i, and width, denoted by j. The given 

λ2 values from Natural Frequency and Mode Shape corresponding to the range of plate 

dimensions and VFC boundary conditions of interest, are shown in Table A.1. These 

values do not match up exactly with the geometries of the VFC plates, necessitating 



  

extrapolation and interpolation to the desired edge length ratios; accomplished using 

quadratic best lines of the closest three consecutive given data points in Microsoft 

Excel. The resulting λ2 values are shown in Table A.2. 

The laminate nature of the DU plate necessitated further mathematical manip

ulation before it could be analyzed with Equation 4.1. In Predicting Critical Flow 

Velocity and Laminate Plate Collapse Flat Plates [15] the authors Jensen et al. 

analyze methods for analytically predicting critical flow velocity of a plate, with 

particular interest in laminated fuel plates. In order to surpass the multi-region nature 

of a laminate plate, the flexural rigidity term, D, is employed, where: 

t3 E 
D = 

12 (1 − ν2) 
(4.2)

D may be used in calculation of the fundamental frequency of the plate by entering 

it into Equation 4.1 to give: 
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1 

fij = (4.3)
2πa2 γ 

In which γ signifies the average area density. 

For laminated plates, Jensen et al. details two methods of deriving the flexural 

rigidity term, ultimately deciding the ideal laminate model, given in Equation 4.4, is 

the best suited over a wide range circumstances.     
Equation 4.4 employs the subscripts ir and or to signify the inner and outer 

regions; additionally requiring that the two outer regions be identical to each other. 

The remaining unknown,γ, in Equation 4.3 is an easily computed average: 

1 3 3 t32Eor 2 2 3 Eir irD = (t + + t + (4.4)ir)tor tir ∗ tor or3 (1 − ν2 ) 4 2 (1 − ν2 ) 4or ir

ρir ∗ lir ∗ tir ∗ ρor ∗ lor ∗ 2tor
γ = (4.5)

lor ∗ wor 

2D λ2 

Using Equations 4.4 and 4.5 it is possible to solve for D, which may be used in 

Equation 4.3 to arrive at the fundamental frequency of the DU Plate vibrating in air. 



4.2 Analytic Error Analysis of Numeric Results 

The accuracy of numeric results depends upon the number of mesh elements used 

to calculate the solution. As the number of mesh elements goes to infinity, the 

model comes closer and closer to reality, and likewise becomes capable of modeling 

perturbations with higher precision; causing the calculated results to asymptotically 

approach a ‘true’ value. Grid dependence studies establish what this ‘true value’ is, 

allowing the error to be defined as the percent difference between the calculated result 

and the ‘true value.’ In order to ensure the simulation results accurately model reality, 

a grid dependence study was performed upon plates 1, 4, 10-14, and the DU plate for 

the most error prone boundary condition, the P-P condition. The same error analysis 

was also applied to plates 4, 7, and the DU plate for Sinusoidal Slot Plates with both 

the line and area contact assumptions. No submerged plate error analyses was carried 

out due to computational limitations. All detailed calculations of the error analysis 

may be found in Appendix B. 

The derivation of the grid dependence study begins with considering the element 

size; as the number of elements goes to infinity, the size of each computational element 

trends to zero, a fact that can be leveraged by defining an element size, h, as the 

inverse of the number of elements along an arbitrary plate direction. Since the plates 

are thin compared to their length and width, it is convenient to define h as the inverse 

of the number of elements across the plate thickness: 

1 
h = (4.6) 

ni,z 

Since the denominator trends to zero as we approach infinity, the change in element 

size, Δh, is preferred, where: 

Δhi =


    
 1 1 − 

    
 (4.7)
 
ni,z ni−1,z
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And correspondingly, the magnitude of the change in frequency, Δf , is compared 

against the change in elements size, where: 
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Δfi = |fi − fi−1| (4.8) 

By keeping the element side length ratio constant, while simulating several different 

element sizes, it is possible to examine the change in element size against the change 

in frequency. These frequency changes are exponential in nature, so both equations 

are linearized through taking the natural log of Δf and Δh. The plot of linearized 

data, ln Δf as a function of ln Δh, can have a linear trend line fit to it, which has 

well-known equation that describes the line for all Δh. This equation can be rewritten 

with respect to the variables of interest as: 

ln Δf = m ∗ ln Δh + b (4.9) 

in which, m and b are the slope and y intercept of the best fit line. It is now 

possible to describe the behavior of the data at any mesh element size, so long as 

the change in element size required to get from a known result, to another result, is 

known. Taking the last known result and using that element size as the next Δh value 

effectively changes the element size to zero. Rearrange Equation 4.9 for frequency 

allows the true frequency, fi+1 to be found: 

(mΔhi+b)fi+1 = fi + e (4.10) 

The percent error, also known as the percentage of exact value, was established 

from the difference between the true frequency and the last frequency result, divided 

by true frequency, and multiplied by 100%. When calculating the grid dependence, 

it is considered necessary to examine a minimum of 5 elements in any directions for 

the results to be meaningful, and the elements should be as close to cubic as possible. 

The dramatic difference between the length and width of the plates compared to the 

thickness, necessitated element edge length ratios of 2:2:1, with the elements being 

half as thick were long or wide.The mathematics work best if h is halved each step; 

implying that the number of elements along any direction must double each time. This 
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requirement suggests the grid dependency studies use steps of 5, 10 and 20 elements 

across a plate’s thickness. 

To avoid performing grid dependency studies on all 15 plates, the element size, h, 

was fixed at the size producing to 20 elements across the thickness of Plate 1, which 

has the largest volume. Using this element size, listed in Table A.3, it is possible to 

bound the expected error for Plates 1-9. Since the element size is set for Plate 1, 

this plate is expected to have the smallest error; while in contrast, the thinnest plate, 

number 4, should have the largest error because it will have the fewest elements. By 

performing a grid dependence study on Plate 4, with 5, 10, and 20 elements across the 

thickness, and comparing the ‘true frequency’ result to the simulation results at the 

fixed element size given in Table A.3, the largest expected error may be established as 

the percent difference of these two results. Error for the remaining seven plates will 

fall between that established for Plates 1 and 4. 

Plates 10-14 have different edge length ratios, but identical thicknesses. Individual 

error analyses were carried out on each to eliminate any effects of edge length ratio 

on solution accuracy using the mesh element sizes are shown in Table A.3. The DU 

Plate also has its own error analysis to ensure no unexpected results cropped up from 

the tetrahedral mesh or the laminate model. 

4.3 Submerged Plate Simulations 

Upon the conclusion of air simulations, work on submerged plate vibration began. 

The first issue encountered was the failure of the Eigen solver. The low sheer modulus 

of the ‘water’ elements, result in fundamental frequencies far below the range of the 

plate, making it impossible for the Eigen solver to find a frequency for the plate. To 

surpass this difficulty, the plates were numerically ‘plucked’ by an applied pressure 

load that was instantaneously released so the displacement of the plate as a function of 

time could be tracked. By subjecting this displacement vs. time data to a Fast Fourier 

Transform (FFT), frequency data was obtained, from which the first prominent peak 

was taken as the fundamental frequency. To ensure this method would work, it was 
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first attempted upon an isolated plate, mimicking air vibration, and the frequency 

results were compared against the Eigen solver results. It was found that most loading 

schemes excited high order modes, which slightly modified the fundamental frequency 

found in the Fourier Transform. Figures 4.1 and 4.2 show two pressure loads used to 

‘pluck’ the isolated plate. Figure 4.1 mimics the experimental loading, of pressing one 

free end of the plate with a guitar pick, while in Figure 4.1 attempts to deform the 

plate into the fundamental mode shape for vacuum vibration. As shown in Figure 5.13, 

it was found that Figure 4.2 gave superior results for air vibration; however, coupling 

the pseudo-fluid elements to the plate interfered with the mode shape. As a result, the 

pressure loading shown in Figure 4.3 was finally selected for ‘plucking’ the submerged 

plates. 

The water was coupled to the plate through tie interfaces, and the assembly was 

meshed for numeric solutions. Numerically, solving for plate vibration as a dynamic 

step is far more computationally expensive than the Eigen solver was. In order to 

arrive at solutions in reasonable periods of time, both the plate and water meshing 

was kept as coarse as possible. The plate was meshed at 10 elements across the plates 

thickness, using the same 2:2:1 element edge length ratio as for the Eigen simulations. 

The ‘water’ was meshed using cubic cells, aiming at 8-10 across the thickness of each 

water model, which gave element sizes quite a bit larger, listed in Table A.3. 
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Figure 4.1: Guitar Pick Pressure Loading - Pressure loading attempting to 
simulate experimental plate pluck using guitar pick on one open end of the plate. The 
plate dimensions have been normalized. 

Figure 4.2: Mode Shape Pressure Loading - Normalized representation of pressure 
loading that deforms the plate in a manner similar to the shape of the fundamental 
frequency of the plate vibrating in air. 
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Figure 4.3: Submerged Plate Pressure Loading - Normalized representation of 
the pressure loading used to pluck submerged plates. 
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5 –Results 

5.1 Air Results 

Initially the Eigen frequency results, listed in Appendix A.2.1, were compared against 

one another, and the general trends observed to ensure the numeric models acted as 

anticipated. The numeric results were further compared against analytic results, listed 

in Table A.4 noting good comparisons. Then, data from the two clamped plate holders 

was compared against each of the three ‘clamped plate’ numeric boundary conditions, 

to establish which modeling condition yielded the best fit to experimental data. The 

Sinusoidal Slot data was compared against the numeric boundary conditions for both 

the flat and deformed plate assumptions. 

5.1.1 Clamped Plates 

General model validation was performed by comparing the effects of plate thickness 

and material on each of the three modeled clamped plate boundary conditions, shown 

in Figures 5.1 and 5.2. In Figure 5.1 the expected trend of thicker plates vibrating 

faster is seen, while in Figure 5.2 the difference between Inconel and Aluminum is 

minimal, while the the DU Plate has a significantly lower natural frequency. 

Further comparisons between numeric and analytic results lends additional con

fidence to the Numeric models. A subset of plates, representing various lengths, 

thicknesses, and materials, are compared for all boundary conditions in Figure 5.3, 

with Figure 5.4 providing a more detailed comparison for the F-P boundary condition. 

It is noticeable that the numeric results are in good agreement with the analytic; 

excepting the DU Plate, which deviates for all three boundary conditions. 
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Figure 5.1: Fundamental Frequency vs. Plate Thickness - Numeric results for 
homogeneous Aluminum plates compared as a function of plate thickness 
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Figure 5.2: Fundamental Frequency vs. Plate Material - Numeric results 
compared as a function of plate material for homogeneous Aluminum and Inconel, as 
well as laminate DU plate 
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Figure 5.3: Numeric and Analytic Comparison - Comparison between Numeric 
and Analytic Results for all 3 boundary conditions, F-F, F-P and P-P 
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Figure 5.4: Numeric vs. Analytic F-SS Comparison - Comparison between the 
numeric and analytic results for a subset of plates for the F-P boundary condition 
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The clamped plate holders in the VFC should each yield slightly different data, due 

to the different boundary conditions, as shown in Figures 1.2 and 1.3. The different 

behaviors of the experimental plates under each of the two holders can be observed in 

Figure 5.5, and are listed in Appendix A.2.1. 

Figure 5.5: Experimental Data Comparison - Comparison of the experimental 
data from the flat and knife edge holders 

These basic comparisons lend confidence to the Eigen solver results. Figure 5.6 

shows that the numeric results do fall within the experimental data range; shown for 

both clamped plate holders and all three clamped boundary conditions. In further 

detail, Figures 5.7 to 5.9, show the set of experimental data compared against each of 

the three simulated boundary conditions. The experimental plate holders are not easily 

defined by a simple boundary condition; however in general, the F-P condition yields 

decent approximations for the Flat edge holder, while the P-P boundary condition 
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yields good approximations for the Knife edge, with the noticeable exception of the DU
 

plate, for which the Flat edge data is most accurately modeled by the F-F condition.
 

Figure 5.6: Numeric vs. Experimental Comparison - Comparison between the 
range of clamped plate experimental data and the range of clamped plate numeric 
results 
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Figure 5.7: Clamped Plate Experimental and Numeric F-F Comparison 
Comparison of the F-F numeric results against experimental data from the Flat and 
Knife edge plate holders 
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Figure 5.8: Clamped Plate Experimental and Numeric F-P Comparison 
Comparison of the F-P numeric results against experimental data from the Flat and 
Knife edge plate holders 
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Figure 5.9: Clamped Plate Experimental and Numeric P-P Comparison 
Comparison of the P-P numeric results against experimental data from the Flat and 
Knife edge plate holders 
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5.1.2 Sinusoidal Slot
 

For the Sinusoidal Slot, it becomes apparent that the deformed plate assumption 

is far more accurate than the flat plate assumption, especially for Out–of–Phase 

simulations. For the In–Phase comparison, shown in Figure 5.10, the experimental 

data has excessive amounts of error, likely a result of plate chatter within the slot, 

thus no conclusions about the modeling ability of either solution method can be drawn. 

Transitioning to Out–of–Phase models, the results of the flat plate assumption barely 

change, shown in Figure 5.11, but the deformed plate assumption compares quite well 

with experimental data. 

Figure 5.10: In-Phase Boundary Condition Comparison - Comparison between 
the Flat and the Deformed Plate Assumptions against the experimental data for the 
In-Phase Holder 
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Figure 5.11: Out-of-Phase Boundary Condition Comparison - Comparison 
between the Flat and the Deformed Plate Assumptions against experimental data for 
the Out of-Phase Holder 
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5.1.3 Pressure Loading 

Since the numeric results for the P-P boundary condition compare favorably against the 

experimental data and can be modeled with relative simplicity, submerged calculations 

initially focused on these plates. In order to solve the submerged frequency, a set 

of simulations were run for an isolated plate in a vacuum, comparing the dynamic 

implicit ‘pluck’ solution, against the Eigen frequency results. 

The initial pressure loading, shown in Figure 4.1, simulated the guitar pick used 

to experimentally pluck the plates. The displacement data and the FFT, shown in 

Figure 5.12, are messy and yield a result of 8013 Hz, which does not compare well 

against Eigen frequency result of 7119 Hz. Changing the pressure loading to mimic 

the first mode shape, shown in Figure 4.2, gave a cleaner FFT, shown in Figure 5.13 

and a frequency of 6961 Hz, which compares nicely against the Eigen result of 7119. 

Unfortunately, the addition of the water elements changed the fundamental mode 

shape, requiring a different pressure loading, shown in Figure 4.3, which produced a 

cleaner FFT, shown in Figure 5.14, for submerged simulations. 
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Figure 5.12: Displacement and FFT results, Experiment Loading - Displace
ment over time and the the Fourier Transform of that data for the guitar pick pressure 
loading of a simulated plate vibrating in a vacuum 
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Figure 5.13: Displacement and FFT results, Mode Shape Loading - Displace
ment over time and the the Fourier Transform of that data, for the fundamental 
frequency of a simulated plate vibrating in a vacuum 
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Figure 5.14: Displacement and FFT results, Submerged Simulations - Dis
placement over time and the the Fourier Transform of that data, for the fundamental 
frequency of a simulated submerged plate 
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5.1.4 Submerged Models 

Before simulating numerous plates, the submerged results were compared against 

the isolated plate frequencies, to ensure that damping was occurring. As shown in 

Figure 5.15, the pseudo-fluid is significantly damping the plate frequencies, by over 2 

orders of magnitude. 

Figure 5.15: Isolated Plate vs. Submerged Plate Frequency Comparison 
Numeric results for plates comparing the Eigen frequencies of the isolated plates 
against the dynamic solutions for the submerged plates, showing the large degree of 
damping occurring due to the pseudo-fluid. 

The submerged modeling results are not easily defined by a certain characteristic. 

Shown in Figure 5.16, are the numeric results for the submerged plate simulations of 

the A and B channel gaps. The two channels line up closely with one another, as seen 

in detail in Figures 5.17 to 5.19, or in the tabulated data, listed in Appendices A.3.1 

and A.3.2. In general, the A channel size has a lower frequency than the B channel. 



46 

Figure 5.16: Submerged Channel Gap Comparison - Comparison of the numeric 
results for the A and B channel gaps for submerged plates. 
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Figure 5.17: Submerged F-F Channel Gap Comparison - Comparison of the 
numeric results for the A and B channel gaps for submerged F-F plates. 
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Figure 5.18: Numeric vs. Analytic F-P Comparison - Comparison between the 
umeric and analytic results for a subset of plates for the F-P boundary condition n
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Figure 5.19: Submerged P-P Channel Gap Comparison - Comparison of the 
numeric results for the A and B channel gaps for submerged P-P plates. 
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Experimental data for the clamped plates is available for the B channel gap, which 

is compared against numeric results in Figure 5.20. In general the numeric results 

over-predict the submerged frequency, tabulated in Appendix A.3.2, with only the 

P-P condition giving results near experimental values, shown in Figure 5.21. 

Figure 5.20: Submerged Numeric vs. Experimental Comparison - Comparison 
between the range of submerged experimental data and the range of submerged numeric 
results 
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Figure 5.21: Numeric vs. Experimental P-P Comparison - Comparison between 
the numeric results and experimental data for a subset of plates, under the P-P 
boundary condition 
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6 –Conclusions 

A numeric benchmark study was conducted to attempt to gain additional insight and 

understanding into submerged plate vibration, building off of a suite of experimental 

tests conducted at Oregon State University. The numeric results for fifteen plates 

under seven different boundary conditions, were compared against similar analytic 

results, and the experimental data from four plate holders. For the fundamental 

frequency of clamped plates vibrating in air, it was found that they are best modeled 

as an isolated plate with a width equal to the free vibration span of the holder, using 

either P-P line contacts for the Knife edge holder, or F-P contacts for the Flat edge 

holder. The Sinusoidal Slot is best modeled by deforming the plate through use of 

translating boundary conditions, applied over small area contacts to avoid massive 

stress concentrations. The Out–of–Phase simulations compare well against the numeric 

simulations, while the In–Phase experimental data has significant error, preventing the 

establishment of any conclusive trends. The flat plate assumption was not found to 

be accurate, especially for the Out–of–Phase holder. Modeling of the laminated plate 

presented numerous challenges, especially with consideration to the location of the foil 

within the plate. The assumption of a completely flat, perfectly centered foil was most 

likely the root cause of the significant departure of the DU results from the normal 

trends. In similar plates, it has been found that the foil sags during manufacturing, 

which may add significant stiffness to the plate. 

Presently, numeric work suggests that the pseudo-fluid assumption has the potential 

to accurately predict submerged plate frequencies; however the small body of both 

numeric and experimental data does not present any obvious trends. Based on the in 

air studies conducted earlier, the dynamic implicit solver produces results very close 

to the Eigen frequency solver, which produces results near the experimental data for 

some cases, and follow easily identifiable trends. Building off of this knowledge, it is 

likely that further refinement of the modeling assumptions behind the pseudo-fluid 
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elements can yield accurate results that can be extended to a wide range of boundary 

conditions and plate materials, with accuracy trends mimicking those seen by isolated 

plates. 

6.1 Suggestions for Future Work 

Further work examining the laminate plate is necessary before numeric work can 

progress on it, particularly examining the discrepancy that exists between the numeric 

and analytic results, as shown in Figure 5.3, both of which assumed an ideal, flat foil, 

yet produce widely varying results; a discrepancy not observed in the comparisons 

between the homogeneous results. The ability to account for a deformed foil within 

the plate is necessary, since the foil sags within the cladding during manufacturing. 

The comparison of numeric results against experimental data showed that a stiffer 

boundary condition improved the accuracy of the results, and it is worth examining 

the applicability of various boundary conditions, or material properties, to see if it 

is possible to further increase accuracy and to derive trends that could be used for 

predictive purposes. 

Further work on the pseudo-fluid method examining fluid properties, particularly 

the choice of Young’s Modulus, presents another valuable line of inquiry, possibly 

yielding a more broadly applicable approach to increasing the simulation accuracy. 

Otherwise, further work expanding both the number of numeric results and body of 

experimental data, is likely to present general trends that would suggest additional 

methods for increasing accuracy. Using a different mesh, such as a quadratic element 

or switching to hybrid elements will help further increase the accuracy, at the cost of 

greatly increased solution times. 
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A –Tabulated Values used in Report 

This appendix contains all numeric values used in the creation of tables and figures 

shown throughout the paper as well as additional numeric data not presented due to 

lack of experimental comparison. 

A.1 Tabulated Values used in computations 

Table A.1: Given λ2 values 

Edge Ratio F-F F-P P-P 
Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

0.4 22.35 23.09 15.38 16.37 9.76 11.04 
2/3 22.31 24.31 15.34 17.95 9.7 12.98 
1 22.27 26.53 15.29 20.67 9.63 16.14 
1.5 22.21 30.9 15.22 25.71 9.56 21.62 
2.5 22.13 41.69 15.13 37.29 9.48 33.62 
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Table A.2: Extrapolated λ2 values for VFC Plates 

Plate Edge Ratio F-F F-P P-P 
Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

1 0.2483 22.38 22.62 15.4 15.71 9.78 10.17 
2 0.2504 22.38 22.62 15.4 15.72 9.78 10.18 
3 0.25 22.38 22.62 15.4 15.71 9.78 10.18 
4 0.25 22.38 22.62 15.4 15.71 9.78 10.18 
5 0.2509 22.38 22.62 15.4 15.72 9.78 10.18 
6 0.2518 22.37 22.63 15.4 15.72 9.78 10.19 
7 0.2508 22.38 22.62 15.4 15.72 9.78 10.18 
8 0.2502 22.38 22.62 15.4 15.71 9.78 10.18 
9 0.2501 22.38 22.62 15.4 15.71 9.78 10.18 
10 0.5 22.33 23.49 15.37 16.9 9.74 11.71 
11 0.7496 22.3 24.95 15.33 18.75 9.68 13.91 
12 1.1202 22.25 27.55 15.27 21.87 9.61 17.45 
13 1.6899 22.19 32.74 15.2 27.52 9.53 23.57 
14 2.8486 22.11 46.09 15.11 41.8 9.48 38.13 
DU 0.25 22.38 22.62 15.4 15.71 9.78 10.18 

Table A.3: Final Air Vibration Mesh Element Sizes 

Plate Length (m) Width (m) Thickness (m) 
1-9 1.5200 E-04 1.5200 E-04 7.6200 E-05 
10-14 1.2446 E-4 1.2446 E-4 0.6223 E-4 
DU 1.2446 E-4 1.2446 E-4 0.6223 E-4 

Thin ‘Water’ channel 2.8956E-4 2.8956E-4 2.8956E-4 
Thick ‘Water’ channel 3.7846E-4 3.7846E-4 3.7846E-4 
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A.2 Results for Air Vibration 

A.2.1 Clamped Plates 

Table A.4: Analytic Results for Fundamental Frequency of Clamped Plates in Air 

Frequency (Hz) 
Plate F-F F-P P-P 
1 16484 11343 7203 
2 16484 11343 7203 
3 12912 8885 5643 
4 10165 6995 4442 
5 16484 11343 7203 
6 12906 8885 5643 
7 12912 8885 5643 
8 13276 9135 5802 
9 13276 9135 5802 
10 13246 9118 5778 
11 13228 9094 5742 
12 13199 9058 5701 
13 13163 9017 5653 
14 13116 8963 5624 
DU 9319 6413 4073 
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Table A.5: Numeric Results for Fundamental Frequency of Clamped Plates in Air
 

Plate F-F (Hz) F-P (Hz) P-P (Hz)
 
1 15904 11,061.00 7,119.80 
2 15903 11,061.00 7,119.30 
3 12601 8,726.70 5,596.40 
4 9978.7 6,892.00 4,410.10 
5 15903 11,061.00 7,119.40 
6 12601 8,726.70 5,596.40 
7 12601 8,726.70 5,596.40 
8 12939 8,967.70 5,755.50 
9 12939 8,967.70 5,755.50 
10 12920 8,942.30 5726.8 
11 12636 8,737.90 5,586.80 
12 12599 8,698.90 5,547.90 
13 12552 8,651.80 5,506.90 
14 12697 8,727.40 5,543.50 

DU Plate 6852.2 4819.1 3137.7 

Table A.6: Experimental Data for Fundamental Frequency of Clamped Plates in Air 

Plate Knife Edge Fixed 
3 6450.0 ± 25 10103 ± 576 
4 8666.3 ± 61.9 9307.2 ± 473.6 
6 8698.5 ± 3311 6168.0 ± 1442 
8 5577.0 ± 853 10343.0 ± 393 
DU — 6236 ± 116 
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A.2.2 Sinusoidal Results
 

Table A.7: Numeric Results for Fundamental Frequency of Sinusoidal Plates in Air
 

In Phase 
Plate Line Contact Area Contact 
3 1059.60 2321.6 1250.90 4418.2 
4 834.62 1867.4 999.60 3478.3 
6 1059.70 2330.3 1256.2 4355.5 
7 1059.70 2325.5 1256.20 4391.9 
8 1093.60 2384.0 1288.0 4544.4 
9 1092.90 2382.9 1287.2 4544.0 

DU Plate 783.52 1684.8 919.04 3138.9 

Out of Phase
 
Line Contact Area Contact
 

Table A.8: Experimental Data for Fundamental Frequency of Sinusoidal Plates in Air
 

Plate In–Phase Out–of–Phase
 
3 3430.0 ± 3870 4763.0 ± 235 
6 5160.0 ± 4420 4180.6 ± 47.4 
8 1893.0 ± 979 4822.1 ± 39.8 
DU 794.0 ± 263 4777.9 ± 29.5 



62 

A.3 Results for Submerged Plate Vibration 

A.3.1 “A” Size water gap 

Table A.9: Numeric Results for Submerged Fundamental Frequency of Clamped Plates 
with “A” Water Gap 

Frequency (Hz)
 
Plate F-F F-P P-P
 
4 523.44 292.73 246.00 
6 781.25 820.31 355.47 
8 1266.89 837.05 686.23 

DU Plate 1171.9 — 671.87 

Table A.10: Experimental Data for Submerged Fundamental Frequency of Sinusoidal 
Plates with “A” Water Gap 

Plate In–Phase Out–of–Phase 
3 — 260 ± 400 
6 2520 ± 1970 952 ± 214 
8 129.80 ± 94.30 59.0 ± 29.5 

DU Plate 608.0 ± 373.0 766.8 ± 29.5 
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A.3.2 “B” Size water gap 

Table A.11: Numeric Results for Submerged Fundamental Frequency of Clamped 
Plates with “B” Water Gap 

Plate F-F (Hz) F-P (Hz) P-P (Hz) 
4 566.41 324.22 292.79 
6 927.73 595.70 421.87 
8 1185.8 892.86 582.03 

DU Plate 856.33 — 500.00 

Since the clamped plate holders restrict width, Plates 3 and 6 have identical 

dimensions within the holders and the experimental results for Plate 3 are compared 

against the numeric results from plate 6, since early error analysis on the submerged 

plates was conducted upon plate 6. 

Table A.12: Experimental Data for Submerged Fundamental Frequency of Clamped 
Plates with “B” Water Gap 

Plate Knife Edge Fixed 
3 246.2 324.7 
4 80 164.0 
8 60 315 

The submerged clamped plate experimental data presented in Table ?? was not 

collected as part of the VFF work, it was instead collected after the conclusion of the 

paper, using the same methods and equipment, but was not subject to the rigorous 

data analysis required to determine the standard deviation of each data set. 
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Table A.13: Experimental Data for Submerged Fundamental Frequency of Sinusoidal 
Plates with “B” Water Gap 

Plate In–Phase Out–of–Phase 
3 157.2 ± 41.9 519.0 ± 666 
6 1370 ± 2010 1907.2 ± 42 
8 231.0 ± 112 1091 ± 1224 

DU Plate 808.0 ± 375 991 ± 885 
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B –Error Analysis Details 

This appendix contains the error analysis calculations and results, performed according 

to Section 4.2. The first table presents the ABAQUS results and derived values from 

the ABAQUS results. The log values were plotted against one another in Excel 2013 

and the results of the equation parameters of a best fit line are shown in the subsequent 

table. This table also includes the linear extrapolation predictions for each of the error 

analysis steps, which were used as a figure of merit for error checking the analysis. 

B.1 Clamped Plate Error Analysis 

Details of the grid analysis. The element edge length ratio used for all grid independence 

studies was 2:2:1 (l:w:t). 

Table B.1: Plate 1 Error Analysis 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 7032.7 0.2 
10 7093.2 0.1 0.1 -2.3026 4.102643 60.5 
20 7117.3 0.05 0.05 -2.9957 3.182212 24.1 

Table B.1: Plate 1 True Frequency Calculations
 

m 1.3279 
b 7.1603 

Extrapolated Value 1 7093.2 
Extrapolated Value 2 7117.3 

True Frequency 7141.4 
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Table B.2: Plate 4 Error Analysis
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 4327.1 0.2 
10 4403.9 0.1 0.1 -2.3026 4.341205 76.8 
20 4419.9 0.05 0.05 -2.9957 2.772589 16 

Table B.2: Plate 4 True Frequency Calculations
 

m
 
b
 

Extrapolated Value 1
 
Extrapolated Value 2
 

True Frequency
 

2.263 
9.552 
4403.9 
4419.9 
4435.9 

Table B.3: Plate 10 Error Analysis
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 5658.1 0.2 
10 5706.7 0.1 0.1 -2.3026 3.858622 47.4 
20 5726.8 0.05 0.05 -2.9957 2.944439 19.0 

Table B.3: Plate 10 True Frequency Calculations
 

m
 
b
 

Extrapolated Value 1
 
Extrapolated Value 2
 

True Frequency
 

1.2738 
6.8166 
5706.7 
5726.8 
5746.9 
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Table B.4: Plate 11 Error Analysis
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 5520.4 0.2 
10 5567.8 0.1 0.1 -2.3026 3.858622 47.4 
20 5587.3 0.05 0.05 -2.9957 2.9957 19.5 

Table B.4: Plate 11 True Frequency Calculations
 

m
 
b
 

Extrapolated Value 1
 
Extrapolated Value 2
 

True Frequency
 

1.2814 
6.8092 
5567.8 
5587.3 
5606.8 

Table B.5: Plate 12 Error Analysis
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 5482.0 0.2 
10 5529.0 0.1 0.1 -2.3026 3.850148 47.0 
20 5548.4 0.05 0.05 -2.9957 2.965273 19.4 

Table B.5: Plate 12 True Frequency Calculations
 

m
 
b
 

Extrapolated Value 1
 
Extrapolated Value 2
 

True Frequency
 

1.2766 
6.7896 
5529.0 
5548.4 
5567.8 
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Table B.6: Plate 13 Error Analysis
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 5441.1 0.2 
10 5487.7 0.1 0.1 -2.3026 3.841601 46.6 
20 5506.9 0.05 0.05 -2.9957 2.95491 19.2 

Table B.6: Plate 13 True Frequenc Calculations
 

m
 
b
 

Extrapolated Value 1
 
Extrapolated Value 2
 

True Frequency
 

1.2792 
6.7871 
5487.7 
5506.9 
5526.1 

Table B.7: Plate 14 Error Analysis
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 5472.7 0.2 
10 5519.9 0.1 0.1 -2.3026 3.854394 47.2 
20 5539.3 0.05 0.05 -2.9957 2.9652735 19.4 
40 5543.5 0.025 0.025 -3.6889 1.435085 4.2 

Table B.7: Plate 14 True Frequency Calculations
 

m
 
b
 

Extrapolated Value 1
 
Extrapolated Value 2
 
Extrapolated Value 3
 

True Frequency
 

1.7452 
7.9796 
5525.2 
5535.6 
5544.0 
5548.2 
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Table B.8: DU Plate Error Analysis
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 3071.4 0.2 
10 3128.6 0.1 0.1 -2.3026 4.046554 57.2 
20 3137.7 0.05 0.05 -2.9957 2.208274 9.1 

Table B.8: DU Plate True Frequency Calculations
 

m 2.6521 
b 10.153 

Extrapolated Value 1 3128.6 
Extrapolated Value 2 3137.7 

True Frequency 3146.8 
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B.2	 Sinusoidal In-Phase Error Analyses using the Flat Plate 

Assumption 

Performed on Plates 4, 7, and the DU Plate. As in Tables B.9, B.9 

Table B.9: Sinusoidal Plate 4 Error Analysis under Flat Plate Assumption 

elements across plate Frequency h Δh log(Δh) log(Δf) Δf 
5 821.38 0.2 
10 833.42 0.1 0.1 -2.3026 2.488234 12.0 
20 836.34 0.05 0.05 -2.9957 1.071584 2.92 

Table B.9: Sinusoidal Flat Plate 4, True Frequency Calculations
 

m 2.0438 
b 7.1942 

Extrapolated Value 1 833.4 
Extrapolated Value 2 836.3 

True Frequency 839.3 

Table B.10: Sinusoidal Plate 7 Error Analysis under Flat Plate Assumption
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 1041.3 0.2 
10 1056.7 0.1 0.1 -2.3026 2.734367 15.4 
20 1060.3 0.05 0.05 -2.9957 1.280934 3.60 
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Table B.10: Sinusoidal Flat Plate 7, True Frequency Calculations
 

m
 
b
 

Extrapolated Value 1
 
Extrapolated Value 2
 

True Frequency
 

2.0969 
7.5626 
1056.7 
1060.3 
1063.9 

Table B.11: Sinusoidal DU Plate Error Analysis under Flat Plate Assumption
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 766.88 0.2 
10 781.46 0.1 0.1 -2.3026 2.679651 14.6 
20 783.52 0.05 0.05 -2.9957 0.722706 2.06 

Table B.11: Sinusoidal Flat Plate 7, True Frequency Calculations
 

m
 
b
 

Extrapolated Value 1
 
Extrapolated Value 2
 

True Frequency
 

2.8233 
9.1805 
781.5 
783.5 
785.6 
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B.3	 Sinusoidal In-Phase Error Analyses using the the Deformed 

Plate Assumption 

Performed on Plates 4, 7, and the DU Plate 

Table B.12: Sinusoidal Plate 4 Error Analysis under Deformed Flat Plate Assumption 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 1835.9 0.2 
10 1865.0 0.1 0.1 -2.3026 3.370738 29.1 
20 1870.8 0.05 0.05 -2.9957 1.757858 5.80 

Table B.12: Sinusoidal Deformed Plate 4, True Frequency Calculations
 

m 2.3269 
b 8.7286 

Extrapolated Value 1 1865.0 
Extrapolated Value 2 1870.8 

True Frequency 1876.6 

Table B.13: Sinusoidal Plate 7 Error Analysis under Deformed Plate Assumption
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 2277.0 0.2 
10 2319.8 0.1 0.1 -2.3026 3.7565 42.8 
20 2326.7 0.05 0.05 -2.9957 1.9315 6.90 
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Table B.14: Sinusoidal Flat Plate 7, True Frequency Calculations
 

m 26329 
b 9.8191 

Extrapolated Value 1 2319.8 
Extrapolated Value 2 2326.7 

True Frequency 2333.6 

Table B.15: Sinusoidal Plate 7 Error Analysis under Deformed Plate Assumption
 

elements 
across plate 

Frequency h Δh log(Δh) log(Δf) Δf 

5 1650.8 0.2 
10 1681.1 0.1 0.1 -2.3026 3.41115 30.3 
20 1684.8 0.05 0.05 -2.9957 1.3083 3.70 

Table B.16: Sinusoidal Flat Plate 7, True Frequency Calculations
 

m 3.0337 
b 10.397 

Extrapolated Value 1 1681.1 
Extrapolated Value 2 1684.8 

True Frequency 1688.5 
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B.4 Tabulated Error Estimates for Clamped Plates 

Estimated difference between numeric value and actual grid independent result for 

clamped plates vibrating in air. 

Table B.17: Clamped Plate Error 

Plate F-F (Hz) F-SS (Hz) SS-SS (Hz) 
1 48.0 33.4 21.5 
2 48.0 33.4 21.5 
3 38.1 26.4 16.9 
4 58.1 40.1 25.7 
5 48.0 33.4 21.5 
6 38.1 26.4 16.9 
7 38.1 26.4 16.9 
8 39.1 27.1 17.4 
9 39.1 27.1 17.4 
10 45.2 31.3 20.0 
11 44.0 30.4 19.4 
12 43.8 30.3 19.3 
13 43.6 30.0 19.1 
14 10.7 7.3 4.70 

DU Plate 19.8 13.9 9.1 
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