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The two-parameter Weibull function was used to

predict forest stand diameter distributions and growth.

Diameter distribution models were developed for even-aged

Douglas-fir stands, 20 to 40 years old, in Oregon and

Washington.

In order to test if the two-parameter Weibull

function can adequately describe the diameter

distributions of such stands, maximum likelihood

estimated parameters of the two-parameter Weibull

function were compared with observed diameter

distributions.

Two sets of models were developed. The first set

of models predicted the diameter distributions of
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developed to predict each of the two parameters of the

Weibull function from stand variables. The Weibull

function with the two estimated parameters became the

diameter distribution model for the stand. The second set

of models predicted the growth of a stand of trees after

thinning. A Weibull diameter distribution model was

developed for a forest stand after a growth period. The

parameters of the Weibuli function were estimated from

stand variables at the beginning of the growth period and

the length of the growth period.

Results showed that the two-parameter Weibull

function can describe the diameter distributions of even-

aged stands of Douglas-fir, 20 to 40 years old, in Oregon

and Washington. The diameter distribution model for

unthinned stands predicted the observed diameter

distributions in an independent data set quite well. The

diameter distribution model for a thinned stand after a

growth period gave a satisfactory prediction for 93

percent of the observed diameter distributions in the

independent data set.

The two-parameter Weibull function in this study

gave at least as good results as that which has been

obtained with the three-parameter Weibull function in

previous studies.
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WEIBULL DIAMETER DISTRIBUTION MODELS FOR MANAGED STANDS

OF DOUGLAS-FIR IN WASHINGTON AND OREGON

INTRODUCTION

Stand level growth and yield models produce

estimates of population parameters at the stand level,

such as number of trees per acre, basal area per acre and

volume per acre. For the purposes of analysis and

decision-making, it would be desirable to be able to

disaggregate these stand level characteristics to

estimates for diameter classes.

Given not only timber volume per acre, but also

the size of trees over which it is distributed, the

forest manager can combine this information with

anticipated trends in forest products markets, for

example. changes in sawtimber versus pulpwood demand, to

make better management decisions.

Mathematical probability functions such as the

Weibull offer an opportunity to model, for Douglas-fir

stands, basal area and number of trees by diameter

classes, given only stand level variables. As a result,

the stand level model can maintain some of the detail of

individual tree models without the necessity for keeping

track of individual trees.
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The problem, therefore, is to predict forest stand

structure by prediction models for the parameters of a

probability function that adequately describes the

diameter distribution of the stand, and to project stand

structure through prediction models for the function

parameters after a growth period. Specifically, the

objectives of this study are:

To determine whether the Weibull probability function

can be used to model the diameter distributions of even-

aged stands of young-growth Douglas-fir.

To develop models for predicting the diameter

distributions of unthinned stands given stand level

variables. Individual prediction models will be

constructed for each parameter of the two-parameter

Weibull probability function. The probability function

obtained with the two estimated parameters will then act

as a prediction model for the diameter distribution of

the stand.

To model growth of forest stands after thinning by

projecting a standts diameter distribution into the

future. The diameter distribution of the stand after a

growth period can be modeled by a probability function

2
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whose parameters are predicted from stand variables at

the beginning of the growth period. This method of

projecting diameter distributions accounts for changes in

stand structure as a result of growth.

3
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REVIEW OF THE LITERATURE

The first attempt at modeling forest stand

diameter distributions with a mathematical function was

probably made by deLiocourt who used the exponential

function to describe the diameter distributions of

uneven-aged stands in France, in 1898. Meyer (1952) later

used this model for uneven-aged stands in North America.

Recent studies have concentrated on modeling the diameter

distributions of even-aged stands (Feduccia et al., 1979,

Dell et al., 1979).

Yang, Kozak and Smith (1978) gave three criteria

by which to select a distribution function for modeling

diameter distributions: 1) the function should be capable

of depicting the full range of unimodal shapes that

diameter distributions can take on. 2) Parameters of the

function should be easily related to shape and location

features of the distribution and should vary in a manner

consistent with stand characteristics. 3) The function

should be integrable in closed form so that numerical

integration can be avoided.

Hafley and Schreuder (1977) compared the

flexibility of curve shape of several functions in terms

of the range of skewness and kurtosis they cover. They

concluded that Johrisonts (Johiison.1949) Sb and the beta

£4
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function are more flexible than the Weibull function,

while the Weibull is more flexible than the gamma,

normal, lognormal and expontial function.

The Johnson's Sb function has not yet been used

for modeling forest stand diameter distributions. Gao et

al. (1982) claim that the main drawback of the beta

function is that its cumulative distribution function

does not exist in closed form. As a result, the

proportion of trees in each diameter class must be

obtained by numerical integration techniques. Zohrer

(1972) admits that "the computations for deriving a beta

di St r ± but ion are rather time consuming", but still

recommends it due to its superior flexibility. Paivinen

(1980) used the beta function as part of a volume yield

prediction system. He concluded that the system was not

satisfactorily accurate.

Bailey (1980) noted that choosing a particular

d i s t r i b u t ± o n i rn p1 i e s a pa r t i c u 1 a r diameter growth

relationship, and that this could be used as a guide in

the choice of a distribution function. It is implicitly

assumed that if X1 is the diameter at age A1, and X2 is

the diameter at age A2, then the growth equation that

relates to X places the distribution function of X2

in the same family as the distribution function of X1. He

showed that for the Weibull, lognormal and generalized
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gamma function, the non-linear diameter growth equation

X2 = BO + B1(X1 B3)B2

will keep the distribution function within the

appropriate family, while for the Sb and beta function it

is necessary that the diameter growth relationship be

linear for the functions to regenerate themselves.

Schreuder and Swank (1974) compared the

performance of the Weibull, normal, lognormal and gamma

functions for describing diameter distributions of

loblolly pine. Maximum likelihood estimators were

calculated for all distributions, and the observed and

expected fit were compared, using the likelihood

criterion. In six out of seven cases, the Weibuli

function gave the best fit to the observed diameter

distributions. They concluded that "the consistent

superiority of the Weibull function is remarkable".

Two types of response variables have generally

modeling forest stand diameter

distributions with the Weibull function. The first type

is the parameters of the function or transformations of

these. indexing parameters are calculated plot by plot,

usually by maximum likelihood estimation, and regression

equations are fit to predict the parameters from stand

variables.

been used for
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Mann (1967) noted that maximum likelihood

estimated parameters are consistent and asymptotically

efficient, unbiased and normally distributed. They are

particularly good estimators for large samples. They are

consistent for small samples, and correction for bias is

possible.

The second type of response variable is percentile

estimators. The loop percentile is that value Xof X such

that a randomly chosen observation has a probability p of

being less than or equal to Xv,. Sample percentiles can be

tallied for all plots, and regressed against stand

variables. Once satisfactory prediction equations have

been found for the percentiles, they can be converted to

parameter estimates by solving for in the definition

of the Weibull cumulative distribution function.

Dubey (1967) showed that the 24th and 93rd sample

percentiles gave the most efficient parameter estimates

for the two-parameter Weibull function. Abernethy (1981)

used the 24th, 63rd and 93rd percentiles based on Dubey's

results and the following relationship to obtain the

third percentile:
F(a+b)=l_exp[_((ab_a)/bc)]=l_exp(_1)=O.63.

Krurnland and Wensel (1979) found that the 89th, 60th and

32nd percentiles were most efficient in their study.

Mann (1967) noted that maximum
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The percentile estimators will have to be

transformed back to parameter estimates, and percentile

estimators are less than 100 percent efficient when

compared with maximum likelihood estimators. Dubey (1967)

showed that percentile estimators are about 41 percent

asymptotically efficient when compared with maximum

likelihood estimators.

Bailey (1972) found that percentile estimators fit

the observed data less well than maximum likelihood

estimators. Bailey and Dell (1973) recommended maximum

likelihood estimators. Zarnoch and Dell (1985) claimed

that maximum likelihood and percentile estimators can

model loblolly pine plantations equally well.

Most researchers have used the three-parameter form

of the Weibull function for modeling diameter

distributions, presumably upon Bailey's (1972)

recommendation. The third parameter, the so-called

location parameter, can be interpreted as the smallest

tree diameter in the stand.

Schreuder et al. (1979) and Lohrey and Bailey (1979) used

the two-parameter form of the Weibull function for

diameter distribution modeling. Their models compared

well to three-parameter Weibull diameter distribution

models.
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METHODS

I used the two-parameter Weibull function to model

the diameter distributions in this study. Most

investigators who have used the three-parameter Weibull

function have had problems obtaining consistent and

reliable estimates for the third parameter, the location

parameter (Bailey, 1972, Abernethy, 1981, Rustagi,1978).

In many cases, the estimates of the location parameter

were inconsistent. Negative location parameter values

often occurred. This result was attributed mainly to

erratic mortality in smaller diameter classses (Rustagi,

1978).

In some instances, it was found that the location

parameter actually decreased over time, an impossible

result in a growing forest stand. This problem was solved

by imposing a constraint on the location parameter: if

the parameter estimate in any period fell below that of

the previous period, it was set equal to the estimate

from the previous period, or zero (Bailey and Dell, 1973,

Bailey and Abernethy, 1982). Instead of using this rather

empirical approach, I decided that the two-parameter

Weibull function would be more suitable for diameter

distribution modeling of young-growth Douglas-fir stands.
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Since this function always has zero as its minimum

value, it may not be optimal for modeling non-symmetric

diameter distributions, which could result from repeated

thinnings from below or above. None of the diameter

distributions in this study were severely skewed. The

thinnings were "neutral"; an equal proportion of trees

was attempted removed from each diameter class. Also,

most stands tend to grow towards a symmetric diameter

distribution after a disturbance.

The data for this study came from six

installations of the Levels-Of-Growing-Stock (LOGS)

cooperative study in Douglas-fir, located in western

Oregon and Washington (fig. one). The study was designed

to examine growth-growing stock ratios as affected by

eight different thinning regimes. The majority of the

plots are pure Douglas-fir stands, except those at

Skykornish. The plots here are a mixture of Douglas-fir

and western hemlock (Williamson and Staebler, 1971).

The same experimental design is applied to each

installation. Eight treatments, consisting of different

thinning intensities, and a control (no thinning) are

tested (table one). Three plots per treatment are

arranged in a completely randomized design for a total of

twenty-seven 1/5-acre plots (Williams3n and Staebler,

1971). Thinnings are made whenever average tree height
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Fig. 1: The nine installations of the levels-of--growing-
stock study. Each installation is marked by a

triangle. Installations providing data for this
study are marked with black triangles.
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TABLE 1: Levels-of-growing--stock study treatment
schedule, showing percent of gross basal area
increment of control plot to be retained in
growing stock.

12

Treatment

2 3 4 5 6 7 8

10 30 30 50 50 70 70

20 30 40 50 40 70 60

30 30 50 50 30 70 50

40 30 60 50 20 70 40

50 30 70 50 10 70 30

Thinning 1

First 10

Sec o n d 10

Third 10

Fourth 10

Fifth 10

TABLE

12

1: Levels-of-growing-stock study treatment
schedule, showing percent of gross basal area
increment of control plot to be retained in
growing stock.

Treatment

Thinning I 1 2 3 4 5 6 7 8

-----_-.._-
----------------~-~----~----------------------

First 10 10 30 30 50 50 70 70

Second 10 20 30 40 50 40 70 60

Third 10 30 30 50 50 30 70 50

Fourth 10 40 30 60 50 20 70 40
• ~.' .'" : ... . , " _" ...1

. .~ .-. ~",

••• •0 · .•• •. <.j

F'i f t h 10 50 30 70 50 10 70 30
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growth since the previous thinning exceeds 10 feet.

Periodic remeasurements exist for four to six thinning

periods for each installation. The thinning type is the

same for all treatments, a "neutral" thinning where the

same proportion of trees is attempted removed from each

diameter class.

The original data set was divided into two

parts. The first part, containing the control plot data,

was used to develop prediction models for diameter

distributions of unthinned stands. The second part,

containing the data from all the thinned plots, at the

beginning and end of each growth period, was used to

d e v e lop growth projection models for stands after

t hi n fling.

The two-parameter Weibull function was fitted

to the diameter distribution of all plots, before and

after thinning, and to the control plots, for all

treat in en t periods. I calculated maximum likelihood

e st i in ate s of the Weibull parameters from the observed

diameter distributions (Zutter, 1982). I judged maximum

likelihood estimation to be the best parameter estimation

method (Bailey and Dell, 1973). Zarnoch and Dell (1985)

found that maximum likelihood estimators of the Weibul.l

parameters had smaller bias and mean square error than

percentile estimators.
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If a satisfactory goodness of fit was obtained,

these maximum likelihood estimates of the Weibull

parameters were to be used as response variables in

fitting the prediction models and growth projection

models for the Weibull parameters. Since the validity of

all subsequent models rested on the goodness of these

estimates, I decided to pooi the data for the three plots

assigned to each treatment in order to obtain as good

parameter estimates as possible. I reckoned the advantage

of having the best possible maximum likelihood estimates

of the parameters would outweigh the disadvantage of

having the data base reduced to one-third its original

size.

The predictor variables in the diameter

distribution and growth projection models were: number of

trees per acre (TPA), basal area per acre (BA), height of

the 40 largest trees per acre (HT4O), average stand

height (HEIGHT), stand age (AGE) and length of the growth

period (TIME). The height of the 40 largest trees per

acre was computed from the plot data as described by

Marshall and Bell (1982).

I restricted the predictor variables used in the

models to be strictly stand level variables. Most of the

utility of these models lies in the fact that accurate

diameter-class information can be obtained from stand

these
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variables, which can be measured fast and inexpensively

(number of trees per acre, basal area per acre, stand

age). Other studies have used variables which require

actual diameter measurements on individual trees, such as

average, minimum and maximum stand diameter (Little,

1983, Rustagi, 1978). In such cases, the usefulness of

these models becomes questionable.

Both the control data set and the growth data set

were divided into an estimation data set and a validation

data set. The estimation data sets were used to develop

the regression models. The validation data sets were used

to test the goodnessoffit of the regression models, and

to provide a testing data set for selecting the best

models.

variables,
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FITTING THE WEIBULL FUNCTION TO DIAMETER DISTRIBUTIONS

The Kolmogorov-Smirnov (K-S) test for goodness of

fit (Steel and Torrie, 1980) was applied to the diameter

distribution of all plots in order to determine whether

the fitted two-parameter Weibull diameter distribution

was the underlying population model for the observed

diameter distribution. I compared the cumulative diameter

distribution defined by the maximum likelihood estimated

parameters, with the observed cumulative diameter

distributions.

The test statistic of the K-S test is d=IF(X)-

F(X), where F(X) is the estimated cumulative diameter

distribution and F(X) is the observed cumulative

diameter distribution. None of the fitted diameter

distributions were rejected as being significantly

different from the observed diameter distributions at the

0.05 level of significance. Sample sizes ranged from 51

to 1727 observations.

Based on these tests, I concluded that the

We i bull function can adequately describe diameter

distributions of managed stands of 20 to 40 years old

Douglas-fir in Oregon and Washington.
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DIAMETER DISTRIBUTION MODELS FOR UNTHINNED STANDS

I regressed the maximum likelihood estimated

parameters of the Weibull function against stand

variables, using ordinary least squares multiple

regression techniques. The most important predictor

variable was \/A/TPA. This is logical, since this

variable, when multiplied by a constant, gives the

quadratic mean diameter (QMD) of the stand. QMD is a very

useful stand descriptor in that it gives direct

information about the diameter distribution of the stand

while at the same time it is calculated from stand

variables. It is clear that the scale parameter is more

highly correlated with stand variables than the shape

parameter (table two). This is also verified in previous

studies (Rustagi, 1978), and it is reflected in the fit

of the equations in table three and four in this study.

The parameter estimates produced by the regression

models for each individual parameter were combined in the

two-parameter Weibull distribution function to form a

diameter distribution model. The best models for the two

parameters, as measured in terms of their coefficient of

determination and standard error of estirnaLe, may not,

when combined, give the best fitting diameter

distribution model.
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where b is the scale parameter

c is the shape parameter

18

TABLE 2: Coefficients of correlation of the Weibull
scale and shape parameter with stand variables.

STAND VARIABLE MODEL PARAMETER

b r

Trees per acre -0.5749 -0. 6148

Basal area per acre 0.6241 -0.2695

Height of the 40 largest

trees per acre 0.9356 0. 0753

Average stand height 0.9539 0.1176

Age 0. 8019 -0. 0681
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In order to find the best diameter distribution

model, I developed three models for each parameter, each

with a high coefficient of determination (R2) and low

standard error of estimate (SEE). All possible

combinations of these models were tested with the

validation data set using the K-S test for goodness-of--

fit. The set of these best models are displayed in table

three.

The best diameter distribution model, which had

the K-S d statistic with the smallest mean and variance

when tested on the validation data set, consisted of

equations 3) and 4) in table three. None of the predicted

distributions produced by this best diameter distribution

model were significantly different from the observed

diameter distributions, at the 0.05 level of

significance.

None of the nine combinations of the equations in

table three showed any evident lack of fit. Regression

diagnostics for the best model for the scale and shape

parameter revealed no exceptionally influential data

points.
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TABLE 3: Parameter prediction models for unthinned
stands. The scale and shape parameter of the
two-parameter Weibull function are predicted
from stand variables.

Scale Parameter:

B=-0.145±14.196BA/TPA)

R =0.984 SEE=0.2017

B=5.945+890.870(1/TPA)+0.113(HEIGHT)-2.237(LN(AGE))

R2=0.983 SEE=0.2133

B=-0. 296-0.027(HEIGHT)+18 .037(BA/TPA)

R2=0.987 SEE=0.1800

Shape Parameter:

C=2.925+812.756(1/TPA)+0.161E-3(HEIGHT2)-0.065(AGE)

R2=0.746 SEE=0.2317

i/C=0.574-1i5.435(1/TPA)+0.176E-3(AGE)-0.442(BA/TPA)

R2=0.746 SEE=0.0372

C=7.5840.43E-3(HEIGHT2)-I.161(LN(BA))-0.223E-4(AGE3)

R2=0. 71 7 SEE=0.2446

where

LN denotes the natural logarithm

BA is basal area per acre in square feet
TPA is number of trees per acre

HEIGHT is average stand height in feet

AGE is the age of the stand, in years
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GROWTH PROJECTION

The concept of modeling stand growth by modeling

the changes in the fitted Weibull parameters over time is

not new. Schreuder and Swank (1974) suggested that only

the parameter values of the Weibull function need to be

changed in order to model diameter distributions over

time, and that the changes in these parameters may be a

good way to characterize and interpret changes in stands

over time.

In order to predict the growth of a stand of trees

after thinning, I developed a two-parameter Weibull

distribution model for the diameter distribution of the

stand at the end of a growth period. I regressed the

scale and shape parameter of this distribution against

stand variables at the beginning of the period and length

of the growth period. All combinations of the regression

models 1) through 6) for the scale and shape parameters

in table four were tested on the validation data set.

Residual plots for the equations in table four showed no

evident lack of fit.

Abcrnethv (1981) developed similar models. The

parameter prediction equations in that study had a better

fit than the above equations, probably largely due to the

fact that the predicted parameter from the previous
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TABLE 4: Growth projection models for stands after
thinning. The scale and shape parameter of the
two-parameter Weibull function are predicted
from stand variables at the beginning of the
growth period and the length of the growth
period.

Scale Parameter:

B=0.7758+0.6283(LN(TIME))+14.23(fA/TpA)

R2=0.987 SEE=0.3336

B=7.6O7-O.8036(LN(TPA))--2.6O1(1/TIME)12.64(f2AT7TPA)

R2=0.992 SEE=0.2594

B=2.399-O.0O8566(BA)-2.431(1/TIME)+15.11(/A/TPA)

R=0.992 SEE=0.2618

Shape Parameter:

C=16.38-2.730(LN(TPA))+1.439(LN(BA))-O.003791(AGE2)

+0 .006191(TIME3)

R2=O.711 SEE=0.4393

C=S.954-1 .008(LN(TPA))+5.360(/BA/TPA)-0.8386E-4(AGE3)

+0. 007499(TIME3)

R2=0.726 SEE=0.4166

C=3.157-0.004224(AGE2)+0.006780(TIME3)8.238(/BA[TPA)

R=r0.705 SEE=O.4458
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TABLE 4, continued:

Using the previous parameter estimates as predictors:

B=7 .698±0.9875(B5)-0. 0L932(AGE)-3. 919(1/TIME)

-0.6639(LN(TPA))

R2=0.996 SSE=0.1916

C=4.075±O.9247(C)-0.04576(ACE)-0.4387(LN(TPA))

±0. 001669 ( TIME3 )

R2=0.975 SSE=0.1946

where

LN denotes the natural logarithm

TIME is the length of the growth period in years

TPA is number of trees per acre

BA is basal area per acre in square feet

AGE is stand age in years

B is the value of the B (scale) parameter at the

beginning of the growth period

Cs is the value of the C (shape) parameter at the

beginning of the growth period
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period was used as a predictor for the parameter at the

end of the current period. This requires the assumption

that the Weibull parameters characterizing the diameter

distribution before and after thinning are the same. This

is a reasonable assumption in the LOGS study, where all

thinnings are neutral.

Equations 7) and 8) in table four use the response

variables from the previous period as predictor

variables. Although the diameter distribution model

generated by these two equations performed the best of

all the models when tested with the validation data set,

I decided not to use this model. Using the response

variable from one prediction as a predictor variable in a

subsequent prediction gives an artificially inflated

goodness of fit. The goodness of fit of all the

predictions will rest solely on how good is the first

prediction in the series.

The next best model which includes equations 2)

and 6) enables the user of the equations to predict

growth directly from stand variables, without having to

predict a set of function parameters first. When I tested

this model on the validation data set using the K-S test

at a 0.05 level of significance, seven percent of the

plots were rejected as not having come from a Weibull

distribution with the specified parameters. Eighteen
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percent of the plots were rejected at the 0.10 level of

significance.

All the plots which were rejected at the 0.05

level of significance and 63 percent of the plots which

were rejected at the 0.10 level came from the Skykomish

installation (fig. 1). This study area contained

approximately 50 percent western hemlock after the first

thinning. The fact that these were mixed species plots

could be a part of the reason why they were rejected.

It should be noted that the length of the growth

periods in the data set from which the models were

developed ranged from two to five years. Predictions

beyond this range must be considered extrapolations of

the model.

The growth model obtains size-class information

from stand characteristics. It is an approximation to a

stand diameter distribution and should not be expected to

give the same level of accuracy as an individual tree

growth model.
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CONCLUSIONS

Diameter distributions of even-aged stands of

young-growth Douglas-fir in Washington and Oregon can be

adequately described with the two-parameter Weibull

function. Maximum likelihood estimates of the function

parameters fit the observed distributions well.

A diameter distribution model is given for

unthinned stands of Douglas-fir. The model uses only

overall stand characteristics as predictor variables,

thus facilitating calculation of diameter-class

information from stand level variables only. The model

predicted diameter distributions very well when tested on

an independent data set.

A diameter distribution model for predicting

growth of stands after thinning is given. Satisfactory

results were obtained when testing it on an independent

data set. The range of growth periods over which the

model is valid is fairly limited (two to five years), so

the model has limited usefulness for non-intensive

management regimes. It does not perform as well for mixed

stands of western hemlock and Douglas-fir as for pure

stands of Douglas-fir.
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data set. The range of growth periods over which the

model is valid is fairly limited (two to five years), so

the model has limited usefulness for non-intensive

management regimes. It does not perform as well for mixed

stands of western hemlock and Douglas-fir as for

stands of Douglas-fir.

pure
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The two-parameter Weibull function performed very

well for predicting diameter distributions of unthinned

stands. The results obtained with the two-parameter

Weibull function in this study were equivalent to or

better than those of comparable studies in which the

three-parameter Weibull function was used (Smalley and

Bailey, 1974, Clutter and Belcher, 1978, Feduccia et al.,

1979).
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