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This thesis is a preliminary study of the relative performance of the major speech

compression techniques, Differential Pulse Code Modulation (DPCM) and Subband

Coding (SBC) in the presence of transmission distortion. The combined effect of the

channel distortions and the channel codec including error correction is represented by

bursts of bit errors. While compression is critical since bandwidth is scarce in a wireless

channel, channel distortions are greater and less predictable. Little to no work has

addressed the impact of channel errors on perceptual quality of speech due to the

complexity of the problem. At the transmitter, the input signal is compressed to 24 kbps

using either DPCM or SBC, quantized, binary encoded and transmitted over the burst

error channel. The reverse process is carried out at the receiver. DPCM achieves

compression by removing redundant information in successive time domain samples,

while SBC uses lower resolution quantizer to encode frequency bands of lower

perceptual importance. The performance of these codecs is evaluated for BERs of 0.001

and 0.05, with the burst lengths varying between 4 and 64 bits. Two different speech

segments - one voiced and one unvoiced are used in testing. Performance measures

include two objective tests signal to noise ratio (SNR) & segmental SNR, and a

subjective test of perceptual quality - the Mean Opinion Score (MOS). The results



obtained show that with a fixed BER and increasing burst length in bits, the total errors 

reduce in the decoded speech thereby improving its perceptual quality for both DPCM 

and SBC. Informal subjective tests also demonstrate this trend as well as indicate 

distortion in DPCM seemed to be less perceptually degrading than SBC. 
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Comparison of DPCM and Subband Codec Performance in the
 
Presence of Burst Errors 

Chapter 1: Introduction 

In recent years, telecommunications products have proliferated and become 

increasingly common in the daily lives of consumers. Wireless and mobile products and 

services are in increasing demand, and voice communications remains a primary and 

preferred means of human-to-human communication, as evidenced by the increasingly 

widespread use of cellular phones. Higher consumer demand for wireless products and 

services places more pressure on scarce resources, particularly bandwidth. As a result, 

service providers are anxious to take advantage of technologies that minimize bandwidth 

requirements while providing acceptable quality to customers. These so-called 

compression technologies are critical components in wireless and mobile standards, 

including, e.g., IS-54 [34]. 

In general, however, increasing compression also increases sensitivity to 

distortions caused during transmission. For wireless and mobile communications - as 

opposed to transmission over optical fiber or coaxial cable this tradeoff results in a 

particular dilemma: while compression is critical since bandwidth is scarce, channel 

distortions are greater and less predictable. For example, changing weather, climate and 

terrain all can cause errors in the received signal. Some, but not all, of these errors can be 

corrected in the receiver. The goal in this thesis is to provide an evaluation of the relative 

performance of the major speech compression techniques in the presence of 

uncorrectable errors caused by distortion arising during the transmission process. 
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1.1 Background : Digital Communication Systems 

Compression technologies are used in a digital communication system. The term 

digital here implies that the information signal to be transmitted speech in this case is 

discrete in both time and amplitude and thus can be represented by a sequence of bits (l's 

and 0's). The goal in the digital communications system is to provide a service of 

acceptable quality (termed toll quality in telephony) and cost to the customer at the 

receiving end, while reducing the bit rate required for transmission to be as low as 

possible. 

The major components of a typical digital communications system are shown in 

Figure 1.1 and described briefly below. The information source is assumed to generate a 

relatively high quality digital message signal that has already undergone analog-to-digital 

(A/D) conversion. In this work, the message signal is a speech signal assumed to be of 

toll quality. Toll quality speech requires a minimum sampling rate of 8kHz (8000 

samples per second) and the use of an 8-bit quantizer (8 bits per sample), resulting in a bit 

rate of 64 kbps (kilobits per second) [34]. 

The primary function of the source encoder is compression; i.e. to reduce the bit 

rate required for transmission by removing redundancy in the source, speech in this case. 

The source decoder reconstructs speech from the transmitted signal. Collectively 

encoder/decoder pairs are called codecs. The focus in this thesis is on the performance of 

speech compression codecs (encoder-decoder) which are part of the source 

encoder/decoder pair. Source encoders may also include encryption for privacy or 

security. Since the focus of this thesis is on compression, encryption is not used. 
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Figure 1.1: Block Diagram of a Digital Communication System 

The purpose of the channel encoder is to provide robustness in the received signal 

to errors caused by distortion in the transmission channel. While source encoders remove 

redundancy to reduce the bit rate, channel encoders add some redundancy back into the 

signal to provide for error detection and correction at the receiver. Thus the bit rate out of 

the channel encoder is higher than the bit rate in, but typically still lower than the original 

signal bit rate. The type of channel encoding, as the name implies, depends on the type 

and amount of distortion expected in the channel. While there are many different types of 

channel codecs, the following qualitative description is generally accepted as valid. 

Channel codecs provide virtually perfect reconstruction of the transmitted bit sequence, 

unless the cumulative effect of errors causes the error correction to fail, resulting in a 
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burst of bit errors into the source decoder. In digital television, this effect is called the 

'Cliff effect' as it results in a sudden and complete loss of picture from one of nearly 

perfect quality. In this thesis, the combined effect of the transmission channel, including 

the channel codec, is represented by bursts of bit errors as shown in Figure 1.2. 

The modulator converts the bits out of the channel encoder into symbols 

represented by analog waveforms that are appropriate for transmission over the channel. 

Binary information may be encoded in different signal levels, phases, and/or frequencies. 

The results in this thesis are not specific to any particular type of modulator/demodulator 

as the cumulative effect of the channel codec, modulator/demodulator and transmission 

channel is reflected in the properties of bit errors into the source decoder. 

Channel Modulation Channel Demodulation Channel
 
Coder Decoder
 

Burst Error 
Channel 

III1----÷ 

Figure 1.2: Combining of Blocks as in this thesis 
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1.2 Speech Compression Codec Performance 

Compression is of two types: lossy and lossless. Loss less Compression takes 

advantage of statistical properties of the encoded signals to reduce the bit rate, as in 

Morse code, Hamming and Lempel-Ziev codes [11, 25]. For example, it is used for the 

compression of financial data where no information should be lost. Lossy compression is 

used for voice and video where precision is less important than perceptual quality. In this 

thesis, the focus is on lossy compression, which adds distortion in a controlled manner to 

minimize the perceptual degradation caused by reducing the bit rate. The two major types 

of lossy compression for speech are predictive coding, such as Differential Pulse Code 

Modulation (DPCM) and transform coding such as Subband Coding (SBC). Since most 

of the compression technologies and standards use a combination of these basic types, 

these two are the focus of this thesis. 

A typical quantitative measure of compression codec quality is Signal-to-

Quantization Noise Ratio (SQR) (which does not always correlate well with perceived 

quality but is still widely used). Note that the SQR evaluates performance only with 

respect to the loss introduced by the compression and is not impacted by transmission 

distortions. In contrast to source coders, channel codec performance is quantified by the 

number of bit errors that can be detected and corrected, or the bit error rate (B ER) out 

given the BER in. Thus channel codec performance measures are unrelated to the quality 

of the speech signal output. 

Little to no work has addressed the impact of channel errors on perceptual quality 

of speech due to the complexity of the problem. In this preliminary study, the channel 

and modulation have been collectively represented as bursts of errors. The channel codec 
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performance in this thesis has been fixed at bit error rates of 0.001 and 0.05. While 

typical rates out of a perfect channel codec are of the order of 10-20 [33], we use 0.001 

and 0.05 to account for the cumulative effect of errors occurring in an overloaded channel 

codec. The bit error rates have been chosen so that they are significant enough to cause 

perceptual degradation in the final output. 

There exist different objective measures of coder quality, which have the general 

nature of signal to noise ratio (SNR). In coding of communications signals such as speech 

and video, subjective measures to evaluate perceptual quality are also important. In this 

thesis, Signal to Noise Ratio and Segmental Signal to Noise Ratio (SEGSNR) have been 

used as objective measures of coder quality. Informal subjective testing has been done by 

calculating the Mean Opinion Score (MOS). While SNR gives the average signal to error 

power, segmental SNR tries to account for the impact of time varying SNR performance 

and so is a more suited perceptual measure. MOS is a purely subjective evaluation and 

does not distinguish the type of distortion. All the three are widely accepted as measures 

of coder quality [1. 2. 7, 14, 28, 29, 31]. 

1.3 Prior Work/ Literature Search 

Many researchers have studied various kinds of low bit rate source coders to 

achieve compression, such as, Differential Pulse Code Modulation, Delta Modulation 

(DM), Subband Coding, Code Excited Linear Prediction (CELP), Vector Sum Excited 

Linear Prediction (VSELP) [1, 2, 5, 8, 9, 10, 20, 21, 22]. The performance of these coders 

has been researched extensively for Additive White Gaussian Noise (AWGN) channels 

[6, 16, 18, 23, 25, 26]. Burst Error channels have been studied with emphasis on burst 
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error correction [14, 15, 19, 27, 32, 33]. Even though performance of low bit rate codecs 

has been extensively researched, to date the effect of burst errors on low bit rate speech 

has not been thoroughly investigated. This thesis is a preliminary study of the effects of 

burst errors on two different kinds of speech compression codecs. As indicated, a burst 

error model provides a reasonable model of the combined effect of the channel and error 

corrector. 

1.4 The Specific Problem 

The problem that has been dealt within this thesis is an exploration of the effect of 

burst errors, both analytically and through simulations, on the quality of encoded and 

decoded speech using Differential Pulse Code Modulation and Subband Coding 

Algorithms. Both the simulated codecs have the same bit rate of 24 kbps and reflect the 

two fundamental techniques used in speech compression standards. Most standards for 

lower bit rate typically use combination of differential and transform coding. While 

DPCM tries to remove the redundant information in successive time domain samples, 

SBC uses a lower resolution quantizer for frequency bands in which the perceptual 

impact is less. 
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Figure 1.3: The Block Diagram as per this thesis 

1.5 Thesis Organization 

The organization of this thesis is as follows. The testing and development of the 

24 kbps DPCM and SBC codecs are described in Chapter 2. Chapter 3 describes the burst 

error channel model used, and the corresponding analysis of the burst error performance 

of DPCM and Subband. A description of the performance measures used together with 

the simulation results for DPCM and SBC follow in Chapter 4. Chapter 5 summarizes 

results, implications, and suggestions for further research. 
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CHAPTER 2: Codec Simulation 

2.1 The Subband Codec 

2.1.1 Introduction 

Subband Coding is a transform coding technique in which the speech signal is 

filtered into a number of subbands and each subband signal is separately encoded into a 

digital format. As with any digital encoding and compression method, the goal is to 

reduce the number of bits required in transmission while still preserving perceptual 

quality of the speech at the receiver. In SBC, this goal is achieved by using different 

number of bits with more quantization noise where it causes less perceptual degradation. 

The number of bits used in the encoding process differs for each subband signal, with 

more (fewer) bits assigned to subbands that are more (less) perceptually important. Since 

most of the speech energy is contained in the lower frequencies, the lower frequency 

bands are encoded using more bits than the high frequency bands. By encoding each 

subband individually, the quantization noise is confined within that subband. The output 

bit streams from each encoder are then multiplexed and transmitted. 

At the receiver, demultiplexing is performed followed by decoding each subband 

data signal. The sampled subband signals are then combined to yield the recovered 

speech signal. The effect of subband coding on signal quality with respect to quantization 

noise and single bit channel errors has been reasonably well studied, for examples [1, 2, 

9, 10]. 
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The focus in this thesis is on the impact of burst errors as are likely to occur out 

of error correction devices in wireless communications - on the quality of the received 

signal. In this chapter, the specific subband codec structure used here is developed and its 

simulation performance verified. This resulting codec will be used in the comparison 

studies in Chapters 3 and 4. 

2.1.2 System Overview 

A subband encoder comprises multiple stages as illustrated in Figure 2.1. In each 

stage, the input signal band is split into two equal frequency bands, comprising high and 

low frequencies respectively. Filters in Figure 2.1 are designated by their unit impulse 

response. The sampling rate at the output of each stage is halved, as indicated by the 

down arrow. This decimation does not result in aliasing distortion as the bandwidth of 

each output signal is half of the original. 



I1 

Stage 2 
BE	 to chl. 4 

7 bits 
Stage 1 h0 

h0 hl BE --to chl. 3 
7 bits 

hl Q BE to chl. 2 
X(t) 3 bits 

hl BE 4 to chl. 1 
1 bit 

h0 : Low Pass Filter Impulse Response 
hl: High Pass Filter Impulse Response 
Q : Quantizer 
BE: Binary Encoder 
chl : Channel 

Figure 2.1: Subband Coder for Encoding the Speech Signal 

The frequency domain representations illustrating what happens at each stage of 

the encoder are shown in Figure 2.2 and can be described as follows. Let the input signal 

be a speech signal confined to B = 4000 Hz sampled at the Nyquist rate of 8000 samples 

per second; i.e. Fs = 8000 in Figure 2.2. During the first filtering operation or "stage 1" in 

Figure 2.1, the input speech signal is split into two equal bandwidth signals: a low-pass 

signal in the frequency band (0 < F < Fs/4) and a high pass signal in the frequency band 

(Fs/4 < F < Fs/2) as shown in Figure 2.2(a). Next, the low-pass signal from the first stage 

is split into two signals having equal bandwidth: one signal compressing the lower half of 

frequencies in the band (0 < F < Fs/8) and a second signal compressing the higher 
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frequencies in the band (F)8 < F < F)4) as shown in Figure 2.2(b). In the third and final 

stage, the low-pass signal from the second stage is split into two equal bandwidth signals 

as shown in Figure 2.2(c). Thus the signal is subdivided into four frequency bands 

It is important to note here that each subband filter produces Fs samples/sec 

even though the bandwidth of each filter is less than the full bandwidth of the speech 

signal. To prevent increasing the number of samples to be transmitted above that 

required, the filter output is down-sampled according to the ratio of the original 

bandwidth B to the subband bandwidth. Note that no compression is achieved by these 

decimation operations. 

Compression is achieved by using fewer bits to encode samples in the less 

perceptually important, higher frequency bands. The signal in each channel, ch, is 

quantized into 2b1 levels (Quantizer Q), each of which is converted to b, bits using the 

binary encoder (BE). 

To calculate the total bit rate of the encoder consider that the bit rate per channel 

Ri is 

R, = b, * Fs, (2.1) 

Where b, = Number of bits/sample & Fs, = Number of samples per second. Then 

the total bit rate is 

R= ER; 
i=1 

Where L = number of channels, four in this case. 
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Signal 
(a) After Stage 1 

Frequency 

0 Fs/4 Fs/2 (Hz) 
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(c) After Stage 3 

Frequency 

0 Fs/16 Fs/8 Fs/4 Fs/2 (Hz) 

Figure 2.2: Subdivision of Signal into four frequency bands 
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Table 2.1 illustrates the number of bits assigned to each channel for the subband 

encoder used in this thesis. 

Channel Number Freq. Band (Hz) Fs(Hz) No. of Bit Rate per 
bits/sample channel 

1 2000-4000 4000 1 4 kbps 
2 1000-2000 2000 3 6 kbps 
3 500-1000 1000 7 7 kbps 
4 0-500 1000 7 7 kbps 

Table 2.1: Channel bit assignments 

Thus the total bit rate can be computed as the sum of bit rates per channel 

resulting in a bit rate out of the encoder of 24 kbps. After quantization and binary 

encoding, the information from each channel is multiplexed together into frames. Each 

frame comprises of 4 samples from channel 1 (1 bit per sample), 2 samples from channel 

2 (3 bits per sample), 1 sample from channel 3 ( 7 bits per sample), 1 sample from 

channel 4 (7 bits per sample).Thus [1 1 2 2 3 4] is the composition of the frame where1 1 

the numbers denote samples from the given channel number. Each frame comprises 24 

information bits. Frames are transmitted at 1000 frames per second, yielding the expected 

24 kbps. 

At the receiver, the aim is to reconstruct the original speech signal from the 

subband signal with minimal distortion for a given transmission bit rate. Figure 2.3 shows 

the decoding for the subband encoded speech signal, which is basically the reverse of the 

encoding process. The binary decoder (BD) converts bits back into sample values, 

typically using a look up table. Up sampling, denoted by up arrows, is used to convert the 
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signals back to 8 kHz speech in stages. Filters are denoted by their impulse responses and 

are used to filter noise and aliasing distortion. 

BD g0 

g0 

g0
BD gl 

BD gl 

BD gl 

BD : Binary Decoder 
20 : Reconstruction low-pass filter impulse response 
g 1 : Reconstruction high-pass filter impulse response 

Figure 2.3: Decoding of Subband Encoded Signal 

It is important to note that the decimation and interpolation processes can result in 

aliasing distortion, but can be avoided by careful design of the filters h0(n), hl(n), gO(n), 

gl(n). 
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Figure 2.4: Decimation & Interpolation Process: original spectrum(a); decimation(b); 

interpolation(c). 
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Figure 2.4 illustrates the impact of decimation and interpolation process in the 

frequency domain and the aliasing resulting from it. Consider an original signal sampled 

at 8000 kHz having the spectrum illustrated in Figure 2.4(a). For DT filters, 

IC corresponds to Fs/2 = 4 kHz and thus TE/2 corresponds to 2 kHz. After decimation, the 

spectrum of the original signal appears to stretch as shown in Figure 2.4(b) as IC now 

corresponds to Fs/2 = 2 kHz and rc/2 to 1 kHz. After interpolation, the spectrum returns 

its original shape, but now has distortion, called aliasing, which needs to be rejected by 

passing it through an appropriate reconstruction filter. Quadrature mirror filters provide 

near zero aliasing and perfect reconstruction. These filters are described in detail in the 

next section. 
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a) 

H 0(o)) H1(w) 

(I) 

n/2 

b) 

H 0(0)) (W) 

CO 

ir/2 

Figure 2.5: Ideal(a) and QMF(b) filters 

2.1.3 Subband Filters: Quadrature Mirror Filters 

Filter design is particularly important in achieving good performance in subband 

coding as aliasing resulting from decimation of the subband signals must be negligible. 

The frequency response for Ideal Filters (also known as Rectangular Perfect 

Reconstruction and Brick Wall) is shown in Figure 2.5(a) and is not physically 

unrealizable. Practical filters have non-zero transition bands, which can lead to aliasing. 
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A solution to the aliasing problem is to design quadrature mirror filters (QMF), to 

eliminate aliasing. QMF filters have important frequency response characteristics similar 

to those shown in Figure 2.5(b). The sum of the filter frequency responses, HO(w) + 

Hl(w) is nearly flat. Thus if a signal is filtered by HO(w) and H 1(w), the sum of the 

resulting output signals results in the original signal, i.e. 

117 ())1=1(H 0 ( &) + (H1(011X(0)1 

1(110(co)+ (H1(01=1 

2.1.3.1 Quadrature Mirror Filters (QMF) 

The basic building block in applications of QMF is the two channel QMF bank as 

shown in Figure 2.6. This 2 channel QMF system is used below to explain how QMF 

filters are designed to prevent aliasing distortion. Note that this corresponds to a 1 stage 

subband encoder. This system is called a multi-rate digital filter structure that employs 

two decimators in the signal analysis section and two interpolators in the signal synthesis 

section. Let the impulse responses for lowpass and high pass filters in the analysis section 

be ho(n) and h1(n), respectively. Similarly, let the impulse responses of the lowpass and 

high pass filters in the synthesis section be go(n) and gi(n), respectively. 
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4 Analysis Section 4 Synthesis Section 10. 

Figure 2.6: The Two Channel QMF Filter Bank 

Then the Fourier transforms of the signals at the outputs of the two decimators 

are 

1 co \ Ito \ 
1 +X Ito ( co 27r ­X0 (co) =- X Ho Ho2- 2 2 2 

1 \ /­

(to r \ ( CO -27r 27r \ 
)(a, (w) = 1 X 111 +X .1-1

1( co 

2- 2 2 
I 

2 2 1 

Let Xso (co) and XS, (a)) represent the two inputs to the synthesis section, then the 

spectrum X(w) of the output signal is simply 

X(w) = Xs (2cd)G (cd)+ Xs, (20G, (co) 

If there is no noise, then the analysis and synthesis filters are so connected such 

that 

0 (ai ) = (w) 

)(1 (w) = X,, (w) 

In this case, 
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X (w) = 21 [H0(w)G0(0)+ H, (w)G,(w)11(w) + 
(2.2)
 

1 r
[Ho (6) z)G0 (w)+ H,(0 rt-)G,(w)1V(w 

2 

Where the first term represents the desired signal output from the QMF bank, and 

the second term represents the effect of aliasing. To eliminate aliasing, the term 

[Ho (co n)Go(w)+ H 1(w 71)G1(w)] in equation 2.2 should be zero, which can be 

accomplished by selecting 

Go (co) = (a) 
(2.3)
 

G, (6)) = Ho (to 7r) 

If Ho (a)) is a lowpass filter and H1(6)) is a mirror image high pass filter, as 

shown in Figure 2.5(b), then they can be expressed as 

If 0(6)) = H(6)) 
H, (w) H(w 7r) 

where H(w) is the frequency response of a lowpass filter. In time domain the 

corresponding relations are 

ho(n) = h(n)
 
(2.4)
 

h,(n)= (-1)" h(n)
 

Thus Ho (o)) and H, (w) have mirror image symmetry about the frequency 702. Also 

Go(w) = 2H (w) 
(2.5)


G,(0) 2H(w it) 

In time domain these relations become 

go(n) = 2h(n)
 

g,(n)= 2(-1)"h(n)
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The scale factor 2 here results due to the interpolation factor used to normalize the 

overall frequency response of the QMF. With this choice of the filter characteristics, the 

aliasing component vanishes. Thus the aliasing resulting from decimation in the analysis 

section of the QMF bank is perfectly canceled by the image signal spectrum that arises 

due to interpolation. The two-channel QMF thus behaves as a linear, time-invariant 

system. 

2.1.3.2 QMF Filter Design 

Since the QMF filters are critical in subband coding, the design of the QMF filters 

used here is detailed below. The following steps describe the operations for designing a 

QMF filter, where the term half-band filter implies a filter with a cut-off frequency half 

of the original signal bandwidth. 

Step 1: Design a linear-phase FIR half-band filter of length 2N-1 such that 

Pass Band Frequency OJ = 0.8 * rc/D 

Stop Band Frequency = TE (i) 

Stop Band Attenuation < -90 dB 

Ripple < 0.0001 dB 

Step 2: Construct an all-positive magnitude half-band filter from the filter obtained from 

Step 1. 

Step 3: Compute the zeros, z,, of the filter designed in Step 2 (MATLAB's tt2zp function) 

Step 4: Construct ho(n) by using only the zeros having magnitude less than 1, i.e., lz, <1. 

The filters designed for this thesis are described below. 
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Step 1: 

To achieve perfect reconstruction, a linear-phase FIR half-band filter of length 

2N-1 is designed first. A half-band filter is defined as a zero-phase FIR filter whose 

impulse response satisfies the condition 

b(2n) = constant for n # 0 

b(2n) = 0 otherwise 

Hence all even numbered samples are zero except at n = 0. The zero phase 

requirement implies that b(n) = b(-n). 

impulse response of equiripple filter 

frequency response of equiripple filter 

0.8 

0.6 

0.4 

0.2 

oo 
3 4 

digital frequency 
5 6 7 

Figure 2.7: Impulse Response of Equiripple Filter 
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An equiripple filter of length 59 (N = 30) satisfied the required specifications. 

Figure 2.7 shows the resulting filter designed here. Note that the filter B(o)) satisfies the 

condition B(6))+ B(Ii co) is equal to a constant for all frequencies. 

Step 2: 

Next, an all-positive half band filter B +(w) is constructed from B(co) with the 

response 

B,(co)= B(co)+ Ke-ico(N-1) 

where K is a constant. This filter is called all positive because its magnitude 

response is now positive at all frequencies. 

Step 3: 

Since the frequency response of B +(w) is nonnegative, it can be spectrally 

factored as 

B,(z)= H(z)H(z-')z-(N-I) 

or 

B+ (w) 
H(w)12 Cjw(N-1) 

where H(w) is the frequency response of an FIR filter of length N(=30) with real 

coefficients. 

Step 4: 

Aliasing can be prevented by choosing H1(z),G0(z), and GI (z) as follows 
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H0(z) = H(z) 

H1(z) = z-(N-1)H0(z-') 

z-(N-1)110(z-1) 

Gi(z)= z-(N-1)H1(z-1) Ho (Z) 

Figures 2.8, 2.9, 2.10, and 2.11 show the above filters designed using the method 

described above. As can be seen in Figure 2.9, the magnitude in the pass-band is twice 

that of ho(n). Recall the effect of decimation followed by interpolation is to decrease the 

magnitude by 2, resulting in the need for the gain term in the reconstruction filter. This 

gain occurs for the high-pass reconstruction filter as well as shown in Figure 2.11. 

hL(n):impulse and frequency response 
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Figure 2.8: Impulse and Frequency Response for low pass filter h0 (n) 
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XI impulse and frequency response 
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Figure 2.9: Impulse and Frequency Response for Reconstruction low pass filter g o(n) 
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Figure 2.10: Impulse and Frequency Response for High pass filter h, (n) 
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Figure 2.11: Impulse and Frequency Response for reconstruction filter g1 (n) 
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2.1.3.3 Performance Verification of a Two Channel QMF Bank 

Before we can put these filters in our actual codec, it is important to find out if 

they are working properly, i. e., to ensure that there is minimal aliasing resulting from 

decimation and interpolation. In order to test the above filters, consider the two channel 

QMF bank as shown in Figure 2.6. If input to this filter bank is an impulse, then after 

passing through the set of filters it should get perfectly reconstructed at the other end and 

there should be no aliasing. Figure 2.12 shows the impulse input to this bank. This 

impulse has a height of 1 and is padded with zeros. 

Input Impulse 
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Figure 2.12: Impulse Input to the 2-Channel Filter Bank 
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Figure 2.13 shows this impulse after it has been convolved with the low pass and 

high pass filters in the analysis section before decimation. This action gives the impulse 

response of the filters as shown in the Figure 2.13. 

Output of Low Pass 
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Figure 2.13: Output after the Analysis Section 

Next after going through the process of decimation and interpolation and then 

filtering through the low and high pass reconstruction filters, we obtain the response as 

shown in Figure 2.14. 
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Output of Reconstruction Low pass 
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Figure 2.14: Output after the Synthesis Section 

The outputs from the reconstruction filters are added together to get the final 

result which as can be seen in Figure 2.15 is the original delayed impulse due to the delay 

in the filters. Thus, it was possible to reconstruct back the input at the synthesis side after 

passing through the filter bank. We know now that our filters work and can now be used 

to build the complete subband codec. 
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output of 2-channel QMF 
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Figure 2.15: QMF Output and Input 

2.1.4 MATLAB Implementation of a Subband Codec 

The 24 kbps subband codec illustrated in Figure 2.1 has been implemented in 

MATLAB. The speech segment is the statement "We were away a year ago". As can be 

seen from the frequency spectrum, most of the energy is in the lower frequency bands. 

The peakiness of the spectrum is indicative of voiced speech 
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Signal Spectrum for Speech Signal 
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Figure 2.16: FFT of the input speech segment 
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Figure 2.17: Time Domain Plot of Input speech signal 
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Figure 2.18 shows the output signal spectrum after the first set of low pass and 

high pass operations, respectively, in the first stage. Figure 2.19 shows the resulting 

signal spectrum after decimation by 2 and filtering by the second set of low pass and high 

pass filters. As can be seen from Figure 2.18, around 2000 Hz there is an overlap of the 

signal for both the filters which is due to the overlapping transition bands of the low and 

high pass QMF filters 

Signal spectrum after passing thru 1st LP 
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Figure 2.18: Signal Spectrum after passing through the first LP and HP Filters 

Also, note that the signal power in the high frequency band, as shown in Figure 

2.18, is very low. For the 24 kbps codec simulated here, this high frequency information 
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is encoded using only one bit. The outputs of the filters in the second stage are shown in 

Figure 2.19. 

Signal spectrum after passing thru 2nd LP
 
40
 

30 

20 

10 ii iL
0 

-2000 -1500 -1000 -500 0 500 1000 1500 2000 

Signal spectrum after passing thru 2nd HP
 
40
 

30 

20 

10 

-.41141Wili 

-2000 -1500 -1000 -500 0 500 1000 1500 2000 
0 iikihaeirdiroadiaildlAihillliirs-._ 

Figure 2.19: Signal Spectrum after passing through the 2"d set of LP and HP Filters 

The signal energy in the high frequency band of 1000 2000 Hz shown in Figure 

2.19 is encoded using three bits. As was seen before, most of the signal energy is still 

concentrated in the lower frequency regions. 
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Signal spectrum after passing thru 3rd LP 
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Figure 2.20: Signal Spectrum after passing through the 3rd set of LP and HP filters 

The outputs of the filters in the third stage of the codec after decimation 

are shown in Figure 2.20. The speech information in the regions from 500 - 1000 Hz and 

0 - 500 Hz each is encoded using 7 bits. 

At the decoder the speech signal is reconstructed. Figure 2.21 shows the 

reconstruction of the speech waveform after the first and second stages of the receiver as 

defined in Figure 2.3. 
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Signal Spectrum for 3rd last stage on reciever 

Signal Spectrum for 2nd last stage on reciever 

Figure 2.21: Reconstructed speech signal at 3rd and 2"d last stages at the receiver 

Recall that reconstruction includes interpolation and recombination of 

information from the different subbands. Figure 2.22 shows the signal after the final 

reconstruction at the last stage in the receiver. Note that after each stage the signal 

spectrum more closely resembles the original speech spectrum. 
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Signal spectrum for reconstructed speech signal 
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Figure 2.22 : Speech Spectrum for the reconstructed speech at the receiver 

Looking at the above graph and comparing it visually with the actual 

speech spectrum shows very little difference, again validating the subband codec 

simulation. The reconstructed speech signal in the time domain is shown in Figure 2.23 

and is similar to the actual speech plot. The 24 kbps speech sounds very similar to the 

original recorded at 64 kbps. The signal to noise ratio is 11.5655 dB which agrees with 

SQR of 12 dB in standard text [2]. 



38 

Reconstructed Speech in Time 
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Figure 2.23: Reconstructed Signal in Time 

2.1.5 Analytical SQR for Subband Coding 

In subband coding, each subband waveform xk(t) is sampled at a rate fsk and 

encoded using Nk bits per subband sample. The original speech signal has a sampling 

frequency of 8000 samples/sec. From the equation (2.1), the transmission rate in SBC can 

be computed by summing the bit rates needed to code individual subbands: 

Al 

I = E fsk Nk bits/sec (2.6) 
k=1 
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To simplify the analysis, we assume non-overlapping subbands. In this case, 

there is no correlation between signals in adjacent subbands. Thus the total signal 

variance o 2, is simply the sum of the subband variances o 2,k i.e. 

0-2x = E 0-2, 
k =1 

Intuitively, recall that the input signal variance o 2r is equal to the area under the 

power spectral density. Similarly o 2r1 and o r2 are equal to the areas under the power 

spectral density curves (PSD) for each subband. Since the subbands are non-overlapping, 

it is clear that the total area is the sum of the subband PSD areas. 

2= o xl + 0 2_r2 

Extending this analysis for all the bands and assuming ideal filters, we can now 

say that the individual variances o 2,k of subband reconstruction errors for each band can 

be added to obtain the variance 0 2 rSBC of the signal reconstruction error: 

62 rSBC rkrSBC 

k =1 

The reconstruction error variance of a conventional full-band PCM coder, with a 

bit rate equal to the average bit rate N bits/sample is given by Then there exists a 

gain GsBc which is the SQR improvement due to subband coding and is given as: 

U rPCM 
GSBC = 

0 2 rSBC 

SQRsBc(dB) = SQRpcm(dB) + 10 log G ssc (2.7) 



40 

2.1.6 Comparison of Simulated and Analytical SQR Measurements 

To verify the analysis, the simulated and analytical SQR results are compared. 

The analytical SQR is calculated as the sum of the reconstruction errors in each channel. 

The simulated SQR has been calculated using the following formula : 

02r 
SQR sac (dB) =10 * logo (2.8)

0 r 

where o2, is the total signal power and o2, is the total reconstruction error power. 

Table 2.2 illustrates the reconstruction errors in each band and the total 

reconstruction error calculated from the difference between the original and the 

reconstructed speech at the receiver. 

2 2 2 ..,, 2 4 2U r2 t/ r3 U r4 Ea 0 rrl
 2 

k=1 

6.4791e-5 2.1027e-5 5.2398e-4 2.3699e-4 8.4679e-4 1.8940e-4 

Table 2.2: Reconstruction errors in each band 

The total reconstruction error power calculation assumes ideal filters and non-

overlapping subbands. The actual filters have overlapping transition bands and thus the 

sum of the individual reconstruction error powers is greater than the simulated end to end 

reconstruction error, although the values are very close. 

The SQR values corresponding to the simulated and analytical total reconstruction 

error are given in table 2.3. The simulated SQR is computed by taking the ratio of the 

signal power to the overall reconstruction error power, equation (2.8). The analytical 

SQR is computed by computing the gain term and then using equation (2.7). Since no 
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other distortions are introduced, the reconstructed signal should only contain the 

quantization noise. Again the simulated and analytical results are not identical but are 

very close, validating the analytical assumption. These results are very close to the SQR 

of 12 dB typically assumed for 24 kbps SBC [2]. 

SQR simulated(dB) SQR PCM(dB) Gain GsBc(dB) SQR analytical(dB) 
11.5655 9.3146 2.0255 11.3401 

Table 2.3: Analytical and simulated SQR for Subband 
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2.2 DPCM 

2.2.1 Introduction 

The term Pulse Code Modulation (PCM) refers to analog to digital conversion by 

sampling and quantization. The standard uncompressed 64 kbps speech is a PCM signal. 

PCM is robust to channel interference and is easily converted back to the analog speech 

signal. Data compression is used to remove the redundancy present in a PCM signal and 

thereby reduce the bit rate of the transmitted data without serious degradation in signal 

quality. 

Since speech signals sampled at 8 kHz do not change in value rapidly from one 

sample to the next, a sample can be predicted with reasonable accuracy from previous 

samples. Compression can be achieved by transmitting the difference between the signal 

and its predicted value rather than the signal itself. Differential Pulse Code Modulation 

(DPCM) uses this idea to achieve compression. 

The goal in this thesis is to achieve speech coding using a 24 kbps DPCM codec, 

transmit it over a bursty channel and observe the effect at the receiving end. This section 

describes the development of a 24 kbps DPCM codec simulation. 

2.2.2 System Overview 

In Differential Pulse Code Modulation, difference between the input sample and a 

prediction value is transmitted, rather than on the sample itself. The difference signal can 

be quantized using fewer bits than required for the original signal, resulting in 
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compression. Coding methods using this prediction idea are called predictive coding 

methods. 

2.2.2.1 Predictive Coding for Compression 

Accurate prediction requires a good model. Speech can be modeled as the output 

of a linear system comprising all poles (an AR model). At the transmitted end, an inverse 

model is used. The parameters of this system are time varying, but can be viewed as fixed 

for each utterance of about 20 msec. For AR models, the optimal inverse model can be 

computed by using linear prediction. The predicted value is a weighted sum of past 

values and the model parameters are computed by minimizing the power in the difference 

between the actual and predicted signals. 

The goal in linear prediction is to create a filter that models the speech production 

process. If we sample a speech signal at a high enough rate, we can " predict" the next 

sample from the previous ones. Let x(n) be the discrete time unquantized input signal, 

x (n) be the prediction of it, Thus a speech sample can be approximated as a linear 

combination of past speech samples i.e., 

x p(n) = Eakx(n-k) 
k =1 

e(n) = x(n) x (n) 

where ak are the linear prediction coefficients ; e(n) is the difference signal and is called 

the prediction error. 

The predicted value is thus the output of the prediction filter, which is a finite 

impulse response filter (FIR) whose system function is 
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Eakz' 
k=1 

and whose input is the signal x(n) . Compression is achieved by transmitting the error 

signal instead of actual input signal and using fewer bits(quantizer levels). Even though 

fewer bits are used, the quantizer noise remains small as the error signal has a much 

smaller dynamic range than the input signal. The signal is reconstructed at the receiver. A 

Linear Predictive Coder and Decoder are shown in Figure 2.24 

x (n) e (n) e (n) x (n) 

P(z) 

x (n) 

Figure 2.24 : Predictive Coding for Compression 

The optimum prediction coefficients ak are defined uniquely as the minimization 

of the squared differences (over a finite interval) between the actual speech samples and 

the linearly predicted ones: minimum mean square error. Methods like the Levinson-

Durbin algorithm have been used to obtain these coefficients efficiently [1]. 

Note that the reconstruction filter transfer function 

H(z) = 
1 

-k
1 -Ea kZ 

k=1 
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is an all-pole filter, i.e. an IIR filter, and the reconstructed signal is 

P 

x(n)= e(n) +Ea kx(n k) 
k=1 

However, now if the error out of the transmitter as shown in Figure 2.24 is 

quantized, then the receiver uses this quantized error as input to the system. In contrast, 

the transmitter used the unquantized error as input to the predictor. The additional error 

introduced at the input to the receiver is passed through the IIR filter H(z), resulting is an 

accumulation of errors in the reconstructed speech. DPCM avoids this situation by 

inserting a quantizer in the loop at the transmitter as shown in Figure 2.25. 

x(n) + e(n) e q (n) c(n) 
BE ___),+ 

x (n)
P 

P(z) 

Q: Quantizer
 
BE: Binary Encoder
 
P(z): Predictor
 

Figure 2.25: DPCM Encoder 
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2.2.2.2 DPCM Encoder & Decoder 

Figure 2.25 depicts the encoder for DPCM. Here, xl (n) is obtained from x (n) 

and the quantized error e 1(n) . Thus the predicted value is computed as 

x (n) = Eak X q(n k) (2.9) 
k=1 

The important point to note here is that the input to the transmitter's predictor is the same 

as the input to the receiver's predictor (in the absence of noise). The predictor order p 

used in this thesis is 10, which is generally considered to provide a reasonable estimate 

for male speech. 

Let q(n) be the quantization error, then the quantized difference signal is 

e q(n) = e(n) + q(n) (2.10) 

As can be seen in the Figure 2.25, the quantized difference signal e q(n) is added to the 

predicted value x (n) to produce the prediction filter input, 

x (n) = x (n) + e (n) (2.11)
q P q 

Substituting for e q(n) from equation (2.10) in the above equation (2.11) results in: 

x q(n) = x p(n) + e(n) + q(n) (2.12) 

However, since e(n) = x(n) x p(n) , substituting this expression into (2.12) results in the 

following expression for the quantizer: 

xq (n) = x p(n) + x(n) x p(n)+ q(n) = x(n) + q(n) (2.13) 
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Thus from equation 2.13 it can be seen that, independent of the properties of the predictor 

system P(z), the quantized signal at the prediction filter input differs from the original 

signal x(n) only by the quantization error q(n) . 

Thus if the prediction is good, the variance of the prediction error e(n) will be 

smaller than the variance of x(n). A quantizer with fewer levels can be used to produce a 

quantization error with a smaller variance than would be possible if the input signal were 

quantized directly as in standard PCM. 

The quantizer used here is a 3 bit fixed, uniform quantizer. Better performance 

can be obtained by using adaptive quantization, which is responsive to changing levels 

and spectrum of input speech signal. But here since the goal in this thesis is a preliminary 

analysis, a simple uniform quantizer has been used. Figure 2.26 depicts the decoder, 

which reconstructs back the transmitted signal at the receiving end. Comparing this figure 

to the decoder in Figure 2.24, the only difference is the Binary Decoder (BD) present in 

Figure 2.26. The quantized version of the original input signal is reconstructed using the 

same prediction filter as used in the transmitter. In the absence of channel noise, the 

binary encoded signal at the receiver input is same as the binary encoded signal at the 

transmitter output. Thus the corresponding receiver output is equal to x q(n) which 

differs from the original input x(n) only by the current quantization error q(n) . 
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BD: Binary Decoder
 
P(z): Linear Predictor
 

Figure 2.26: DPCM Decoder 

2.2.3 Analytical Signal to Quantization Ratio 

The signal-to-quantization noise ratio is defined as
 

E[x2 (n)]

SQR = (2.14)

Elq' (n) aq` 

which can be written as 

2 2 

SQR = Cre Gp * SNR0 (2.15)
2ae °q 2 

where 

a 
SNR0 = e 

2 

is the signal-to-quantizing noise ratio of the quantizer, and the quantity 



49 

2 

Gp = 
e 

is defined as the processing gain due to the differential configuration. The quantity Gp, 

when greater than unity, represents the gain in signal-to-noise ratio that is due to the 

differential quantization scheme. 

For a given message signal, the variance cr,2 is fixed, so that Gp is maximized 

by minimizing the variance cre2 of the prediction error. The analytical expression for 

SQR for DPCM can be written in terms of the SQR for PCM together with the gain term 

can be expressed in dB as: 

SQRDPCM (dB) = SQRPCM (dB) + 10logGp (2.16) 

2.2.4 MATLAB Implementation 

2.2.4.1 Implementation Flow Chart 

The following Figure 2.27 shows an implementation flow chart for a DPCM 

coder. The difference signal has been binary encoded using 3 bits/sample and @ 8000 

samples/sec, resulting in a bit rate of 24 Kbps. The speech sample used here to verify 

performance is the same as that used for subband containing predominantly voiced 

sounds, "We were away a year ago". 
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Initialization
 

x p (1) = 0, xq (1) = e(1) = x(1)
 

Extract 20ms block of speech
 
(rectangular window,
 

160 samples)
 

Calculate predictor coefficients 

Update vectors xq , xp,e,eq 

(see update equations ) 

Convert error levels into
 
Binary representation
 

UPDATE EQUATIONS 

xp(J)= Eakxq(J -k) 
k=1 

e(j) = x(j) x p(j) 

e q W= CieWl 

Figure 2.27: Implementation Flow Chart 
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2.2.4.2 Histogram for Input and Difference Signals 

A histogram plot depicts the number of samples per quantizer level, providing a 

coarse estimate of the probability density function. Figure 2.28 shows the histogram for 

the input signal, and Figure 2.29 is the histogram plot for the prediction error which is 

actually transmitted over the channel. 
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Figure 2.28: Histogram Plot for Input Speech Signal 

Note that the difference signal has a dynamic range of -0.0837 to 0.0746 with a 

standard deviation of 0.0116. The original speech signal has a dynamic range from ­

0.2427 to 0.2651 with a standard deviation of 0.0508. The smaller dynamic range and 
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variance relative to the speech signal allows fewer bits to be used to achieve 

approximately the same difference between quantizer levels. 

As with the SBC simulation, the DPCM codec is tested using the speech segment 

as shown in Figures 2.30 and 2.31. Figures 2.32 and 2.33 show the magnitude of the 

frequency spectrum and the time domain plots of the reconstructed speech respectively. 
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Figure 2.29: Histogram Plot of Difference Signal 
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Figure 2.30: FFT of Input Speech Signal 
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Figure 2.31: Time Domain Plot Of Input Speech Signal 
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Spectrum for reconstructed speech at Receiver 

Figure 2.32: FFT of Reconstructed Speech Signal 

From a brief visual inspection, the signal as in Figure 2.30 and its spectrum in 

Figure 2.32 look virtually identical to the original. From informal subjective evaluation 

the 24 kbps DPCM signal sounds as good as the 64 kbps original PCM signal, and very 

similar to the 24 kbps SBC speech. The measured SQR is 18.7066 dB, which compares 

well to the theoretically predicted value of 18.7066 dB. The method for computing these 

values is discussed next. 
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Figure 2.33: Time Domain Plot of Reconstructed Speech Signal 

2.2.5 Codec Testing: Comparison of Analytical and Simulated Results 

The analytical SQR is computed as derived in equation (2.16). The simulated 

SQR is computed as the ratio of the signal power to the reconstruction error power, where 

the reconstruction error is obtained by subtracting the reconstructed signal from the 

original signal as in equation (2.14). The SQR's computed from analytical results and 

simulation are presented in table 2.4. 
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SQR simulated (dB) SQR PCM (dB) Gain (dB) SQR calculated (dB) 
18.7066 9.3152 9.3914 18.7066 

Table 2.4: Analytical and simulated SQR for DPCM 

These values correlate well with existing results of SNR = 18 dB reported in the 

literature for 24 Kbps DPCM [2]. The theoretical and simulated results match thereby 

validating both the codec performance and assumptions used in the analysis. 
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Chapter 3: Channel Model
 

3.1 Introduction 

After compression, the encoded speech signal is transmitted over a physical 

channel to the decoder, which reconstructs the signal. Depending upon the type of the 

channel, the information reaching the decoder may have been distorted causing 

degradation in the reconstructed signal. Wireless communication channels contain a 

myriad of distortions, which can be described as, e.g., fading, AWGN and bursty. Here 

we model the overall impact of the channel, comprising both the physical channel and the 

error correction, on the bit errors into the source decoder. We are primarily interested in 

how the perceptual quality of the reconstructed speech is affected by these errors, i.e. the 

difference in the speech decoder performance. Recall that the channel here comprises the 

channel encoder and decoder pair, the modulator/demodulator, and the physical 

transmission channel, the channel decoder includes error correction. 

In an actual wireless system, burst errors at the input of the source decoder can 

occur for a variety of reasons. For instance, these errors could be from an error correction 

device that was overloaded. A typical real channel with clustered errors is a mobile radio 

link. The slow signal fading over such a channel causes bit error patterns in which 

temporal correlation exists. This thesis tries to explore the effect of these bursts of errors 

on the two speech coding schemes, DPCM and Subband. Here we assume that the 

cumulative result of transmitter distortion results in a channel comprising burst errors of 
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different lengths. This chapter develops and analyzes a model for this type of channel, 

which we call a Burst Error Channel (BEC). 

3.2 Overall Picture 

Figure 3.1 illustrates the various blocks in the overall setup for experimentation 

where the speech encoder is 24 kbps DPCM or subband coder with binary output. The 

BEC results in burst of bit errors, which in turn cause distortion in the decoded speech. 

The goal of this thesis is to compare the effect of a burst error channel on the relative 

performance of the DPCM and subband codecs. For comparison, The bit error rate (BER) 

is kept constant as the length of the burst errors is increased. 

Speech Speech1. BEC H 1. 
Encoder Decoder

Input Reconstructed 
Speech Speech 

BEC : Burst Error Channel 

Figure 3.1: Overall Block Diagram 

3.3 The Burst Error Channel 

The BEC results in bursts of bit errors, where a " burst " is a string of consecutive 

errors. The resulting bit error vectors are represented as follows. If binary arithmetic is 

used, then '1' denotes an error and a '0' denotes no error in the error vector. An error 

vector e 1 might be: 

e 1 = [0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 ] 
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The vector el is a vector with single bit errors as is likely to occur in AWGN. 

Since the total number of samples is 30 and the number of errors are 6, the BER = 

0.2. If errors occur in the same places as e 1 but in bursts of length 2 then the error vector 

becomes, e.g. 

e2=[001101100000110011000110000011] 

Note that now 12 errors occur in the same 30 samples, so the BER is doubled. To keep 

the BER constant, the number of times that a burst of errors occurs must be halved, e.g. 

e2' = [0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0] 

In this thesis, the BER is fixed and the burst error lengths varied. 

3.4 A Filter Model for Burst Errors of Length N 

In this analysis, we assume a burst of sample, rather than bit, errors. In contrast, in 

the simulation the burst errors occur in the bits and then the bits are converted to samples. 

For example, with 3 bits/sample in DPCM, a burst of 4 bit errors would correspond to 2 

sample errors. The bit errors would cause the quantizer to assign a different level to the 

combinations of bits giving rise to errors. 

The goal here is to create an analytical model for bursts of sample errors. 

Consider the model shown in Figure 3.2 where the output y(n) of the linear system h(n) is 

a burst of sample errors of length N. As an example, consider a sequence x(n) with single 

sample errors and the total sample error rate given by SER : 

x(n)= [ A 0000 -A 00 -A 0 0 A] 
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where A is the error value at each point, here assumed to be the difference between two 

consecutive levels in the quantizer. Consider another sequence z(n) which is just x(n) 

interpolated by 2 (i.e. has a zero added after each sample in x(n) ) i.e. 

z(n)=[A000000000-A00000-00000000] 

A MATLAB command to generate z(n) could be 

z[1:2:2*length(x)] = x 

h(n)
 

z(n) y(n)
 

Figure 3.2: Filter Model Parameters 

If this sequence is passed through a filter h(n) = 6(n) + 8(n-1), the output from that filter 

is 

y(n)=[AA00000000-A-A0000-A-A0000 AA] 

then this is equivalent to a burst of length 2 having the same SER as x(n). 

In general, let the input z(n) be the vector of single bit errors having a given 

SER 
where SER is the desired sample error rate and N is the length of the burst in 

samples. Then if z(n) is generated by white noise with zero mean, the autocorrelation 

function of z is: 

Rzz(n) = G2 6(n) (3.1) 

where 0,2 is the Power Spectral Density (PSD) and is a constant for all frequencies i.e. 



61 

Szz(0 = 072 (3.2) 

If the length of a burst is much less than the number of bits between bursts, then a LTI 

filter 

N-1 

h(n) = Eg(n-i) 
=0 

will create the output error symbol y(n) having a SER denoted by ser 1 and bursts of 

length N. Thus 

S,(f) = 6z2 = ser_UN (3.3) 

The PSD of the output then can be computed as 

S, (f) = IH(f )12 S (f) 

resulting in the autocorrelation function : 

Ryy(n) = F-1{ S (f )1 

Ryy(n) = [ h(n) * h(-n) ] (ser_l/N) 

Ry(n) = [(N abs(n))/N] ser 1 for n E (-N, N) (3.4) 

Note that Ryy(n) is a triangular function as shown in Figure 3.3 for a burst length of 

length 8 with a power spectral density as shown in Figure 3.4. As length of burst 

increases, more of the power lies is in the lower frequencies. 
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Figure 3.3: Autocorrelation for Burst Length of 8 
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Figure 3.4: Power Spectral Density for Burst Length of 8 
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Consider a 3-bit quantizer having 8 levels and the difference between any two 

levels is A. Suppose there is an error of only one level, +A or -A at the output of the 

quantizer. This is an assumption that we make to simplify the problem. If SER is the 

sample error rate, and assuming the errors of +A and -A are both equi-probable, and N is 

the burst error length, 

SER
probability of no error is p(0) = 1 

N 

SER
Probability of an error of +A is p(+A) = 

2N 

SER
Probability of an error of -A is p(-A) = 

2N 

SER SER
And thus the total error power k1 = A2* + A2* 

2N 2N 

SER 
k1 

If for a 3 bit quantizer with a dynamic range of 1 and A ( = 1/4) is only one level, we can 

compute the value for the above constant as 

SE 
k1 = (0.25)2* 

Ryy(n) = k1 [ h(n) * h(-n) ] 

Ryy(n) = [(N abs(n))/N] (0.25)2* SER for n E (-N, N) (3.5) 

Note that since these errors are random, there exist a number of combinations of 

error sequences at the output of the quantizer which have not been discussed here. If all 
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those cases are considered, the error power would be greater than what is obtained in the 

above expression (3.5). The simplifications are used here to facilitate a preliminary 

analysis. 

3.5 Analysis of Burst Errors Impact on DPCM 

Tx Channel Rx
 
c(n)
 

x(n)	 u(n) v(n) y(n)
 
Transmitted Received Reconstructed
Input signal
 
signal signal signal
 

In the Receiver : 

v(n)	 y(n) 
ReconstructedReceived 
signalsignal 

Tx : Transmitter 
Rx : Receiver 
hdec(n) : Impulse Response of Decoder 

Figure 3.5: Analysis Variables for DPCM 

Figure 3.5 shows the setup used here for the analysis of Differential Pulse Code 

Modulation (DPCM) for burst errors. The burst errors occur in the channel and corrupt 

the transmitted signal. If there are no errors, then c(n) = 0, and thus the received signal is 

identical to the transmitted signal, i.e. v(n) = u(n). If errors occur then c(n) # 0 , and thus 

v(n) = u(n) - c(n). When errors occur, 
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y(n) = v(n) * hdec(n) = [u(n) - c(n)] * hdec(n) = u(n) * hdec(n) c(n) * hdec(n) 

In the above equation if we analyze each term, we obtain: 

u(n) * hdec(n) = output without channel errors = x(n) q(n) 

c(n) * hdec(n) = errors introduced due to the channel. 

The total reconstruction error is just the sum of the reconstruction and channel errors, or 

r(n) = x(n) - y(n) = q(n) + c(n) * hdec(n) 

Total reconstruction error variance (assuming zero mean) can therefore be written as 

0,2 = E[ r2(n) ] = E[ (q(n) + c(n) * hdec(n))2 ] 

= E[ q2(n) ] + E[ (c(n) * hdee(n))2 ] + 2E[ q(n) [c(n) * hdec(n) ] ] 

Cta 

= 0q2 + 2 E hdec(n) E[ q(n)c(n-k) ] + 
kA 

hdec(k) hdec(l)E[ c(n-k)c(n-Di (3.6) 

k=0 1=0 

for LTI systems. 

Since the quantization noise is due to the inherent quantizer resolution, we can 

reasonably assume that there is no correlation between the quantization noise and the 

channel errors and thus, 

E[ q(n)c(n-k) ] = 0 (3.7) 

Substituting equation (3.7) in (3.6) yields 

6r2 6q2 E E hdec(k) hdec(I)E[ c(n-k)c(n-1)] 
k=0 1=0 

Now, 

E[ c(n-k)c(n-I) ] = Rdk -1) (3.8) 
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Thus we can write, combining all the above conditions, 

0r2 = 0,12 E E hdec(k) hdec(1) R,c(k -1) 
k=-0 /=0 

For N = 2, 

SER 
Rcc(m) = Ryy(m) = A2( ) [ 26(m) + 6(m-1) + 6(m+1)] 

Now if: 
00 

Rdec(n) E hdec(k+n) hdec(n) 
kA 

ER
Then o2q + A2(SN ) [2Rdec(0) + Rdec(1) + Rdec(-1)] 

The general expression for the total reconstruction error power for a burst of length N is: 

1­= 6q2 
± A2 

SER 
(N-1) (3.9)

N E inlizdec (n) 
n = 

3.6 Implementation and Comparison for DPCM 

To use the above expression for computing the reconstruction error power for 

DPCM, the hdec for each block was used to compute the error power from equation (3.8) 

for that block and then the computed SNR obtained. Since hdec is an IIR filter, the 

autocorrelation of the impulse response was computed by taking the inverse FFT of the 

power spectral density of the filter when input to the filter is white noise. The simulated 

SNR was as obtained via MATLAB simulations and is described in detail in Chapter 4. 

As in section 3.4, a simplified case where the sample errors caused by bit errors 

correspond to an error of 1 quantizer level. Also, assume that the number of bit errors 
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caused by a burst of length N bits in a total of T bits translates to (N/3) sample errors in a 

total of (T/3) samples where 3 bits/sample are used In this case, the sample error 

rate(SER) can be assumed to be same as the bit error rate. Note that this is the best case, 

i.e., the fewest number of sample errors given the number of bit errors. For DPCM a 3 :lit 

quantizer has been used and so A = 0.25. 

For this simplified model, Figure 3.6 shows a plot of the analytical and simulated 

SNR values for DPCM for a SER of 0.001 

30 
DPCM Theoretical and Analytical SNR vs Burst Length for SER 0.001 

o Analytical 
Simulated 

25 

20 

10 

5 

0
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Burst Length in bits 

Figure 3.6: DPCM Analytical and Simulated SNR for SER = 0.001 

It is important to note here that the analytically computed values are higher than 

the simulated values. Recall that for analysis, the simplifying assumption used was that 
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all the errors are such that the output of the quantizer changes only by one level. This is 

the best case which gives the lowest error power. For all other combinations of errors at 

the quantizer output causing the actual samples to change by more than one level, the 

error power will be much larger giving a lower value for SNR as is obtained in the 

simulated values. Both the analytical and simulated SNR values increase with increasing 

burst lengths in bits. The reason for this increase is argued in Chapter 4. 

5-bit Binary Binary 
110 --II g0 Re-Quantize Encode Decode 

onstructedInput 

1-bit Binary Binary
hl g1--,

Quantize Encode Decode 

chi) 

Figure 3.7: Analysis Variables for Subband 

3.7 Analysis of Burst Errors Impact on SBC 

The goal in this section is to analyze the impact of burst errors on SBC, using the 

same procedure as described in the previous section. Consider a 2 channel Subband 

system as shown in Figure 3.7. As with DPCM the total errors is the sum of the 

quantization noise q(n) and the out of decoder r(n) channel errors c(n) out of the decoder , 

i.e., 

r(n) = q(n) + c(n) * go(n)+ c(n) * gi(n) 
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where c(n) are the channel errors and go(n), gi(n) are the impulse responses of the filters 

in the decoder. Thus the total error power, o2 , can be written as(assuming zero mean, 

without loss of generality), 

2 2(0]
Or	 = E[ r

= E[ (q(n) + c(n) * go(n) + c(n) * gi(n))2] 

= E[q2(n)] + E[(c(n) * go(n))2] + E[(c(n) * gi(n))2] + 2E[q(n)(c(n) * go(n))] + 

2E[q(n)(c(n) * gi(n))] + 2E[(c(n) * go(n))(c(n) * gi(n))] (3.10) 

To simplify this expression in equation (3.10) we make the following assumptions: 

The correlation between the inherent quantization noise and the channel errors is 

zero, i.e., E[q(n)c(n)] = 0 (also used for DPCM). 

The correlation between the filters go(n) and gi(n) is negligible since they occupy 

distinct frequency bands. As a result the cross terms are zero in equation (3.10). 

While this simplifying assumption is not true for QMF filters, but is reasonable given 

that transition bands are narrow relative to filter bandwidth. 

With these assumptions, equation (3.10) is simplified as follows: 

0r2 = E[q2(n)] + E[(c(n) * go(n))2 ] + E[(c(n) * gi(n) )2] 

Since c(n) is random and the receiver filters are fixed, then, 

CO	 00 

Ore 
= Gq2 E E go(k) go(1)E[c(n-k)c(n-1)] + 

k=0	 1=0 

gi( k) gi(1)E[c(n-k)c(n-1)]	 (3.11) 
k=0	 1=0 

Now substituting for Rcc(n) as in equation (3.8), equation (3.11) becomes: 
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r>0 

0r2 (7,2 E E go(k) goRdk-l) E E gi( k) gi(l) Rce(k-1) 
k=0 1=0 k=0 1=0 

Now if : 

Rgo (n) = E go(k+n)go(n) and 
k=0 

Rgi (n) = E gi(k+n)gi(n) then 
k=0 

2 2 2 S ER 
= Og A ( ){ [N -abs(n)] Rgo (n) + [N -abs(n)] Rgi (n)} for n e (-N, N) (3.11) 

Comparing this the expression of total reconstruction error of subband to DPCM, 

we find that they both involve deterministic ' correlation ' functions but in the case of 

subband there are two filters instead of just one. Again assume that in the best case the 

sample error rate is same as the bit error rate, and the quantizer error corresponds to only 

a single level quantizer. With these assumptions, the values for the computed SNR have 

been obtained. It is important to note here that in SBC, multiple (two here) quantizers are 

used, each of which encodes the sample levels using different number of levels. The bits 

are multiplexed using TDM from each channel. For the 2 channels, 24 kbps system used 

in this analysis, one frame comprises of four samples from channel 1 and four samples 

from channel 2. The resulting frame can be designated as [1 1 2 2 2 2] as one frame1 1 

(where the numbers indicate the samples from the given channel numbers). Frames are 

transmitted at a rate of 4000 per second, resulting in a 24 kbps rate. 

Given this frame arrangement and the number of bits per sample, the probability 

of an error in channel 1 is: 

The probability of an error in the first four samples = 20/24 = 5/6 (3.12) 
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Similarly, 

The probability of an error in the next two samples = 4/24 = 1/6 (3.13) 

Using equation (3.5) and the above results, the value of the total error power at 

the output of the quantizer can be computed as: 

SER 
( ) [ 1A2I +IA22 where A = 0.0625; A2 =0.5; 

N 6 6 

3.8 Implementation and Comparison for Subband 

As with DPCM, the SNR is computed analytically for different burst lengths 

assuming that the quantizer error for SBC is only a single level. Also sample error rate is 

assumed to be the same as the bit error rate, 0.001 in this case. Figure 3.8 shows 

analytical and simulated SNR values for SBC in the presence of burst errors of different 

lengths. 
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Figure 3.8: Subband Analytical and Simulated SNR for SER = 0.001 

As with DPCM, calculated SNR is greater than the simulated values since the sample 

errors may be greater than the single-quantizer level error assumed here. Note that, as 

with DPCM, the SNR increases with increases in burst length. The reasons for this 

increasing trend are discussed in Chapter 4. 
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Chapter 4: Simulation Performance Comparison 

4.1 Performance Measures 

4.1.1 Introduction 

Evaluating performance requires the use of measures. For speech, it is well 

understood that while SNR is widely used as a quantitative measure of relative 

performance, it is not a good measure of perceived quality. The purpose of this chapter is 

to summarize three performance measures of the quality of the reconstructed speech as 

used in this thesis. These measures are then used to compare the two 24kbps speech 

codecs. Signal to Noise Ratio (SNR), Segmental Signal to Noise Ratio (SNRSEG), and 

the Mean Opinion Score (MOS) are the measures of coder quality used in this thesis. 

DPCM and SBC performance are compared using these different measures. 

4.1.2 Signal to Noise Ratio (SNR) 

The reconstruction error r(n) in digital coding is defined as the difference between 

encoder input x(n) and decoder output y(n) i.e. r(n) = x(n) y(n). The signal to noise 

ratio, SNR, is defined as the ratio of input signal variance a,2 to reconstruction error 

variance 6r ; i.e., 

2 

SNR = (4.1)
2 

which can be expressed in dB as 
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SNRdB = 10 log SNR (4.2) 

The reconstruction error variance of is the mean square error (MSE). Codec 

designs that minimize this quantity are called minimum mean square error (MMSE) 

designs. SNR is easy to compute both analytically and through simulations and so is a 

widely used measurement technique. The segmental SNR, discussed next, provides better 

correlation with perceived quality by accounting for the time varying nature of SNR 

during speech. 

4.1.3 Segmental Signal to Noise Ratio (SEGSNR) 

In the ongoing quest for a subjectively meaningful objective measure of coder 

quality, several refinements of the conventional SNR have been proposed and used in 

speech and image work. An important class of SNR refinements, used widely in speech 

coding, are those that recognize the fact that the speech signal is non-stationary and that 

the same amount of noise has may have different perceptual values depending on the 

signal to which it is added. The segmental SNR (SEGSNR) measure is based on a log 

weighting that converts component SNR values to dB values and then averages those 

values. 

The segmental SNR is defined as 

SEGSNR(dB) = E[SNR(m)(dB)1 

1 m (4.3)
ISVRdB(m) 

I ,,, 

where SNR(m) is the conventional SNR for segment m, and the expectation is a time 

average over all segments of interest in an input sequence. An appropriate segment length 
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in speech, which is typically used, would be of the order of 16-20 msec, the same as used 

for Linear Predictive analysis. The following flow chart shows the steps required to 

compute the segmental SNR. 

Divide the entire speech 
signal into 20 msec 

segment 

1 

Compute SNR in dB 
for each segment via 

SNRdB eq (4.2) 

Al 
1

SEGSNR(dB)= V SNR db (m) 
M I =1 

SEGSNR 

Figure 4.1: Steps to Compute Segmental SNR. 

4.1.4 Limitations of SNR and SEGSNR 

While SEGSNR takes into account the time varying nature of speech it still is not 

a very good measure of perceived speech and quality. The insufficiency of the SNR 

measurements has to do with the fact that the quantization error sequence has signal 

dependent or signal correlated components. This signal dependent noise does not have 

the same annoyance value as independent additive noise of equal variance [5, 15]. 

Consequently, the perceptual quality provided by a quantizer with signal correlated errors 

cannot be completely described by the ratio of signal power ar2to reconstruction error 
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power of . Additionally, different frequencies have different perceptual importance. 

This can be illustrated by a simple example of a high frequency tone in the reconstructed 

speech signal. In this case, a,2 can be quite small and the SNR can be very high, but the 

perceived speech quality can be extremely poor [2]. Thus it is also important to look at a 

subjective measure for complete experimentation and analysis. 

There exist different types of objective measures, which represent accurately the 

subjective quality of speech. The Bark Spectral Distance [7,14] (BSD), Mel Scale 

Distance [28, 29] (MSD), Auditory Frequency Weighted Spectral Distance [31] (AUSD) 

are some psycho-acoustically motivated measures of perceptual quality of speech coders. 

The use of these measures may be a thesis in themselves. In this thesis, we have used the 

simplest yet most subjective measure, the mean opinion score test as described in the next 

section. 

4.1.5 Mean Opinion Score (MOS) 

In order to perform a subjective quality assessment a commonly used measure is 

the mean opinion score (MOS). In this thesis, MOS has been used to perform an informal 

subjective quality assessment of the reconstructed speech. MOS scores require subjective 

testing, but are accepted as a norm for comparative rating of different systems. 

MOS is a quality test involving the recruitment of an ensemble of subjects, each 

of whom classifies a coder output on an N-point quality scale; for example, on a 5-point 

scale for signal quality. The rating scale employed in MOS testing is illustrated in the 

following table together with a general description of the levels of distortion typically 

associated with each numerical score. A MOS score is a mapping of perceived levels of 
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distortion into either the descriptive terms " excellent, good, fair, poor, unsatisfactory " or 

into equivalent numerical ratings in the range 5-1. The numerical mapping permits the 

ranking of coders and comparisons with other objective measures. However, MOS lumps 

different kinds of distortions together, providing very little insight into the causes of 

distortion. The final results from these tests is a pooled average judgement called the 

Mean Opinion Score (MOS) for the ensemble of listeners. 

The MOS test in this thesis was done by averaging the judgement of 13 people 

To minimize the effect of external noise, headphones were used instead of speakers. 

Also, the tests were conducted in my office in the evenings over a period of three days. 

The people helping to do the MOS test were told to compare the sound quality as if they 

were hearing the speech over the phone. 

Rating Speech Quality Level of Distortion 

5 Excellent Imperceptible 

4 Good Just perceptible but not annoying 

3 Fair Perceptible but slightly annoying 

2 Poor Annoying but not objectionable 

Unsatisfactory Very annoying and objectionable 

Table 4.1: Descriptions in the Mean Opinion Score (MOS) 

1 
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4.2 Simulations 

4.2.1 Introduction 

In this section, the DPCM and SBC codecs described in Chapter 2 are evaluated 

with respect to their performance given the BEC described in Chapter 3. The results will 

show the burst error performance of the two codec types for fixed bit error rates of 0.001 

and 0.05 for two kinds of speech segments, a voiced segment " We were away a year 

ago" and an unvoiced segment " She sells sea shells sea shore ". Voiced sounds like 

"ahh" are produced by the resonant cavity of the throat, while unvoiced sounds like "shh" 

are more noise like and produced in our mouths. As explained above, the performance 

measures are SNR, Segmental SNR and MOS. 

4.2.2 Performance for Burst Errors 

For these simulations, the BER has been fixed to a given value (0.001, 0.05) and 

the two codec performances simulated for burst errors of increasing lengths. Since the 

errors are being added to the bits, different number of speech samples will be in error 

depending on the number of quantizer levels and the location of the error. For example, 

for a 3 bit quantizer, a burst of 8 bit errors would correspond to either 3 or 4 sample 

errors. For a 7 bit quantizer, a burst of 8 bit errors would transform to only 2 sample 

errors. The two values of BER were chosen to exhibit two cases, one in which there is a 

single error in every 1000 bits and one in which there is an average of 50 errors in every 

1000 bits. The bit error rates have been chosen so that they are significant enough to 
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cause perceptual degradation in the final output. The values graphed were obtained by 

averaging values obtained by repeating the simulation three times. 

4.2.2.1 SNR Performance Comparison for a Voiced Speech Segment 

Figures 4.2 and 4.3 show the SNR performance of the two codecs for different 

burst lengths for a BER of 0.001 and 0.05, respectively. For both BERs, both DPCM and 

Subband show an increase in SNR with increasing burst lengths in bits. Recall that this 

trend of increasing SNR with increase in burst length in bits was also predicted 

analytically in chapter 3. For a BER of 0.05, the SNR again increases with increase in 

burst length for both Subband and DPCM. 
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Figure 4.2: SNR vs. Burst Length for BER = 0.001 for Voiced Speech 
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SNR vs Burst Length for BER . 0.05 for Voiced Speech 
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Figure 4.3: SNR vs. Burst Length for BER = 0.05 for Voiced Speech 

While increasing SNR with burst length is not intuitive, this effect can best be 

understood by examining the errors at the input and output of the binary decoder and the 

source decoder. The goal is to determine whether the increase in SNR is an artifact of the 

bits to samples conversion, or a result of decreased error propagation in the source 

decoder. Here we show that the primary effect is the later effect. 

Figure 4.4 shows the noise power at the input of source decoder 

(DPCM/Subband) vs the burst length in bits for a BER of 0.05. While the BER is fixed, 

the effective input noise power initially reduces, with increase in burst length in bits. 

Note that the input noise power is high for single bit errors (or burst length = 1), and 
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decreases rapidly until a burst length of 8 bits, after which it levels out and becomes 

nearly constant. Both DPCM and SBC binary decoders exhibit the same trend of reducing 

decoder input noise power with increase in burst length in bits. Since SBC uses three 

different binary decoders, namely, 1-bit, 3-bit and 7-bit the effect of error power 

reduction is more evident here. DPCM uses a 3-bits/sample decoder. 

Recall that the burst errors are being added to the bits and not directly to the 

sample values. For DPCM, for example, three bits is equivalent to one sample. Thus, 

when a burst error occurs in bits, it transforms to a lower number of sample errors. When 

single bit errors occur randomly, each bit error transforms into a sample error. When the 

errors occur in bursts, several bit errors may cause only one sample error. The error 

magnitude depends on the type of binary coding used. For e.g. if Gray Coding was used 

as the coding technique in the binary decoder, the error magnitude would be different.. 

For burst errors therefore, the total number of sample errors out of the binary decoder 

reduce, since the samples can only take certain specific values given by the levels in the 

decoder. The effective noise power out of this binary decoder (or into the source decoder 

or the input noise power) reduces. But this reduction is only significant up to a burst 

length = 16 bits, after which it becomes constant. 
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Noise power in vs Burst Length for BER . 0.05 
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Figure 4.4: Noise Power into Source Decoder vs. Burst Length in Bits 

Consider now the effect of the source decoder on the error power. Note the term 

decoder now refers to the source decoder (DPCM/SBC) unless mentioned otherwise. 

Figure 4.5 shows the percentage of samples in error out of the decoder vs the percentage 

samples in error in to the decoder for both DPCM and SBC. The burst length in bits 

increases right to left on the x axis. Note that the percentage samples in error out of the 

decoder reduces with the increase in burst length. At the output of the decoder, the 

samples are requantized to 8000 samples/sec and 8 bits per sample to give the 64 kbps 

toll quality speech. Thus the samples can again take specific values at the output of the 
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source decoder. The number of samples in error out reduces with the increasing burst 

length in bits and the SNR increases. 

Samples in error BER 0.05 

be 

1.5	 2 2.5 3 3.5 4 4.5 5 
% samples in error in 

Figure 4.5: % Samples in Error out vs. % Samples in Error in Source Decoder 

The effect of source decoder reducing the number of sample errors with 

increasing length of bursts can be explained by the phenomenon of error propagation in 

this decoder, and is illustrated in Figure 4.6. Suppose the BER is fixed at 2/7 and the 

quantizer in the binary decoder has a resolution of 2 bits/sample. In a simple case, assume 

that the source decoder hd(n) can be modeled by an impulse response: 

1)hd(n)= 8(n)+b(n	 (4.4)
2 
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which is a reasonable assumption as all filters after convolution with the input produce 

artifacts. The second term in the above equation models the error propagation. Note from 

the Figure 4.6, for a burst length = 1 or single random errors, the error propagation due to 

the decoder transfer function is more as compared to when the burst length = 2. For a 

higher burst length, the error propagation is less, resulting in reduction of the error power 

at the output of the source decoder. The SNR therefore increases. 

In DPCM, the signal passes through a single stage of filtering. This filter is an all-

pole Infinite Impulse Response (IIR) filter. Ideally an IIR filter has an infinite roll off and 

its impulse response continues on forever, but practically the length of the filter is limited 

by its time constant. Beyond a given range, the impulse response is negligible. In 

particular, it is negligible when its effect is < 1 quantization level. Here the effective 

length of the filter is within 30-35 for each block. For SBC, the filters in each stage are 

Finite Impulse Response (FIR) filters each of length 30. 
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Figure 4.6: Error Propagation in the Source Decoder 

4.2.2.2 SNR Performance Comparison for the unvoiced speech segment 

The performance of both the codecs deteriorates for the unvoiced speech sample. 

DPCM shows a lower signal to noise ratio and so does SBC. The overall trend though of 

the SNR increasing with increasing burst length into the source decoder remains the 

same. 

The Linear Prediction model used for DPCM is for voiced sounds produced by 

the resonating cavity in our throats. Therefore, for an unvoiced speech signal, the 

prediction error is greater and the performance of DPCM goes down. Recall that 
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unvoiced sounds are more noise like and so have a higher amount of energy in the high 

frequency sections as compared to the voiced case. Thus when a low-resolution quantizer 

is used to encode the high frequency content, more information is lost here than in the 

voiced case. So SBC performance also deteriorates for unvoiced sounds. The 

deterioration in DPCM is greater as LPC assumed a voiced model, yielding a higher 

prediction error for unvoiced speech. Figures 4.7 and 4.8 compare the performance of 

DPCM and subband for the speech sample " She sells sea shells sea shore " for BER of 

0.001 and 0.05. 

The SNR for both DPCM and SBC increases with increasing burst length at BER 

of 0.001 and 0.05. The absolute SNR values are lower than the corresponding voiced case 

due to reasons mentioned above. 

SNR vs Burst Length for BER . 0.001 for Unvoiced Speech 
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Figure 4.7: SNR vs. Burst Length for BER = 0.001 for Unvoiced Speech 
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SNR vs Burst Length for BER 0.05 for Unvoiced Speech 
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Figure 4.8: SNR vs. Burst Length for BER = 0.05 for Unvoiced Speech 

4.2.2.3 Segmental SNR Performance Comparison for Voiced speech 

SEGSNR obtains the SNR(dB) for each block (of 160 samples) in both DPCM 

and SBC and then obtains the average SNR(dB). Figure 4.9 and Figure 4.10 show how 

the Segmental SNR changes with increasing burst lengths for BER's of 0.001 and 0.05 

respectively. Both use the voiced signal input. 

For BER = 0.001 and 0.05, the Segmental SNR for DPCM and SBC increases 

again with increasing burst length. However, the rate of increase is less than that 

exhibited for SNR, particularly for SBC, where the curves are relatively flat. 
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SEG SNR vs Burst Length for BER - 0.001 for Voiced Segment 
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Figure 4.9: SEG SNR vs. Burst Length for BER = 0.001 for Voiced Speech 

SEG SNR vs Burst Length for BER . 0.05 for Voiced Segment 
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Figure 4.10: SEG SNR vs. Burst Length for BER = 0.05 for Voiced Speech 
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Recall that segmental SNR is the geometric mean of the SNR values per block. 

When a higher burst length error occurs, the number of occurrences of this string is over 

a fewer blocks as compared to the shorter bursts for a given fixed error rate. Now, for a 

longer burst length, there are a greater number of blocks where no errors occur. The SNR 

(dB) for an errorless block is very high (it is equal to the SQR). On computing the SEG 

SNR, a higher number is therefore obtained. 

4.2.3.4 Segmental SNR performance for unvoiced speech segment 

The trend of increasing segmental SNR with burst length remains for unvoiced 

speech as well. Figure 4.11 shows the segmental SNR performance for an unvoiced 

speech segment given a BER = 0.05. 
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Figure 4.11: SEG SNR vs. Burst Length for BER = 0.05 for Unvoiced Speech 
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All results show the same trend: increasing quality for increasing burst 

lengths(with a fixed BER). The quality here is measured by SNR and SEG SNR. The 

consistency of the trends substantiates the observations. Since it is well known that SNR 

does not correlate well with perceptual quality, performance of DPCM and SBC for 

increasing burst errors is evaluated using subjective MOS next. 

4.2.3.5 Mean Opinion Score Performance Comparison for voiced speech 

The MOS scores were obtained using 13 subjects as described in section 4.1.5. 

Recall that the MOS scale has 5 levels and a maximum score of 5 corresponds to 

"Excellent" while a score of 1 corresponds to unsatisfactory. The listeners compared the 

various decoded sound files with the original toll quality speech. The sound files for 

different burst lengths were ordered randomly. Data obtained from one subject was not 

shown to another person to preclude any bias in judgement. 

The MOS results for Voiced speech are shown in Figures 4.12 and 4.13, for BER 

of 0.05 and 0.001 respectively. Figure 4.12 reflects the same trend of increasing 

perceived quality with increasing burst length. For SBC at a BER of 0.05, the sound 

quality is close to the "Poor" section (MOS 2.4) for bursts of lengths 4 and 8 and then 

improves for higher burst lengths and is then rated as " Fair " (MOS 3.57). There is a 

slight improvement when we go from 24 bits to 32 bits of burst error lengths. The 

improvement in MOS scores with increasing burst length in bits correlates well with the 

SNR and segmental SNR trends. 
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Overall for DPCM the speech quality is "Good " (MOS 4.35) for burst lengths of 

16 and higher. It deteriorates for lengths of 4 and 8 burst bit errors (MOS 3.7). For 

DPCM the quality seems to improve when we go from 16 to 24 bit burst errors. 

When comparing the original and decoded speech in both cases, the listeners 

found that the SBC speech segment lost its individuality and seemed to be more 

synthetic. To the listeners, this effect was more annoying than the background-like noise 

more evident in the DPCM coded speech. 

MOS results vs Burst Length for BER a 0.05 for Voiced Segment 
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Figure 4.12: MOS Results for Voiced Speech at a BER of 0.05 

Note that in SBC the position of the burst of errors is crucial. If the errors 

occurred in regions, which had low frequency information, then the distorting effects 
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would be more pronounced than the case when the errors occur in the higher frequency 

regions. In standard subband decoders there is more error protection on the crucial bits 

containing low frequency information. Also the propagation of the errors is more due to 

the different stages of filtering, so greater number of regions are effected. 

At a BER of 0.001, it was difficult for the listeners to find any noticeable 

difference in the speech quality for various levels of burst errors. Both subband and 

DPCM files seemed to be the same and it gave a flat MOS score of 4 as shown in Figure 

4.13. Note that MOS score for a standard 24 Kbps Subband codec with fixed bit 

allocation is 3.9 which corresponds to the "Good" rating [2]. In standard texts, subjective 

MOS ratings for DPCM communication quality speech at bit rates of 24 to 32 kbps are on 

the order of 3.5 or higher [2]. For the informal listening tests in this thesis, the MOS for 

the very low BER was four, which correlates well with the standard results. 
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Figure 4.13: MOS results for Voiced Speech at a BER of 0.001 
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4.2.3.6 Mean Opinion Score Performance For Unvoiced Speech 

Results for MOS for unvoiced speech are shown in Figures 4.14 and 4.15 for BER 

of 0.05 and 0.001 respectively. Recall that both DPCM and Subband generally have 

relatively poor performance for unvoiced speech. The deterioration is even more evident 

in the presence of transmission errors. For a BER of 0.05, the MOS quality exhibits the 

common trend of improving quality with increasing burst length. For DPCM, the quality 

is " Poor" (MOS 2.8) for lower burst length of errors and improves to " Fair " (MOS 

3.57) for higher burst lengths (Figure 4.14). SBC performance deteriorates too and is 

close to " Unsatisfactory " (MOS 1.5) for low burst lengths and improves to " Poor " 

(MOS 2.3) for higher burst lengths. 
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Figure 4.14: MOS Results for BER of 0.05 for Unvoiced Speech 
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For a BER of 0.001 (Figure 4.15), the MOS curve shows a slight initial increase 

in MOS rating (from 3.61 to 4 for SBC and 3.93 to 4 for DPCM) with increasing burst 

length, which levels off starting at a 24 Kbps bit burst length. The listeners found it to be 

very difficult to discern any changes with increasing burst length. 
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Figure 4.15: MOS results for a BER of 0.001 for Unvoiced Speech 

4.2.4 Discussion of results 

With BER fixed, increasing the burst length in bits improved the perceptual 

quality of the decoded speech. For both DPCM and SBC, the number of samples in error 

out of the source decoder reduced with increasing burst length. As predicted by theory, 

the SNR also increased with increasing bit bursts. The increasing segmental SNR and the 
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rising MOS scores all correlate well together. For DPCM encoded speech, there seemed 

to be less perceptual distortion of the speech itself, but has more background-like noise. 

SBC-coded speech, on the other hand, sounded more synthetic, which was rated as more 

perceptually annoying in the informal listening tests. 
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Chapter 5: Conclusion 

5.1 Summary Of Results 

The goal in this thesis is to do an evaluation of the relative performance of the 

major speech compression techniques, in the presence of uncorrectable errors caused by 

distortion arising during the transmission process. We started with first developing the 24 

Kbps DPCM and Subband Codecs for achieving compression. These algorithms reflect 

the two fundamental techniques used in speech compression standards. DPCM looked 

into eliminating the redundancies in time whereas Subband uses fewer resources for the 

perceptually unimportant information by looking in the frequency domain to achieve 

compression. Note that this is a preliminary study into the performance of the above two 

codecs in the presence of burst errors. 

Performance of these codecs in the burst error channel was tested for bit error 

rates of 0.001 and 0.05 to account for the cumulative effect of errors occurring in an 

overloaded channel codec. As predicted by theory, both source codecs showed an 

increase in the SNR values with increasing burst length for fixed BERs of 0.05 and 0.001. 

With increase in burst length in bits, the increasing segmental SNR and the rising MOS 

scores all correlate well together. For the range tested, the quality of the decompressed 

sound files improved with increasing burst lengths. 

From the MOS test, distortion in DPCM sound files seemed to be less degrading 

perceptually in the informal subjective tests. In particular, for DPCM encoded speech. the 

distortion sounded more like random background noise. SBC-coded speech, on the other 

hand, sounded more synthetic, which was rated as more perceptually annoying in the 
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informal listening tests. Most of the high frequency information here was encoded using 

only 1 bit. Thus if this information was lost, the quality of sound would be altered but 

there would be no random background noise. 

Based on the results obtained above, it could be hypothesized that for fixed BER, 

the codec performance would continue to get better for longer bursts, however, only up to 

a certain point, after which it would deteriorate rapidly. At this point, whole segments of 

data would be lost, and the speech would become non-comprehensible. In order to 

substantiate this hypothesis, more simulations are necessary. 

It is important to note that this is a preliminary study into the effects of burst 

errors on the performance of the two codecs. While evaluating the results, consideration 

of the limitations of these experiments is important as described in the next section. 

5.2 Limitations of Experiments 

The following points list the limitations of the simulations that have been carried 

out in this thesis. 

1.	 The results obtained here are based on the use of two short and specific speech 

samples. 

2. MOS results are not very reliable, as informal listening does not bring out accurately 

whether one speech sample is better or worse than a slightly different one. Moreover 

the subjects here were not trained listeners for distortion measurement. 

3.	 The binary encoder/decoder used in this thesis do not use Gray Coding. 

4.	 In the quantizer implementation as done in this thesis, the data is scaled by the 

maximum value in the entire data vector and then quantized. If there is only one large 
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data value, then the rest of the data points get scaled by this one value. This is not an 

efficient way of implementing a quantizer. 

5.	 Lower bit rates are more consistent with compression required for wireless. However, 

these generally require a combination of predictive and transform coding techniques. 

Here we worked to evaluate these separately. 

5.3 Future Work 

The degradation and distortion introduced by the burst errors is diverse in nature 

and this study is a first step in understanding them. Thus these results provide only 

estimates of the performance of the 24 kbps DPCM and SBC codecs in the presence of 

burst errors and there is a large scope for more work. For evaluating the speech quality, 

for example, it would be worthwhile to use a better perceptually motivated measure other 

than MOS. Also. to do a comprehensive study, more experimentation at lower bit rates, 

higher BER channels and different types of speech samples is required. This would 

enable us to evaluate the performance of the codecs better and draw definite conclusions. 

Gray Coding could be incorporated in the binary encoder/decoder and the effect of burst 

vs. single errors evaluated. Also the quantizer could be implemented more efficiently by 

using data points lying within a specified range which then get scaled accordingly. 
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