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ABSTRACT

Observations of oppositely directed, monthly mean alongshore currents and wind stress over the continental
margin off the Pacific coast of North America motivate the theoretical examination of mean flow generation
by topographic lee-wave drag. We formulate a barotropic model for wind-forced shelf-slope flow over variable
topography. Our central objective is an analytical expression for mean flow generation in a simple case. We
specify a linear cross-shelf slope with sinusoidal alongshore variations and use the approximation of Hart, which
yields a system with only parametric cross-shelf dependence when the alongshore scales are short compared to
the cross-shelf scales. The inviscid unforced equations have two constants of the motion and reduce to a quartic
Hamiltonian system similar to that of Duffing’s equation. For weak near-resonant time-periodic forcing, we
use the method of averaging to obtain evolution equations for the amplitudes of small oscillations. All steady
solutions of the averaged equations, which correspond to steadily oscillating small amplitude currents in the
model, have mean current in the direction of the observed currents (poleward on an eastern boundary). Multiple
equilibria occur. Mean current generation is most efficient for low frequencies, short wavelength topographic
variations, and comparable alongshore and cross-shelf topographic slopes. The mean Lagrangian flow is along
isobaths. Numerical solutions of the model equations compare well with the averaging analysis predictions. For
certain parameter ranges, all steady solutions of the averaged equations are linearly unstable. In these ranges,
numerical solutions of the averaged equations yield limit cycles, period doubling sequences, and chaotic behavior,
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Quasi-Geostrophic Topographically Generated Mean Flow over the Continental Margin

suggesting that the response of slope flow to atmospheric forcing may be irregular.

1. Introduction

Observations over the continental margin off central
California indicate monthly mean midshelf, middepth
currents are northward all year while mean wind
stresses are southward (Denbo and Allen, 1987; Strub
et al., 1987). The dynamics that give rise to this mean
interior flow against mean surface stress are not pres-
ently understood. Continental shelf waves have also
been observed in shelf-slope flow (Enfield and Allen,
1983; Halliwell and Allen, 1984); the theory of their
motion is well developed. Their phase propagates in
only one direction (poleward on an eastern boundary),
so they may exist as lee waves on only one side of an
obstacle. The resulting wave drag will depend asym-
metrically on the current (Martell and Allen, 1979)
and should generate a mean flow in response to an
oscillating, zero-mean wind stress. Consequently, the
interaction of forced shelf flow with alongshore topo-
graphic variations is a natural candidate for a theory
of the observed northward shelf currents. Here we begin
the dynamical analysis of mean flow generation by to-
pographic lee wave drag with a simple model of wind-
forced flow over a bumpy continental slope. Our central
objective is an analytical expression for mean flow
generation in this simple case.

We specify barotropic quasi-geostrophic f-plane
channel flow over a sloping bottom with sinusoidal
cross-channel (cross-shelf) ridges, bottom friction, and
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an along-channel (alongshore) wind stress. Hart (1979)
formulated a similar model to study multiple equilibria
and blocking in atmospheric flow over mountains, with
vortex stretching due to the beta-effect rather than the
continental slope. Following Hart, we derive a simpli-
fied set of three ordinary differential equations by as-
suming that the alongshore velocities of the topographic
wave are negligible when the alongshore wavelength of
the ridges is short compared to the cross-shelf scales
on which the ridge heights vary. (Charney and DeVore,
1979, obtain a similar representation by spectral trun-
cation.) These model equations are identical to those
of Hart except that the scaling is different and the forc-
ing of interest is periodic rather than steady.

The presence of time-dependent forcing substantially
complicates the problem. We restrict the analysis here
to weak near-resonant forcing and use the method of
averaging to obtain evolution equations for slowly
varying amplitudes of small oscillations. (This effec-
tively reduces the dimensions of phase and parameter
spaces by one each.) All steady solutions of the averaged
equations, which correspond to solutions of the model
equations with steadily oscillating currents, have neg-
ative (poleward on an eastern boundary) mean current.
Mean current generation is most efficient for low fre--
quencies, short-wavelength alongshore topographic
variations, and comparable alongshore and cross-shelf
topographic slopes. The mean Lagrangian flow is along
isobaths.
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Mean flow generation by topographic interaction is
inherently nonlinear. This nonlinearity leads to a rich
variety of qualitative behavior in the averaged equa-
tions. Multiple equilibria occur. (These correspond to
multiple steadily oscillating flows and thus differ from
the multiple steady flows found by Hart, 1979, and
Charney and DeVore, 1979.) Some steady solutions
are unstable, and for parameter values near a Hopf
bifurcation point no stable steady solutions exist. Nu-
merical integrations of the averaged equations yield
limit cycles, period doubling sequences, and chaotic
solutions.

The averaging analysis prediction of mean current
generation compares well with numerical integrations
of the model equations even for forcing of nondimen-
sional order one. The prediction of irregular response
to regular forcing near resonance is briefly investigated
and agreement is found for weak forcing and friction.

The model retains the essential physics of the inter-
action between periodically forced barotropic quasi-
geostrophic shelf-slope flow and topographic wave drag,
yet is simple enough to yield analytical results. It ro-
bustly predicts mean flow generation and complements
recent numerical modeling work in which the real to-
pography is better represented (Haidvogel and Brink,
1986). The appearance in the model of chaotic solu-
tions suggests that the response of slope flow to at-
mospheric forcing may be irregular.

2. Equations

First, we derive the governing equations, using the
approximation of Hart (1979); second, we give the
scaling arguments for the oceanic continental margin
case and motivate the restriction to weak near-resonant
forcing.

Figure 1 displays the model geometry. We choose a
right-handed Cartesian coordinate system over the
continental slope with horizontal coordinates (x’, '),
where x’ is alongshore and positive in the direction
opposite to topographic Rossby wave phase propaga-
tion, and )’ is positive onshore. We confine the fluid
to an alongshore channel with walls at y = 0 and y
= yp and a variable depth that increases offshore. (The
confinement models the effect of coastal trapping and
isolates the dynamics from the unspecified deep ocean
fields.) We take the flow to be governed by the baro-
tropic quasi-geostrophic potential vorticity equation
(Pedlosky, 1979), which in nondimensional form is

d o da . arr 9
—t == AY+ by = —FAY +———.
(az axdy 9y ax)( VR A T
2.1)
Here the dimensionless streamfunction y = p'/pU,fL,
coordinates (x, y) = (x', ¥')/L, time t = ¢'U,/L, bottom
topography 2 = h'/RoD, fn’ction,r” = §g/2RoD, and
vector wind stress (7%, ) = (¥, 77)/7¢. Primes denote
dimensional variables; p’ is pressure. The density p,
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FIG. 1. Model geometry. Isobaths are schematic.
We consider the case 7L ;< yp.

Coriolis parameter f, velocity, length, and depth scales
Uy, L and D, bottom Ekman layer depth 65, and wind
stress scale 7o = pUpf RoD = pUy*D/L are dimensional
constants, and Ro = Up/fL is the Rossby number. The
horizontal Laplacian (6*/dx? + 8*/dy?) is denoted by
A. We will also use subscripts to denote partial differ-
entiation with respect to x, y, or ¢.

" For bottom topography we take

h(x,y)=y+g(x,y), (2.2a)

where g represents the topographic variations that are
superimposed on the uniform cross-channel slope and
has the form

g(x, ) = 28(y) cosx, (2.2b)

6(0) = 6(y0) =0, (2.2¢)

where 6 is a smooth nonnegative function of y that
vanishes near the channel walls. The forcing is

7™=1cos(wt), 77=0. (2.3)
The flow is periodic in x, and there is no normal flow
at the channel walls:

Yo, 1) =Y(x+ 2w, ,0),
U, 0,8) = Ylx, ¥o, ) = 0.

We denote by angle brackets the x-average over a to-
pographic period and by square brackets with super-
script ¢ the t-average over a forcing period, that is,

1 X+2m

@)=3.

27l'x

(2.4a)
(2.4b)

Pdx’, (2.5a3)



NOVEMBER 1987

w t+(7r/w)
[@]' =< f odr. (2.5b)

27 Ji—(x/w)

Averaging the depth-integrated x-momentum equation
over a period in x and using (2.2), (2.3), (2.4) and (2.5),
we obtain the constraint

A N
(& + r)(%) =—(7) at y=0,y. (2.6)

Averaging (2.1) over a period in X, integrating with
respect to y, and using (2.6), we obtain an equation for
the x-averaged alongshore flow,

O A S O

Integrating the second term on the right-hand side of
(2.7) by parts shows

(W) = —(¥8x), 2.8)

so the covariance between the cross-shelf velocity and
the topographic height is just the wave drag, that is,
the negative of the x component of the average pressure
stress exerted on the topography.

Let

Yx, ¥, 0= —U@)y+ ¢(x, , 1), 2.9

where U is the basic alongshore flow and ¢ the per-
turbation due to the topography. Substituting (2.9) into
(2.1) leads to an equation for ¢ involving U. In order
to simplify the analysis of the resulting problem, we
consider ridges that vary slowly across a wide channel.
If y-derivatives of g are small, y-derivatives of ¢ ought
to be small also. Thus, following Hart who justifies this
step with a formal asymptotic expansion in the ratio
of x- and y-length scales. We neglect all terms in (2.1)
and (2.7) that include y-derivatives of ¢ or g, obtaining

du

o ~FU+{p.8) + (7*), (2.10a)

¢xxt=_U¢m_‘f¢x.x-¢x_ ng (210b)
Friction, x-averaged wave drag, and x-averaged wind
stress determine the acceleration dU/dt of the along-
shore flow in (2.10a). The vorticity ¢, varies with time
in (2.10b) in response to advection by the alongshore
flow, friction, and vortex stretching (motion in the am-
bient potential vorticity gradient). There are two vortex
stretching terms: the first is due to offshore flow over
the shelf slope, the second, alongshore flow over the
ridge slopes. Equations (2.10) correspond to Egs. (5)
and (4) in Hart (1979) when U, ¢, 7, g and ! are
divided by 3 and the forcing is scaled to unity.

We have required the alongshore topographic vari-
ations to vanish near the walls, so the wave drag in
(2.7) and related topographic effects in (2.1) will also
vanish there, and no difficulties should arise in satis-
fying the boundary conditions. If topographic varia-
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tions are considered that do not vanish at the walls, or
if discontinuities in the interior solution arise as the
topographic amplitude § varies through bifurcation
points, boundary layers may be needed. We assume,
as Hart did, that such boundary layers can exist. Since
the subsequent analysis will show that the character of
the solution depends on parameter values, slow vari-
ations in topographic amplitude may yield qualitatively
different behavior at different locations, even in this
simple model. Detailed consideration of this question
is beyond the scope of the present paper; its objective
is an understanding of the local dynamics of mean flow
generation.

Fourier series expansion of ¢ in x reduces (2.10) to
a set of ordinary differential equations. For the topog-
raphy (2.2), this set is

au " n
E=—rU+5¢2+~r", (2.11a)
d X
iy (U=, 2.11b)
i;%3=—i’(l>2+(U—l)dn—éU, (2.11¢)
where
o= ~/§(d>1 cosx + ¢, sinx). (2.12)

The other Fourier coefficients of ¢ decay to zero (or
remain zero if they vanish initially), and in any event
do not contribute to the wave drag. The set (2.11), with
7* given by (2.3), is third order but nonautonomous,
and has no steady solutions. It is similar to (7), (8) and
(9) of Hart; the scaling is different and the forcing is

.periodic rather than steady. The y-dependence of ¢ is

parametric, through 4.

Physical considerations suggest the use of the quasi-
geostrophic approximation and give an idea of the rel-
evant parameter ranges. We choose a barotropic model
for simplicity and because the observed currents are
often not strongly depth-dependent, and defer discus-
sion of the possible effects of stratification to section
6. A typical velocity over the slope is Uy = 10 cm s\,
We take this to be the fundamental dynamical scale.
Values appropriate to the geometry of the upper con-
tinental slope are depth D = 250 m, width y; = 40
km, and bottom slope dh’/dy’ = 1072 Setting 27 L equal
to the wavelength of a resonant topographic wave when
U’ = Uy determines the length scale as

n1/2
L= [UOD/f(Z_f/)] =5km.

Thus at midlatitudes (f = 107 s7!) a typical Rossby
number is Ro = Uy/fL = 0.2, and quasi-geostrophic
theory should illuminate the physics. Since L
< (gD)"?/f (here g is gravitational acceleration) and L
< fi(dfldy"), free surface deformation and variation of
Coriolis parameter are neglected in (2.1). The wave-
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length of the topographic variations (2.2b) is 27 L ~ 30
km. Martell and Allen (1979), using digitized topo-
graphic data for the continental slope and upper shelf
off Oregon from Peffley and O’Brien (1976), noted that
for the lowest cross-shelf mode of topography, along-
shore variations with wavelength near 30 km had an
amplitude around 40 m. In dimensional form, the to-

pography (2.2) is
,_RoD , X
h L y'++v28 cos I’
where ¢’ = RoDé. Using the above values, we find RoD
= 50 m, so § = O(1) is appropriate. The alongshore
length scale of topographic variation is less than the
cross-shelf scale (37L ~ 8 km < 20 km = 1yp), but
the ratio of the two is not asymptotically small. We
persist with the limit of anisotropic topography in the
model because of the accompanying simplification of
the analysis. Recent numerical results (Haidvogel and
Brink, 1986) suggest that short-wavelength topography
is most effective in generating mean flow, so the limit
of short wavelength is of natural interest,

For a dimensional alongshore wind stress of 1 dyn
cm~2 and a bottom Ekman layer depth of 6z = 10 m
(corresponding to a dimensional frictional time scale
Tz = 2D/(8cf) ~ 6 days), the nondimensional wind
stress and friction parameters are 7* = 0.2, 7 = 0.1.
Since these values are small, and since the resulting
problem is relatively tractable, we restrict the analysis
here to weak forcing and weak friction. We have chosen
the topography to give resonance when the alongshore
velocity U = 1, so the small-amplitude analysis in effect
treats the interaction of forced flow with topography
that has wavelength longer than the resonant scale.
Numerical solutions in section 4 indicate that the mean
current prediction from this analysis maintains sub-
stantial accuracy for 7%, 7, U = O(1).

The time scale L/ U, is about 0.6 days, so the forcing
period 2nL/wU, is about 4/w days. Consequently, w
= O(1) is appropriate for wind stress forcing by syn-
optic-scale weather systems. Subsequent analysis will
show that the system (2.11) has oscillatory solutions
when friction and forcing vanish. At small amplitude,
the frequency of linear oscillations is also O(1) if §
= (1), so that natural and forcing frequencies are of
the same order in this limit. Motivated by this and the
belief that a dynamical system’s response to forcing is
often both most interesting and most important near
resonance, we examine the behav1or of (2.11) for near-
resonant forcing,

(2.13)

3. Analysis
a. Inviscid unforced oscillations
When friction and forcing vanish in (2.1), multipli-

cation by ¢ and (Ay + h) and integration over the
channel area yield conservation statements for the area
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integrals of kinetic energy il + ¥ 2) and potential
enstrophy 1(Ay + h)?, respectively (Pedlosky, 1979).
When friction and forcing vanish in (2.10), similar
statements exist for x-averaged quantities:

jt( U+ <¢x2>)

(‘<¢ >+<¢xxg>+U) 0.

The first, (3.1a), expresses conservation of x-averaged
kinetic energy. The second, (3.1b), is the x-average of
the equation for potential enstrophy conservation. The
third term in the second equation, dU/dt in (3.1b), is
equal to the x-average of the cross-shelf advective de-
rivative of potential enstrophy, by (2.10a). The quantity
conserved in (3.1b) is equal to the x-averaged potential
enstrophy only if U = 0.

For (2.11), the corresponding conservation state-
ments are

(3.1a)

(3.1b)

dE .
~ =0 (3.2a)

where
== (U*+¢2+ 59, (3.2b)

aMm

— =0 (3.2¢)

where
M=2(2+9H -6 +U.  (329)

Consequently, when friction and forcing vanish, the
system (2.11) has only. one degree of freedom. In fact
it has periodic solutions and may be solved in terms .
of elliptic functions (Charney and De Vore, 1979).

For convenience, we introduce new variables to re-
place ¢, and ¢,, rewriting (2.11) as

%i—j— —FfU+ F+ 1 coswt, (3.3a)
dF _ _ 270312 13
Et-~—rF+(U 1)G — wo U+-2-U ;U%  (3.3b)
fid_? =—7G— "U2 +(U— 1)7 coswt, (3.3¢)
where
F=6¢,, (3.42)
G=E-M, (3.4b)
wor=1+6° (3.5)

It is evident from (3.3) that the inviscid unforced
system is Hamiltonian with Hamiltonian function

H(U,F)=%F2+GU+%(w02—G)U2—-1 U3

+% Ut= 62E—%Gz. (3.6)
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The conserved quantity G appears only as a parameter;
the square of the linear frequency is wo? — G. IfG = 0
and 6 is O(1), the linear frequency is O(1). Since by
(3.4b) and (3.2b), G is a continuous function on an
energy sphere E = E,, it is bounded for a given value
Eq. Crudely, |G| < VE[VE, + v2(1 + 5)]. The Ham-
iltonian (3.6) is quartic like that of Duffing’s equation
(Duffing, 1918; or, e.g., Nayfeh and Mook, 1979) but
not symmetric.

b. Averaged equations

Equations (3.3) are nonlinear, have no steady so-
lutions, and depend on three parameters, so direct study
of them is difficult. Analytical progress can be made at
small amplitude, where the nonlinear effects are small.
We use the method of averaging to approximate
asymptotic solutions for weak near-resonant forcing.

Anticipating the scaling that will allow forcing, fric-
tion, and nonlinearity to enter at the same order, we
let

e=713, (3.7a)
(3.7b)
(3.7¢)

r=7#/e,

o= (w?— w?)/26%w,

and considerO <e< 1,r> Oand r, ¢ = O(1).

With this scaling, all solutions eventually have U, F
= O(¢), G = O(€?), as shown in appendix A. To inves-
tigate the details of the asymptotic behavior, we use
the method of averaging. We give the results of the
averaging procedure here; the details are in appen-
dix A.

With the variables (U, F, G) expressed as

U=« Ze™ + Ze Y+ (ue™ + e, (3.8a)

F= dic(Ze™ — Ze )] + iw(ure™ ~ i),
(3.8b)
G=éC, (3.8¢)

where Z is complex, C is real, overbar denotes complex
conjugate, and
2 72

zZ° . 1 = . Z ,
iwz e+ 5—2' 327 - Ce ™+ 4—‘»26’_3'”', (3.9)
W

the averaged equations are

%:62[—,2—ng+%k+ib,ZC+ib2222-], (3.102)
. 62[—rc— izz+Lz+ z')]. (3.106)
Here
62
k=3 | (3.11a)
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1 3
1= 3.11b
b 2%(1 woz), (3.11b)
3 5
bz—ag(l—c—o?), 3.11¢)

and (3.7c) has been used to replace w by wy with no
loss of accuracy. In appendix A, we discuss the error
incurred in using solutions of (3.10) in (3.8) to ap-
proximate solutions of (3.3).

Averaging over the forcing period and neglecting the
error terms, we obtain, using (2.5b),

. 77—
(@lime A[UT = Uy = 62(1_22_6) ., (3.12)
=0 wo

which defines the (time) mean current U,,. This local
time mean may vary slowly according to (3.10).

For numerical solution, it is convenient to write the
averaged equations in terms of the real and imaginary
parts of Z. Letting

' Z=ZrtiZ, (3.13)
(3.10) becomes:
dZr _ 2, 72 1
—= —rZR+ aZ;—blZ,C— bz(ZR + ZI )ZI+—k,
aT, 2
(3.14a)
dz; 2 2
—ﬁ = —rZI— O’ZR + b]ZRC+ bZ(ZR + ZI )ZR,
2
(3.14b)
£=—rC-r(ZR2+ZIZ)+ZR, (3.14C)
aT,

where 75 = €.

Applying the method of multiple time scales (Ke-
vorkian and Cole, 1981) to (3.3) gives equations equiv-
alent to (3.10).

¢. Steady solutions and mean flow generation

The steady solutions of (3.10) correspond to periodic
solutions of the original set (2.11) with amplitude con-
stant to first order, as can be seen from (3.8).

For convenience, we first transform Z to a polar
form,

2 =3 al)e™, (3.15)
where g and v are real. [By (3.8), U = ea cos(wt + v)
+ O(¢?).] Then the steady solutions (ag, Yo, Co) of (3.10)
are found by setting the time derivatives equal to zero
and solving the resulting algebraic problem. The
squared steady amplitude satisfies the cubic equation

P(ay’) =0, (3.16a)

Pa®)=[r*+(c — aa®?*a® - k2,

where
(3.16b)
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and v, and C; are determined from

2
Yo= arctan[— (i—?aL)] , (3.17a)
3 1
Co= Z 62 a0’ (3.17b)
where
a= 16512 54— 36%)(4 + 6%). (3.18)

It follows from (3.15) and (3.17b) and the expression
for the mean current U, (3.12) that

%’

526002 ’

so all steady solutions have negative mean current.

[Solutions with a?> = 0 are only possible if § = 0, as

evident from (3.16) and (3.15a).] This is our central

result on mean flow generation.
Since for fixed 4, by (3.19), the magnitude of the

my= {jm(ao2 =- (3.19)

mean current U, increases with the oscillation amp- '

litude aq, the largest solution of (3.16) yields the max-
imum (negative) mean current for given 6. The largest
solution of (3.16) as ¢ varies for given 4 and r is ag*
= k?/r? (section 3d). After the use of (3.7) and (3.11a),
the corresponding maximum mean current is

627'2
4(1 +8%%F%
Its magnitude increases as the square of the ratio of
forcmg 7 to friction 7 and has a maximum for given 7

and f at topographic amplitude § = l/s/_ We discuss
the dimensional form of (3.20) in section 5.

[Ulomax = — (3.20)

d. Multiple equilibria .

Equation (3.16) is identical in form to an equation
that results from a similar perturbation analysis of
Duffing’s equation (Nayfeh and Mook, 1979, section
4.1). Solutions depend on the three parameters r, o and
d, since k depends directly on & by (3.5) and (3.11a).
The graph of amplitude versus the frequency parameter
o for fixed r and 4 (the frequency-response curve) can
be constructed easily by solving (3.16) as a quadratic
equation for ¢, which gives

kz 1/2
0’=aa{)2i(—2—r2) (3.21a)
ay .
and noting that real solutions exist for
K2
, 0<a02<75. (3.21b)

In the following, “right branch” means the plus sign
in (3.21a) and “left branch” means the minus sign. A
typical response curve has 'a peak near resonance (o
= () that is smoothed by friction and bent by the non-
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linearity. Figure 3, dlscussed below, shows examples
of such curves.

Substituting (3.21a) in (3.17a) and solving for the
squared amplitude shows

k2
ay’ = 3 cos?yo, (3.22)
so the amplitude of the basic alongshore flow decreases
as the magnitude of the phase difference between it
and the forcing increases.

For certain parameter values, (3.16) has multiple
solutions. As-é and r vary through the point where
bifurcation to multiple equilibria on the response curve
occurs, the tangent to the response curve passes through
the vertical and three distinct real solutions of (3.16)
emerge from one. The bifurcation set is the set of so-
lutions to

Pa?)=P'(al)=P"a’)=0, (3.23)

where prime denotes differentiation with respect to a2
Solving (3.23), we obtain

kel 8
=— 3.24a
33 (3.242)
Vgra 2r
c’ac2= ) N 3.24b
(7, 4) (lal V§|a|) (3.24b)

where the vertical tangent occurs at (¢, a.). Multiple
equilibria occur if
kzlal
r3 3V_

Thus, except at 6 = 2/V3 V_, where a = 0, multiple equi-
libria always occur for sufficiently small friction.

(3.25)

e. Stability of steady solutions

A linear stability analysis demonstrates that where
there are three distinct steady solutions of (3.10), one
of them is always unstable, and that for certain param-
eter ranges all steady solutions of (3.10) are unstable.
We summarize the results of the stability analysis here
and give the details in appendix C. For small r, we
obtain analytical results. For general r, we use analysis
and numerical methods.

Figure 2 is a bifurcation diagram for the frequency-
response curves. For each 6 and r there is a response
curve giving the amplitude a,® as a function of the
frequency parameter o. The character of the response
curve depends on the region of Fig. 2 in which it lies.
We give a detailed explanation of the bifurcation dia-
gram in appendix C. The qualitative nature of the re-
sponse curves in each region in Fig. 2 may be readily
understood from Fig. 3, which displays a typical re-
sponse curve from each region. The solid line in Fig.
2 is (3.24a); below it, multiple equilibria exist for certain
o-intervals. Thus, multiple equilibria exist in regions
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FIG. 2. Frequency-response curve bifurcation diagram. Numerals
label regions as explained in text. Solid line: bifurcation to multiple
equilibria; dashed lines: bifurcations to instability.

II-IV and VI-X, but not in regions I and V. All steady
solutions are unstable for certain o-intervals in regions
IV, V, VI and VIIL

Where three steady solutions exist, the solution with
intermediate amplitude is always unstable. At the end-
points of a g-interval for which multiple equilibria oc-
cur, two solutions merge in a single solution that may
be either unstable or neutrally stable. We call these
bifurcation points (where two solutions merge and sta-
bility changes) p; = (o}, dp;%) and p; = (02, ap,?), where
ag2* > ao,>. In addition, there is an interval of instability
which is not simply related to the shape of the response
curve. We call its endpoints p; = (a3, ag3?) and p, = (o4,
ag4?), where ag,? > ags°. (All four points appear in Fig.
3¢, for example. A solid curve indicates stability, a
dashed curve instability, and the bifurcation points are
labeled.)

In spite of the complexity of Fig. 2, the dependence
of the o-coordinate of the bifurcation points on r and
6 is relatively simple. Figure 4 shows o;, i = 1, + « ¢,
4, versus & for r = 0.05. The points o, and o, describe
two wedgelike regions that are separated by a gap be-
tween their tips (the gap lies in region V in Fig. 2).
Multiple equilibria exist in the interiors of the wedges.
Likewise, the points o3 and ¢, describe a triangle with
two rounded corners and a wedge attached to the sharp
(lower right) corner. Inside the triangle, the left branch
solution is unstable. In the small areas between the
dashed wedge (o3 and ;) and the right-hand solid
wedge (0, and o,), there are multiple unstable steady
solutions. Other such graphs for r < 0.09 are qualita-
tively similar. Figure 5 shows the same points versus r
for 6 = 1. The pairs (o,, ¢;) and (o3, 04) each describe
wedgelike regions that open rapidly as r decreases and
close as  increases. Inside these regions, there are mul-
tiple equilibria and instability on the left branch, re-
spectively. Other such graphs for 0.97 < § < 1.07 are
qualitatively similar.
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4. Numerical integrations
a. Limit cycles, period doubling, chaotic behavior

For certain o-intervals in regions IV, V, VI, and VIII
of Fig. 2, all steady solutions are unstable and the dom-
inant response will be unsteady. In these intervals, nu-
merical integrations of (3.14) indicate that asymptotic
behavior of solutions depends delicately on parameter
values and can be complicated. Limit cycles and se-
quences of bifurcations to subharmonics are observed.
Some solutions appear to be “chaotic” or aperiodic.
Similar results have been obtained in a recent analysis
of weakly nonlinear resonantly forced surface waves
(Miles, 1984a; see also Miles, 1984b,c).

Region IV is the largest of the four regions of Fig. 2
for which e¢-intervals with no stable steady solutions
exist. In region IV, the single steady solution is unstable
for o3 < 0 < gy. For ¢ < a3, it is stable; for oy < ¢
< a4, there is a stable small-amplitude steady solution
in addition to the two unstable ones at larger amplitude.
For the case é = 1, (3.14) were integrated numerically
for various values of r and o, with 0.01 < r < 0.08,
—-0.1 < ¢ < 0.5. (Fig. 3d is the response curve for é
=1, r = 0.05, and Fig. 5 shows the points of bifurcation
to instability for § = 1; they are qualitatively similar
to the corresponding graphs elsewhere in region IV.)

Figure 6 and Table 1 summarize the results of these
integrations. At (r, o) in Fig. 6 (integer multiples of
0.01 and 0.05, respectively), “0” indicates an attracting
steady solution for these parameter values, “7 a limit
cycle, “nT” a period nT (subharmonic) limit cycle,
and “Ch” a chaotic solution. We call a solution “cha-
otic” here if it is associated with a subharmonic bifur-
cation sequence and does not settle down to recogniz-
able periodic behavior by time 7, = 10 000, roughly
several hundred typical limit-cycle periods. (For 2 = 7
= 0.2 and the scaling of section 2, the dimensional
time is roughly 275 days.)

Table 1 includes results for additional ¢ at r = 0.02,
with similar notation. For those ¢ (at r = 0.02) for
which all numerical solutions appeared chaotic, the
positive Lyapunov exponent (}\,) is also given in Table
1. The Lyapunov exponents, which were calculated by
the method of Wolf et al. (1985), measure the average
exponential rate of divergence of nearby trajectories
along the attractor in phase space. A positive exponent
indicates divergence of trajectories and is further nu-
merical evidence that the solution is aperiodic (not a
stable long-period limit cycle). The uncertainty in the
values of A, estimated from the convergence of the
calculations, is a few percent.

The analysis of appendix C shows that the bifurca-
tion at p; is a Hopf bifurcation for small r. Since, for
o < o3, only a stable steady solution is observed nu-
merically, and for ¢ > o3, only a stable periodic solution
near the (unstable) steady solution, the numerical re-
sults suggest that the bifurcation is supercritical (a stable
limit cycle emerges from a stable steady solution). It
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appears to persist for finite r. Continuity as p; ap-
proaches p, and numerical determinations of eigen-
values suggest that p, is also a Hopf bifurcation point.

Period-doubling sequences occur at constant 7 as ¢
is increased over most of the interval. Such sequences
of bifurcations to subharmonics are often associated
with transitions to chaotic behavior (Feigenbaum,
1983). (Note also the appearance, typical of chaotic
regimes, of an odd period subharmonic at r = 0.04, ¢
= (.2, indicated in Fig. 6.) We examine in more detail
the sequence for increasing ¢ at r = 0.02. Figure 7

FiG. 3. Frequency-response curves. Solid line: stable solution; dashed line: unstable
solution. The bifurcation points p; are labeled. (a) & = 1.15, r = 0.15 (region I); (b) 6 = 0.5,
r=0.05{);()s=0.75r=005();(d)é=1,r=0.05AV); (e) 6 = 1.15, r = 0.05
(V); (f) 6 = 1.16, r = 0.05 (VI); (g) 6 = 1.18, r = 0.05 (VII); (h) 6 = 1.21, r = 0.105 (VIII);
(i)6=13,r=0.050X); (j)é = 1.5, r = 0.05 (X).

displays phase space trajectories [projected onto the
(C, Zg) plane] and the corresponding solutions C versus
T,. The limit cycle at ¢ = O is shown in Fig. 7a. The
“X” marks the projection of the unstable steady so-
lution. Figure 7¢ displays the limit cycle at ¢ = 0.2.
The amplitude has increased, and the period has dou-
bled. Figure 7e displays the limit cycle at ¢ = 0.215.
Again the period has doubled, to four times the original
value, and the amplitude has increased. The period of
the limit cycle at ¢ = 0 is about 33, so (using the above
scaling) roughly two months in dimensional units.
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FIG. 4. o-coordinates of bifurcation points versus & at r = 0.05.
“X” marks o3 = 0g4.

Figure 8 displays results at ¢ = 0.225 and ¢ = 0.23.
At these parameter values, the system apears to have
aperiodic solutions., The initial conditions for these
calculations have been changed to eliminate transient
behavior that is similar to that in Figs. 7b, d, f but
persists much longer, and the scales on the plots have
been altered. The trajectories are confined to regions
near the periodic solutions in Fig. 7, but do not settle
down to periodic motion.

Figure 9 displays part of a trajectory at ¢ = 0.25.
This solution also appears aperiodic. Now however the
variable C attains much larger values (greater than 30).
Sudden spikes of large negative mean current U, (3.12)
appear intermittently, followed by a decay to smaller
amplitude oscillations resembling those for ¢ = 0.23.
The sudden spikes in mean current are due primarily
to sudden increases in the variable C, as is evident from
Fig. 9. For unsteady solutions, errors of the same order
in ¢ as the mean current may accumulate on the 7,
time scale (see appendix A). [Unsteady U, F and G are
rigorously approximated by the first terms on the right-
hand side of (3.8) on the T, time scale for small ¢, but
the mean current comes from the second term on the
right-hand side of (3.8a).] For corresponding parameter

0.2

F1G. 5. o-coordinates of bifurcation points versus rat 6 = 1.
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FIG. 6. Summary of numerical solutions at 6 = 1 as a function of
¢ and r: 0, steady solution; T, periodic solution; nT, period nT sub-
harmonic; Ch, chaotic solution. Solid line: ¢,; dashed line: o3.

ranges, however, numerical solutions of the original
equations (2.11) have mean currents with a similar ir-
regular time-dependence.

To further analyze the solutions of Fig. 8, we consider
their successive intersections with the half-plane Zz
=0,Z;>0,—00 < C < 0. [This is similar to a Poincare
map (Hirsch and Smale, 1974, section 13.3), except
that a periodic solution passing through the half-plane
need not exist.] Figure 10a is a plot of 304 such inter-
sections for the solution at ¢ = 0.23. They appear to
lie nearly on a single curve, so that the attractor crudely
resembles a two-dimensional surface at its intersection
with this half-plane (and in fact at all other transverse
half-planes examined, though the corresponding curves
are not always so simple). To characterize the motion
on the attractor, we plot the Z;-component of each
intersection against the Z;-component of the previous
intersection (because the curve in Fig. 10a is nearly a
line, using the C-component would give a similar re-
sult). The result is shown in Fig. 10b. Its simplicity is
striking. Similar maps constructed on other half-planes
were more complicated.

Also plotted in Fig. 10b is a line representing the
map

TABLE 1. Summary of numerical integrations at § = 1, r = 0.02.
The positive Lyapunov exponent ), is given where a single, chaotic
attractor was observed.

4 Asymptotic behavior

0.

0.1, 0.15, 0.16, 0.165
0.17,0.18, 0.19, 0.2, 0.205
0.21,0.215

0.22

0.225

0.23

0.25

0.3

0.35

0.5

Steady

Limit cycle, period T
Limit cycle, period 2T
Limit cycle, period 4T
Limit cycle, period 8T
Chaotic, A, = 0.0066
Chaotic, A, = 0.0097
Chaotic, A, = 0.0216
Chaotic, A\, = 0.0209
Chaotic, A, = 0.0211
Steady or chaotic
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FI1G. 7. Numerical solutions at 6 = 1, r = 0.02. (a) limit cycle and unstable steady solution (X) at ¢ = 0, projected onto (C, Z) plane;
(b) C versus T;, at ¢ = 0; (c) limit cycle, ¢ = 0.2; (d) C versus T,, ¢ = 0.2; (e) limit cycle, o = 0.215; (f) C versus T5, ¢ = 0.215.

y=g"{flgM)1}, (4.1)

where
SO = px(1 —X), 4.2)
g0x) = [(x—x0)/0.33]"32, 4.3)

with the parameters u = 3.7, xo = 1.18. The first of
these, (4.2), is the logistic map; the second, (4.3), a
continuous map with a continuous inverse from the
interval (xg, xg + 0.33) to the interval (0, 1). [Our search
for an appropriate transformation of (4.2) was stimu-
lated by Shaw (1981), and the values of the constants
in (4.2) and (4.3) were determined by trial and error.]
The dynamics of the map (4.2) are relatively well un-
derstood (Collet and Eckmann, 1980; Preston, 1983).
The trajectories of points under iteration of (4.1) are
just those of (4.2) with the coordinates changed. As the
parameter u is increased, the trajectories of (4.2) un-
dergo period-doubling bifurcations until an accumu-
lation point is reached near p = 3.57. For 3.57 <
< 4, the motion has been called chaotic. In this case,
“chaotic” means that for given g, an infinite number
of unstable periodic cycles with different periods exists,
as well as an uncountably infinite number of points
through which the trajectories are aperiodic. A single
stable periodic cycle, possibly of very long period, may
exist simultaneously, and will attract most trajectories
if it does exist (Collet and Eckmann, 1980). The long
transients associated with the many periodic and ape-
riodic points and the length of the stable periodic cycle
may make the motion appear irregular even in thlS
case (May, 1976).

The correspondence-of the curve in Fig. 10b with
the plot of successive intersection points is not exact;
one can see that some points lie appreciably far from
it and that a second curve appears to branch off the
first near (Z;),, = 1.35. Also, the map is noninvertible,
whereas solutions to differential equations are invertible
by uniqueness. The close agreement does suggest that
the asymptotic motion can be usefully described [after
a simple change of coordinates close to (4.3)] by the
one-dimensional map (4.1), that is, the map gives good
predictions over substantial time intervals. Since points
can have either periodic or aperiodic behavior under
iteration of (4.1) with u close to 3.7, we cannot infer
from properties of the map that the solution of (3.14)
is in fact aperiodic.

Figure 11a displays half-plane intersection points and
Fig. 11b their successive Z;-components for the solu-
tion at o = 0.225. The curve in Fig. 11b is again (4.1),
with u = 3.64, x, = 1.175, and the other constants in
(4.3) unchanged. As before, the asymptotic motion 1s
well described by the map.

These results suggest that (4.1) might describe the
asymptotic motion of solutions at § = 1, r = 0.02 for
a range of g, if the proper dependence of u and x, on
o were known. Using the two pairs of points determined
above, (o, p) = (0.23, 3.7), (0.225, 3.64) and (o, Xo)
=(0.23, 1.18), (0.225, 1.175), we approximate this de-
pendence as linear plus a constant: ' .

p=3.64+12(c —0.225),
Xo=1.175 + (¢ — 0.225).

4.4)
4.5)
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FiG. 8. Numerical solutions at § = 1, r = 0.02. (a) Z versus C at o = 0.225; (b) C versus T; at ¢ = 0.225;
(c) Zg versus Z; at o = 0.225 (dashed line: projection of half-plane Zz = 0, Z; > 0.5, —c0 < C < o0); (d),

(e), () as (a), (b), (c) except ¢ = 0.23.

For 1 < u € 3.57, the map (4.1) has attracting periodic
orbits. For 0 < ¢ < 0.22, numerical solutions of (3.14)
approached limit cycles. We compare the Z;-compo-
nents of the points where the limit cycles intersect the
half-plane with the periodic points of (4.1), using (4.4)
and (4.5) to determine x and X, at each ¢. Figure 12
shows the result. The solid line represents the periodic
points of the map and a + marks the Z;-component
of each limit cycle intersection point. The detailed
agreement is remarkable. It demonstrates that a wide
range of the complicated behavior observed in the nu-
merical solutions can be described well by a simple
one-parameter family of one-dimensional maps. Fei-
genbaum (1983) has outlined a related and more gen-
eral procedure to approximate successively period-
doubled limit cycles using the universal properties of

period-doubling in one-dimensional maps, passing
from small period toward large period cycles.

For ¢ > 0.23, the solutions, and thus the plots of
half-plane intersection points, become more compli-
cated. Figure 13a displays the half-plane intersections
and Fig. 13b their successive Z;-components for the
solution at 6 = 0.25. Whereas at ¢ = 0.225and ¢ = 0.23
the intersections appeared to lie near a single curve, at
o = 0.25 the intersections appear to lie near a number
of such curves. The plots of successive intersections
show the remnant of the simple structure at ¢ = 0.225
and ¢ = 0.23. Along with it is a more complicated
structure that appears to have arisen from the branch
that already has begun to diverge from the curve (4.1)
in Fig. 10b near (Z)),, = 1.35.

At o = 0.5, the solution still appears chaotic (Table
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FI1G. 9. Numerical solution at 6 = 1, r = 0.02, ¢ = 0.25.
(@) Zrvs C;(b) Cvs T; () Uy, vs T.

1). Note from Fig. 6 that ¢, < 0.5, so at ¢ = 0.5 a stable
small amplitude steady solution coexists with the cha-
otic attractor. When ¢ was increased past 1.0, numer-
ical solutions tended asymptotically to the stable steady
solution even when initial conditions were chosen from
chaotic solutions at slightly smaller o.

Region V is the second largest of the four regions of
Fig. 2 for which ¢-intervals with no stable steady so-
lutions exist. There are no multiple equilibria in region
V. (A typical response curve is Fig. 3e.) We have com-
puted numerical solutions in this region at é = 1.1547,
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r =0.02, and various ¢, with unusual results. A small-
amplitude limit cycle occurs near the Hopf bifurcation
at p;. As at & = 1, this limit cycle undergoes period
doubling and becomes chaotic as ¢ is increased. How-
ever, there is in addition a large-amplitude limit cycle,
which passes through the small-amplitude limit cycle
in phase space. The large-amplitude limit cycle persists
as o is varied during and after the period-doubling
transition to chaos of the small one. Thus the regularity
or irregularity of the response may depend on initial
conditions as well as parameter values. Figure 14a
shows the large-amplitude limit cycle at o = —0.225
projected onto the C~Z; plane. Note its resemblance
to the large-amplitude chaotic solutions of Fig. 9. Figure
14b shows the (Zz, Z;) projection of a portion of the
large-amplitude limit cycle passing through the small-
amplitude chaotic attractor at ¢ = —0.225.

b. Numerical solution of forced Hart equations

We briefly compare the results of the averaging
analysis with numerical solutions of the model equa-
tions (2.11). Figures 15 and 16 show the response curves

o= 0723
1 1 1 1 1 1
1.45 : -
|a) o i
Ple
- - =
1.35 //.
N . /,-/ -
1.25 1 o -
= ’I‘ —
/
115 T .l N L) T T ¥
8.5 9.5 10.5 11.5
C
145 1 1 1 i 1 1 1
| b) |
>
_1.35 -
s i . !
~ \
N 1.25 -
N
1.15 7T T T T T T
1.15 1.25 1.35 1.45 1.55
(Zl)n’ X

FIG. 10. (a) Intersections of solution at § = 1, r = 0.02, ¢ = 0.23
with half-plane Zz = 0, Z; > 0.5, —o0 < C < oo; (b) solid line:
Equation (4.1) with p = 3.7, xo = 1.18; dashes: Z;-components of
successive intersections of solution at 6§ = 1, r = 0.02, ¢ = 0.23 with
half-plane Z; =0, Z; > 0.5, —o0 < C < o0.
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FIG. 11. (a) As in 10a except o = 0.225; (b) As in 10b except
o =0.225, u = 3.64, x, = 1.175.

from (3.16) and mean currents from (3.19), respec-
tively, corresponding to parameter values v = ¢ = 0.01,
0.2, 1.0, 8 = 0.5 and 7 = ér = € (0.1462, 0.2924), and
the results of numerical integrations of (2.11), which
are plotted as crosses joined by lines. At r = 0.2, 7
= 0.05, 0.1; this forcing and the latter friction corre-
spond to the parameter values suggested by the scaling
arguments in section 2. The peak in amplitude near

1.45 j I ) } i 1 1

1.35 - * k
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- + *'4» : {

.
1.15 A -

_J +

1.05 T T T T T T T

0.10 0.14 0.18 0.22
ag

Fi1G. 12. Periodic points of Eq. (4.1) (solid line) and intersections of
periodic orbits of numerical solutions with half plane (+) versus o.
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F1G. 13. (a) As in 10a except o = 0.25; (b) successive intersection
points as 10b except ¢ = 0.25.

resonance remains in all cases but is distorted. As pre-
dicted by the perturbation solution, multiple equilibria
exist for r = 0.1462 but not r = 0.2924. In ali cases the
prediction of negative mean current is verified. The
agreement between mean current magnitudes is very
good, in fact much better than that between the oscil-
lation amplitudes. The numerical results indicate that,
in contrast to the perturbation result, the solution with
larger mean current at 7 = 0.05, = 1.3, actually has
smaller amplitude. In fact, the mean flow of this so-
lution is larger in magnitude than the amplitude: the
time-varying current never becomes positive. In phys-
ical units, the numerical solutions indicate a mean flow
of up to 4.5 cm s™!, which compares well with results
from recent numerical models that include more re-
alistic topography (Haidvogel and Brink, 1986).
Behavior corresponding to the limit cycles, period
doubling, and chaos found numerically in the averaged
equations was found for very small parameter values
in the model equations. A set of integrations at 7 = 1072
(e =~ 0.2),7= 1073, = 1 and various w yielded periodic
amplitude modulations, corresponding to the limit cy-
cle observed near the Hopf bifurcation in the averaged
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equations, but no period doubling or chaos. A set at 7
=103 (e =0.1), 7= 2 X 1074, 6 = 1 yielded chaotic
amplitude modulation. At the parameter values sug-
gested as physically relevant, we have not observed the
complicated solutions that occur in the averaged equa-
tions. However, since the model is highly idealized,
precise estimates of relevant parameter values are im-
possible to make; determining the range of behavior
exhibited by the system is more important. The analysis
demonstrates that on long time scales in an idealized
model, continental slope flow may respond irregularly
to weak wind forcing.

5. Flow structure

In this section we discuss the dependence of the
maximum mean current (3.20) on dimensional pa-
rameters, give a physical interpretation of the short
(27 /w) period oscillations, and examine the structure
of the streamfunction and particle trajectories asso-
ciated with the solutions of (3.10). ]

The maximum (over g, for given 7, 7, and §) mean
current (3.20) may be expressed in dimensional vari-

ables as
dn'\}(&'\?
(d_y—’)(Z) D\*({D\?{ u,\3
ay' L
.1

where u, = (|7¥)/p)!? and the other parameters are as
in section 2. The last two factors multiplying u, indicate
that the efficiency of mean current generation increases
as the inverse square of the bottom Ekman layer depth
and the cube of the wind stress penetration scale. The
second factor indicates that, for a given alongshore to-
pographic aspect ratio 6'/L, the generation efficiency
increases as the square of the fluid depth to topography
length aspectratio, sothat short-wavelength topography
generates greater mean currents. This is consistent with
the numerical results of Haidvogel and Brink (1986).
The first factor is principally related to the frequency
of the inviscid oscillations and depends on both the
shelf-slope dh’/dy’ and the topographic aspect ratio &'/
L. To illustrate the dependence on this factor, we plot
in Fig. 17 contours of the mean current (5.1) as a func-
tion of dh'/dy’ and &'/L, with the other parameters held
constant at their values from section 2 (D =250 m, L
=5km,dz=10m, u, = 1 cms™!, f=107%s""). Mean
flow generation is most efficient when the shelf slope
and alongshore slope are comparable, and efficiency
increases toward smaller slopes, which correspond to
lower frequencies.

At first order, the solutions of (3.10) represent linear
inviscid unforced oscillations whose (slowly varying)
amplitude is determined by weak forcing, friction, and
nonlinearity. The inviscid unforced system (3.6) is

[U, ]6max =
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FIG. 14. Numerical solutions at 6 = 1.1547, r = 0.02, ¢ = —0.225.
(a) Limit cycle; (b) chaotic attractor and portion of limit cycle.

Hamiltonian. The Hamiltonian function for the linear
oscillations may be obtained from (3.6) by dropping
the cubic and quartic terms and setting G = 0. These
oscillations may be understood as the combination of
a shelf wave, with balance ¢, = —¢, in (2.10b), and
a wave due to the topographic variations, with balance
dU/dt = (¢xg) and ¢, = —Ugy in (2.10). (Rhines and
Bretherton, 1973, treat a linear problem with similar

- oscillations.) When the cross-shelf flow is uncorrelated

with the alongshore topography, there is no wave drag
[¢2 = 0 in (2.11)]. Propagation of the shelf wave and
vortex stretching by alongshore flow across the ridges
create a topographic wave (¢, # 0). Wave drag dece-
lerates the alongshore flow, then accelerates it in the
opposite direction. The shelf wave propagates until the
cross-shelf flow is again uncorrelated with the along-
shore topography, the wave drag vanishes, and the
alongshore flow reaches its opposite maximum. The
pattern repeats with alternating sign. Alongshore ad-
vection of the cross-shelf flow gives nonlinear coupling.

The streamfunction defined by (2.9), (2.12), (3.18)

and the steady solutions (3.16), (3.17) may be written

¥ = eagly + Eacts + O(E), (5.2).

where

¥ = (_-y+ ? cosx) cos® — ig—aoo sinx sin®, (5.3)
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frequency 8 = 0.5. (a) = = 0.01, 7 = 0.0068; (b) r = 0.2, 7 = 0.05; (¢) = 1.0, 7 = 0.1462; (d) 7 = 0.01, 7 = 0.0136; (¢) = 0.2, 7 = 0.1; (f)

7= 1.0, 7= 0.2924.
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FIG. 16. Perturbation analysis mean current prediction €U, (solid line: stable; dashed line: unstable) and numerical results from solutions
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FiG. 17. Dependence of maximum mean current (5.1) on shelf
slope (dh'/dy') and topographic amplitude (§/L). Values in cm s™'.

0.025

1 V(1 1
= —— + — - -_—
b= 5 (3 ) o
1 /) 1
+ [m ey (l + ;o—z) cosx} c0s20
+ ﬁ— sinx sin20, (5.4)
2w06

0= wt+o. (5.5)

In Fig. 18, we display the cross-shelf velocities ¥, and
Y2, versus x at 8 = 0.5. Phase propagation is toward
negative x in both. The first-order part is nearly a simple
traveling sinusoid. Its sign reverses every half period.
The second-order part oscillates at twice the forcing
frequency about a nonzero time mean that is propor-
tional to sinx.

The alongshore velocities —y,,, and —y», do not vary
in x. The first-order part oscillates at the forcing fre-
quency. The second-order part oscillates at twice the
forcing frequency about a negative mean.

For the steady-state oscillations, the Lagrangian tra-
jectories are easily obtained by integrating dx/dt
= —y(?) and dy/dt = Y, [x(t), ¢] with respect to time.
These trajectories are
- 2 ao . 5 8% . 3
X(O)=c; + €Upyt + e— sin®+ € — U, sin20 + O(e’t)

wp 2
(5.6)
and
WO =cy— V26 cosX
+ esz [cosX cos® — wp sinX sin®]
0

2
+ 52? Umo("’o + w—) sinX sin20 + O(e*), (5.7)
0 .

where ¢; and ¢, are constants of integration, and
X=[x(0)]'= ¢; + EUpt + O(*r) (5.8)

represents the average x-position of a particle over a
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. forcing period. The trajectories are composed of quasi-

periodic motion and a slow drift. The quasi-periodic
motion represents oscillations on the forcing time scale
modulated by sines and cosines of the average x-po-
sition over a forcing period (which changes on the time
scale of the drift, 1/¢%), and thus may appear compli-
cated in spite of its near periodicity.

Mean Lagrangian drift is along isobaths. From (5.7),
the average y-position of a particle over a forcing period
is

Y= =co—v26 cosX + O(, ¢).  (5.9)

Except for the small error term, (5.9) is exactly the
equation for the isobaths, which is implicitly given by
(2.2) with k and & constant. Eulerian and Lagrangian
means are equal in the alongshore but not the cross-
shelf direction.

6. Discussion

The averaging analysis in section 3 shows that the
model developed in section 2 for wind forced flow over
topography on the continental slope predicts a negative

VZ = ’¢2x

FI1G. 18. Cross-shelf velocities at 8 = 0.5, for ® = 0, /8, »/4, 3x/8,
« (solid lines); x/2, 57/8, 37/4, Tw/8 (dashed lines) for (a) ¥1x, (b) ¥2«.
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mean flow (that is, in the direction of topographic
Rossby wave phase propagation) in response to weak
near-resonant forcing with weak friction. The mean
flow is negative regardless of the values of the scaled
friction and frequency parameters and the height of
the topography. This is a robust prediction. Low-fre-
quency oscillations over short-wavelength topography
with comparable alongshore and cross-shelf slopes
generate mean flow most efficiently. The averaged
equations have multiple equilibria, which correspond
to multiple solutions with steadily oscillating currents
in the model. To our knowledge, the existence of such
mulitiple oscillatory states in a model of coastal currents
is a new result. )

The numerical solutions of the model equations in
section 4b indicate that the negative mean flow pre-
diction persists for parameter values that are suggested
by physical arguments and are not asymptotically
small. Qualitatively we may anticipate this, since the
topographic lee wave resonance (where the drag should
be most anisotropic) occurs at nondimensional along-
shore velocity U = 1, whereas the averaging analysis
requires U = O(¢), ¢ <€ 1. The magnitude of the mean
flow is comparable to the results of numerical models
with more realistic topography (Haidvogel and Brink,
1986). The numerical solutions in section 4b also in-
dicate that multiple steady oscillations persist for these
larger parameter values.

The fact that a simple model of slope flow can have
an irregular (chaotic) response to regular (periodic)
forcing is of interest. Since Lorenz’ (1963) hypothesis
that aperiodic behavior of nonlinear deterministic sys-
tems could be important in interpreting the observed
lack of periodicity in large-scale atmospheric flows, rel-
atively few oceanographically motivated geophysical
fluid models that exhibit such behavior have been
studied. (For results of a general nature on baroclinic
waves, see Pedlosky and Frenzen, 1980, and Pedlosky,
1981; for the atmospheric problem, see Lorenz, 1980.)
This model suggests that the response of slope flow to
atmospheric forcing may be irregular on long time
scales. In this case, a linear analysis of ocean-atmo-
sphere coupling over the slope could be misleading.

Our results stimulate several questions about the
physical problem:

(1) What is the response to periodic forcing when
the alongshore topography has a continuous wave-
number spectrum?

(2) How does the response change when the cross-
shelf scales of the topographic variations are compa-
rable to the alongshore scales?

(3) What is the response when the wind stress has
a nonzero time mean and a continuous frequency
spectrum?

(4) What is the effect of stratification?

(5) Would the chaotic response persist in a model
with more degrees of freedom?

ROGER M. SAMELSON AND J. S. ALLEN

2059

Question 4 is important because scaling arguments
(section 2) indicate that short alongshore scales L =~ 5
km characterize the resonant barotropic topographic
wave for typical alongshore velocities Uy ~ 10 cm s~ .
Linear analyses of rotating stratified flow indicate that
bottom-generated disturbances will have a vertical de-
cay scale O(fL/N), where N is the Brunt-Viisila fre-
quency. Over the continental shelf and slope, N typi-
cally ranges from 1072 to 5 X 1072 571, which for L
~ 5 km gives vertical decay scales from 500 to 10 m.
For the depth scale chosen here, D ~ 250 m, a baro-
tropic analysis may be strictly appropriate on these
small horizontal scales only if the stratification is weak.
We believe the simplicity of our results is worth the
price of the idealization. Moreover (as mentioned in
section 2) the small-amplitude averaging analysis that
yielded the mean current prediction (5.1) effectively
considers topography much larger than the resonant
scale. [One can see this from (2.10) by replacing cosx
with o™ cosax, a < 1, in g and multiplying U and ¢
by «, which yields (after Fourier expansion) equations
equivalent to (2.11) with the small parameter ® mul-
tiplying the nonlinear terms.] On these larger scales,
the barotropic analysis will be appropriate for stronger
stratification (for example, L ~ 25 km and N = 1072
s~! gives a vertical decay scale of 250 m). Consequently,
(4) above leads naturally to the consideration of to-
pography with many scales of variation, and brings us
back to (1) and (2).

We see no reason to expect that the mean flow gen-
eration result will be qualitatively altered by the inclu-
sion of more alongshore topographic modes, since the
neglect of the direct nonlinear interaction of the wave
modes follows from the hypothesis of slow cross-chan-
nel variation, not from the choice of single-mode to-
pography. Simple models have proven useful in pre-
vious work on steady flow over topography. Charney
and DeVore (1979) verified the existence of multiple
equilibria that were predicted by their low-order model
(equivalent to the equations of Hart 1979, but derived
by truncation) by numerical integration of a grid point
model. Davey (1980, 1981) found good agreement at
small Rossby number (and at larger Rossby number,
when mean zonal shear effects were included) between
a quasi-linear theory of zonal flow over many-mode
topography and a fully nonlinear numerical model.

If topography is considered that varies across the
channel on scales that are large relative to the along-
shore wavelength, our analysis indicates that the char-
acter of the response may depend on the cross-channel
location, since the character of the solutions we ob-
tained can depend on the parameter &(y). Further study
is required to determine how our results would be
modified if variations in the solutions on shorter cross-
channel scales were allowed.

The relation of chaotic solutions of low-order models
to the behavior of systems with many degrees of free-
dom is currently an object of intense research interest
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in many fields of physics. Curry et al. (1984) have nu-
merically reexamined the convection problem from
which Lorenz (1963) drew his exemplary equations,
and found chaos in three but not in two dimensions
at high resolution. Klein and Pedlosky (1986) have
solved a two-layer quasi-geostrophic numerical model
of baroclinically unstable waves and found that a trun-
cated system overestimated the domain of chaotic be-
havior at moderate nonlinearity, but not at stronger
nonlinearity. In general, the relation is not well un-
derstood. We do not feel that it is possible at present
to predict whether chaotic behavior would be more or
less prevalent if more modes were included in the pres-
ent model. The above questions can only be answered
by further research, in which the effect of relaxing our
assumptions may be systematically explored.

Chaotic solutions of differential equations are of
mathematical as well as physical interest. The asymp-
totic behavior that we have approximated by a one-
dimensional map appears to be similar to a type studied
by Rossler (1976) and Shaw (1981). The spiral type
behavior in the solution of Fig. 9 resembles attractors
examined by Arneodo et al. (1981, 1982) and related
by them to the Rossler type and to results (Shil’nikov,
1965; see also Guckenheimer and Holmes, 1983, Chap.
6) on trajectories near a homoclinic orbit to a steady
solution about which the linearized equations have os-
cillatory solutions that decay (or grow) at a certain rate.
The steady solution that undergoes the Hopf bifurca-
tion at p; may, for some parameter value, have such a
homoclinic orbit. The existence of the large-amplitude
limit cycle at § = 1.1547, r = 0.02 (Fig. 14), that passes
close to the unstable steady solution and through the
limit cycle associated with the Hopf bifurcation, sup-
ports this conjecture. Period doubling sequences have
been related to the appearance of homoclinic tangen-
cies (Guckenheimer and Holmes, 1983, Chap. 6);
whether such a tangency is associated with the observed
period doubling in the averaged equations is not clear.
Chaotic solution sets also arise when a separatrix bi-
furcates under perturbation to a homoclinic orbit rep-
resenting a transverse intersection of the unstable and
stable manifolds of an invariant set. The method of
Melnikov (1961) may be used to test for the existence
of this bifurcation. In our case, both the inviscid un-
forced equations and the inviscid averaged equations
possess separatrices. Application of an extension of the
Melnikov method (Holmes and Marsden, 1982; Rob-
inson, 1983; Holmes, 1986) to these equations is under
study.
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APPENDIX A
Averaging

First we show that with the scaling (3.7), all solutions
of (3.3) eventually have U, F = O(¢), G = O(¢?). From
(2.11) and (3.2b), we obtain

(Z—l;: =—26rE + U coswt. (A1)
IfEV2 = B¢/, it fbllows that
d%(e‘z”E) =—ee"(rE - eUcoswt) <0,  (A2)
since E = KLU? = 0. Integra{ion of the differential in-
equality (A2) gives

E(@)<E(t=0)e", (A3)

- so for r > 0, all solutions are order ¢ after finite time

(t = t; = €% loge™?). Substituting U = €U, and G = ¢G,
(at ¢t = 0, for convenience) in (3.3¢) and integrating,
we obtain

G\ <1G, (£ =0)e " + ar (1 — ="

+ &|(w? + €r?) w sinwt + Encoswt — e )] (A4)

‘/Zt l)a
and G will be order € after finite time (¢ = 3¢,).

The linear inviscid unforced solutions of (3.3) and
variation of constants suggest the use of the time-de-
pendent transformation

A U| Q Q 0 ’
Al=wF |, wW=lioQ —iw@ 0|, (A5)
B G, 0 0 1
where )
Q=e", (A6)

overbar denotes complex conjugate and (U, F, G)
= (eU;, €F,, €G,). After transformation and the use
of (3.7), the equations for the slowly varying complex
amplitude 4 and real quantity B are

dA
— = ———QA+QA2
dt [21wB+ ( )]

+ 62[—rA —io(4+Q%A) +§(1 +0?)
+ —1,—(,4 +Q2A)B— —(_z—(QA +m>3] , (A7)
2iw 4iw
%’ = e[-—%(ﬂ + s‘z)] + ez[—-rB —~37(Q4 + QA
+ % (Q+ )4 + '92)]. (A8)

These are in the appropriate form for averaging.
The method of averaging allows explicit calculation
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of error estimates, and theorems exist proving the
closeness of perturbation solutions to the true solutions
(Bogoliubov and Mitropolsky, 1961; Hale, 1969;
Sanders and Verhulst, 1985). We outline the method
that we will follow for second-order averaging, using
the notation of Holmes and Holmes (1981). See Perko
(1969) for details on higher-order averaging.
Given a set of n ordinary differential equations

dx

Z - te “g(x,1) (A9)

where x = (X1, «*+, %), =i, ***, fn) 8 = (&,
-, &), € is a small parameter, and f and g are T-

periodic in ¢, decompose fand g into time-averaged

and periodic parts according to

1 T
O(y) = —

¢'(x, 1) = ¢(x, 1) — $%x). (A10)
Consider a transformation
x=y+euy, )+ Ev(, 1), (A1D)

where the # and v are to be determined later but must
be periodic in ¢ with 1° = v° = 0. Substitute (A11) into
(A9). Note that
dx 9 ,0
= [I+eDu+ezDv]—+ea—u+e -a—tt’,
where D¢ = (0¢,/0y,) is the matrix of partial derivatives,
and expand fand g in Taylor series,

S, 0 =f(y,0)+ eDf(y, t,)u(y, ) + O()),

(A12)

g(x, )= g(y, 1)+ O(e). (A13)
Also note that
[I+eDu+eDv] ' =I—eDu+0(&), (Al4)

SO

E-43

+¢ [g+ Dfu+ Du(f— 93‘) —%] +0(). (Al1S)

Now choose u and v to eliminate the periodic part of
the right-hand side at each order, by setting

du_

Y =1 (A16)
av

-8 '+ Df'u— Duf®, (A17)

and integrating. Then the (truncated) averaged equa-
tions are

dz

p7ie o %z) + €[g%(2) +(Df'u)°), (A18)

where higher-order terms have been dropped and we
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denote the solution by z to distinguish it from the exact
solution y of (A15). Error estimates come from fand
g and their derivatives. If f° vanishes, as it will in our
case, and f'is twice and g once continuously differen-
tiable, it follows that

x=z+eu(z, )+ O[S e’ —1)], (A19)
where €L is a Lipschitz constant for the right-hand
side of (A18) (Sanders and Verhulst, 1985). Here the
initial conditions for (A18) are just those for (A15),
implicitly defined by (A11) at ¢ = 0. A hyperbolic steady
solution of (A18) corresponds, for sufficiently small e,
to a periodic solution of the original equations. These
and the solutions approaching them asymptotically are
approximated to O(¢e?) uniformly for 0 < ¢ < o0. (In
this case the second error estimate in (A19) does not
apply.)

For the set (A7, A8), the first order part of the trans-
formation (A11) is

342 1 - _
ul——m +—2?(3AA—B)Q
A?
+——2-93 u,=1u;, (A20a,b)
4w
M3=“’—(Q 9) (A21)
2iw

The averaged equations are (3.10) with the variables
defined in (3.8) and (3.9), that is, we rename 4 and B
to Z and C when truncating to obtain (3.10).

From (A19) and (3.8), it follows that the error in
using solutions of (3.10) to approximate solutions of
(3.3) is O[¢%, (e — 1)]. For hyperbolic steady so-
lutions of (3.10), the error is O(S) for0 <t < c0.In
(3.8¢), the error term is multiplied by e. For unsteady
solutions of (3.10), (3.12) will only hold on time scales
less than €2, since the limit as e = 0 of "2 times the
error terms only vanishes on time scales less than ¢ 2

APPENDIX B
Boundedness of Solutions of the Averaged Equations
If r = 0, the averaged equations (3.14) reduce to a .
Hamiltonian system. The Hamiltonian function is

H(Zg, Z) =3 (0 = buIXZs*+ Z7)

4(2:‘+b2)(ZR2+Z,2)2+ >kZ;, (Bl)

and the quantity

1
J=C~(ZR+ZP),

is conserved.
If r > 0, inequalities similar to (A3) and (A4) may
be derived as follows to show that all attracting sets are
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contained in a cylinder centered at the origin. If Zz?
+ Z7? = k*/r?, then by (3.14a, b),

j;‘: (Z&2+ ZP)e ™ = —e N Zg* + Z) — kZr] <0,
2

(B2)
sO
ZR2+ Z2<(Z?+ ZA) (Tr=0)e '™ (B3)
and in finite time,
| Zet+ ZP<k¥r’. (B4)
Once (B4) holds, (3.14) may be integrated to yield
cI<icm=olem+ I 0-cm @s)

(for convenience in notation we assume that (B4) holds
at 7, = 0). In finite time,

Skl +k)
2 ’

r

ICl< (B6)

where S is any number greater than 1.

APPENDIX C
Stability of Steady Solutions

The eigenvalues of the linearization of (3.14) at a
steady solution determine its stability (if none have
zero real part): all real parts negative means stable, any
positive means unstable. The eigenvalues are the roots
of the characteristic polynomial

MN4+arN+bh+c=0, (ChH
where the coeflicients are
a=73r, (C2a)
b=3r*+ (6 — aay*¥o ~— Tay?), (C2b)
c=rr*+ (¢ — aay’)(oc — 3aag?)), (C20)
T'= ! (32 —245% — 55%). (C3)

1 662(.003

A necessary and sufficient condition for stability is that
the coefficients satisfy (Birkhoff and MacLane, 1953,
Chap. V.7) .

a>0, b>0, (C4H

(Note that the second is implied by the other three.)
Since r > 0, the first condition is always satisfied. From
(C2c¢) and (3.16),

c>0, ab>c.

c= rP’(aoz) (CS)
so the sign of ¢ is just the sign of P'(ay?). From (3.16),
P> 0 and P' > 0 for large ag?, so ¢ > 0 at the largest
solution of (3.16) if (3.16) has either one or three so-
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lutions. Thus, since P is cubic, ¢ < 0 precisely for the
intermediate of the multiple equilibria, and this solu-
tion is always unstable when it exists.

Letting .
Qag®)=ab—c, (C6)

and substituting (C2a—c) and (3.21a), we obtain .
2 k2 k2 172

Qa?) = r{6r2 +—*+Sa— 3I‘)a02(—-2 — r2) ] , (CN)
ap Qo

where the choice of sign corresponds to that in (3.21a).

From (3.18) and (C3),

1

Sa=3T =5

26>—1). (C8)
For 0 < 8 < 1/¥2, Qs positive on the left branch. For
8 > 1/, Q is positive on the right branch. In these
two cases, stability depefnids only on the sign of c. If
multiple equilibria exist, the intermediate solution is
unstable; other solutions are stable.

It remains to investigate the stability of the right
branch for 0 < § < 1/v2 and the left branch for 6 > 1/
V2. Further progress requires solution of cubic and
higher order polynomials. We give analytical results
for small r here, and display numerical results for gen-
eral r in Figs. 2-5. '

Consider r < 1. First, set ¢ = 0 and solve for the
points of vertical tangency. [By (3.25), multiple equi-
libria exist for small r except at.é = 2/\/5.] Between
these points is the unstable intermediate solution.
Multiple solutions may occur on the right branch for
d< 2/V§ and on the left branch for é > 2/\/5. In either
case, ¢ = 0 means

2 2 1/2
E—2~2la!a02 l{—z—r2 =0, (C9)
ag ag
so the vertical tangents occur at
k2 1/3
tor?= (—2) +0(), (C10)
do
2 4
2% 10
aox" = 2 4a2k2+0(l’ ), | (C11)
where the corresponding frequencies are
k2 1/3
o1 = 3(5"2—) +0(r), (C12)
ak®* r? X
=—+—=+0("). .
0=+ s T Or) (C13)
Second, find the zeros of Q. The solutions are
4k2 1/3
=l +0(r? Cl4
Qo3 [(5(1 _ 3F)2] (r ), ( )
2 4
a0 =5 4 1o, (Cl5)

72 k¥5a—3T)
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where the corresponding frequencies are

3 42 1/3
3= E(r - a)[m] +0(r?),

_ _Iff_ 14 8a 8r*
Gaman Sa—3T ) k%(5a— 3T)

{where these values are taken on the right branch for
0 < & < 1/v2 and on the left branch for 5 > 1/v2).
Differentiating Q along the resonance curve [i.e., sub-
stituting for ¢ using (3.21a) and diﬁ“erentiating with
respect to ay’] and evaluating at ay;? gives

(C16)

+0(r'% (C17)

2
Q'aps®) = ga%[—l +(Sa—3I') -]E?] +0(r*), (C18)
3

which is less than zero on the right branch if0 < 8 < 1/
2 and on the left branch if § > 1/+2. Since also

Q(a*=k?/r’y=8r>>0, (C19)

Q is in fact negative precisely between its zeros, and
the solution is unstable there.

When 1/v2 < § < +2, the bifurcation at p; is a Hopf
bifurcation for small r. At ps, for small r,

a=0(), b=0(), c=0(), (C20)
so the roots are
A2 = +ibl? +%(cb‘1 —a)+0(r?),
A3 =—cb '+ O(r?). (C21)

Here b > 0, since 1/42 < & < v2 and

2 4
blaos) = (;52 d )+ o), (€2
and ¢ > 0 except at the unstable intermediate amplitude
solutions. The condition that Q have a simple zero at
ps follows from (C18).

The points of bifurcation to instability, p; = (¢, do),
i=1, -+« 4, are functions of r and 6. Equality relations
between them (e.g., p3 = p, or ¢, = o3) implicitly define
curves (bifurcation sets) that divide the (8, r) plane into
regions in which the response curves are qualitatively
similar. Figure 2 displays these regions and their
boundaries as given by numerical computation. For
each point there is a response curve giving the ampli-
tude as a function of frequency. (One from each region
is shown in Fig. 3.) The regions (except the small region
VIII) are numbered with increasing § at small 7. The
asymptotic results above allow analytic definition of
the regions and bifurcation sets in the limit of small r.

In region I, there is one stable steady solution at
each o. The bounding curves are (3.24a) between re-
gions I and II and between I and X [henceforth des-
ignated by (I, I; I, X)] and p; = p4 (I, V). This region
vanishes in the limit of small r.

In region II, there are multiple equilibria, two stable
and the intermediate unstable, between ¢, and ¢,. The
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unstable solution is on the right branch. Elsewhere there
is one stable fixed point. The bounding curves are
(3.24a) (1, II) and ps = p4 (11, III). The interval of in-
stability between p; and p, is subsumed within that
between p; and p,. In the limit of small r, region II
occupies 0 < 6 < 1/42.

In region III, there are multiple equilibria between
o; and ¢,. The unstable intermediate solutions are on
the right branch. Also, the largest of the three steady
solutions (which is on the left branch) is unstable be-
tween o3 and o4. The bounding curves are p; = p, (11,
II1) and o3 = o, (III, IV). In the limit of small 7, region
III occupies 1/v2 < & < 0.805.

In region IV, the instability of the left branch extends
to the left of the s-interval where multiplé equilibria
exist. Thus no stable equilibria exist between o3 and
o,. The bounding curves are (3.24a) (IV, V), p; = p,
(1, IV), and o3 = ¢; (III, IV). In the limit of small r,
region IV occupies 0.805 < 6 < 2/\/3.

In region V, there are no multipie equilibria, and
between o3 and a4, the single steady solution is unsta-
ble. The bounding curves are (3.24a) (IV, V; V, VL V,
VIII) and p; = ps (1, V). In the limit of small 7, region
V shrinks to the point § = 2/ \/§, where a = 0.

In region VI, there are multiple equilibria between
o2 and a1, Now a < 0, so they occur for ¢ < 0; the
unstable intermediate solution is on the left branch.
The inequality ap; < ao; < apz < ag4 holds, so there is
also instability at large and small amplitude, and an
interval exists (63 < ¢ < 04) in which there are no stable
solutions. The bounding curves are (3.24a) (V, VI), o,
= g3 (VI, VII), and, in the extreme upper right, p> = p,
(VI VIII). (In fact there is a separate region along the
lower right-hand boundary of region VI where ¢, < 03
< 04, dgy < dos, and no stable solutions exist for o3
< ¢ < 0y4; it is too thin to depict in Fig. 2.) In the limit
of small 7, region VI vanishes.

In region VII, the same inequalities as in VI hold,
except that ¢4 < o3, so there is at least one stable so-
lution everywhere. Only the large-amplitude solution
is stable between o3 and o, and it is unstable between
g, and o4. The bounding curves are o3 = o4 (V] VII)
and p;, = ps (VIL 1X). In the limit of small r, region
VI occupies 2/V3 < 8 < (V6 — 1)'2 ~ 1.203.

In region VIII, the same inequalities as in VI hold,
except that ags < dpz, S0 the interval in which there are
no stable solutions is o3 < ¢ < ¢,. The bounding curves
are (3.24a) (V, VIII), p, = p, (V1, VIII), and o, = o3
(VIII, IX). This region is small. For r < 0.09, it vanishes.

In region IX, the small-amplitude solution (as well
as the intermediate) is unstable, and at least one stable
solution exists everywhere, since o, < 3. Only the large
amplitude solution is stable between ¢ and ;. The
bounding curves are p, = ps (VIL, IX), o2 = o3
(VIII, IX), and p; = p; (IX, X). In the limit of small 7,
region IX occupies (V6 — 1)'2 < 3 < 2.

In region X, there are multiple equilibria for o3 < o
< o1; only the intermediate solution is unstable. The
inequality gp; < dg3 < aps < ay holds everywhere, so
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as in region I, the interval of instability between p; and
D4 1s subsumed within that between p; and p,. The
bounding curves are p; = p; (IX, X) and (3.24a) (1, X).
In the limit of small r, region X occupies § > «/2J As
6 —> ;a/c;, the bounding curve (3.24a) approaches r = 0
as o ',
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