AN ABSTRACT OF THE THESIS OF

Helge Eng for the degree of Master of Science in

Forest Management presented on June 26, 1985 .

Title: Weibull Diameter Distribution Models for Managed

tands of Douglas-fir in Washington and Oregon

Abstract approve

JUILLIL L . T

The two-parameter Weibull function was wused to
predict forest stand diameter distributions and growth.
Diameter distribution models were developed for even-aged
Douglas-fir stands, 20 to 40 years old, in Oregon and

Washingtoen.

In order to test if the two-parameter Weibull

function can adequately describe the diameter
distributions of such stands, maximum likelihood
estimated parameters of the two-parameter Weibull
function were compared with observed diameter

distributions.

Two sets of models were developed. The first set
of models predicted the diameter distributicns of

unthinned forest stands from stand variables. Models were



developed to predict each of the two parameters of the
Weibull function from stand variables. The Weibull
function with the two estimated parameters became the
diameter distribution model for the stand. The second set
of models predicted the growth of a stand of trees after
thinning. A Weibull diameter distribution model was
developed for a forest stand after a growth period. The
parameters of the Weibull function were estimated from
stand variables at the beginning of the growth period and

the length of the growth period.

Results showed that the two-parameter Weibull
function can describe the diameter distributions of even-
aged stands of Douglas-fir, 20 to 40 years old, in Oregon
and Washington. The diameter distribution model for
‘unthinned stands predicted the observed diameter
distributions in an independent data set quite well. The
diameter distribution model for a thinned stand after a
growth period gave a satisfactory prediction for 93
percent of the observed diameter distributions in the

independent data set.

The two-parameter Weibull function in this study
gave at least as good results as that which has been
obtained with the three-parameter Weibull function in

previous studies.
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WEIBULL DIAMETER DISTRIBUTION MODELS FOR MANAGED STANDS

OF DOUGLAS-FIR IN WASHINGTON AND OREGON

INTRODUCTION

Stand level growth and yield models produce
estimates of population parameters at the stand level,
such as number of trees per acre, basal area per acre and
volume per acre. For the purposes of analysis and
decision-making, it would be desirable to be able to
disaggregate these stand 1level characteristics to

estimates for diameter classes.

Given not only timber volume per acre, but also

the size of trees over which it is distributed, the
forest manager can combine this information with
anticipated trends in forest products markets, for
example, changes in sawtimber versus pulpwood demand, to

make better management decisions.

Mathematical probability functions such as the
Weibuil offer an opportunity to model, for Douglas-fir
stands, basal area and number of trees by diameter
classes, given only stand level variables. As a result,
the stand level model can maintain some of the detail of
individual tree models without the necessity for keeping

track of individual trees.



The problem, therefore, is to predict forest stand
structure by prediction models for the parameters of a
probability function that adequately describes the
diameter distribution of the stand, and to project stand
structure through prediction models for the function
parameters after a growth period. Specifically, the

objectives of this study are:

1. To determine whether the Weibull probability function
can be used to model the diameter distributions of even-

aged stands of young-growth Douglas-fir.

2. To develop models for predicting the diameter
distributions of unthinned stands given stand level
variables. Individual prediction models will be

constructed for each parameter of the two-parameter
Weibull probability function. The probability function
obtained with the two estimated parameters will then act
as a prediction model for the diameter distribution of

the stand.

3. To model growth of forest stands after thinning by
projecting a stand's diameter distribution into the
future. The diameter distribution of the stand after a

growth period can be modeled by a preobability function



whose parameters are predicted from stand variables at
the beginning of the growth period. This method of
projecting diameter distributions accounts for changes in

stand structure as a result of growth.



REVIEW OF THE LITERATURE

The first attempt at modeling forest stand
diameter distributions with a mathematical function was
probably made by deliocourt who wused the -exponential
function to describe the diameter distributions of
uneven-aged stands in France, in 1898. Meyer (1952) later
used this model for uneven-aged stands in North America.
Recent studies have concentrated on modeling the diameter
distributions of even-aged stands (Feduccia et al., 1979,

Dell et al., 1979).

Yang, Kozak and Smith (1978) gave three criteria
by which to select a distribution function for modeling
diameter distributions: 1) the function should be capable
of depicting the full range of wunimodal shapes that
diameter distributions can take on. 2) Parameters of the
function should be easily related to shape and 1location
features of the distribution and should vary in a manner
consistent with stand characteristics. 3) The function
should be . integrable in closed form so that numerical

integration can be avoided.

Hafley and Schreuder (1977) compared the
flexibility of curve shape of several functions in terms
of the range of skewness and kurtosis they cover. They

concluded that Johnson's (Johnson,1949) S. and the beta

b



function are more flexible than the Weibull function,
while the Weibull is more flexible than the gamma,

normal, lognormal and expontial function.

The Johnson's Sb function has not yet been used
for modeling forest stand diameter distributions. Cao et
al. (1982) «claim that the main drawback of the beta
function is that its cumulative distribution function
does not exist in <closed form. As a result, the
proportion of trees in each diameter «class must be
obtained by numerical integration techniques. Zohrer
(1972) admits that "the computations for deriving a beta
distribution are rather time consuming", but still
recommends it due to its superior flexibility. Paivinen
(1980) wused the beta function as part of a volume vield
prediction system. He concluded that the system was not

satisfactorily accurate.

Bailey (1980) noted that choosing a particular
distribution implies a particular diameter growth
relationship, and that this could be used as a guide in
the choice of a distribution function. It is dimplicitly
assumed that if X1 is the diameter at age Al’ and X2 is
the diameter at age AZ’ then the growth equation that
relates X1 to X2 places the distribution function of X,

“=

in the same family as the distribution function of X He

1-

showed that for the Weibull, 1lognormal and generalized



gamma function, the non-linear diameter growth equation

X, = BO + BI(X; - 3)B2

2
will keep the distribution function within the
appropriate family, while for the Sb and beta function it

is necessary that the diameter growth relationship be

linear for the functions to regenerate themselves.

Schreuder and Swank (1974) compared the
performance of the Weibull, normal, lognormal and gamma
functions for describing diameter distributions of
loblolly pine. Maximum 1likelihood =estimators were

calculated for all distributions, and the observed and
expected fit were compared, using the likelihood
criterion. In six out of seven cases, the Weibull
function gave the best fit to the observed diameter
distributions. They concluded that '"the consistent

superiority of the Weibull function is remarkable".

Two types of response variables have generally

been used for modeling forest stand diameter
distributions with the Weibull function. The first type
is the parameters of the function or transformations of
these. Indexing parameters are calculated plot by plot,
usually by maximum likelihood estimation, and regression
equations are fit to predict the parameters from stand

variables.



Mann (1967) noted that maximum likelihood
estimated parameters are consistent and asymptotically
efficient, wunbiased and normally distributed. They are
particularly good estimators for large samples. They are
consistent for small samples, and correction for bias is

possible.

The second type of response variable is percentile
estimators. The 100p percentile is that value X_of X such
that a randomly chosen observation has a probability p of
being less than or equal to Xp' Sample percentiles can be
tallied for all plots, and regressed against stand
variables. Once satisfactory prediction equations have
been found for the percentiles, they can be converted to
parameter estimates by solving for Xp in the definition

of the Weibull cumulative distribution function.

Dubey (1967) showed that the 24th and 93rd sample
percentiles gave the most efficient parameter estimates
for the two-parameter Weibull function. Abernethy (1981)
used the 24th, 63rd and 93rd percentiles based on Dubey's
results and the following relationship to obtain the
third percentile:

Fla+b)=l-exp[-((a+b-a)/b ) ]=1-exp(-1)=0.63.
Krumland and Wensel (1979) found that the 89th, 60th and

32nd percentiles were most efficient in their study.



The percentile estimators will have to be
transformed ©back to parameter estimates, and percentile
estimators are 1less than 100 percent efficient when
compared with maximum likelihood estimators. Dubey (1967)
showed that percentile estimators are about 41 percent
asymptotically efficient when <compared with maximum

likelihood estimators.

Bailey (1972) found that percentile estimators fit
the observed data less well than maximum likelihood
estimators. Bailey and Dell (1973) recommended maximum
likelihood estimators. Zarnoch and Dell (1985) <claimed
that maximum 1likelihood and percentile estimators can

model loblolly pine plantations equally well.

Most researchers have used the three-parameter form

of the Weibull function for modeling diameter
distributions, presumably upon Bailey's (1972)
recommendation. The third parameter, the so-called

location parameter, can be interpreted as the smallest

tree diameter in the stand.

Schreuder et al. (1979) and Lohrey and Bailey (1979) used
the two-parameter form of the Weibull function for
diameter distribution mocdeling. Their models compared
well to three-parameter Weibull diameter distribution

models.



METHODS

I used the two-parameter Weibull function to model
the diameter distributions in this study. Most
investigators who have used the three-parameter Weibull
function have had problems obtaining consistent and
reliable estimates for the third parameter, the location
parameter (Bailey, 1972, Abernethy, 1981, Rustagi,1978).
In many cases, the estimates of the location parameter
were inconsistent. Negative location parameter values
often occurred. This result was attributed mainly to

erratic mortality in smaller diameter classses (Rustagi,

1978}

In some instances, it was found that the location
parameter actually decreased over time, an impossible
result in a growing forest stand. This problem was solved
by imposing a constraint on the location parameter: if
the parameter estimate in any period fell below that of
the previous period, it was set equal to the estimate
from the previous period, or zero (Bailey and Dell, 1973,
Bailey and Abernethy, 1982). Instead of using this rather
empirical approach, I decided that the two-parameter
Weibull function would be more suitable for diameter

distribution modeling of young-growth Douglas-fir stands.
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Since this function always has zero as its minimum
value, it may not be optimal for modeling non-symmetric
diameter distributions, which could result from repeated
thinnings from below or above. None of the diameter
distributions in this study were severely skewed. The
thinnings were "neutral"; an equal proportion of trees
was attempted removed from each diameter <class. Also,
most stands tend to grow towards a symmetric diameter

distribution after a disturbance.

The data for this study came from six
installations of the Levels-0Of-Growing-Stock (LOGS)
cooperative study in Douglas-fir, 1located in western
Oregon and Washington (fig. one). The study was designed
to examine growth-growing stock ratios as affected by
eight different thinning regimes. The majority of the
plots are pure Douglas-fir stands, except those at
Skykomish. The ©plots here are a mixture of Douglas-fir

and western hemlock (Williamson and Staebler, 1971).

The same experimental'design is applied to each

installation. Eight treatments, consisting of different
thinning intensities, and a control (no thinning) are
tested (table one). Three ©plots per treatment are

arranged in a completely randomized design for a total of
twenty-seven 1/5-acre plots (Williamson and Staebler,

1971). Thinnings are made whenever average tree height



11

Fig. 1: The nine installations of the levels-of-growing-
stock study. Each installation is marked by a
triangle. Installations providing data for this
study are marked with black triangles.
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TABLE B

Thinning

Fourth

Fifth

12

Levels-of-growing-stock study treatment
schedule, showing percent of gross basal area
increment of control plot to be retained in
growing stock.

Treatment
1 2 3 4 5 6 7 8
10 10 30 30 50 50 70 70
10 20 30 40 50 40 70 60
10 30 30 50 50 30 70 50
10 40 30 60 50 20 70 40
10 50 30 70 50 10 70 30
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growth since the previous thinning exceeds 10 feet.
Periodic remeasurements exist for four to six thinning
periods for each installation. The thinning type is the
same for all treatments, a "neutral" thinning where the
same proportion of trees 1is attempted removed from each

diameter class.

The original data set was divided dinto two
parts. The first part, containing the control plot data,
was used to develop prediction models for diameter
distributions of wunthinned stands. The second part,
containing the data from all the thinned plots, at the
beginning and end of each growth period, was wused to
develop growth projection models for stands after

thinning.

The two-parameter Weibull function was fitted
to the diameter distribution of all plots, before and
after thinning, and to the control plots, for all
treatment periods. I calculated maximum likelihcod
estimates of the Weibull parameters from the observed
diameter distributions (Zutter, 1982). I judged maximum
likelihood estimation to be the best parameter estimation
method (Bailey and Dell, 1973). Zarnoch and Dell (1985)
found that maximum likelihood estimators of the Weibull
parameters had smaller bias and mean square error than

percentile estimators.
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If a satisfactory goodness of fit was obtained,
these maximum likelihood estimates of the Weibull
parameters were to be used as response variables in
fitting the prediction models and growth projection
models for the Weibull parameters. Since the validity of
all subsequent models rested on the goodness of these
estimates, I decided to pool the data for the three plots
assigned to each treatment in order to obtain as good
parameter estimates as possible. I reckoned the advantage
of having the best possible maximum likelihood estimates
of the parameters would outweigh the disadvantage of
having the data base reduced to one-third its original

size.

The predictor variables in the diameter
distribution and growth projection models were: number of
trees per acre (TPA), basal area per acre (BA), height of
the 40 largest trees per acre (HT40), average stand
height (HEIGHT), stand age (AGE) and length of the growth
period (TIME). The height of the 40 largest trees per
acre was computed from the plot data as described by

Marshall and Bell (1982).

I restricted the predictor variables used in the
models to be strictly stand level variables. Most of the
utility of these models lies in the fact that accurate

diameter-class information <can be obtained from stand
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variables, which can be measured fast and inexpensively
(number of trees per acre, basal area per acre, stand
age). Other studies have used variables which require

actual diameter measurements on individual trees, such as
average, minimum and maximum stand diameter (Little,
1983, Rustagi, 1978). 1In such cases, the usefulness of

these models becomes questionable.

Both the control data set and the growth data set
were divided into an estimation data set and a validation
data set. The estimation data sets were used to develop
the regression models. The validation data sets were used
to test the goodness-of-fit of the regression models, and
to provide a testing data set for selecting the best

models.
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FITTING THE WEIBULL FUNCTION TO DIAMETER DISTRIBUTIONS

The Kolmogorov-Smirnov (K-S) test for goodness of
fit (Steel and Torrie, 1980) was applied to the diameter
distribution of all plots in order to determine whether
the fitted two-parameter Weibull diameter distribution
was the underlying population model for the observed
diameter distribution. I compared the cumulative diameter
distribution defined by the maximum likelihood estimated
parameters, with the observed cumulative diameter

distributions.

The test statistic of the K-S test is d=|F(X)-

Fn(X)i, where F(X) is the estimated cumulative diameter
distribution and Fn(X) is the observed cumulative
diameter distribution. None of the fitted diameter
distributions were rejected as being significantly

different from the observed diameter distributions at the
0.05 level of significance. Sample sizes ranged from 51

to 1727 observations.

Based on these tests, I concluded that the
Weibull function can adequately describe diameter
distributions of managed stands of 20 to 40 years old

Douglas-fir in Oregon and Washington.
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DIAMETER DISTRIBUTION MODELS FOR UNTHINNED STANDS

I regressed the maximum 1likelihood estimated

parameters of the Weibull function against stand
variables, using ordinary least squares multiple
regression techniques. The most important predictor

variable was ‘J§X7T§X. This is logical, since this
variable, when multiplied by a constant, gives the
quadratic mean diameter (QMD) of the stand. QMD is a very
useful stand descriptor in that it gives direct
information about the diameter distribution of the stand
while at the same time it is calculated from stand
variables. It is clear that the scale parameter is more
highly correlated with stand variables than the shape
parameter (table two). This is also verified in previous
studies (Rustagi, 1978), and it is reflected in the fit

of the equations in table three and four in this study.

The parameter estimates produced by the regression
models for each individual parameter were combined in the
two-parameter Weibull distribution function to form a
diameter distribution model. The best models for the two
parameters, as measured in terms of their coefficient of
determination and standard error of estimate, may not,
when combined, give the best fitting diameter

distribution model.
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TABLE 2: Coefficients of <correlation of the Weibull
scale and shape parameter with stand variables.

STAND VARIABLE MODEL PARAMETER

b &
Trees per acre -0.5749 -0.6148
Basal area per acre 0.6241 -0.2695

Height of the 40 largest

trees per acre 0.9356 0.0753
Average stand height 0.9539 0.1176
Age 0.8019 -0.0681
wvhere b is the scale parameter

¢ is the shape parameter
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In order to find the best diameter distribution
model, I developed three models for each parameter, each
with a high coefficient of determination (R2) and low
standard error of estimate (SEE). All possible
combinations of these models were tested with the
validation data set using the K-S test for goodness-of-
fit. The set of these best models are displayed in table

three.

The best diameter distribution model, which had
the K-S d statistic with the smallest mean and variance
when tested on the validation data set, consisted of
equations 3) and 4) in table three. None of the predicted
distributions produced by this best diameter distribution
model were significantly different from the observed
diameter distributions, at the 0.05 level of

significance.

None of the nine combinations of the equations in
table three showed any evident lack of fit. Regression
diagnostice for the best model for the scale and shape
parameter revealed no exceptionally influential data

points.



20

TABLE 3: Parameter prediction models for unthinned
stands. The scale and shape parameter of the
two-parameter Weibull function are predicted
from stand variables.

Scale Parameter:

1) B=-0.145+14.196(BA/TPA)
2
R“=0.984 SEE=0.2017
2) B=5.945+890.870(1/TPA)+0.113(HEIGHT)-2.237(LN(AGE))

R%=0.983 SEE=0.2133

3) B=-0.296-0.027(HEIGHT)+18.037(BA/TPA)

R%=0.987 SEE=0.1800

Shape Parameter:

4) €=2.9254812.756(1/TPA)+0.161E-3(HEIGHT?)-0.065(AGE)
R%=0.746 SEE=0.2317

5) 1/C=0.574-115.435(1/TPA)+0.176E~3(AGE")-0.442(BA/TPA)
R2u0), 746 SEE=0,03742

6) C=7.58440.43E-3(HETGHTZ)=1.161(LN(BA))=0.223E-4(AGES)

2

R®=0.717 SEE=0.,2446

where

LN denotes the natural logarithm

BA is basal area per acre in square feet
TPA is number of trees per acre

HEIGHT is average stand height in feet

AGE is the age of the stand, in yesars



21

GROWTH PROJECTION

The concept of modeling stand growth by modeling
the changes in the fitted Weibull parameters over time is
not new. Schreuder and Swank (1974) suggested that only
the parameter values of the Weibull function need to be
changed in order to model diameter distributions over
time, and that the changes in these parameters may be a
good way to characterize and interpret changes in stands

over time.

In order to predict the growth of a stand of trees
after thinning, I developed a two-parameter Weibull
distribution model for the diameter distribution of the
stand at the end of a growth period. I regressed the
scale and shape parameter of this distribution against
stand variables at the beginning of the period and length
of the growth period. All combinations of the regression
models 1) through 6) for the scale and shape parameters
in table four were tested on the validation data set.
Residual plots for the equations in table four showed no

evident lack of fit.

Abernethy (1981) developed =similar models. The
parameter prediction equations in that study had a better
fit than the above equations, probably largely due to the

fact that the predicted parameter from the previous
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TABLE 4: Growth projection models for stands after
thinning. The scale and shape parameter of the
two-parameter Weibull function are predicted
from stand variables at the beginning of the
growth period and the length of the growth
period.

Scale Parameter:

1) B=0.7758+0.6283(LN(TIME))+14.23(/BA/TPA)
R%=0.987 SEE=0.3336

2) B=7.607-0.8036(LN(TPA))-2.601(1/TIME)+12.64(/BA/TPA)
R%=0.992 SEE=0.2594

3) B=2.399-0.008566(BA)-2.431(1/TIME)+15.11(/BA/TPA)

R%=0.992 SEE=0.2618

Shape Parameter:

4) C=16.38-2.730(LN(TPA))+1.439(LN(BA))=0.003791(AGE?)
+0.006191(TIME?)
R%=0.711 SEE=0.4393
5) C=5.954-1.008(LN(TPA))+5.360(/BA/TPA)-0.8386E-4(AGES)
+0.007499(TIME?)

R"=0.726 SEE=0.4166



TABLE 4, continued:
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Using the previous parameter estimates as predictors:

7) B=7.698+O.9875(BS)—0.04932(AGE)—3.919(1/TIME)

-0.6639(LN(TPA))

R%=0.996 SSE=0.1916

8) C=4.O75+O.9247(CS)—O.04576(AGE)—O.4387(LN(TPA))

+0.001669(TIME>)

R%=0.975 SSE=0.1946

where

LN denotes the natural logarithm

TIME is the length of the growth period in years

TPA is number of trees per acre

BA is basal area per acre in square feet

AGE is stand age in years

Bs is the value of the B (scale)
beginning of the growth period

C is the value of the C (shape)

beginning of the growth period

parameter

parameter

at the

at the
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period was used as a predictor for the parameter at the
end of the current period. This requires the assumption
that the Weibull parameters characterizing the diameter
distribution before and after thinning are the same. This
is a reasonable assumption in the LOGS study, where all

thinnings are neutral.

Equations 7) and 8) in table four use the response
variables from the previous period as predictor
variables. Although the diameter distribution model
generated by these two equations performed the best of
all the models when tested with the validation data set,
I decided not to use this model. Using the response
variable from one prediction as a predictor variable in a
subsequent prediction gives an artificially inflated
goodness of fit. The goodness of fit of all the
predictions will rest solely on how good is the first

prediction in the series.

The next best model which includes equations 2)
and ©6) enables the user of the equations to predict
growth directly from stand variables, without having to
predict a set of function parameters first. When I tested
this model on the validation data set using the K-S test
at a 0.05 level of significance, seven percent of the
plots were rejected as not having come from a Weibull

distribution with the specified parameters. Eighteen
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percent of the plots were rejected at the 0.10 level of

significance.

A1l the plots which were rejected at the 0.05
level of significance and 63 percent of the plots which
were rejected at the 0.10 level came from the Skykomish
installation (fig. 1). This study area contained
approximately 50 percent western hemlock after the first
thinning. The fact that these were mixed species plots

could be a part of the reason why they were rejected.

It should be noted that the length of the growth
periods in the data set from which the models were
developed ranged from two to five years. Predictions
beyond this range must be considered extrapolations of

the model.

The growth model obtains size-class information
from stand characteristics. It is an approximation to a
stand diameter distribution and should not be expected to
give the same level of accuracy as an individual tree

growth model.
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CONCLUSIONS

Diameter distributions of even-aged stands of
young-growth Douglas-fir in Washington and Oregon can be
adequately described with the two-parameter Weibull
function. Maximum 1likelihood estimates of the function

parameters fit the observed distributions well.

A diameter distribution model is given for
unthinned stands of Douglas-fir. The model uses only
overall stand characteristics as predictor variables,
thus facilitating calculation of diameter-class
information from stand level variables only. The model
predicted diameter distributions very well when tested on

an independent data set.

A diameter distribution model for predicting
growth of stands after thinning is given. Satisfactory
results were obtained when testing it on an independent
data set. The range of growth periods over which the
model is valid is fairly limited (two to five years), so
the model has 1limited wusefulness for non-intensive
management regimes. It does not perform as well for mixed
stands of western hemlock and Douglas-fir as for pure

stands of Douglas-fir.



The two-parameter Weibull function performed very
well for predicting diameter distributions of wunthinned
stands. The results obtained with the two-parameter
Weibull function in this study were equivalent to or
better than those of comparable studies in which the
three-parameter Weibull function was used (Smalley and
Bailey, 1974, Clutter and Belcher, 1978, Feduccia et al.,
1979).
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