
AN ABSTRACT OF THE THESIS OF

Chinmaya S. Hardas for the degree of Master of Science in Industrial Engineering
presented on December 11, 2003.

Title: Component Placement Sequence Optimization in Printed Circuit Board
Assembly using Genetic Algorithms.

Abstract approved:

Toni L. Doolen

Over the last two decades, the assembly of printed circuit boards (PCB) has generated

a huge amount of industrial activity. One of the major developments in PCB assembly

was introduction of surface mount technology (SMT). SMT has displaced through-

hole technology as a primary means of assembling PCB over the last decade. It has
also made it easy to automate PCB assembly process.

The component placement machine is probably the most important piece of
manufacturing equipment on a surface mount assembly line. It is used for placing
components reliably and accurately enough to meet the throughput requirements in a

cost-effective manner. Apart from the fact that it is the most expensive equipment on

the PCB manufacturing line, it is also often the bottleneck. There are a quite a few

areas for improvements on the machine, one of them being component placement

sequencing. With the number of components being placed on a PCB ranging in
hundreds, a placement sequence which requires near minimum motion of the
placement head can help optimize the throughput rates.

Redacted for Privacy

This research develops an application using genetic algorithm (GA) to solve the
component placement sequencing problem for a single headed placement machine. Six

different methods were employed. The effects of two parameters which are critical to

the execution of a GA were explored at different levels. The results obtained show that

the one of the methods performs significantly better than the others. Also, the
application developed in this research can be modified in accordance to the problems

or machines seen in the industry to optimize the throughput rates.

© Copyright by Chinmaya S. Hardas

December 11,2003

All Rights Reserved

Component Placement Sequence Optimization in Printed Circuit Board Assembly
using Genetic Algorithms

by

Chinmaya S. Hardas

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented December 11, 2003

Commencement June 2004

Master of Science thesis of Chinmaya S. Hardas presented on December 11, 2003.

APPROVED:

Major Professor, representing Industrial Engineering

Head of the Department of Industrial and Manufacturing Engineering

Dean of t Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Chinmaya S. Hardas, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENTS

I would like to take this opportunity to thank all the people who have contributed
generously towards the completion of this thesis. I must, in particular, thank my
advisor Dr. Toni Doolen for her support and guidance. I have learnt a lot working with

her for the past two years and have gained some invaluable experience. I would also

like to thank my committee members Dr. Brian Paul and Dr Dean Jensen who were

instrumental in defining the scope of this research. I would especially thank Dr. Dean

Jensen for helping me with understand the working of Genetic Algorithms. Finally, I

would like to thank Dr. Glenn Murphy, whose inputs on this document have been

most valuable.

During my stay at Oregon State University, I have had the opportunity to interact with

a large number of people and have made a lot of friends. I would especially like to

thank all my friends seen regularly in the graduate computer lab, BAT 042A, for all

their help. The numerous discussions/arguments that we have had, academic and non-

academic, have been most enriching.

Finally, I would like to thank my family for their support. They have always believed

in me and encouraged me. Without their support, I would not be where I am. This
thesis is dedicated to them.

TABLE OF CONTENTS

Page

1 INTRODUCTION... 1

1.1 Motivation...3

1.2 Objective ...4

1.3 Contribution... 4

2 LITRETURE REVIEW... 5
2.1 Surface Mount Technology Process Overview..5

2.2 Component Placement Machine.. 7

2.3 Traveling Salesman Problem ...9

2.4 Genetic Algorithms .. 10

2.5 Previous Research in Electronic Assembly Systems Optimization 12

2.5.1 PCB Scheduling Problem Research... 13
2.5.2 Component Placement and Feeder Assignment Research 19
2.5.3 Component Placement Optimization Research using GAs24

2.6 Summary ..29

3 METHODOLOGY..31

3.1 Mathematical Model.. 31

3.2 Genetic Algorithms ..32

3.2.1 Representation Scheme.. 32
3.2.2 Population Initialization... 35
3.2.3 Evaluation Function and Selection..35
3.2.4 Genetic Operators..37

3.3 Implementation.. 42
3.3.1 Path Representation...42
3.3.2 Ordinal Representation.. 47
3.3.3 Adjacency Representation ...49

4 RESULTS ... 53
4.1 Normality Check ... 54

TABLE OF CONTENTS (Continued)

Page

4.2 Mood's Median Test... 61

4.1.1 Distance Analysis ... 61
4.1.2 Generation Analysis... 66
4.1.3 Time Analysis .. 71

5 CONCLUSIONS AND FUTURE RESEARCH...76

5.1 Discussion .. 76

5.2 Future Research... 77

BIBLIOGRAPHY .. 79

APPENDICES .. 83

APPENDIXA... 84

APPENDIXB .. 111

LIST OF FIGURES

Figure

I Flowchart Showing Surface Mount Assembly Process2

2 Crossover and Mutation processes ... 12

3 Flowchart for Path Representation... 44

4 Flowchart for Ordinal Representation..48

5 Flowchart for Adjacency Representation... 51

6 NPP for Distance by MR ..55

7 NPP for Distance by Method.. 56

8 NPP for Generation by MR ..57

9 NPP for Generation by Method .. 58

10 NPP for Time by MR.. 59

11 NPP for Time by Method ..60

12 Box plot for Distance by MR.. 61

13 Box plot for Distance by Method ..62

14 Box plot for Distance by CR ...62

15 Mood's median test for Distance by CR... 63

16 Mood's median test for Distance by MR.. 63

17 Mood's median test for Distance by Method ..63

18 Interaction plot for Distance for MR by Method ..64

19 Interaction plot for Distance for MR by CR...64

20 Interaction plot for Distance for Method by CR ...65

LIST OF FIGURES (Continued)

Figure

21 Box plot for Generation by MR ..66

22 Box plot for Generation by Method..67

23 Box plot for Generation by CR ...67

24 Mood's median test for Generation by CR...68

25 Mood's median test for Generation by MR..68

26 Mood's median test for Generation by Method ..68

27 Interaction plot for Generation for MR by Method ..69

28 Interaction plot for Generation for MR by CR...69

29 Interaction plot for Generation for Method by CR... 70

30 Box plot for Time by MR ...71

31 Box plot for Time by Method... 72

32 Box plot for Time by CR ..72

33 Mood's median test for Time by CR..73

34 Mood's median test for Time by MR ... 73

35 Mood's median test for Time by Method ...73

36 Interaction plot for Time for MR by Method... 74

37 Interaction plot for Time for MR by CR.. 74

38 Interaction plot for Time for Method by CR..75

LIST OF APPENDIX FIGURES

Figure

Bi Tukey test comparing MR for response variable Distance............................... 113

B2 Tukey test comparing Method for response variable Distance114

B3 Tukey test comparing MR for response variable Generation........................... 116

B4 Tukey test comparing Method for response variable Generation 117

B5 Tukey test comparing MR for response variable Time..................................... 119

B6 Tukey test comparing Method for response variable Time............................... 120

LIST OF APPENDIX TABLES

Figure

B1 ANOVA Summary for response variable Distance ... 112

B2 ANOVA Summary for response variable Distance ... 113

B3 Summary of Tukey test comparing MR for response variable Distance............ 113

B4 Summary of Tukey test comparing Methods for response variable Distance....114

B5 ANOVA Summary for response variable Generation .. 115

B6 ANOVA Summary for response variable Generation .. 115

B7 Summary of Tukey test comparing MR for response variable Generation 116

B8 Summary of Tukey test comparing Method for response variable Generation.. 117

B9 ANOVA Summary for response variable Time..118

B 10 ANOVA Summary for response variable Time ... 118

Bli Summary of Tukey test comparing MR for response variable Time 119

B12 Summary of Tukey test comparing Methods for response variable Time......... 120

Component Placement Sequence Optimization in Printed Circuit Board
Assembly using Genetic Algorithms

1. INTRODUCTION

The economic recession has led to fierce competition in the electronics industry.
Electronic manufacturers need to be more efficient if they want to stay in business.

They need to develop better and more innovative products that their customers want

before their competitors do. In the production environment, this often translates to
reducing lead times, thus reducing cycle times.

Printed circuit boards (PCB's) form an essential part of the electronics industry. PCB's

continue to be the basic interconnection technique for electronic devices. PCB
assembly involves the placement of many electronic components which come in
different sizes, shapes and functions, on a PCB. Over the years, PCB assembly has

evolved from a labor intensive activity to a highly automated activity characterized by

steady innovations in the level of design and in the required manufacturing processes.

Due to these continuous improvements in the electronics industry, the number of
components per board has greatly increased. The number of components involved in a

PCB assembly task varies significantly and can range from a few to several hundred.

One of the most important changes in the PCB assembly was the development of
Surface Mount Technology (SMT). The introduction of SMT, which has nearly
replaced pin-through-hole technology for PCB assembly, has enabled the mounting of

an even larger number of electronic components on the board. The three most
important steps in surface mount assembly (Figure 1) are solder printing, component

placement and solder reflow.

2

ReworkSolder I I Componenti Solder
Printing Placement Reflow insectJ_* (If Required

Figure 1: Flowchart Showing Surface Mount Assembly Process

Given the number of components being placed on a PCB, production planning is
critical. PCB assembly on the production line can be broadly classified into the
following process planning problems:

Assignment of products to production lines.

Assignment of components to machines.

Assignment of components to component feeder magazines for each machine.

Sequencing of components for placement for each machine.

The first production planning process is concerned with the improvement of the
overall system performance. A production line may consist of a single machine or
multiple machines for each of the operations described in Figure 1. The goal here is to

find the best allocation of products (boards) to different production lines according to

the technological, process, and demand constraints. The second planning problem
arises when there are multiple machines for a particular operation on the line. It is
concerned with improving machine utilization by determining the best distribution of
components to the multiple machines in the manufacturing line. Once the components

have been assigned to the machines, the next step is to decide the component location

on the component placement machine. The final planning problem is the component
placement sequencing problem. The last two planning problems are concerned with
improving cycle times on a placement machine. The cycle time on a placement
machine is decided by the distance the placement head has to travel to place all the

components, the number of tool changes required, etc. When looking at reducing the

amount of head travel, the location of each component on the machine (feeder
location) is critical so as to make sure that the components that are being placed at a

3

higher frequency are loaded closer to the board as compared to the others. Also,
sequencing is equally critical because it helps to reduce the distance traveled by the
head.

1.1 Motivation

On an SMT assembly line, the component placement process is often the bottleneck

(Prasad, 1997). Thus, improving the processing times of the placement process can
ensure better work flow and can help optimize the throughput. Since most of the setup,

like loading components onto feeders and programming of the board, can be done

externally, the setup times can be reduced drastically. Thus it is the cycle times that
need to be reduced in order to optimize the process.

Most of the component placement machines have optimization software installed on

the machine. But the equipment manufacturers do not provide information on how the

optimization is done or what algorithm is being used because of the market
competition. As a result, it is hard to judge if the machine is doing a good job of
optimizing the component placement sequence. In addition, the optimization algorithm

is often fixed. As a result a user cannot modify the sequence parameters to adjust for

the product complexity, batch volumes, etc.

In industry, most users assume that the software on the placement machine is doing a

good job of determining an optimal or near optimal placement sequence. However,

research to develop an algorithm that can be modified and applied depending upon the

problem scenarios exclusive to a particular industrial environment would provide

practitioners with an even more flexible means of optimizing the placement operation.

In addition, such research also provides a means for assessing the solutions produced

by the placement machine.

4

1.2 Objective

This research focused on component placement sequencing optimization to help
reduce the cycle time for the placement process. Genetic algorithms were used as the

optimization tool. Three representation methods, along with three different parameters

were compared, to find the combination that produced the least amount of head travel.

1.3 Contribution

A genetic algorithm to solve the component placement sequence problem was

developed. Three different types of vector representations were compared. Six
different crossover operators, each exclusive to one of the three methods, were used.

The research findings show that path representation with an order-based crossover

operator performs better than other methods. This representation however, takes
longer to find a near optimal solution. Although higher mutation rates yield a better

solution, it takes substantially longer to solve the problem. As a result moderate
mutation rates are suggested.

5

2. LITERATURE REVIEW

The first section of this chapter describes surface mount technology and the various

steps involved in the surface mount assembly process. The next section discusses the

importance of component placement machine and also describes the construction and

working of different types of placement machines. The following subsection has a
brief description of the traveling salesman problem (TSP) and how the component

placement sequence problem can be modeled as a TSP. Genetic algorithms and their

working are described in the next subsection. In the final subsection of this chapter,

previous researches in the field of electronic assembly systems optimization are
discussed.

2.1 Surface Mount Technology Process Overview

Surface mount technology (SMT) makes it possible to produce state of the art
miniaturized electronic products at reduced weight, volume and cost (Prasad, 1997). In

contrast to conventional technology wherein the components were inserted through the

holes on the printed circuit board (PCB), SMT is used to mount electronic components

on the surface of the PCB. This deceptively simple difference has changed every
aspect of electronics manufacturing.

There are various steps involved in SMT. Solder printing, component placement, and

solder reflow are the most important. Solder printing is usually done by a
screen/stencil printer. It is the process where the solder is applied to the stencil and the

squeegees are used to force the solder paste to flow through the apertures on the
stencil and onto the PCB. There are quite a few parameters which affect the quality of

solder printing, e.g. solder paste viscosity, snap off distance, stencil thickness, etc.

Two of the most critical parameters however, are the printing speed and pressure.

r1

A fast print speed will cause planing of the squeegee, resulting in skips. The squeegee

will not have enough time to fill each aperture, resulting in insufficient fill. Though a

slow speed is generally preferred, too slow a speed will cause ragged edges or
smearing in the printed solder paste. A low squeegee pressure also results in skips and

ragged edges. A high pressure print pass causes smeared prints and also tends to scoop

solder paste from wide apertures, causing insufficient solder fillets.

Surface mount components are placed on a PCB after deposition of solder paste. The

component placement machines which are commonly referred to as pick and place

machines, are used for this purpose. The pick and place machine is the most important

piece of manufacturing equipment for placing components reliably and accurately
enough to meet throughput requirements in a cost-effective manner. Also, the
throughput of a manufacturing line is primarily determined by the pick and place
machine. The majority of manufacturing defects that require rework stem from
placement problems. Thus, accurate placement of components can ensure better
throughput rates. The placement process is also often a bottleneck in the SMT
assembly line, and faster placement process can ensure better work flow. The pick and

place machine absorbs the highest capital investment, and also determines the overall

economics of manufacturing (Prasad, 1997).

Once the solder printing and component placement is done, the next step in SMT
assembly is solder reflow. It is the process where either two similar or two dissimilar

metals or alloys are joined. The objective is to hold the component onto the board and

provide a good electrical connection to complete the circuit. There are mainly two

soldering processes, wave and reflow soldering. The basic difference between wave

and reflow soldering lies in the source of heat and the solder. In wave soldering, the

solder wave serves the dual purpose of supplying heat and solder. The source for the

supply of solder is unlimited because the wave pot holds a large amount of solder

relative to what is needed. In reflow soldering, solder paste is applied first. During
reflow, heat is applied to melt the solder paste.

7

Wave soldering is the main process used for soldering component terminations in
conventional through hole mount assemblies. It is also the most widely used process

for soldering surface mount discrete components glued to the bottom of SMT
assemblies, as in the case of double sided boards.

The reflow soldering process can again be classified under two types. JR dominant

systems and convection dominant systems. The systems mainly differ in their heat

sources and in their heating mechanism. A minimum of three heating zones is required

for reflow soldering a preheat zone to vaporize the volatiles from the paste, a soak

zone to raise the temperature uniformly throughout the board to slightly below the

reflow, and finally a reflow zone followed by rapid cooling. More than three zones are

not necessary from a technical standpoint, although a higher number of zones in an

oven does make it easier to develop the desired thermal profile, one of the key
variables in the manufacturing process that significantly impacts product yield.

SMT assembly is used to produce PCBs of various sizes. The size of a particular PCB

is decided based on its purpose and functionality. For example, a PCB to be used in a

cell phone would have to be much smaller than those used in electronic equipment
such as a component placement machine. The PCB used in a cell phone does not have

the number or diversity of functions to perform as compared to a PCB used in a
placement machine. The functionality determines the number and type of components

to be placed on the PCB. As the number of components to be placed increases, the
time taken for the placement process also increases.

2.2 Component Placement Machine

The component placement machine, also known as the pick and place machine, is one of

the most important pieces of equipment for surface mount assembly. Apart from the fact

that it constitutes about 50% of the total capital investment, the throughput of the
manufacturing line is primarily determined by the pick and place machine (Prasad,

1997). There are three different types of placement machines used in PCB assembly.

The construction and working of these are discussed briefly.

Multi headed component placement machines are the most widely used. These are also

referred to as gantry style placement machines. The machine has a moving arm which

carries the placement heads on it. The board comes in on a conveyer and is held in

place, on the table, during the time the placement operation is being carried out. The

machine has a feeder magazine onto which the components to be placed on the board

are loaded, a tool changer where different nozzles are stored, since not all components

can be placed with the same nozzle. Different size nozzles are needed, depending on the

size of the component being placed.

The multi headed machines are again classified as one of two types. The first type has

the board fixed and the head moving in the x-y-z directions to pick up the components

from the feeders and place them on the board and traversing to the tool changer to

change the nozzle as and when the need arises. The second type has the board moving in

the x-y direction and the feeder magazine moving in any one direction, mostly x. The

head is not fixed, but its movement is restricted. The head travels to a fixed pickup

location to pick up a component and back to a fixed placement position. Since the head

only moves to a fixed pickup location, the feeder magazine has to move in order to get

the components at the fixed pickup location.

The second type of placement machine is the high speed ship shooter (HSCS) also
known as turret type placement machines. It uses a rotating turret to hold the placement

mechanism, which consists of multiple heads. The turret rotates from a fixed pickup

location to a placement location. Since the pickup location is fixed, a moving feeder

magazine is essential. Also the board has to be moving to facilitate proper placement.

As the turret carries multiple heads, the tool change time encountered in the multi

headed machines is eliminated and this makes the placement operation much faster. One

of the disadvantages with this type of machine is the fact that it cannot be used for

placing high mass components, because of the moving board.

The third type of pick and place is the robotic arm placement machine. On a robotic arm

placement machine, the boards are in continuous motion on the conveyer. Robotic arms

are mounted along the conveyer with component feeders located along the conveyer.

The movement of board on the conveyer and motion of robotic arms has to be
synchronized to accomplish correct placement of components.

For any component placement machine, the type of feeding mechanism used depends on

the component's packaging. The components mainly come in reels, trays, tubes or bulk.

Reels are the most widely used for smaller components such as the resistors, capacitor,

transistors and smaller IC's. Mechanical feeders are used to feed components in reels.

Larger components such as QFP's and BGA's are normally supplied in trays. A separate

machine called a matrix tray changer (MTC) is used for supplying components in trays.

A few components such as PLCC's are normally supplied in tubes. Vibratory feeders

are used to feed these components. Bulk components are manually fed, by placing them

at a particular place on the feeder bank and programming the pick and place to pick up

the component from that location.

2.3 Traveling Salesman Problem

The component placement problem being discussed in this research can be modeled as a

TSP. The most prominent member of the set of combinatorial optimization problems

is undoubtedly the traveling salesman problem (TSP). TSP states that: given a finite

number of "cities" along with the cost of travel between each pair of them, find the

cheapest way of visiting all the cities and returning to your starting point. The study of

the TSP has attracted research from a variety of fields such as mathematics, operations

research and biology. Many practical applications can be modeled as a TSP or a
variant of it (Reinelt, 1994).

10

For the magnitude of component placement sequencing problem being discussed,
where hundreds of components are being placed on one board, it is practically

impossible to find a best solution using linear programming or other mathematical
modeling techniques. In the industrial environment, where time is a premium, it would

not be practical to wait for the problem to be solved to find the best sequence.

A genetic algorithm (GA) can be used to find the solution in much less time. Although

a GA may not find the best possible solution, it can find a near optimal solution. In the

next subsection GAs are defined and their working is described in detail.

2.4 Genetic Algorithms

GA's imitate the biological phenomena where the genetic information in an individual

determines its traits and fitness in a particular environment. In general a genetic
algorithm has five basic components as summarized by Gen and Cheng, 2000 and

Rawlins, 1991:

1. A genetic representation of solutions to the problem

2. A way to create an initial population of solutions

3. An evaluation function rating solutions in terms of their fitness

4. Genetic operators that alter the genetic composition of children during
reproduction

5. Values for parameters of GAs

The first component involves choosing the right coding schema. Bit strings, list of 0's

and 1 's, are the most widely employed. Bit strings have been shown to be capable of

usefully encoding a wide variety of information, and they have been shown to be
effective representation mechanisms in unexpected domains. But for the TSP, vector

representation is more suited. This is because of problems like infeasible solutions and

redundant solutions being generated when using bit strings. There are mainly three

11

vector representations considered in connection with the TSP: adjacency, ordinal and

path representation (Michalewicz, 1996).

After the representation to be used is chosen, a population of possible solutions needs

to be created. Davis suggests that for research purposes, a good deal can be learned by

initializing a population randomly (Davis, 1987). Moving-from a randomly created

population to a well-adapted population is a good test of the algorithm. By doing this,

critical features of the final solution will have been produced by the search and
recombination mechanism of the algorithm, rather than the initialization process. For

industrial applications, it may be beneficial to initialize with more directed methods.

To search for an optimal solution, formulation of a function which evaluates the
population of solutions is required. This is also called the fitness function, since it

ranks the population in accordance to its fitness as a solution. The fitness function is
the most crucial part of the GA, as this is the one which decides as to how much time
it is going to take to find the optimal solution.

The next step is the selection process whereby the solutions with best fitness values

will be selected. Selection provides a driving force in a GA (Gen and Cheng, 2000).
Typically, a lower selection pressure is indicated at the start of a search in favor of
wide exploration of search space, while higher selection pressure is recommended at
the end to narrow the search space. Many selection procedures are in use. A few
widely used selection procedures are the tournament selection and roulette wheel
selection. The tournament selection process is done by randomly picking solutions,
normally two, and the one with a higher fitness value is selected to the new

population. In roulette wheel selection, selection probability for each solution is based

on their fitness value. The selection process is based on spinning the wheel, displaying

these probabilities, the number of times equal to the population size, each time
selecting a single solution for the new population.

12

Once the new population is created, the solutions in it are then allowed to reproduce

with one another. There are mainly two reproduction processes, crossover and
mutation. In the crossover process, a partitioning point is chosen and all the bits after

the partition are exchanged by the two parents. In conventional GAs, the crossover

operator is used as the principle operator, and the performance of the system heavily

depends on it. The mutation operator, which randomly changes one bit of the
solutions, is used as a background operator. It has been proven that the mutation
operator can sometimes play a more important role than crossover; thus the two need

to be used in accordance with the problem on hand (Gen and Cheng, 2000). Figure 2

illustrates the crossover and mutation processes. The new solutions will constitute a

new population for the next generation. The process of evaluation, selection and
reproduction is carried out until the whole population converges to an optimal or a
near optimal solution.

1001 0101 1001 0011
100001 100011

1100 0011 1100 0101

Crossover Mutation

Figure 2: Crossover and Mutation processes

2.5 Previous Research in Electronic Assembly Systems Optimization

Previous research has identified three production planning problems in PCB assembly:

1. The assignment of various components to machines

2. The assignment of the components to the component feeder locations for each

machine

3. The component placement sequencing for each machine

13

The first problem arises when there is a mix of boards. The objective is to assign these

boards, and the components that go with them, to different machines in a
manufacturing facility. Once assignment to machines is completed the next level of

research is to focus on feeder rack assignment and component placement optimization

problems i.e. 2 and 3. The remainder of this section discusses various researches
previously done in the area of PCB assembly optimization and its relevance to the

research being discussed here. Due to the nature of the research, which often addresses

portions of the PCB assembly planning problems 1, 2, and 3, it is difficult to classify

previous research. The research that has been summarized is ordered so that the
scheduling problems are described first. Then the component placement and feeder

assignment problems are described, moving from other placement machines to the

multi-headed placement machines and finally to research which uses GAs for
placement optimization.

2.5.1 PCB Scheduling Problem Research

Gunther, Gronalt and Zeller (1998), addressed the problem of sequencing PCB
assembly jobs on an automated SMT placement machine. The objective was to
minimize the makespan. A considerable set-up time is incurred when switching from

one feeder type to another. The setup depends on the number of component feeders to

be replaced in the magazine of the assembly machine. The exchange of assembly
feeders is complicated by the fact that each feeder occupies a different number of
magazine positions. Theoretically, the minimum makespan required for a given batch

of jobs could be derived by solving the order sequencing and the component set-up

problems simultaneously. However, optimal solutions are practically unattainable for

problems that are realistic in size. Therefore, efficient heuristics solutions procedures

were developed. These procedures exploit component commonality between PCB
types.

14

A straightforward approach is to sequence the jobs initially and then determine the

exchange of component feeders based on the job sequence obtained, before finally

assigning the feeders to magazine positions. The first stage of solving the job
sequencing and component setup problem involves determining a job sequence which

minimizes the total processing time. Given the changeover time between two
consecutive jobs, the job sequencing problem corresponds to a TSP. The job
sequencing and component setup problem is similar to finding the shortest path in the

TSP except that the distance between two cities is not known in advance. To overcome

this deficiency, approximation scheme for estimating the changeover time between

two successive jobs are suggested. The heuristic solution procedure proposed consists

of two steps. The first step is a construction heuristic which schedules the jobs
sequentially, choosing at each stage the job with the minimum changeover time from

those available for scheduling. In the second step, the initial job sequence is iteratively

improved.

Two related heuristic solution procedures for the job sequencing and the component

setup problem are presented. Both heuristic solution procedures are comprised of the

same modules as described earlier. They differ, however, in the organization of the

computational procedure. Due to its sequential organization, the first approach is
referred to as a 'sequential heuristic'. A major drawback of the sequential heuristic
outlined above is that it only considers the changeover time between a pair of jobs.

Clearly, the number of setups between two successive jobs does not depend merely on

the immediate predecessors, but also on all of the preceding jobs. This observation led

to a 'Composite heuristic'. Computational experiments were carried out to evaluate

relative performance of both heuristic solution procedures. Numerical evaluations

indicated that both the heuristics tend to generate near optimal solutions.

15

In one of the earliest works on PCB assembly optimization, Brandeau and Billington

(1991) worked on operation assignment in PCB assembly. The objective was to
determine an assignment of components (operations) to a set of capacitated machines,

with the reminder of the components inserted manually, to minimize the total setup

and processing cost for assembling all boards. These costs can be expressed in terms

of time units required for setup and processing, yielding an objective equivalent to

minimizing the average time required to produce each board.

The problem being analyzed arose from one faced by Hewlett-Packard in one of its
PCB assembly operations. The process was not fully automated because a wide mix of
boards was produced, and the volume of production did not justify automation.
Component insertion in the hand load cell could be performed manually or by a semi-

automated machine. Both setup and processing are faster, and thus cheaper, on a
machine. However, the machines had a limited capacity for holding different
components, and only a limited number of machines were available. As a result of

these constraints, it was necessary to determine which components to assign to each
process.

Brandeau and Billington (1991) have formally defined the problem as a mixed integer

program. Two different heuristics for the case of single machine problem are
proposed. The first solution approach, referred to as 'Stingy Component' algorithm,
starts by assigning all components to the machine and then sequentially removing
components which cause the smallest cost increase, until machine capacity constraint

is met. All components not assigned to the machine are assigned to the manual
process. The second approach, referred to as the 'Greedy Board' algorithm, starts by

assigning all boards to the manual process, and then assigns entire boards to the
machine, one by one, to maximize incremental boards produced per incremental
component bin used. For the multiple machine problem, the single machine heuristics

16

are applied to each machine sequentially. Then, as before, once an initial assignment

of components to machines is made, post processing steps are carried out to determine

if some boards can be made more cheaply by reassigning them. For each single
machine heuristic, two different multiple machine heuristics are developed. These
heuristics differ in the extent to which part assignment to more than one machine is
allowed. In first case, a component, if assigned to a machine, cannot be assigned to

any subsequent machines, while in the second case, potential assignment of the same

component to various machines is considered.

These heuristics were tested with real world problems at Hewlett-Packard. The results

showed that the Greedy Board algorithms provided slightly better solutions. Stingy

component algorithms tend to provide better solutions when setup costs are low, while

the Greedy Board algorithms may provide better results when setup costs are higher.
While each of the heuristics can be arbitrarily bad, on average, the algorithms
performed quite well.

Crama, Flippo, Klundert and Spieksma (1996) investigated the component retrieval

problem in printed circuit board assembly. Decisions involved in this problem are
concerned with the specification of the order in which the components are to be placed
on the board, as well as the assignment of component types to the feeder slots of the

placement machine. If some component types are assigned to multiple feeder slots,
then the additional problem emerges of selecting, for each placement on the board, the
feeder slot from which the required component type is to be retrieved. In this research,
the component retrieval problem is considered for turret type placement machines.

Crama et. al. (1996), reformulated this component retrieval problem as a longest path
problem in a PERT/CPM network with design aspects. As an alternative
interpretation, the component retrieval problem can be viewed as a shortest path

17

problem with side constraints. Crama et. al. (1996) define the formalization of the

CRP graphs and problems with the help of four definitions. Those are definition for

CRP graph, Selection, Selection induced subgraph and the CRP problem. The
definitions reveal that CRP is basically a PERT/CPM network problem with design

aspects. Crama et. al. (1996) present the algorithm developed for CRP and have also

compared it with the forward dynamic programming scheme proposed by Bard,
Clayton and Feo (1994), to explain why the latter approach cannot possibly lead to a

correct algorithm for CRP. Finally, Crama et. al. (1996) have sharply delineated the

complexity of the problem by proving that it becomes NP-hard when additional
structure on the activity durations in the PERT/CPM network is absent.

Again, Crama, Flippo, Klundert and Spieksma (1997) worked to solve the case of

assembly planning with multiple board types and multiple machines. The planning

problem faced is how to assemble boards of different types using a single line of
placement machines. The multiplicity of the boards adds significantly to the
complexity of the problem, which is already very hard to solve in the case of a single

board type case. Turret style placement machine were used for the investigations.

In summary, the problem was to find:

. For each machine, a feeder rack assignment,

. For each board type, a component placement sequence on each machine, such

that for each PCB of that type, the sequences form a partitioning of the
components required by the PCB,

. For each pair consisting of a machine and a board type, a component retrieval

plan.

The planning procedure was divided into two phases: Phase 1 determined the feeder

rack assignment for each machine and Phase 2 produced, for each pair consisting of a

machine and a board type, a component placement sequence and a component
retrieval plan, given the feeder rack assignment of Phase 1. Phase 1 consisted of five

steps.

1. Determine which component type will have two feeders in the flowshop.

2. Decide, for each feeder, which locations it serves on each board type.

3. Construct an arbitrary feeder rack assignment.

4. Estimate the makespan for each board type on each machine, given the current

feeder rack assignment.

5. If the stopping criterion is satisfied, exit. Else, improve the feeder rack
assignment using local search and go to Step 4.

Crama et. al. have developed an algorithm for Steps 1 and 2 and another algorithm for

Step 4. The optimization part of the feeder rack assignment is done by using two

heuristics alternatively. One heuristic tries to exchange between two machines a pair

of clusters, together with the corresponding feeders, to better balance the workload.

The other heuristic reoptimizes the feeder rack assignment for a single machine.
Together these two heuristics deliver better solutions faster than other approaches that

have been tested by Crama et. al.

Phase 2 consists of three steps.

1. Determine, for each machine board type combination, a component
placement sequence.

2. Determine, for each machine board type combination, a component
retrieval plan.

19

3. Improve the component placement sequencing using local search. If no
improvements are found, stop, else go to Step 2.

The improvement of the placement sequence is done by TSP-like local search
techniques.

2.5.2 Component Placement and Feeder Assignment Research

Burke, Cowling and Keuthen (1999) proposed a few new models and heuristics for

component placement in PCB assembly. The component placement sequencing
problem is modeled as a TSP by considering the placement locations as the cities of

the TSP and define distances by the time of distance traveled between two successive

placements.

More formally the component placement sequencing problem is modeled as follows.

Let {ci, c2, ..., c} be the finite set of placement locations, d denote the distance in

terms of time or distance traveled between placements c1 and c and c: { 1,2,. . . ,n}

{1,2,.. .,n} be a one tone mapping which orders the set of placements. Then the
component placement sequencing problem is equivalent to finding so as to

fl-I

mm d(I),(I) + 4 a(n),ty(1)a i=1

The assignment of component types to feeder slots is of substantial importance.
Burke, Cowling and Keuthen (1999) have introduced more general models and have

considered a single headed component placement machine, placement locations, each

with its own component, {ci, c2, ..., c} and {si, S2, ..., Sf} available feeder slots. Let

p: {ci, C2, ..., c11} (51, S2, ..., Sf} be a mapping assigning each placement location to

20

a feeder slot and be the time taken between finishing placement of component c1

and c for component assignment p. Thus the problem is now a two level optimization

problem, to find c and p so that:

n-I

di,ai+o + d(n)cr(Iy

Burke, Cowling and Keuthen (1999) go on to discuss the case of multiple head
machines and also described a model incorporating tool changes. Heuristics to tackle

the minimum weight hypertour problem, arising from the multi headed placement
machines are also proposed. The heuristics developed take their inspiration from two

well known heuristics for the TSP, nearest neighbor tour construction and the local

search algorithm k-opt, which were modified to be suitable for the problem on hand.

Lee, Lee and Park (1999), employed a hierarchical method to improve the productivity

of a multi-headed surface mount machine. The problem of minimizing the assembly

time of multi-head surface mount machines was decomposed into a hierarchy of
related subproblems. Since all subproblems in the hierarchy were known to be of
combinatorial nature and computationally intractable, heuristics based on dynamic
programming and nearest neighbor TSP technique were developed.

The following outline contains the subproblems constituting the hierarchy in the order

in which they were solved:

1. Construction of reel groups

1.1. Determining which nozzle is used for each reel.

1.2. Determining which head is used for each reel.

21

1.3. Grouping the reels into subsets of size (at most) N (N denotes the total

number of heads at the machine), which are called reel groups.

2. Assignment of reel groups

2.1. Determining in which order the reel groups are assigned.

2.2. Assigning the reel groups to slots on feeder racks.

3. Sequencing of the pick and place movements

3.1. Determining in which order nozzles are changed.

3.2. Grouping the components into subsets of size (at most) N, which are
called component groups.

3.3. Determining the sequence of the component groups.

Assumptions to the problem were as follows:

The order in which the heads operate is predetermined as follows: the first

head picks up first, then the second head, and so forth until all heads are
loaded. Then the first head places first, the second places second and so on
until the cycle is complete.

Components of one type cannot be carried by two or more reels.

The performance of the hierarchical method was compared with the results from the

heuristic algorithm based on a greedy algorithm. Results showed that the hierarchical

algorithm works better as the number of reels and the number of mounting positions

increased. The performance also improved rapidly as the number of heads increased.

Su and Srihari (1996) used artificial neural networks (ANN) for placement sequence

identification. A decision support system was designed and developed for the

22

placement process associated with multiple batches of surface mount PCB's. The
feeder locations were established for multiple batches, and the component placement

sequence was identified while considering the need to minimize tooling and nozzle

changes and the actual distance traveled by the placement head.

Feeder location optimization was based on the "largest candidate rule" and the slot
numbers of the PCB's center on each workstation. These two factors determined a
component's feeder location. The location of the feeder was arranged and mounted

according to the frequency of use of components. The more frequently a component

was used, the closer that components feeder should be to the center of the PCB. The

dimensions of the PCB and the number of feeder slots available for the placement

head are used to determine the center feeder slot. This approach reduces the traveling

distance of the component head.

The difference in mass and geometry of the components to be placed on a board
dictates the use of specific tooling sets for component placement. The tooling and
nozzle arrangement module minimizes the tooling and nozzle changeover times
associated with placement operation. The methods considered for minimizing tooling

and nozzle change are based on three rules, namely, "placement head configuration",

"tooling and nozzle configuration" and "surface mount component characteristics".
The "placement head configuration" rule determines the specific placement head for

all the components to be placed. Next, the "tooling and nozzle configuration" rule
sorts the components to be placed by the tool and nozzle identification number. To

complete the task, the "surface mount characteristic" rule is applied. First all unleaded

components are placed. Next the leaded components are placed. In each case the
smaller components are placed first and then the larger components are placed.

23

For the placement sequence optimization, Su and Srihari (1996) proposed to use the

Hopfield and Tank representation. Hopfield and Tank proposed an energy function

that will find the tour which has the shortest length among many admissible solutions.

Using this representation, the TSP amounts to a minimization problem with
constraints. Thus the component placement sequence module is based on the
unsupervised learning through an ANN using the Hopfield-Tank model to find the

minimal traveling path. The number of components using the same tooling and nozzle

configuration could be large. To reduce computer time, the components using the
same tooling and nozzle are clustered together by the clustering algorithm. After
clustering data, the Hopfield-Tank ANN model is executed for each group in
succession. The saturation value of the ANN is used to decide if an acceptable solution

is reached or not. The final traveling path is indicated by a saturation value of 1.

A novel tabu search approach to find the best placement sequence and magazine
assignment in dynamic robotic assembly was proposed by Su, Ho and Fu (1998). Two

types of robot assembly problems have been characterized on the basis of different

robot motions:

Fixed robot motion between fixed pick and place (FPP) points, and

Robot motion with dynamic pick and place (DPP) points.

In the FPP motion model, the feeder magazine moves horizontally along the X-axis
and the robots moves only along a Y-axis. The assembly board (X-Y table) moves
freely in any direction, allowing the feeder magazine to move required components to

the fixed pickup points. When the assembly board moves to a fixed placement
location, the robot picks up and places the components along these two fixed points. In

the DPP model, the robot moves along the X and Y axes, and the pickup and
placement points are dynamically allocated. The assembly board and feeder magazine

move only along the X-axis. This study was done on a DPP robot.

24

Tabu search, a metaheuristic approach for solving combinatorial optimization
problems, is an adaptive procedure that can be superimposed on many other methods

to prevent them from being trapped at a local optimal solution. The basic components

of tabu search are the configuration, move mechanism, objective function, tabu list,

tabu restrictions and aspiration criteria. The configuration represents the feasible
solutions. Move mechanism generates the move set. Objective function evaluates all

solutions. Tabu list remembers where it has searched recently and does not revisit
these solutions. Tabu restrictions command that the selected current move is forbidden

for the next few moves. Aspiration criteria follow that if an "enough good" solution

generated is found so far, then the tabu status of this move is overridden.

Simulation results demonstrated that the tabu search approach is more efficient in
comparison to the dynamic pick and place approach. Also, results presented confirm

that the larger the numbers of placements, the better the performance.

2.5.3 Component Placement Optimization Research using GAs

Leu, Wong and Ji (1993), used the genetic algorithm approach to solve printed circuit

board assembly planning problems. The developed genetic algorithm finds the
sequence of component placement/insertion and arrangement of feeders

simultaneously, for three main types of assembly machines. Three different
sequencing problems are defined for each of the placement machines described. First

is the traveling salesman problem for head fixed and board moving type of gantry

machine. Second is the pick and place problem for the head moving and board fixed

type of gantry machine. The final problem is called the moving board with time delay

problem and is for the turret type placement machine.

25

Four genetic operators were used: crossover operator, inversion operator, rotation
operator and mutation operator. A two-link genetic algorithm was devised for dealing

with the planning problems that involve determining both the sequence of component

placementlinsertion and the assignment of components to feeders. A sample PCB with

200 components and 10 different component types are used as an example in solving

the pick and place problem. An improvement of 11.84% in comparison to the original

solution is observed by the end of 6000 iterations.

Khoo and Ng (1998) developed a genetic algorithm-based planning system for PCB

component placement. Due to the variation in component size, quantity and shape, two

main issues concerning PCB component placement planning need to be tackled:

Component placement priority and

Optimal component placement sequence.

Component placement priority arises when certain components need to be mounted

before others or towards the end of an assembly process. Since not all the PCB
components are of the same shape and size, taller components if assembled earlier
may result in insertion difficulties. Thus four basic insertion rules for PCB component

placement have been identified:

Insert smaller PCB components before larger components to avoid interference

Place, in one pass, all the components of the same type and value.

Prepare components with identical size and shape but different electrical value

with other components of non-similar size and shape.

Choose a near-optimal component placement sequence to minimize machine

bed's movement.

26

Khoo and Ng (1998) chose to use path representation which expresses a string
(chromosome) comprising the identification numbers of the "cities". Order-based

cross-over operator which is a modified version of the classical cross-over operator

was employed to deal with the chromosomes coded by path representation. This
method requires a section of the parent's chromosomes to be preserved during cross-

over operation. Using path representation and the order based cross-over operator, the

"genetic traits" from the parents are preserved and passed on to their children. A
modified mutation operator known as inversion was employed to perform the much

needed search for alternative solutions. A repair algorithm was incorporated to repair

the offspring should the arrangement of genes in a chromosome become disorganized.

Once this was done, the fitness of the offspring was evaluated using objective
function.

System validation was then carried out. Results showed that once the system started

producing a converging population, the genetic operators i.e. crossover and mutation,

became inefficient. Further iterations to generate new population could not improve
the search. The path finder was then modified to include swap mutation. This
inclusion improved the system performance further. This work demonstrated the
possibility of using GAs for planning PCB component placement sequences.

Wang, Nelson and Tirpak (1999) used genetic algorithms to optimize the feeder slot

assignment problem for a high speed parallel, multi station SMT placement machine.

The machine used for this research was a Fuji QP-122. The machine consisted of two
major subsystems: a pallet circulating system (conveyer system) that transfers and

indexes PCBs to each placing station and a placing station that is responsible for
placing the components onto the PCB. Each placing station is composed of a vision
system, fixed multi feeder unit, and a placement head with a single nozzle.

27

Wang, Nelson and Tirpak (1999) made a few assumptions to simply the model. Some

of the important assumptions were:

All boards of a given type will be produced consecutively.

The quantity of components on each reel is sufficient to produce the required

quantities of all the boards.

The components on each board can be placed in any given order.

Repeating same components of the same type on the feeder carriage is not
allowed.

The goal of Wang, Nelson and Tirpak's research was to minimize the total assembly

time of the entire machine for the given product. Since each station works
concurrently, the total assembly time will be the maximum placement time of all the

stations. Thus,

Ttotai = max[PlaceTimei], for all stations less than or equal to s (total number of
stations).

PlaceTime can be represented using the following equation:

PlaceTime1 = Em [T1 * p.. * Aid

where, T1 is the placement time of placement i. P will be 1 if and only if placement i
uses a component of type j. Ai will be 1 if and only if component type j is located at

station 1.

Four crossover operators (valid crossover, PMX, cycle and ordered crossover) and

four selection methods (Roulette wheel, elitist model, stochastic tournament and
ergodic matching selection) were tested using a production scenario that contained

more than one hundred unique type of components. Two sets of experiments with

different operator probabilities were conducted. The first set used a probability of
reproduction of 40% and the probability of mutation and crossover were set at 5% and

55% respectively. The second set also used the same probability of reproduction of

40%, while the probability of mutation and crossover were set at 40% and 20%
respectively. For both sets of experiments, the best combination was the PMX
crossover operator using elitist selection method. GAs were also compared with other

optimization methods such as human experts, optimization software provided by the

vendors and rule-based systems. GAs performed better than all the other methods
mentioned.

Jeevan, Parthiban, Seetharamu, Azid and Quadir (2002) also looked at optimization of

PCB component placement using genetic algorithms. The placement machine used for

this research was a four headed gantry type component placement machine.

The fundamental idea of the model was to consider the sequencing problem for the

multi-headed placement machine as a generalized TSP. The number of component

placement location and the component pick up locations were equal. The number of

components picked ranges from 1 to 4. To obtain a valid sequence tour, the pick up

process must come before the placement process. Otherwise the move is considered

illegal as it is illogical for an empty head to move to a placement location. Thus the

fitness function is given by the following conditions:

1 <H 4
1<P 4
where, H = number of component pick-up and

P = number of component placed

The following rule is observed to avoid illogical moves:

P<H
By satisfying these three conditions, the shortest distance sequence is obtained.

The tool change operation is unavoidable in any multi-headed component placement

machine. However, in most cases, the nozzle is able to pick up more than one type of

29

component. Since the tool change process is time consuming, it is therefore preferred

to exhaust all components that can be placed by a certain nozzle before the nozzle is

changed. Although this requires the problem to be decomposed into separate TSPs, the

method proposed by Jeevan et. al. avoids solving TSPs individually but combines all

TSPs into a single TSP sequence. Therefore the following extra condition was added:

Si <X<S2

where S1 and S2 represent two different tool sizes for the nozzle and X represents the

component size. Thus the condition indicates that if a component is bigger than tool

size S1 and smaller than tool size S2, the component will be picked and placed by tool

of size S2. The remaining will be picked and placed by tool of size Si. This condition

can be easily expanded to any number of tool sizes.

Parametric studies on GA were carried out before the GA was used to optimize an

actual placement problem. This was done because of the numerous parameters which

govern GA performance. All GA parametric studies were carried out for a placement

problem involving 12 components to be placed on a PCB by a triple head machine

without tool change. The study indicated that the increment of order based crossover

and uniform crossover produced small reductions to the total distance covered whereas

change in other types of crossover brings little or no effect. For the mutation
operation, the inverse and swap mutation played a vital role. The results from the GA

parametric studies carried out were used for solving the actual component placement

problems.

2.6 Summary

Previous research has identified three production planning problems in PCB assembly:

1. The assigmnent of various components to machines.

a. Gunther, Gronalt and Zeller (1998)

b. Brandeau and Billington (1991)

30

2. The assignment of the components to the component feeder locations.

a. Crama, Flippo, Kiundert and Spieksma (1996)

3. The component placement sequencing for each machine.

a. Bruke, Cowling and Keuthen (1999)

b. Lee, Lee and Park (1999)

c. Su and Srihari (1996)

d. Leu, Wong and Ji (1993)

e. KhooandNg(1998)
f. Jeevan, Parthiban, Seetharamu, Azid and Quadir (2002)

In this research, the focus is on problem 3 component placement sequence

optimization. While research has been conducted in this field previously, the approach

used has been different. Researchers have employed integer programming, developed

heuristics and used evolutionary programming to solve the problem. A few researchers

have employed GAs, but only certain representation schemes have been tested. This

research further expands the existing body of knowledge by applying GAs to a fixed

component placement sequencing problem and by focusing on comparing and
contrasting different vector representation schemes and reproduction operators.

31

3. METHODOLOGY

This chapter describes the methodology followed to develop the genetic algorithms. In

the first subsection, the mathematical model of the problem is defined. The second

subsection discusses the reasons for choosing genetic algorithms and talks in detail

about the different variations compared. The implementation of these various
algorithms is discussed in the third subsection.

3.1 Mathematical Model

The objective of this research was to optimize the component placement sequencing

i.e. to minimize the distance traveled by the placement head. Thus the problem can be

defined in mathematical terms as

Minimize:

dX

where, X = 1, ifpositionj follows position i
X = 0, otherwise.

and d, is the distance between position i and position j.

Subject to the following constraints:

. All components must be placed.

The placement head visits each placement location only once. Multiple
placement of a particular component is not allowed.

. If there are components being placed on top of other components, components

at a lower level are placed before components at a higher level.

The problem being defined was for a single headed placement machine. The
complexity of the optimization problem increases drastically for a dual-headed

32

placement machine. For this research, only a single headed placement machine was

considered.

3.2 Genetic Algorithms

Genetic algorithms (GAs) were used for finding the near optimal placement sequence.

Because of the magnitude of the problem being discussed (hundreds of components

are placed on a single circuit board), it is difficult to find an optimal solution using

linear programming. Genetic algorithms can be used to find a near optimal solution in

significantly less time. As discussed previously, GAs are basically made up of five

components. These five components are each discussed in greater detail.

3.2.1 Representation Scheme

Encoding a solution of the problem into a chromosome is a key issue when using GAs.

Various encoding methods have been created for particular problems to provide
efficient implementation of the GAs. According to the kind of symbol used for the bits

of the gene, the encoding methods can be classified as:

Binary encoding

Real number encoding

Integer or literal permutation encoding

General data structure encoding

Binary encoding is the most common encoding technique used because it is simple to

create and manipulate. Just about anything can be encoded using binary encoding, so

one point crossover and mutation can be applied without modification to a wide range

of problems (Davis, 1991). But for many problems in the industrial engineering world

it is nearly impossible to represent solutions with binary encoding. The other types of

representation schemes are better suited for problems in industrial engineering. Real

33

number encoding is best used for function optimization problems. It has been widely

confirmed that real number encoding performs better than binary or gray encoding for

function optimizations and constrained optimizations. Integer or literal permutation

encoding is best used for combinatorial optimization problems. Since the essence of

combinatorial optimization problems is the search for a best permutation or
combination of items subject to constraints, literal permutation encoding can be the

best way to this type of problem. For more complex real world problems, an
appropriate data structure is suggested as the bits of a gene, to capture the nature of the

problem (Gen and Cheng, 2000).

In this research, the component placement optimization problem has been modeled as

a TSP. TSP is one of the most prominent members of the set of combinatorial
optimization problems. Integer or vector representation is the most suited

representation scheme for solving a TSP. There are three vector representations in
connection with the TSP (Michalewicz, 1996). These three representations are
described in detail.

3.2.1.1 Path Representation

The path representation is perhaps the most natural representation of a tour. For
example, a tour

5-2-3-4-9-7-1-8-6

is simply represented as

(5 2 3 4 9 7 1 8 6).

3.2.1.2 Adjacency Representation

The adjacency representation also represents a tour as a list of n cities. The city j is

listed in the position i if and only if the tour leads from city ito city j. For example, the

vector

(2 4 8 3 9 7 1 5 6)

represents the following tour:

34

1 -2-4-3-8-5-9-6-7.

Disintegrating the vector into parts and then combining the parts appropriately leads to

the tour it represents. For our example, the vector can be disintegrated into:

1-2

2-4

3-8

4-3

5-9

6-7

7-1

8-5

9-6

and then combining these parts leads to the following tour:

1-2-4-3-8-5-9-6-7.

Each tour has only one adjacency list representation. However, some adjacency lists

can represent illegal tours. For example, the vector

(2 4 8 1 9 3 5 7 6)

leads to 1-2-4-1, i.e. a tour with a premature cycle.

3.2.1.3 Ordinal Representation

The idea behind ordinal representation is as follows. There is some ordered list of
cities C, which serve as a reference point for lists in ordinal representations. Assume,

for example, that an ordered list is simply:

C =(12 3 45 67 8 9).
A tour

1-2-4-3-8-5-9-6-7

is represented as a list I of references,

l=(1 12141311),
and should be interpreted as follows:

35

. The first number on the list 1 is 1, so take the first city from the list C as the

first city of the tour, and remove it from C. The partial tour is 1.

. The next number on the list 1 is also 1, so take the first city from the current list

C as the next city of the tour and remove from C. The partial tour is 1-2.

. The next number on the list 1 is 2, so take the second city from the current list

C as the next city of the tour and remove it from C. The partial tour is 1-2-4.

Continuing with the same steps, final tour is 1-2-4-3-8-5-9-6-7.

In this research, path, adjacency and ordinal vector representations were used to
represent the solution for the component placement sequencing problem.

3.2.2 Population Initialization

The initial population for the sequencing problem was generated at random. Davis
(1987) suggested that for research purposes, a good deal can be learnt by initializing a

population randomly. By generating the population at random, critical features of the

final solution will have been produced by the search and recombination mechanism of

the algorithm, rather than the initialization process.

3.2.3 Evaluation Function and Selection

The evaluation function for the component placement sequencing problem is the total

distance traveled by the head. For each of the tours being evaluated, the total distance

that the head travels, in visiting each of the placement location in the sequence given

by the tour, is calculated. Parent selection techniques were employed to give more

reproductive chance, on the whole, to those population members that are the most fit.

Four commonly used parent selection techniques are roulette wheel, tournament,
elitism, and ranking and scaling.

36

Roulette wheel selection: In fitness proportional selection, the expected value of an

individual (i.e. the expected number of times an individual will be selected to
reproduce) is that individual's fitness value divided by the average fitness of the
population. The most common method for implementing this is roulette wheel
selection. In roulette wheel selection each individual is assigned a slice of a circular

roulette wheel, the size of the slice being proportional to the individual's fitness. The

wheel is spun N times, where N is the number of individuals in the population. On

each spin, the individual under the wheel's marker is selected to be in the pool of
parents for the next generation.

Tournament selection: This method randomly chooses a set of individuals and picks

out the best individual for reproduction. The number of individuals in a set is called

the tournament size. A common tournament size is 2 and this is called a binary
tournament. A random number r is then generated between 0 and 1. If r < k, where k is

a parameter, then the fitter of the two individuals is selected to be a parent, otherwise

the less fit individual is selected. The two individuals are then returned to the original

population and can be selected again.

Elitism: Elitism is an addition to many selection methods that forces the GA to retain

some number of the best individuals at each generation. Such individuals can be lost if

they are not selected to reproduce or if they are destroyed by crossover or mutation.

Ranking and scaling: The purpose of ranking and scaling method is to prevent quick

convergence. Here, the individuals in the population are ranked according to fitness,

and the expected value of each individual depends on its rank rather than on its
absolute fitness. Ranking avoids giving the far largest share of offspring to a small

group of highly fit individuals, and thus reduces the selection pressure when fitness

variance is high.

37

These four techniques are just a few selection techniques used. In this research,
Roulette wheel selection technique was used for parent selection. The reason for
choosing roulette wheel selection was that it is the best known selection type (Gen and

Cheng, 2000). The other reason for using roulette wheel selection was to reduce the

number of factors. The scope of this research was to compare the different
representation schemes and the crossover and mutation operators that go along with

them. Having selection type as a factor would have increased the problem size for this

research.

3.2.4 Genetic Operators

Using the selection techniques listed in the previous subsection, the fitter individuals

from the parent population were selected. These individuals reproduce to form new

members, called offspring, to be included in the next generation. There are mainly two

reproduction operators: the crossover and the mutation operator. The classical
crossover and mutation operators have already been presented in the previous chapter

with the aid of examples using binary representation. For the vector representation

being used in this research, the classical operators do not work well. More often than

not the classical operators lead to illegal tours. Michalewicz (1996) has presented
different types of crossover operators for each vector representation discussed earlier.

These are described in detail in the following paragraphs.

3.2.4.1 Path Representation

Partially mapped crossover (PMX) builds an offspring by choosing a subsequence of a

tour from one parent and preserving the order and position of as many cities as
possible from the other parent. A subsequence of a tour is selected by choosing two

random cut points, which serve as boundaries for swapping operations. For example,

the two parents (with two cut points marked by 'I')

P1=(123 145 6718 9) and
P2=(4521 1876193)

38

would produce offspring in the following way. First, the segments between cut points

are swapped (the symbol 'x' can be interpreted as at present unknown)

0i=(xxxl 1 8761xx) and
02=(xxxI45 671xx).

This swap also defines a series of mappings:

1 #.+4,84-5,74-+6,and64-+7.

Replace further cities (from the original parents), for which there is no conflict:

0i=(x2311 8761x9)and
02(xx2 145 67193).

Finally, the first x in the offspring O (which should be 1, but there was a conflict) is

replaced by 4, because of the mapping 1 -+ 4. Similarly, the second x in the offspring

01 is replaced by 5 and the x's in the offspring 02 are replaced by 1 and 8. The
offspring are:

0= (4 2 3 118 76 Is 9) and

02=(1 8214567193).

Order crossover (OX) builds offspring by choosing a subsequence of a tour from one
parent and preserving the relative order of the cities from the other parent. For
example, two parents (with two cut points marked by 'I'):

P1 =(1 23 14567189)and
P2(452l1 876193)

would produce offspring by first copying the segments between the cut points into the

offspring:

01= (x x x 45 67 Ix x) and

02(xxxI 1876 lxx).

39

Next, starting from the second cut point of one parent, the genes from the other parent
are copied in the same order, omitting symbols already present. Reaching the end of

the string, continue from the first place of the string. The sequence of the genes in the
second parent (from the second cut point) is:

9-3-4-5-2-1-8-7-6.

After removal of genes 4, 5, 6 and 7, which are already in the first offspring, the
remaining genes are:

9-3-2-1-8.

This sequence is placed in the first offspring (starting from the second cut point):
01 = (2 1 8

I
4 5 6 7

I
9 3) and similarly the other offspring is:

02=(34511 876192).

Cycle crossover (CX): Cycle crossover builds an offspring in such a way that each
gene (and its position) comes from one of the parents. For example, two parents

P1=(1 23456789)and
P2 = (4 5 2 1 8 7 6 9 3)

would produce the first offspring by taking the first gene from the first parent:
0 (1 x x x x x x x x).

Since every gene in the offspring should be taken from one of its parents (from the
same position), the next gene to be considered must be gene 4, as the gene from the
parent P2 just below the selected gene 1. In P1 this gene is at position '4', thus

01= (1 x x 4 x x x x x).

This, in turn, implies gene 8, as the gene from parent P2 just below the selectedgene 4.

Thus

01 = (1 x x 4 x x x 8 x).

40

Following this rule, the next genes to be included in the first offspring are 3 and 2.
However, the selection of gene 2 requires selection of gene 1, which is already on the
list. Thus a cycle has been completed

O1=(l 234xxx8x).
The remaining genes are filled from the other parent:

O=(l 23476985).

Similarly,

02 (4 1 2 8 5 6 7 3 9).

3.2.4.2 Adjacency representation

Alternating edges crossover builds an offspring by choosing (at random) an edge from
the first parent, then selects an appropriate edge from the second parent, etc. The
operator extends the tour by choosing edges from alternating parents. If the new edge
(from one of the parents) introduces a cycle into the current (still partial) tour, the
operator selects a random edge from the remaining edges which do not introduce
cycles. For example, the first offspring from the two parents:

P1=(2 3 8 79 145 6) and
P2 = (7 5 1 6 9 2 8 4 3)

might be

O=(2 5 8 79 164 3),
where the process started from the edge (1,2) from the parent P1, and the only random
edge introduced during the process of alternating edges was (7,6) instead of (7,8),
which would have introduced a premature cycle.

Heuristic crossover builds an offspring by choosing a random gene as the starting
point for the offspring's tour. Then it compares the two edges (from both parents)
leaving this gene and selects the better (shorter) edge. The gene on the other end of the
selected edge serves as a starting point in selecting the shorter of the two edges leaving
this gene. If, at some stage, a new edge would introduce a cycle into the partial tour,

41

then the tour is extended by a random edge from the remaining edges which does not

introduce cycles.

3.2.4.3 Ordinal representation

The main advantage of ordinal representation is that classical crossover operator
works. Any two tours in the ordinal representation, cut after some position and crossed

together, would produce two offspring, each of them being a legal tour. For example
the two parents

P1(1 12114131 1)and
P2(5 155153321)

which correspond to the tours

1-2-4-3-8-5-9-6-7 and

5-1-7-8-9-4-6-3-2

would produce the following offspring:

01(1 12153321)and
O2(5 15541311)

corresponding to tours:

1-2-4-3-9-7-8-6-5 and

5-1-7-8-6-2-9-3-4.

As is the case with crossover, classical mutation operator does not perform well with

vector representation. In this research, the classical crossover operator has been
modified so that it meets the basic goal of mutation (to induce random variation) and

also works with the different vector representations discussed earlier. They are

described in detail in the following paragraphs.

For path representation, first, randomly generate a number between 1 and n, where n is

the number of components to be placed. Replace the gene to be mutated with the

randomly generated number, say k. Now, in the tour, find the position where k is, and

replace k with the gene that was chosen for mutation. For example, consider a tour

42

1-2-3-4-5-6-7-8-9

and say the bit to be mutated is '5'. A random number between 1 and 9 is generated.

Let the random number generated be 8(= k). In order to perform mutation, just swap

the two genes. Thus after mutation, the tour is

1-2-3-4-8-6-7-5-9.

For adjacency representation, the same mutation operator, as described for the path
representation is used.

The mutation operator for ordinal representation is similar to classical mutation
operator. In classical mutation, the chosen bit changes its value from 0 to 1 or vice

versa. In ordinal representation, the chosen bit changes its value to a randomly
generated number which lies between 1 and (n-i+1), where n is the total number of

components to be placed and i is the position of the current bit chosen for mutation.

There is no swapping of bits as is the case with the other representations.

3.3 Implementation

MATLAB and Visual Basic were considered for coding the algorithms. Considering

the mathematical complexity of the algorithm, MATLAB 6.5 was chosen. MATLAB
has a number of built in mathematical functions that were useful in coding the
algorithms. MATLAB also has a number of existing functions for matrix/array
manipulations. These functions do not exist in Visual Basic. The implementation of
the algorithms in MATLAB is discussed in detail below.

3.3.1 Path Representation

Figure 3 shows the flowchart describing the steps for path representation. Initially the

population was randomly generated using the randperm function, which generates

random permutations of the number of components to be placed. Each of these

43

randomly generated tours was evaluated to give its distance. The evaluation function

first calculates the distance between two consecutive positions in the tour, and then
sums all these distances to give the total distance of the tour.

Probability of selection for each of these tours was calculated next. As previously

mentioned, roulette wheel selection was used for this research. In roulette wheel
selection the probability of selection is calculated by dividing the evaluation of each

tour by the total evaluation (sum of all evaluations). Cumulative probabilities were
then calculated by summing the probabilities of selection. Random numbers, between

0 and 1, were then generated. The next highest number in the list of cumulative
probabilities, exceeding the random number generated, is the one selected to be in the
next generation. The conventional roulette wheel selection is used for maximization
problems, as the individuals with higher evaluation have a greater chance of being
selected. In this research the objective was to minimize the distance. Thus the
selection technique needed to be modified. This was done by calculating the
probability of selection by dividing the "reciprocal" of evaluation of each tour by the
total evaluation. The rest of the procedure was same as described above.

The next step was to choose individuals for crossover. This was done randomly. A
random number, between 0 and 1, was generated for each individual in the population.
If the random number was below the probability of crossover, the individual
corresponding to the random number is chosen for crossover. Also, for crossover, an
even number of individuals are needed. Thus, the next step was to check if the number

of chosen individuals was even or not. If it is not even, an extra individual needs to be
added or an existing individual needs to be deleted. This was again done randomly. A
random number was generated. If the random number was below 0.5, an existing
individual from the pool of crossover population was deleted. If the random number
was above 0.5, an extra individual was randomly chosen from the original population

added to the crossover population.

44

(START

Counter = 0
Generation = 1

-iIunter<9 No END)
Yes

If No

Yes

Initialize Random
Population

Evaluate
Population

Roulette Wheel
Selection

Random selection
of individuals for

crossover

Crossover (CO)

Return CO
elements into the

population

Mutation

[IaEter

Figure 3: Flowchart for Path Representation

45

After the crossover population is generated, crossover needs to be performed. For path
representation, there are three crossover operators and their implementation is
discussed in detail in the following paragraphs.

For Partially Mapped Crossover (PMX), two individuals were chosen at random from

the crossover population. Two random numbers, P1 and P2, with values between 2

and 9 were generated. The numbers falling between the minimum and maximum ofPl
and P2 in the two individuals were swapped. Then starting from the first number to the
minimum of P1 and P2 in the first individual, all the numbers were checked with the
numbers between minimum and maximum of P1 and P2. If any of the numbers
matched, then the number falls between first number and minimum of P1 and P2 was
replaced by the corresponding number that is at the same position as the number it
matched, but in the second individual. The same procedure is followed for numbers

between the maximum of P1 and P2 to the last number in the individual. Again, the
whole procedure is repeated with the second individual. The same procedure is
repeated until all the pairs in the crossover population are exhausted.

For Order Crossover (OX), similar to PMX implementation, two individuals were
chosen at random from the crossover population. Two random numbers P1 and P2,
with values between 2 and 9 were generated. Starting from the number after maximum
of P1 and P2, to the end of the individual, and then from the first to the maximum of
P1 and P2, all the numbers in the two individuals are stored in that order in two new
arrays. The elements of the new array formed by individual two were compared to the

numbers between minimum and maximum of P1 and P2 in individual one. If any of
the numbers matched, the number in the new array was replaced by zero. Later, all the

zeros were deleted to form an updated new array. Now the numbers in the updated

new array two were placed in the first individual chosen from the crossover
population, starting from the number next to maximum of P1 and P2 to the end of the
individual and then again from the first number to the number before minimum of P1

46

and P2. The same procedure is repeated with all the pairs of individuals in the
crossover population.

Cyclic crossover (CX) is different in operation than the other two crossover operators
discussed previously since the two random numbers P1 and P2 are not required. In
cycle crossover, the crossover population CO was copied to a new population
CONew, and the array CONew was filled with zeros. The first element from the first

individual in the earlier CO population was copied into the same position in CONew.
Then, the first element in the second individual in CO population was compared with
all the elements in the first individual until a match was found. If, at the matched
position, there is a zero in the CONew population (first individual), then the zero was
replaced by the number at the same position in the CO population in the same (first)
individual. This procedure is followed until the run does not find a zero in the CONew

population when making comparisons. Once this happens, the rest of the zeros in the
first individual in the CONew population were replaced by the numbers in the same

positions in the second individual in the CO population. The same procedure is
repeated with the second individual. The whole process is repeated until all the pairs in

the CO population are exhausted and there are no zeros at any position in the CONew
population.

Once the crossover operation was perfonned, the crossover individuals need to be put
back into the original population with the other individuals which were not changed.
The positions from where the crossover individuals were taken (from the original
population) were stored in an array named COPos, and using these, the crossover
elements were put back into the population.

Mutation was the next operation perfonned. For each element, in each individual of

the population, a random number was generated. If the random number generated fell

below the rate of mutation, then that particular element was mutated. Using the "rem"
function, the exact position of the element was determined i.e. individual number and

47

the element number. A random integer number in the range of 1 to the maximum
number of components being placed was generated. The element to be mutated was
replaced by this number, and the location where the random number was located in the
individual was replaced by whatever the number at the mutation location was.

The termination condition for the algorithm was 95% convergence i.e. the algorithm
stops running when 95% of the individuals in the population are the same. Once the
crossover and mutation operations are performed on the population it is evaluated to
check for convergence and the individual that appears 95% of the times is taken to be
the optimal solution. If 95% convergence is not met, then the convergence counter is
set back to zero and the generation counter is increased by one and the population is
allowed to run through another generation.

3.3.2 Ordinal Representation

Figure 4 shows the flowchart describing the steps for ordinal representation. A
reference list was defined at the start of the algorithm and held constant. Initial list
population was then generated using the "randint" function. The list population has
elements in an individual randomly generated, but the value of each element is in the
range of 1 to n-i+1, where n is the total number of components being placed and i is
the current position of the element being generated. The list population was then
decoded into actual tours. This was done by first copying the reference list to another
array and then sequentially using the numbers generated by the randint function to get
the appropriate number from the copied reference list. The number that is copied to the
decoded population is then deleted from the copied reference list and the procedure is
followed until all the elements from the copied reference list are deleted.

Figure 4: Flowchart for Ordinal Representation

49

The roulette wheel selection and random selection of individuals for crossover were

implemented similar to what was discussed for path representation. Instead of using

the actual population, the reference list was used. That was the only difference. Once

the crossover individuals are chosen at random, the next step is to perform crossover.

Classical crossover is used with ordinal representation. One point crossover was
implemented. A random number P1 was generated in the range of 2 to 9. Two
individuals were randomly chosen and all the elements after P1 were swapped
between the two individuals.

Implementing mutation is also simpler when compared to the one implemented for

path representation. A random number is generated for each of the elements. If the

random number is smaller than the mutation rate, then the value of the corresponding

element is randomly changed using the randint function, so that it is still in the range.

Again the termination condition is the same as discussed for path representation.

3.3.3 Adjacency Representation

Figure 5 shows the flowchart describing the steps for adjacency representation.
Adjacency representation was the most difficult to implement. The initial population is

generated similar to path representation using the randperm function. The population

evaluation, selection probability calculations, roulette wheel selection, random
selection of individuals for crossover are all implemented by using the procedure
described under path representation. Once the crossover population is generated, the

next step is crossover. But before this is done, representation needs to be changed

from path to adjacency.

For each individual from the original population, an adjacency equivalent is generated

using the following procedure. For all the elements from 1 to n -1 (n is the number of

components being placed), the element value in the original population decides the

50

next position to be filled in the adjacency representation, and the next element on the
list in path representation is the value of the element being placed at the selected
location in adjacency representation. For the nth element, the value is the value of the

first element in path representation. This procedure is repeated for the original
population as well as the crossover population.

For alternating edges crossover, a random integer in the range of 1 to the number of
components being placed is generated to start the crossover process. This is stored in

variable named "Startlndex". An array, "VisitedList", with size equal to the number of

components being placed is created, with zeros filled in. Each time a particular
element is placed in the offspring population, the position at which the element is
placed, the zero in that particular position is replaced to one in the VisitedList array.
During the run, if for a particular position, a one is seen at that position in the
VisitedList array, then the remaining elements which are yet to be placed are
randomly placed in the remaining blank positions in the offspring so that there is no
conflict. Once the crossover operation is performed on all the individuals in the
crossover population, the individuals are put back into the original population.

Heuristic Crossover is an extension of alternating edges crossover. It has the same
initial steps until creating the array "VisitedList". Once the run is started by the
randomly selected "Startindex", the next element to be entered into the offspring
individual is chosen depending upon which element from the two parents gives the
least distance. This procedure is followed until there is a conflict.

51

START)

Counter = 0
Generation = 1

if

Yes

If No

Yes

Initialize Random
Population

Evaluate
Population

Roulette Wheel
Selection

Random selection
of individuals for

crossover

Convert from Pat
to Adjacency

Crossover (CO)

Return CO
elements into the

population

Convert from
Adjacency to Pathi

Calculate Counter Mutationand Generation

Figure 5: Flowchart for Adjacency Representation

52

Once the crossover operation is performed, the population is converted back to path

representation. This is done by first entering a one at the first position and then the

following elements in the tour are filled in starting with the first element that appears

in the adjacency individual and then saving the element value in a variable named

"Index". The next element in the path representation is the one at the position "Index"

in the adjacency representation.

After the population is converted back into path representation the mutation operation

is performed as discussed under path representation. The termination criterion is also

the same as discussed previously.

53

4. RESULTS

There are four sets of parameters that are significant for the GA search. These are:

Representation type.

A particular type of crossover corresponding to representation chosen.

Crossover rate (CR).

Mutation rate (MR).

The first two parameters are combined into one parameter as each type of crossover is

exclusive to the type of representation that they are used for. The combined parameter

is called 'Method'. Six methods were investigated in this research and are summarized

in Table 1.

Table 1: Combination of Representation and Crossover for each Method

Method Representation + Crossover
1 Path + Partially Mapped

2 Path + Order

3 Path+ Cycle
4 Ordinal + Classical

5 Adjacency + Alternating Edges

6 Adjacency + Heuristic

The crossover rates were set at 11 levels and ranged from 0.20 to 0.30, with an interval

of 0.01. These values were chosen based on previous research of the algorithm
performance (Michalewicz, 1996). Also, the number of levels was chosen with the

goal of keeping complexity of the problem under control.

54

In the initial design the mutation rates were set at 4 levels - 0.005, 0.01, 0.015, 0.020.

But with the termination criteria of 95% convergence, the algorithm failed to converge

at mutation rates of 0.01, 0.015 and 0.020. Since, in this research the focus is to study

effects of the parameters discussed earlier, the termination criteria had to be held at

95% for fair comparisons. Thus the mutation rates were changed and set at 3 levels -

0.0025, 0.005, 0.0075.

For each combination of method, crossover rate and mutation rate, the program was
run 25 times. Sample size adequacy was determined by using the formula:

n => (z * s / e)"2,

where n is the sample size, s is the population standard deviation and e is the
acceptable error. The estimate for standard deviation was 280mm and the acceptable
error was set at 150mm (10% of the optimal). This sample size calculation is for a

simple random sampling process. This is appropriate because each sequence in the
population is generated randomly.

A total of 4950 data points (6 methods * 3 mutation rates * 11 crossover rates * 25
replications) were used for all subsequent analyses. Distance, the number of
generations and the time taken for the algorithm to run were recorded as response
variables. The program was run for a 10-component placement problem. A small
problem size was chosen to have a better control on the algorithm execution.

4.1 Normality Check

Figures 6-11 show the Normal Probability Plots (NPP) for each of the response
variables against method and mutation rate. It can be seen that the NPP's are skewed.
In general, moderate departures from normality are of little concern in fixed effects
ANOVA. Additionally, an error distribution that has considerably thicker or thinner
tails then normal is more of a concern than a skewed distribution. Because theF test is
only slightly affected, it can be said that ANOVA (and related procedures such as

55

multiple comparisons) is robust to the normality assumption (Montgomery, 2001). But

there is no quantitative measure to determine how much departure from normality or
skewness is actually acceptable. However, the skewness observed in the generated
data sets does appear to have substantial deviation from normality. As a result,
nonparametric tests, which are more conservative test statistics, were used for
subsequent analysis. Nonparametric testing produces statistical inferences free from
any distributional assumptions.

99

95
90

80

.70600)5
C.) 4I-

30
20

10

5

Normal Probability Plot for Distance By MR

Iuuu uuu .,uuu

Data

MR 1=0.0025
MR 2 = 0.0050

MR 3 = 0.0075

Figure 6: NPP for Distance by MR

1

.2

. 3

9

9C

50
0 40
'- 30

20

10

5

Normal Probability Plot for Distance By Method

Data

Method 1 = Path + Partially mapped

Method 2 = Path + Order

Method 3 = Path + Cycle

Method 4 Ordinal + Classical

Method 5 = Adjacency + Alternating edges

Method 6 Adjacency + Heuristic

Figure 7: NPP for Distance by Method

1

2

3

* 4

5

6

56

99

95
90

80
- 70C 60
ci)

2
30
20

10

5

Normal Probability Plot for Gen By MR

.
.

.*

0

MR1 =0.0025

MR 2 = 0.0050

MR 3 = 0.0075

100000

Data

Figure 8: NPP for Generation by MR

.1

.2

.3

57

99

95
90

80

50
0 40
- 30

20

10

5

Normal Probability Plot for Gen By Method

-100000 0 100000 200000 300000

Data

Method 1 = Path + Partially mapped

Method 2 Path + Order

Method 3 = Path + Cycle

Method 4 = Ordinal + Classical

Method 5 = Adjacency + Alternating edges

Method 6= Adjacency + Heuristic

Figure 9: NPP for Generation by Method

I

.2

.3
4

5

.6

99

95
90

80
- 70

60
a)

30
20

10

5

Normal Probability Plot for Time By MR

0 8000

Data

MR 1 =0.0025

MR 2 = 0.0050

MR 3 = 0.0075

Figure 10: NPP for Time by MR

16000

.2

.3

59

99

95

90

80
70
60
50

c.) 40
30
20

10

5

Normal Probability Plot for Time By Method

-5000 0 5000 10000 15000

Data

Method I = Path + Partially mapped

Method 2 = Path + Order

Method 3 Path + Cycle

Method 4= Ordinal + Classical

Method 5 = Adjacency + Alternating edges

Method 6= Adjacency + Heuristic

Figure 11: NPP for Time by Method

1

2

.3
4

5

.6

61

4.2 Mood's Median Test

Mood's median test is used to test the equality of medians from two or more
populations and provides a nonparametric alternative to the one-way ANOVA.
Mood's median test is also called a median test or sign scores test.

4.2.1 Distance Analysis

Figures 12-14 show the box plots for response variable Distance by each of the
factors. Figures 15-17 shows the Mood's median test for response variable Distance

with factors CR, MR and method respectively. The p-values for the factors in that
order are 0.981, <0.005 and <0.005. The figures also show a plot of median values and

the 95% confidence interval for each of the factors. Also, the interaction plots for
response variable Distance are shown in figures 18-20.

3500

3000

2500

0

2000

1500

1000

I '1

1 2 3

MR

Figure 12: Box plot for Distance by MR

n= 1650 for
each MR

3500

3000

2500
C
20
a

2000

1500

1000

-.- -.-_ =1=
=1= --=.= _

1 2 3 4 5 6

Method

Figure 13: Box plot for Distance by Method

3500

3000

2500
C
2
4,

a

2000

1500

1000

.- .

1 2 3 4 5 6 7 8 9 10 11

CR

Figure 14: Box plot for Distance by CR

n=825 for
each Method

n=450 for
each CR

62

Chi-Square = 3.03 DF = io P = 0.981

Individual 95.0% CIs
CR N<= N> Median Q3-Q1 ----- + --------- + --------- + ---------

0.20 275 175 1690.5 240.5 (+

0.21 268 182 1690.5 281.3 (------------------- +
0.22 277 173 1690.5 241.5 +

0.23 271 179 1690.5 240.5 (+
0.24 267 183 1690.5 283.1 +

0.25 273 177 1690.5 240.5 (+
0.26 273 177 1690.5 233.1 (------------------- +
0.27 263 187 1690.5 282.1 (----------------------------- +
0.28 275 175 1690.5 282.1 (------------------- +
0.29 263 187 1690.5 282.1 C ------------------- +
0.30 281 169 1690.5 206.2 +

+ --------- + --------- + --------- +-
1640 1660 1680 1700

Overall median = 1690.5

Figure 15: Mood's median test for Distance by CR

Chi-Square = 1104.10 DF = 2 P = 0.000

Individual 95.0% CIs
MR. N<= N> Median Q3-Q1 ---+ --------- + --------- + ---------

0.0025 477 1173 1800 294
0.0050 1126 524 1650 150 + -----

0.0075 1383 267 1592 241 +

+ --------- + --------- +---
1610 1680 1750 1820

Overall median = 1691

Figure 16: Mood's median test for Distance by MR

Chi-Square = 449.46 DF = s P = 0.000

Individual 95.0% CIs
Method N<= N> Median Q3-Ql ----- + --------- + --------- + ---------

1 547 278 1691 183 +

2 700 125 1450 142 +

3 504 321 1691 242 +

4 289 536 1742 242 (+----)
5 490 335 1691 241 +

6 456 369 1691 250 +

+ --------- + --------- + --------- +-
1500 1600 1700 1800

Overall median = 1691

Figure 17: Mood's median test for Distance by Method

64

8
C, -C

0,

0
0
C

MR

Figure 18: Interaction plot for Distance for MR by Method

I

MR

Figure 19: Interaction plot for Distance for MR by CR

a,
UC

a F-a,-
0
C
'a
a,

E

8
a

Method

Figure 20: Interaction plot for Distance for Method by CR

4.2.2 Generation Analysis

Figures 21-23 show the box plots for response variable Generation by each of the

factors. Figures 24-26 shows the Mood's median test for response variable Generation

with factors CR, MR and method respectively. The p-values for the factors in that
order are 0.9 10, <0.005 and <0.005. The figures also show a plot of median values and

the 95% confidence interval for each of the factors. Also, the interaction plots for
response variable Generation are shown in figures 27-29.

C
0

400000

300000

200000

100000
I

2 3

MR

Figure 21: Box plot for Generation by MR

n= 1650 for
each MR

400000

300000

C
0

200000

100000

0

-.-$
S

1lia
1 2 3 4 5 6

Method

Figure 22: Box plot for Generation by Method

400000

300000

C
0

200000
C

100000

0

-5-
.-

-5- -5-.5-5-4

1 2 3 4 5 6 7 8 9 10 11

CR

Figure 23: Box plot for Generation by CR

n=825 for
each Method

n=450 for
each CR

Chi-Square = 4.71 DF = io P = 0.910

CR N<= N> Median
0.20 233 217 487
0.21 233 217 492
0.22 222 228 533
0.23 227 223 509
0.24 222 228 541
0.25 232 218 495
0.26 226 224 503
0.27 234 216 460
0.28 217 233 548
0.29 214 236 577
0.30 217 233 542

Overall median = 522

Individual 95.0% CIs
Q3-Q1 ----+ --------- + --------- + ---------

2669 C
+ ---------

2640 C
+ --------------

2675 C
+ -------

2554 (+ -----------------
2752 C

+ -----------
2332 C

+ ----------
2396 C

+ --------
2276 C

+ -----------
2365 C

+ ----------
2759 C

+ -----------
2367 C

+ ---------
+ --------- + +--

400 500 600 700

Figure 24: Mood's median test for Generation by CR

Chi-Square = 2787.03 DF = 2 P = 0.000

Individual 95.0% CIs
MR N<= N> Median Q3-Ql ----------+ --------- + --------- +
0.0025 1593 57 175 147 +
0.0050 807 843 535 583 +
0.0075 77 1573 7572 20401

+ --------- + --------- +
2500 5000 7500

Overall median = 522

Figure 25: Mood's median test for Generation by MR

Chi-Square = 84.34 DF = s P = 0.000

Individual 95.0% CIs
Method N<= N> Median Q3-Q1 ----+ --------- + --------- + ---------
1 385 440 579 6145 (--+
2 331 494 801 8731 (----
3 376 449 642 6105
4 487 338 370 1282 (--+)
5 434 391 484 2244 C-+--)
6 464 361 422 1205

+ --------- + +--
400 600 800 1000

Overall median = 522

Figure 26: Mood's median test for Generation by Method

C
0

a,

0

Method

2

/
3

/ 5

/ 4

/ /
/ /

/
I /

/ /
I /

/ /
I, /

/,, /
/ /

,, /
'I /

2 3

MR

Figure 27: Interaction plot for Generation for MR by Method

00

0000

C 0o 0
a, -
C

0C 0
E

000
U,

0

MR

Figure 28: Interaction plot for Generation for MR by CR

70

=
0

0
0 0
C In
0

0
C0 00 0Eo

000
In

Method

Figure 29: Interaction plot for Generation for Method by CR

71

4.2.3 Time Analysis

Figures 30-32 show the box plots for response variable Time by each of the factors.
Figures 33-35 shows the Mood's median test for response variable Time with factors
CR, MR and method respectively. The p-values for the factors in that order are 0.693,
<0.005 and <0.005. The figures also show a plot of median values and the 95%
confidence interval for each of the factors. Also, the interaction plots for response
variable Time are shown in figures 36-38.

n= 1650 for
each MR

15000

10000

I-

5000

0

I

I

2 3

MR

Figure 30: Box plot for Time by MR

15000

10000

I-

Li

0

-.-

4
1 2 3 4 5 6

Method

Figure 31: Box plot for Time by Method

15000

10000

1-

5000

0

-s-I-.-.- .- -s-

1 2 3 4 5 6 7 8 9 10 11

CR

Figure 32: Box plot for Time by CR

n=825 for
each Method

n=450 for
each CR

72

Chi-Square = 7.34 DF = io P = 0.693

CR N<= N> Median
0.20 229 221 29.2
0.21 228 222 28.9
0.22 235 215 26.5
0.23 223 227 30.6
0.24 214 236 32.7
0.25 237 213 27.7
0.26 226 224 29.7
0.27 236 214 27.3
0.28 210 240 32.7
0.29 219 231 32.6
0.30 218 232 31.8

Overall median = 30.0

73

Individual 95.0% CIs
Q3-Ql -------- + --------- + --------- + --------

148.6 (
+ --------

143.1 (-------------- + ------------------
130.4 (

+ ------------

137.4 (+
155.3 (----------- +
140.1 (+
156.3 (----------- + ------------
121.8 (-------- + ----------
154.7 (+ --------------
160.7 C

+ ------------
133.3 (+

+ --------- + --------- + --------
25.0 30.0 35.0

Figure 33: Mood's median test for Time by CR

Chi-Square = 2812.06 DF = 2 P = 0.000

Individual 95.0% CIs
MR N<= N> Median Q3-Q1 ---------- + --------- + --------- + ------
0.0025 1603 47 9 8 +
0.0050 791 859 31 33 (+
0.0075 81 1569 399 936

---------- + --------- + --------- + ------
120 240 360

Overall median = 30

Figure 34: Mood's median test for Time by MR

Chi-Square = 67.76 DF = 5 P = 0.000
Individual 95.0% CIs

Method N<= N> Median Q3-Q1 ----- + --------- + --------- + ---------
1 439 386 24.8 246.0 (---+ -------
2 385 440 35.5 377.3 (

+ --------
3 427 398 27.7 244.9 (

4 497 328 20.3 69.4 (--+--)
5 350 475 38.7 153.3 C ----- +

6 377 448 34.1 88.5 (---+ -----
+ --------- + --------- + --------- +-

21.0 28.0 35.0 42.0
Overall median = 30.0

Figure 35: Mood's median test for Time by Method

74

00
U,

Ee
C

E

I;

Method

--

3
/ 5

'I

/

;/

2 3

MR

Figure 36: Interaction plot for Time for MR by Method

000

00

0
E

C,
0E0

0
'0

00N

0

MR

Figure 37: Interaction plot for Time for MR by CR

E
I

E

Method

Figure 38: Interaction plot for Time for Method by CR

5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Discussion

A genetic algorithm was developed for solving a traveling salesman problem to
effectively determine a near-optimal solution for the sequencing problem on a
component placement machine. Three vector representation schemes, along with the

crossover and mutation operators' exclusive to a representation scheme, were
compared. Mood's median test was performed to identify the significant factors for
each of the response variables.

Mood's median test identified mutation rate and method as the significant factors for

response variable distance. At a mutation rate of 0.0075, the median distance was
close to optimal and the confidence interval was small, indicating that this particular

mutation rate consistently yields better solutions. For a mutation rate of 0.0025, the

median was high and the confidence interval extended towards the higher size,
indicating that it is not as consistent. Comparison of methods indicated that method 2

(path + order) had the best performance, with optimal value for median and very tight

confidence interval. All the other methods, except for method 4 (ordinal + classical),

performed moderately and there was not a significant difference between those
methods. Method 4 (ordinal + classical) had the worst performance and also had a
larger confidence limit.

For response variable generation and time, mutation rate and method were the
significant factors and the results were similar. For both generation and time, the

responses were low and had tight confidence for mutation rates of 0.0025 and 0.005.

For a mutation rate of 0.0075, the number of generations and time increased
significantly. Also, the first three methods took a larger number of generations to solve

as compared to the other three methods and had large confidence intervals. However,

77

for response variable time, except method 4 (ordinal + classical), there was not a
significant difference in times for all the other methods. The confidence intervals on

all these methods were large. From the comparison of different methods for response

variables generation and time, it can be concluded that though it takes significantly

fewer generations to get to the near optimal solution using methods 5 (adjacency +

alternating edges) and 6 (adjacency + heuristic) when compared to methods 1 (jath +

partially mapped), 2 (path + order) and 3 (path + cycle), the time taken for the
algorithm to run is not significantly different for the methods mentioned.

Based on the results obtained, mutation rate of 0.005 and Method 2 (path + order) is

recommended for solving the TSP. Since higher mutation rates lead to larger number

of generations and higher solving times, its use in the industry may not be practical.

The same problem was also solved by using the algorithm used by the component
placement machine. The problem was solved multiple times, but yielded the same

result every time. The sequence was solved to find the distance traveled by the head,

and was found to be 2282mm. Compared to the optimal value of 1450mm, it can be
seen that the performance of the component placement machines' algorithm is very
poor.

5.2 Future Research

This research can be further extended to investigate the effects of other GA parameters
on the execution of the algorithm. Potential areas could include comparing different

selection criteria, tightening or relaxing the termination conditions or measuring
algorithm performance for other response variables. For example, comparing the
different selection schemes, like tournament selection or elitism with the roulette
wheel selection could help find the one that works the best for the component
placement problem. Also, devising a composite response variable which measures the

78

distance traveled by the placement head and time taken to solve, would help in
drawing fairer conclusions.

Feeder optimization is another area of extension which can be simultaneously solved

with the sequencing problem. The feeder optimization not only affects the way the

sequencing is done, but also has an effect on the setup of the machine. But the feeder

optimization is equipment specific as the feeder locations and types change from
machine to machine.

Most of the component placement machines in use have multiple placement heads.

Thus, solving the sequencing problem for a multiple headed placement machine is also

another area of future research. Multiple sequences, one for each head, need to be
simultaneous monitored and improved to get an optimal sequence. As the number of

heads increases, the complexity of the problem increases exponentially.

79

BIBLIOGRAPHY

Brandeau, M. L., Billington, C. A., 1991, Design of manufacturing cells: operation

assignment in printed circuit board manufacturing. Journal of Intelligent
Manufacturing, Vol. 2, 95-106.

Buckles, B. P., Petiy, F. E., 1992, Genetic algorithms. IEEE Computer Society Press

Technology Series.

Burke, E. K., Cowling, P. I., Keuthen, R., 1999, New models and heuristics for
component placement in printed circuit board assembly. Proceedings of the IEEE
International Conference on Information, Intelligence and Systems (ICIIS), 133-140.

Capps, C. H., 1998, Setup reduction in PCB assembly: A group technology
application using genetic algorithms. Master's Thesis, Oregon State University.

Crama, Y., Flippo, 0. E., Klundert, J., Spieksma, F. C. R., 1996, The component
retrieval problem in printed circuit board assembly. International Journal of Flexible

Manufacturing Systems, Vol. 8, 287-312.

Crama, Y., Flippo, 0. E., Klundert, J., Spieksma, F. C. R., 1997, The assembly of
printed circuit boards: a case with multiple machines and multiple board types.
European Journal of Operations Research, Vol. 98, 457-472.

Crama, Y., Klundert, J., Spieksma, F. C. R., 2002, Production planning problems in

printed circuit board assembly. Discrete Applied Mathematics, Vol. 123, 339-361.

Davis, L., 1987, Genetic algorithms and simulated annealing. Pitman Publishing.

Davis, L., 1991, Handbook of genetic algorithms. Van Nostrand Reinhold.

Garetti, M., Pozzetti, A., Tavecchio, R., 1996, Production scheduling in SMT
electronic boards assembly. Production Planning and Control, Vol. 7, 197-204.

Gen, M., Cheng, R., 2000, Genetic algorithms and engineering optimization. John
Wiley & Sons, Inc.

Goldberg, D. E., 1989, Genetic algorithms in search, optimization and machine
learning. Addison- Wesley Publishing Company, Inc.

Gunther, H. 0., Gronalt, M., Zeller, R., 1998, Job sequencing and component set-up

on a surface mount placement machine. Production Planning and Control, Vol. 9,
201-211.

Jeevan, K., Parthiban, A., Seetharamu, K. N., Azid, I. A., Quadir, G. A., 1985,
Optimization of PCB component placement using genetic algorithms. Journal of
Electronics Manufacturing, Vol. 11, 69-79.

Ji, P., Wan, Y. F., 2001, Planning for printed circuit board assembly: The state-of-the-

art-review. International Journal of Computer Applications in Technology, Vol. 14,
136-144.

Johnsson, M., Smed, J., 2001, Observations on PCB assembly optimization.
Electronics Packaging and Production, Vol. 41, 38-42.

Khoo, L. P., Ng, T. K., 1998, A genetic algorithm-based planning system for PCB

component placement. International Journal of Production Economics, Vol. 54, 321-

332.

Lee, S. H., Lee, B. H., Park, T. H., 1999, A hierarchical method to improve the
productivity of a multi-head surface mounting machine. Proceedings of the IEEE
International Conference on Robotics and Automation.

Leu, M. C., Wong, H., Ji, Z., 1993, Planning of component placementlinsertion
sequence and feeder setup in PCB assembly using genetic algorithms. Transactions of

the ASME, Vol. 115, 424-432.

Magyar, G., Johnsson, M., Nevalainen, 0., 1999, On solving single machine
optimization problems in electronic assembly. Journal of Electronics Manufacturing,

Vol. 9, 249-267.

Michalewicz, Z., 1996, Genetic algorithms + Data structures = Evolution programs.

Springer.

Mitchell, M., 1996, An introduction to genetic algorithms. The MIT Press.

Montgomery, D. C., 2001, Design and analysis of experiments. John Wiley & Sons,
Inc.

Prasad, R. P., 1997, Surface mount technology: Principles and practices. Chapman
and Hall.

Rawlins, G. J. E., 1991, Foundations of genetic algorithms. Morgan Kaufmann
Publishers.

Reinelt, G., 1994, The traveling salesman Computational solutions. Springer-Verlag.

Sakawa, M., 2002, Genetic algorithms and fuzzy multiobjective optimization. Kiuwer

Academic Publishers.

Sanchez, J. M., Priest, J. W., 1991, Optimal component-insertion sequence planning

methodology for the semi automatic assembly of printed circuit boards. Journal of
Intelligent Manufacturing, Vol. 2, 177-188.

Su, C., Ho, L., Fu, H., 1998, A novel tabu search approach to find the best placement

sequence and magazine assignment in dynamic robotics assembly. Integrated
Manufacturing Systems, Vol. 9, 366-376.

Su, Y. Srihari, K., 1996, Placement sequence identification using artificial neural

networks in surface mount PCB assembly. International Journal of Advanced
Manufacturing Technology, Vol. 11, 285-299.

Traister, J. E., 1990, Design guidelines for surface mount technology. Academic Press,

Inc.

Van Laarhoven, P. J. M., Zijm, W. H. M., 1993, Production planning and numeric
control in PCB assembly. The International Journal of Flexible Manufacturing
Systems, Vol. 5, 187-207.

Wang, W., Nelson, P. C., Tirpak, T. M., 1999, Optimization of high-speed multi-
station SMT placement machines using evolutionary algorithms. IEEE Transactions

on Electronics Packaging Manufacturing, 1-10.

83

APPENDICES

APPENDIX A

MATLAB CODE FOR PLACEMENT SEQUENCE OPTIMIZATION

% Clear command window and remove variables from memory

clear

dc

% Read data from file

Y=dlmread('Assyinfo.txt');

% Prompt user to input Representation and Crossover methods

disp('Choose a Representation Scheme');

disp('Enter 1 for Path');

disp('Enter 2 for Ordinal');

disp('Enter 3 for Adjacency');

Representation = input('Enter number:');

if Representation == 1

disp('Choose a Crossover operator');

disp('Enter 1 for PMX');

disp('Enter 2 for OX');

disp('Enter 3 for CX');

Crossover = input('Enter number:');

end

if Representation == 3

disp('Choose a Crossover operator');

disp('Enter 1 for Alternating Edges');

disp('Enter 2 for Heuristic');

Crossover = input('Enter number:');

end

% Promt user to input Crossover and Mutation rates

COProb = input('Enter Crossover Probability: ');

MUProb = input('Enter Mutation Probability: ');

% Start time

tic

% Path Representation

if Representation == 1

Counter=0;

Generation = 1;

while Counter <95

% Random generation of Initial Population

if Generation = 1
for i=1:100

X(:, : ,i)=randperm(10);

end

end

% Evaluation Function which calculates the distance travelled between 2 points for

each sequence

for i=1:100

for j=2:10

Z(i,j- 1) = sqrt((Y(X(1 ,j,i), 1)-Y(X(1 'j-1 ,i), 1))"2+(Y(X(1 ,j,i),2)-Y(X(1 ,j-

1 ,i),2))''2);

end

end

% Calculating the total distance travelled for each sequence and also the

% grand total of all the distances

for i=1:100

Total(i)=sum(Z(i,:));

TotalReci(i)= 1 /Total(i);

end

GrandTot = sum(TotalReci(:));

Average(Generation) = mean(Total);

GenlPlot(Generation) = Generation;

% Calculating the probability of selection for each sequence

for i=1:100

P(i)=TotalReci(i)/GrandTot;

end

% Roulette wheel selection

for i=1:100

RandomNum = rand(1);

K=0;
for j= 1:100

K=K+P(j);
jfK >= RandomNum

NewX(: , :,i)=X(: , :,j);

break

end

end

end

% Randomly selecting individuals for Crossover

K= 1;
for i=1:100

RandomNum = rand(1);

if RandomNum < COProb

CO(:,:,K) = NewX(:,:,i);

COPos(K) = i;

K=K+ 1;
end

end

% Check if the number of chosen sequences are even or odd

if rem(K,2) = 0
RandomNum = rand(1);

if RandomNum < .5

CO(:,:,K-1) = [];
COPos(K- 1)[];

K=K-2;
else

COPos(K) = round((rand(1)*99)+1);

CO(: , : ,K) = NewX(:, :,COPos(K));

end

end

% PMX Crossover operator

if Crossover = 1

CONew = CO;

if rem(K,2) 0

K = K-i;

end

RandomCO = randperm(K);

for i=1:2:K

P1 = round(rand(1)*8 + 1);

P2 = round(rand(1)*8 + 1);

if P1 = 1

P1 =P 1 + 1;

end

if P2=1
P2=P2+1;

end

for j=min(P 1 ,P2) :max(P 1 ,P2)

Temp = CO(:,j,RandomCO(i));

CONew(: ,j ,RandomCO(i)) = CO(: ,j ,RandomCO(i+ 1));

CONew(:,j,RandomCO(i+1)) Temp;

end

for n=1 :(min(P1,P2)-1)

m=min(P 1 ,P2);

while m < max(P 1 ,P2)

if CONew(: ,n,RandomCO(i)) = CONew(: ,m,RandomCO(i))

CONew(:,n,RandomCO(i)) = CONew(: ,m,RandomCO(i+ 1));

m=min(P 1 ,P2);

else

m=m+ 1;

end

end

end

for n=(max(P 1 ,P2)+ 1): 10

m=min(P 1 ,P2);

while m <= max(P1,P2)

if CONew(:,n,RandomCO(i)) = CONew(:,m,RandomCO(i))

CONew(:,n,RandomCO(i)) = CONew(:,m,RandomCO(i+ 1));

m=min(P 1 ,P2);

else

m=m+1;

end

end

end

for n=1 :(min(P1,P2)-1)

m=min(P 1 ,P2);

while m <= max(P1,P2)

if CONew(: ,n,RandomCO(i+ 1)) == CONew(: ,m,RandomCO(i+ 1))

CONew(: ,n,RandomCO(i+ 1)) = CONew(: ,m,RandomCO(i));

m=min(P 1 ,P2);

else

m=m+ 1;

end

end

end

for n=(max(P 1 ,P2)+ 1): 10

m=min(P 1 ,P2);

while m <= max(P1,P2)

if CONew(: ,n,RandomCO(i+ 1)) == CONew(: ,m,RandomCO(i+1))

CONew(:,n,RandomCO(i+1)) = CONew(:,m,RandomCO(i));
m=min(P 1 ,P2);

else

m=m+1;

end

end

end

end

end

% OX Crossover operator

91

if Crossover = 2
CONew = CO;

if rem(K,2) 0

K = K-i;

end

RandomCO = randperm(K);

for i=1:2:K

P1 = round(rand(1)*8 + 1);

P2 = round(rand(1)*8 + 1);

if P1=1
P1 =P 1+1;

end

if P2= 1

P2=P2+1;

end

q=1;

for n=(max(P1 ,P2)+1): 10

Temp(q)=CO(:,n,RandomCO(i+ 1));

qq+1;
end

for n1 :max(P1,P2)

Temp(q)=CO(:,n,RandomCO(i+ 1));

q=q+ 1;

end

for n= 1:10

for m=min(P 1 ,P2) :max(P I ,P2)

if Temp(n) == CO(:,m,RandomCO(i))

Temp(n) = 0;

end

end

92

end

drn1;

for n 1:10

if Temp(n)= 0
Temp 1 (d)Temp(n);

dd+ 1;
end

end

q=1;

for n=(max(P1,P2)+l): 10

CONew(: ,n,RandomCO(i))Temp 1(q);

qq+ 1;
end

for n=1 :(min(P1,P2)-1)

CONew(: ,n,RandomCO(i))Temp 1(q);

q=q+ 1;

end

q= 1;

for n=(max(P 1 ,P2)+ 1): 10

Temp(q)=CO(: ,n,RandomCO(i));
qz=q+ 1;

end

for n=1:max(P1,P2)

Temp(q)=CO(: ,n,RandomCO(i));

qq+ 1;
end

for n=1:10

for m=min(P1 ,P2):max(P1 ,P2)

if Temp(n) CO(:,m,RandomCO(i+1))

Temp(n) 0;

93

end

end

end

drn1;

for n= 1:10

if Temp(n)-'-= 0

Temp 1 (d)=Temp(n);

dd+ 1;
end

end

q= 1;

for n=(max(P 1 ,P2)+ 1): 10

CONew(: ,n,RandomCO(i+ 1))=Temp 1(q);

q=q+ 1;

end

for n=1 :(min(P1,P2)-1)

CONew(: ,n,RandomCO(i+ 1))=Temp 1(q);

q=q+ 1;

end

end

end

% CX Crossover operator

if Crossover = 3
CONew = CO;

CONew(:,:,:)=0;

if rem(K,2) 0

K = K-i;

end

RandomCO = randperm(K);

for i=1:2:K

q= 1;

CONew(: ,q,RandomCO(i))C0(: ,q,RandomCO(i));

for n 1:10
for m= 1:10

if CO(:,q,RandomCO(i+1)) == CO(:,m,RandomCO(i))

if CONew(:,m,RandomCO(i)) 0

break

break

else

CONew(: ,m,RandomCO(i)) = CO(: ,m,RandomCO(i));

q=m;

break

end

end

end

end

for n= 1:10

if CONew(: ,n,RandomCO(i))=0

CONew(:,n,RandomCO(i))C0(: ,n,RandomCO(i+ 1));
end

end

end

for i=1:2:K

q= 1;

CONew(: ,q,RandomCO(i+ I))C0(: ,q,RandomCO(i+ 1));

for n= 1:10

for m= 1:10

if CO(: ,q,RandomCO(i)) CO(: ,m,RandomCO(i+ 1))

if CONew(: ,m,RandomCO(i+ 1))-= 0

break

break

else

CONew(: ,m,RandomCO(i+ 1)) = CO(: ,m,RandomCO(i+ 1));

q=rn;

break

end

end

end

end

for n= 1:10

if CONew(:,n,RandomCO(i+ 1))=0

CONew(:,n,RandomCO(i+ 1))=CO(:,n,RandomCO(i));

end

end

end

end

% Putting the Crossovered Elements back into the population

for i=1:K

NewX(: , :,COPos(RandomCO(i))) = CONew(: , :,RandomCO(i));
end

% Randomly choosing bits and performing Mutation

for i=1:1000

RandomNum = rand(1);

if RandomNum <MUProb

if i >= 10 && rem(i,10)-=0

quotient = ((i-rem(i,10))/10)+1;

Coloumn=rem(i, 10);

elseifi>= 10 && rem(i,10) = 0

quotient = i/10;

Coloumn= 10;

else

quotient 1;

Colounm=rem(i, 10);

end

NewElement = round((rand(1)*9 + 1));

for j= 1:10

if NewX(:,j,quotient) = NewElement

NewX(: ,j ,quotient) = NewX(:,Coloumn,quotient);

NewX(:,Coloumn,quotient) = NewElement;

end

end

end

end

X=NewX;

Counter=0;

for i=1:6

for j=1: 100

if X(:,:,i) = X(:,:,j)
Counter = Counter+ 1;

LeastPos=j;

end

end

if Counter >= 95

break

break

else

97

Counter=0;

end

end

Generation = Generation+ 1;

end

end

% Ordinal Representation

if Representation == 2

Reference = [12 3 45 67 89 10];
Counter=0;

Generation = 1;

while Counter <95

% Generating list L of references on first run

if Generation = 1
for i=1:100

for j= 1:10

L(:,j,i)=round(rand(1)*(10_j) + 1);

end

end

end

% Decoding the reference list to actual tours

for i=1:100

RefCopy=Reference;

for j= 1:10

X(:,j,i)= RefCopy(L(:,j,i));

Reftopy(L(: ,j ,i))=[];

end

end

% Evaluation Function

for i=1:100

for j=2:1O

Z(i,j- 1) = sqrt((Y(X(1 ,j,i), 1)-Y(X(1 ,j-1 ,i), 1))''2+(Y(X(1 ,j,i),2)-Y(X(1 ,j-

1 ,i),2))"2);

end

end

% Calculating the total distance travelled for each sequence and also the

% grand total of all the distances

for i=1:100

Total(i)=sum(Z(i,:));

TotalReci(i)= 1 /Total(i);

end

GrandTot = sum(TotalReci(:));

Average(Generation) = mean(Total);

GenPlot(Generation) = Generation;

% Calculating the probability of selection for each sequence

for i=1:100

P(i)=TotalReci(i)/GrandTot;

end

% Roulette wheel selection

for i=1:100

RandomNum = rand(1);

K=0;
for j=1 :100

KK+P(j);
jfK >= RandomNum

NewL(:,:,i)=L(:,:,j);

break

end

end

end

% Randomly selecting individuals for Crossover

K= 1;
for i1:100

RandomNum = rand(1);

if RandomNum < COProb

CO(:,:,K) = NewL(:,:,i);

COPos(K) = i;

K=K+ 1;
end

end

% Check if the number of chosen sequences are even or odd

if rem(K,2) = 0
RandomNum = rand(1);

if RandomNum < .5

CO(:,:,K-1) =

COPos(K- 1)=[];

K=K-2;
else

COPos(K) = round((rand(1)*99)+1);

CO(:,:,K) = NewL(:,:,COPos(K));

end

100

end

% Classical Crossover operator

CONew CO;
if rem(K,2) 0

K = K-i;
end

RandomCO = randperm(K);

for i=i :2:K

P1 = round(rand(1)*7 + 2);

for j=P1: 10

CONew(:,j ,RandomCO(i)) = CO(: ,j ,RandomCO(i+ 1));

CONew(:,j ,RandomCO(i+ 1)) = CO(: ,j ,RandomCO(i));

NewL(: ,j ,COPos(RandomCO(i)))=CO(:,j ,RandomCO(i+ 1));

NewL(:,j ,COPos(RandomCO(i+ 1)))=CO(: ,j ,RandomCO(i));

end

end

% Randomly selecting individual bits and performing Mutation

for i=1:1000

RandomNum = rand(1);

if RandomNum <MUProb

ifi >= 10 && rem(i,10)=0
quotient = ((i-rem(i,10))/10)+1;

Coloumn=rem(i, 10);

elseifi>= 10 && rem(i,10) = 0
quotient = i/i0;

Coloumn=1 0;

else

quotient = 1;

101

Coloumn=rem(i, 10);

end

NewL(: ,Coloumn,quotient) = round((rand(1)*(1 0-Coloumn) + 1));

end

end

L=NewL;

Counter=0;

for i=1:6

for j=1 :100

ifL(:,:,i) =
Counter = Counter+1;

LeastPos=j;

end

end

if Counter >= 95

break

break

else

Counter=0;

end

end

Generation = Generation+ 1;

end

end

% Adjacency Representation

if Representation == 3

Counter=0;

Generation = 1;

102

while Counter<95

if Generation = 1

for i=1:100

X(:, : ,i)=randperm(10);

end

end

for i=1:100

for j=2: 10

Z(i,j- 1) = sqrt((Y(X(1 ,j ,i), 1)-Y(X(1 ,j-i ,i), 1))"2+(Y(X(1 ,j ,i),2)-Y(X(1 ,j-

1 ,i),2))"2);

end

end

% Calculating the total distance travelled for each sequence and also the

% grand total of all the distances

for i=1:100

Total(i)=sum(Z(i,:));

TotalReci(i)=1 /Total(i);

end

GrandTot = sum(TotalReci(:));

Average(Generation) mean(Total);

GenPlot(Generation) = Generation;

% Calculating the probability of selection for each sequence

for i=1:100

P(i)=TotalReci(i)/GrandTot;

end

103

% Roulette wheel selection

for i=1:100

RandomNum = rand(1);

K=0;
for j=1 :100

K=K+P(j);
jfK >= RandomNum

NewX(:,:,i)=X(:,:,j);

break

end

end

end

% Randomly selecting individuals for Crossover

K= 1;
for i=1:100

RandomNum = rand(1);

if RandomNum < COProb

CO(:,:,K) = NewX(:,:,i);

COPos(K) = i;

K=K+ 1;
end

end

% Check if the number of chosen sequences are even or odd

if rem(K,2) = 0
RandomNum = rand(1);

if RandomNum < .5

CO(:,:,K-1) =
COPos(K- 1)=[];

104

K=K-2;
else

COPos(K) round((rand(1)*99)+1);

CO(:,:,K) = NewX(:,:,COPos(K));

end

end

% Converting from Path to Adjacent

for i=i:100

for t=1 :size(X,2)-i

Adj(:,X(:,t,i),i)=X(:,t+ 1 ,i);

end

Adj (: ,X(: ,size(X,2),i),i)=X(1,1 ,i);

end

Adj 1 =Adj;

for i=1 :size(CO,3)

for t=1 :size(CO,2)-1

COAdj(:,CO(:,t,i),i)=CO(:,t+i ,i);
end

COAdj (: ,CO(: ,size(CO,2),i),i)=CO(1,1 ,i);

end

% Perform Alternating Edges Crossover

if Crossover 1

CONew = zeros(size(COAdj));

if rem(K,2) 0

K = K-i;

end

RandomCO = randperm(K);

for i=1:K

105

Cols=size(COAdj ,2);

StartIndex=round(rand(1)*(Co1s1) + 1);

Changinglndex=Startlndex;

CONum=0;

VisitedList=zeros(1 ,Cols);

VisitedList(Changinglndex)= 1;

Comp=1;

while Comp<Cols

if rem(i,2)=0
Seed i-2+CONum+1;

else

Seed i-1+CONum+1;

end

NewComp=COAdj(: ,Changinglndex,RandomCO(: ,Seed));

if VisitedList(NewComp)=1

AllowedList=zeros(1 ,Cols-Comp);

z= 1;

for t=1 :size(VisitedList,2)

if VisitedList(t)==0

AllowedList(z)=t;

z=z+1;

end

end

NewComp=AllowedList(round(rand(1)*(size(AllowedList,2) 1)+ 1));

end

CONew(: ,ChangingIndex,i)NewComp;

Changinglndex=NewComp;

Comp=Comp+1;

VisitedList(Changinglndex)=1;

CONum= 1 -CONum;

end

CONew(:,Changinglndex,i)=Startlndex;

end

for i=1:K

Adj (: , : ,COPos(RandomCO(i))) = CONew(: , :,i);

end

end

% Perform Heuristic Crossover

if Crossover = 2
CONew = zeros(size(COAdj));

if rem(K,2) 0

K=K-1;
end

RandomCO = randperm(K);

for i=1:K

Cols=size(COAdj ,2);

Startlndex=round(rand(1)*(Co1s 1) + 1);

Changinglndex=Startlndex;

CONum=0;

VisitedList=zeros(1 ,Cols);

VisitedList(Changinglndex)= 1;

Comp=1;

if rem(i,2)==0

106

Seed i-i;
else

Seed=i;
end

while Comp<Cols

107

Temp 1 = COAdj (,Changinglndex,RandomCO(: ,Seed));

Temp2 = COAdj (: ,Changinglndex,RandomCO(:,Seed+ 1));

Disti = sqrt((Y(Changinglndex,1)-

Y(Temp 1,1))"2+(Y(Changinglndex,2)-Y(Temp 1 ,2))'2);

Dist2 = sqrt((Y(Changinglndex,1)-

Y(Temp2, 1))"2+(Y(ChangingIndex,2)-Y(Temp2,2))'2);

if Disti <Dist2

NewComp=COAdj(:,Changinglndex,Seed);
else

NewComp=COAdj(:,Changinghidex,Seed+ 1);
end

if VisitedList(NewComp)=1

AllowedList=zeros(1 ,Cols-Comp);

z1;
for t=1 :size(VisitedList,2)

if VisitedList(t)==0

AllowedList(z)=t;

z=z+1;

end

end

NewComp=AllowedList(round(rand(1)*(size(A11owedList,2) 1)+ 1));

end

CONew(: ,Changinglndex,i)=NewComp;

Changinglndex=NewComp;

Comp=Comp+ 1;

VisitedList(Changinglndex)= 1;

CONum=1 -CONum;

end

CONew(: ,Changinglndex,i)=Starthidex;

end

for i=1:K

Adj (: , : ,COPos(RandomCO(i))) = CONew(: , : ,i);

end

end

% Converting from Adjacent to Path

for i=1:100

index=1;

X(:,:,i) = zeros(size(Adj(:,:,i)));

X(:,1,i) 1;

for j=2:1O

end

end

X(:,j,i) = Adj(index);

index = X(:,j,i);

% Randomly choosing bits and performing Mutation

109

for i1:1O00

RandomNum = rand(1);

if RandomNum <MUProb

if i >= 10 && rem(i,10)-=O

quotient = ((i-rem(i,10))/10)+1;

Coloumn=rem(i, 10);

elseifi>= 10 && rem(i,10) = 0
quotient = i/10;

Coloumn=1 0;

else

quotient = 1;

Colounm=rem(i, 10);

end

NewElement = round((rand(1)*9 + 1));

for j=1:10

if NewX(: ,j ,quotient) = NewElement

NewX(: ,j ,quotient) = NewX(:,Coloumn,quotient);

NewX(: ,Coloumn,quotient) = NewElement;

end

end

end

end

X=NewX;

Counter=0;

for i1:6
for j=1: 100

if Adj(:,:,i) = Adj(:,:,j)

Counter = Counter+1;

LeastPos=j;

110

end

end

if Counter >= 95

break

break

else

Counter=0;

end

end

Generation = Generation+1;

end

end

% Stop time

TimeElapsed = toc;

% Storing results in an array

Results(1)=Generation- 1;

Results(2)=TimeElapsed;

Results(3)=Total(LeastPos);

% Generating plots

for i=1:10

XAxis(i)=Y((X(1 ,i,LeastPos)), 1);

YAxis(i)=Y((X(1 ,i,LeastPos)),2);

end

subplot(1,2,1);plot(XAxis,YAxis,'b-s')

subplot(1 ,2,2);plot(GenPlot,Average)

111

APPENDIX B

112

ANOVA

A few researchers in the past have used multi-factor ANOVA for analyzing similar
problems. But the normal probability plots for this research show that the data is
highly skewed and thus non-parametric tests are better suited to analyze this data. But

for the sake of completeness, multi factor ANOVA was performed on each of the
response variables and the results and conclusions are presented within this appendix.
All results in this appendix should be interpreted carefully due to the deviations
observed from the normality assumptions underlying ANOVA.

Distance Analysis

Table B 1 shows the ANOVA for the response variable Distance. Method, MR, two-

factor interaction MR-method and three factor interactions MR-method-CR have p-
values less than 0.05. The same analysis was applied for the significant factors in
order to eliminate the variability arising from the nuisance sources. Table B2 shows
the new ANOVA table, confirming that the factors are indeed significant.

Table Bi: ANOVA Summary for response variable Distance for all factors

Df Sum of Sq Mean Sq F Value Pr(F)

MR 2 37420709 18710354 339.0791 0.0000000

Method 5 25190972 5038194 91.3049 0.0000000

CR 10 570237 57024 1.0334 0.4118971

MR:Method 10 8241101 824110 14.9350 0.0000000

MR:CR 20 1420176 71009 1.2869 0.1753868

Method:CR 50 3476125 69522 1.2599 0.1041129

MR:Method:CR 100 7051428 70514 1.2779 0.0336016

Residuals 4752 262214911 55180

113

Table B2: ANOVA Summary for response variable Distance for significant factors

Df Sum of Sq Mean Sq F Value Pr(F)

MR 2 37420709 18710354 339.0791 0.00000000

Method 5 25190972 5038194 91.3049 0.00000000

MR:Method 10 8241101 824110 14.9350 0.00000000

MR:Method:CR 180 12517966 69544 1.2603 0.01171657

Residuals 4752 262214911 55180

A Tukey test was performed on significant factors to identify the level(s) which are

significantly different. Tables B3 and B4 and Figures Bi and B2 show the results of

the Tukey test for significant factors MR and Method respectively.

Table B3: Summary of Tukey test comparing MR for response variable Distance

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

intervals excluding 0 are flagged by

Estimate Std.Error Lower Bound Upper Bound

1-2 154.0 8.18 135.0 173.0 MR1 = 0.0025

1-3 204.0 8.18 185.0 224.0 **** MR2 = 0.005

2-3 50.3 8.18 31.2 69.5 **** MR3 = 0.0075

1-2 MR1 = 0.0025
1-3 MR2 = 0.005
2-3

I I I I I I I I I

MR3 = 0.0075
0 J 43 60 80 100 13 143 160 180 2(0 2) 24]

simultaneous 05% confidence limiL TLkey method
response variable: 0 stance

Figure Bi: Tukey test comparing MR for response variable Distance

114

Table B4: Summary of Tukey test comparing Methods for response variable Distance

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

intervals excluding 0 are flagged by T****!

Estimate Std.Error Lower Bound Upper Bound

1-2 137.00 11.6 104.0 170.0 ****

1-3 -18.60 11.6 -51.6 14.3

1-4 -104.00 11.6 -137.0 -71.2 ****

1-5 -13.80 11.6 -46.8 19.1

1-6 -22.70 11.6 -55.6 10.3

2-3 -155.00 11.6 -188.0 -122.0 ****

2-4 -241.00 11.6 -274.0 -208.0 ****

2-5 -151.00 11.6 -184.0 -118.0 ****

2-6 -159.00 11.6 -192.0 -127.0 ****

3-4 -85.50 11.6 -119.0 -52.6 ****

3-5 4.78 11.6 -28.2 37.8

3-6 -4.05 11.6 -37.0 28.9

4-5 90.30 11.6 57.3 123.0 ****

4-6 81.50 11.6 48.5 114.0 ****

5-6 -8.83 11.6 -41.8 24.1

1-2

1-3

1-4

1-5

1-6

2-3

2.4

2-5

2.8

3.4

3-5

3-6

46
46
5-6

(- -.--I-)

C- -)
C---)

C-

C--.--)
C--.--)

-3(0 -250 2)0 -1) -1(0 -50 0 50 100 1) 2(0
simultaneous 05% confidence limits, Tiiey method

response variable: Ostance

Method 1 = Path ± PMX
Method 2 = Path + OX
Method 3 Path + CX
Method 4= Ordinal +
Classical
Method 5 Adjacency +
Alternating edges
Method 6= Adjacency +
Heuristic

Figure B2: Tukey test comparing Method for response variable Distance

115

Generation Analysis

Table B5 shows the ANOVA for a response variable Generation. Method, MR, two-

factor interactions MR-method and Method-CR and three factor interactions MR-
method-CR have p-values less than 0.05. The same analysis was applied for the
significant factors and is shown in Table B6, confinning that the factors are indeed
significant.

Table B5: ANOVA Summary for response variable Generation for all factors

Df Sum of Sq Mean Sq F Value Pr(F)

MR 2 429451906942 214725953471 798.9736 0.0000000

Method 5 120021699168 24004339834 89.3177 0.0000000

CR 10 2962934839 296293484 1.1025 0.3558626

MR:Method 10 229188463044 22918846304 85.2787 0.0000000

MR:CR 20 5910203141 295510157 1.0996 0.3414847

Method:CR 50 33537094230 670741885 2.4958 0.0000000

MR:Method:CR 100 64646056688 646460567 2.4054 0.0000000

Residuals 4752 1277110626602 268752236

Table B6: ANOVA Summary for response variable Generation for significant factors

Df

MR 2

Method 5

MR:Method 10

Method:CR 60

MR:Method:CR 120

Residuals 4752

Sum of Sq Mean Sq F Value Pr(F)

429451906942 214725953471 798.9736 0.000000e+000

120021699168 24004339834 89.3177 0.000000e+000

229188463044 22918846304 85.2787 0.000000e+000

36500029069 608333818 2.2635 l.146583e-007

70556259829 587968832 2.1878 3.400000e-012

1277110626602 268752236

116

A Tukey test was performed on significant factors to identify the level(s) which are

significantly different. Tables B7 and B8 and Figures B3 and B4 show the results of

the Tukey test for significant factors MR and Method respectively.

Table B7: Summary of Tukey test comparing MR for response variable Generation

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

intervals excluding 0 are flagged by '''

Estimate Std.Error Lower Bound Upper Bound

1-2 -529 571 -1870 809

1-3 -20000 571 -21400 -18700 ****

2-3 -19500 571 -20800 -18200

1-2 (--a-I--)
MR1 = 0.0025

1-3 --.--- MR2 = 0.005
2-3

I I I I I I I

MR3=0.0075
IJ -1 .(1pD -icoco -6coo -co o aico

simultaneous 05% confidence limiL Tticey method
rponse variable: Generation

Figure B3: Tukey test comparing MR for response variable Generation

117

Table B8: Summary of Tukey test comparing Method for response variable
Generation

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

intervals excluding 0 are flagged by ''''

Estimate Std.Error Lower Bound Upper Bound

1-2 -2850 807 -5150 -546 ****

1-3 2540 807 243 4850 ****

1-4 9200 807 6900 11500

1-5 8590 807 6290 10900

1-6 9850 807 7550 12200 ****

2-3 5390 807 3090 7690 ****

2-4 12000 807 9750 14300 ****

2-5 11400 807 9130 13700 ****

2-6 12700 807 10400 15000 ****

3-4 6650 807 4350 8960

3-5 6040 807 3740 8340 ****

3-6 7310 807 5010 9610

4-5 -612 807 -2910 1690

4-6 653 807 -1650 2950

5-6 1270 807 -1040 3570

1-2

1-3

1-4

1-5

1-6

2-3

2-4

2-5

2-6

3-4

3.5

3-6

4.5

48
5-6

(----a----)
- -.-- --)

(---S.---)

(---S.---)
(___4.__-)

(---a----)
(---a----)

(---.----)
(---S.---)

(___4-__-)
(---- --)

(-- S.---)
(- _5-__-)

SOW -ZXO 0 2C*X) 6 IWW 14
simultaneos g % confidence limits. Tukey method

resporse variable: Generation

Method 1 = Path + PMX
Method 2 = Path + OX
Method 3 = Path + CX
Method 4= Ordinal +
Classical
Method 5 = Adjacency +
Alternating edges
Method 6 = Adjacency +
Heuristic

Figure B4: Tukey test comparing Method for response variable Generation

118

Time Analysis

Table B9 shows the ANOVA for a response variable Time. Method, MR, two-factor

interactions MR-method, Method-CR and MR-CR and three factor interactions MR-

method-CR have p-values less than 0.05. The same analysis was applied for the
significant factors and is shown in Table B 10, confirming that the factors are indeed

significant.

Table B9: ANOVA Summary for response variable Time for all factors

Df Sum of Sq Mean Sq F Value Pr(F)

MR 2 866186988 433093494 856.1999 0.00000000

Method 5 169557324 33911465 67.0409 0.00000000

CR 10 8482375 848238 1.6769 0.07999447

MR:Method 10 338086905 33808690 66.8378 0.00000000

MR:CR 20 16470133 823507 1.6280 0.03815025

Method:CR 50 72474857 1449497 2.8656 0.00000000

MR:Method:CR 100 139450090 1394501 2.7568 0.00000000

Residuals 4752 2403714779 505832

Table BlO: ANOVA Summary for response variable Time for significant factors

Df Sum of Sq Mean Sq F Value Pr(F)

MR 2 866186988 433093494 856.1999 0.00000000

Method 5 169557324 33911465 67.0409 0.00000000

MR:Method 10 338086905 33808690 66.8378 0.00000000

MR:CR 30 24952508 831750 1.6443 0.01492652

Method:CR 50 72474857 1449497 2.8656 0.00000000

MR:Method:CR 100 139450090 1394501 2.7568 0.00000000

Residuals 4752 2403714779 505832

119

A Tukey test was performed on significant factors to identify the level(s) which are

significantly different. Tables Bil and B12 and Figures B5 and B6 show the results of

the Tukey test for significant factors MR and Method respectively.

Table Bi 1: Summary of Tukey test comparing MR for response variable Time

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

intervals excluding 0 are flagged by

Estimate Std.Error Lower Bound Upper Bound

1-2 -30 24.8 -88.1 28

1-3 -902 24.8 -960.0 -844 ****

2-3 -872 24.8 -930.0 -814 ****

1-2 (--.-I
MR1 = 0.0025

1-3 t--.-- MR2 = 0.005
2-3

I I I

MR3 0.0075
-100) -80) -60) .4(J) -20) 0 10)

simultaneous Q5 % confidence limit, Tey method
response variable: Time

Figure B5: Tukey test comparing MR for response variable Time

Table B12: Summary of Tukey test comparing Method for response variable Time

95 % simultaneous confidence intervals for specified

linear combinations, by the Tukey method

intervals excluding 0 are flagged by

Estimate Std.Error Lower Bound Upper Bound

1-2 -156.00 35 -256.00 -55.9 ****

1-3 101.00 35 1.23 201.0 ****

1-4 341.00 35 241.00 441.0 ****

1-5 263.00 35 164.00 363.0 ****

1-6 345.00 35 245.00 444.0 ****

2-3 257.00 35 157.00 357.0 ****

2-4 497.00 35 397.00 596.0 ****

2-5 419.00 35 319.00 519.0 ****

2-6 500.00 35 400.00 600.0 ****

3-4 240.00 35 140.00 340.0 ****

3-5 162.00 35 62.60 262.0 ****

3-6 243.00 35 144.00 343.0 ****

4-5 -77.40 35 -177.00 22.4

4-6 3.66 35 -96.20 103.0

5-6 81.10 35 -18.80 181.0

1-2

1.3

1-4

1-6

1-6

2.3

2-4

2-5

2-6

3.4

3-5

3.3
46
46
5.6

----.---)

(- --.---
I I I I I

-3 -J0 -100 0 100 2 3O 4J0 0 6 7
simultaneous 95 % confidence limit. Tdcey method

response variable: Time

120

Method 1 = Path + PMX
Method 2 = Path -I- OX
Method 3 = Path + CX
Method 4= Ordinal +
Classical
Method 5 = Adjacency +
Alternating edges
Method 6 = Adjacency +
Heuristic

Figure B6: Tukey test comparing Method for response variable Time

121

Conclusions

For response variable distance, mutation rate and method were the significant factors.

A Tukey test comparing the different levels of mutation rates shows that all three
levels are significantly different from each other. Also, from Figure B 1, it can be seen

that between mutation rates of 0.0025-0.005 and of 0.0025-0.0075 there is a

significant difference in the means, but between mutation rates 0.005-0.0075 the
difference is closer to zero. Comparing the different levels of methods, it was found
that methods 2 (jath + order) and 4 (ordinal + classical) were significantly different

from methods 1, 3, 5 and 6. Figure B2 shows that method 2 (path + order) performed

significantly better compared to all the other methods and method 4 (ordinal +
classical) was the worst. From the interaction plots, shown in Figure 15, it can again
be inferred that the method 2 (path + order) performed better than the rest, but the
improvement in the solution with an increase in mutation rate was not as significant as
was with the other methods.

Again for response variables generation and time, mutation rate and method were the

significant factors. Tukey test for both these responses yielded similar results. No
significant difference was found between mutation rates of 0.0025 and 0.005, but there

was a significant difference when rates 0.0025 and 0.005 were compared with 0.0075.

Also, methods 4 (ordinal + classical), 5 (adjacency + alternating edges) and 6
(adjacency + heuristic) were not significantly different. The interaction plots, Figures

27 and 36, show that the number of generations and time increases drastically for the

first three methods when the mutation rate changes from 0.005 to 0.0075. For all the

methods there is not a significant increase in the number of generations and time taken

when mutation rate is increased from 0.0025-0.005.

