


AN ABSTRACT OF THE THESIS OF

Jarrod A. Nelson for the degree of Master of Science in Electrical and Computer

Engineering presented on December 2, 2005.

Title: Dependency Speculation in Dynamic Simultaneous Multi-Threading

Abstract approved:

Ben Lee

The purpose of this thesis is to explore dependency speculation in Dynamic
Simultaneous Multi-Threading (DSMT). DSMT is a microprocessor architecture
which attempts to extract Thread Level Parallelism (TLP) from single-threaded
programs at run-time. This is accomplished by running multiple iterations of program
loops in parallel. The DSMT architecture was originally developed by Dr. Daniel

Ortiz-Arroyo and Dr. Ben Lee at Oregon State University.

To extract TLP from loops successfully, inter-thread dependencies must be
resolved by either speculation or stalling. To maximize performance both stalling and
misspeculation must be minimized. To this end, two techniques are presented which
attempt to improve stride speculation and dynamic inter-thread dependency
resolution. To study these proposed changes, a detailed, cycle-accurate simulation
environment for DSMT with extensive statistics gathering capabilities was developed.
Results generated by the simulator not only show the performance of the proposed

changes but also the capabilities of the new simulator.



©Copyright by Jarrod A. Nelson
December 2, 2005
All Rights Reserved



Dependency Speculation in Dynamic Simultaneous Multi-Threading
by

Jarrod A. Nelson

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 2, 2005
Commencement June 2006



Master of Science thesis of Jarrod A. Nelson presented on December 2, 2005.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Jarrod A. Nelson, Author



ACKNOWLEDGEMENTS

The author expresses sincere appreciation to the following individuals. Dr.
Ben Lee, who inspired me to pursue graduate studies at Oregon State University.
David Zier for tirelessly pursuing DSMTSim and the DTP project. And finally, my

parents for their endless support.



TABLE OF CONTENTS

Page

T INEOAUCHON ... 1
2 Related WOtk ..o s 3
3 Dynamic Simultaneous Multi-Threading,........cccccceuvuriiuiiriniiiininiciniicesiceeniiaes 5
3.1 Architectural OVEIVIEW ..o s 5
3.2 Dependency ResOIUtion ... 7

4 Creating a Simulation ENvIfONmMent.......cccovvieiviiiicininiiciiieececeesceens 9
4.1 NetSim Environment and NetSimBase .........cccccvvviiiiiiiiiniiiiicins 9
4.2 SuperSim and NetSImHP.......cccoiiiiiiiiicce 11
4.3 DSMTSim and NetSIMMT ..o 11

5  Enhancing Dependency Resolution..........cccccuviiiiciviniiciiniiciiniicccccccnees 14
5.1 Stride PrediCtion . .....cicviiiiiciiiiiiiiiceccs e 14
5.2 Register Generation Table .........cccceviviiiiiniiiiiicccececees 15
5.3 Dependency EXamples.......occcviiiiiniiciiniiciieiiceesice e 19

6 Results and ANalYSiS......oiiiriiiciccicceeieieieeieetese e 23
7 Future WOrk v 26
8 CONCIUSION .. 28

BIbHOGIAPNY ...t 29



LIST OF FIGURES

Figure Page
1: DSMT Architectural DIagram .........ccccviieiiiniiciiiniiciiicceeece s 6
2: Structural Overview of NetSImBase........coovviiiciiiniiccccccccce 10
3: A Sample Portion of DSMTSIM StatiStiCs .....ccuevvuieiueriiriiieiiiriieneiriciereesiceeessesenes 13
4: Stride Prediction HardWare........c.ccviniciiniciccc e 15
5: Register Generation Table Index Value .......ccccocviiiiiiiniiiniiciiiccccccnee 16
0: Register Generation Table ........cccoiiiiiiiiiiiiiic s 17
7: Prediction Counter Block Diagram..........ccccvuviiiiviiicininiiciiniiciceceenicenes 17
8: Flowchart for Modified Register Reading........cccceuvuviieiviniicininiiciiccericceiaes 18
9: Code Segment with All Dependencies Highlighted.........ccccoviiiiiiinniciininne 20
10: Code Segment with Only True Dependencies Highlighted..........ccccovviiiinininnnnnne. 20

11: Loop Example from SPEC2000 AMMP.......oooccccocooverroeeessseessseesssees e 21



LIST OF TABLES

Table Page
1: Path Flags for Each Dependency Case ... 22
2: AMMP LOOP IPCs...ociiiiiiiiiciiiccicc s 23

3: AMMP LOOP RESUILS......coviiiiiiiiiiiciici s 24



Dependency Speculation in Dynamic Simultaneous Multi-Threading

1 Introduction

For decades processor performance has been improved by not only upping
clock frequencies but also increasing the utilization of Instruction Level Parallelisn (ILP).
Techniques such as out-of-order execution, pipelining and branch prediction have
pushed ILP to new heights. However, in recent years the improvements in ILP have
been slowing and performance increases have been harder to attain. As a result,
microprocessor architectures have begun to use Thread Level Parallelismz (TLP) in an
attempt to improve overall performance. There are already microprocessors on the
market which allow multiple threads to run on a single processor [4]. Unfortunately,
these techniques do not improve the performance of individual programs and can
even hurt their performance [13]. To improve individual programs, other methods

must be used.

In general, multithreading can be divided into two main types, multi-program,
as mentioned above, and single program. Single program multithreading can be
turther divided into two types, static, or compiler techniques, and dynamic, or hardware
techniques. Static Multithreading is performed prior to runtime and relies on the
compiler to find and expose TLP [2,3]. Dynamic techniques are performed at runtime
and rely on the hardware to identify threads which can yield TLP. Static techniques
are often limited by factors such as pointer ambiguity and complex dynamic behavior.
Dynamic techniques have the advantage of additional runtime information that is

unavailable to the compiler.



To improve the performance of individual programs using TLP, Dynamic
Simultaneous MutliThreading DSMT) [1] has been proposed as a dynamic multithreading
technique for individual programs. DSMT seeks to improve the performance of a
single program by creating dynamic threads from loops within the program. This
technique uses a standard SMT core with additional hardware to spawn and control

dynamic threads.

One of the key limiting factors to DSMT’s performance is loop dependencies
which must be resolved to allow the execution of speculative iterations. This thesis
explores these dependency issues and presents a novel method for ensuring their
proper resolution. The technique uses a Register Generation Table (RGT) which can track
when register values tend to be produced and allow contexts to speculate on whether
or not it is safe to read a register value from a previous context. The RGT determines

if and when a speculative context should be held in order to resolve a dependency.

This thesis is organized as follows: Section 2 discusses other dynamic
multithreading architectures and research into critical path dependency chains and data
value prediction. Section 3 provides an overview of the DSMT architecture. Section 4
covers the creation of the simulation environment used for this research. Section 5
discusses the proposed improvements to dependency speculation in DSMT. Section 6
presents and analyzes the results produced by enhancing dependency speculation.
And finally, Section 7 proposes future work to improve Dependency speculation and

DSMT in general.



2 Related Work

In recent years, several techniques have been proposed to allow for dynamic
threading of single programs. One such architecture is DMT [5]. Much like DSMT,
this architecture presents a hardware only solution where the compiler gives no
assistance in recognizing dependency. DMT attempts to spawn threads based off
function return values and alternate branch outcomes. Due to a large amount of
misspeculation, large trace buffers are used to perform efficient recovery. These trace
buffers are quite complex and present a very large challenge to practical

implementation.

Another dynamic threading architecture is the Speculative Multithreaded
Processor presented in [15]. As with DSMT, the SM architecture seeks to exploit loops
to extract TLP from a single program. This design uses a Clustered Multi-Processor
(CMP) as the basis for the architecture and it is focused on exploiting small or fine-
grained threads. Unlike DSMT much of the work to break dependencies in loops is
based on data value speculation [6]. An attempt is made to predict all the values fed
into the thread as opposed to just stride values. This is done using trace prediction
which takes into account the execution trace when predicting the final value for a

needed register.

Another technique for identifying dependency chains can be seen in critical
path work such as [7]. In this technique, several basic heuristics are used to mark
possible critical instructions. If a marked instruction is committed then the

corresponding entry in the Critical Path Prediction Buffer is incremented. If this count



exceeds a cut-off value then the next time it is encountered, the instruction will be
flagged as critical. The rest of this work focuses on using this critical flag along with
data value prediction to break the critical path and free up ILP. Work is also presented
which shows how this flag can be used with clustered scheduling architectures to

improve their performance.



3 Dynamic Simultaneous Multi-Threading

Dynamic Simultaneous Multi-Threading is a multi-threaded microprocessor
architecture developed by Dr. Daniel Oritz-Arroyo and Prof. Ben Lee at Oregon State
University [1]. It is designed to create TLP from a single program by running multiple
loop iterations in parallel. Section 3.1 presents an architectural overview of DSMT.

Section 3.2 reviews the original dependency speculation methodology.

3.1 Architectural Overview

The DSMT architecture is based around an SMT core as presented in [14]. To
better utilize the available resources, threads are spawned from loops in a single
program to exploit the SMT contexts. Figure 1 shows the basic block diagram of
DSMT. The components needed in addition to the SMT core are shaded gray. These
are the Thread Control and Initiation Unit (TCIU), the Scheduler and the Loop
Detection Unit (LDU). In addition to the new components, it was necessary to
enhance several existing components to support dynamic threading. This included
inter-thread dependency resolution in the Dispatch, Utility Bits added to the Contexts

and an enhanced ROB which can determine thread continuation.

The TCIU is responsible for maintaining the contexts and spawning, squashing
and retiring all dynamic threads. The Loop Stride Prediction hardware is also located
in the TCIU. When new contexts are spawned, the TCIU is responsible for setting up
the new context, initializing the PC and providing the stride values. It also updates the
tail pointer so that it indicates the most speculative thread. When a thread completes,

the ROB will set the corresponding Join and Continue bits which tell the TCIU that a



thread is ready to be retired and whether or not the loop continues. The TCIU also

holds the R and D anchor bits which indicate the past dependency behavior of the

current loop.
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Figure 1: DSMT Architectural Diagram

The Scheduler is responsible for determining the fetch policy. When multiple

contexts are in use, it determines which threads get fetching priority and provides the

Fetch Unit with the PC address to use.



The LDU is responsible for identifying loops which may be multi-threaded. It
keeps a table with all past loops encountered and their performance in normal and
DSMT mode. Upon identifying a backwards branch the LDU notifies the TCIU of
the loop address. The TCIU then puts the simulator into PreDSMT mode and the
loop is executed twice more to determine its non-DSMT IPC, dependencies and stride
values. Once these iterations are complete, the TCIU transitions the simulator into
DSMT mode. The LDU will then monitor the loops DSMT IPC. If the DSMT
performance it not an improvement, the loop will be marked as bad and the simulator

will return to normal mode.

3.2 Dependency Resolution

To resolve dependencies between loop iterations, DSMT used a set of utility
bits to identify dependent registers and track speculative register forwarding. In
addition to the more typical valid and tag fields associated with superscalar execution,
each register has an R, D, and L bit. The R-bit indicates that the register value was
generated within the current iteration (or context). The D-bit is used to track inter-
thread dependencies. The L-bit is set whenever a register is speculatively read from a
previous context. These bits are used along with the D_anchor and R_anchor bits to

determine current and past loop behavior to aid in resolving dependencies.

When a speculative context attempts to read a register value, it checks to
determine if its R-bit is set. If the R-bit is not set then it must read the register from a
previous context. The first step is to check the D_anchor bit to determine if this

register has had an inter-thread dependency recently. If the D_anchor bit is clear then



the context simply searches back for a previous context whose R-bit is set for that
register. If none is found then the value is read from the head context and it is
assumed that the value was generated outside the loop. If an R-bit is found then this

indicates a new dependency and the D-bit is set.

If the D_anchor bit is set then it is assumed there is an inter-thread
dependency involving this register. If the previous context’s R-bit is set then the value
is read and again the D-bit is set. If the previous context’s R-bit is clear then the
current context is held and waits for the value to be generated. Unfortunately,
dynamic behavior can mean that the value may or may not be produced by the
proceeding context. Therefore, the context is only held for a short time. If the
register value has not been produced then the context will search back (as above) for

the first context with an R-bit set.

The L-bit is set anytime a register is loaded from a previous context. If any
instruction from the previous contexts commits a value to that register, then
misspeculation has occurred and the context is squashed. To ensure correct execution,
all contexts after the misspeculated one must also be squashed. This can potentially

mean all the speculative contexts have to be restarted and all results thrown out.

This method can be very sensitive to dynamic behavior. There is no
mechanism for helping the dependency resolution determine if it is safe to attempt a
speculative read. The context is simply held for an arbitrary length of time before
second-level speculation is used. This thesis presents the Register Generation Table as

a possible solution to this problem in Section 5.



4 Creating a Simulation Environment

Most current simulators are limited in detail and focused mostly on getting raw
performance data such as overall IPC or functional unit utilization. In order to study
DSMT in detail, 2 new simulation environment has been created which forms the basis
of the DSMT architectural simulator (DSM1TS77). In an effort to avoid creating an
entirely new compiler, this environment was based on the PISA target used by
SimpleScalar [7]. Instead, development focused on creating a modular environment
which would allow the rapid development of detailed execution-based cycle-accurate
simulators. This environment is called NezSiz (Section 4.1). At Oregon State
University, NetSim has been used to create an architecturally accurate superscalar

simulator (Section 4.2) and an entirely new DSMT simulator (Section 4.3) [8§].

4.1 NetSim Environment and NetSimBase

The NetSim environment consists of DLLs which contain the objects used to
create simulators. These objects provide a range of components depending on the
type of simulator and the architecture being simulated. By combining the objects
provided by NetSim a new simulator can be created as a simple executable which
references the DLLs. To ease development, NetSim is written using C# and the NET
Framework. Using an object-oriented programming language allows new simulators to
be created based on the block diagram of the processor. Each component in the block

diagram will have an object created for it which tracks its state and models its behavior.

NetSim is divided into three main parts. Each part is based on the previous

and provides more advanced modules. All the core components are contained within
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NezSimBase. NetSimBase provides the objects needed to create a simple functional
simulator. These include components such as memory, registers, a system call handler
and an instruction database. Figure 2 shows how these components are connected to
create a basic functional simulator. Also contained in NetSimBase is FastMod.
FastMod is a functional simulator which can be used to create execution traces or as a

“fast forward” module for more advanced simulators.

Loader
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Figure 2: Structural Overview of NetSimBase

To facilitate retargeting, each instruction object contains an Execute() method
which will calculate the result of the instruction based on the operands supplied by the
simulator. 'This allows the ISA to be changed without completely rebuilding the
simulator. Instead, only a new instruction database is needed. Functional Units are
designed so that they just provide the operands to the Execute() method and then

simulate the instruction delay before outputting the results. This also allows for the
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ISA to be easily extended or modified and facilitates the creation of entire new types of

functional units.

4.2 SuperSim and NetSimHP

Once the functional core of NetSim had been completed and tested, the
project moved on to creating a cycle-accurate superscalar simulator (SuperSim). The
NetSim environment was extended by adding NezSizHP. NetSimHP contains all the
components necessaty to create a cycle accurate simulator. These components are
aware of simulated clock cycles. Each one contains an Update() and a Tick() method.
The Update() method is used by the simulated module to calculate its next state and
perform any inter-module communication. This communication is performed through
method calls to the other modules involved. The Tick() method represents the actual
clock transition. In this method each module will transition to the new state

determined in the Update() method.

NetSimHP contains components which are simply wrappers for NetSimBase
components with cycle accurate support and new components needed for a

superscalar processor. These components not only form the basis for SuperSim but

also for the SMT core of DSMTSim.

4.3 DSMTSim and NetSimMT

The most recent simulator created using NetSim is DSMTSim. This is a very
detailed architectural simulator which serves as the primary research platform for
DSMT. Each architectural component of DSMT is modeled as an individual object

which tracks the state and models the behavior of that component. Rather than
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relying on timing assumptions DSMTSim uses only delay values for memory and
instruction execution. All other timing in the system is based on actual behavior. By
avoiding predetermined timings for various operations, DSMTSim can provide real

world analysis of the behavior of DSMT.

Each module gathers its own statistics based on the actual resource utilization.
These statistics reflect not only the numbers but also the reasons behind them. An
example is issue utilization. The dispatch unit tracks not only the number of
instructions issued but also the reasons for any un-issued instructions. This additional
data makes spotting architectural bottlenecks easy. The accurate architectural model
used by DSMTSim means that the research data produced is more “real world”. For
example, there is no set branch penalty but instead the penalty depends on the pipeline

depth and the exact state of the processor.

DSMTSim collects a wealth of statistics as it runs a simulation. FEach
component tracks its own performance and gathers statistics independently of other
modules. When the simulation has finished the Statistics Database collects all the
statistics from each component and dumps them to a file. As the statistics are
gathered additional processing can be performed to calculate percentages and other
information which can be useful to the user. Each statistic is printed to the file based
on the specifications provided by the component. Figure 3 shows a small sample of

the statistics produced by DSMTSim.
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Cycle Count 72662 #

Instr Count 293892 #

IPC 4.0446 #

CPI 0.2472 #
LpsFound 17 #
LpsFul1lDSMT 8 ( 47.059%) #
LpsDSMT 34 (200.000%) #
LpsPreDSMT 17 (100.000%) #
LpsBadIPC 0 #
LpsSysCall 0 #
NumBwrdBr

NumUnigLps 12 # Number
GoodLps 2 (16.667%) #
BadIPCLps 4 ( 33.333%) #
BadNstLps 1 ( 8.333%) #
BadSysLps 0 ( 0.000%) #
BadSize 0 ( 0.000%) #
BadPDSMT 0 ( 0.000%) #
PendLps 1 ( 8.333%) #
PrelLps 4 ( 33.333%) #
UknLps 0 ( 0.000%) #
AvgCycPr 841.5833 #
AvgIltrPrlp 70.0833 #
CycPrltr 12.0083 #
CycPrItrD 11.9600 #
MaxItr 750 #
MinItr 3 #
CtxSpawned 881 #
CtxSquashed 122 #
SpwnPerSgsh 13.8479 #
SquashNormal 84 ( 9.535%) #
SquashMpStd 0 ( 0.000%) #
SquashBadIPC 13 ( 1.476%) #
SquashMSLoad 0 ( 0.000%) #
SquashITDep 25 ( 2.838%) #
SquashSpTrap 0 ( 0.000%) #
SquashBdInst 0 ( 0.000%) #
SquashIAddr 0 ( 0.000%) #
SquashMisc 0 ( 0.000%) #

Number of cycles executed
Number of instructions executed
Instructions per Cycle

Cycles per Instruction

Num loops found

Num
Num
Num
Num
Num

loops
loops
loops
loops
loops

of unique
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of

Average Cycles
Average Iterations spent on a loop
Cycles / Iteration

Cycles / TIter in DSMT

Maximum Iterations for a loop
Minimum Iterations for a loop
Number of contexts spawned

Number of contexts squashed
Squashed per spawned percentage

Squashed
Squashed
Squashed
Squashed
Squashed
Squashed
Squashed
Squashed
Squashed

in Full DSMT
in DSMT

in PreDSMT
with bad IPC
with Syscall

29556 # Num backwards branches from BrFU

loops in LoopTable
Good loops
Bad_IPC loops
Bad_Nested loops
Bad_Syscall loops
Bad_Size loops
Bad_PreDSMT loops
Pending loops
PreDSMT loops
Unknown loops
spent on a loop

normal loop ending
misspredicted stride
from bad DSMT IPC
from misspec loads
MS interthread Dep.
speculative trap.
bad instruction

bad Instr. Addr.
misc. reasons

Figure 3: A Sample Portion of DSMTSim Statistics
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5 Enhancing Dependency Resolution

To enhance dependency resolution and speculation in DSMT two key changes
are proposed. The first change is to the stride prediction method. The second is the
introduction of new hardware to assist in determining when a register value is safe to

read.

5.1 Stride Prediction

The original stride prediction method used by DSMT involved monitoring the
instruction stream for add immediate instructions. These instructions add a predefined
value to a register. When used in loops they often indicate a stride value which is
consistent for every iteration. The key drawback of this method is the complexity of
determining which add immediate instructions are strides and which are not.
Hardware must include not only a method to monitor the instruction stream but also
to determine which instructions indicate a stride for the current loop. When one
considers nested loops the problem becomes even more complicated as the stride
instructions for inner loops must be excluded. This methodology is unable to detect

strides which are set by a register value.

To simplify this stride detection process, a new methodology has been
introduced, which tracks register values directly to look for consistent strides between
iterations. During PreDSMT mode, the register results are captured at the end of each
iteration and their values are then compared to that of the last iteration. If the

difference is consistent then the register may have a predictable stride value. The last
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step to ensure that a stride exists is to check the D-bit for that register. If there is a

true dependency between iterations then the stride prediction is marked as valid.

Previous Register Value

Valid Bit

\

Stride Value

Stride Out

Figure 4: Stride Prediction Hardware

Figure 4 shows the new stride prediction hardware. In PreDSMT mode, the
values for all integer registers are captured and compared to the last value. Whenever a
new context is spawned, a multiple of the stride value is added to the last Previous
Register Value and the result is then copied to the corresponding register. This primes

the new thread with initial register values so that execution can begin immediately.

5.2 Register Generation Table

Predicting register dependencies in loops with complex dynamic behavior
presents a major hurdle to the performance of DSMT. The original design did not
track dynamic loop behavior and instead simply made a guess at whether a register was

ready to read. If the register read was incorrect then the context and all the following
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contexts were squashed and new contexts were spawned in their place. There are two
main dependency issues which can cause squashing. The first is caused by dynamic
loop behavior where a register is not produced every iteration. The second occurs

when a register value is created more than once in a single loop iteration.

The Register Generation Table (RGT) seeks to deal with these issues by tracking
each context’s path through the loop and recording which registers were written too.
The table is broken up such that each entry corresponds to 4 instructions. Entries are
indexed using a portion of the current PC value for the context, as can be seen in

Figure 5. The indexing is done as a direct map to simplify the process of using and

updating the table.
PC Address
V Register Table Index
. RN RN S
NS s
Unusead Set by Table Size Set by Block Size

Figure 5: Register Generation Table Index Value

Each entry includes a Prediction Counter for each register and a Path Flag for
each context. Figure 6 shows the Register Generation Table and the fields it contains.
Figure 7 shows the block diagram for a Prediction Counter. The Path Flags are used to
track which blocks each context has visited and the Prediction counters indicate the
likelihood that the register will be generated in or after that block. This prediction is
then used to determine whether a speculative context attempting to read the register

from the current context needs to be held to avoid misspeculation.
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Figure 7: Prediction Counter Block Diagram

Updating the table is accomplished by setting the Path Flag for each block in
which the current context has committed an instruction. When a register value is
produced, each block with the corresponding Path Flag set will increment its
prediction counter. This way each entry block contains information about the
behavior of the instruction blocks which will follow it. Traditional methods of
prediction often rely on a specific set of circumstances to occur before the prediction
is updated as seen in branch predictors. For DSMT, the process of filling in one of
these tables would mean a long runtime with mediocre performance in order to

generate the dependency prediction data. But with Path Flags, large parts of the RGT
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can be updated at the same time. This allows most entries in the RGT to be generated

in just the 2 cycles of PreDSMT mode.

Instruction
attempts to read
register from a
previous context

The Register
Generation
Table is
Checked Here

Try again

3
Ok to read? next cycle

Read register
D-bit set

Search back

Read register Head through
D-bit not set Context? preceding
contexts

Figure 8: Flowchart for Modified Register Reading

To accommodate the RGT, the dependency resolution algorithm for DSMT
has been modified as shown in Figure 8. When a context attempts to read from a
previous context, it first checks the RGT to see if the register is safe to read. If not
then it will wait and try again on the next cycle. If the register is safe to read from the
preceding context, then the R-bit for that register is checked to determine if the value
has been produced. If the value has been produced, then it is read and the D and L-bit
are set to indicate an inter-thread dependency and a corresponding speculative register

read.
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If the R-bit is clear then the register has not been produced by that context and
the speculation process must continue to previous threads. If the context being
checked is the head then the register will be read anyway, the L-bit will be set but the
D-bit is not. This indicates that the register may have been produced before the loop
began. The speculative search continues to previous contexts until the register is read

or an unsafe context is found.

This modification to the original dependency algorithm has two main
advantages. First, if there is a high likelihood that a register will be produced by a
given context, then the speculative context will wait for it to be produced. The second
advantage is that if the proceeding context does not seem likely to produce the value
then second level speculation can begin immediately. In the original algorithm, the
speculative context would be held for a predetermined amount of time before

attempting to proceed to second level speculation.

5.3 Dependency Examples

Figure 9 shows a simple loop from the matrix multiplication program with all
inter-thread dependencies highlighted. At first the loop may seem to be hopeless but
if the stride values are removed then only a single true dependency is left (Figure 10).
This true dependency cannot be broken reliably as it is based off of two load
instructions. To prevent contexts from being squashed each thread must wait for this
dependent instruction to commit before proceeding. Anytime a context reads the
value before the dependent instruction is completed, that context and all contexts after

it will be squashed. With the traditional algorithm, the context would be stalled for a
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set amount of time or until the register value is produced, whichever came first. Using
the PC of the proceeding context, the new dependency algorithm can use the RGT to
determine if the register can be safely read. And by checking every cycle, the register
can be read as soon as the previous thread has advanced to a safe portion of the code.
In trivial cases such as this example, both methods can resolve the dependency equally
well. Stride prediction would be responsible any improvement seen. Only with more

complex behavior will the RGT be able to show an improvement.

addu r2, r8, r3
l.s £f2, 0(r4)
1l.s £f0, 0(r2)
mul.s f2, f£2, f0
addiu r3, r3, 120
add.s f4, £4, £f2
addiu r5, r5, 1
addiu rd, r4, 4
slti r2, r5, 30
bne r2, r0, -10

Figure 9: Code Segment with All Dependencies Highlighted

addu r2, r8, r3
1.s £f2, 0(r4)
1l.s f0, 0(r2)
mul.s £f2, £2, f0
addiu r3, r3, 120
add.s f4, £4, £f2
addiu r5, r5, 1
addiu r4, rd, 4
slti r2, r5, 30
bne r2, r0, -10

Figure 10: Code Segment with Only True Dependencies Highlighted

Upon entering PreDSMT mode, the RGT immediately begins gathering
register generation data from each completed instruction. When a register value is

committed both the Path Flag and the corresponding prediction counters get updated.
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Figure 11 shows code from one of the loops in the SPEC2000 AMMP benchmark.
The code has been broken up into 4 instruction blocks as it would be by the RGT.

Instructions which produce true dependent register values are highlighted.

LOOP:
1b r3, 0(rle)
s1l r2, r3, 1
addu r2, r2, r’
lhu r2, 0(r2)
andi r2, r2, 8
beqg r2, zero, ENDCHECK
c.lt.d f6, £20 ;F6<F207
addiu r5, zero, 1
bclf ELSE ;Branch
IF:
addiu rl7, rl7, 1 ;R17 A
3 ENDIF
ELSE
mul.d f2, f20, f4
addi r2, r3, -—-48
mtcl r2, fO0

cvt.d.w f£f0, fO

add.d £20, £2, fO ;F20
ENDIF

beqg r4, zero, DONE

addiu rl7, rl7, -1 ;R17 B

j DONE
ENDCHECK::

bne r4, zero, OUT

bne r3, r6, OUT

addiu r4, zero, 1 ;R4
DONE

addiu rle, rle, 1

3 LOOP
OUT:

Figure 11: Loop Example from SPEC2000 AMMP
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Table 1 shows the Path Flags when each register value gets produced. As each
iteration proceeds through the loop, the Path Flags are set for each portion of code
visited. When a register value is produced, all the blocks with their Path Flag set have
their corresponding register prediction counter incremented. If the register is

produced frequently then any blocks along the path will be considered unsafe.

Table 1: Path Flags for Each Dependency Case

R4 | F20 | R17 A| R17 B
1 1

]
1
0
0
0
1
0

OO0 4 =4 4 a4
OO OO =+ =
OO0 = D) 4 4

Consider the case of R4. When this register is produced a large portion of the
loop is skipped. As a result R4 is safe to read if the proceeding context has reached
the 3 block. R4 will not be produced by a context if that context is currently
executing instructions from the 3*, 4®, or 5" blocks. If R4 is produced frequently (i.c.
more that once every 4" iteration), then the RGT will not allow R4 to be forwarded

from a context which has not dispatched instructions past the 2" block.

For R17, the RGT would consider the first 3 blocks unsafe if either or both
cases were common. Blocks 4 and 5 would only be considered unsafe if case B were
common. This would allow R17 to be read in block 4 if case B were uncommon. If

case B was common, forwarding would be prevented until the 6" block.



23

6 Results and Analysis

To determine the performance of RGT, a range of loops were simulated and
their results analyzed. These loops are from both a Spec2000 benchmark [10] and our
own custom matrix multiplication program. These benchmarks present a variety of
difficult and ideal loops for the RGT to be tested against. For the Spec Benchmarks
we used the GCC compiled binaries provided by [11] and the reduced data sets created

by [12].

Table 2: AMMP Loop IPCs

Loop Address | PreDSMT | Base DSMT | w/Reg Table | % Improvement
0x00415c28 1.5 0.5455 0.6667 22.22
0x00410c98 0.7778 0.5333 0.5833 9.38
0x00401238 0.8427 0.8414 0.8389 -0.30
0x00440470 0.8 0.6847 0.7677 12.12
0x00400b80 1.3714 1.0825 1.0657 -1.55
0x004010e8 0.8257 0.7563 0.8182 8.18
0x004530f0 3.4286 0.7619 1.0213 34.05
0x0044a468 0.8974 1.219 1.2234 0.36
0x004400f0 0.7368 0.6563 0.7 6.66
0x00441fb0 0.5 0.4286 0.4615 7.68
0x0044dd88 1.12 1 1.1212 12.12

Shown above in Table 2 are the DSMT IPC improvements for loops from the
AMMP Spec2000 benchmark. In this case, by forcing speculative contexts to wait we
got a significant improvement in performance. The loops from AMMP represent all
loops which showed a change once the RGT was used. Many of the loops show a
significant improvement in IPC, including several which had more than a 20%
improvement. The results also showed a 7.2% reduction in the number of contexts

squashed due to inter-thread dependencies. The performance of these loops is
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improved significantly when using the RGT. The loop at address 0x00440470 was
shown in the RGT example above. It is worth noting that the RGT produced a 12%

increase in performance for this case.

Table 3: AMMP Loop Results

Category Number of Loops
worse 2
No change 24
0-10% 5
10-20% 2
20+% 2
unknown 20

Table 3 shows a breakdown of the impact of the RGT on the loops in AMMP.
The unknown loops are those which did not have enough iterations to ever enter
DSMT mode. Of the loops which show no change most are very small and have
almost no inter-thread dependencies. These loops are very similar to the example
presented earlier. The two loops which actually presented worse performance were
both loops which had a large amount of dynamic behavior. Unfortunately, both were
only run in DSMT mode for just a few iterations so the IPC numbers could very likely
have been impacted by other architectural issues. With such a small number of

iterations a single cache miss could significantly impact the resulting IPC numbers.

Looking back at Table 2, one architectural limit to DSMT reveals itself. In
most of the loops presented, the RGT granted a large improvement but this was still
insufficient to outperform non-DSMT execution. The reason for this lies in the

forwarding mechanism used. Consider the matrix code presented in Figure 10. The
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result of that instruction in non-DSMT mode is forwarded to the next dependent
instruction via the common data bus. This forwards the result from the functional
unit to the reservation station of the waiting instruction. The dependent instruction
can then begin execution on the very next cycle. While in DSMT mode, the result
from one iteration must be committed to the register file before it can be forwarded.
As a result, extra latency is introduced. In many cases this extra latency is not a
problem as DSMT can simply fill the stall from other contexts or unrelated
instructions. However, in many cases this will limit the maximum attainable IPC in

DSMT mode and prevent the processor from extracting any TLP from that loop.
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7 Future Work

Work still needs to been done to determine the best settings for the Register
Generation Table. The increment and decrement values used in this thesis performed
well but they may not be ideal. This also holds true for counter size and the cut-off
value used in determining predictions. Further simulation results with a variety of
settings for the table will be needed to determine the best values for each. It may also
prove beneficial to be more aggressive with the more speculative contexts. If the tail
context is squashed, no other contexts get squashed with it. This means there is a
lower misspeculation penalty, which may mean a larger pay off for aggressive

speculation.

The results presented in Section 6, highlighted an architectural inadequacy in
DSMT. The forwarding within a single context is significantly faster than forwarding
between contexts. Intra-context forwarding is also unaffected by unrelated stalled
instructions. As a result true dependencies can make it impossible to match the non-
DSMT performance of a loop, even with excellent dependency prediction. The
forwarded value remains unavailable for use even after it is produced, while the
speculative context waits for the instruction to commit. As a result, any inter-thread

dependencies will hinder performance far more than intra-thread dependencies.

To combat the problem, changes need to be made to the inter-thread
forwarding to allow it to use the much faster common data bus. By doing this
speculative threads would be allowed to proceed much quicker after a dependency

resolution. A value can be forwarded by using the context and tag already associated
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with the instruction, but the problem is complicated by branch misspeculation. To
ensure correct execution a method must be devised to track forwarding through the

common data bus and allow for recovery after a branch misspeculation in the head

thread.
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8 Conclusion

The purpose of this thesis is to examine dependency speculation in DSMT and
present the development of the simulator used for this research. The development of
the NetSim environment has been crucial to the results produced in this thesis. The
wealth of statistics has aided in identifying and modeling the key bottlenecks in the
DSMT architecture. As a result of this, new methods of dependency speculation could
be proposed and studied. The modular simulator allowed for the rapid development

and integration of the Register Generation Table into the core design.

From the results presented in Section 0, there was a clear improvement in the
number of threads squashed and the IPC of problem loops. Threads squashed due to
stride misspeculations remain very low or nonexistent and those squashed due to
dependency misspeculations have been reduced. The Register Generation Table has
improved DSMT’s dependency speculation and increased the performance of loops
with difficult dependencies. There is still work to be done to allow DSMT to reach its
full potential but predicting and speculating on inter-thread dependencies in dynamic

loops is no longer the hurdle it used to be.
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