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A Validation of the Oregon State University Driving Simulator 

1. INTRODUCTION 

Oregon State University (OSU) completed construction of the Driving and Bicycling 

Simulator Laboratory in the fall of 2010.  Research conducted in the laboratory is 

primarily focused on transportation safety as it relates to highway design, traffic 

control devices, human factors design, and unique and vulnerable users.   While both 

the driving and bicycling simulators can be invaluable tools to help improve our 

understanding of driver behavior, research results cannot be generalized to real-world 

conditions unless the simulator has been validated.  The validation process is 

especially important when the associated research results will be used to influence 

driving regulations or roadway design specifications. 

 

The National Cooperative Highway Research Program (NCHRP) is currently in the 

process of updating the Access Management Manual (AMM) and developing a 

companion document which will be known as the Application of Access Management 

Guidelines, or AMAG.  As part of these two efforts, the OSU Driving and Bicycling 

Simulator Laboratory is being utilized to better understand how drivers interact with 

various driveway configurations and driveway activity levels.  The research team 

anticipates that the results of this simulation study may impact current access 

management guidelines, including access spacing requirements and perception-

reaction time assumptions. 

 

Because the research effort described above has the potential to significantly impact 

current access management standards, it was imperative to complete a validation of 

the driving simulator prior to completing the study.  The validation effort was centered 

on the null hypothesis that speed, acceleration, and deceleration data collected in the 

simulator do not differ from what is observed in the real world.  To test this 

hypothesis, the author selected a road test section and developed a corresponding 

simulated environment.  In order to complete the research project and validation 
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process as efficiently as possible, the author developed a single simulated environment 

for use in both efforts.  The simulated environment was modeled after a local roadway 

in Corvallis, Oregon. The study roadway, NW 9th Street, is an urban arterial with a 

relatively high density of driveways serving a mix of commercial and residential land 

uses.  By using a local roadway as the basis for the simulated environment, the 

validation process could be completed by comparing data collected in the real-world 

test drives and the simulated driving experiment.  This thesis describes the entire 

validation process, including the development of the simulated environment, the 

experiment protocol and methodology for both the field and laboratory tests, and the 

validation analysis and results. 

 

The following chapters describe, in detail, all aspects of the project and associated 

results.  Chapter 2 focuses on the literature review and project background, including 

information on access management principles, characteristics of simulation studies, 

human factors considerations, and common validation methods.  Chapter 3 presents 

details regarding the development of the simulated driving environment and 

comparisons with the real-world study corridor.  The validation experiment is 

presented in Chapter 4, including a detailed methodology and data collection plan.  

The actual validation process and data analysis procedures are outlined in Chapter 5, 

and Chapter 6 presents the study results and outlines the next phase of the project.  

Lastly, Chapter 7 includes a list of all references cited and reviewed. 
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2. LITERATURE REVIEW 

This literature review summarizes previous research efforts related to access 

management, driving simulation studies, and simulator validation studies.  Because the 

validation effort utilized the same simulated environment as will be used for the access 

management research project, an understanding of access management techniques, 

including driveway design and driveway safety, helps to ensure the applicability of the 

simulated environment to both efforts.  Additionally, an overview of general 

simulation considerations, such as human factors issues and simulator sickness, is also 

included.  Lastly, this summary includes key findings of previous research efforts 

aimed at validating driving simulators. 

 

2.1  ACCESS MANAGEMENT 

The 2003 Access Management Manual (TRB, 2003) defines access management as 

the “systematic control of the location, spacing, design, and operation of driveways, 

median openings, interchanges, and street connections to a roadway.”  An updated 

(draft) version of the definition, which will be included in the new version of the 

Access Management Manual states, 

 “Access management is the planning, regulation, and design of access 
between a roadway and land development.  It encompasses a range of 
methods that preserve the safety and mobility of the traveling public by 
reducing conflicts on the roadway system and at its interface with other 
modes of travel.”   
 

The primary motivation for implementing access management techniques is to balance 

the provision of access and mobility, thereby improving safety for all users, including 

drivers, bicyclists, and pedestrians.  While the concepts of access management cover a 

broad spectrum of application methods, from high-level land use planning to signal 

timing optimization, the techniques related specifically to driveway design and safety 

are most relevant to this research project.  The following sections summarize previous 

research findings related to these two topics. 
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2.1.1  Driveway Design Considerations 

Currently, the most comprehensive resource for the design of driveways and access 

points is the Guide for the Geometric Design of Driveways (Gattis, et al., 2010).  The 

report identifies over 90 design elements that have been shown to affect the geometric 

design of a driveway or access point.  Detailed guidance is provided for the driveway 

itself, driveway-roadway intersections, driveway-sidewalk intersections, traffic 

control, and specific accommodations for all types of road users.  The authors 

identified six primary considerations for driveway design, including maintaining or 

improving the safety and operations of the roadway, providing a safe entrance and exit 

for all users, providing adequate sight distance for all users, supporting the 

requirements of public transportation when present, incorporating requirements of the 

Americans with Disabilities Act (ADA), and integrating existing bicycle and 

pedestrian facilities.  Figure 1 illustrates a small sample of the key design elements 

identified in the document.   

 

 
 

Figure 1.  Driveway Design Elements (Gattis, et al., 2010) 
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As shown on Figure 1, the design of driveways is a complex task that can have 

significant impacts on the safety and mobility of all users of the driveway as well as 

the adjacent roadway.   As an example, design factors such as turning radius, 

channelization, driveway width, and intersection angle can all have considerable 

effects on vehicle speed.   Depending on the extent of the speed impacts, the volume 

of driveway traffic, and whether or not auxiliary turning lanes are provided, the 

operational and safety performance of the roadway could be significantly impacted 

(Fitzpatrick & Woolridge, 2001). 

 

In recent years, the need to consider pedestrians and bicyclists in addition to drivers in 

the design of roadways and driveways has become increasingly apparent.  While it is 

obvious that all facilities for all users should be provided in some capacity, the 

operational and safety trade-offs of providing these facilities is not as clear.   Research 

by Dixon, van Schalkwyk, and Layton (2009) investigated the impacts of bicycle lanes 

and on-street parking on driveway operations and safety, particularly as related to 

sight distance.  Their results suggest most current methods for implementing on-street 

parking result in inadequate driveway sight distance, although the addition of a bicycle 

lane between the travel way and parking facilities may improve sight distance and 

driveway visibility (depending on roadway speeds). Visibility can also be improved by 

widening landscape buffers which allow drivers to pull their vehicles closer to the 

roadway without impeding bicycle and pedestrian traffic. 

 

While the design of individual driveways is a vital component of an efficient and safe 

transportation system, the focus of access management is the interaction of vehicles at 

locations with multiple driveways or driveways in close proximity to other 

intersections.  One of the most well-known access management techniques is the 

control of driveway spacing.  Access management guidelines often suggest that 

driveways be spaced no closer than the required stopping sight distance (SSD) for that 

particular roadway, which is based on the driver’s perception-reaction time.  A Policy 

on Geometric Design of Highway and Streets (AASHTO, 2011) recommends a 

perception-reaction (PRT) time of 2.5 seconds be used for all stopping sight distance 
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calculations.  While this value is widely accepted in the industry and has been used in 

practice since 1954, its relevance to urban areas with high driveway density and 

relatively high traffic volumes is currently under debate.  Several research efforts have 

attempted to refine the assumed perception-reaction time value, however most were 

conducted on closed-courses or in rural areas and did not identify values significantly 

different from 2.5 seconds (Fambro, et al., 1997; Lerner, N., 1993).  In addition, many 

access management experts also question whether or not stopping sight distance is the 

appropriate measure for driveway spacing. For example, in NCHRP Report 348, 

Access Management Guidelines for Activity Centers (1992), Koepke and Levinson 

suggested that driveway spacing should be based on roadway speed, access category, 

and the size of the traffic generator being served.  However, research findings 

supporting new measures for driveway spacing are quite varied; thus, most agencies 

still use stopping sight distance as the basis for driveway spacing requirements. 

 

2.1.2  Driveway Safety Considerations 

Previous research has shown that the number of crashes at driveways is 

disproportionately high compared to crash rates at other types of intersections; thus, 

driveway safety is of particular importance (AASHTO, 2011).  The safety of 

driveways is a complex issue that is affected by several factors and the impact of each 

factor is dependent on the unique nature of each location.  In the past, researchers have 

completed significant research on the topic of driveway safety and identified seven 

main factors known to affect driveway safety.  These factors are driveway spacing, 

proximity to intersections or interchanges, signalized intersection spacing and 

coordination, driveway design, roadway design, median configuration, and land use.  

Each of these factors is described in the following sections. 

 

2.1.2.A  Driveway Spacing 

The majority of driveway-related crashes are attributed to conflicts between vehicles, 

which includes opposing turning movements and the interaction of approaching 
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vehicles with stopped vehicles traveling in the same direction.  Depending on its exact 

geometry and configuration, each driveway has a certain number of potential conflict 

points.  However, when two driveways are spaced such that their functional areas 

overlap, additional conflict points are created as vehicles using one driveway are 

forced to interact with those using another driveway.  This concept is illustrated on 

Figure 2. 

 
 

Figure 2.  Typical Vehicle Conflict Points Associated with Driveways (Rodegerdts, 
2004) 

 

When the conflict areas of two driveways overlap, the potential for crashes is 

increased.  Previous research efforts have attempted to quantify this increased safety 

risk.  Research findings presented in NCHRP Report 420 (Gluck, Levinson, Stover, 

1999) suggest that the addition of one access point per mile will result in a four-

percent increase in crash rates.  These findings are consistent with a similar research 

effort by Papayannoulis, et al. (1999) who estimated a 40-percent increase in crash 

rates at locations where driveway density increased from 10 to 20 access points per 

mile.  Since 1999, several research studies have identified a correlation between 

driveway spacing and crash rates, although the relationship was not quantified (Brown 

and Tarko, 1999; Mouskos, et al., 1999; Eisele and Frawley, 2005).   
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2.1.2.B  Proximity to Intersections and Interchanges 

Driveway safety is not only affected by the distance between two driveways, but also 

by the distance between a driveway and an adjacent intersection or interchange.  In 

2008, Rakha et al. investigated the relationship between crash rates and the distance 

between an interchange and the nearest access point. Their analysis results indicate 

that increasing interchange-to-driveway spacing from 300 feet to 600 feet is associated 

with a 50-percent reduction in crashes.  More generally, Gluck, Levinson, and Stover 

(1999) suggest that the distance between an access point and an adjacent intersection 

or interchange should be determined based on perception-reaction distance, weaving 

distance, transition distance, and downstream storage requirements. 

 

2.1.2.C  Signalized Intersection Spacing and Signal 
Coordination 

When driveways are located between two signalized intersections, the spacing and 

coordination of those signals can significantly impact driveway safety performance.  

As would be expected, previous research has indicated that a decrease in signalized 

intersection spacing is associated with an increase in crash risk (Stover, 1996).  The 

Access Management Manual (2003) suggests that increasing signalized intersection 

density from two to four signals per mile can increase the average crash rate by up to 

200-percent, depending on the driveway density along the same segment. 

 

2.1.2.D  Driveway Design  

The best way to ensure acceptable safety performance at a driveway is to design it 

properly according to local, regional, and national standards and unique site 

characteristics.  Whenever possible, the general design considerations discussed in 

Section 2.1.1 (Driveway Design Considerations) should be followed.  If unusual 

circumstances require exceptions to design standards, a certain level of uniformity 

among all driveways on a given roadway should be maintained in order to meet driver 

expectations.  To ensure the safest operations possible, driveways that permit two-way 

operations should provide separate entrance and exit lanes and allow for continuous, 
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simultaneous two-way movements (Stover and Koepke, 2002).  Driveway travel lanes 

should be clearly defined and should not be excessively wide.  Additionally, 

excessively wide continuous driveways that provide access to the full frontage of a lot 

(typically found at gas stations) should be avoided as they introduce confusion and 

extra conflict points, particularly between vehicles and pedestrians or bicyclists 

(Gattis, et al., 2010). 

 

2.1.2.E  Roadway Design 

As mentioned in Section 2.1.1 (Driveway Design Considerations), one contributing 

factor of driveway-related crashes is the speed differential between turning vehicles 

and through vehicles.  Auxiliary lanes can be one of the most effective means of 

minimizing the speed differential, if installed at locations where traffic volumes and 

roadway characteristics warrant them (TRB, 2003).  However, in some instances, the 

presence of auxiliary lanes may also limit sight distance for drivers exiting the 

driveway, so sight distance and visibility for all users should be considered in addition 

to volume-based warrants. Other roadway design factors affecting driveway safety 

include the number of travel lanes, travel lane width, shoulder width, the presence of 

bicycle lanes, and, most importantly, median configuration (discussed below). 

 

2.1.2.F  Median Configuration 

The presence and design of medians has a significant impact on driveway operations 

and safety, and thus a substantial amount of research has been conducted on the topic.  

The fact that median presence, regardless of type, improves safety over undivided 

roadways of similar traffic volumes and driveway densities is well documented.  

Continuous two-way left-turn lanes (TWLTLs) are a common median treatment in 

urban areas in the United States.  Previous research efforts have indicated that while 

TWLTLs are well suited for roadways with high driveway density and low traffic 

volumes, they typically have a decreased safety performance compared to raised 

medians (Squires and Parsonson, 1989; Margiotta and Chatterjee, 1995).  An Arkansas 

study by Gattis, Balakumar, and Duncan (2005) found that on rural and urban-fringe 
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highways with speeds greater than 40 mph, the highest crash rates occurred on 

undivided roadways with curbs while the lowest crash rates occurred on roadways 

with wide shoulders and depressed medians. 

 

The reason that medians are so effective at improving safety performance is that they 

often restrict left-turning movements at unsignalized intersections.  Prohibiting left-

turns into or out of a driveway can improve safety by removing the conflict between 

left-turning vehicles and opposing through vehicles (Stover and Koepke, 2002). 

 

2.1.2.G  Land Use 

Although many can agree that a link between land use and driveway safety 

performance exists, little research has been conducted to determine the exact 

relationship.  Land use is often indirectly accounted for in safety analyses through the 

inclusion of correlated data variables, such as roadway geometry and driveway density 

or frequency.  A low-speed undivided, two-lane roadway with a medium driveway 

density is more common in a residential area, while a higher-speed four-lane divided 

roadway with high driveway density is likely in a commercial area.  Research 

completed by Gattis, Balakumar, and Dunacan (2005) suggested a possible link 

between median type and land use, but the relationship was not quantified.  Also, a 

study of Connecticut two-lane highways found a relationship between crash rates and 

driveway frequency and traffic intensity, after accounting for time of day (Ivan, Wang, 

Bernardo, 2000).  More recently, Bindra, Ivan, and Honsson (2009) suggested that 

using actual land-use data (retail versus non-retail, number of employees, etc.) in crash 

prediction models provided much more accurate predictions of segment-intersection 

crashes than typical driveway data. 
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2.2  SIMULATOR STUDY CONSIDERATIONS 

Research conducted using a driving simulator laboratory presents a unique set of 

challenges and characteristics not associated with other types of  research studies.  The 

two primary considerations unique to driving simulation studies are the occurrence of 

simulator sickness and the need for simulator validation.  Both of these topics are 

discussed in the following sections.   

2.2.1  Simulator Sickness 

Simulator sickness, a phenomenon sharing some similarity to motion sickness, causes 

a small percentage of the population to experience symptoms ranging from eye strain 

to headache to vertigo and nausea while operating a driving simulator.  There are 

several differing theories on the precise cause of simulator sickness, including cue 

conflict theory, poison theory, and postural instability theory.  In essence, simulator 

sickness is the body’s response to a discontinuity between the visual and vestibular 

(balance) systems. This discrepancy is caused by a lack of physical motion paired with 

the perception of movement within the simulated environment (Stoner, Fisher, and 

Mollenhauer, 2011).   

 

In his 1993 paper, Kennedy, et al. presented a method for measuring simulator 

sickness using a questionnaire and weighting factors.  The questionnaire included 

sixteen common symptoms rated on a scale from zero (none) to four (severe) to 

describe how the participant felt. Table 1 presents an adapted version of the Kennedy 

Simulator Sickness Questionnaire (SSQ).   
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Table 1.  Kennedy Simulator Sickness Questionnaire (adapted from Kennedy, et al., 
1993) 

 

SSQ Symptom 

SSQ Factor 

Nausea Oculomotor Disorientation 

General Discomfort x x 

 Fatigue 

 

x 

 Headache 

 

x 

 Eyestrain 

 

x 

 Difficulty Focusing 

 

x x 

Increased Salivation x 

  Sweating x 

      Nausea x 

 

x 

Difficulty Concentrating x x 

 Fullness of Head 

  

x 

Blurred Vision 

 

x x 

Dizzy (eyes open) 

  

x 

Dizzy (eyes closed) 

  

x 

Vertigo 

  

x 

Stomach Awareness x 

  Burping x 

  Total (Categorical Sum) N O D 

Total Score TS = (N+ O + D) x 3.74 

Weighted Score (Categorical) Ns=N x 9.54 Os=O x 7.58 Ds=D x 13.92 

 

 

This type of simulator sickness evaluation provides valuable information for both 

immediate and long-term remediation.  When given during an experiment, possibly 

after a short test-drive, the researchers can gauge a participant’s probability of 

becoming ill during the remainder of the experiment.  If the participant has a relatively 
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high score, the researchers can decide to not continue with the experiment before the 

participant becomes ill, instead of waiting until the participant is unable to continue 

and valuable data are lost.  On a larger scale, the evaluation responses can help to 

narrow down the causes of simulator sickness in each specific experiment.  Because 

the survey is divided into three categories for nausea, vision (oculomotor problems), 

and disorientation, consistently high scores in one category versus another may reveal 

an issue with the vehicle or simulated environment that can be adjusted to reduce the 

symptoms in future experiment runs.   

 

While the exact causes of simulator sickness are unknown, many considerations can 

be made during the development of a simulated environment and during the 

experiment itself to reduce the likelihood of subjects encountering symptoms of 

simulator sickness.  When designing a simulated driving environment, simple 

adjustments to the placement of roadside objects, the geometry of the roadway, and 

the required route navigation can have a drastic impact on the probability of subjects 

getting sick.  Research by Chrysler and William (2005) indicated that reducing the 

density of roadside objects and increasing the radius of horizontal curves would result 

in less simulator sickness.  Several research efforts have also suggested that drivers 

who are required to make left and right turns during an experiment are much more 

likely to experience symptoms of simulator sickness than those who make no or very 

few turns (Edwards, et al., 2003; Mourant, et al., 2007).  After development but prior 

to running the experiment, the best precaution against simulator sickness is to screen 

participants.  Subjects who are already prone to motion sickness are much more likely 

to experience simulator sickness.  Also, those with fatigue, hangovers, head colds or 

respiratory infections are more likely to feel symptoms of sickness while driving the 

simulator (Allen and Reimer, 2006).  During the experiment, it has been shown that 

ambient air temperature is a strong contributing factor to simulator sickness.  The 

laboratory space should be temperature controlled at 70-degrees or cooler and proper 

ventilation or air movement should also be provided while experiments are being run 

(Stoner, Fisher, and Mollenhauer, 2011). 
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2.2.2  Simulation Validation 

Typically, the end goal of a driving simulation study is to gain a better understanding 

of the interaction between a driver and their surroundings, whether that is within the 

vehicle itself or in relation to the roadway and roadside environments.  Because the 

value of simulation-based research is in the ability to test real-world scenarios in a 

safe, efficient, and cost-effective manner, being able to extrapolate research findings 

to the greater driving population and the built environment is of the utmost 

importance.   However, until a simulator is validated against the real-world, any 

research results are only applicable to the simulated driving environment in which the 

study was completed.   

 

Simulator validity is described in two categories – physical validity and behavioral 

validity.  The similarity between the simulated vehicle and the on-road vehicle, 

including layout, dynamics, and visual displays, is known as physical validity.  

Behavioral validity, on the other hand, is a measure of how well the driving behaviors 

produced in a simulated environment match those in a real-world scenario (Blana, 

1996).  For this study, the author will focus on behavioral validity, which in turn can 

be measured in two ways.  Blaauw (1982) and Törnros (1998) have defined behavioral 

validity in terms of absolute and relative validity.  If a simulation is deemed to be 

absolutely valid, then a given measurement (speed, acceleration, deceleration, etc.) can 

be expected to have the same numerical value in both the simulated and real-world 

environments.  Most simulator validation studies, however, are based on the concept 

of relative validity, in which the simulated and real-world environment produce 

measurements of a similar magnitude and direction. 

 

Dating back to as early as 1979 (Watts, Quimby), numerous simulation validation 

studies have been completed on a variety of data variables.  These studies have 

primarily been performed on three data measures – speed, lateral lane position, and 

braking responses.  In these types of validation studies, the more common analysis 
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methods have included descriptive statistics, analysis of variance (ANOVA), and 

general correlations. 

 

2.2.2.A  Validation Using Speed Data 

Several studies have shown relative validity between a wide variety of driving 

simulators and on-road tests using one or more speed-based measurements.   

 

In 1999, Klee, et al. performed a validation of the University of Central Florida 

driving simulator based on forward speed.  Analysis results showed that drivers drove 

similarly at ten of the 16 measurement locations.  Additionally, average speed trends 

from both tests indicated that drivers tended to travel at higher speeds in the field than 

in the simulator.  In his 2005 study on work zone speeds, Bella validated the European 

Interuniversity Research Center for Road Safety (CRISS) driving simulator.  Speed 

data collected in the field were, on average, higher than in the simulator, however the 

differences were not statistically significant.  Similarly, Godley, Triggs, and Fildes 

(2002) studied driver performance related to rumble strips in an effort to validate the 

Monash University Accident Research Centre (MUARC) driving simulator. The 

researchers achieved relative validity in regards to deceleration patterns even though 

the travel speeds observed in the field were significantly higher than those in the 

simulator. 

 

Data collected in other validation studies show the opposite trend, with travel speeds 

in the simulator test being higher than those in the field tests.  A second validation 

effort by Bella (2008) investigated driver performance on rural two-lane roads and 

showed higher speeds in the simulator test than the field test.  In that study, relative 

validity was achieved for all measurement locations and absolute validity was 

achieved at over 80-percent of the test locations.  In 1997, Törnos achieved relative 

validity for speed data when comparing road tests and simulator tests that included a 

road tunnel.  That research effort also showed higher speeds in the simulator test than 

the field test. 
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Previous research efforts have shown mixed results on whether drivers tend to travel at 

higher speeds in simulated or real-world environments.  In general, using speed data as 

a basis for relative validation has proven successful in most research efforts. 

 

2.2.2.B  Validation Using Position Data 

Lateral lane position measurements on both straight and curved roadway sections have 

also been used to conduct relative validation studies between simulation and on-road 

tests.  One of the most robust simulator validation studies was conducted in 2002 by 

Blana and Golias, in which they tested 100 participants on simulated and real-world 

rural roadways.  Although the researchers observed that the lateral displacement was 

consistently higher in the on-road drives versus the simulated drive, they also 

determined that speed had a significant impact on the magnitude of the measured 

lateral displacement, and thus were unable to attain relative or absolute validity.  Wade 

and Hammond (1998) completed a similar study with a smaller sample size (26 

participants) at the University of Minnesota’s Human Factors Research Laboratory. 

The researchers used a combination of vehicle performance measures, kinematic 

variables, and participant perception surveys to compare the simulator to the real 

world, and were able to prove relative validity based on lateral lane position. 

 

2.2.2.C  Validation Using Braking Data 

Braking responses have also been used as the basis for simulator validation studies, 

including braking response time, time to accelerator release, and total braking force.   

Lee, et al. (2002) compared the braking responses of drivers on a test track and in the 

Iowa Driving Simulator.  The researchers noted that drivers decelerated more abruptly 

in the simulator than on the test track, and validity was not achieved based on braking 

performance measures.  In 2000, McGehee, Mazzae, and Baldwin also attempted to 

validate the Iowa Driving Simulator using crash avoidance performance measures.  

They compared the average time to throttle release during driving experiments on a 

test track and in the simulator.  The results showed that drivers reacted slower in the 
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test track study (longer time to throttle release times), but they did not achieve relative 

or absolute validity due to the effects of several confounding factors.  

 

2.3  SUMMARY 

This literature review summarizes the available literature relevant to the topics of 

access management, simulated environment design, and simulator validation.  While 

this research project focuses on the task of validating the simulator, the same 

simulated environment will be used for both the validation and access management-

related efforts.  Therefore, a thorough understanding of access management issues, 

including driveway design, operations, and safety, was necessary prior to completing 

the validation project.  Through this literature review, the author identified several 

considerations for developing the simulated environment and designing the validation 

experiment: 

 

- Because of the associated impacts on driveway safety and operations, special 

attention should be paid to the placement of driveways and intersections in the 

simulated environment; 

- The need for accuracy in the placement of roadside objects such as buildings, 

trees, and light posts should be balanced with the associated risks of increased 

simulator sickness; 

- If possible, the environment should be designed to reduce or avoid the need for 

left turns, right turns, and abrupt stops, as these tasks are associated with a 

higher incidence of simulator sickness; 

- Proper participant screening and laboratory temperature-control may also 

reduce the likelihood of simulator sickness; and 

- In order to ensure study results can be applied to the greater driving population, 

a validation of the simulator must be completed.  The most common and 

successful comparisons between on-road and in-simulator measurements are 

based on speed-related variables.  
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3. SIMULATED ENVIRONMENT DEVELOPMENT 

The key to effectively validating a simulated environment against a real-world 

environment is to match the roadway and roadside characteristics as closely as 

possible.  This requires precise modeling of the roadway, roadside objects, adjacent 

land uses, and pavement marking and signage.   However, the accuracy of a simulated 

environment must also be balanced with time and budget constraints, computing 

power limitations, and simulator sickness triggers (described in Chapter 2).  The 

following sections describe the characteristics of both the real-world and simulated 

driving environments. 

 

3.1  NW 9TH STREET CHARACTERISTICS 

The larger NCHRP research effort is focused primarily on driver behavior at 

driveways and access points.  Thus, the scenario for this experiment is modeled after 

an urban arterial in a commercial district with a high density of access points (an 

average of 50 access points per mile in the study area).  Specifically, the scenario 

replicates two segments of NW 9th Street in Corvallis, Oregon.  This section of NW 9th 

Street is a five-lane roadway with a center TWLTL and bicycle lanes in both 

directions.  The annual average daily traffic (AADT) volume in the study area was 

approximately 16,000 vehicles per day (vpd) in 2009.  

 

Because intersection behavior is not of interest in this experiment, and because 

unnecessary changes in vehicle speed can increase the likelihood of simulator 

sickness, signalized intersections were excluded from the test sections.  Two different 

segments of NW 9th Street (from NW Fremont Avenue to Buchannan Avenue and 

from NW Garfield Avenue to NW Spruce Avenue) were modeled adjacent to each 

other in the simulated environment.  Figure 3 illustrates the relative location of each of 

the segments. 
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Figure 3.  NW 9th Street Corridor and Test Sections 
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3.2  SIMULATED ENVIRONMENT CHARACTERISTICS 

Through the use of advanced technology such as mobile light detection and ranging 

(LIDAR), simulated environments can be created in such detail that they are near 

replicas of real world driving environments.  However, due to budget, time, and 

computing power limitations, most simulated environments are developed to be only 

as realistic as is necessary to answer the research question at hand.  Because the 

simulated environment developed for this validation effort was also to be used in the 

NCHRP perception-reaction time study, the researchers made a concerted effort to 

match the roadway geometry, driveway placement, roadside objects, and adjacent land 

uses of the NW 9th Street Corridor.   The following sections describe the specific 

characteristics of the simulated environment. 

 

3.2.1  Roadway Geometry 

In order to accurately match the roadway geometry of NW 9th Street, the researchers 

worked in conjunction with Real Time Technologies (the developers of the OSU 

simulator system) to develop a custom roadway section.  This roadway tile consisted 

of a five-lane cross section with a median TWLTL and bicycle lanes in both 

directions.  Each travel lane measured 12 feet wide, as did the TWLTL, and the 

bicycle lanes were four feet wide.  The roadway edge consisted of a standard curb 

which was bordered by a nine-foot landscape buffer and a six foot wide sidewalk.  

While some sections of NW 9th Street do not have a landscape buffer between the 

roadway and the sidewalk, the researchers determined that this detail would likely 

have little effect on the experiment results and creating multiple roadside designs was 

not worth the time investment. 

 

3.2.2  Driveway Geometry and Spacing 

Besides the roadway geometry, the next most important aspect of the simulated 

environment development was matching the driveway geometry and spacing that 



21 
  
 

exists on NW 9th Street.  The researchers measured all driveway widths along NW 9th 

Street and matched each driveway to one of two simulated driveway objects, either 15 

feet wide or 30 feet wide.   

 

While the researchers intended to precisely match the driveway spacing present on 

NW 9th Street, this was not possible in all locations due to limitations of the software 

and roadway tiles.  Each roadway tile has a fixed width (typically five, 10, or 20 

meters), and the software cannot process roadway tiles that are less than five meters 

(16.4 feet) wide.   However, even with these limitations, nearly all driveways were 

placed within 10 feet of their real-world location.   Figure 4 shows the driveway types 

and locations, as designed in the simulated environment.  It should be noted that the 

total roadway segment lengths shown on Figure 4 do not precisely match those on NW 

9th Street, due to the geometry limitations just stated.   
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As shown on Figure 4, the simulated roadway section included a short control segment 

between test Segments 1 and 2.  The total simulated roadway section was 

approximately 4,100 feet long with 30 driveways. 

 

3.2.3  Roadside Design and Land Uses 

Although the roadway and driveway design aspects were most important for this 

research effort, the roadside design and adjacent land uses had to be accurate enough 

to create a realistic driving environment that would elicit the same driving behavior as 

the real world roadway section.  The researchers designed the simulated environment 

using pre-existing buildings, trees, and roadside objects.  While the objects were not 

identical to those on NW 9th Street, their location, size, and general appearance 

matched as closely as possible.  A snapshot comparison of the same location in both 

the simulated and real world environments is shown on Figure 5.  
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Figure 5.  Snapshot Comparison of Simulated (top) and Real World (lower) Driving 
Environments  

 

The two snap shots shown on Figure 5 illustrate the view from the southernmost point 

of the test section, looking north, in both the simulated and real world environments. 

 

3.2.4  Scenario Layout 

Upon completion of the roadway test section, as described in Sections 3.2.1 to 3.2.3, 

the researchers created a larger scenario which included urban, suburban, and rural 

areas.  In essence, the roadway test section was repeated six times around a large 

roadway loop, although the driveway activity and appearance of the roadside objects 

changed for each section.  To reduce the likelihood that a participant would recognize 

the same repetitive test section, the researchers rotated each test section 180-degrees 
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from the previous section, so drivers would encounter the driveways and land uses 

from a northbound and southbound perspective three times each.   

 

Additionally, the researchers wanted to isolate the driving behaviors associated with 

each type of turning movement, so each of the roadway sections was assigned a 

certain type of driveway activity.  The six sections included a control section with no 

driveway activity, right-turn-in only activity, left-turn-in only activity, right-turn-out 

only activity, left-turn-out only activity, and finally a section that included all turn 

types.   

 

Lastly, the researchers programmed several distractor tests into the scenario.  

Distractor tests are intended to divert the participant’s attention to portions of the 

experiment which are not directly related to the test question.  Most participants will 

assume that the distractor test is part of the experiment, and will adjust their driving 

behavior during those portions of the experiment as opposed to the sections in which 

they are actually being tested.  For this experiment, the researchers programmed a 

large red letter to appear at three points within the scenario and the participants were 

directed to say the first word that came to mind that started with that letter.  All 

distractor tests were located in higher-speed, rural portions of the scenario and 

coincided with nearby bicycle activity. 

 

Figure 6 shows the final scenario layout for the simulator test. 
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The six test sections and corresponding driveway activity types are shown on Figure 6.  

The segments labeled as NB1, NB2, SB1, and SB 2 coincide with segments 1 and 2 

from the northbound and southbound road tests, respectively.  Figure 6 also shows 

four different starting positions.  The researchers randomly assigned each participant a 

starting position prior to beginning the experiment.  By varying the starting positions, 

any effects on driving performance caused by unfamiliarity with the vehicle would be 

spread out among the six test sections and would not significantly impact the results. 
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4. VALIDATION METHODOLOGY 

The validation experiment consisted of two phases, a road test and a simulator test.  A 

total of ten subjects, five males and five females, participated in both tests.  

Researchers collected similar driving behavior and driving performance data during 

both tests which was then used in comparative analyses for the validation effort.  The 

following sections describe the experiment protocol and the types of data collected.  

Data analyses and results are included in Chapter 5. 

 

4.1  EXPERIMENT PROTOCOL 

4.1.1  Road Test 

As described in Chapter 3, the researchers selected NW 9th Street, a local principal 

arterial, for the road test experiment.  The test sections of NW 9th Street have four 

through travel lanes with a center TWLTL with bicycle lanes in both directions.  The 

following sections describe the additional considerations and characteristics of the 

road test, including the time of day, the test vehicle, the data collection technology, 

and the road test route. 

 

4.1.1.A  Time of Day and Traffic Volume 

The AADT volume in the study area is just over 16,000 vpd.  Because the simulated 

environment included very light background traffic volumes, the author conducted 

road tests early in the morning or late in the evening when traffic volumes were 

lowest.  This allowed the subjects to drive at their desired speed for most of the road 

test. 

 

4.1.1.B  Road Test Vehicle 

A 1997 Ford Taurus with an automatic transmission was used for all road test runs.  

Using the same vehicle for all test runs provided consistent vehicle performance data 

and reduced the likelihood that specific vehicle characteristics would skew the 
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validation analysis results.  Although requiring all subjects to use the same 

(unfamiliar) vehicle would introduce a certain level of driver performance variability 

while the subjects adjusted to the vehicle, the researchers agreed that this variability 

could be accounted for in the data analysis process much easier than variability in 

vehicle types.  Additionally, because the test subjects were also unaccustomed to the 

driving simulator vehicle, completing the experiment with two unfamiliar vehicles 

would likely produce more similar driving behavior than if conducted with one 

familiar and one unfamiliar vehicle. 

 

4.1.1.C  Data Collection Technology 

During the road test, the researchers collected data via two types of technology.  The 

first was an on-board diagnostics (OBD-II) recorder which recorded vehicle 

performance.  This specific recorder, a CarChip E/X developed by DriveRight 

Technologies, can be seen in Figure 7. The CarChip is primarily marketed for use in 

personal and fleet vehicles to monitor vehicle diagnostics, but it can also be used to 

collect speed and travel time data, which is why it was used in this study. 

 

 
 

Figure 7.  CarChip OBDII Data Recorder, Similar to the Study Equipment 

 

Additionally, the researchers fitted each driver with a pair of head-mounted eye 

tracking goggles prior to beginning the road test.  The eye tracking goggles recorded 
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the roadway environment as seen by the driver in addition to tracking the driver’s 

glance patterns during the test.  This specific eye tracking device was the Mobile Eye 

XG, developed by Applied Science Laboratories, and can be seen on Figure 8. 

 

 
 

Figure 8.  Mobile Eye XG Eye Tracking Equipment 

 

4.1.1.D  Road Test Route 

All road test runs began in a vacant parking lot approximately 600 feet south of the 

first test section.  The author instructed the test subjects to turn north onto NW 9th 

Street and travel northbound for approximately one and a half miles.  They were then 

instructed to turn left at a signalized intersection 450 feet north of the second test 

section (NW Circle Boulevard), turn into a commercial parking lot, and exit back onto 

southbound NW 9th Street.  They then drove south through both test sections again and 

returned to the vacant parking lot.  The road test route is shown graphically on Figure 

9. 

 

The researchers directed each subject to drive normally, to favor the right lane over the 

left lane if no other vehicles were impeding their driving behavior, and to maintain 

their desired speed whenever possible.  All test subjects were local residents and had a 

baseline familiarity with the test route. 
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Figure 9.  NW 9th Street Road Test Route 
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4.1.2   Simulator Test 

The details of the simulated environment used for the simulator portion of the 

experiment are described in Chapter 3.  The following sections describe the additional 

considerations and characteristics of the simulator test, including the specifications of 

the simulator system, the informed consent process, the simulator test and practice 

test, and the participant debriefing process. 

 

4.1.2.A  Driving Simulator Specifications 

The OSU driving simulator itself consists of a full size 2009 Ford Fusion cab mounted 

on top of a high performance electric pitch motion system. The motion base moves +/- 

4 degrees with the center of rotation around the driver head position.  Three front 

screens (measuring 11 feet by 7.5 feet) and projectors are used to project an 180 

degrees by 40 degrees front view.  The driver’s rear view is displayed on a fourth 

screen projected behind the vehicle.  The two side mirrors and the dashboard have 

embedded LCD displays.  The system is shown in Figure 10. 

 

 
 

Figure 10.  OSU Driving Simulator Vehicle and Projection System 

 

The simulator laboratory is also equipped with four video cameras, three of which are 

installed within the vehicle.  The three in-vehicle cameras record the driver’s feet and 

vehicle pedals, the driver’s face, and the driver’s hands (as well as the dashboard and 
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console).  The fourth camera is installed above and behind the vehicle, providing a 

birds-eye view of the simulated environment.  Video footage from all four cameras is 

displayed real-time on a large TV monitor located in the partitioned control center and 

also recorded via a multi-channel DVR system.  Recorded videos can later be 

reviewed independently or simultaneously in a split-screen video file. 

 

4.1.2.B  Informed Consent Process 

Prior to beginning the experiment, the researchers met with each participant and 

informed them of the simulator laboratory protocol, safety procedures, and what to 

expect during the experiment.  Each participant then reviewed and signed an informed 

consent form per requirements by the International Review Board (IRB) for all human 

subjects testing.  As part of the larger NCHRP project, each participant also provided a 

small amount of personal information, including age and driving restrictions.  Lastly, 

the researchers described the common symptoms of simulator sickness as well as 

some ways to alleviate the symptoms, and instructed the participants to stop the 

experiment at any point if they did not feel well enough to continue.  

 

4.1.2.C  Simulator Practice Drive 

Requiring each participant to complete a practice drive before beginning the actual 

experiment served two primary purposes.  First, the practice drive gave each subject 

the opportunity to become acclimated to a simulated driving environment as well as 

become familiar with the steering, acceleration, and deceleration performance of the 

vehicle.  Secondly, once the subject completed the test drive, the researchers could 

assess the likelihood that the subject would experience simulator sickness during the 

experiment, through verbal questioning as well as observing the subject’s physical 

behavior.   

 

As described in Chapter 2, several factors in a simulated environment are known to 

increase the likelihood of simulator sickness, such as densely populated roadside 

objects, sharp curves, and frequent stops.  For that reason, the environment used in the 
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practice drive was a rural four-lane divided highway with minimal roadside objects, 

long tangent roadway sections, and large-radii curves.  Each subject drove in the 

practice environment for approximately three to five minutes, either until they were 

comfortable driving in the environment or until they began to feel ill.  After stopping 

the practice drive, the researchers asked each participant if they were comfortable with 

the driving environment and if they felt any severe symptoms of simulator sickness.  

In the case of the ten subjects tested for this validation effort, all felt comfortable 

continuing with the rest of the experiment. 

 

4.1.2.D  Simulator Test 

After confirming that the participant was comfortable continuing with the experiment, 

the author loaded the simulated environment for the test.  Each participant was 

randomly assigned one of four start points within the simulated environment.  While 

the environment was loading, the researcher adjusted and calibrated the eye tracking 

goggles.  The researcher then directed the participant to drive normally, to obey all 

traffic control devices and signage as they normally would, to favor the right travel 

lane over the left travel lane whenever convenient, and to not make any turns at any of 

the signalized intersections.  The researcher also informed the participants that a large 

red letter would randomly appear on the screen during the experiment and that they 

should say, out loud, the first word that came to mind that began with that letter.   

After the researcher answered any and all questions, the participant then started the 

experiment. 

 

In addition to the video footage captured via the eye tracking goggles, the researcher 

also recorded footage of the driver and the overall experiment using the four in-lab 

video cameras.  The simulator automatically recorded output data related to the 

vehicle performance. 

 

The simulator test lasted approximately 12 to 15 minutes from start to finish.  
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4.1.2.E  Participant Debriefing 

After completing the simulator test, the researchers asked each participant a few 

general questions regarding the experiment, including whether or not they experienced 

any symptoms of simulator sickness and if they had any suggestions for improving the 

driving environment or vehicle performance.  The researchers then answered any 

questions the participant had regarding the experiment itself, and then paid the 

participants for their time.  The amount of compensation was based on a graded scale 

dependent on how much of the experiment they completed, with a minimum payment 

of $10 and a maximum payment of $25. 

 

4.2  DATA COLLECTION 

The data collected during both the simulator and road tests included driving 

performance variables, such as speed and acceleration, and driver eye movements and 

glance patterns.  The data collection methods and specific measurements collected are 

described in the following sections. 

 

4.2.1   Eye Tracking 

The research team utilized head-mounted eye tracking goggles to collect eye 

movement and gaze pattern data during the road tests and simulator tests.  Since the 

larger NCHRP research effort is focused on driver responses to driveway activity, 

including perception-reaction time, the researchers intended to use the eye tracking 

data to compare the time and location at which drivers looked at specific driveways as 

an additional measure of validity.  Although the researchers collected eye tracking 

data for all participants during both the road and simulator tests, the data recorded 

during the road tests was not usable.  Since the road tests needed to be run during light 

traffic conditions (to reduce interference of background traffic), but also during day 

light hours (so drivers could easily see driveway activity), most of the test runs were 

completed late in the evening when the sun was setting.  Even though the sun was not 
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directly in the eyes of the drivers, the intermittent side glare of sun light caused the eye 

tracking technology to misread eye movements or not record eye movement at all.  

The research team decided that since accurate eye tracking data was only available for 

a few participants and for only partial test sections, comparative analyses between the 

road tests and simulator tests could not be completed.  

 

4.2.2   Vehicle Speed, Location, and Travel Time 

The simulator system is capable of recording a significant amount of vehicle 

performance data at intervals down to 1/100th of a second.  These data variables can 

include velocity, acceleration and deceleration, lane position, headway and tailway 

distances, braking force, and steering position, just to name a few.  However, for this 

validation effort the limiting factor was the amount of data that could be collected 

during the road test.  The researchers only had access to technology that was able to 

collect vehicle velocity for the road study in one-second intervals, which then allowed 

for the calculation of acceleration and deceleration as well as distance traveled.  

Therefore, this validation effort only utilized the vehicle speed, vehicle acceleration 

and deceleration, travel time, and travel distance data variables from the simulator 

output.  While the simulator software recorded the data in 1/100th of a second 

intervals, the researchers later reduced this data to one-second intervals. 
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5. DATA ANALYSIS AND RESULTS 

This chapter presents a summary of the data collected and the analysis results for both 

the road test and simulator test phases of the validation effort.  Section 5.1 and Section 

5.2 summarize the data collected during the road test and simulator test, respectively.  

The results of the comparative and statistical analyses are presented in Section 5.3. 

 

5.1  ROAD TEST DATA 

As described in Chapter 4, the road test vehicle was equipped with a CarChip OBDII 

Recorder that collected speed and travel time data for all test runs.  Even though the 

eye tracking video data was not accurate enough to be used in comparative analyses, 

the researchers were able to use the video footage to match the CarChip data to the test 

section start and stop points.  From the speed and travel time data, the researchers 

calculated the corresponding acceleration and deceleration rates as well as the distance 

traveled.   

 

Once the speed profiles were plotted, it was apparent that the signalized intersections 

along NW 9th Street had a greater impact on driver behavior than initially anticipated.  

Because of this, the researchers reexamined the speed data and video footage to 

estimate the influence area of the nearby signalized intersections. By removing these 

influence areas from the data set, the remaining data more accurately represented free-

flow speeds and unimpeded driving behavior. Figure 11 and Figure 12 present the 

speed profiles for all test runs on Segment 1 (Northbound and Southbound) and 

Segment 2 (Northbound and Southbound), respectively.  The shaded boxes indicate 

the free-flow portions of the test sections in which driver behavior and speed were not 

impacted by the presence of nearby signalized intersections. 
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Figure 11.  Road Test Speed Profile, Segment 1, Northbound and Southbound 
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Figure 12.  Road Test Speed Profile, Segment 2, Northbound and Southbound 
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As shown on Figure 11 and Figure 12, the shape of the individual speed profiles vary 

by segment due to the presence of signalized intersections as well as the presence and 

behavior of other vehicles on the roadway.  However, the average speeds through the 

free flow sub-sections of all four segments remain very close to 35 mph for all test 

sections. Individual speed measurements ranged from 23 mph to 46 mph. 
 

The two figures also show that the variability in speed between drivers reduced as the 

road test progressed.  Because all drivers began the road test traveling northbound, 

turned around, and then traveled southbound (as described in Chapter 4), they all 

encountered Segment 1, northbound first and Segment 1, southbound last.  This 

change in speed variability is most likely due to the adjustment period for each driver 

to become familiar with the road test vehicle.  For this reason, Segment 1, northbound 

was excluded from the data analysis. 
 

Additionally, the Segment 2, northbound speed profile shows increasing variability as 

drivers approached the end of the section.  This is likely related to the road test route, 

in which the drivers were instructed to turn left at NW Circle Boulevard 

(approximately 450 feet north of the test section).  Drivers may have been adjusting 

their speed and making appropriate lane changes prior to the end of the test section in 

preparation for the upcoming route change.  Also, the intersection of NW 9th Street 

and NW Circle Boulevard is much larger and busier than any of the other intersections 

along the road test route.  Since all of the drivers had some level of familiarity with the 

route, they may have been adjusting their driving behavior based on previously 

defined expectations of traffic volumes (vehicle, bicycle, pedestrian, and transit), 

queues, and driveway activity.  While the overall speed variability definitely changed 

throughout the segment, the researchers kept the test section in the data set because the 

speed profiles remained relatively consistent except for the upper and lower outliers. 

 

Table 2 summarizes the descriptive statistics for each road test section, including 

acceleration, deceleration, minimum and maximum speeds, as well as average and 

85th-percentile speeds. 
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Table 2.  Descriptive Statistic Summary for Road Test Sections 

 

 

Max. 
Accel. 

Max. 
Decel. 

Max. 
Speed 

Min. 
Speed 

Average 
Speed 

85th %tile 
Speed 

Segment (ft/s2) (ft/s2) (mph) (mph) (mph) (mph) 
NB 1 2.493 -2.200 36.2 27.7 32.5 35.6 
SB 1 1.613 -1.760 36.8 33.8 35.5 36.4 
NB 2 1.907 -1.613 37.8 31.6 35.1 37.3 
SB 2 1.907 -1.907 35.9 31.2 34.2 35.5 
NB Average 2.200 -1.907 37.0 29.7 33.8 36.4 
SB Average 1.760 -1.833 36.4 32.5 34.8 35.9 
Total 1.980 -1.907 37.6 31.7 35.1 36.4 

 

5.2  SIMULATOR TEST DATA 

The simulator test consisted of six test sections, each with different types of driveway 

activity, as described in Chapter 3.  Each of the six test sections consisted of two 

segments, corresponding to Segment 1 and Segment 2 of the road test.  Because 

alternating roadway sections were rotated 180-degrees, the Control section (no 

driveway activity), Left-turns In section, and Left-turns Out section correspond to the 

northbound road test section, while the Right-turns In section, Right-turns Out section, 

and All-Turns section correspond to the southbound road test section.  Each test 

subject started the experiment at one of four randomly selected start points, as 

described in Chapter 4. 

 

The speed profiles for each of the 12 segments (six northbound, six southbound) are 

shown on Figure 13 through Figure 18.  It should be noted that these speed profiles 

were adjusted to only include the portions of the segments identified as having free-

flow conditions in the road test data.  For example, the road test data showed that free-

flow conditions began on Segment 1, Southbound after the first 200 feet and continued 

to the end of the segment (approximately 1,285 feet).  Therefore, the corresponding 

simulator test segments (Segment 1 of Right-turns Out, Right-turns In, and All Turns) 

include data only between locations 200 feet and 1,285 feet. 
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Figure 13.  Simulator Test Speed Profile, Control Section (No Turns), Segment 1 and 
2 

 

Figure 13 shows the speed profiles for Segment 1 and 2 within the control section.  

The speeds in the first 400 feet of Segment 1 show a much higher variability than the 

remainder of the segment, which is likely due to Segment 1’s proximity to the 

transition area where drivers are exiting a higher-speed rural area and entering the 

lower-speed urban area.  Despite the increased variability, the researchers decided not 

to exclude any data points based on these speed profile patterns. 

0
5

10
15
20
25
30
35
40
45
50
55

0 200 400 600 800 1000 1200

Ve
lo

ci
ty

 (M
ile

s p
er

 H
ou

r)
 

Distance Traveled (Feet) 

Simulator Test - No Turns, Segment 1 

0
5

10
15
20
25
30
35
40
45
50
55

0 200 400 600 800 1000 1200 1400 1600 1800

Ve
lo

ci
ty

 (M
ile

s p
er

 H
ou

r)
 

Distance Traveled (Feet) 

Simulator Test - No Turns, Segment 2 



43 
  
 

 
 

Figure 14.  Simulator Test Speed Profile, Right Turns Out Section, Segment 1 and 2 

 

As shown on Figure 14, Segment 1 and Segment 2 of the Right-Turns Out section 

exhibit relatively constant speed profiles along their entire length.  While some drivers 

did make braking maneuvers in response to driveway activity, the overall trends are 

consistent and the researchers did not exclude any data based on the Right-Turns Out 

speed profile patterns. 
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Figure 15.  Simulator Test Speed Profile, Left Turns In Section, Segment 1 and 2 

 

Figure 15 presents the speed profiles for Segment 1 and 2 of the Left-Turns In section.  

As shown, all speed profiles for both segments are consistent with minimal variability, 

and the researchers included all data in the statistical analyses. 
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Figure 16.  Simulator Test Speed Profile, Right Turns In Section, Segment 1 and 2 

 

The speed profiles for Segment 1 of the Right-Turns In section, shown on Figure 16, 

are very consistent and show minimal variability between drivers.  However, speeds in 

Segment 2 were affected by driveway activity, as shown by the variability in the speed 

profiles.  While overall Segment 2 speed profiles are less consistent than other test 

sections, the patterns are not extreme or unexpected, and thus the researchers retained 

all data for the Right-Turns In section as part of the analysis.    
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Figure 17.  Simulator Test Speed Profile, Left Turns Out Section, Segment 1 and 2 

 

The speed profiles shown on Figure 17 indicate that one driver in each segment 

responded to a driveway-related event that the other drivers either did not encounter or 

did not respond to with a braking maneuver.  For this reason, the researchers removed 

each of the outlying speed profiles from the data set prior to analysis. 
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Figure 18.  Simulator Test Speed Profile, All Turns Section, Segment 1 and 2 

 

Segment 1 of the test section which included all turn types showed the most 

significant response to driveway activity of any of the test sections, as illustrated on 

Figure 18.  This extreme braking event was in response to a programmed vehicle 

exiting a driveway right in front of the subject vehicle.  Because no such events 

occurred during the road test, the researchers excluded all Segment 1 data from the 

analysis data set, however the analysis did include all speed profiles from Segment 2. 
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Table 3 summarizes the descriptive statistics of the simulator test speed profiles for 

each section, for all northbound test sections, for all southbound test sections, and for 

the average of all test sections.   

 

Table 3.  Descriptive Statistic Summary for Simulator Test Sections 

 

 

Max. 
Accel. 

Max. 
Decel. 

Max. 
Speed 

Min. 
Speed 

Average 
Speed 

85th %tile 
Speed 

Section (ft/s2) (ft/s2) (mph) (mph) (mph) (mph) 
Control 0.762 -0.997 39.0 34.7 36.9 38.5 
Right Out 1.733 -2.545 40.4 33.5 37.2 39.5 
Left In 0.943 -1.056 41.4 37.2 39.2 40.5 
Right In 1.196 -2.261 39.7 32.1 35.8 38.5 
Left Out 1.075 -1.753 40.4 35.9 38.4 39.8 
All Turns 2.310 -6.909 41.3 29.0 36.1 40.4 
NB Average 0.927 -1.268 40.3 35.9 38.2 39.6 
SB Average 1.301 -1.814 40.0 34.1 37.3 39.4 
Total Average 1.337 -2.587 40.4 33.7 37.3 39.6 

 

 

5.3  DATA ANALYSIS AND COMPARISONS 

As discussed in Sections 5.1 and 5.2, the simulator test and road test data show similar 

trends in driving performance.  Travel speeds remained relatively constant through all 

roadway sections in both the simulator and roadway test, with the few exceptions that 

were discussed previously and removed from the data set.  The maximum, minimum, 

average, and 85th-percentile speeds were all higher in the simulator test than the road 

test, although the magnitude of the difference is relatively small (typically less than 3 

mph).  For acceleration and deceleration data, the road test showed more extreme 

acceleration behavior while the simulator test showed more extreme deceleration 

behavior.  These trends can be seen in Table 2 and Table 3.  Further graphical 

comparisons and statistical analyses are discussed in the following sections. 
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5.3.1  Graphical Comparison of Acceleration Curves 

Although the formal statistical analyses focused on free flow conditions to reduce 

variability among drivers, the researchers also investigated the acceleration speed 

profiles independently.  Because the road test mainly included acceleration and 

deceleration events related to signalized intersections that were not present in the 

simulator test, and the simulator test included acceleration and deceleration events 

related to specific driveway activity that could not be replicated in the field, the only 

acceleration information available for the researchers to compare was the initial 

acceleration period at the beginning of each test.  Similarly, the researchers could not 

compare the deceleration curves between tests because the final deceleration period of 

the road test involved maneuvering through a parking lot, while the simulator test only 

required a straight-line stop.   

 

The researchers looked at the speed data for the initial acceleration period of each test 

and, based on when drivers typically reached free flow speeds, selected a distance of 

1,000 feet from the starting point to analyze acceleration patterns.   

Figure 19 shows the acceleration data for the simulator and road tests, as well as fitted 

exponential curves.  The researchers included the curves to aid in the visual 

comparison of both data sets; however, it should be noted that the curves were derived 

using Excel, not formal statistical modeling.  
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Figure 19.  Comparison of Simulator and Road Test Acceleration Curves 

  

As shown in Figure 19, while the road test profile shows a slightly sharper 

acceleration curve, the overall profiles for the simulator and road test acceleration 

periods exhibit very similar trends and magnitudes. 

 

5.3.2  Formal Analysis of Speed, Acceleration, and Deceleration 
Data 

The final phase of the validation effort involved statistical analyses which included all 

speed, acceleration, and deceleration variables presented in Sections 5.1 and 5.2.  

Because the same set of test subjects participated in the simulator and road tests, the 

author utilized a two-sample paired t-test to compare the two data sets. 

 

As described earlier in this chapter, the researchers excluded some collected data from 

this analysis, most notably the entire Segment 1, northbound data set from the road 

test and the entire All Turns, Segment 1 data set from the simulator test.  After the 
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exclusion of these data sets, the researchers strategically matched each road test data 

set to the appropriate simulator data set, wherever possible.  For example, if Subject 1 

encountered a vehicle turning left into a driveway on Northbound Segment 2, but no 

other driveway activity within that segment, then that driver’s road test data set was 

paired with the Left-Turn-In Segment 2 simulator data set.  If a driver encountered no 

driveway activity within a segment of the road test, their data was compared to the 

control section of the simulator test.  Similarly, if a driver encountered multiple turn 

types within a single road test segment, the researchers matched that data with the 

corresponding simulator data for the All Turns section.  When corresponding data was 

not available, either due to previous exclusions or a lack of appropriate data (i.e., the 

simulated environment included right turn activity in the northbound direction only), 

the researchers used the northbound or southbound average values for that segment. 

 

The researchers utilized box plots and quanitle-quanitle (Q-Q) plots to ensure that the 

data sets were normally distributed with equal variances.  All data variables met the 

normality and variance requirements of the paired t-test, and these investigative plots 

are included in the Appendix.   

 

A two-sample paired t-test compares the means of two dependent data sets, such as the 

same group of subjects being given two treatments, or in this case, participating in 

both the simulator and road tests.  Paired t-tests provide increased statistical power 

over unpaired t-tests of the same sample size since using the same population sample 

for both treatments accounts for many of the potential confounding factors typically 

associated with random sampling.   

 

For this validation effort, the null hypothesis is that the difference in means between 

the simulator and road test data sets equals zero.  If the tests result in insignificant p-

values and the null hypothesis is not rejected, the researchers can then infer that speed, 

acceleration, and deceleration measurements in the simulator do not statistically differ 

from corresponding real-world measurements.   The threshold for significant versus 

insignificant p-values is typically a value of 0.05.  However, a general rule of thumb 
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concerning p-values is that values less than 0.01 provide convincing evidence of a 

statistical difference, while values between 0.01 and 0.05 show moderate to suggestive 

evidence and values between 0.05 and 0.10 show suggestive but inconclusive evidence 

(Ramsey and Schafer, 2002). 

 

Because the researchers developed the analysis data set based on the road test 

driveway activity, all data are summarized by the road test segments.   

Table 4 presents the results of the paired t-test analyses, including p-values 

(significance denoted by asterisks and bold type) and 95-percent confidence intervals. 

 

Table 4.  Paired t-Test Analysis Results 

 

Data 
Variable Statistic Northbound 

Segment 2 
Southbound 
Segment 1 

Southbound 
Segment 2 

Minimum 
Speed (mph) 

p-value 0.08292 0.1304 0.1786 
avg. difference -3.36 -2.36 -1.37 

95% CI (-7.257 ,0.537) (-5.567, 0.847) (-3.494, 0.754) 

Maximum 
Speed (mph) 

p-value 0.2961 0.001307** 0.00005** 
avg. difference -1.57 -3.42 -3.61 

95% CI (-4.772, 1.632) (-5.105, -1.735) (-4.469, -2.751) 

Average 
Speed (mph) 

p-value 0.1777 0.0155* 0.00059** 
avg. difference -2.21 -2.76 -2.18 

95% CI (-5.629, 1.209) (-4.857, -0.663) (-3.135, -1.224) 
85th 

Percentile 
Speed (mph) 

p-value 0.332 0.0022** 0.00007** 
avg. difference -1.5096 -3.25 -3.43 

95% CI (-4.841, 1.821) (-4.994, -1.508) (-4.272, -2.585) 
Maximum 

Acceleration 
(ft/s2) 

p-value 0.05717 0.03505* 0.2467 
avg. difference 0.7909 0.8232 0.445 

95% CI (-0.0298, 1.612) (0.072, 1.574) (-0.368, 1.258) 

Maximum 
Deceleration 

(ft/s2) 

p-value 0.002613** 0.1864 0.2151 
avg. difference -0.6667 -0.964 0.93878 

95% CI (-1.024, -0.309) (-2.456, 0.564) (-0.669, 2.547) 
 

The results presented in Table 4 illustrate that eight of the 18 paired t-tests completed 

resulted in significant p-values suggesting a statistical difference in mean values; two 
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resulted in moderately suggestive evidence (p-values between 0.01 and 0.05, denoted 

by a single asterisk) and six resulted in convincing evidence (p-values less than 0.01, 

denoted by a double asterisk). 

 

Even though the maximum, average, and 85th percentile speeds show statistically 

significant differences between the simulator and two of the three road test sections, 

the 95-percent confidence intervals indicate that these differences are 5 mph or less in 

all instances.  In the case of acceleration and deceleration measurements, only one of 

the three test sections resulted in significant differences for each data variable, and in 

both cases the 95-percent confidence interval shows differences less than 1.6 ft./s2.  

With the exception of the maximum deceleration variable, all t-tests resulted in 

average differences that were of the same sign and relative magnitude across all three 

test segments.  For the deceleration variable, two of the three segments showed a 

negative difference (indicated higher deceleration rates in the simulator), while one 

segment showed a positive difference.    

 

5.3.3  Summary of Analysis and Results 

The authors compared speed, acceleration, and deceleration data from the road test 

and simulator tests using descriptive statistics, graphical comparisons, and two-sample 

paired t-tests.   

 

The researchers graphically compared speed profiles for the simulator and road tests 

for all test sections, and the free-flow speed segments showed consistent speeds in the 

35mph-40mph range for all test subjects.  In general, free flow speeds observed in the 

simulator test were slightly higher than those observed during the road test.   

 

The authors also graphically compared the speed profiles during the initial 

acceleration periods of the tests. While the road test showed slightly higher 

acceleration rates, the two acceleration curves were very similar in shape and 

magnitude.  
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The t-tests analyzed four speed data variables (minimum, maximum, average, and 

85th-percentile speeds) as well as maximum acceleration and deceleration variables 

across three different roadway test sections.  Of the 18 tests completed, six showed 

convincing evidence of a statistically significant difference between the simulator and 

road test results, two showed moderately suggestive evidence of a difference, and the 

remaining ten showed no evidence of a difference.  While several data variables did 

show statistically significant differences between the two tests, the 95-percent 

confidence intervals indicated that these differences were less than 5 mph for all speed 

data variables and less than 1.6 ft/s2 for all acceleration and deceleration variables.  

 

Based on the graphical and statistical comparisons described above, the author 

believes that the analysis results confirm the validity of the driving simulator based on 

the speed-based variables tested.  While the analyses resulted in statistically 

significant differences for some data variables on one or more test sections, the 

magnitude of these differences is considered minor in practical terms.    
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6. SUMMARY & CONCLUSIONS 

The National Cooperative Highway Research Program is currently in the process of 

updating the Access Management Manual and developing the companion document, 

titled Access Management Application Guidelines.  As part of this effort, the Oregon 

State University (OSU) Driving Simulator Laboratory will be utilized to investigate 

the current standards of practice regarding driveway spacing, stopping sight distance, 

and perception-reaction time.  Because the results of this research may impact 

nationally accepted standards and guidelines, a critical component of this effort is 

verifying the accuracy of the driving simulator and its associated performance 

measures.  The research presented in this document focused on the validation of the 

OSU driving simulator based on speed, acceleration, and deceleration data. 

 

The validation effort was centered on the null hypothesis that speed, acceleration, and 

deceleration data collected in the simulator do not differ from what is observed in the 

real world.  To test this hypothesis, the author selected a road test section and 

developed a corresponding simulated environment.  A total of ten subjects completed 

both the road test and simulator test, and the author used a combination of descriptive 

statistics, graphical comparisons, and two-sample paired t-tests to compare the 

performance measures of each test.   

 

The experiment consisted of a road test and a simulator test using the same ten 

subjects for both tests.  The road test occurred on a section of NW 9th Street, which is 

an urban principal arterial in the city of Corvallis, Oregon.  This section of NW 9th 

Street has a five lane cross-section with a median two-way left-turn lane and bicycle 

lanes in both directions.  The test section of NW 9th Street consisted of two different 

roadway segments with a total combined length of approximately 3,000 feet.  The two 

segments included a total of 30 driveways, most of which served commercial land 

uses, and did not include any signalized intersections.   

 



56 
  
 

For the simulator test portion of the experiment, the researchers designed the 

simulated environment to match the road test environment as closely as possible.  The 

roadway geometry was exactly the same in both environments and the simulated 

driveway centerline locations were within 10 feet of the real world driveway 

centerlines.  Roadside objects and adjacent land uses were represented in the simulated 

environment by generic buildings, trees, and light posts that were of the correct size 

and shape.   

 

Researchers used an OBDII-port recorder to collect travel time, speed, acceleration, 

and deceleration data during the road test.  The same data variables were automatically 

recorded by the software program during the simulator test.  During both tests, 

researchers also utilized eye tracking goggles to collect eye movement data as well as 

driver point-of-view video footage.  Due to sun glare that affected the quality of the 

eye tracking data during the road test, ultimately the eye tracking data could not be 

used for the validation effort. 

 

In addition to descriptive statistics and graphical comparisons of the speed profiles, the 

researchers completed two sample paired t-tests to analyze the simulator and road test 

datasets.  The six data variables analyzed were minimum speed, maximum speed, 

average speed, 85th-percentile speed, maximum acceleration, and minimum 

acceleration.  The researchers compared these six data variables for three different 

roadway segments, resulting in a total of 18 paired t-tests.  Of the 18 paired t-tests, 

eight combinations showed a statistically significant difference between the simulator 

and road tests.  The maximum, average, and 85th-percentile speeds were statistically 

different on two of the three test segments, while the maximum acceleration and 

deceleration values were statistically different on only one of the three test segments.   

 

Although several of the paired t-tests resulted in p-values suggesting statistically 

significant differences between the simulator and road test datasets, the estimated 

differences were not large.  On average, the speeds measured in the simulator test 

were 3.5 mph higher than those recorded during the road test.  The statistically 
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significant differences in acceleration and deceleration rates were, on average, 0.80 

ft/s2.  With regards to the acceleration rates, the simulator data set showed lower 

values than the road test.  The analysis using the deceleration data resulted in two of 

the three segments showing higher deceleration rates in the simulator test, while one 

segment showed the reverse trend.  This was the only data variable that showed 

inconsistent trends across the three test sections, and thus should be investigated 

further.   

 

Practically speaking, the magnitude of these differences, particularly for the speed 

variables, is not significant. The researchers believe that these results confirm the 

validity of the OSU Driving Simulator performance measures with regards to speed 

and acceleration.  

 

6.1.1  Next Steps and Future Work 

With the completion of most large-scale projects, ideas regarding the application of 

the research results as well as considerations to improve or expand upon the research 

effort itself are often spurred.  The next steps and ideas for future work are outlined 

below: 

 

6.1.1.A Next Steps 

- As previously mentioned, this validation effort was the preliminary phase of a 

larger research project funded by NCHRP.  The results of this validation effort 

will serve as supporting evidence of the validity and accuracy of performance 

measures collected in the OSU Driving Simulator Laboratory; and 

- If future research efforts intend to extrapolate absolute values for speed, 

acceleration, or deceleration, the small differences in measurements described 

in this report can be accounted for in one of two ways.  The simulator hardware 

and software can be adjusted such that the measurements better reflect real-

world driving behavior, or the resulting data variables collected during research 

efforts can be manually adjusted to account for the differences. 
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6.1.1.B Future Work 

- Completing the same or similar road and simulator tests with a larger number 

of subjects would increase the strength of the results and would better refine 

the estimated differences between the data variables, particularly in regards to 

the deceleration rates; and 

- Investigating the validity of additional data variables would strengthen the 

argument that the OSU Simulator Laboratory is accurate and valid in a wider 

range of contexts.   Performance measures such as lateral lane position or 

headway could be studied through a similar experiment. Additionally, 

investigating ways to improve the collection of eye tracking data in the road 

test environment would provide another layer of validity that is very applicable 

to simulator research in this laboratory.  
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LIST OF ABBREVIATIONS 

 

 

Abbreviation Description 
AADT Annual Average Daily Traffic 

AASHTO American Association of State Highway and Transportation 
Officials 

ADA Americans with Disabilities Act 
AMM Access Management Manual 
AMAG Access Management Application Guidelines 
ANOVA Analysis of Variance 
LiDAR Light Detection and Ranging 
NCHRP National Cooperative Highway Research Program 
OSU Oregon State University 
PRT Perception-Reaction Time 
SSQ Simulator Sickness Questionnaire 
TRB Transportation Research Board 
TWLTL Two-Way Left-Turn Lane 
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NORMALITY PLOTS 

 

 

 

 

 

Figure A1.  Boxplot and QQ Plots for Average Speed Variables 
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Figure A2.  Boxplot and QQ Plots for Minimum Speed Variables 
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Figure A3.  Boxplot and QQ Plots for Maximum Speed Variables 
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Figure A4.  Boxplot and QQ Plots for 85th-Percentile Speed Variables 
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Figure A5.  Boxplot and QQ Plots for Maximum Acceleration Variables 
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Figure A6.  Boxplot and QQ Plots for Maximum Deceleration Variables 
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