


AN ABSTRACT OF THE THESIS OF

Siva Sai Yerubandi for the degree of Master of Science in Electrical and

Computer Engineering presented on April 07, 2004.

Title: Development and Enhancement of AE32000: An Embedded

Microprocessor Core

Abstract approved:

Ben Lee

AE32000 microprocessor was developed mainly to address the need for the

reduction in the amount of memory accesses in embedded applications. One of the

primary goals of a computer architect is the design and construction of machines,

that support the efficient execution of the programs that will run on them. The

simplicity of the instruction set provides a number of implementation advantages

that can substantially enhance the performance of the machine. The use of fixed

length instructions and a few formats permits simpler hardware, faster instruction

execution and low power consumption. These advantages are influenced by the

usage of LERI instruction. The number of ALU operations executed in AE32000,

using the integer only instruction set, are greatly reduced compared to the mixed

instruction set architecture like ARM.

Index terms : 16 bit instruction length, Extendable Instruction Set Computer,

Load Extension Register Immediate LERI, elf binary, code density.



c©Copyright by Siva Sai Yerubandi

April 07, 2004

All Rights Reserved



Development and Enhancement of AE32000: An Embedded Microprocessor Core

by

Siva Sai Yerubandi

A Thesis

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed April 07, 2004
Commencement June 2004



Master of Science thesis of Siva Sai Yerubandi presented on April 07, 2004

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director, School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to

any reader upon request.

Siva Sai Yerubandi, Author



Master of Science thesis of Siva Sai Yerubandi presented on April 07, 2004

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Associate Director, School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to

any reader upon request.

Siva Sai Yerubandi, Author



ACKNOWLEDGMENTS

I deeply thank my advisor, Dr. Ben Lee, whose help, advice and supervision

was invaluable. Without his help, this work would not have been possible. I would

also like to thank the members of my committee who braved the storm of the

century to attend my defense: Dr. Alexandre F. Tenca, Dr. Roger L. Traylor and

Dr. Jack Higginbotham. Their advice and patience is appreciated. I thank Ferne

and all the staff members of the Electrical Engineering and Computer Science

Department who had the answers for all my administrative and other questions.

Special thanks to my officemates Weetit Wanaletlak, Balaji Megarajan,

and John Mark Matson for their assistance, conversations and for generally

putting up with me. Those long nights infront of the computer in Owen345

lab will not be forgotten. I would also like to thank Sanka Srinivas, Imran Khan,

Harish Peddibhotla, Harish Gandhi, Sudheer Vemulapally, Hari Priya, Lakshmi

Swetha, Anand Ganesan, Madhusudhanan who are not only colleagues, but life-

long friends.

No words can express my debt to my family: my parents, my brother and

my cousin Parthasarthy who have always put my interests before theirs. Whatever

I am and wherever I shall be, I owe it all to them.



TABLE OF CONTENTS

Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Organization of Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Code Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 AE32000 SIMULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Architecture Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Architecture Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Block Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Address Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Prefetch Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.3 Instruction Folding Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.4 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.6 Arithmetic and Logical Unit . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Simulator Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Architectural Hierarchy of the Core . . . . . . . . . . . . . . . . . . . 17

4 ENHANCED MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 ae3ksim.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 loader.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 regs.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



TABLE OF CONTENTS (Continued)

Page

4.4 memory.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 cache.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 syscall.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 stats.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.8 default.cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9 Problems integrating modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.9.1 Problem with loading the binary . . . . . . . . . . . . . . . . . . . . . . 34

4.9.2 sim.vct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 BUGS IN SIMULATOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Multiplication Result of two 32-bit numbers . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Forwarding Path for jump Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Missing stall for load followed by JR and JALR instructions . . . . . . . 37

5.4 Problems with compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 bug in for loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 cross compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 BENCHMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Mediabench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Instruction Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.1 Instruction Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.2 Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.3 LERI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



TABLE OF CONTENTS (Continued)

Page

6.3.4 ALU Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.5 Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.6 PUSH/POP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.7 NOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.8 SYSCALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

APPENDIX A Executable and Linkable Format(ELF). . . . . . . . . . . . . . . . . . . 58



LIST OF FIGURES

Figure Page

2.1 Page translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Simulator Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Simulator Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



LIST OF TABLES

Table Page

6.1 Number of Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Instruction Count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Memory Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Loads and Stores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5 LERI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.6 ALU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.7 Branch/Jump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.8 PUSH/POP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.9 NOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.10 System Call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Development and Enhancement of AE32000: An Embedded

Microprocessor Core

1. INTRODUCTION

In the past, a embedded processor used to mean a 4-bit or 8-bit low-

end microcontroller, designed primarily to perform simple control applications.

Presently, with the advent of technology the contemporary embedded system

landscape cuts a broad swath from low-end microcontrollers to high-performance

processing engines. The widespread development of the embedded processors in

various mobile devices promises to open new frontiers in applications. These

contemporary systems usually employ either one or multiple processor cores, in-

tegrated into a System-On-Chip (SOC) design. Usually, such cores are fixed pro-

cessors taken from a library of well-known processor architecture families, which

include ARM or MIPS. Integrating the core with reconfigurable logic is another

way to boost software performance while retaining hardware-acceleration benefits.

However, the need for differentiation coupled with ever-increasing chip ca-

pacities, opens door for significant customization of the processor cores. This

gives embedded system designers virtually unlimited choices in processor core ar-

chitectures, allowing them to customize several features to suit the application

and design constraints at hand. For instance, designers can tune the processor’s

instruction set architecture to the application’s characteristics. Similarly, they

can optimize the processor pipeline or data path components for critical code

segments in specific application domains. The resulting processors remain pro-
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grammable and, in principle, can run any application, but they are optimized for

a targeted application domain [1].

The rapid advances in semiconductor technology throughout the last

decade of the 20th century have enabled the development of powerful new embed-

ded processors, bringing to the embedded world computational power, previously

found only in mainframes and supercomputers. Due to its dissemination among

various types of application domain, embedded systems are more affected by mar-

ket constraints. These constraints include:

• Time-to-market: Embedded systems require longer development time, since

their hardware and software design has to be finished before it can be re-

leased as a commercial product. This is because there can be no updated

software versions at a later date.

• Safety: Often, embedded systems are part of a critical system, and hence

subject to safety and reliability requirements, in order to guarantee a certain

level of robustness. A more robust design tends to increase the cost, which

cannot exceed a certain value.

• Flexibility: Since embedded systems are application-specific units, it is dif-

ficult to provide an appropriate degree of programmability.

• Mobility: Embedded systems aimed at targeting mobile applications, such

as wireless telecommunication or portable information processing devices,

are likely to be severely affected by other factors, like size and energy con-

sumption.

Taking into consideration the time factor, reliability and endurance tests

for the production of any embedded processor, the software developer has to ver-
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ify for hardware engineers on the same simulated configurations so that product

development time is saved. A lot of integrated profiling enables software optimiza-

tion with the target architecture comprehending memory and micro-architecture.

A software solution for an embedded processor design and optimization environ-

ment slashes months of hardware design time. To do all this a cycle-accurate,

execution based simulator is the best option. A cycle-accurate simulator should

have all the modules needed, like memory, cache, system calls and statistics gath-

ering modules. This led to the development of the simulator for the AE32000

embedded processor. AE32000 was a primitive core processor that had very lim-

ited capabilities. There was no support for any information needed by a designer

to use this simulator. One by one advanced modules for ported on to the sim-

ulator and finally develop a primitive simulator into a cycle-accurate simulator.

AE32000, at this present stage, has enabled to advance the software development

cycle and also debugging of the actual target hardware.

1.1. Organization of Thesis

The thesis is organized as follows: chapter 2, discusses the previous work

done on latest ideas suggested and implemented in the field of embedded processor

technology. Chapter 3 presents the organization and hierarchy of AE32000 sim-

ulator. Modules used to enhance the functionality of the simulator are explained

in chapter 4. Chapter 5 discusses the various bugs found in the simulator and

compiler; and explains the ways to rectify the errors. Chapter 6 gives a detailed

report on benchmarking. The concluding remarks are provided in chapter 7.



2. LITERATURE REVIEW

This Literature review investigates the previous research work done to

enhance the performance of embedded processors.

Definition: Embedded systems are (inexpensive) mass-produced el-

ements of a larger system providing a dedicated, possibly time-

constrained, service to that system [3].

The technological developments that allowed single-chip proces-

sors(microprocessors) made the embedded systems inexpensive and flexible. For

example in modern cars such as the Mercedes S-class or the BMW 7 series there are

more than 60 embedded processors that control a multitude of functions e.g., the

fuel injection and the anti-lock breaking system (ABS), that guarantee a smooth

and foremost safe drive [3]. Applications like handheld, palmtop, network PCs, re-

quire storage media, display and interface to communicate with the outside world.

This have made the embedded processors incorporate capabilities traditionally as-

sociated with conventional CPUs-but with a twist. They are always subject to

challenging cost, power consumption and application dictated constraints.

2.1. Power Consumption

System design is a process of implementing the desired behavior while

optimizing the objectives and satisfying some constraints. For example, a desktop

computer, is optimized for maximum clock rate while meeting a price target.

On the other hand, a battery-operated portable embedded processor system for

information processing and wireless communication will be optimized for minimum

power dissipation subject to a required performance. There exists a dichotomy in
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the design of modern electronic systems: the simultaneous need to be low power

and high performance [4]. This arises largely from their use in battery operated

portable platforms. Accordingly, the goal of low-power design for battery-powered

embedded system is to extend the battery service life. The twin issues of modelling

and optimization of power consumption have to be addressed at several layers for

an accurate and thorough result [5]. Previous compiler optimization research in

this area has either relied on actual power measurements of the processors [6] or

has relied on architectural simulation [7], mathematical techniques and regression

to model the behavior of the hardware. One of the power research infrastructures

consists of an optimizing compiler infrastructure called Trimaran [8]. A backend

of Trimaran, called Triceps has been developed to generate code, which targets

the ARM [9] architecture. Other than the hardware approach of saving power for

embedded processors, there are a variety of software design techniques can reduce

power consumption.

• Intelligent waiting : Many of the latest embedded processors include run-

time power modes to scale power consumption. The most common case

is idle mode. In this mode instruction-executing portion of the processor

core shuts down, while all peripherals and interrupts remain powered and

active. Idle mode consumes substantially less power than when the processor

is actively executing instructions [10]. A key aspect of idle mode is that

it requires little overhead to enter and exit this state. But however to

gain maximum power efficiency software designer has to be very careful in

designing the software

• Event reduction : Intelligent waiting enables the processor to enter its idle

mode as often as possible. Event reduction attempts to keep the processor
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in idle as long as possible. It is implemented by analyzing code and system

requirements to determine a way if programmer can alter the way interrupts

are processed [10]. A multitasking operating system using time–slicing to

schedule threads, sets a timer interrupt to occur at the slice interval. In a

case where software code makes good use of intelligent waiting techniques,

the operating system will frequently find opportunities to place the processor

in idle mode, where it stays until it’s awakened by an interrupt.

• Performance control: Dynamic clock and voltage adjustments represent the

cutting edge of power reduction capabilities in microcontrollers. The energy

consumed by a processor is directly proportional to the clock frequency

driving it and to the square of the voltage applied to its core [11]. Processors

allowing dynamic reductions in clock speed provide a first step towards

power savings; cut the clock speed in half and the power consumption drops

proportionately. To implement effective strategies using this technique alone

is tricky, since the code being executed may take twice as long to complete.

In this case, no power can be saved. In dynamic voltage reduction, an

increasing number of processors allow voltage to be dropped in concert with

a drop in processor clock speed, resulting in a power savings even in cases

where clock-speed reduction alone offers no advantage.

• Intelligent shutdown: In all above cases the device is running; in this case

device is turned off. In an intelligent shutdown procedure this effectively

tricks any executing application software into thinking that the device was

never turned off at all. When user turns the device off by pressing the

power button, an interrupt signals the operating system to begin a graceful

shutdown that includes saving the context of lowest-level registers in the
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system. The operating system does not actually shut programs down, but

leaves their contents (code, stack, heap, static data) in memory. It then

puts the processor into sleep mode, which turns off the processor core and

peripherals but continues to power important internal peripherals, such as

the real-time clock. In addition, battery-backed DRAM is kept in a self-

refresh state during sleep mode, allowing its contents to remain intact. When

restarted, an interrupt signals the processor to wake up. The wakeup ISR

uses a checksum procedure to verify that the contents of the DRAM are still

intact before restoring the internal state of the processor [10].

2.2. Code Optimization

Efficiency of the generated code is very important for embedded systems,

due to limited system-on-a-chip memory sizes, real-time constraints of embedded

applications, and the need to minimize power consumption. Code Optimization

can be done at different levels in the compilation flow, reaching from source level

to assembly level techniques [12]. All reasonable compilers perform machine-

independent standard optimizations, such as constant folding, common subex-

pression elimination, or jump optimization [13] [14] [15]. These techniques need

only a minimum of machine specific information and are useful for most programs.

• Address code transformation : The high-level address code transformation

techniques described in [16] can be regarded as an extension of the standard

optimizations. This is targeted towards memory-intensive applications. The

main idea here is to simplify the array index expressions beyond the classical

induction variable elimination technique (see e.g. [13]). At the expense of
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larger code size, this leads to a reduction of up to 50% in instruction cycles

for array intensive nested loops [12].

• Loop transformations : These transformations are use for effective code op-

timization in case of multimedia applications mapped to VLIW processors.

Loop unrolling is a classical example where loop iterations are duplicated,

resulting in larger basic blocks and thereby in a higher potential for paral-

lelization of instructions during scheduling. Its counterpart is loop folding or

software pipelining [17] [18], where loop iterations are restructured in such

a way, that the critical path length within the loop body is reduced. These

loop optimizations come at the price of an increased code size.

• Function inlining: This is a technique where function calls are replaced by

copies of function bodies, so as to reduce the calling overhead. Compilers

use local heuristics in order to identify suitable candidate functions for inlin-

ing, while mostly neglecting code size constraints. In contrast, the inlining

technique described in [19] aims at a maximum program speedup for a given

global code size constraint, and thus better meets the demands of embedded

processors. It is based on profiling information, code growth estimation, and

a branch-and-bound optimization procedure. This technique also exempli-

fies a common concept in code generation for embedded processors. This

approach is valid, since for embedded systems high code quality is much

more important than high compilation speed.

All the above said optimizations are for the machine independent state-

ments. After this optimizations the machine specific features such as special-

purpose registers complex instruction patterns are taken into account. Tree pat-

tern matching is the very basic technique for instruction set mapping or code
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selection [20]. Instructions are represented in the form of data flow trees, where

tree nodes corresponds to variables,constants and operations, while edges denote

data dependencies [12]. An optimum mapping is given by minimum cover of

DFT by cost attributed instruction patterns (figure 2.1). Of the many tools used

for automatic generation of tree pattern matchers from instruction set grammar

specifications are, IBURG [21], BEG [22], OLIVE [20].

FIGURE 2.1. Page translation.

a) Data flow tree, b) available instruction patterns, c) optimal tree cover

After all these code optimizations there is still a potential left in the code

optimization with respect to memory access organization and instruction schedul-

ing. Instruction scheduling assigns generated machine instructions to control

steps, which is important for VLIW-like multimedia processors as well as DSPs

with limited instruction level parallelism.



3. AE32000 SIMULATOR

AE32000 is part of a family of microprocessors using the EISC (Extendable

Instruction Set Computer) core developed to address the need to reduce the code

size and the number of memory accesses in todays embedded applications. EISC is

a new architecture and is a combination of RISC and CISC. ESIC not only includes

the advantages of both RISC and CISC but also has a very simple architecture.

One of the main advantages of ESIC is its code density; a typical program size of

EISC is 40% smaller than the RISC, 20% smaller than CISC.

AE32000 is a powerful, flexible and user-customizable 32–bit core pro-

viding a faster design solution for embedded processor based designs. AE32000

belongs to the family of EISC series and is optimized for Embedded Application

for high–performance microprocessor computing. EISC AE32000 processor uses a

16–bit ISA. It contains 74 (24 data transfer, 20 ALU, 18 branch, 3 shifts, 7 Mis-

cellaneous and 2 coprocessor) instructions (no floating-point instructions) with

16 32–bit General Purpose Registers (GPRs) and 7 Special Purpose Registers

(SPRs). The main advantage of using EISC processor’s ISA is that the hardware

(i.e., HDL description) for the processor is already available. Various advantages

of ADC’s EISC AE32000 core other than its simplicity is robustness, code density

of the binary file generated.

3.1. General Description

The AE32000 microprocessor has a high-performance 32-bit EISC architec-

ture that is designed for an embedded application system with 16-bit instruction

set and 32-bit data/address bus. The AE32000 provides the following features.
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• 5 Stage Pipeline: Instruction Fetch (IF), Instruction Decode (ID), Execution

(EX), Memory Access( MEM), Write Back (WB)

• Harvard architecture

• Support 32bit ALU Operations, 32bit x 32bit = 64 multiplier, MAC unit

and Huffman decode

• 16 general-purpose register and 7 special-purpose register

• Folding of the function for extension instruction (LERI) to obtain increased

performance.

• Push/Pop Reg. List : Registers to maximum 8 in one instruction Push/Pop

• 14 types of conditional branch instructions

• Little endian

3.2. Architecture Overview

This section describes about the summary of the AE32000s hardware archi-

tecture, AE32000s peripheral block, memory architecture, and instruction folding

without support for the additional delay of extension instruction and co-processor

interface.

3.2.1. Architecture Description

The AE32000 is based on the Harvard architecture which separates memory

spaces, one for instruction and one for data, each with their own bus and consists of

a five stage pipeline. Its code density is very high because the size of instruction set
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is fixed 16-bit length. The extension instruction easily creates a 32–bit immediate

value and can address large memory locations. The Instruction folding of an

extension instruction reduces the additional delay caused by extension instruction.

The AE32000 has the strong arithmetic function that can be used for DSP

applications. It has an ALU and Barrel Shifter that support 32–bit arithmetic

and 32 x 32 bit multiplier. Also, it has the CNT instruction (used to count

leading 0’s/1’s in a register) to support effectively Huffman decoding used in

special purpose application and MAC operator that is used for DCT arithmetic

or other DSP application. AE32000’s functionality can be extended through co-

processors: Up to four co-processors can be supported. Co-processor 0 is reserved

as a system co-processor for managing MMU, OSI, Memory bank control and

co-processor 1 as a floating-point arithmetic co-processor.

3.2.2. Functional Block Diagram

Figure 3.1 shows AE32000s basic blocks and data path. More detailed

explanation about each block is available in subsection 3.3. AE32000 has a 5-stage

pipeline structure and three data buses (ABUS, BBUS, CBUS) that connect to

the register file. ABUS and BBUS are the input busses to arithmetic block; CBUS

is used as the output bus when the core writes back data to an internal register.

The AE32000 can prefetch up to 8 instructions and has an instruction

folding unit.

3.3. Block Summary

This section briefly describes about peripheral blocks that are used in the

AE32000 Simulator core.



13

FIGURE 3.1. Functional Block Diagram.
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3.3.1. Address Generator

The Address Generator Unit (ADDRGEN) pre-fetches a 32-bit address.

The pre-fetched address is usually the last prefetch address + 4. This unit also

has the capability to calculate the Branch Target Address (BTA), Interrupt vector

address (EPC: Exception PC) and Interrupt handler address.

3.3.2. Prefetch Queue

The Prefetch Queue Unit consists of an 8 (16+1)-bit ring buffer queue

register. It temporarily stores the prefetch address (16-bit) and also sets a bit flag

to indicate if the instruction is an extension instruction.

3.3.3. Instruction Folding Unit

This Unit has 3×16-bit inputs and either 1×16-bit or 1×32-bit outputs.

Depending on the instruction (check the extension flag) the output is decided. If

the extension flag is set, the instruction passes through the Extension register.

General instructions are sent on to the decoder unit.

3.3.4. Decoder

The Instruction Decoder Unit decodes the general instruction and also

controls the pipeline, by changing the machine status.
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3.3.5. Registers

All the registers used in the simulator core are 32 bits wide. The registers

are mainly categorized into General Purpose Register File (GPR) and Special

Purpose Registers (SPR). AE32000 simulator has 16 General Purpose Registers.

These GPRs are used to store any general data and temporary value. The Special

Purpose Registers are also 32-bit registers that provide the machine status. These

are

• Status Register (SR) - Indicate the status of machine operation.

• Program Counter (PC) - Specifies the instruction address that is to be exe-

cuted next.

• Link Register(LR) - Register for holding the subroutine return address.

• Extension Register (ER) - Register used for extending immediate value or

address displacement for 32-bit instructions.

• Stack Pointers (SPs) are used to store a temporary data in memory.

– OSI Stack Pointer (ISP)

– Supervisor Stack Pointer (SSP)

– User Stack Pointer (USP)

3.3.6. Arithmetic and Logical Unit

The Arithmetic Logic Unit has 2×32 bit inputs and 1×32 bit outputs. The

inputs are the ABUS and BBUS. The output is available at the CBUS. This block

runs the following basic arithmetic and logical operations:
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• Monomial operations

– NOT : Inversion

– CVx : Convert to (bit/short) with mask

• Binominal operations

– Logical operation of AND, OR, XOR etc.

– Arithmetic operation of ADD/SUB and so on

– Comparison operation such as CMP, TST

The Multiplier unit is a block outside the ALU. The Multiplier executes a mul-

tiplication of 2×32-bit inputs and the output is 64-bit wide. It can execute in a

single clock cycle and does not effect any status registers. This multiplier block

uses two GPRs to store a result. Using the Multiplier Unit for a multiply and add

(MAC) instruction produces a 64–bit result and stores the result in R14 and R15

registers.

3.4. Simulator Structure

Figure 3.2 gives a general outline of the AE32000 simulator. Most of the

performance core is optional. It is optional in the sense the most of cache param-

eters or the statistics gathering parameters can be added, modified or removed

using the configuration file. The simulator already has a default configuration

file. Modifications can be made to this file. A more detailed explanation of the

configuration file is given in the sections 4.8.
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FIGURE 3.2. Simulator Structure.

3.4.1. Architectural Hierarchy of the Core

Figure 3.3 shows the overview of how all the files are organized. This is

followed by detailed explanation of all the major files.

FIGURE 3.3. Simulator Hierarchy.



4. ENHANCED MODULES

The original version of the simulator had only the very basic features. The

original version did not have any memory and cache modules. There were a very

few options of gathering the statistics. With of the addition of the memory, cache,

loader, system call modules into the simulator, a lot of changes were made in the

main file of the simulator to accept the modules.

4.1. ae3ksim.cpp

This file is the main file in the simulator. This file controls most of the

blocks in the simulator including the data flow and control. All the modules such

as the loader, registers, memory, cache and statistics modules are initialized in this

file. The main function takes in the parameters argc and argv, which includes the

files that are simulated along with the input and output files. The configuration

file used to initialize cache parameters is optional.

int main(int argc, char **argv, char **envp) {

int size;

int judge;

The input parameters for the file are usually the executable followed by

the file to be simulated (elf file) followed by the input and output files (input and

output files depend on the simulation program) and then finally the configuration

file.

./ae32000 enocode.elf clinton.pcm out.adpcm -config default.cfg

Before beginning any job, simulator first initializes all the modules in the

simulator. This is done using the function sim init(). This function checks for
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the configuration file, initializes the register file, initializes the memory and resets

all the statistic gathering modules.

Once the parameters are read in, the main module calls loading function.

At this point the simulator needs only the parameters required to simulate the

program. The rest of the input parameters like the simulator binary executable

(ae32000), configuration file (default.cfg)are not used.

sim_load_prog(argv[1], argc-1, argv+1,envp);

After loading the file in the memory and initializing all the parameters required,

the simulation of the program is started. The simulation enters the 5-stage

pipeline. This module has Instruction Fetch (IF), Instruction Decode (ID),

Execution (EX), Memory Access (MEM) and Write Back (WB). This mod-

ule also includes the pipe update function, which is called after WB. The pipeline

when executed for the first time starts in the reverse order to clear the pipeline

data path. Also the register files are written in the first half of the clock cycle and

read in the second half of the clock cycle to remove any hazards in the WB stage.

The function used for the instruction decoding is “decoder()”. The in-

struction decoding for a simple load instruction is shown here.

int decoder(uint16 ir) {

int instr;

pipeline[ID].ir = ir;

if ((ir >> 12) == 0)

{

instr = LD;

pipeline[ID].fp = call_ld;
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}

The data used in the decoder module comes in from the instruction register.

Depending on the instruction and how the instruction is categorized (for example

ALU, LOAD/STORE), the instruction is shifted and checked for its code.

Each Instructions’ code is broken down to 4 parts. Each part per-

forms a stage of the pipeline, case ID has all the code needed for the in-

struction to pass through the ID stage. All the instructions are called using

call instructionname. For example, load instruction is called using the func-

tion call ld(). The code for the load instruction is shown here.

void call_ld(int stage) {

uint32 rdata;

int mem_wait;

switch (stage)

{

case ID :

regs.regs_R[ABUS] = r0_set(0);

regs.regs_R[BBUS] = r1_set(NA);

regs.regs_R[IMM_ER] =

imm_gen(regs.regs_R[ER], get_sr(EF),

4, //er sft

4, //offset_pos

2, //offset_len_er

4, //offset_len

2, //offset_pos_aft

0 //kinds of extension
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);

widx_set(8);

spidx_set(NA);

clr_sr(EF);

break;

case EX :

regs.regs_R[MAR] = alu_func(regs.regs_R[ABUS],

regs.regs_R[IMM_ER], 0,OP_ADD);

break;

case MEM :

mem_wait =

dmem_read(regs.regs_R[MAR], mem, &rdata);

if (mem_wait == 0) {

stat.mstall = 0;

regs.regs_R[LMD] = rdata;

} else

stat.mstall = 1;

regs.regs_R[CBUS] = regs.regs_R[LMD];

break;

case WB :

regs.regs_R[pipeline[WB].widx] =

regs.regs_R[CBUS];

num_inst_ld++;

break;

}

}
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As the simulator starts, each stage in the pipeline is called using the func-

tions if action(), id action(), ex action(), mem action(), wb action() and

pipe update(). During the execution, forwarding of data at every stage is checked

and handled by the function forwarding(). All the cases of forwarding are con-

sidered in this function.

The statistics module is also controlled using the function report stat().

The statistics gathering module is powerful and user friendly so that the user can

stop the simulation at a desired cycle, gather simulation statistics for the next “n”

desired cycles and then later switch off the statistics module and proceed with the

normal execution.

The other major functions used in the main file are the instruction memory

read and data memory write functions. There are also functions for LERI folding

unit, ALU, setting the values in the status register.

The function used to read in data from the instruction memory is

imem read(). This function can read in either one 16 bit instruction or directly

32–bit instruction (two 16 bit instructions) from the memory. This function has

built in cache module. In case the data is missed in the cache this information is

sent to the cache statistics module.

int imem_read(uint16 *intr,

struct mem_t *mem,unsigned int addr)

or

int imem_read(uint16 *instr0, uint16 *instr1,

struct mem_t *mem, unsigned int addr )
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Data is written into the data memory using the function mem write(). This

function uses three other functions to write in data depending on the size the of

data: BYTE, HALF WORD or WORD.

int mem_write(uint32 addr, uint32 wdata,

struct mem_t *mem, int size) {

... ...

... ...

... ...

MEM_WRITE_WORD(mem, t_addr, wdata);

... ...

MEM_WRITE_HALF(mem, t_addr, wdata);

... ...

MEM_WRITE_BYTE(mem, t_addr, wdata);

... ...

A similar function is used to read in the 32–bit data from the memory. The

function is called mem read().

int dmem_read(uint32 addr,struct mem_t *mem,uint32 *rdata) {

In case the data required to read in from the data memory is only a BYTE or

HALF WORD, this is taken care by the LMD EXT() function.

Arithmetic and Logical Operations are handled by the function

alu func(), which takes in two 32–bit data and operation to be performed such

as add, sub etc., the output is 32–bit data. The data sent as inputs to the ALU

are through ABUS and BBUS. The output is collected at the other end of the

ALU at CBUS. The ALU is not capable of performing multiplication operation.
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int alu_func(uint32 a, uint32 b, int c, int operation) {

int32 result;

Therefore, there is a separate multiplier unit that is capable of performing multi-

plication of two 32–bit numbers to generate a 64–bit data in just one clock cycle.

int64 multiplier(int32 a, int32 b, int operation) {

uint32 ua;

uint32 ub;

int64 result;

if (operation == OP_MUL)

{

result = (int64)a * (int64)b;

}

else if (operation == OP_UMUL)

{

ua = a;

ub = b;

result = (uint64)ua * (uint64)ub;

}

return result;

}

The other functions used in the simulator core are pretty straightforward and do

not need much explanation.
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4.2. loader.c

This file has the loader module in it. The earlier module in the simulator

was not capable of loading an ELF binary. When a program is compiled using

AE32000 cross–compiler, we get two binary files one with the extension “.elf”

and the other with the extension “.bin”. The loader function in the original

AE32000 was able to load only the binary file into a flat memory space, and could

not handle an ELF binary file. Thus, the main reason to change the existing loader

function was to make the loader load an ELF (Executable and Linkable Format)

binary file. The reason to use the ELF binary over a ordinary bin format binary

is because of the many advantages like simplifying the task of making shared

libraries and also this enhances dynamic loading of modules at runtime. A much

more detailed explanation of ELF is given in APPENDIX A.

4.3. regs.c

The purpose of this file is to generate and initialize 32-bit registers.

/* create a register file */

struct regs_t * regs_create(void) {

struct regs_t *regs;

regs = calloc(1, sizeof(struct regs_t));

if (!regs)

fatal("out of virtual memory");

return regs;

}

This part of the code is used to initialize the register file created.
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/* initialize architected register state */

void regs_init(struct regs_t *regs)

/* register file to initialize */ {

memset(regs, 0, sizeof(*regs));

}

Data is stored as little endian, where LSB is stored at the lowest address location.

4.4. memory.c

The memory module of the AE32000 is very similar to the Simplescalar

module. The memory module generates a memory space similar to the memory

of any host machine. A flat memory space is created by the memory module.

/* create a flat memory space */

struct mem_t *

mem_create(char *name) /*name of memory space */

{

struct mem_t *mem;

mem = calloc(1, sizeof(struct mem_t));

if (!mem)

fatal("out of virtual memory");

mem->name = mystrdup(name);

return mem;

}

The memory module has function to translate the address of the simulated

memory with the host memory. To do this, memory uses the function
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mem translate(). To make the memory look like the host memory, the mod-

ule uses mem newpage(). All these pages are allocated on demand. The memory

module uses pages and an inverted page table to keep track of its own memory us-

age, but memory is accessed by virtual addresses. The module also has functions

to check the alignments and permissions, handles any natural transfer sizes; note,

faults out if nbytes is not a power-of-two or larger than MD PAGE SIZE. And to do

all this, the module uses a generic memory access function called mem access().

enum md_fault_type

mem_access(struct mem_t *mem, /*memory space to access*/

enum mem_cmd cmd, /*Read (from sim mem) or Write*/

md_addr_t addr, /*target address to access*/

void *vp, /*host memory address to access*/

int nbytes) /*number of bytes to access*/

The other functions that are used to access the data are mem strcopy(),

mem bcopy(), and mem bcopy4(). Depending on the size of the data to be trans-

ferred, different functions are used.

This module generates a virtual memory address space of 231 bytes.

This memory is mapped from 0x00000000 to 0x7FFFFFFF. Address space from

0x00000000 to 0x003FFFFF is not used. The address space from 0x00400000 to

0x10000000 is used to map the program text (code), and accessing any memory

outside of the defined program space causes an error to be declared. The ad-

dress space from 0x10000000 to “mem brk point” is used for the program data

segment. This section of the address space is initially set to contain the initialized

data segment and then the uninitialized data segment.
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FIGURE 4.1. Memory Map.
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The data segment can continue to expand until it collides with the stack

segment. The stack segment starts at 0x7FFFC000 and grows to lower memory

as more stack space is allocated. Initially, the stack contains program arguments

and environment variables. The stack may continue to expand to lower memory

until it collides with the data segment.

The virtual memory address space is implemented with a one level

page table, where the first level table contains MEM TABLE SIZE pointers to

MEM BLOCK SIZE and byte pages in the second level table. Pages are allocated

in MEM BLOCK SIZE size chunks when first accessed; the initial value of page mem-

ory is all zero. The memory map is currently hard-coded into the loader script

because the information is not in the binary file.

4.5. cache.c

The program that implements the cache functionality is called cache.c.

There are both instruction and data cache. This module not only generates

a cache but also has the capability of collecting all the cache statistics in-

cluding number of misses/hits, miss/hit rate and also the replacement rate.

The cache parameters can be set from the configuration file. Both caches

can be configured in the same style, i.e., a colon delimited string of 4 values

<nsets>:<bsize>:<assoc>:<rpolicy>.

• nsets is the number of sets in the structure, it must be a positive integer

and a power of two.

• bsize is the block size, it also must be a positive integer and a power of two.

• assoc is the associativity, which must be a positive integer.
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• rpolicy is the replacement policy and is either l (LRU), r (random) or f

(FIFO).

The total size of the structure in bytes is the product of the associativity,

block size and number of sets. For example, to configure the simulator with a

2–way set associative, 32KB first level data-cache, with 32B blocks and random

replacement, use the following line:

-cache:dl1 512:32:2:r

If user does not want to include a certain structure in the hierarchy, replace the

configuration string with the string none. For instance, this is the method to

simulate a machine without a data cache:

-cache:dl1 none

The way to simulate a unified structure in this cache module (i.e., instructions

and data living in the same structure) is to point the instruction structure to

the corresponding data structure. For example, to implement a unified first–level

cache, use:

-cache:dl1 512:32:2:r -cache:il1 dl1

To specify a direct-mapped, 32KB first-level data cache with 32B lines, LRU

replacement, write through policy and a 2 item victim buffer, we use:

-cache:dl1 1024:32:1:l

-cache:dl1:wthru true

-cache:dl1:vb 2

After initialization, simulator interacts with the cache module using the function

cache access. cache access() has the following signature:
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unsigned int

cache_access(cache_t *cp,

enum mem_cmd_t cmd,

md_addr_t addr,

unsigned int nbytes,

tick_t now,

miss_handler_t miss_handler)

Here is the explanation for parameters:

• cp is a pointer to the particular cache structure

• cmd is the operation you are trying to perform, the value of cmd is either

Read or Write

• addr is the address which is being accessed

• nbytes is the number of bytes which are getting accessed

• now is the cycle number in which you are performing the operation. The

cache module is also used in timing simulation, so internally it is able to

keep track of how long things take.

• miss handler is a pointer to a function that cache access will call internally

whenever it needs something from the next level of the memory hierarchy.

This function is explained later.

• cache access returns an unsigned integer that is the latency of the operation.

Basically, miss handler is like cache access but without the cp pointer

and its own miss handler pointer. cache access calls miss handler internally
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whenever it needs to do something to the lower level of the memory hierarchy.

This could be a read (if there is a miss), or a write (if there is a dirty replacement

or a write-thru).

unsigned int

miss_handler(enum mem_cmd_t cmd,

md_addr_t addr,

unsigned int nbytes,

tick_t now)

4.6. syscall.c

syscall.c implements the module for handling system calls. The system

emulates the system call by translating it to an equivalent host operating-system

system call and directing the simulator to execute the call on the simulated pro-

grams behalf. For example, if the simulated program attempts to open a file,

this module translates the request to a call to open() and returns the resulting

file descriptor or error number in the simulated programs registers.This module

executes a system calls of the by translating system calls to the corresponding

calls on the host operating system (Linux). The parameters that connects the

main simulator file(ae32k sim.cpp) and syscall module are FUNC, PARM1, PARM2,

PARM3. Register 8 holds FUNC, PARM1 is in Register 9, and next two parameters

are stored in stack (SP + 12), (SP + 16).
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4.7. stats.c

stats.c is used to collect statistics from various modules like cache, memory

and loader. The stat register() interface registers the simulator variables,

instructions and cycles with the statistical module. This statistical package tracks

updates to statistical counters, producing on request a detailed report of all model

instrumentation. The stat formula() interface allows derived instrumentation

to be declared, creating a metric that is a function of other counters. In Following

code, miss rate denotes a derived statistic equal to the number of misses executed

divided by the total number of accesses.

stat_reg_formula(sdb, buf, "accesses", buf1, "%12.0f");

stat_reg_counter(sdb, buf, "misses", &cp->misses,

cp->misses, NULL);

sprintf(buf1, "%s.misses / %s.accesses", name, name);

stat_reg_formula(sdb, buf, "miss rate (i.e., misses/ref)",

buf1, NULL);

The main advantage of adding this file is that it has specific functions to calculate

number of times an instruction has occurred, rate of any statistical value for

example miss rate, hit rate. These functions can be used independently in all the

other major modules where user needs to gather stats.

4.8. default.cfg

Here is example default.cfg file.

-cache:il1 il1:256:32:1:l # l1 inst cache config

-cache:il1lat 1 # l1 inst cache hit latency
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-cache:il2 dl1 # l2 inst cache

-cache:il2lat 5 # l2 inst cache hit latency

-cache:dl1 dl1:256:32:1:l # l1 data cache config

-cache:dl1lat 1 #l1 data cache hit latency

-mem:lat 10 # memory access latency

4.9. Problems integrating modules

The major problem with the integration of the modules for loader, memory,

cache and statistics was all the modules were written in C code. Most of functions

in the header files of the modules were getting accessed when called from the main

function in the simulator file(ae32k sim.cpp). To avoid this most of the function

were transferred from the header files into the header files on the main simulator

header file (ae32k sim.h).

4.9.1. Problem with loading the binary

The first problem during the integration of the loader for ARM ELF binary,

which was primarily written for a simplescalar compiler, is the value of EM ARM.

This value varies from compiler to compiler. EM ARM defines for which cross-

compiler the binaries are generated. Changes are done to this arm value so that

the loader accepts binaries from AE32000 compiler. For simplescalar it is 40 and

for AE32000 compiler it is 44482. This value can be changed in the file loader.h.
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4.9.2. sim.vct

The simulator was not capable of accepting the parameters from the com-

mand line. The simulator used to have a configuration file which has all the pa-

rameters to be passed into the simulator like input binary file (the input is a bin

file not an ELF file), instruction memory base and instruction memory bound.

The present simulator removes the idea of a sim.vct file and directly reads in

command line parameters. All the parameters like the instruction memory base,

instruction memory bound etc., are all hard coded in the loader module.



5. BUGS IN SIMULATOR

This chapter describes the bugs that were found in the simulator, problems

faced because of these bugs and the efforts made to clear them out

5.1. Multiplication Result of two 32-bit numbers

One of the first bugs to be detected in the simulator was that, the mul-

tiplication of two 32-bit numbers was not producing the correct result in some

cases. The reason to say, in some cases, is because for some 32-bit multiplica-

tion C code, the compiler was smart enough to change multiply as a loop of add

functions. This bug was found when simulating Dhrystone benchmark.

a *= b;

For multiplication used in the above piece of code, the AE32000 compiler always

generates a signed multiply float instruction (mulsf). Since this instruction is

not defined in the instruction set, a macro is called in to perform the operation.

However, the upper 32 bits of the returned result of was always set to “FFFF

FFFF”, which is incorrect. Therefore, the following code was used to replace the

earlier code in the simulator.

To correct this error was simple but the main problem was to detect this

error. This bug never prevented the benchmark to complete execution. The

results produced by this simulator and gcc were different. The following code was

used to replace the earlier code.

result = ua * ub;

is replaced by

result = (uint64)ua * (uint64)ub;
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5.2. Forwarding Path for jump Instructions

Of the many Jump instructions in the AE32000 simulator jump register

(JR) and jump and link register (JALR) instructions get the address to jump from a

register. For these instructions, checking for a forwarding path was not accounted

for. The forwarding path is inserted in all the three functions to ensure the proper

functioning of the simulator. This part of the code checks for any dependencies

and sets the flags and arranges data paths for forwarding.

5.3. Missing stall for load followed by JR and JALR instructions

A stall or a bubble in inserted in the pipeline in case of load followed by an

immediate use. Any jump instruction in this simulator is designed to calculate the

Branch Target Address in the instruction decode stage. Thus, if there is a load

followed by any of these two jump instructions (JR, JALR), there has to be two

NOP instructions or stalls in the pipeline. This is because the load instruction

gets the data only in the memory stage.

5.4. Problems with compiler

Some very serious bugs were encountered during the compilation of various

benchmarks.

5.5. bug in for loop

One of the interesting bug in the compiler was found in a for loop in EPIC

benchmark. For the following piece of C code, the compiled binary was generating

JGE instruction to check the condition statement in the for loop.
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for (first_time_flag =1;

the_tag & ~BIN_TAG_INFO)

{

... ...

}

Generated binary code for the above C code

condition checking

code is here

jge 488<.LM7>

... ... //loop code

... ... // is here

<.LM7>

The value of the tag & BIN TAG INFO is a non-zero value. JGE checks

this non-zero value and always exits the loop. Compiler was generating a faulty

code in this case, instead of going for JGE instruction, compiler was supposed to

put in a JZ instruction. The C code was tweaked so the compiler generates the

following code and the benchmark ran to completion without any problem.

condition checking

code is here

jz 488<.LM7>

... ... //loop code

... ... // is here

<.LM7>

Now the value of (the tag & BIN TAG INFO), which is a non zero gets executed

properly because of jz instruction.
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5.6. cross compiler

The version of the cross-compiler provided to us, was built using a very

old version of gcc (gcc 2.9.1). Many problems arose when compiling the other

benchmarks present in the mediabench suite. There were a lot of libraries missing

in the older version so there are problems compiling latest benchmarks.



6. BENCHMARKS

For a simulator to pass the reliability test it should undergo rigorous bench-

marking. The original version of AE32000 passed the test for simple C program

like hello.c, matrix multiplication, but was not able to provide correct results for

real time application specific benchmarks. In most of the cases the simulation

never ran to completion. Rigorous benchmarking using the Mediabench bench-

mark helped us the find various bugs present in the simulator as well as the

compiler.

6.1. Mediabench

Mediabench is a benchmark suite composed of multimedia programs. Its

main aim is to benchmark architectures for a multimedia utilization, as opposed

to SPEC benchmarks [23] for example. Mediabench is composed of complete

applications coded in high-level languages. All of the applications are publicly

available, making the suite available to a wider user community. This is a type

of benchmark that have a very high percentage of core contribution. The term

core is defined when a set of loops whose execution time higher than the threshold

value. The core contribution of mediabench benchmark is around 90%. A precise

set of input test files are selected for each application. The simulator is tested for

the following set of benchmarks in mediabench.

• ADPCM stands for “Adaptive Differential Pulse Code Modulation”. This is

one of the simplest and oldest forms of audio coding. This is a variation

standard Pulse Code Modulation (PCM). A common implementation takes



41

16-bit linear PCM samples and converts them to 4-bit samples, yielding a

compression rate of 4:1.

• EPIC is a wavelet-based image compression codec. The compression algo-

rithm is based on a bi-orthogonal critically sampled dyadic wavelet decom-

position and a combined run-length/Huffman entropy coder. The filters are

designed to allow extremely fast decoding without floating-point hardware.

• G.721 is a reference implementation of the CCITT (International Telegraph

and Telephone Consultative Committee) G.711, G.721 and G.723 voice com-

pressions.

• JPEG is a standardized compression method for full-color and gray-scale im-

ages. It is a representative algorithm for image compression and decompres-

sion and is commonly used to view images embedded in documents. JPEG

is lossy. Two applications are derived from the source code: cjpeg does

image compression and djpeg, which does decompression. The input data

can be either a large or small color image.

• MPEG2 is the current dominant standard for high-quality digital video trans-

mission and is also used for DVDs. The important computing kernel is

a motion estimation for coding and the inverse discrete cosine transform

for decoding. The two applications used are mpeg2enc for encoding and

mpeg2dec for decoding.

6.2. Instruction Profiling

Instruction level profiling can be tuned in to provide useful information re-

garding the percentage of instruction executed in a program. Instruction profiling
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is classified into two types compilation based and simulation based profiler. The

earlier one instruments the program by adding counters to various basic blocks of

the program. The later one can be further classified into static and dynamic pro-

filers. Simulation based static profiling is written to a trace and trace is processed

to get the instruction count. Dynamic profilers obtain the instruction profile dur-

ing the execution of the simulator. Though this method is slow when compared

to compiler based but this method various architectural parameters can be tuned.

AE32000 has many analysis routines that collect information at various parts of

the program and dump the results into a separate files. AE32000s modules sam-

ple instructions as they move through the pipeline and report statistics like cache

miss/hit rates. Modules annotates each instruction that reads and writes memory.

6.3. Results

Results gathered from the benchmarks gives a plethora of information re-

garding the simulator and the changes that can be made to further improve the

simulator. To get a better understanding of the instruction set we compared

two simulators Simplescalar-ARM and AE32000. Simplescalar-ARM’s superscalar

functionality is completely disabled and it functions like a proper 5–stage simple

pipeline structure. Both the simulators are set to provide the greatest similarity

in the 5-stage pipeline. All the Benchmarks when compiled are set to the same

optimization level (-03).

Table 6.1 gives a general idea of how the benchmarks perform on both

the simulators. Number of cycles required to complete the execution of each

benchmark is given in the table. From the data shown, AE32000 is much slower

when compared to Simplescalar-ARM.
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AE32000 ARM

Clock Cycles Clock Cycles

ADPCM 26,577,300 17,199,924

EPIC 7,468,254,770 107,765,075

G721 889,841,000 1,143,142,179

JPEG 165,001,000 32,043,419

MPEG2 111,669,128,844 17,66,823,273

TABLE 6.1. Number of Cycles.

Table 6.1 show the number of cycles required for each benchmark to exe-

cute.

The difference in the number of clock cycles required is primarily due to

difference in the number of instructions executed for each benchmark. Table 6.2

shows the number of instructions executed for each benchmark. The reasons for

the increased number of instructions in AE32000 compared to Simplescalar-ARM

are due to the following:

• Shorter instruction length in AE32000.

• Compiler optimization between the two cross compilers.

• Problems due to instructions such as Push/Pop, Branch, NOP (explained

further in the subsequent subsections).

6.3.1. Instruction Count

Two different sets of benchmarks are studied, because of the differences

in the generated instruction set by the compiler. ADPCM, G.721 and JPEG



44

AE32000 ARM

Clock Cycles Clock Cycles

ADPCM 22,980,455 14,787,963

EPIC 6,869,787,870 71,083,219

G721 657,787,782 755,955,225

JPEG 25,766,785 10,905,456

MPEG2 104,006,775,804 1,172,145,689

TABLE 6.2. Instruction Count.

use only integer instruction set, while MPEG and EPIC use floating point (FP)

instructions. Table 6.2 shows the instruction count results. As can be seen,

the total number of instructions executed by AE32000 drastically increases for

FP benchmarks. The number of instructions increases by factor of 88 and 98 for

MPEG and EPIC, respectively. The reason for this is because the two benchmarks

require a large number of FP computations. However, AE32000 instructions set

does not have any support FP instructions. So, AE32000 compiler substitutes

a macro-level function for every floating-point instruction. On an average, each

macro incurs an extra overhead of 250-275 instructions.

In benchmarks where there are few FP multiplications or divisions there

is a little effect. In case of real time applications, such as MPEG and EPIC, this

difference in the number of cycles and instructions is significant.
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TABLE 6.3. Memory Access.

TABLE 6.4. Loads and Stores.

6.3.2. Memory Access

Table 6.3 shows the number of memory accesses executed by both simula-

tors. AE32000 has more number of memory accesses compared to Simplescalar-

ARM.

The number of loads and stores for most of the cases is almost similar for

both simulators. Only in cases for JPEG there is a difference in the compared

results 6.4.

6.3.3. LERI

A very important feature of the AE32000 is the LERI (Load Extension

Register Immediate) unit. AE32000 has fixed 16-bit instruction length, so for
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operations that require long immediate values, assistance is provided by LERI.

The format of this instruction is 2-bit opcode and 14 bit immediate value. LERI

instruction occurs in the following cases:

• Load immediate values

leri 0x1453 (0x1453)

ldi 0x1453E %R9

• Load data into a register (when the value of offset is a large value)

leri 0x12 (0x12)

ld ( %R2 + 0x12C ) %R8

• Store data to a register (when the value of offset is a large value)

leri 0xC (0xC)

st %R9 , ( %R10 + 0xC4)

LERI always adds an overhead to the performance of AE32000. The reason

for this is a short instruction length. LERI accounts to around 5% of instructions

[Table 6.5].

6.3.4. ALU Instructions

The results in Table 6.6 compare the Arithmetic and Logical Unit (ALU)

operations. For AE32000 the number of ALU instructions executed for ADPCM
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TABLE 6.5. LERI.

TABLE 6.6. ALU.

and G.721 are smaller by 28% and 18%, respectively. AE32000 has a bigger and

better ALU instruction set than Simplescalar-ARM. AE32000 has extra instruc-

tions such as LESA, LSEA, SMUL, EXTB, EXTS, CVB and CVS when compared

to Simplescalar-ARM. These special instructions account for an average for 6-9%

of ALU operations.

However JPEG has nearly twice the number of ALU operations. This is

because of a few missing instructions in AE32000. Specific negative instructions

like compare negative immediate, re-verse subtract immediate etc., are not present

in AE32000. The operations of these instructions are of the form

Compare Negative:

CMN<suffix> <op 1>, <op 2>
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status = op_1 - (- op_2)

Reverse Subtract:

RSB<suffix> <dest>, <op 1>, <op 2>

dest = op_2 - op_1

The other advantage of Simplescalar-ARM over AE32000 in case of the

JPEG benchmark is the usage of Shift instructions in conjunction with add or

subtract commands. Shift instructions account for about 5.5% to 11% of the total

instruction count. Simplescalar-ARM provides this functionality by carrying out

the shift operations as a part of other instructions.

Example of ARM Shift:

ADD r1, r2, r3, LSL#2

operation r1 = r2 + 4 * r3

In this instruction, LSL is for Logical Shift Left by number of bits specified

in the immediate value. This single instruction can be executed in a single clock

cycle. Other instructions similar to this are LSR, ASR, ASL, ROR, and RRX. All

these instructions helped Simplescalar-ARM to reduce the total instruction count

in JPEG benchmark.

When the FP instruction benchmarks EPIC and MPEG are considered,

the presence of missing FP instructions is clearly visible by the huge number of

operations executed by ALU in AE32000 simulator.

6.3.5. Branch

Major advantage Simplescalar-ARM has over AE32000 is the usage of

branch instructions. In-side every instruction in Simplescalar-ARM there is con-
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TABLE 6.7. Branch/Jump.

dition testing. The conditions are tested for zero, negative, carry or overflow flags

in the status register. All these four bits are embedded in each instruction (bits

[31:28]).

Example of Embedded Branching:

CMP r0, #0

BEQ 20002dc

During execution of this piece of code in Simplescalar-ARM, the proces-

sor compares the condition bits to the present state of the status register and

determines if the instruction should be executed. In case the condition within

the status register is not satisfied, then the instruction is not executed and it is

converted into a NOP (no operation) and a bubble is inserted it the pipeline.

For integer only benchmarks the number of branches executed by AE32000 in an

average is three times larger compared to Simplescalar-ARM. In case of Float-

ing point benchmarks number of executed by AE32000 are 140 times more than

Simplescalar-ARM [Table 6.7].
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TABLE 6.8. PUSH/POP.

6.3.6. PUSH/POP

The reason behind the large number of PUSH/POP instructions in the

AE32000 simulator, com-pared to Simplescalar-ARM, is due to many subroutines

generated by the AE32000 compiler in the assembly code. Each time a sub-routine

is called in the AE32000 simulator, PUSH/POP instructions are called in to store

the contents of the registers on to stack and retrieve them later [Table 6.8].

6.3.7. NOP

The inclusion of so many NOP instructions in the AE32000 simulator

execution is also responsible for the huge cycle count, when compared with

Simplescalar-ARM. A compiler optimization may be needed to remove these un-

wanted NOP instructions [Table 6.9].

6.3.8. SYSCALL

The main reason syscalls occurs in all the five benchmarks is when any

simulator wants to open, close, read and write into files. Reads and Writes are
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TABLE 6.9. NOP.

TABLE 6.10. System Call.

the main reasons for the syscall count given in Table 6.10. The main reason for

huge number of system calls in AE32000 is due to the limit of 400 bytes set by the

compiler. So incase AE32000 wants to write 1586 bytes of data into the output

file, write system call is called 4 times. There is no such limit set in the compiler

for simplescalar-ARM.



7. CONCLUSION

Compared to AE32000, Simplescalar-ARM is competitive. From the re-

sults we get the following conclusions.

• The need for the reduction of number of memory accesses for a embedded

process is one of the major concern. Results show AE32000 use comparable

number of Loads/Stores.

• For completing ALU operations, AE32000 does a better job. But when it

comes to FP instructions, it fails. Instead of adding in extra FP instructions

it is better to add in a co-processor that can support FP instructions. Doing

this saves in the extra floating point registers and other hardware that should

be placed in the processor.

• Work needs to be done on the modules such as SYSCALL, PUSH/POP,

NOP. Improving these modules can show a significance improvement.

• Developing a cross compiler with a new version of the gcc and linking li-

braries. The compiler can be updated with a next version for better op-

timization. This will help in reordering the instructions so as to remove

number of hazards and stalls and will generate more optimized assembly

code.

• To change the instruction length from 16–bit to 32–bit is also not advisable.

The fixed 32-bit instruction length negatively affected code density of pro-

grams for 32-bit RISC processors. Having a 16 bit instruction length simply

localizes the program code except for handling addresses and immediate

values.
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As the definition for embedded processor states, embedded technology is

developed for application specific purpose. AE32000 processor if used for ALU

intensive applications, has added advantages. In case any extra feature is needed

this embedded processor can be assisted by a co-processor. AE32000 has a four

channel co-processor interface for additional Multimedia, DSP and FP applica-

tions.

7.1. Future Work

This thesis work has provided a direction in the development for future

embedded cores in EISC Technology. From the work presented here, opportunities

for further research in this area is more useful. Instruction profiling provides with

most of the data, but still there are many unexplored areas in the simulator.

• Detailed Profiling on modules.

• Options are open to include a debugger module for the simulator.

• Research on cache modules for improved performance is also suggested.
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APPENDIX A. Executable and Linkable Format(ELF)

The Executable and Linking Format (ELF), originally developed and pub-

lished by UNIX System Laboratories (USL) as part of the Application Binary

Interface (ABI), is rapidly becoming the standard in file formats. The Tool Inter-

face Standards committee (TIS) selected the evolving ELF standard as a portable

object file format that works on 32-bit Intel Architecture environments for a va-

riety of operating systems. ELF standard is growing in popularity because of its

greater power and flexibility than the ”a.out” and ”COFF” binary formats. This

standard is intended to streamline software development by providing developers

with a set of binary interface definitions that extend across multiple operating en-

vironments. This should reduce the number of different interface implementations,

thereby reducing the need for recoding and recompiling code.

ELF now appears as the default binary format on operating systems such

as Linux, Solaris 2.x, and SVR4. Some of the capabilities of ELF are dynamic

linking, dynamic loading, imposing runtime control on a program and an improved

method for creating shared libraries. The ELF representation of control data in

an object file is platform independent, an additional improvement over previous

binary formats. The ELF representation permits object files to be identified,

parsed, and interpreted similarly, making the ELF object files compatible across

multiple platforms and architectures of different size.

There are three main types of object files.

• A relocatable file holds code and data suitable for linking with other object

files to create an executable or a shared object file.

• An executable file holds a program suitable for execution; the file specifies

how exec (BA OS) creates a program’s process image.
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• A shared object file holds code and data suitable for linking in two contexts.

First, the link editor may process it with other relocatable and shared object

files to create another object file. Second, the dynamic linker combines it

with an executable file and other shared objects to create a process image.

A.1. File Format

Object files participate in both program linking and program execution.

For convenience and efficiency, the object file format provides parallel views of a

file’s contents, reflecting the differing needs of these activities.

An ELF header is at the beginning and describes the file’s organization.

Sections hold the bulk of object file information for linking view like instructions,

data, symbol table, relocation information, and so on.

A program header table tells the system how to create a process image.

This header table is optional. Files used to execute a program must have a

program header table but relocatable files do not need one.

A section header table describes all the file’s sections. Every section has

an entry in the table. Each entry gives information such as Section name, Section

size, etc. Files used during linking must have a section header table. For other

object files this is optional.

A.2. Data Representation

The object file format can support various processors with 8-bit and 32-

bit architectures. It is extensible to both larger as well as smaller architectures.

Object files represent control data with a machine-independent format similar to
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FIGURE A-1. Object File Format.

ordinary object files. Remaining data in the object file uses encoding of the target

processor, independent of the machine on which the file is created.

A.3. ELF Header

The ELF Header is always the first section of the file. It is the only section

that has a fixed position in the object file. The ELF Header describes the type of

the object file (relocatable, executable, shared, core), its target architecture, and

the version of ELF it is using. The location of the Program Header table, Section

Header table, and String table along with associated number and size of entries

for each table are also given. The ELF Header also contains the location of the

first executable instruction. Below are a few of these.

#define EI_NIDENT 16



61

typedef struct

{

unsigned char e_ident[EI_NIDENT];

Elf32_Half e_type;

Elf32_Half e_machine;

Elf32_Word e_version;

Elf32_Addr e_entry;

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32_Word e_flags;

Elf32_Half e_ehsize;

Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize;

Elf32_Half e_shnum;

Elf32_Half e_shstrndx;

} Elf32_Ehdr;

• e ident : The initial bytes mark the file as an object file and provide machine-

independent data with which to decode and interpret the file’s contents.

• e type : This member identifies the object file type.

• e machine : This member’s value specifies the required architecture for an

individual file.

• e version : This member identifies the object file version. The value 1

signifies the original file format; extensions will create new versions with

higher numbers.
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• e entry : This member gives the virtual address to which the system first

transfers control, thus starting the process. If the file has no associated

entry point, this member holds zero.

• e phoff : This member holds the program header table’s file offset in bytes.

If the file has no program header table, this member holds zero.

• e shoff : This member holds the section header table’s file offset in bytes.

If the file has no section header table, this member holds zero.

• e flag : This member holds processor-specific flags associated with the file.

Flag names take the form EF machine flag.

A.4. Section Header

All sections in object files are the Section header table. The section header

is similar to program header and is an array of structures. Each entry correlates

to a section in the file. The entry provides the name, type, memory image starting

address (if loadable), file offset, the section’s size in bytes, alignment, and how

the information in the section should be interpreted. The name provided in the

structure is actually an index into the string table (a section in the object file)

where the actual string representation of the name of the section exists. A few

sections are described below.

• .bss : This section holds uninitialized data that contribute to the program’s

memory image. The system initializes the data with zeros when the program

begins to run. This section occupies no file space, as indicated by the section

type, SHT NOBITS.
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• .comment : This section holds version control information.

• .data, .data1 : These sections hold initialized data that contribute to the

program’s memory image.

• .debug : This section holds information for symbolic debugging. The con-

tents are unspecified.

• .dynamic : This section holds dynamic linking information. The section’s

attributes will include the SHF ALLOC bit. Whether the SHF WRITE bit

is set is processor specific.

• .dynstr : This section holds strings needed for dynamic linking, most com-

monly the strings that represent the names associated with symbol table

entries.

• .dynsym : This section holds the dynamic linking symbol table, as ”Symbol

Table” describes.

Executable and shared object files statically represent programs. To execute such

programs, the system uses the files to create dynamic program representations, or

process images. A process image has segments that hold text, data, stack, and so

on.

• Program header : This section describes object file structures that relate di-

rectly to program execution. The primary data structure, a program header

table, locates segment images within the file and contains other information

necessary to create the memory image for the program.

• Program loading : Given an object file, the system must load it into memory

for the program to run.
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• Dynamic linking : After the system loads the program, it must complete

the process image by resolving symbolic references among the object files

that compose the process.

A.5. Program Header

An executable or shared object file’s program header table is an array of

structures, each describing a segment or other information the system needs to

prepare the program for execution. An object file segment contains one or more

sections, as “Segment Contents” describes below. Program headers are meaningful

only for executable and shared object files. A file specifies its own program header

size with the ELF header’s e phent size and e phnum members.

typedef struct {

Elf32_Word p_type ;

Elf32_Off p_offset ;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

Elf32_Word p_filesz ;

Elf32_Word p_memsz ;

Elf32_Word p_flags ;

Elf32_Word p_align ;

} Elf32_Phdr ;

• p type : This member tells what kind of segment this array element describes

or how to interpret the array element’s information.
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• p offset : This member gives the offset from the beginning of the file at

which the first byte of the segment resides.

• p vaddr : This member gives the virtual address at which the first byte of

the segment resides in memory.

• p paddr : On systems for which physical addressing is relevant, this member

is reserved for the segment’s physical address. Because the System ignores

physical addressing for application programs, this member has unspecified

contents for executable files and shared objects.

• p filesz : This member gives the number of bytes in the file image of the

segment; it may be zero.

• p memsz : This member gives the number of bytes in the memory image of

the segment; it may be zero.

• p flags : This member gives flags relevant to the segment. Defined flag

values appear below.

• p align : As ”Program Loading” later in this part describes, loadable process

segments must have congruent values for p vaddr and p offset, modulo the

page size. This member gives the value to which the segments are aligned

in memory and in the file. Values 0 and 1 mean no alignment is required.

Otherwise, p align should be a positive, integral power of 2, and p vaddr

should equal p offset, modulo p align.

As the system creates or augments a process image, it logically copies a

file’s segment to a virtual memory segment. When - and if - the system physically

reads the file depends on the program’s execution behavior, system load, etc. A
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process does not require a physical page unless it references the logical page during

execution, and processes commonly leave many pages unreferenced. Therefore

delaying physical reads frequently obviates them, improving system performance.

To obtain this efficiency in practice, executable and shared object files must have

segment images whose file offsets and virtual addresses are congruent, modulo the

page size.

A.6. Program Loader

The program loader loads the program from into the simulated memory

space with the file offset as the address locations. Here in this example we have

a header file of length 0x100 bytes, text segment is of size 0x1d00 bytes, and

a data segment of size 0xf100 bytes. The virtual address is the location of the

data on the machine memory. In this example we assume that this address starts

from 0x80000000. Virtual addresses and file offsets for the SYSTEM architecture

segments are congruent modulo 4 KB (0x1000) or larger powers of 2. Because 4

KB is the maximum page size, the files will be suitable for paging regardless of

physical page size.

Although the example’s file offsets and virtual addresses are congruent

modulo 4 KB for both text and data, up to four file pages hold impure text or

data (depending on page size and file system block size).

• The first text page contains the ELF header, the program header table, and

other information.

• The last text page holds a copy of the beginning of data.

• The first data page has a copy of the end of text.
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FIGURE A-2. Program Loading.

• The last data page may contain file information not relevant to the running

process.

Logically, the system enforces the memory permissions as if each segment

were complete and separate; segment addresses are adjusted to ensure each logical

page in the address space has a single set of permissions.

The region of the file holding the end of text and the beginning of data will

be mapped twice: at one virtual address for text and at a different virtual address

for data. The end of the data segment requires special handling for uninitialized

data, which the system defines to begin with zero values. Thus, if a file’s last data

page includes information not in the logical memory page, the extraneous data

must be set to zero, not the unknown contents of the executable file. “Impurities”

in the other three pages are not logically part of the process image; whether the

system expunges them is unspecified. The memory image for this program follows,

assuming 4 KB (0x1000) pages. The figure below shows a more detailed version

of the text segment and data segment. In a usual case the first and last part of
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both the segments are padded with zeros’. In this example we assume the text

segment starts at a virtual address of 0x08048000

FIGURE A-3. Process Image Segments.

One aspect of segment loading differs between executable files and shared

objects. Executable file segments typically contain absolute code. To let the

process execute correctly, the segments must reside at the virtual addresses used

to build the executable file. Thus, the system uses the p vaddr values unchanged

as virtual addresses.



69

On the other hand, shared object segments typically contain position-

independent code. This lets a segment’s virtual address change from one process

to another, without invalidating execution behavior.

Though the system chooses virtual addresses for individual processes, it

maintains the segments’ relative positions. Because position-independent code

uses relative addressing between segments, the difference between virtual ad-

dresses in memory must match the difference between virtual addresses in the

file.

A.7. How ELF File Looks

• Identifies the file as ELF

• The file contains 32 bit words. The lowest significant byte in a word is in

the lowest address

• A relocatable program for an Intel386 cpu. There are no program sections

for a relocatable file.

• The address of the first instruction to run is 0. The value is filled in later.

• The section header describing the executable code section. To identify the

header add the value of the name field (1b) to the start of section 5 (64)

and look at the string (in unix ’text’ means program code).

• The section header describing the data for the program.
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FIGURE A-4. ELF file.




