

AN ABSTRACT OF THE THESIS OF

Jason Dagit for the degree of Master of Science in Computer Science presented

on March 20, 2009.

Title:

Type-Correct Changes — A Safe Approach to Version Control Implementation

Abstract approved:

David Roundy Martin Erwig

Ensuring correctness of real-world software applications is a challenging task.

Testing can be used to find many bugs, but is typically not sufficient for proving

correctness or even eliminating entire classes of bugs. However, formal proof and

verification techniques tend to be very heavy weight and are simply not available

for day to day use in many common programming environments.

We demonstrate a form of light-weight proof assistant by using the type check-

ing features of the programming language Haskell with existing extensions. We

apply this work to the Open Source version control system Darcs. The properties

checked by our approach are derived directly from the data model used by Darcs.

This allows us to eliminate entire classes of bugs at compile time. We also examine

how these techniques improve the quality of the Darcs codebase and the challenges

that arise when applying these techniques in practice.

©Copyright by Jason Dagit
March 20, 2009

All Rights Reserved

Type-Correct Changes — A Safe Approach to Version Control
Implementation

by

Jason Dagit

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented March 20, 2009
Commencement June 2009

Master of Science thesis of Jason Dagit presented on March 20, 2009.

APPROVED:

Co-Major Professor, representing Computer Science

Co-Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Jason Dagit, Author

ACKNOWLEDGEMENTS

David Roundy’s creative mind, initiative, and hard work led to the creation of the

Open Source project Darcs, making this work possible. I would like to express

deep appreciation to David for the creation of Darcs but also for his continued

patience, guidance, and generous nature. Without David this work would not be

a reality.

I would also like to thank Martin Erwig for diligently, tactfully, and expertly

providing invaluable feedback as well as introducing me to the Haskell program-

ming language.

I appreciate each member of the Committee for making time in their busy

schedules. To my friends and my co-workers at PTV America who encouraged

me and supported me; I owe each a debt of gratitude. I would also like to ac-

knowledge the Haskell and Darcs communities for their all their help, feedback,

and encouragement, especially Eric Kow, Ian Lynagh, and Ganesh Sittampalam.

This work was partially funded by Google Inc., by the way of the Google Sum-

mer of Code program. The Google Summer of Code is an outstanding opportunity

for students to contribute to Open Source while earning funds for school.

Finally I would like to thank Robin Abraham for pushing me to apply and

attend.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Background . 2
1.1.1 Patch Theory . 3
1.1.2 Haskell’s Type System . 3

1.2 Motivation . 3

1.3 Structure of this document . 5

2 Related Work 6

2.1 Version Control Systems . 6
2.1.1 Commonly Supported Features 6
2.1.2 Centralized and Decentralized Version Control 7

2.2 Type Level Proofs . 9
2.2.1 Haskell . 9
2.2.2 Non-Haskell . 18

3 Data Model and Invariants 20

3.1 Elements of Patch Theory . 20

3.2 Commute . 23
3.2.1 Example . 24
3.2.2 Abstract Interface . 30

3.3 Inverse Patches . 33

3.4 Equality . 33

3.5 Merge . 34

3.6 Summary . 37

4 Checked Invariants 39

4.1 Sealed Types . 40

4.2 Witness Types . 41

4.3 Phantom Types . 41

4.4 Example . 42

4.5 Patch Representation . 45

TABLE OF CONTENTS (Continued)

Page

4.6 Directed Types . 47
4.6.1 Directed Pairs . 47
4.6.2 Forward Lists . 48

4.7 Expressing Commutation . 49

4.8 Patch Sequences . 50

4.9 Patch Merge . 52

4.10 Patch Equality . 54

4.11 Summary . 54

5 Discussion 56

5.1 Incremental Approach . 56

5.2 Difficulties . 60
5.2.1 Intentional Context Coercion 60
5.2.2 Unsound Equality Examples 63
5.2.3 Improving Context . 67
5.2.4 Type Checking . 68

5.3 Real-World Improvements . 70
5.3.1 Detection of Invalid Patch Sequence Manipulations 70
5.3.2 Safe and General Functions 72
5.3.3 Detection of Defective Functions 73
5.3.4 Identification of Redundant Functions 74
5.3.5 Writing New Code is Safer 75

6 Conclusion 76

Bibliography 77

Appendices 83

LIST OF APPENDICES

Page

A Existentially Quantified Types 84

B Generalized Algebraic Data Types (GADTs) 86

C Directed Type Examples 88

C.1 Functions . 89

C.2 Filtering . 91

C.3 Zipping . 91

C.4 Standard Operations . 95

D Program Coverage 96

DEDICATION

This work is dedicated to my parents, Marlene Griffin and James Dagit.

Chapter 1 – Introduction

Version control systems require a high degree of robustness as users trust them

to safeguard their data over the life cycle of software projects. Corruption in

repository data, such as the history of changes, can lead to wasted time and user

frustration. Worse yet is the possibility of a bug which constructs invalid versions

of the user’s data. When the data under version control is source code this can lead

to build failures or forms of corruption that go unnoticed until it poses a problem.

Software engineers have many tools to help write software applications. Many

of these tools exist to tackle the challenge of writing correct software. Testing con-

tinues to be a popular approach to this challenge but testing is not usually enough

to prove correctness. Instead, software engineers use testing to gain confidence

that the tested program will behave as intended in most uses.

When testing is not sufficient, formal methods may be used to prove parts of

the program correct. Often formal methods are applied in only the core of applica-

tions due to the high labor costs needed to use them effectively. Another approach

to reducing the high cost of formal methods is to use an automated method such

as a proof assistant. Proof assistants are only available in specialized domains,

such as research programming languages. This means that many mainstream pro-

gramming environments lack automated proof tools.

Given the importance of correctness for version control systems, we would like

2

to eliminate as many bugs as possible from the Open Source version control system

Darcs [Rou09a]. We examine the data model used by Darcs and discuss a number

of invariants that must be maintained to avoid data corruption.

Darcs is implemented in the programming language Haskell, which gives us an

opportunity to apply modern innovations in Programming Language research to

a real-world software application. Our approach shows that the type system of

the Haskell programming language together with a novel combination of language

extensions, implemented by the Glasgow Haskell Compiler (GHC), can be used as

a light-weight alternative to a proof assistant. We show that entire classes of bugs

can be eliminated at compile time using our approach.

Finally we examine the impact of our techniques on the Darcs codebase and

the challenges that arise when applying these techniques to an existing real-world

application.

1.1 Background

This document shows how to encode specific invariants into types in the Haskell

programming language. Although program invariants may seem unrelated to types,

we use properties of Haskell’s strong static type checking to gain static guarantees

about these invariants.

3

1.1.1 Patch Theory

The data model used and pioneered by Darcs is known as Patch Theory [Rou09b],

discovered by David Roundy to solve the problem of communicating changes in a

distributed fashion between contributors. Patch Theory remains distinct in that

it allows users to think of their repositories as unordered collections of changes.

More details can be found in Chapter 3.

1.1.2 Haskell’s Type System

We assume the reader has a basic familiarity with functional programming and the

Haskell language specifically. For more details about the language features that

will be discussed in this document please see Section 2.2 and Appendices A and B.

Haskell’s type system is based on Hindly-Milner type checking [Pey03]. The

GHC implementation of Haskell uses a modified version of the Damas-Milner type

checking algorithm [VWP06]. In fact, GHC contains many extensions compared

to the language specification for Haskell [Pey03] and it is no coincidence that GHC

is used as the compiler for Darcs. Many of the extensions implemented by GHC

are of great value for real-world Haskell programming.

1.2 Motivation

The use of version control systems (VCS) seem to be a common practice for

software projects these days as most projects use some form of version control.

4

Example version control systems include Subversion (SVN) [Tig09], Concurrent

Versions System (CVS) [Fre09], Git [Tor09], Darcs [Rou09a], BitKeeper [Bit09],

Monotone [Mon09], Visual SourceSafe [Mic09], and many others.

A VCS plays a support role in a project. That is, the VCS used by a team of

software developers supports the primary task of software development. For this

reason it is important that the VCS be reliable and robust, otherwise the software

developers could lose time dealing with their tools instead of working on their

primary task of software development.

Robustness has always been important for Darcs and it has motivated the Darcs

project to try new things, such as moving the implementation language from C++

to Haskell as explained by Roundy [Sto05]:

It is a little-known fact that the first implementation of Darcs was

actually in C++. However, after working on it for a while, I had an

essentially solid mass of bugs, which was very hard to track down.

While Darcs has a test suite that continues to grow in size and comprehensive-

ness, it does not provide a total solution for ensuring the level of quality assurance

that users demand. As an illustration of this point, we include code coverage

statistics generated by the Haskell Program Coverage (HPC) toolkit [GR07] in

Appendix D. The number of bugs in Darcs, despite testing, is a strong motivating

factor in our decision to incorporate more proof techniques in our quality assurance

process.

5

1.3 Structure of this document

This document introduces the related work in Chapter 2 in the areas of automated

invariant checking and encoding invariants in Haskell programs. In Chapter 3

we will give the necessary background for understanding several key invariants of

Darcs. The tools and abstractions we use to represent these invariants, along with

real examples are given in Chapter 4. Our analysis of the work, with discussion is

found in Chapter 5. Finally we give a closing statement in Chapter 6.

6

Chapter 2 – Related Work

In this chapter, we present work related to this thesis. A brief survey of the version

control landscape is given in Section 2.1. An overview of type-based proofs as well

as proof-carrying types can be found in Section 2.2.

2.1 Version Control Systems

Version control systems (VCS) are used by many software developers, projects

and organizations. The primary feature offered by VCS software is the ability

to track modifications to a collection of documents, usually program source code.

Typically users are allowed to make their modifications independently and then

share the modifications. Common VCS operations are covered in Section 2.1.1.

A common classification among VCS is whether the modifications are shared in a

distributed or centralized fashion. This distinction and where Darcs fits is covered

in Section 2.1.2.

2.1.1 Commonly Supported Features

Every VCS has a notion of modification although different terminology is often

used such as change, patch, or revision. The VCS stores a collection of documents

along with the history of modifications in what is known as a repository.

7

The first step for using a VCS is usually to get a copy of a repository where

the user can make modifications. Once modifications have been made, the VCS

requires the user to record, or commit, the modifications. Doing so creates an

entry in the history that contains the changes and usually a description entered by

the user. After making and recording modifications users will often need to share

their work with others who have a copy of the repository. The different ways of

sharing are covered in the next section.

An important feature of most VCS is that of branching and merging. Creating

a branch means making a copy of the repository which diverges from the original

repository. In a software development project this might be done to facilitate the

design and development of an experimental new feature while applying bug fixes

to a stable version. Following this example, once the new feature is complete we

would like to merge the two repositories so that we are left with one repository

with both the completed new feature and the bug fixes to existing functionality.

How branching and merging function also depends on the distinction between

centralized and decentralized version control.

2.1.2 Centralized and Decentralized Version Control

How to share the changes, the ways in which they can be shared, and the order

that they can be shared varies between VCS. Many VCS require that there is a

central repository which collects all the changes and users connect to it to share

and receive changes. Some VCS allow changes to be shared directly between copies

8

of the repository in a decentralized fashion.

Well known examples of centralized VCS include, Subversion (SVN) [Tig09],

Concurrent Versions System (CVS) [Fre09], Perforce [Per09], and Visual Source-

Safe [Mic09]. Each of these VCS operate in client-server manner. The central

repository is the server and each user has a client repository which communicates

only with the central repository.

Decentralized, also known as distributed, VCS allow repositories to commu-

nicate directly removing the client and server distinction found in centralized

VCS. Well known examples of decentralized VCS include, Darcs [Rou09a], Mercu-

rial [Sel09], Git [Tor09], and Bazaar [Can09].

Modifications made with a centralized VCS may be stored in the order that

they are committed to the central repository. This provides a natural linear pro-

gression of modifications and typically forces an implicit dependency between the

modifications. Generally, new modifications must be made on top of all previ-

ous modifications. For example with SVN, users typically must update their local

repository with modifications from the central repository before committing new

changes.

With decentralized VCS the task of sharing changes becomes more complex as

it is often equivalent to merging two repositories. For example, in the Darcs data

model each copy of a repository is considered a branch and every time patches

are shared it is equivalent to a merge in the SVN data model. In fact, these

spontaneous branches set Darcs apart even within the category of decentralized

VCS. Other decentralized VCS, such as Git, store modifications in a specific order

9

whereas Darcs allows the order of modifications to be reordered according to the

rules of Patch Theory discussed in Chapter 3.

2.2 Type Level Proofs

Although our implementation work is done inside of Darcs, our focus is not on

the VCS aspects. Instead we are focused on using the type system as theorem

prover and proof assistant. We discuss Haskell based type level proofs in Sec-

tion 2.2.1. Briefly we discuss type system based proofs in mainstream languages

and dependently typed languages in Section 2.2.2.

2.2.1 Haskell

Here we focus on proofs and proof techniques based in Haskell’s type system. Much

of the research in Haskell that uses the type system for proofs centers around

the use of type classes. This may be due in part to how long type classes have

been available in Haskell and their standardization. More recent work in this

area has demonstrated the power of Generalized Algebraic Data Types (GADTs).

Appendix B contains a brief overview of GADTs and examples involving GADTs

can be found in Chapter 4.

10

2.2.1.1 Language Features

The Haskell programming language [Pey03] specifies Hindley-Milner type inference

and checking. Hindley-Milner type inference combined with type classes, nested

types and recursive types gives Haskell programmers a plethora of interesting and

useful idioms and techniques. Some of the techniques and idioms discussed in the

research allow the Haskell type checker to serve as a proof assistant at compile

time.

In addition to the features above, we focus on several other features supported

by the Haskell compiler GHC [GHC09c]:

� Generalized Algebraic Data Types (GADTs), developed by Xi et al, Jones

et al, and Cheney and Hinze [XCC03, PVWW06, CH03];

� Existentially quantified types [LO94], commonly referred to as existential

types, explained in Appendix A, and;

� Phantom Types [LM99].

We have two main uses for existential types. First, we borrow the idea of

branding [KS07] when we need a type that is distinct and; second, to express

certain type relations in our data types without exposing the exact types in the

type of the data structure.

Both existentially quantified types and phantom types are implied by using

GADTs, but our usage of them is important enough to warrant introducing them

separately.

11

Some authors, such as Baars and Swierstra, have used the term witness type

to refer to a type that serves as a witness of a proof. For example the type could

represent a proof that two types are equal [BS02]. We adopt this terminology in

our work.

Witness types are chiefly useful to us as a means of ensuring certain invariants

are preserved. In the case of Darcs we would like to be able to change the semantics,

fix bugs or refactor the code and always know that the properties of Patch Theory,

such as those discussed in Chapter 3, have been respected.

Peyton-Jones et al [PVWS07] extended the type system used by GHC to handle

arbitrary rank, which leads to so called “sexy types.” Sexy types include higher

rank polymorphism and existential types. Additionally, sexy types give us precisely

the power we need to express run-time invariants through the type system as

demonstrated by Shan [Sha04]:

. . . skillful use of sexy types can often turn what is usually regarded as a

run-time invariant into a compile-time check. To implement such checks

is to reify dynamic properties of values as refined distinctions between

types. These distinctions in turn increase the degree of heterogeneity

among types in the program.

Hinze shows that higher rank types can also be used to enforce a wide variety of

invariants in data types [Hin01].

Using existential types Kahrs shows us how to encode the invariants of red-

black trees [Kah01]. The existential types are used in the data type declaration to

control unification of phantom types. We use a similar means to control unification

12

of phantom types in our implementation. As Kahrs mentions, using phantom types

in this way has the advantage that it can be removed later, once the code is known

to preserve invariants and the phantom types add no run-time cost.

2.2.1.2 Type Class Based

Using type classes it is possible to implement a statically checked run-time test

for type equality using witness types as detailed by Baars and Swierstra [BS02].

Implementing type equality this way does have one draw back as demonstrated by

Kiselyov [Kis09], namely it is possible to weaken the type system through malicious

type class instances. In Section 5.2.3, we discuss a similar problem that threatens

the context equality that we use in the Darcs implementation.

Type classes, especially when combined with functional dependencies, allow

for computations in the type system as explained by Hallgren [Hal01]. Any purely

functional computation that terminates appears to be possible at the type level.

For example, basic arithmetic on type level natural numbers is relatively easy to

express. One drawback to this variety of type level proof is that by enabling this

level of computation in the type system we lose the property that type checking

will always terminate.

Kiselyov and Shan [KS04] provide a powerful example of how Haskell’s type

classes can be used to turn values into types and back again. These authors

give a way to reify any value that can be serialized into the type system. A major

drawback of using this approach is that it adds run-time overhead. Converting back

13

and forth between types and values requires processing overhead and there is also

the overhead of passing run-time data for each type. The run-time overhead can

be proportional to the “size” of the type [McB02]. Our implementation is already

burdened by performance issues and so we seek to avoid adding any additional

run-time overhead.

Silva and Visser [SV06] give another great example of Haskell programmers

reaching for more static safety by exploiting the types system and HList [KLS04].

As Silva and Visser describe their work:

We explain how type-level programming can be exploited to define a

strongly-typed model of relational databases and operations on them.

In particular, we present a strongly typed embedding of a significant

subset of SQL in Haskell. In this model, meta-data is represented

by type-level entities that guard the semantic correctness of database

operations at compile time.

By using HList, values with heterogeneous types may be stored together in a

record, or list, of arbitrary size. While this is similar to our Directed Lists, see

Section 4.6, we would like to place more constraints on our data types such as

Hinze [Hin01] does and also not exposing the intermediate types of the elements

in our directed types.

The libraries Dimensionalized Numbers [Den09] and Dimensional [Buc09] both

take the approach of exposing extra information to the type system to achieve

correct unit manipulations. In both of these cases the correctness the authors want

to model is that arithmetic operations should respect the physical units involved.

14

2.2.1.3 GADT Based

Eaton [Eat06] gives a clever way to expose matrix dimensionality to the type

system so that only operations which respect the dimensions of arrays and matrices

statically are allowed. This approach is interesting because it is not unlike our own

and yet only uses GADTs incidentally. Meaning, it is not a core requirement for

their approach. As the author says the technique is to “expose certain properties

of operands to a type system, so that their consistency could be statically verified

by a type checker, then we would be able to catch many common errors at compile

time.”

The presented approach uses type classes and the type reflection technique

presented by Kiselyov and Shan [KS04]. Similar to our experiences, this author

also points out that doing so increases the type signatures in an unpleasant way.

A major difference between our implementation and that of Eaton is the use of

functional dependencies [Jon00]. Functional dependencies allow the programmer

to place constraints on the types used in a type class. If our approach relied

on type classes we would probably use functional dependencies as well. A minor

difference between our approaches is that while we use data types with existentially

quantified types as wrappers so that we may have existential types result from

functions Eaton prefers to use CPS transformation. This transformation leads to

equivalent types [Sha04, Eat06]. Eaton also notices how type checking is now so

difficult as to be a burden to the programmer and comments that data flow analysis

may be able to improve type check error messages. Such an improvement by any

15

means would be very welcome.

Greif [Gre08] applies the same data declarations that we use for directed lists,

Section 4.6, to implement Thrists, or type threaded lists. Although this work is

unpublished, according to the author it is inspired by the brainstorming session

at Haskell’05 workshop in Tallinn. This session is where our directed lists were

born. Greif provides a library for Thrists in both Ωmega and Haskell, with several

example applications including parsers and interpreters.

2.2.1.4 Faking Dependent Types

Although we do not use a dependently typed language for our implementation, we

do approximate, or simulate, dependent typing within Haskell to achieve some of

our goals. McKinna [McK06] explains the benefits of dependently typed program-

ming:

Type systems without dependency on dynamic data tend to satisfy the

replacement property—any subexpression of a well typed expression

can be replaced by an alternative subexpression of the same type in

the same scope, and the whole will remain well typed. For example, in

Java or Haskell, you can always swap the then and else branches of con-

ditionals and nothing will go wrong—nothing of any static significance,

anyway. The simplifying assumption is that within any given type, one

value is as good as another. These type systems have no means to

express the way that different data mean different things, and should

16

be treated accordingly in different ways. That is why dependent types

matter.

This observation exactly characterizes why Darcs became fragile and why we seek

to simulate dependent typing. Replacing patches in, concatenating and rearranging

patch sequences was always statically valid even when it would result in corrupt

repositories. For this reason we sought out techniques that would give us the

benefits of dependent typing in Haskell.

Using type level numerals, Fridlender and Indrika [FI00] show a simple way

to work around the lack of dependent types in Haskell. The main example given

allows us to make a version of the standard Haskell function zipWith, which is

referred to as zipWithN, that is type indexed by a type level numeral. The numeral

represents the number of parameter lists passed to zipWithN. This approach is

representative of simulating dependent typing with Haskell. One type is created

for each value, in this case type level numerals. To simulate the values inhabiting

a type we can make each type an instance of the same type class. Thus the values

correspond to Haskell types and the types correspond to Haskell type classes.

McBride [McB02] explores the simulation of dependent typing in Haskell. This

paper explains various tricks to simulate dependent typing and how they are re-

lated. It also clearly explains how type classes allow the programmer to simulate

some type families. He also comments on the limitations of type inference and

what can be accurately encoded when using nested types such as those used by

Okasaki [Oka99]. McBride warns us that run-time overhead of type class heavy

techniques may be proportional to the size of the type signatures. In the GHC

17

implementation this results from implicit passing of type dictionaries for functions

that rely on type classes.

Guillemette and Monnier [GM08] found that it was possible to represent subset

and superset relationships in the type system using GADTs. This also required

a way to implement type equality as a run-time test. Their techniques are very

similar to ours even though the domain is very different, a type-preserving compiler.

They use type level Peano numbers to represent de Bruijn indices.

Kiselyov and Shan [KS07] tag, or brand, values with types that represent certain

capabilities. For example, by creating a new list datatype where the type of the

list is parametrized by a brand we can statically enforce non-emptiness of lists.

The brand is part of the type of the list and acts as a proof of a capability such

as whether the list is empty or non-empty. The work done here is in OCaml but

applies equally well to Haskell and can be used even without dependent typing,

although this requires that we use a trusted kernel of code which may do run-time

checks to generate the correct branding. Once we have the branding in place the

type system can do the verification, thus we can restrict our intensive verification

to just the trusted kernel. This is essentially the approach we have taken for

directed lists. This work is also similar to the examples of dependent typing given

by Xi [XP98]. Xi uses restricted dependent types to remove array bounds checking.

By using “nested types, polymorphic recursion, higher-order kinds, and rank-2

polymorphism,” Okasaki [Oka99] is able to encode vector and matrix dimensions

into types. This encoding ensures that matrix and vector operations can be stati-

cally checked for correctness.

18

2.2.2 Non-Haskell

Proving properties and carrying the proofs with types is not limited to Haskell.

Skalka and Smith [SS00] propose a type system for statically enforcing security

using the JVM security model. The type system carries proofs about the code as

it is compiled. For this to work static type inference is required, this means that

their static security does not work without a modified Java compiler.

Java is not the only mainstream programming language that is receiving at-

tention from type based proofs. Kennedy and Russo [KR05] have found a way

to bring the power of GADTs to C# and Java. Hopefully in the future many

of the approaches discussed here will apply in mainstream languages. Before we

can freely use GADTs in C# the compiler would need to be augmented with the

special type checking rules described.

Xi and Scott [XS99] make a very good survey of work done in dependent typing,

give examples where it helps and explain why it is an important subject.

One example of using language features similar to GADTs arises in a depen-

dently typed variant of ML known as Dependent ML. Chen and Xi [CX03] use

Dependent ML to implement type correct program transformations.

Sheard [She05] explains, with examples, a Haskell-like language known as Ωmega.

Ωmega has GADTs but unlike Haskell it offers strict evaluation and features de-

signed to ease using the type system for proofs. Unfortunately we could not use

Ωmega without a substantial rewrite of Darcs. It also not clear that Ωmega is

ready for real-world use. We hope that the techniques we demonstrate help an-

19

swer a question posed by the author about the way in which other features such

as rank-n polymorphism magnify the benefit of GADTs.

20

Chapter 3 – Data Model and Invariants

Now we turn to establishing the theory underlying Darcs. We assume the reader

has basic familiarity with the use of version control systems. Here we describe

the fundamentals of Patch Theory [Rou09c] as it relates to version control. Not

all of Patch Theory has been made rigorous and precise at this time although

Roundy has made several presentations on Darcs that include discussions of Patch

Theory [Rou06a, Rou06b, Rou08]. We begin with some definitions and then discuss

several properties of patch manipulation.

3.1 Elements of Patch Theory

In this section we make precise terminology that is commonly used in the Darcs

community.

Patch Theory is designed to allow users to independently change their data and

then share those changes. A patch is a way of recording, storing and communi-

cating changes. Before we give a precise definition of patch we define some of the

important concepts in Patch Theory.

Definition 3.1.1. A repository consists of a sequence of patches and a working

copy.

The sequence of patches in the repository represents a set of changes. We want

21

the user to work with patches in such a way that the set of changes define the exact

contents of the repository and allow the user to think in terms of sharing changes

between repositories. For example, we would like for a merge of two repositories

to be simply the union of their sets of changes.

Each repository may have several states. For example, the state that results

from applying all of the patches in the repository is called the pristine state.

Definition 3.1.2. A repository state is a collection of directories, files and the

contents of those files.

We give a special name to the pristine state as it gives us a convenient way to

discuss the effect of applying patches while ignoring any changes that have not yet

been recorded by the user.

The working copy of the repository is where users do their work between version

control operations. In Darcs the working copy is a directory storing the user’s files

and data as the user currently chooses to see it and work with it. Example oper-

ations involving patches are removing patches, recording new patches or applying

patches from a different repository and doing so will result in a new working copy

corresponding to a new state.

Definition 3.1.3. A context is a sequence of patches that can be applied to the

empty state. The empty state refers to an empty collection of directories and files.

We can now give a more precise definition of patch.

Definition 3.1.4. A patch is a concrete representation of a change made to the

state of a repository. Each patch is a transformation on repository state, and must

22

be an invertible transformation. Each patch also depends on a context as defined

in Definition 3.1.3.

A few example patch types include, change to file contents, renaming a file, as

well as file additions and deletions.

We will use bold capital letters (e.g. A, B) to refer to patches.

Each patch has exactly two contexts, the context required to apply the patch,

the pre-context, and the context that results from applying the patch, the post-

context.

Definition 3.1.5. The pre-context of a patch is the context that exists prior to

the patch and is required to apply the patch. Similarly the post-context of a patch

is the context that results from appending the patch to the pre-context.

Lowercase italic letters will refer to contexts, and will be placed in the super-

script position in order to describe the pre- and post-contexts of a patch, as in oAa.

For example, if the repository has a context of o and the user then edits one file

and records a new patch A, then the context might then be a. Thus, the user has

created a patch with pre-context o and post-context a. To denote this we would

write oAa, where a is equal to the context o with patch A appended to it.

A repository might contain two patches, oAa and aBb, in which case we could

put them in a sequence and simply write, oAaBb. Note that since the post-context

of A matches the pre-context of B we only write the context a once. Often the

contexts may be understood and are omitted, as in AB.

23

3.2 Commute

When the result of composing two functions is the same regardless of composition

order, the functions are said to be commutative. Since our patches contain a trans-

formation of state, we would like to commute patches. Commutation of patches

will give us a natural way to reorder sequences of patches and a way to implement

merging of patches. If we have two invertible transformations of state, T1 and T2

such that

T1 ◦ T2 = T2 ◦ T1,

then we say that the functions T1 and T2 are commutative functions.

We must note that above, T1 and T2 are not patches because we have not

associated pre- and post-contexts to them. What we mean is that we have two

functions with domains and ranges such that they can be composed either way

and the resulting transformation of state is the same.

To construct patches from T1 and T2 we associate with each a pre-context.

Suppose the patch A was created from a repository of context o, from the trans-

formation T1, then let A have pre-context o and let the resulting post-context be a.

That is, we have constructed a patch oAa. Similarly, suppose the transformation

T2 is then applied and a patch is created with pre-context a and post-context b,

let this patch be aBb. So far we have constructed oAa and aBb from T1 and T2 in

such a way that oAa and aBb are restricted versions of T1 and T2. That is, oAa

and aBb have the same effect on state but may only be applied or composed in

their respective pre- and post-contexts.

24

By construction, T1 and T2 are commutative functions and now we investigate

what happens when we commute patches by exploring an example.

3.2.1 Example

To understand the difference between commuting functions and commuting patches,

we will work through an example involving file renames and modifications to the

contents of those files. This example shows how patches are transformed by com-

mutation.

Suppose we have a repository with two specific files named X and Y . We could

then define the following transformations of state, which simply rename the files:

� rename Y to Z

� rename X to Y

� rename Z to X

Suppose also, that we make an edit to X and an edit to Y .

Let us name these transformations in general as follows,

R(x, y) = rename x to y

E1(x) = fixed but arbitrary edit to file x

E2(x) = fixed but arbitrary edit, different from E1(x), to file x.

25

Note that in general E1(x) and E2(x) depend on the specific contents of the

file x.

Using our files X and Y , we see that E1(X) and E2(Y) could be applied to the

repository in either order. In other words, both E1(X)◦E2(Y) and E2(Y)◦E1(X)

transform the repository in exactly the same way. This follows from the contents

of X and Y being independent of each other.

Here we will introduce a new patch notation in this section only to make our

example commutes more clear. In later sections we will switch back to our more

abstract patch notation. Since each patch corresponds to a transformation of state,

say T , with specific pre-context a and post-context b, we will denote this: a[[T]]b

As before we will omit the contexts when it is understood or unimportant. As

we will see later, each commute introduces a new pair of patches and this new

notation frees us from the task of distinctly naming each patch. This notation also

allows us to focus on the state transformation and contexts of the patch.

Our first example uses the patch sequence, o[[E1(X)]]a[[R(X, Y)]]b. We are as-

suming that the context o ensures we have a file X but that no file named Y exists.

This sequence of patches edits file X and then renames X to Y .

If we step back and view the above sequence of patches as a composition of

transformations, R(X, Y)◦E1(X)1, then we see that these transformations are not

commutative because it does not make sense to edit the file X after renaming X

to Y . The reason is simple, the file X would no longer exist when we try to apply

the edit transformation.

1The order of function composition is the reverse of the order for patch sequences.

26

Instead of trying to commute E1(X) with R(X, Y), we could consider E1(Y) ◦

R(X, Y). We arrive at this composition by observing that once X has been re-

named to Y we would like to apply our edits to the file Y instead of X. This

new composition of transformations would give us the same state as the original

composition but with the order of operations reversed. We can apply this idea to

swapping the order of patches as well.

Now we swap the order of the patches and reason about the effect on the

transformations stored inside the patches,

��
o[[E1(X)]]a[[R(X, Y)]]bXX → o[[R(q, r)]]c[[E1(s)]]

d,

where q, r, and s are placeholders that we will reason about now. A first guess

at the values for q, r, and s might be q = X, r = Y , and s = X, but this does

not take into consideration the reordering of the operations. When we commute

these patches, we must consider whether the transformation E1(X) affects the

transformation R(X, Y). Renaming a file is independent of the contents of the file

so we see that the transformation R(X, Y) should not be affected and thus, q = X

and r = Y . When we consider if E1(X) is affected by R(X, Y), we realize that the

edit should be applied to Y instead of X. After the reordering we are renaming

the file before applying the edit, and this means that we must now apply the edit

to the new name of the file. Therefore, after the rename of X to Y the edit to X

should be applied to Y and we see that s = Y . Thus we get the following result,

27

��
o[[E1(X)]]a[[R(X, Y)]]bXX → o[[R(X, Y)]]c[[E1(Y)]]d.

Finally, notice that the contexts of the patches are different before and after

reordering the patches. Context is defined to be a sequence of patches and so

reordering the patches changes the sequence. Intuitively, we want the context b to

be equivalent to the context d, but we save this discussion for Section 3.2.2.

Now we turn to a slightly bigger example. This time we assume that the context

of the repository is such that the files with names X and Y exist but there is no

file named Z.

Consider the patches o[[E1(X)]]a and a[[E2(Y)]]b. Similarly, suppose we create

the patch sequence b[[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]]e that swaps the file names of

X and Y . For the remainder of this example, we will omit the contexts of the

patches, as we are chiefly interested in the effect of commutation on patches. In

the following sections we will examine the effect that commute has on context.

This gives us a patch sequence,

[[E1(X)]][[E2(Y)]][[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]].

In English, [[E1(X)]][[E2(Y)]] modifies the file named X and modifies the file

named Y , while [[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]] swaps the names of X and Y .

Therefore, this sequence modifies X, modifies Y and finally swaps the file names

X and Y .

28

First we will commute [[E2(Y)]] all the way to the right and then commute

[[E1(X)]] to the right. When we commute [[E2(Y)]] with [[R(Y, Z)]] we get [[R(Y, Z)]][[E2(Z)]],

using the same reasoning as the previous example.

Showing this commute as one step we write,

[[E1(X)]]
��

[[E2(Y)]][[R(Y, Z)]]XX [[R(X, Y)]][[R(Z,X)]]

→ [[E1(X)]][[R(Y, Z)]][[E2(Z)]][[R(X, Y)]][[R(Z,X)]].

Next we commute [[E2(Z)]] with [[R(X, Y)]]. This time the commute is trivial

since the transformations are independent of each other and results in,

[[E1(X)]][[R(Y, Z)]]
��

[[E2(Z)]][[R(X, Y)]]XX [[R(Z,X)]]

→ [[E1(X)]][[R(Y, Z)]][[R(X, Y)]][[E2(Z)]][[R(Z,X)]].

When we commute [[E2(Z)]] and [[R(Z,X)]] the outcome is similar to the first

commute, and we need to update the transformation in the patch [[E2(Z)]] to

modify the file X. The resulting sequence is,

[[E1(X)]][[R(Y, Z)]][[R(X, Y)]]
��

[[E2(Z)]][[R(Z,X)]]XX

→ [[E1(X)]][[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]][[E2(X)]].

29

When we commute [[E1(X)]] through the sequence there is again only two com-

mutes where we update the state transformation. After doing all the commute

steps we would have the following sequence,

��

[[E1(X)]][[R(Y, Z)]]XX [[R(X, Y)]][[R(Z,X)]][[E2(X)]]

→ [[R(Y, Z)]]
��

[[E1(X)]][[R(X, Y)]]XX [[R(Z,X)]][[E2(X)]]

→ [[R(Y, Z)]][[R(X, Y)]]
��

[[E1(Y)]][[R(Z,X)]]XX [[E2(X)]]

→ [[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]][[E1(Y)]][[E2(X)]].

To summarize, we started from this sequence,

[[E1(X)]][[E2(Y)]][[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]],

and after several commutation steps we arrived at the sequence

[[R(Y, Z)]][[R(X, Y)]][[R(Z,X)]][[E1(Y)]][[E2(X)]].

The two sequences are different operationally but they modify the state of the

repository in the same way. In particular, notice that we apply the transformation

E1(x) to Y after the reordering, but before the reordering it was applied to X.

30

The patch containing the transformation E2(x) underwent a similar modification.

If we had simply treated the state transformations as commutative functions,

then we would have an invalid composition of transformations. After all of the

reordering in this example E1(X) would still be a transformation on the contents

of a file with name X even though the file with name X was renamed to Y . Thus,

E1(X) would modify the wrong file contents.

In the first example we saw that patch commutation always modifies the context

of the patches and only some of the time changes the state transformation. Also,

each new commutation step gives a new sequence yet each sequence defines the

same final repository state.

These examples were designed so that all of the patch commutations would

succeed, but in general commutation of two patches may not be possible. For

example, it does not make sense to commute a patch that creates a file with a

patch that modifies that file. We also do not attempt to define patch commute for

patches that are not adjacent in a patch sequence.

3.2.2 Abstract Interface

The example in the previous section shows that if we commute state transforma-

tions the resulting sequence of transformations is not guaranteed to produce the

correct state. Fortunately, the example did illustrate that we can derive new state

transformations, and hence new patches, while reordering adjacent patches. This

principle is the intuition behind the patch commute operation.

31

We give the following abstract definition of commute, similar to that found in

the Darcs manual [Rou09b].

Definition 3.2.1. For two patches oAa and aBb we define an operation, which

may fail, called commute such that if oABb commutes to the patches oB1A
b
1,

then we write oABb ↔ oB1A
b
1.

While the details of the Darcs commute implementation are beyond the scope

of this document, we assume the Darcs patch commute is implemented in such a

way that properties such as the following hold.

Property 3.2.1. Patch commute is self-inverting. For example, if AB↔ B1A1,

then B1A1 ↔ AB.

Property 3.2.2. Patch commute preserves the pre-context and gives an equiva-

lent post-context of the sequence when adjacent patches are commuted. For exam-

ple, if aAbBc ↔ xAy
1B

z
1, then it must be the case that a = x2, and we define z to be

equivalent to c, while the relationship between b and y is unknown. Intuitively we

want the sequence that results from commute to define the same repository state.

We want the above properties so that patch commute will be an equivalence

relation on sequences of patches. For patch sequences that are related by some

number of commutes we write ! and say “can be commuted to.” For example,

if AB↔ A1B1, then AB ! B1A1 after just one commute.

For the relation ! to be an equivalence relation, it must satisfy the follow-

ing [Rot02] for all patch sequences x, y and z:

2This is true because the patch sequence to the left, if any, has not been altered.

32

1. x ! x;

2. if x ! y then y ! x;

3. if x ! y and y ! z then x ! z.

Here we take the property that the relation ! forms an equivalence relation

for granted much like we assume here that the Darcs commute implementation is

correct. That is, the specification of Darcs commute, eg., Patch Theory, specifies

that the relation ! must be an equivalence relation and it would be a defect in

the Darcs implementation if it were not. For this reason, we do not give a proof

here. Providing a rigorous proof that ! forms an equivalence relation is left as

future work.

Every equivalence relation partitions elements into disjoint sets known as equiv-

lance classes [Rot02]. Here the equivalence classes are sequences of patches that

define the same final repository state, but this is not to say that all sequences that

define a common final repository state are in the same equivalence class.

In Definition 3.1.3 we said that a context is a sequence of patches. Now that

we can use the relation ! to talk about equivalent sequences of patches we may

also talk about equivalent contexts. By equivalent context we mean sequences of

patches that are equivalent under the relation !. Equivalent contexts should

define identical repository states. To fully define equivalent contexts we also need

to consider inverse patches in the next section. Also, we do not distinguish in our

notation between contexts that are identical and contexts that are equivalent.

In summary, we see that when it is possible to commute patches, the pre- and

33

post-contexts of the patch sequences are equivalent and the operation of commu-

tation results in new patches that are semantically linked to the original patches.

3.3 Inverse Patches

The idea of inverse patches is borrowed from the Darcs manual [Rou09b]. The in-

verse of patch B is denoted, B, and has the property that the state transformation

in B is the inverse of the state transformation in B. We define the pre-context

of B to be the same as the post-context of B. The composition BB results in a

context that defines the same repository state as the pre-context of B. For this

reason, we define the post-context of B to be equivalent to the pre-context of B.

In our notation we write, oBb and bBo by the following property.

Property 3.3.1. Let oBb be a patch and let xBy be the inverse patch. We define

o to be equivalent to y and b to be equivalent to x.

The intuition behind this property is that each patch has an inverse patch which

nullifies, or undoes, the effects of the patch including resetting to an equivalent

context.

3.4 Equality

The properties of patches give rise to the following result which is useful for deter-

mining when contexts are equivalent.

34

Property 3.4.1. Given two patches, xAy and uBv, that contain the same trans-

formation of state, T , then x is equivalent to u, if and only if, y is equivalent to

v.

Property 3.4.1 is useful for proving when contexts are equivalent after perform-

ing a series of commutes, or when examining two patches that start or end in the

same context.

Note that given two arbitrary patches xAy and uBv, Property 3.4.1 does not

apply, unless A and B share the same transformation. Without this extra condi-

tion the states defined by y and v may be the same without the contexts being

equivalent.

3.5 Merge

Here we turn to the theory required to merge two sequences of patches. Prop-

erty 3.5.1 demonstrates how commutation allows us to transform patches by way

of commute so that patches that were initially in different contexts may be merged

into a sequence. The following property corresponds to Theorem 2 of the Darcs

manual [Rou09c].

Property 3.5.1. Given four patches oAa, aBb, cAb
1, and oBc

1 then

oAaBb ↔ oBc
1A

b
1, if and only if, aAoBc

1 ↔ aBbAc
1.

As we will see later, a valuable property of merge is that it is symmetric. We

35

can see that merge is symmetric by examining how we would use Property 3.5.1

in practice. By this property, we can merge two patches which have the same

pre-context and put them into a sequence assuming that they may be commuted.

Using the same patches as the statement of Property 3.5.1, we could visualize

the patches as being parallel3:

a c

o
A

__@@@@@@@ B1

??�������

Starting with either oAa or oBc
1 we could arrive at two different sequences that

share equivalent pre- and post-context. We achieve this with the following steps:

1. We start by applying the inverse patches aAo and cBo
1 respectively and get

oAaAo and oBc
1B

o
1, corresponding to:

a

A
��

c

B1

��
o

A

HH

o

B1

HH

2. Apply oBc
1 to the end of the sequence oAaAo and then use Property 3.5.1 to

3We consider patches that share a pre-context to be parallel whereas patches that share a
post-context are said to be anti-parallel.

36

get oAaAoB1 ! oAaBbAb
1, corresponding to:

b b
A1

��>
>>

>>
>>

>

a
A

��

c ! a

B
??��������

c

o
A

WW

B1

??�������
o

A

__@@@@@@@

Next, apply oAa to the end of the sequence oBc
1B

o
1 and again then use Prop-

erty 3.5.1 to get oBc
1B

o
1A

a ! oBc
1A

b
1B

a, corresponding to:

b b
B

����
��

��
��

a c
B1

��

! a c

A1

^^>>>>>>>>

o
A

__@@@@@@@
B1

HH

o
B1

??�������

3. Remove patches bAc
1 and bBa from the right end of their respective sequences.

This leaves us with two different sequences of patches having equivalent pre-

and post-contexts. By being explicit about the context of the patches, we

see that we are left with oAaBb and oBc
1A

b
1. We can also see the symmetry

of merge visually:

b

a

B
??��������

c

A1

^^>>>>>>>>

o
A

__@@@@@@@ B1

??�������

37

The symmetry of merge is important because it means patches can be merged

in any order and the resulting repository will have an equivalent context which in

turn means it will have the same state. The symmetry of merge is what allows us

to realize our goal of letting users treat a repository as an unordered collection of

changes.

3.6 Summary

The core of Darcs relies on manipulating patches in several key ways:

� There is a commute function that takes two patches and either fails or returns

two new patches which correspond to similar transformations of state but

have slightly different pre- and post-contexts.

� By commuting patches in sequences we are able to relax the definition of

context to equivalent contexts.

� The pre- and post-context of each patch must be carefully tracked to avoid

data corruption. This includes contexts which only exist temporarily, or

theoretically, as patch sequences are commuted.

As the example commute in Section 3.2.1 shows we cannot just apply patches

whenever the state matches the domain of the patch’s state transformation. Doing

so could lead to different results depending on the order the patches are applied in.

To avoid data corruption we use commute when we need to reorder patches. The

goal of our work is to make sequence manipulations safe and give static guarantees

38

about that safety. Here, “safe” means that the contexts are always respected and

data corruption due to applying patches in the wrong context is avoided.

In the next chapter we will re-examine the properties defined in this chapter

to see which ones may be statically enforced by the Haskell type checker.

39

Chapter 4 – Checked Invariants

Now that we have established the most fundamental properties and constraints

of Darcs patch manipulation in Chapter 3, we will show our way of encoding the

invariants into Haskell types.

Our goal is to ensure the properties from Chapter 3 are checked at compile time.

We also seek to find a balance between spending all of Darcs development time on

correctness versus writing new code and adding useful features. An overview of

the properties we cover is given in Table 4.1.

Table 4.1: Patch Theoretic Properties

Property Description Discussed in Section
Definition 3.1.4 Patch Section 4.5
Definition 3.1.5 Pre- and post-context Section 4.5
Definition 3.2.1 Commute Section 4.7
Definition 3.1.1 Repository and patch sequence Section 4.8
Property 3.5.1 Merge Section 4.9
Property 3.4.1 Patch equality Section 4.10

Throughout this chapter we make use of existentially quantified types and Gen-

eralized Algebraic Data Types (GADTs). A brief introduction to existential types

is given in Appendix A. A brief introduction to GADTs is given in Appendix B.

40

4.1 Sealed Types

One technique that we rely on heavily is the use of existentially quantified types.

We use existentially quantified type variables in several different ways. The most

basic appears in our Sealed data type.

Existentially quantified types give us a way to mark some of our types as

distinct from all other types. We use a special data type, called Sealed, to hold

the existentially bound types. Using the GADT extension it is defined as follows:

data Sealed a where

Sealed :: a x → Sealed a

Using the Sealed data constructor the type parameter x is hidden inside the

Sealed type. The only thing we can currently recover about the existentially quan-

tified type x is that it exists. This means that when we pattern match on a value

of type Sealed:

f :: Sealed a → ()

f (Sealed a) = ()

The type system must invent a new type for x, referred to as an eigenvariable,

inside the pattern match of f. Again, this eigenvariable for x is distinct. The only

type it is equal to is itself. We also cannot expose the eigenvariable to a higher

level. Although we can pass the eigenvariable to a polymorphic function.

41

4.2 Witness Types

We consider a witness type to be a type that demonstrates that a particular prop-

erty is true. The witness acts as evidence of the property.

We use this idea to represent a proof of type equality. The following EqCheck

type represents an equality check between two types, a and b, it is written in the

GADT notation, explained in Appendix B:

data EqCheck a b where

IsEq :: EqCheck a a

NotEq :: EqCheck a b

If the types a and b are equal, then we may use the data constructor IsEq,

otherwise we must use NotEq. At the end of the next section we give an example

of how this type can witness a proof.

4.3 Phantom Types

A phantom type is a type that has no value associated with it, such as phantom in

the following:

data P phantom = P Int

Above, the type variable phantom has no value associated with it on the right-

hand side of the equal sign. This means that whenever we construct a value of

type P we may also give a type for phantom. Since phantom has no value associated

with it, it is free to unify with anything in the type system.

For example each of the following is valid, even within the same program:

42

P 5 :: P String

P 5 :: P [Int]

P 5 :: P (IO ())

We could imagine each of the above examples as branding the value P 5. In

other words, one application of phantom types is that they allow us to embed

extra bits of information in our types. In particular we want to attach evidence,

or proofs, to our types. Which is to say, we want to associate the phantom type

with a witness type.

4.4 Example

We would like to combine witness types and phantom types so that our proof

carrying types appear as phantom types. A partial justification for this is: a) using

phantom types allows for our incremental approach discussed in Section 5.1, and;

b) associating a full patch sequence with each context type would result in an

intolerable run-time overhead.

Relying on the accuracy of witness types when they appear as phantom types

can be problematic; when a value is constructed the type of a phantom is essentially

arbitrary. To be able to rely on the information embedded in phantom types we

need ways to control the type unification.

One approach is to hide the data constructors and only expose specialized func-

tions for constructing the datatype. These constructors are often known informally

as smart constructors. In our case, we might create the mkIntP smart constructor

43

which only allows for the construction of values having the type P Int:

mkIntP :: Int → P Int

mkIntP n = P n

We could make a similar smart constructor for values of type P String:

mkStringP :: String → P String

mkStringP s = P (length s)

This works well as long as set of tags is either completely open or closed to a

small set of types. The reason is simple, either we provide full access to the data

constructor or we make a smart constructor for each allowed tag. Suppose instead

that there are specific rules about what is a valid tag but the set of allowed tags

is unbounded. Now we need a new approach.

In the previous section we defined the EqCheck a b witness type. Now we com-

bine the concept of witness types with existentially quantified types.

As an example, suppose we have another data type E, which uses existential

quantification on the type variables a and b:

data E where

E :: a → b → EqCheck a b → E

To construct a value of type E we must supply three values, a value of type a,

b, and an EqCheck a b value. The type of the E constructor forms a relationship

between the first two input values and the EqCheck a b value. To illustrate this

point the following is valid:

E 1 2 IsEq

While, this example is invalid:

E '1' 2 IsEq -- invalid

44

The second example could be made valid by using NotEq instead as follows:

E '1' 2 NotEq -- valid

When we pattern match on a value of type E we can use the witness type EqCheck

to gain information about the existentially quantified types a and b:

test :: E → Bool

test (E a b IsEq) = True

test (E a b NotEq) = False

At the point of pattern matching in test we know more than just which data

constructor of EqCheck was used, we also recover information about the type equality

status of a and b. In the first pattern match the IsEq constructor tells the type

checker that a and b are the same type even though a and b are existentially

quantified. Without this extra information, the type system would treat a and b

as distinct types.

In this example our witness type provides a proof that is stronger than a run-

time check. Here, the type checker is able to see that the types are the same. In

our example no run-time check is needed and therefore no cast of a to b is needed,

but in some cases it can still be useful. The complications of providing a run-time

type equality is discussed in Section 5.2.

When a run-time check is desired to determine type equality we also need a

dynamic cast [BS02]. In such a case, a value of type EqCheck a b can be useful for

passing around the evidence from the equality check. The key point is that by

pattern matching on the IsEq data constructor we inform the type system that the

two types a and b of the EqCheck are equal. This allows us to use the IsEq data

constructor as a first class proof of type equality at run-time.

45

4.5 Patch Representation

Before we examine how to represent patch contexts, we first look at how the

transformations that make up patches are represented. We begin by looking at

a simplified definition of the Prim data type in the Darcs implementation. This

abstraction is the primitive representation that corresponds most closely to the

Patch Theory discussed in Chapter 3.

data Prim where

Move :: FileName → FileName → Prim

DP :: FileName → DirPatchType → Prim

FP :: FileName → FilePatchType → Prim

Identity :: Prim

ChangePref :: String → String → String → Prim

Here we list all of the data constructors that appear in the Darcs source, except

the Split data constructor which is omitted because it is obsolete. Each one is

explained as follows:

� Move: Represents a file or directory rename.

� DP: The given file name is either added or removed based on the value of

DirPatchType.

� FP: The given file name is either added, removed, or modified based on the

value of FilePatchType.

� Identity: This patch type has no effect on the repository as it represents the

identity transformation.

� ChangePref: Changes a preference setting for the repository.

46

The first patch property that we are concerned with is that patches have both

pre- and post-context, described in Definition 3.1.5. To encode this in Haskell’s

type system we use GADTs and phantom types to represent context for patches.

Thus we have the following definition:

data Prim x y where

Move :: FileName → FileName → Prim x y

DP :: FileName → DirPatchType x y → Prim x y

FP :: FileName → FilePatchType x y → Prim x y

Identity :: Prim x x

ChangePref :: String → String → String → Prim x y

The phantom types x and y correspond to pre- and post-context respectively.

In our type encoding we are only concerned with contexts that are equivalent, and

here we represent only equivalent contexts as described in Section 3.2.2.

One interesting data constructor is Identity, which by definition preserves con-

text. Each of the other data constructors corresponds to a type of patch which

does change the context and the phantoms express this transformation from x to

y.

The main relationship which is expressed by our use of phantom types is that

of how the context is changed by a patch or by a sequence of patches. Although

this may seem like a simple relationship, the types that can be expressed this way

are still quite helpful in constraining the possible operations and also useful as

machine checkable documentation.

47

4.6 Directed Types

Darcs patches have a notion of transforming between contexts. This naturally

leads us to container types that are “directed”, and transform from one context to

another.

4.6.1 Directed Pairs

The simplest directed type is a directed pair.

data (a1 :> a2) x y = forall z. (a1 x z) :> (a2 z y)

data (a1 :< a2) x y = forall z. (a1 z y) :< (a2 x z)

Our definition of directed pairs uses a GHC extension that allows type con-

structors to be infix. We only use infix type constructors because we find them

syntactically pleasing. We refer to :> as a forward pair and :< as a reverse pair.

In the above definition the types a1 and a2 are the element types in the pair.

The forall keyword is used to make z an existentially quantified type variable.

When two types are placed in a forward pair using :> part of each type must

match. Suppose we had the two types, Either String Int and Int → Bool, then we

could create the type, (Either :> (→)) String Bool. Notice that the Int in both

types gets hidden due to the existential quantification of z. We would need to swap

the order of the elements to construct a reverse pair with them as you can tell by

looking at where z appears in the definition of :<.

Using the Prim type we could store a pair of patches:

Move "X" "Y" :> Move "Y" "Z" :: (Prim :> Prim) a b

48

Much like our example in Section 4.4, we insert the patches into the forward

pair as they are constructed. This acts to partially constrain the phantom types

of the Prim type and also adds a relationship between the phantom types through

the existential quantification in the directed pair.

We use existentially quantified types to represent context for two main reasons,

a) contexts are implicitly stored by Darcs and, b) we need to work with an un-

bounded number of distinct contexts. Either of the previous two points means we

would not be able to manage an explicit type for each context. Thus, we are using

the type system to do a great deal of the work for us. We do use one concrete

type as a context. We use the Haskell type unit, or (), as the type of the empty

repository.

4.6.2 Forward Lists

We create the forward list type, which can be used to store types that are parametrized

over exactly two other types. One such type is Prim, another suitable type for for-

ward lists are functions. For concrete examples using functions see Appendix C.

data FL a x z where

(:>:) :: a x y → FL a y z → FL a x z

NilFL :: FL a x x

In the definition above, a, is the element type stored in the list and x and z are

types which enforce an ordering on the elements of the list.

The constructor NilFL represents the empty forward list. Because an empty

forward list has no elements and carries no transformation we give it the type

49

FL a x x.

The constructor (:>:), takes some element with type parameters x and y, a

forward list with the same element type but type parameters y and z, and produces

a forward list with type parameters x and z. The type y is hidden inside the forward

list as an existentially quantified type variable. This works for storing elements

but it does make some operations tricky as we will see later.

An example of a forward list holding values of type Prim:

Move "Y" "Z" :>: Move "X" "Y" :>: Move "Z" "X" :>: NilFL :: FL Prim a b

The above sequence of patches would swap the names of the files X and Y.

Once the list has been constructed if we try to reorder the elements we would get

a type error. For example, this function would not be valid:

rearrange :: FL Prim x y → FL Prim x y

rearrange (x:>:y) = y:>:x -- This will not type check

Once the list is created the context types become fixed. After that we can only

put them into a forward list if we respect the relationships between the contexts.

4.7 Expressing Commutation

In Definition 3.2.1, we define commutation of patches as a partial relation. We can

now give a type for commute on Prim patches:

commutePrim :: (Prim :> Prim) x y → Maybe ((Prim :> Prim) x y)

The concrete implementation of commutePrim is important to Darcs but is not

particularly relevant to this discussion and is omitted here. In the actual imple-

50

mentation a type class is used so that commute is polymorphic over the various

patch types. Notice that commutePrim has a Maybe return type. This is because

patch commutation is not a total relation. Again, these phantom types represent

not a single context, but an entire equivalence class, as described in Section 3.2.2.

4.8 Patch Sequences

Patches have an associated state transformation and we need to apply patches in

a way that their contexts are respected. When a patch is recorded we know that

it will apply in the current context of the repository. If we also store patches in

the order they are recorded, then we know they can also be applied in that order.

It would be useful if we had a way to store patches such that their application

domains are ensured to be in the correct order.

In Section 4.6.2, we introduce a data type, FL, for forward lists. This data type

is suitable for storing chains of functions in application order. Here we use forward

lists for storing sequences of patches. Instead of storing functions by domain and

range, we store patches by pre- and post-context.

Storing patches in context order allows us to bundle up sequences of patches

and concern ourselves with just the pre- and post-context of the entire sequence.

When extracting elements from the sequence, the context types are lost and we

only retain the relationship between context types.

When extracting patches from an FL or RL sometimes we do know which context

a patch should have but our use of existentially quantified types means the type

51

system is pessimistic about context equivalence. To work around this we use patch

equality functions described in Section 4.10.

By combining commutePrim from the previous section with forward lists we can

commute a patch with a sequence of patches. We give this operation the name

commuteFL:

commuteFL :: (Prim :> FL Prim) x y → Maybe ((FL Prim :> Prim) x y)

commuteFL (a :> b :>: bs) = do b' :> a' ← commutePrim (a :> b)

bs' :> a'' ← commuteFL (a' :> bs)

Just (b' :>: bs' :> a'')

commuteFL (a :> NilFL) = Just (NilFL :> a)

The monad instance of Maybe handles the cases where commutePrim fails and

returns Nothing. The type checker makes it very difficult now to give an incorrect

definition of commuteFL.

There are very few incorrect definitions we could give above that would type

check. For example, we cannot simply return the input because the type says that

the order of the forward list and the patch must be switched in the return value.

If we try to return a different list than b' :>: bs', such as NilFL or b' :>: NilFL,

then we will find that the type checker complains.

We could rewrite commuteFL so that it returns a :>: xs :> x, where x is the last

element of bs and xs :>: x is the same sequence as b :>: bs. Two other possibilities

include returning undefined or Nothing. Inspecting for one these mistakes is much

easier than manually checking that all the steps above respect patch context.

We have been able to implement a full library of sequence manipulations for

both forward and reverse lists. Many of the definitions, such as the ones named

52

in Appendix C work on any forward list. Others, such as commuteFL, work only for

sequences of patches.

4.9 Patch Merge

Property 3.5.1 tells us that when we have two patches which commute and share the

same pre-context that we can merge the patches. Whenever patches, or sequences

of patches, share a pre-context we say they are parallel. Similarly, when patches,

or sequences of patches, share a post-context we say they are anti-parallel. The

following types correspond to parallel and anti-parallel pairs:

data (a1 :\/: a2) x y = forall z. (a1 z x) :\/: (a2 z y)

data (a3 :/\: a4) x y = forall z. (a3 x z) :/\: (a4 y z)

Notice how these definitions correspond to our previous visualization of the

symmetry of merge, except that here we are using existential quantification for the

pre- and post-contexts of the sequences:

∃z

x

a3
>>~~~~~~~~

y

a4
``@@@@@@@@

∃z
a1

``@@@@@@@@ a2

>>~~~~~~~~

The input to our merge function is a parallel pair, for example for the Prim type

this would be:

merge :: (Prim :\/: Prim) x y → (Prim :/\: Prim) x y

53

The implementation of merge, at least for pairs of patches, follows the symmetry

of merge example in Section 3.5. Our merge implementation returns the results

in an anti-parallel pair because it returns symmetric results. That is, instead of

returning just the merged sequence, two patches are returned so that two different

sequences, both having the same pre- and post-contexts, can be constructed from

the result.

The two sequences that can be built are documented within and constrained

by the type signature of merge. For example, suppose we have the patches p1 and

p2 and we use merge to get the patches p1' and p2':

(p1 :\/: p2) :: (Prim :\/: Prim) x y

(p2' :/\: p1') :: (Prim :/\: Prim) x y

Using α for the existentially quantified type in the pair p1 :\/: p2 and β for

the existentially quantified type in the pair p2' :/\: p1', the types would be as

follows:

p1 :: Prim α x

p2 :: Prim α y

p1' :: Prim y β

p2' :: Prim x β

The only context preserving sequences we could create with an FL are these

two:

p1 :>: p2' :>: NilFL :: FL Prim α β

p2 :>: p1' :>: NilFL :: FL Prim α β

Any other forward list sequences we try to construct from the above four patches

would result in type errors!

54

4.10 Patch Equality

In Section 4.2 we introduced our type witness for type equality functions. Here

we use that type to implement parallel and anti-parallel patch equality tests. To

implement patch equality we must also introduce an unsafe operation, the problems

with this are discussed in Section 5.2. We use the PatchEq type class for patch

comparison which defines the following functions:

class PatchEq p where

(=\/=) :: p a b → p a c → EqCheck b c

(=/\=) :: p a c → p b c → EqCheck a b

We refer to (=\/=) as parallel equality and (=/\=) as anti-parallel equality. These

equality checks for patches are based on Property 3.4.1.

Note that we do require a run-time check to implement both of the above

equality functions.

4.11 Summary

Using a combination of phantom, witness and existential types we are able to

describe many of the Patch Theory properties in Haskell types. The nature of

Haskell’s type system means that these properties are checked for us at compile

time.

We have not encoded all of the Darcs semantics and there are several key

things which we do not express. For example, a more accurate encoding of context

equivalence classes would directly use sequences of patches instead of existentially

55

quantified types. We have chosen not to model the context types that way at this

time. Partially due to the extra programmer effort, but also because of the extra

run-time overhead.

In the next chapter we will discuss these points in more detail as well as the

ramifications of applying these ideas to Darcs.

56

Chapter 5 – Discussion

We have outlined the core of the techniques we applied to the Darcs source code.

Now we will discuss the implications of working with an existing code base and

the direct benefits. The incremental nature of our work is covered in Section 5.1.

Many of the pit-falls, setbacks and other hurdles we encountered are covered in

Section 5.2. In Section 5.3 we give examples of how this work has improved the

Darcs source code.

5.1 Incremental Approach

One of the main challenges with implementing our approach is how to do so in

an existing real-world application. Because of this challenge, we needed an im-

plementation plan that is incremental, minimally invasive, and possible without

refactoring large parts of the code on the first pass. An incremental approach

allows us to work in manageable chunks as volunteer developers can find time. A

minimally invasive approach means that there is less risk of introducing new bugs

because less code must be changed. Finally, refactoring large parts of the code on

the first pass would make it very hard for other developers to review the work.

Following a similar approach to Kiselyov and Shan [KS07], we started in the

core of Darcs, where the logic for patch manipulation is defined, to establish a

57

trusted kernel of patch logic. Because our work centers around static guarantees

and we have a goal of incremental work, it is natural for us to adopt an imple-

mentation strategy that can be enabled or disabled at compile time. We achieved

this by using phantom types to carry our witness types giving us the freedom to

disable, or remove, the phantom types much like Kahrs [Kah01].

By using techniques that provide compile time guarantees with no run-time

component, we were free to incrementally refactor the code base. Even more than

working incrementally, we provide two compilation modes giving our approach a

distinct feeling of working with a proof assistant. There is the normal compilation

mode and there is the witness type, or patch-context aware, compilation mode.

The stricter patch-context aware compilation mode is used to verify patch manip-

ulations during development, refactoring, and checking changes from contributors.

For creating release binaries, the normal compilation mode is used. The normal

compilation mode hides the phantom types, which carry our proofs, from the type

system.

To meet our need of having a compile time switch we use C Pre-Processor (CPP)

defines. In particular, when compiling the source code with our patch-context

aware types we define the CPP symbol GADT_WITNESSES and make the following

definitions:

#ifdef GADT_WITNESSES

#define C(contexts) contexts

#define FORALL(types) forall types.

#else

#define C(contexts)

#define FORALL(types)

#endif

58

The above definitions allow us to write our type signatures as the following

example shows:

data EqCheck C(a b) where

IsEq :: EqCheck C(a a)

NotEq :: EqCheck C(a b)

Simply by defining or not defining the symbol GADT_WITNESSES we can control

at compile time if the code is patch-context aware. The CPP macro C surrounds

phantom types that represent a context. The CPP macro FORALL is useful for

mentioning context types when we need to explicitly provide a forall in a type

signature, for example when using lexically scoped type variables.

Since we are working incrementally using a relatively primitive approach not

all of the source code can be compiled when GADT_WITNESSES is defined, but this is

acceptable for our purposes. Eventually all of the code will be compatible with

patch-context types, but for now it allows us to work incrementally while receiving

the benefits on the core modules of Darcs where correctness of patch manipulations

is of the most importance.

The Darcs development process requires that once all the definitions in a par-

ticular module are patch-context aware, that module is added to a special list of

modules, named witnesses. Whenever patches are accepted to the Darcs source

code, the modules in the witnesses list are checked to ensure that each compiles

with the macro symbol GADT_WITNESSES defined. For this reason, once a module has

been converted to be patch-context aware, we lose no safety by compiling Darcs

59

without GADT_WITNESSES. In essence, the automated proof assistant is given a chance

to reexamine the code whenever it is modified.

A noteworthy, but unplanned, side effect of surrounding context types with

the macro C is that it helps to visually separate context types from types that are

unrelated to context. At first, the macro C may seem like visual noise but it is the

author’s experience that most developers adjust to the notation favorably after

using it for a short time.

One minor annoyance with using CPP macros is that the CPP implementation

used by GHC cannot handle the single quote character on the same line as a CPP

macro. The Darcs source code often uses the single quote character at the end of

identifiers to signify an expression which is derived from a previous expression and

this can lead to surprising error messages. For example, we modify the forward

list append definition to include a single quote character on the same line as a C

macro:

(+>+) :: FL a C(x y) → FL a C(y z) → FL a C(x z)

NilFL +>+ ys = ys'

where ys' = ys :: FL a C(y z)

(x:>:xs) +>+ ys = x :>: xs +>+ ys

Now we get the misleading error message:

Not in scope: type constructor or class ‘C’

Unfortunately, these errors can be confusing to developers and waste time. The

implementation of CPP used by GHC is designed for pre-processing C code and

makes assumptions about legal identifier characters. This error happens because

60

the single quote character is a valid identifier character in Haskell identifiers but

it is illegal in C identifiers.

5.2 Difficulties

The approach we have taken is not without difficulties and trade-offs. In this

section we outline the major problems we encountered.

5.2.1 Intentional Context Coercion

Although not defined in the Haskell 98 report, many Haskell implementations

provide a function for arbitrarily changing the type of an expression. This function

is commonly given the following name and type signature: unsafeCoerce :: a → b

This function, unsafeCoerce intentionally circumvents type safety to give the

programmer ultimate control over the types in the program. This ability to cir-

cumvent type safety puts the burden of type soundness on the programmer, which

is occasionally useful.

We apply a restriction to the generality of unsafeCoerce so that it can only affect

part of the type of a value. We define the following patch coercion function:

unsafeCoerceP :: a x y → a b c

unsafeCoerceP = unsafeCoerce

There are times when we need to coerce, or change, context explicitly. One

reason for this is that our contexts depend on run-time values, but we have other

uses for unsafeCoerceP which arise from a purely pragmatic standpoint.

61

The following two sections, 5.2.1.1 and 5.2.1.2, give illustrations of when we

use context coercion.

5.2.1.1 Context Equivalence

The development process for Darcs requires that any use of a function having

a name that begins with “unsafe” be carefully scrutinized. In practice, the use

of unsafeCoerceP is not common and the scrutiny happens on the public Darcs

mailing list when source changes are submitted by contributors. One goal of Darcs

development is to compartmentalize all uses of unsafe functions to a core set of

modules that provide safe interfaces.

As an example of compartmentalizing unsafe functions, we favor the use of the

type class function =\/= over the use of unsafeCoerceP. Although =\/= is defined in

Section 4.10, we give the definition here as well for convenience:

class PatchEq p where

(=\/=) :: p a b → p a c → EqCheck b c

(=/\=) :: p a c → p b c → EqCheck a b

We give an example instance based on a trivial patch type P:

data P a b = P

instance PatchEq P where

P =\/= P = unsafeCoerceP IsEq

P =/\= P = unsafeCoerceP IsEq

The instance of PatchEq for the Prim type is slightly more involved but in essence

the instance simply compares the patches for structural equality while relying on

the type signature to constrain when the equality check is allowed. We will use

62

this PatchEq instance for P in the next section as well.

The patch equality checks given here use type witnesses to carry information

gained by doing the equality check. The techniques typically used in the literature

require that the set of types which can be cast be known fully by the programmer

to avoid the use of unsafeCoerce. Instead of using unsafeCoerce, a function for

dynamic casting is provided between the types. This typically requires creating a

type class instance for the types.

This technique can be found in the Haskell library, Typeable [BS02]. Note

that, even Typeable can be used to derive unsound functions with type a → b by

creating “malicious” type class instances [Kis09].

5.2.1.2 Interfacing with Older Modules

In the Darcs implementation, the DarcsRepo module is being phased out in favor

of the newer HashedRepo module, which uses hashes for improved robustness and

atomicity of operations. The HashedRepo module is written internally with our

witness type style whereas the older DarcsRepo module only supports the witness

types superficially in most places. Consider the read_repo function which reads

from a repository and returns the set of patches stored in the repository:

read_repo :: RepoPatch p ⇒ Repository p C(r u t) → IO (PatchSet p C(r))

read_repo repo@(Repo r opts rf _)

| format_has HashedInventory rf = do ps ← HashedRepo.read_repo repo r

return ps

| otherwise = do Sealed ps ← DarcsRepo.read_repo opts r

return $ unsafeCoerceP ps

63

When reading the sequences of patches from the repository, we know that the

returned sequence of patches have a final context that matches the recorded context

of the repository. The type signature of read_repo expresses this through the type

r. The function DarcsRepo.read_repo in the otherwise branch of the function does

not have the right type to express this relationship whereas HashedRepo.read_repo

does. The reason for this lack of expressiveness is for entirely pragmatic reasons.

To avoid rewriting the older DarcsRepo interface we carefully use unsafeCoerceP so

that the sequence of patches returned by DarcsRepo.read_repo will unify with the

sequence of patches returned by HashedRepo.read_repo.

Examples such as read_repo are not common, and can be avoided in theory, but

in practice unsafeCoerceP can be used to save significant effort when the pay off for

that effort is small.

5.2.2 Unsound Equality Examples

While unsafeCoerceP has legitimate uses, we must be quite cautious about one

particular usage. If we are not careful we can combine =\/= with certain other

functions, and completely circumvent the safety of Haskell’s type system. While

this is very undesirable, we can learn to avoid this by understanding the examples

in this section.

If we combine =\/= with a function that returns a type involving phantoms

types, and those phantom types are unconstrained with respect to the types of

input parameters, then we can recreate unsafeCoerce :: a → b.

64

The following examples demonstrate the problem of recreating an unsafe op-

eration. Note, we use an additional feature of GHC for these examples known as

lexically scoped type variables. The scope of type variables is introduced by the use

of an explicit forall in the type signature.1

The first example uses a data constructor P that allows us to assign arbitrary

types to its phantom types. We are using this as a place holder for real patch

types. We assume here that =\/= is defined for the type P a b such that it always

returns IsEq, such as the definition in the previous section. We use this to derive

an alternative definition of unsafeCoerce as follows:

unsafeCoerce :: forall a b. a → b

unsafeCoerce x = case a =\/= b of

IsEq → x

_ → error "a = b, making this impossible"

where (a, b) = (P, P) :: (P () a, P () b)

Below is another example that demonstrates that any function which returns

phantoms that are unconstrained by the input types can be used to reconstruct

unsafeCoerce. We use zipWithFL from Appendix C.3 but here we use the type Maybe

to work around the type checking difficulties. We could have also avoided the use

of Maybe and used unsafeCoerceP but this example demonstrates that unsound code

can be written without needing direct access to unsafeCoerceP:

zipWithFL :: (forall r s u v x y. a r s → b u v → c x y)

→ FL a q z → FL b j k → Maybe (FL c m n)

zipWithFL f (a :>: as) (b :>: bs) =

1While it could be argued that we should disallow lexically scope type variables to avoid these
unsound definitions, the approaches described in this document are significantly easier to express
when using lexically scoped type variables. Additionally, it may be possible in some or all cases
where lexically scope type variables are used to instead employ clever usage of standard Haskell
expressions and functions, such as asTypeOf.

65

case zipWithFL f as bs of

Nothing → Just (f a b :>: NilFL)

Just cs → Just (f a b :>: cs)

zipWithFL _ _ _ = Nothing

The above code will type check, but notice that the returned type, Maybe (FL

c m n), has phantoms m and n that are unrelated to the input types. This allows

the type checker to unify m and n with any other types. Consider this example of

unsafeCoerce:

unsafeCoerce :: forall a b. a → b

unsafeCoerce x = case a =\/= b of

IsEq → x

_ → error "a = b, making this impossible"

where a :: FL P () a

Just a = zipWithFL f (P:>:NilFL) (P:>:NilFL)

b :: FL P () b

Just b = zipWithFL f (P:>:NilFL) (P:>:NilFL)

f _ _ = P -- The way P is constructed does not matter here.

-- f only needs to satisfy the type signature of

-- zipWithFL.

While the examples here may seem contrived, similar examples have occurred

naturally during development making this a very real issue we must consider. We

give both examples to illustrate that not only can constructors with phantom types

be composed with =\/= in unsound ways, but so can any function which returns

a value that has unconstrained phantom types. In this regard, we consider such

functions unsafe and avoid them when possible.

We now investigate one exception to this rule. When a function returns an

unconstrained phantom type as part of a Sealed type our program remains sound.

This is because a type that has been hidden within the Sealed type cannot be

66

passed up or returned to a higher level than it was existentially bound at. For

example, if we returned the type Sealed (FL c m) from zipWithFL, then we cannot

use lexically scoped type variables to get at the type of n and the above definitions

will not work.

Consider this definition of zipWithFL that uses Sealed:

zipWithFL :: (forall r s u v x y. a r s → b u v → c x y)

→ FL a q z → FL b j k → Sealed (FL c m)

zipWithFL f (a :>: as) (b :>: bs) =
case zipWithFL f as bs of

Sealed cs → Sealed (f a b :>: cs)

zipWithFL _ _ _ = Sealed NilFL

We could try to combine the result of this zipWithFL with =\/= but we no longer

have access to the type that was previously named n and so the examples using

lexically scoped type variables to control how it unifies will no longer apply.

We could still try to exploit the type of parameter m, and we have the function

=/\= that can be used to make the type in the position that m occurs in equal. The

problem now is that the type where n was stored will be a distinct type every time

we pattern match on the Sealed type. The tricks above fail because we need to take

control of two phantoms on the same type in order to make =/\= or =\/= return

the desired witness type. We could try constructing one value of type FL P a c

by pattern patching on the result of zipWithFL. We could then use the pattern

match to remove the Sealed type. Looking at the result of a =/\= a we find that

the signature of unsafeCoerce makes a and b distinct and this anti-parallel equality

test fails to type check.

Finally we should note that the version of zipWithFL above using Sealed is still

67

not really a pratical definition because the function parameter is too general to be

useful for much. For example, zipWithFL (.) and zipWithFL (,) both fail to type

check. We would need a function parameter that is somehow meaningful while not

relying on the relationship expressed by our types.

5.2.3 Improving Context

We would like to restrict the type of unsafeCoerceP so that it can only be used

to tell the compiler when our existentially quantified phantom types should be

equivalent. We have not found a practical way to do this. Below we discuss some

of the potential workarounds.

Now that we have added witness types for the contexts it may be possible to

turn our phantom types into non-phantom types by giving each context a distinct

type based on run-time values. Doing so could provide us more precise context

equivalence as described below.

For example, if we assign a unique integer to every patch, then each context

could be represented by a sequences of integers. Representing context with se-

quences of integers allows us to match the definition of context exactly. The added

precision would come from run-time knowledge of the patch sequence.

Suppose we only dynamically track and check patch contexts as values, then

we would only gain guarantees through more testing. Therefore, we would like a

way to reflect these values to types. We could achieve this by dynamically map-

ping the value that represents each context to a distinct type, much like Kiselyov

68

and Shan [KS04]. The advantage of mapping to types is that we keep our static

guarantees.

Instead of relying on existential types to create distinct contexts through eigen-

variables, we would be able to precisely assign contexts to the newly created patches

based on the current state of the repository. Essentially, our test for context equiv-

alence could take into consideration more precise information from run-time values

and rely less on the programmer to determine when types should be equivalent.

Unfortunately, mapping run-time values to types comes at a significant run-

time cost [McB02]. The mapping itself is costly, but so is the implicit dictionary

passing that GHC uses to implement type classes. As McBride explains, the perfor-

mance hit may be proportional to the structural size of the type. In this proposed

scheme we expect the types to be large. Therefore, we would also need to verify

if the run-time overhead of making this change is detrimental in practice. For

example, if we implement this value to type mapping in the future, then we may

be able to disable it for release builds.

5.2.4 Type Checking

Another major concern was that of which features we could use in a stable way and

with stable releases of our chosen compiler, GHC. In this regard we were restricted

to already proposed and implemented extensions of Haskell.

A few of the troubles we encountered include:

� Each major release of GHC seems to come with revised type inference rules

69

for GADTs. In particular, much of our type witness code would not com-

pile initially under GHC 6.8. Each major release of GHC seems to be in-

creasingly conservative about inferring types for GADTs, but each release

seems to agree when types are properly and sufficiently annotated. The

main problem for GHC seems to be sound type inference in the presence of

“wobbly-types”[PVWW06].

� As noted by Eaton [Eat06], we also experienced considerable frustration with

type errors. While our compiler permitted us to use it as a light-weight

theorem prover, the cost was in deciphering type errors. Although thankfully

our compiler had a sense of humor and would occasionally admit, “My brain

just exploded. . . ” when type checking a tricky case involving existentially

quantified types.

� We are also forced to avoid certain syntactic constructs due to the combi-

nation of features we are using. For example, the “let” and “where” clauses

commonly used for pattern matching is incompatible with data constructors

having existential types.

We can avoid “let” and “where” in Haskell by introducing a local function

definition. If the “let” occurs inside the do-notation of a monad, then we can

remove the “let” using the following trick:

example a = do let x = 5

return (a+x)

We could equivalently give this definition of example:

70

example a = do x ← return 5

return (a+x)

By using the latter definition we avoid the problematic “let” but the code is

less familiar to Haskell programmers.

5.3 Real-World Improvements

A natural question to ask about the work we have done refactoring Darcs is, “Has

this work lead to the discovery of bugs in the existing source code?” The answer

is, “Yes!” This section highlights several of the defects and other improvements we

discovered as a direct result of refactoring the Darcs source to use witness types.

It is important to keep in mind that Darcs has been actively used and developed

since 2005 with a test suite containing over 100 test scripts, so many bugs have

already been discovered and fixed. Finding new bugs in the patch manipulations

is not an easy task. We include code coverage statistics generated by the Haskell

Program Coverage (HPC) toolkit [GR07] in Appendix D.

Each of the following sections outlines a benefit we achieved with a concrete

example.

5.3.1 Detection of Invalid Patch Sequence Manipulations

A prime example of where the witness types have ensured proper sequence manip-

ulations arose naturally while refactoring the source of the interactive command

for listing the change history of a repository.

71

The command line of Darcs supports an interactive view of changes. The user

is able to filter and select patches in the repository then step through the changes

in each patch. The format for the changes is the same format Darcs uses to store

and transfer patches, so a change that modifies a file would include line numbers

and the added or removed lines for the file.

The defect we found was that the filters were applied to the patch sequence as if

it were an ordinary list of patches. This has the unfortunate side effect that when

the changes are displayed adjacent changes may not be in adjacent contexts. If

the patches to be removed were commuted out of the sequence instead of removing

patches from the sequence by filtering, then all the remaining patches would have

adjacent contexts.

One example where this bug might produce confusing output for the user is

when multiple patches in the history modify parts of a file but one or more of the

patches is removed due to filtering. The line numbers displayed to the user could

be very misleading. While most users might ignore the exact line numbers in the

output, interactions with other patch types, such as file renames, could lead to

serious confusion.

Given the nature of this bug, specifically that it does not cause any sort of

machine detectable corruption and it requires hard to craft examples, means that

it is very unlikely we would have discovered it through testing. Due to our witness

type refactor we were able to discover this defect before a single user reported it.

72

5.3.2 Safe and General Functions

As an example of safe and general functions, we focus on get_choices and the group

of functions that it generalizes.

Originally the Darcs source code had four different functions for separating a

sequence of patches based on a user’s choices. For example, after the patches are

tagged we might want to separate the tagged patches at the start of the sequence

from the others. One way of separating the sequence is the following function:

separate_first_from_middle_last :: Patchy p ⇒ PatchChoices p

→ ([TaggedPatch p], [TaggedPatch p])

There are three other functions like separate_first_from_middle_last, that have

the exact same type. Not only was it confusing to have four nearly identical

functions but because they have the same types, Haskell’s type system could not

help the programmer by catching accidental use of the wrong variant.

After implementing directed types, we were able to change to the following

type, that uses the type :> to express the relationship between patch contexts:

separate_first_from_middle_last :: Patchy p ⇒ PatchChoices p x z

→ (FL (TaggedPatch p) :> FL (TaggedPatch p)) x z

Our directed types further inspired our confidence in type safe refactoring and

lead us to a unified interface:

get_choices :: Patchy p ⇒ PatchChoices p x y

→ (FL (TaggedPatch p) :>

FL (TaggedPatch p) :>

FL (TaggedPatch p)) x y

Using get_choices we are able to safely partition the tagged patches and allow

73

the types to both constrain and document which portion is first, middle, and last.

Using pattern matching the caller of get_choices can pick which part of the tagged

patches to focus on. Making this change, reduced the amount of redundant code

while providing a simpler interface for programmers working with this code.

5.3.3 Detection of Defective Functions

Not all of the functions in the Darcs source code could be converted to use our

witness types. One such example was the rempatch function, which happened to

exist outside of the trusted kernel of patch sequence manipulation code.

rempatch :: RepoPatch p ⇒ Named p → PatchSet p → PatchSet p

The problem with rempatch was that it removed its first parameter from a

PatchSet. While refactoring the module that contained rempatch it quickly became

apparent that rempatch did not have a valid type in terms of context manipulation.

Fortunately, rempatch was no longer used anywhere in the source code so it was

removed.

While it might seem as though having an unused function is not a big concern,

in this case if rempatch had been used then repository history corruption would

have resulted. Thus, finding and removing this defective function, and others like

it, is extremely desirable.

74

5.3.4 Identification of Redundant Functions

As the number of lines of code grows in software projects it seems that there is a

tendency for developers to unintentionally reimplement existing functionality. One

major problem with this trend is that it becomes harder to make certain changes

as all the redundant implementations may need to be found and changed.

One of the hurdles to eliminating redundant functions from the Darcs source

code was that of determining exactly which patch manipulations were identical and

which ones were merely similar. By exposing patch contexts at the type level the

types serve as a form of documentation. A benefit of the extra documentation is

the ability to more easily identify identical patch manipulations. One such example

was a function commute_by, which was defined outside of the trusted kernel of patch

manipulations.

Finding commute_by was easy, but there was a lack of confidence about which

variation of commute it represented. For example, the input parameters may have

been in a swapped order compared to the standard commuteFL function that it was

most similar to. After adding context types in the module where commute_by was

defined, it was very obvious that commute_by did indeed reverse the order of the

input parameters compared to commuteFL. Not only did the context types make us

aware that it was similar to commuteFL but having them also made it safe to swap

the parameters to commute_by in all the places it was called. If we had not swapped

the parameters correctly, then type checking would have failed.

75

5.3.5 Writing New Code is Safer

An obvious expectation of improved type safety is that new code we write will

contain fewer bugs. Approximately half of the type witness changes were imple-

mented before Darcs 2.0 was completed. We found that writing new modules from

scratch to use our type witnesses was easier, safer and less error prone. In fact,

Camp [Lyn09], another Haskell version control system based on Patch Theory, is

now being written to use our witness types from the very beginning.

The Darcs mailing list, where developers share their contributions, now contains

discussions where developers have attempted to write new code or modify existing

code and discovered that the context types do not type check. This usually results

in the developer gaining a deeper understand of how to correctly modify Darcs as

well as preventing potential bugs [Pet08, Sit08, Sch08].

76

Chapter 6 – Conclusion

We have shown that by combining advanced features of Haskell in clever ways it is

possible to use the static type checker of GHC to make Darcs more robust and safer

to modify. Our approach also leads to source code which is better documented.

The techniques we use are not common or mainstream practice within the

Haskell community and for this reason require training. This is a potential draw-

back considering that Haskell itself is not a mainstream language to begin with.

In practice this may not be as bad as it sounds. The majority of the Darcs source

code which uses the techniques discussed here, is contained in the inner most core

of Darcs. Only contributors who work on the inner workings of Darcs need to fully

understand these techniques. In practice developers who work on the core of Darcs

are few already and training them to use our techniques has not been a problem.

The drawbacks to our approach seem acceptable in light of the advantages.

For example, several defects were uncovered while changing the code to use our

techniques. Our approach also continues to prevent specific classes of new defects

from entering the code base while serving a complementary role to testing. Our

work on Darcs, as an Open Source project, demonstrates that automated theorem

proving has real applications in software development.

Finally, our approach could be used in any Haskell program that needs to

respect chains of transformations and the manipulation of those transformations.

77

Bibliography

[Bit09] BitMover. Bitkeeper. on-line, March 2009. http://www.bitkeeper.

com/.

[BS02] Arthur I. Baars and Doaitse D. Swierstra. Typing dynamic typing.
In ICFP ’02: Proceedings of the seventh ACM SIGPLAN interna-
tional conference on Functional programming, volume 37, pages 157–
166. ACM Press, September 2002.

[Buc09] Bjorn Buckwalter. Dimensional. on-line, March 2009. http://code.

google.com/p/dimensional/.

[Can09] Canonical Ltd. Bazaar. on-line, March 2009. http://bazaar-vcs.

org/.

[CH03] James Cheney and Ralf Hinze. Phantom types, 2003.

[CX03] Chiyan Chen and Hongwei Xi. Implementing typeful program trans-
formations. In PEPM ’03: Proceedings of the 2003 ACM SIGPLAN
workshop on Partial evaluation and semantics-based program manipu-
lation, pages 20–28, New York, NY, USA, 2003. ACM.

[Den09] Aaron Denney. Dimensionalized numbers. on-line, March 2009. http:
//www.haskell.org/haskellwiki/Dimensionalized_numbers.

[Eat06] Frederik Eaton. Statically typed linear algebra in haskell. In Haskell
’06: Proceedings of the 2006 ACM SIGPLAN workshop on Haskell,
pages 120–121, New York, NY, USA, 2006. ACM.

[FI00] Daniel Fridlender and Mia Indrika. Do we need dependent types? Jour-
nal of Functional Programming, 10:409–415, 2000.

[Fre09] Free Software Foundation. Concurrent versions system. on-line, March
2009. http://www.nongnu.org/cvs/.

[GHC09a] GHC. 6.6. observing code coverage. on-line, March 2009. http://www.
haskell.org/ghc/docs/latest/html/users_guide/hpc.html.

http://www.bitkeeper.com/
http://www.bitkeeper.com/
http://code.google.com/p/dimensional/
http://code.google.com/p/dimensional/
http://bazaar-vcs.org/
http://bazaar-vcs.org/
http://www.haskell.org/haskellwiki/Dimensionalized_numbers
http://www.haskell.org/haskellwiki/Dimensionalized_numbers
http://www.nongnu.org/cvs/
http://www.haskell.org/ghc/docs/latest/html/users_guide/hpc.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/hpc.html

78

[GHC09b] GHC. Ghc manual, section 8.4.4. existentially quantified data
constructors. on-line, March 2009. http://haskell.org/

ghc/docs/latest/html/users_guide/data-type-extensions.

html#existential-quantification.

[GHC09c] GHC. The glasgow haskell compiler. on-line, March 2009. http:

//haskell.org/ghc.

[GM08] Louis-Julien Guillemette and Stefan Monnier. A type-preserving com-
piler in haskell. In ICFP ’08: Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, pages 75–86, New
York, NY, USA, 2008. ACM.

[GR07] Andy Gill and Colin Runciman. Haskell program coverage. In Haskell
’07: Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
pages 1–12, New York, NY, USA, 2007. ACM.

[Gre08] Gabor Greif. Thrists: Dominoes of data. on-line, July 2008. http:

//www.opendylan.org/~gabor/Thrist-draft-2008-07-18.pdf.

[Hal01] Thomas Hallgren. Fun with functional dependencies. In Proceedings
of the Joint CS/CE Winter Meeting, pages 135–145, Gteborg, Sweden,
January 2001. Department of Computing Science, Chalmers.

[Hin01] Ralf Hinze. Manufacturing datatypes. Journal of Functional Program-
ming, 11(5):493–524, 2001.

[Jon00] Mark P. Jones. Type classes with functional dependencies. In ESOP
’00: Proceedings of the 9th European Symposium on Programming
Languages and Systems, pages 230–244, London, UK, 2000. Springer-
Verlag.

[Kah01] Stefan Kahrs. Red-black trees with types. J. Funct. Program.,
11(4):425–432, 2001.

[Kis09] Oleg Kiselyov. Typeable makes haskell98 unsound. on-line, March 2009.
http://okmij.org/ftp/Haskell/types.html#unsound-typeable.

[KLS04] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed het-
erogeneous collections. In Haskell ’04: Proceedings of the 2004 ACM
SIGPLAN workshop on Haskell, pages 96–107, New York, NY, USA,
2004. ACM.

http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html#existential-quantification
http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html#existential-quantification
http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html#existential-quantification
http://haskell.org/ghc
http://haskell.org/ghc
http://www.opendylan.org/~gabor/Thrist-draft-2008-07-18.pdf
http://www.opendylan.org/~gabor/Thrist-draft-2008-07-18.pdf
http://okmij.org/ftp/Haskell/types.html#unsound-typeable

79

[KR05] Andrew Kennedy and Claudio V. Russo. Generalized algebraic data
types and object-oriented programming. In OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, pages 21–40, New York,
NY, USA, 2005. ACM Press.

[KS04] Oleg Kiselyov and Chung-chieh Shan. Functional pearl: implicit
configurations–or, type classes reflect the values of types. In Haskell
’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
pages 33–44, New York, NY, USA, 2004. ACM.

[KS07] Oleg Kiselyov and Chung-chieh Shan. Lightweight static capabilities.
Electron. Notes Theor. Comput. Sci., 174(7):79–104, 2007.

[LM99] Daan Leijen and Erik Meijer. Domain specific embedded compilers.
In PLAN ’99: Proceedings of the 2nd conference on Domain-specific
languages, pages 109–122, New York, NY, USA, 1999. ACM.

[LO94] Konstantin Läufer and Martin Odersky. Polymorphic type infer-
ence and abstract data types. ACM Trans. Program. Lang. Syst.,
16(5):1411–1430, 1994.

[Lyn09] Ian Lynagh. Camp. on-line, March 2009. http://projects.haskell.
org/camp/.

[McB02] Conor McBride. Faking it simulating dependent types in haskell. Jour-
nal of Functional Programming, 12(5):375–392, 2002.

[McK06] James McKinna. Why dependent types matter. SIGPLAN Not.,
41(1):1–1, 2006.

[Mic09] Microsoft. Visual sourcesafe. on-line, March 2009. http://msdn.

microsoft.com/en-us/vstudio/aa700900.aspx.

[Mon09] Monotone. Monotone. on-line, March 2009. http://monotone.ca/.

[Oka99] Chris Okasaki. From fast exponentiation to square matrices: an adven-
ture in types. In ICFP ’99: Proceedings of the fourth ACM SIGPLAN
international conference on Functional programming, pages 28–35, New
York, NY, USA, 1999. ACM.

http://projects.haskell.org/camp/
http://projects.haskell.org/camp/
http://msdn.microsoft.com/en-us/vstudio/aa700900.aspx
http://msdn.microsoft.com/en-us/vstudio/aa700900.aspx
http://monotone.ca/

80

[Per09] Perforce Software. Perforce. on-line, March 2009. http://www.

perforce.com/.

[Pet08] Tommy Pettersson. [darcs-users] darcs patch: resolve issue1111:
use correct side of return from partitionrl. on-line, Octo-
ber 2008. http://lists.osuosl.org/pipermail/darcs-users/

2008-October/014272.html.

[Pey03] Simon Peyton-Jones. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, May 2003.

[PVWS07] Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types. J.
Funct. Program., 17(1):1–82, 2007.

[PVWW06] Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for gadts.
In ICFP ’06: Proceedings of the eleventh ACM SIGPLAN international
conference on Functional programming, pages 50–61, New York, NY,
USA, 2006. ACM Press.

[Rot02] J.J. Rotman. Advanced modern algebra. Prentice Hall Upper Saddle
River, NJ, 2002.

[Rou06a] David Roundy. Implementing the darcs patch formalism. . . and veri-
fying it. on-line, February 2006. http://physics.oregonstate.edu/

~roundyd/talks/fosdem2006.pdf.

[Rou06b] David Roundy. Verifying the darcs patch code. on-line, Novem-
ber 2006. http://physics.oregonstate.edu/~roundyd/talks/cs_

colloquiem.pdf.

[Rou08] David Roundy. Verifying the darcs patch code. on-line, Oc-
tober 2008. http://physics.oregonstate.edu/~roundyd/talks/

droundy-08.pdf.

[Rou09a] David Roundy. on-line, March 2009. http://darcs.net/.

[Rou09b] David Roundy. Darcs user manual. on-line, March 2009. http://

darcs.net/manual/.

http://www.perforce.com/
http://www.perforce.com/
http://lists.osuosl.org/pipermail/darcs-users/2008-October/014272.html
http://lists.osuosl.org/pipermail/darcs-users/2008-October/014272.html
http://physics.oregonstate.edu/~roundyd/talks/fosdem2006.pdf
http://physics.oregonstate.edu/~roundyd/talks/fosdem2006.pdf
http://physics.oregonstate.edu/~roundyd/talks/cs_colloquiem.pdf
http://physics.oregonstate.edu/~roundyd/talks/cs_colloquiem.pdf
http://physics.oregonstate.edu/~roundyd/talks/droundy-08.pdf
http://physics.oregonstate.edu/~roundyd/talks/droundy-08.pdf
http://darcs.net/
http://darcs.net/manual/
http://darcs.net/manual/

81

[Rou09c] David Roundy. Theory of patches. on-line, March 2009. http://

darcs.net/manual/node9.html.

[Sch08] Benedikt Schmidt. [darcs-users] darcs patch: use read repo instead
of get unrecorded in changes. on-line, October 2008. http://lists.

osuosl.org/pipermail/darcs-users/2008-October/015131.html.

[Sel09] Selenic Consulting. Mercurial. on-line, March 2009. http://www.

selenic.com/mercurial/wiki/.

[Sha04] Chung-chieh Shan. Sexy types in action. SIGPLAN Not., 39(5):15–22,
2004.

[She05] Tim Sheard. Putting curry-howard to work. In Haskell ’05: Proceedings
of the 2005 ACM SIGPLAN workshop on Haskell, pages 74–85, New
York, NY, USA, 2005. ACM.

[Sit08] Ganesh Sittampalam. [darcs-users] darcs patch: rewrite partitionfl and
partitionrl to reduce the numb... on-line, October 2008. http://lists.
osuosl.org/pipermail/darcs-users/2008-October/015251.html.

[SS00] Christian Skalka and Scott Smith. Static enforcement of security with
types. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN interna-
tional conference on Functional programming, pages 34–45, New York,
NY, USA, 2000. ACM.

[Sto05] Mark Stosberg. Interview with david roundy of darcs on source control.
OSDir News, 2005. http://osdir.com/Article2571.phtml.

[SV06] Alexandra Silva and Joost Visser. Strong types for relational databases.
In Haskell ’06: Proceedings of the 2006 ACM SIGPLAN workshop on
Haskell, pages 25–36, New York, NY, USA, 2006. ACM.

[Tig09] Tigris. Subversion. on-line, March 2009. http://subversion.tigris.
org/.

[Tor09] Linus Torvalds. Git. on-line, March 2009. http://git-scm.com/.

[VWP06] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton-Jones.
Boxy types: inference for higher-rank types and impredicativity. In
ICFP ’06: Proceedings of the eleventh ACM SIGPLAN international

http://darcs.net/manual/node9.html
http://darcs.net/manual/node9.html
http://lists.osuosl.org/pipermail/darcs-users/2008-October/015131.html
http://lists.osuosl.org/pipermail/darcs-users/2008-October/015131.html
http://www.selenic.com/mercurial/wiki/
http://www.selenic.com/mercurial/wiki/
http://lists.osuosl.org/pipermail/darcs-users/2008-October/015251.html
http://lists.osuosl.org/pipermail/darcs-users/2008-October/015251.html
http://osdir.com/Article2571.phtml
http://subversion.tigris.org/
http://subversion.tigris.org/
http://git-scm.com/

82

conference on Functional programming, pages 251–262, New York, NY,
USA, 2006. ACM.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
224–235, New York, NY, USA, 2003. ACM.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. SIGPLAN Not., 33(5):249–257, 1998.

[XS99] Hongwei Xi and Dana Scott. Dependent types in practical program-
ming. In In Proceedings of ACM SIGPLAN Symposium on Principles
of Programming Languages, pages 214–227. ACM Press, 1999.

83

APPENDICES

84

Appendix A – Existentially Quantified Types

Existentially quantified types are an extension to Haskell which allows for greater

polymorphism and more expressive types [LO94, Kah01, Sha04, PVWS07]. In

Haskell no special keyword, other than universal quantification, is needed as ex-

plained in the GHC user manual [GHC09b].

The simplest example of existential quantification is below, where the type

variable x is existentially quantified:

data Exists = forall x. Exists x

Using the Exists data constructor the type x is hidden inside the Exists type.

Using Exists we could put different types in a list:

[Exists 1, Exists "hello", Exists 'a']

The list has type [Exists] and the type of each element is hidden in the Exists

data constructor. Once a value of type x has been wrapped inside the Exists type

we can recover it through pattern matching, but at that point the type system only

knows that a valid type x once existed in that spot and so it instantiates a new

distinct type, or eigenvariable, as a place holder for x. If we try to return a value

with an eigenvariable as the type, then the checker will complain. Thus, once a

value has been wrapped in the Exists data constructor we can no longer expose it

to a higher level of scope. Although we can pass it to polymorphic functions.

85

For functions that we want to apply to the value stored in the Exists type we

have the following:

mapExists :: (forall x. x → x) → Exists → Exists

mapExists f (Exists x) = Exists (f x)

The function passed to mapExists may modify only the value stored in the Exists

type but not the existentially bound type. Given the example above there are very

few functions we could pass to mapExists, the identity function id :: a → a is one

such function.

Any function which tries to make use of this existentially quantified type vari-

able will not be allowed. To allow ourselves to manipulate the values inside the

Exists constructor we can use type classes. By placing type class constraints on

the existentially quantified type variable we ensure that certain operations—those

defined by the type class—are permitted.

For example, if we would like restrict the types which can be wrapped in the

Exists data constructor to types that can be shown using the standard Show type

class, then we would define the following:

data Exists = forall x. Show x ⇒ Exists x

By combining type class constraints we can do more interesting operations on

otherwise arbitrary extensionally quantified types.

86

Appendix B – Generalized Algebraic Data Types (GADTs)

Generalized Algebraic Data Types (GADTs) [XCC03, PVWW06, CH03] extend

the power of standard Haskell data types with while providing a convenient syntax

that is similar to the syntax for giving type signatures.

The example of existentially quantified types in Appendix A could have been

given in GADT syntax as follows:

data Exists where

Exists :: x → Exists

Although it should be noted that the above definition does not make use of

the generalized nature of GADTs. In the GADT syntax each data constructor is

specified using the same notation that is used to give function type signatures.

This allows us to easily and naturally create data constructors with interesting

types.

For example consider the following container type, which does take advantage

of the generalization provided by GADTs:

data Container a where

IntContainer :: Int → Container Int

CharContainer :: Char → Container Char

StringContainer :: String → Container String

We can tell by inspection that any value of type Container a will hold either

Int, Char, or String.

We could write a function such as the following:

87

contents :: Container a → a

contents (IntContainer i) = i

contents (CharContainer c) = c

contents (StringContainer s) = s

When have a value of type Container a we know the only possible types for a

are Int, Char and String but do not know which one we have until we examine the

value such as with a pattern match or a case-expression. The type system treats

the type variable a as being any type. In this way, GADTs are similar to type

classes, except they are closed and a pattern match allows us to know exactly the

type of a.

The syntax for GADTs is very flexible and allows us to combine existential

quantification and phantom types. For example:

data Example a where

Exists :: Int → x → Example Int

Phantom :: Int → Example a

In the Phantom constructor the type variable a remains a phantom type, while in

the constructor Exists the type variable x is existentially quantified, and the type

variable a has the type Int associated with it so it is not a phantom type.

88

Appendix C – Directed Type Examples

The following examples show how directed lists can be used to store functions

where the types correspond to the domain and range of the functions.

The examples here use the following data type declarations for forward pairs,

reverse pairs, forward lists and reverse lists respectively. Each of following defini-

tions is also discussed in Chapter 4.

We have directed pairs:

data (a1 :> a2) x y = forall z. (a1 x z) :> (a2 z y) -- forward pair

data (a1 :< a2) x y = forall z. (a1 z y) :< (a2 x z) -- reverse pair

Forward lists:

data FL a x z where

(:>:) :: a x y → FL a y z → FL a x z

NilFL :: FL a x x

Reverse lists:

data RL a x z where

(:<:) :: a y z → RL a x y → RL a x z

NilRL :: RL a x x

We refer to the types above as being directed because of the type relationships

expressed in each data constructor.

89

C.1 Functions

We are specifically interested in storing transformations in our forward lists, so

the description here assumes that the element type a has a domain and range

assosciated with it. For example, consider the Haskell functions chr :: Int →

Char, ord :: Char → Int and toUpper :: Char → Char; the first two map between

numeric values and characters and the last converts characters to their uppercased

version. In Haskell, function types are created with the type constructor →. For

example, we could place the chr function at the front of a forward list, which would

look like this:

chr :>: NilFL

and have the type, FL (→) Int Char. We could continue in this way by adding the

function ord to the front of the list to get,

ord :>: chr :>: NilFL :: FL (→) Char Char.

We could imagine writing a function apply with type, apply :: FL (→) x y → x

→ y, with the following definition:

apply NilFL x = x

apply (a:>:as) x = apply as (a x)

Then, we could take the forward list, chr :>: toUpper :>: ord :>: NilFL and

apply it to numeric value of the character 'a', to find out the character code for

'A', as follows:

apply (chr :>: toUpper :>: ord :>: NilFL) 97 =⇒ 65

90

If we try to construct an invalid sequence of function applications where the

domains and ranges of the functions are not compatible we will get a type error,

such as this example from an interactive session with GHC:

Prelude Data.Char Darcs.Patch.Ordered> chr :>: ord :>: toUpper :>: NilFL

<interactive>:1:16:

Couldn’t match expected type ‘Int’ against inferred type ‘Char’

Expected type: Int -> y

Inferred type: Char -> Char

In the first argument of ‘(:>:)’, namely ‘toUpper’

In the second argument of ‘(:>:)’, namely ‘toUpper :>: NilFL’

And a corresponding rapply, as follows:

rapply :: RL (→) x y → x → y

rapply NilRL x = x

rapply (a:<:as) x = a (rapply as x)

Which would be equivalent to the apply example as follows:

rapply (ord :<: toUpper :<: chr :<: NilRL) 97 =⇒ 65

Equivalently, we could define reverseRL, that reverses a reverse list by creating

the corresponding forward list, and give this alternate definition of rapply:

reverseRL :: RL a x z → FL a x z

reverseRL xs = r NilFL xs

where r :: FL a m o → RL a l m → FL a l o

r ls NilRL = ls

r ls (a:<:as) = r (a:>:ls) as

rapply :: RL (→) x y → x → y

rapply rl x = apply (reverseRL rl) x

91

C.2 Filtering

The standard Haskell libraries define a filter function for lists with the type, filter

:: (a → Bool) → [a] → [a]. This filter function returns all the elements of the

input list for which the first parameter of filter returns True. We sometimes want

a similar functon for forward lists, filterFL, but what should the type be?

filterFL :: (forall x y. p x y → EqCheck x y) → FL p w z → FL p w z

The above type requires our EqCheck type. Discussed earlier in Section 4.2.

This gives us a way to remove elements from the forward list when the elements

behave as the identity transformation on their type parameters, eg. elements

of type p x x. This gives us a simplified way to ensure the forward list is still

valid after elements are removed. More complex rules could be used to remove

elements, such as removing sub-sequences with type FL p x x in a more general

implementation of filterFL.

C.3 Zipping

Another interesting case is the Haskell standard library function, zipWith, which

has the following standard type and definition:

zipWith :: (a → b → c) → [a] → [b] → [c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

The standard zipWith function applies a user supplied function pairwise to the

elements of two lists. The resulting list is only as long as the shorter of the two

92

input lists. For forward lists, we must take into consideration the order of the

elements in the forward list. We use the following type and definition for our

zipWithFL:

zipWithFL :: (forall x y a. → p x y → q x y)

→ [a] → FL p w z → FL q w z

zipWithFL f (x:xs) (y :>: ys) = f x y :>: zipWithFL f xs ys

zipWithFL _ _ NilFL = NilFL

zipWithFL _ [] (_:>:_) = bug "zipWithFL called with too short a list"

Here we combine a standard Haskell list with the elements of a forward list.

The following function is not one we use in practice, but going over the deriva-

tion of the definition is illustrative of the challenges involved in putting forward

lists to use.

Imagine if we wanted to define zipWithFL so that it operated on two forward

lists instead of one list and one forward list. If we ignore for a moment the diffi-

culty of defining the function parameter, then we might try the following incorrect

definition:

zipWithFL :: (forall r s u v x y. a r s → b u v → c x y)

→ FL a q z → FL b j k → FL c m n

zipWithFL f (a :>: as) (b :>: bs) = f a b :>: zipWithFL f as bs

zipWithFL _ _ _ = NilFL

This would almost work, but it turns out that since NilFL requires that the type

witnesses be the same, eg., NilFL :: FL a x x, we get a type error in the second

case, because it would require that n and m be the same type and consequently q,

z, j and k must all be the same type. One way to express this is to change the last

case to check for explicit NilFL in each input list.

zipWithFL :: (forall r s u v x y. a r s → b u v → c x y)

93

→ FL a m n → FL b m n → FL c m n

zipWithFL f (a :>: as) (b :>: bs) = f a b :>: zipWithFL f as bs

zipWithFL _ NilFL NilFL = NilFL

zipWithFL _ _ _ = error "zipWithFL: Input lists are not the same length"

We add the last case to catch an unwanted input case, and we update the type

signature to reflect the relationship of the types q, z, j, k, m and n. The NilFL in

the second and third parameter will tell the type checker that m = n for that case,

but also relies on the next observation.

In order to tell the type system that m and n are equal, we need to either use

an EqCheck or pattern match on NilFL for a value that shares type information with

the returned value. This is why we update the phantom types of the two input

list parameters to be the same as the returned list. Now when we pattern match

on NilFL, the type system knows m = n and expects us to return a list in which

the phantom types are equal. It also implies that the phantoms must be m and n

instead of some new phantom types.

The above type signature will not type check. If we tried to give the above

definition to the type checker, then we would see that there is a problem with

applying zipWithFL at the tail of each list. When we pattern patch on the left-hand

side in the first case the existentially quantified type variable y in the definition

of the data constructor, :>:, is bound to distinct types in each list. The problem

is that we now require that both input lists have equal phantoms but the distinct

types bound by the existential quantification cannot be equal. To work around

this, we would need to use a type equality check, such as (=\/=). In fact, we define

a type equality check using this operator in Section 4.10. For now, suppose that we

94

have a function, (=\/=) :: a r s → a r v → EqCheck s v, that gives us an EqCheck

type witness that represents when the types s and v are equal:

zipWithFL :: (forall r s u v x y. a r s → a u v → c x y)

→ FL a m n → FL a m n → FL c m n

zipWithFL f (a :>: as) (b :>: bs) =
case a =\/= b of

IsEq → f a b :>: zipWithFL f as bs

_ → error "zipWithFL: Input lists are not parallel"

zipWithFL _ NilFL NilFL = NilFL

zipWithFL _ _ _ = error "zipWithFL: Input lists are not the same length"

Using (=\/=) requires that the element types of the input lists are the same

and we update our type signature. The above version will finally type check. The

above may not be as general as we could have hoped and is also not the best

definition if we are most interested in compile time guarantees. We have two very

easy ways to make the above function fail at run-time. We could change both

errors to a normal value by returning Nothing in those cases and switching the

return type to Maybe (FL c m n), but this adds very little other than acknowledging

the failure cases. We have not bothered to do this as this is not a function that we

found useful in practice. Although, deriving it provides a rather colorful example

of how our techniques can complicate the definition of traditional list processing

functions.

It is also important to note that changing the type of the input function is not

enough to avoid the need for (=\/=). For example, this will not type check:

zipWithFL :: (forall r s. a r s → a r s → c r s)

→ FL a m n → FL a m n → FL c m n

zipWithFL f (a :>: as) (b :>: bs) = f a b :>: zipWithFL f as bs

zipWithFL _ NilFL NilFL = NilFL

zipWithFL _ _ _ = error "zipWithFL: Input lists are not the same length"

95

We still fail to because the type checker cannot unify the existentially quantified

type inside the constructor, (:>:), of the two forward lists.

C.4 Standard Operations

Several standard list manipulations have proven useful for forward and reverse

lists. For example, we have defined the following functions for forward and reverse

lists, but here only the name and type of our forward list implementation is listed:

lengthFL :: FL a x z → Int

mapFL :: (forall w z. a w z → b) → FL a x y → [b]

mapFL_FL :: (forall w y. a w y → b w y) → FL a x z → FL b x z

spanFL :: (forall w y. a w y → Bool) → FL a x z → (FL a :> FL a) x z

foldlFL :: (forall w y. a → b w y → a) → a → FL b x z → a

allFL :: (forall x y. a x y → Bool) → FL a w z → Bool

splitAtFL :: Int → FL a x z → (FL a :> FL a) x z

(+>+) :: FL a x y → FL a y z → FL a x z -- Corresponds to (++)
nullFL :: FL a x z → Bool

concatFL :: FL (FL a) x z → FL a x z

We have two types of map defined for forward lists. One map results in a

standard Haskell list type and the other map, mapFL_FL is for the case where the

resulting list is still a forward list. Missing from the above list are functions where

element comparison must be performed.

96

Appendix D – Program Coverage

We use the Haskell Program Coverage (HPC) toolkit [GR07] that comes with

GHC 6.8 [GHC09a], and newer, to generate statistics about program coverage

from running the Darcs test suite. The statistics listed in this Appendix are from

October 2008. Of the top level definitions in the Darcs source code, 1985 out of

2513 definitions were covered, or about 78% of the definitions. For conditional

control flows, or alternatives, 3072 of 5153 were covered, or about 59% of the

alternatives. At the expression level 37947 out of 57245, about 66%, were covered

by the tests. For a break down of coverage by module see Table D.1.

Table D.1: Test Suite Coverage of Darcs By Module,
October 2008

Coverage Type
Top Level Alternatives Expressions

Module Name Fraction (%a) Fraction (%a) Fraction (%a)
CommandLine 12/14 (85) 0/4 (0) 98/165 (59)
Crypt.SHA256 1/1 (100) 4/4 (100) 58/58 (100)
Darcs.ArgumentDefaults 3/3 (100) 15/16 (93) 101/102 (99)
Darcs.Arguments 150/161 (93) 144/279 (51) 1739/2246 (77)
Darcs.Bug 4/5 (80) 5/9 (55) 55/86 (63)
Darcs.CheckFileSystem 3/3 (100) 1/2 (50) 54/66 (81)
Darcs.ColorPrinter 15/27 (55) 25/65 (38) 262/468 (55)
Darcs.Commands 24/29 (82) 73/99 (73) 633/963 (65)
Darcs.Commands.Add 11/12 (91) 33/48 (68) 401/512 (78)
Darcs.Commands.AmendRecord 6/7 (85) 13/28 (46) 216/260 (83)
aAll percentages are truncated to integers by rounding down. Continued on next page

97

Table D.1 – Continued
Coverage Type

Top Level Alternatives Expressions
Module Name Fraction (%a) Fraction (%a) Fraction (%a)
Darcs.Commands.Annotate 16/21 (76) 33/96 (34) 341/964 (35)
Darcs.Commands.Apply 7/13 (53) 11/54 (20) 198/549 (36)
Darcs.Commands.Changes 9/10 (90) 30/54 (55) 361/529 (68)
Darcs.Commands.Check 6/6 (100) 9/16 (56) 120/208 (57)
Darcs.Commands.Convert 3/6 (50) 0/35 (0) 27/498 (5)
Darcs.Commands.Diff 9/9 (100) 22/31 (70) 240/322 (74)
Darcs.Commands.Dist 6/6 (100) 5/9 (55) 132/164 (80)
Darcs.Commands.Get 11/11 (100) 36/44 (81) 508/634 (80)
Darcs.Commands.Help 4/6 (66) 0/9 (0) 21/78 (26)
Darcs.Commands.Init 4/4 (100) 0/0 (–) 24/26 (92)
Darcs.Commands.MarkConflicts 5/5 (100) 5/6 (83) 78/121 (64)
Darcs.Commands.Mv 9/11 (81) 22/28 (78) 322/392 (82)
Darcs.Commands.Optimize 15/18 (83) 21/40 (52) 298/448 (66)
Darcs.Commands.Pull 5/5 (100) 16/19 (84) 342/371 (92)
Darcs.Commands.Push 5/5 (100) 12/28 (42) 216/365 (59)
Darcs.Commands.Put 4/5 (80) 12/21 (57) 160/248 (64)
Darcs.Commands.Record 13/15 (86) 44/78 (56) 551/752 (73)
Darcs.Commands.Remove 7/9 (77) 8/10 (80) 121/167 (72)
Darcs.Commands.Repair 6/7 (85) 12/18 (66) 184/282 (65)
Darcs.Commands.Replace 7/8 (87) 10/20 (50) 191/293 (65)
Darcs.Commands.Revert 4/4 (100) 9/12 (75) 147/175 (84)
Darcs.Commands.Rollback 4/4 (100) 3/4 (75) 176/260 (67)
Darcs.Commands.Send 12/12 (100) 39/58 (67) 538/711 (75)
Darcs.Commands.SetPref 5/5 (100) 3/4 (75) 83/126 (65)
Darcs.Commands.Show 5/5 (100) 0/0 (–) 30/30 (100)
Darcs.Commands.ShowAuthors 3/4 (75) 2/2 (100) 62/69 (89)
Darcs.Commands.ShowBug 2/4 (50) 0/0 (–) 19/28 (67)
Darcs.Commands.ShowContents 3/4 (75) 2/2 (100) 62/72 (86)
Darcs.Commands.ShowFiles 7/8 (87) 6/8 (75) 60/77 (77)
Darcs.Commands.ShowRepo 12/15 (80) 1/6 (16) 165/237 (69)
Darcs.Commands.ShowTags 3/4 (75) 5/8 (62) 50/81 (61)
Darcs.Commands.Tag 5/5 (100) 4/7 (57) 90/106 (84)
Darcs.Commands.TrackDown 5/5 (100) 5/8 (62) 97/140 (69)
aAll percentages are truncated to integers by rounding down. Continued on next page

98

Table D.1 – Continued
Coverage Type

Top Level Alternatives Expressions
Module Name Fraction (%a) Fraction (%a) Fraction (%a)
Darcs.Commands.TransferMode 1/6 (16) 0/2 (0) 2/74 (2)
Darcs.Commands.Unrecord 14/17 (82) 9/15 (60) 241/330 (73)
Darcs.Commands.Unrevert 6/6 (100) 8/12 (66) 144/187 (77)
Darcs.Commands.WhatsNew 4/4 (100) 10/14 (71) 205/253 (81)
Darcs.CommandsAux 3/4 (75) 1/2 (50) 34/44 (77)
Darcs.Compat 4/6 (66) 2/16 (12) 50/190 (26)
Darcs.Diff 17/17 (100) 54/71 (76) 588/680 (86)
Darcs.Email 5/7 (71) 9/24 (37) 214/460 (46)
Darcs.External 32/56 (57) 40/130 (30) 630/1869 (33)
Darcs.FilePathMonad 11/19 (57) 0/4 (0) 67/175 (38)
Darcs.FilePathUtils 4/5 (80) 6/19 (31) 50/108 (46)
Darcs.Flags 2/2 (100) 3/5 (60) 8/11 (72)
Darcs.Global 18/20 (90) 1/2 (50) 92/131 (70)
Darcs.Hopefully 26/37 (70) 13/26 (50) 130/268 (48)
Darcs.IO 43/72 (59) 9/20 (45) 296/543 (54)
Darcs.Lock 29/33 (87) 19/37 (51) 420/570 (73)
Darcs.Match 43/47 (91) 103/156 (66) 550/860 (63)
Darcs.Ordered 31/46 (67) 57/78 (73) 224/328 (68)
Darcs.Patch 0/0 (–) 0/0 (–) 0/0 (–)
Darcs.Patch.Apply 22/24 (91) 91/155 (58) 689/1140 (60)
Darcs.Patch.Bundle 11/14 (78) 18/39 (46) 194/352 (55)
Darcs.Patch.Choices 30/40 (75) 38/46 (82) 345/455 (75)
Darcs.Patch.Commute 54/67 (80) 131/190 (68) 991/1392 (71)
Darcs.Patch.Core 12/18 (66) 6/15 (40) 49/88 (55)
Darcs.Patch.Depends 21/24 (87) 84/125 (67) 710/1111 (63)
Darcs.Patch.Info 24/36 (66) 29/67 (43) 484/649 (74)
Darcs.Patch.Match 18/21 (85) 3/4 (75) 218/308 (70)
Darcs.Patch.MatchData 1/2 (50) 0/0 (–) 2/6 (33)
Darcs.Patch.Non 17/24 (70) 19/33 (57) 193/315 (61)
Darcs.Patch.Patchy 26/36 (72) 38/45 (84) 306/417 (73)
Darcs.Patch.Permutations 16/23 (69) 39/57 (68) 288/383 (75)
Darcs.Patch.Prim 93/127 (73) 188/312 (60) 1442/2329 (61)
Darcs.Patch.Read 21/23 (91) 32/45 (71) 472/574 (82)
aAll percentages are truncated to integers by rounding down. Continued on next page

99

Table D.1 – Continued
Coverage Type

Top Level Alternatives Expressions
Module Name Fraction (%a) Fraction (%a) Fraction (%a)
Darcs.Patch.ReadMonads 10/20 (50) 6/16 (37) 75/156 (48)
Darcs.Patch.Real 46/58 (79) 130/221 (58) 1267/1913 (66)
Darcs.Patch.Set 0/0 (–) 0/0 (–) 0/0 (–)
Darcs.Patch.Show 3/4 (75) 4/5 (80) 52/61 (85)
Darcs.Patch.TouchesFiles 6/6 (100) 25/32 (78) 147/170 (86)
Darcs.Patch.Viewing 20/34 (58) 65/129 (50) 554/1088 (50)
Darcs.Population 8/11 (72) 13/31 (41) 161/299 (53)
Darcs.PopulationData 1/9 (11) 1/16 (6) 1/123 (0)
Darcs.PrintPatch 2/4 (50) 0/0 (–) 11/22 (50)
Darcs.Progress 29/30 (96) 44/55 (80) 453/552 (82)
Darcs.RemoteApply 4/8 (50) 6/15 (40) 34/126 (26)
Darcs.RepoPath 23/35 (65) 28/35 (80) 238/271 (87)
Darcs.Repository 9/10 (90) 25/34 (73) 404/521 (77)
Darcs.Repository.ApplyPatches 2/2 (100) 2/2 (100) 25/47 (53)
Darcs.Repository.Cache 23/23 (100) 49/62 (79) 545/696 (78)
Darcs.Repository.Checkpoint 12/12 (100) 16/22 (72) 286/331 (86)
Darcs.Repository.DarcsRepo 20/21 (95) 18/28 (64) 549/665 (82)
Darcs.Repository.Format 14/15 (93) 19/28 (67) 222/281 (79)
Darcs.Repository.HashedIO 27/44 (61) 40/80 (50) 714/1067 (66)
Darcs.Repository.HashedRepo 37/38 (97) 42/55 (76) 861/1002 (85)
Darcs.Repository.Internal 75/85 (88) 159/199 (79) 1846/2204 (83)
Darcs.Repository.InternalTypes 1/1 (100) 0/0 (–) 1/1 (100)
Darcs.Repository.Motd 2/2 (100) 0/0 (–) 31/31 (100)
Darcs.Repository.Prefs 24/26 (92) 47/66 (71) 645/739 (87)
Darcs.Repository.Pristine 15/20 (75) 27/56 (48) 212/369 (57)
Darcs.Resolution 3/7 (42) 4/11 (36) 41/247 (16)
Darcs.Sealed 11/18 (61) 0/0 (–) 22/66 (33)
Darcs.SelectChanges 32/44 (72) 62/138 (44) 773/1575 (49)
Darcs.Show 0/6 (0) 0/0 (–) 0/36 (0)
Darcs.SignalHandler 9/10 (90) 6/24 (25) 99/238 (41)
Darcs.SlurpDirectory 89/95 (93) 123/170 (72) 953/1263 (75)
Darcs.Test 6/6 (100) 20/24 (83) 148/180 (82)
Darcs.TheCommands 1/1 (100) 0/0 (–) 89/95 (93)
aAll percentages are truncated to integers by rounding down. Continued on next page

100

Table D.1 – Continued
Coverage Type

Top Level Alternatives Expressions
Module Name Fraction (%a) Fraction (%a) Fraction (%a)
Darcs.URL 6/6 (100) 7/10 (70) 35/49 (71)
Darcs.Utils 23/33 (69) 21/35 (60) 312/434 (71)
DateMatcher 9/9 (100) 12/16 (75) 215/242 (88)
English 5/5 (100) 3/4 (75) 26/31 (83)
Exec 5/5 (100) 5/9 (55) 82/125 (65)
FastPackedString 57/64 (89) 44/55 (80) 766/888 (86)
FileName 23/24 (95) 38/45 (84) 236/271 (87)
HTTP 2/6 (33) 2/14 (14) 28/187 (14)
IsoDate 41/56 (73) 21/43 (48) 1194/1795 (66)
Lcs 33/33 (100) 92/122 (75) 1444/1867 (77)
OldDate 4/30 (13) 4/37 (10) 120/915 (13)
Printer 59/69 (85) 38/41 (92) 437/478 (91)
RegChars 5/5 (100) 6/15 (40) 37/87 (42)
SHA1 8/8 (100) 8/8 (100) 1062/1063 (99)
Ssh 10/19 (52) 10/44 (22) 172/638 (26)
ThisVersion 1/1 (100) 0/0 (–) 1/1 (100)
URL 18/25 (72) 19/39 (48) 349/573 (60)
UTF8 3/6 (50) 1/7 (14) 13/117 (11)
aAll percentages are truncated to integers by rounding down.

	Introduction
	Background
	Patch Theory
	Haskell's Type System

	Motivation
	Structure of this document

	Related Work
	Version Control Systems
	Commonly Supported Features
	Centralized and Decentralized Version Control

	Type Level Proofs
	Haskell
	Non-Haskell

	Data Model and Invariants
	Elements of Patch Theory
	Commute
	Example
	Abstract Interface

	Inverse Patches
	Equality
	Merge
	Summary

	Checked Invariants
	Sealed Types
	Witness Types
	Phantom Types
	Example
	Patch Representation
	Directed Types
	Directed Pairs
	Forward Lists

	Expressing Commutation
	Patch Sequences
	Patch Merge
	Patch Equality
	Summary

	Discussion
	Incremental Approach
	Difficulties
	Intentional Context Coercion
	Unsound Equality Examples
	Improving Context
	Type Checking

	Real-World Improvements
	Detection of Invalid Patch Sequence Manipulations
	Safe and General Functions
	Detection of Defective Functions
	Identification of Redundant Functions
	Writing New Code is Safer

	Conclusion
	Bibliography
	Appendices

