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Abstract Precision agriculture offers the technologies to manage for infield variability 
and incorporate variability into irrigation management decisions. The major limitation of 
this technology often lies in the reconciliation of disparate data sources and the generation 
of irrigation prescription maps. Here the authors explore the utility of the cosmic-ray neu-
tron probe (CRNP) which measures volumetric soil water content (SWC) in the top ~ 30 cm 
of the soil profile. The key advantages of CRNP is that the sensor is passive, non-invasive, 
mobile and soil temperature-invariant, making data collection more compatible with exist-
ing farm operations and extending the mapping period. The objectives of this study were 
to: (1) improve the delineation of irrigation management zones within a field and (2) esti-
mate spatial soil hydraulic properties to make effective irrigation prescriptions. Ten CRNP 
SWC surveys were collected in a 53-ha field in Nebraska. The SWC surveys were ana-
lyzed using Empirical Orthogonal Functions (EOFs) to isolate the underlying spatial struc-
ture. A statistical bootstrapping analysis confirmed the CRNP + EOF provided superior 
soil hydraulic property estimates, compared to other hydrogeophysical datasets, when lin-
early correlated to laboratory measured soil hydraulic properties (field capacity estimates 
reduced 20–25% in root mean square error). The authors propose a soil sampling strat-
egy for better quantifying soil hydraulic properties using CRNP + EOF methods. Here, five 
CRNP surveys and 6–8 sample locations for laboratory analysis were sufficient to describe 
the spatial distribution of soil hydraulic properties within this field. While the proposed 
strategy may increase overall effort, rising scrutiny for agricultural water-use could make 
this technology cost-effective.
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Introduction

Water scarcity is predicted to be the major limitation to increasing agronomic outputs to 
meet future food and fiber demands (UNDP 2007). With the agricultural sector accounting 
for 80–90% of all consumptive water use and an average water use efficiency of less than 
45% (Hezarjaribi and Sourell 2007; Molden 2007), major advances must be made in irriga-
tion water management. Currently, irrigation is a key component of global food security, 
accounting for ~ 40% of global food production and ~ 20% of all arable land (Molden 2007; 
Schultz et al. 2005). Precision agriculture offers the technologies to address and manage 
for infield variability and incorporate that variability into management decisions (Howell 
et al. 2012).

According to a 2012 U.S. Department of Agriculture (USDA) Census of Agriculture 
report, Nebraska ranks first nationally in irrigated area approximately 3.4 million irrigated 
hectares, and about 70% of that area has center pivot irrigation (USDA 2012). Conven-
tional center pivot systems manage a field as a uniform unit, thus ignoring the heterogene-
ity across the field, and often management decisions are based on average field conditions 
(i.e. average soil hydraulic properties, average soil water content (SWC); McCarthy et al. 
2014). Consequently, expected crop yield may differ in sub-regions of a field due to vari-
ations in SWC and physical properties. Variable-rate irrigation (VRI) and variable-speed 
irrigation (VSI) systems can vary application depth in relation to the spatial variability of 
soil properties (Hezarjaribi and Sourell 2007). VSI varies the speed of the pivot to adjust 
application depth in sectors and VRI uses nozzle control to vary application depth in irreg-
ularly shaped management zones. Additionally, fertigation inputs can be managed for site-
specific field conditions and soil properties to ensure minimal chemical loss in the runoff 
(Hedley 2015). Due to the high temporal variability in SWC, the incorporation of VRI has 
the potential to increase crop water use efficiency and yield (Haghverdi et al. 2015b). The 
major limitation to implementing this technology often lies in the management of spatial 
datasets and the writing of irrigation prescription maps that address variables impacting 
yield and SWC (Evans et al. 1996; Howell et al. 2012). This requires efficient and accu-
rate methods for measuring the subfield scale spatial variability of soil properties includ-
ing porosity, saturated hydraulic conductivity, unsaturated hydraulic conductivity, avail-
able water, texture and depth (Hezarjaribi and Sourell 2007; Pan et al. 2013; Ranney et al. 
2015). Managing irrigation rates and times based on hydraulic properties allows for irri-
gators to prescribe application depths based on the SWC below field capacity and above 
maximum allowable depletion.

Land managers use several methods to address and manage for in-field variability and 
to delineate irrigation management zones (IMZs) including available soil spatial datasets, 
yield maps, electrical resistivity/conductivity (EC) surveys, and commercially available 
instruments. Unfortunately, soil spatial datasets are often not at resolutions appropriate for 
field-scale management (Bobryk et al. 2016). One strategy land managers use is the deline-
ation of IMZs within a field based on EC surveys. High resolution spatiotemporal mod-
eling using EC surveys has been used to characterize dynamic SWC patterns in relation to 
crop needs (Hedley et al. 2013). Unfortunately, EC is sensitive to temperature, SWC, tex-
ture, clay content and salinity (Haghverdi et al. 2015a; Rodriguez-Perez et al. 2011), thus 
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making exact boundary determination challenging. Most EC systems are used to delineate 
management zones only after harvest and before planting in nonfrozen soils, thus limiting 
mapping opportunities in cold climates. While changes in SWC do account for over 50% 
of variability in soil EC readings (Brevik et al. 2006), the dynamic nature of SWC causes 
EC and clay measurements to vary temporally (McCutcheon et al. 2006) making the use of 
a single EC survey problematic. Martini et al. (2016) investigated this temporal variability 
and emphasized the importance of multiple surveys to capture the dynamic SWC patterns 
represented by EC surveys. Other impacting factors, beyond SWC, include groundwater 
levels and the concentration of the pore water solution, which influence the electrical con-
ductance pathway (Martini et al. 2016). Additional commercially available methodologies 
are available for measuring soil physical variability, however they were not explored in this 
study [e.g. Trimble Soil Information System (SIS) (Trimble Inc., Sunnyvale, CA)].

Beyond EC surveys, other hydrogeophysical instruments (see e.g. Binley et  al. 2015; 
Coopersmith et al. 2014; Franz et al. 2016; Villarreyes et al. 2011) offer promising oppor-
tunities in precision agriculture. One such instrument to be explored in this work is the 
cosmic-ray neutron probe (CRNP), which has been used within agricultural systems to 
approximate SWC at the field- to small-watershed-scale (Franz et  al. 2015). The CRNP 
detects epithermal neutron energies reflected from the soil, which are inversely related to 
SWC (Zreda et  al. 2012). For this study, the CRNP was used to measure SWC at high 
spatial and temporal resolutions to characterize its dynamic nature over the growing sea-
son. One key advantage to using the passive, non-invasive, and soil-temperature-invariant 
CRNP method is that SWC data can be collected using a wide variety of commercially 
available vehicles from harvest until the following season when the crop is too tall for 
the vehicle (~ 0.20  m for this work). While not performed here, CRNP surveys, mobile 
CRNP measurements, with taller crop heights can easily be collected from taller-bodied 
farm equipment (e.g. tractor, sprayer, etc.). For this work, a standard multivariate analysis, 
Empirical Orthogonal Functions [EOF, (Perry and Niemann 2006)], was used to charac-
terize the spatial variability of SWC across the study site using CRNP surveys collected 
between 2015 and 2016. EOF analyses have been proven to be an accurate method for 
large sample sizes or more than 5 days of SWC monitoring (Werbylo and Niemann 2014). 
Within intensely monitored agricultural systems, EOF analysis has also been used to iden-
tify dominant parameters controlling spatial and temporal patterns of surface SWC without 
being affected by a single random process (Korres et al. 2010). Furthermore, EOF analysis 
provides a framework to estimate underlying SWC variations constructed using historical 
SWC observations to forecast SWC patterns for unobserved times.

The objectives of this study were to: (1) improve the delineation of management zones 
within a field and (2) estimate the relevant spatially-distributed soil hydraulic properties 
(i.e. field capacity and wilting point) to inform irrigation prescriptions. Laboratory meas-
ured hydraulic parameters were compared to values from the USDA soil survey dataset, 
then correlated with an EC map, and then to the CRNP-derived EOF surface. Lastly, a 
cross validation bootstrapping analysis was performed to compare and contrast the vari-
ous candidate environmental covariates. The CRNP surveys, when combined with the EOF 
analysis, were hypothesized to be the best predictor of soil hydraulic property spatial vari-
ability compared to traditional and widely-used methods. It was also hypothesized that the 
EOF surface would be a good candidate for more accurately delineating IMZs. To illustrate 
the potential increase in water use efficiency versus effort (i.e. time, energy, and cost) of 
the various strategies discussed, Fig. 1 presents a conceptual diagram with a set of existing 
technologies/methodologies. The figure serves as a guide to the reader and will be further 
discussed later in this paper with respect to the specific findings from this field site.
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Materials and methods

Study site

The selected study site is a 53-ha field (circle with ~ 400  m radius) irrigated with a 
variable-rate irrigation (VRI) pivot near Sutherland, NE (41.065393°, − 101.102663°) 
(Fig. 2). The field contains significant topo-edaphic gradients, i.e. soil and topographic 
properties, making it an ideal candidate for VRI. Figure 2 illustrates the elevation (pro-
vided by a local crop consultant using a Real Time Kinematic (RTK) Global Position-
ing System (GPS)) and topographic wetness index (TWI) of the study site. The TWI 
calculates SWC spatial patterns based on the up-slope contribution area and slope 
(Sorensen et  al. 2006). The field was planted with soybean (Glycine max L.) in 2014 
and popcorn maize (Zea Mays var. everta) from 2015 to 2016. The soybean yield aver-
aged ~ 3.8  Mg/ha and the popcorn yields averaged ~ 5.3  Mg/ha. Using data from an 
Automated Weather Data Network (AWDN) site located near North Platte, NE (~ 40 km 
from study site), the authors estimated annual temperature highs to be around 18  °C 
and lows to be about 2  °C (http://www.hprcc .unl.edu/awdn.php, Accessed 25 January 
2017). The authors used the AWDN dataset to estimate decadal annual average precipi-
tation at 445 mm year−1 with 325 mm falling between May and September. Addition-
ally, the authors estimated potential annual evapotranspiration to be at 1475 mm year−1 
with 925 mm occurring between May and September. According to the local producer, 
applied irrigation varies between 150 and 300 mm year−1 depending on the year. Soil 
classifications from the available USDA SSURGO (Soil Survey Staff 2016) spatial and 
tabular dataset were used to estimate texture and soil hydraulic properties at the study 
site. SWC at field capacity  (cm3 cm−3), correlating to a soil water pressure of − 33 kPa, 
and wilting point  (cm3 cm−3), correlating to a soil water pressure of − 1500 kPa, were 
averaged for each of the map units from 0 to 0.3 m (Fig. 3). The USDA SSURGO data-
base delineated contiguous areas with similar soils as a single map unit. In general, the 
eastern region of the field has sandier soils and the western region is a mixture of sandy 
and silt loams. The field has a wide gradient in field capacity (0.090–0.307  cm3 cm−3) 
and wilting point (0.027–0.164 cm3 cm−3) values depending on soil classification. The 
TWI product (Fig. 2) correlates well with the classifications from the SSURGO dataset 
with wetter regions of the field relating to finer soil textures.

Fig. 1  Conceptual diagram 
of potential increase in water 
use efficiency versus effort for 
various soil hydraulic datasets/
techniques

http://www.hprcc.unl.edu/awdn.php
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Hydrogeophysical datasets

An electrical conductivity (EC) survey measuring bulk apparent electrical conductiv-
ity (ECa, mS  m−1) was collected on 24 February 2016 using a DUALEM-21S sensor 
(DUALEM, Milton, Canada). The DUALEM sensor has dual-geometry receivers at sepa-
rations of 1 and 2.1 m from the transmitter, which provided four simultaneous depth esti-
mates of ECa every second (Dualem Inc.  2013). The ~ 2.1 m horizontal co-planar sensor 
estimated ECa values for this study (see DUALEM manual for approximate depth of explo-
ration curves for each sensor configuration). The DUALEM was towed behind an all-ter-
rain vehicle (ATV) on a plastic sled at speeds of 8–15 km  h−1 with ~ 7–9 m spacing, taking 
about 75 min to complete the survey. A Hemisphere GPS XF101 DGPS (Juniper Systems, 
Inc., Logan, UT) unit recorded the location of each measurement. Following basic quality 
assurance and quality control of the raw ECa data (Franz et al. 2011), a spatial map with 5 
by 5 m resolution was created using an inverse-distance weighting procedure.

Ten mobile cosmic-ray neutron probe (CRNP) surveys to estimate soil water content 
(SWC) were completed at the site from March 2015–June 2016 using an ATV driven 
in a similar pattern and rate as the previously described EC survey. The mobile CRNP 
records epithermal neutron intensity integrated over one-minute counting intervals. The 
change in epithermal neutron intensity is inversely correlated to the mass of hydrogen 

Fig. 2  Field site located near Sutherland, NE (field center: 41.065393°, − 101.102663°), illustrating lati-
tude, longitude, soil core sampling locations (black dots), 1 m elevation contours, and the calculated topo-
graphic wetness index (TWI) (m)
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in the measurement volume (Zreda et al. 2012). A main advantage of the CRNP survey, 
when compared to the EC survey, is the temperature-invariance. The CRNP method has no 
interaction with the electromagnetic atom shells and the neutrons interact with the atomic 
nuclei instead. The soil’s atomic energy variation due to ambient temperature changes is 
negligible compared to the epithermal neutron intensities (see Glasstone and Edlund 1952 
for a description of neutron scattering cross section temperature dependence and Camp-
bell et  al. 1948 for a description of electrical conductivity temperature dependence). 
Depending on local conditions (i.e. elevation, water vapor, AWC, etc.), the CRNP meas-
urement volume is roughly a disk, with a 130–250 m radius circle and penetration depth 
of 0.15–0.40 m (Köhli et al. 2015). For simplicity, a constant penetration depth of 0.3 m 
was assumed for all surveys. Atmospheric hydrogen pools within the CRNP footprint were 
accounted for by a relative humidity and temperature sensor mounted on the ATV. Lattice 
water, soil organic carbon equivalent and bulk density were measured at 0.015, 0.0083, and 
1.62 g cm−3, respectively. Interference of the biomass in the total CRNP measurement vol-
ume was considered negligible because the surveys were collected over bare soil or when 
the crop height was less than 0.20 m. The authors note that SWC changes are by far the 

Fig. 3  The USDA SSURGO map unit key (MUKEY), soil descriptions, and their respective SWC at field 
capacity and wilting point. According to the World Reference Base (WRB) FAO soil classifications, the 
soils are a luvic kastanozem
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largest change in hydrogen mass within the measurement footprint (McJannet et al. 2014). 
Numerous validation studies across the globe (see e.g. Bogena et al. 2013; Hawdon et al. 
2014; Franz et al. 2015, 2016; Iwema et al. 2017, among others) have shown the CRNP 
to have area-average measurement accuracies of less than 0.03  cm3 cm−3 against a variety 
of industry standard SWC point scale probes. The calculated SWC within the measure-
ment volume in a non-linearly weighed average with increased sensitivity near the CRNP 
(Schrön et al. 2017). In order to provide a SWC map, first a spatial map of neutron inten-
sity was estimated, then a calibration function was applied following details in Franz et al. 
(2015) for agricultural fields. The neutron intensity map is created in two steps. First, a 
drop-in-the-bucket preprocessing step is applied, where a dense grid is generated (here 20 
by 20 m) and all raw data points are found within a certain radius (here 50 m). The size 
of the processing grid and average radius where varied in order to minimize any spatial 
interpolation artifacts (i.e. bulls eyes around observations points). Note, that future work 
should investigate how the size of the CRNP measurement disk, non-linear weighting of 
neutron intensity, and underlying length scale of soil heterogeneity affect the spatial inter-
polation algorithm. However, this was beyond the scope of the current study. Following the 
selection of grid size and search radius, the average of all raw data found within the search 
radius is assigned to the grid center. This oversampling approach is necessary for sharpen-
ing the image quality and is a common strategy used in remote sensing analyses (see Chan 
and Njoku 2014) when overlapping area average observations are collected, like the CRNP 
in this study. Next, an inverse-distance-weighted approach is used on the resampled 20 m 
grid to provide the 5-m neutron intensity estimate. Finally, the neutron intensity gridded 
estimate is converted to SWC following Franz et al. (2015). The authors refer the reader to 
the rapidly growing CRNP literature (see Zreda et al. 2012) instead of providing full details 
of the methodology here.

Soil sampling and laboratory analysis

Thirty-one sample locations (Fig.  2) were chosen based on the SSURGO database soil 
classifications, EC map and EOF analysis in a stratified random sampling scheme. Undis-
turbed soil cores (250 cm3) were collected inside stainless steel cylinders at ~ 0.2 m depth 
at each sample location. The soil cores were placed in a cooler and transported back to the 
laboratory where they were stored in a 4 °C refrigerator for later analysis. Soil water reten-
tion curves were estimated for each of the soil cores using a Decagon HYPROP (Deca-
gon Devices, Pullman, WA, USA). Saturated soil samples were exposed to evaporation in 
the laboratory and weighed throughout the experiment. Evaporation methods are proven 
to be a fast and reliable method for determining soil hydraulic properties within the satu-
rated to moderate SWC range (Peters and Durner 2008; Schindler et al. 2010). The matric 
potential was continuously monitored by two tensiometers inserted at the base of the soil 
cores at two different lengths within the core. The tensiometers and instrument bases were 
degassed using a vacuum pump. The HYPROP software (Decagon Devices, Pullman, WA, 
USA) calculated data points along the retention curve and unsaturated hydraulic conductiv-
ity curve. An average measured bulk density of 1.62 g cm−3 and porosity of 38.9% were 
assigned for each of the undisturbed samples to generate soil water retention curves. Fol-
lowing the HYPROP analysis, a WP4C Dewpoint PotentiaMeter (Decagon Devices, Pull-
man, WA, USA) was used to approximate tension for the moderate to dry SWC ranges. 
The soil cores were dried at 105 °C for 24 h before collecting 1–9 sub-samples per sample. 
Varying volumes of water were added to the sub-samples to obtain SWC near wilting point 
and to further characterize the soil water retention curves. The sub-samples were sealed for 
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24 h after water was added to allow for the water to disperse evenly throughout the sub-
sample. Inside the measurement chamber of the WP4C, the dew point temperature of the 
moist air was measured by a chilled mirror and the sample temperature was measured by 
an infrared thermometer. Those two values were then used to calculate relative humidity 
and thus, potential of the soil water. The WP4C has an accuracy of ± 0.05 MPa from 0 to 
− 5 MPa and 1% from − 5 to − 300 MPa (Decagon Devices, Inc. 2015).

Statistical analysis

In order to illuminate the underlying spatial variability of the SWC maps, an empirical 
orthogonal function (EOF) analysis was used on the ten CRNP SWC maps. Full details on 
the multivariate statistical EOF analysis are provided elsewhere (Korres et al. 2010; Perry 
and Niemann 2006) and only a brief summary is provided here. The EOF analysis decom-
poses the observed SWC variability measured by the CRNP surveys into a set of orthogo-
nal spatial patterns (EOFs), which are invariant in time, and a set of time series called 
expansion coefficients, which are invariant in space (Perry and Niemann 2006). Multiplica-
tion of the EOFs and expansion coefficients will exactly reconstruct the original pattern. 
Often the number of needed coefficients (i.e. eigenvectors) to reconstruct most of the data 
is less than the original dataset (i.e. determined by the ranked eigenvalues), thus the pro-
cedure can be used as a way to reduce the dimensionality of the dataset while preserving 
the key information. The authors note that EOF is nearly identical to Principal Component 
Analysis save the splitting of axis of variation into spatial and temporal coefficients instead 
of arbitrary linear combinations.

A bootstrap validation analysis was used to: (1) determine the accuracy of the regressed 
hydraulic parameter to the measured hydraulic parameter and (2) determine how many 
soil samples and their corresponding hydraulic parameters were required for the root mean 
square error (RMSE) to converge. The hydrogeophysical datasets explored for this analy-
sis were the CRNP EOF surface derived from the SWC surveys, the CRNP EOF surface 
derived from the corrected neutron counts (i.e. pressure, intensity, and water vapor cor-
rections), ECa survey and elevation. Each hydrogeophysical dataset was randomly divided 
into a training set, ranging in size from 3 to 30, and a testing set for 1000 random itera-
tions. The training sets and their corresponding laboratory measured soil hydraulic proper-
ties (i.e. field capacity, wilting point, available water content (AWC)) were used to build a 
simple linear model to predict the remaining laboratory measured soil hydraulic property 
values. The mean RMSE and standard deviation of the RMSE for the 1000 simulations 
were calculated for the predicted hydraulic property values and the laboratory measured 
soil hydraulic property values. This analysis followed similar methods from Gibson and 
Franz (2018).

Results and discussion

Hydrogeophysical mapping and EOF analysis

The apparent electrical conductivity (ECa) map for the field is illustrated in Fig.  4 and 
provides additional spatial information on soil texture variability as compared to the 
USDA SSURGO map (Fig. 3). This type of information has been used for the delineation 
of irrigation management zones (IMZs; Pan et  al. 2013). As noted previously, the ECa 
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map is subject to field conditions at the time of the sampling (Martini et al. 2016). There-
fore, areas of high EC measurements in the southwest quadrant of the field may be due to 
increased soil cations, soil water content (SWC), and/or temperature anomalies at the time 
of sampling. At a first glance, the delineated soil boundary by the USDA SSURGO data-
base displays some spatial correlation to the ECa map. However, there is high variability 
of ECa values within each USDA SSURGO soil classification, which has been observed in 
other research (Brevik et al. 2006). Thus, the soil classification from the SSURGO dataset 
may or may not be the appropriate boundaries for irrigation management zones (IMZs) 
within the field. This uncertainty of exact IMZ boundaries and questionable repeatability 
of ECa makes this method problematic, particularly given the high initial capital for preci-
sion agricultural equipment. The result here suggests the use of soil survey datasets and 
ECa be used in tandem to delineate IMZs for precision agriculture, which is supported by 
the results of Brevik et al. (2006).

Figure 5 illustrates the large spatiotemporal variation in SWC over the ten dates observed 
using the CRNP rover. Despite regions of the field with finer soil textures and higher ECa 
generally having a higher SWC in each of the soil moisture maps, there is inconsistency 
in the spatial distribution of the SWC. For example, compare the SWC spatial distribution 
for the survey dates of June 10, 2015 and May 11, 2016. Table 1 summarizes the SWC 
minimum, maximum, mean and standard deviation for each CRNP survey date in Fig. 5. 
The ten CRNP rover surveys were used to perform Empirical Orthogonal Function (EOF) 
analysis. Figure 6 illustrates the first and second EOF coefficients at the study site. The 
EOF analysis contextualizes the behavior of the SWC (and thus underlying soil hydraulic 
properties) at any given point in the field relative to the mean SWC as a whole. Therefore, 
points in the field that are relatively wet persistently will have positive coefficients and 
points in the field that are relatively dry will have negative coefficients. Here the first EOF 
coefficients explained 79.6% of the spatial SWC variability followed by 5.6% explained by 
the second EOF. Therefore, only the first EOF was considered in the subsequent analyses. 
Statistical bootstrapping of the SWC indicated that five CRNP surveys at different SWC 

Fig. 4  Apparent bulk electrical conductivity map (ECa) collected on 24 February 2016 using a Dualem-
21S sensor
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conditions were sufficient to estimate the first EOF coefficients to within 5% of the values 
using data from all ten surveys. This reduction in required number of CRNP surveys is 
critical for economic considerations beyond a research study (see “Recommendations for 

Fig. 5  Ten CRNP rover SWC surveys collected between March 2015 and June 2016 (see Table 1)
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Table 1  Summary of the minimum SWC, maximum SWC, mean SWC and SWC standard deviation (SD) 
for the ten CRNP surveys (Fig. 5)

CRNP survey date Minimum 
 (cm3 cm−3)

Maximum 
 (cm3 cm−3)

Mean  (cm3 cm−3) SD  (cm3 cm−3)

03/25/15 0.082 0.318 0.162 0.055
05/18/15 0.116 0.388 0.244 0.062
05/26/15 0.162 0.449 0.274 0.065
06/08/15 0.127 0.336 0.220 0.041
06/10/15 0.101 0.412 0.247 0.059
06/15/15 0.102 0.455 0.225 0.062
02/24/16 0.124 0.376 0.223 0.060
05/09/16 0.157 0.369 0.241 0.052
05/11/16 0.185 0.491 0.300 0.059
06/06/16 0.124 0.302 0.201 0.045

Fig. 6  The first EOF surface depicting the underlying dominant spatial structure created from the ten 
CRNP rover SWC surveys in Fig. 5 and Table 1
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future soil hydraulic property sampling”). The first EOF map provides detailed information 
for the delineation of IMZs. Given the removal of the time-varying component of the sig-
nal the authors argue that the map is a superior method to delineate IMZs as compared to 
the USDA SSURGO dataset and ECa mapping. The first EOF map is a continuous surface; 
thus, it can be applied at a variety of spatial scales and used within existing agricultural 
management software (such as a shapefile input). The remaining questions are: (1) is the 
EOF map a better predictor of soil hydraulic property spatial variation compared to the 
SSURGO database and ECa maps and (2) is the information provided by an EOF map eco-
nomical for a producer to implement into current agricultural practices?

Soil hydraulic properties from sampling analysis

Using each of the thirty-one undisturbed soil cores, soil hydraulic properties were esti-
mated from soil water retention curves generated using the Hyprop software. To illustrate 
the type of data generated, three of the soil cores from different soil textures and their 
respective field capacity and wilting point values are shown in Fig. 7. Table 2 summarizes 
the SWC at field capacity (− 33 kPa), SWC at wilting point (− 1500 kPa) and calculated 
available water content (AWC,  cm3 cm−3) for each of the thirty-one soil cores. AWC was 
calculated by subtracting the SWC at − 1500 kPa from the SWC at − 33 kPa. In general, 
areas of the field with lower EOF values also have lower SWC at field capacity and wilting 
point. The EOF values are representative of the orthogonality of the SWC spatial patterns, 
therefore assumptions regarding in-field heterogeneity can be based off of the new EOF 
surfaces. Additionally, SWC at field capacity and wilting point is higher for finer soils and 
lower in coarser texture classes. AWC is higher for areas of the field with finer textured 
soils.

Comparison of landscape position and hydrogeophysical datasets with laboratory 
analysis

Figure 8 illustrates scatterplots of AWC, elevation, topographic wetness index (TWI), ECa 
and EOF datasets with the laboratory measured field capacity and wilting point values from 

Fig. 7  Soil water retention func-
tions from three undisturbed soil 
cores. Values before pF (absolute 
value of the  log10 of soil tension, 
(MPa)) of three were recorded 
using the Decagon Hyprop and 
values after a pF of three were 
recorded using a WP4C Dew-
point PotentiaMeter
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the soil water retention curves generated using the Hyprop and WP4C instruments. Table 3 
summarizes the linear correlation coefficient  (r2) and root mean square error (RMSE) for 
the graphs illustrated in Fig. 8. The first EOF coefficients have the largest linear correla-
tion coefficient  (r2) with calculated AWC, laboratory measured SWC at field capacity and 
laboratory measured SWC at wilting point (Table 3). Compared to ECa, the CRNP and 
EOF analysis increased the linear correlation  r2 by 0.218 and reduced the RMSE by 0.012 
 cm3 cm−3 for measured SWC at field capacity. Table 3 exemplifies the weak relationship 
between laboratory measured SWC at field capacity and elevation, laboratory measured 
SWC at wilting point and elevation, calculated AWC and elevation, laboratory measured 
SWC at field capacity and TWI, laboratory measured SWC at wilting point and TWI, and 
calculated AWC and TWI. Therefore, the hypothesis that the first EOF provides superior 
spatial information correlating to the accurate prediction of three key soil hydraulic param-
eters (i.e. field capacity, wilting point, available water content) is justified for this field.

In addition to providing more accurate soil hydraulic property spatial datasets, EOFs can 
be used to generate new data products for use with variable-rate irrigation (VRI), variable-
speed irrigation (VSI), and other commercial field equipment. As an illustration here, new 
field capacity, wilting point and AWC products were generated for this field using the rela-
tionships between the first EOF surface, elevation, and the laboratory measured hydraulic 
parameters (Fig. 9, Table 3). The authors note that additional single or multivariate linear/
nonlinear functions could be explored to better characterize the observed trends in the data.

In the interest of exploring the feasibility of implementing CRNP and EOF analysis 
for the delineation of IMZs, a statistical bootstrapping analysis was performed (Table 4) 
to predict the number of soil samples needed to accurately estimate field capacity, wilt-
ing point and AWC following a similar analysis by Gibson and Franz (2018). Each of the 
hydrogeophyscial datasets (elevation, ECa survey, CRNP neutron count EOF, CRNP SWC 

Fig. 8  Laboratory measured SWC at field capacity (FC) and wilting point (WP) compared to AWC, eleva-
tion, TWI, measured ECa, and the first EOF surface from the CRNP rover SWC surveys
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Fig. 9  Resulting spatial estimates of a SWC at field capacity (FC = −  4.314 + 0.473(EOF) + 0.005(Ele-
vation)), b SWC at wilting point (WP = −  1.182 + 0.073(EOF) + 0.001(Elevation)) and c AWC 
(AWC = − 3.132 + 0.399(EOF) + 0.003(Elevation)) using derived relationships between the first EOF sur-
face, elevation and the laboratory measured soil hydraulic parameters. The soil sampling locations are 
indicated by black circles and the corresponding  r2 and RMSE values for each of the spatial products are 
located in Table 3. See Table 4 for bootstrap analysis quantifying statistical fit and number of training and 
validation samples
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Table 4  Results from the bootstrapping analysis

The hydrogeophysical datasets (EOF derived from CRNP SWC estimates, EOF derived from the CRNP 
corrected neutron counts, ECa values and Elevation) were divided into different training sets and the mean 
RMSE and standard deviations (SD) of the RMSE of the predicted soil hydraulic properties and the labora-
tory measured soil hydraulic properties are reported for 1000 random simulations. Note the total sample 
size was 31

Hydrogeophysical dataset Training set 
size

SWC at field capacity 
 (cm3/cm3)

SWC at wilting point 
 (cm3/cm3)

AWC  (cm3/cm3)

RMSE SD RMSE SD RMSE SD

SWC EOF 3 0.0653 0.0235 0.0203 0.0070 0.0551 0.0192
SWC EOF 4 0.0638 1.2390 0.0202 0.3940 0.0537 1.0155
SWC EOF 5 0.0542 0.0691 0.0173 0.0244 0.0466 0.0697
SWC EOF 6 0.0529 0.0359 0.0169 0.0085 0.0454 0.0341
SWC EOF 7 0.0521 0.0256 0.0167 0.0054 0.0447 0.0220
SWC EOF 8 0.0516 0.0191 0.0166 0.0053 0.0443 0.0175
SWC EOF 9 0.0512 0.0105 0.0164 0.0035 0.0440 0.0135
SWC EOF 10 0.0509 0.0098 0.0164 0.0034 0.0437 0.0068
SWC EOF 20 0.0488 0.0103 0.0158 0.0026 0.0417 0.0095
SWC EOF 30 0.0460 0.0221 0.0149 0.0053 0.0386 0.0204
Neutron EOF 3 0.0671 0.0224 0.0202 0.0067 0.0564 0.0186
Neutron EOF 4 0.0657 1.4190 0.0201 0.3348 0.0551 1.1464
Neutron EOF 5 0.0545 0.0682 0.0173 0.0227 0.0469 0.0701
Neutron EOF 6 0.0532 0.0300 0.0169 0.0077 0.0457 0.0265
Neutron EOF 7 0.0525 0.0163 0.0167 0.0057 0.0451 0.0207
Neutron EOF 8 0.0521 0.0173 0.0166 0.0043 0.0447 0.0126
Neutron EOF 9 0.0517 0.0128 0.0165 0.0033 0.0444 0.0100
Neutron EOF 10 0.0513 0.0097 0.0164 0.0028 0.0441 0.0076
Neutron EOF 20 0.0491 0.0103 0.0158 0.0025 0.0421 0.0096
Neutron EOF 30 0.0458 0.0212 0.0151 0.0055 0.0394 0.0210
ECa 3 0.0788 0.0224 0.0222 0.0064 0.0695 0.0194
ECa 4 0.0779 0.7268 0.0222 0.4195 0.0686 0.8176
ECa 5 0.0689 0.0982 0.0188 0.0274 0.0590 0.1063
ECa 6 0.0672 0.0467 0.0184 0.0087 0.0572 0.0450
ECa 7 0.0662 0.0281 0.0182 0.0069 0.0563 0.0225
ECa 8 0.0656 0.0181 0.0180 0.0056 0.0558 0.0167
ECa 9 0.0652 0.0145 0.0179 0.0044 0.0554 0.0133
ECa 10 0.0648 0.0135 0.0178 0.0041 0.0551 0.0111
ECa 20 0.0627 0.0093 0.0172 0.0034 0.0535 0.0076
ECa 30 0.0605 0.0222 0.0166 0.0073 0.0518 0.0176
Elevation 3 0.0841 0.0225 0.0214 0.0071 0.0742 0.0197
Elevation 4 0.0833 1.2948 0.0214 0.3674 0.0735 1.2446
Elevation 5 0.0729 0.1050 0.0182 0.0222 0.0627 0.1071
Elevation 6 0.0711 0.1062 0.0178 0.0128 0.0611 0.0404
Elevation 7 0.0700 0.0230 0.0175 0.0062 0.0602 0.0220
Elevation 8 0.0695 0.0177 0.0174 0.0050 0.0597 0.0141
Elevation 9 0.0690 0.0131 0.0173 0.0043 0.0594 0.0116
Elevation 10 0.0686 0.0130 0.0172 0.0035 0.0591 0.0104
Elevation 20 0.0663 0.0102 0.0166 0.0027 0.0570 0.0094
Elevation 30 0.0626 0.0236 0.0156 0.0058 0.0537 0.0218
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EOF) was randomly divided into training and testing sets, with training set sizes ranging 
from 3 to 30, for 1000 iterations. The results from Table 4 suggest with fewer soil samples 
the neutron and SWC EOF surfaces are a more accurate predictor of soil hydraulic proper-
ties. When linearly correlating the CRNP SWC EOF to estimates of SWC at field capacity 
and AWC, RMSE is reduced approximately 20–25% compared to evaluations with ECa 
and elevation datasets. Wilting point estimates saw reductions in RMSE of 5–9% when 
comparing the CRNP SWC EOF to ECa and elevation datasets. Here, 6–8 sample locations 
for laboratory analysis were sufficient to describe the spatial distribution of soil hydraulic 
properties for this field. After eight soil samples, relatively small reductions in RMSE and 
standard deviation occurred for this particular field. Similar soil sampling sizes and results 
were found by Gibson and Franz (2018).

Recommendations for future soil hydraulic property sampling

Given the results of this work the authors propose a sampling strategy for better quantify-
ing soil hydraulic properties that can be implemented in practice.

(1) Complete a minimum of five CRNP rover surveys for the area of interest, with survey 
datasets selected to capture a range of SWC, to accurately estimate spatial SWC using 
the first one or two sets of EOF coefficients. As previously stated, the presented work 
used a bootstrapping analysis to indicate five CRNP surveys at different SWC condi-
tions were sufficient to estimate the first EOF coefficients to within 5% of the values 
using data from all ten surveys. The five CRNP surveys and EOF correlations from 
this work are further supported by Gibson and Franz (2018). EOF coefficients could 
be calculated based on the neutron intensity measurements (Table 4), saving process-
ing time and eliminating the need for terrestrial hydrogen pool datasets. However, the 
authors suggest using the CRNP SWC product as it has a greater physical meaning 
to soil hydraulic properties. Based on additional data (Gibson and Franz 2018) from 
fields across the Midwest, the authors found similar relationships and recommenda-
tions for the required minimal number of CRNP surveys. An example of real-world 
implementation might involve a service provider investing in CRNP technology and 
cooperating with multiple producers to perform the CRNP rover surveys. Additionally, 
the CRNP surveys could be completed simultaneously with other field operations (i.e. 
ATV, tractor, sprayer) and over several growing seasons.

(2) Using the EOF coefficients from the CRNP SWC maps, 6–8 soil sample locations 
(Table 4) should be selected across a range of EOF values. The collection and analysis 
of soil cores to determine their soil retention curves and hydraulic parameters can be 
time consuming, laborious and expensive. Therefore, using the EOF surface to mini-
mize the number of and placement of extracted soil cores is critical. The bootstrap 
analyses indicated a diminishing return of information beyond 6–8 samples for this 
53 ha field. Similar sample sizes were reported in Gibson and Franz (2018).

(3) Next, measure the soil hydraulic properties of interest (e.g. field capacity, wilting point, 
AWC) for the collected soil samples. Soil samples can be sent to a soil laboratory or 
analyzed in one’s lab using the Hyprop/WP4C combination for this work.

(4) New data products can be generated using the relationship between EOF and the 
observed hydraulic parameters from the soil cores. These new data products can be 
produced at a variety of scales and different file types to operate within existing agri-
cultural software and machinery.
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(5) In addition, the EOF surface can be used to delineate management zones. Here the 
authors suggest using a 1st order polynomial relationship describing the relationship 
between the first SWC EOF surface, elevation, and the laboratory measured SWC 
at field capacity  (r2 = 0.63, RMSE = 0.05  cm3 cm−3) and wilting point  (r2 = 0.21, 
RMSE = 0.02  cm3 cm−3) to delineate IMZs (Table 3). This should be done in conjunc-
tion with the USDA SSURGO data to better refine key boundaries. IMZs can be based 
on the EOF surface, the field capacity surface or the AWC surface.

This research is of increasing importance for agricultural regions with ever-increasing 
water restrictions where small changes in water allocation rates and times may greatly 
impact crop yields. For example, at the current depletion rate, 35% of the Southern High 
Plains Aquifer is expected to be unable to support irrigation in the next 30 years (Scanlon 
et al. 2012). Consequently, there will be an increased effort to accurately map soil hydrau-
lic properties and delineate high spatial and temporal irrigation prescription maps. Refer-
ring to Fig. 1, the feasibility of the CRNP and EOF analyses for management practice may 
soon be economically viable for many regions where maximizing water use for obtain-
ing higher yields is paramount. The authors have shown here that the strong correlation 
with observed soil hydraulic parameters to the first EOF surface provides additional spatial 
variability information compared to EC mapping alone. If a land manager only used an EC 
map for estimating soil hydraulic properties, areas of a field may be biased depending on 
conditions at the time of sampling. In order to minimize error and improve IMZs, CRNP 
and EOF analysis should be used to increase the correlation between soil hydraulic prop-
erties and irrigation application rates (Fig. 8, Table 3), which will subsequently improve 
irrigation prescription maps. CRNP and EOF analysis also provides irrigators with datasets 
they can use to generate dynamic prescription irrigation maps. Future research could inves-
tigate how increases in  r2 and reductions is RMSE using the CRNP and EOF analysis could 
translate into increased water use efficiency with precision agricultural technologies. Addi-
tionally, studies could investigate whether high spatial resolution datasets of soil hydraulic 
properties increase water use efficiency while maintaining or increasing crop yields.

Summary and conclusions

Irrigation constitutes the largest component in global water use, yet within agricultural 
systems there is low water use efficiency. Therefore, improvements can be made in how 
irrigation application rates and times are managed. Traditional methods include the use 
of available soil property datasets, EC mapping, or commercially available instruments to 
delineate irrigation and land management zones. This research explored the utility of a 
hydrogeophysical sensor, called the CRNP, which measures near-surface soil water con-
tent (SWC) (top ~ 30  cm). In addition, when combining the CRNP SWC maps with the 
multivariate EOF analysis the authors found a better covariate for laboratory measured soil 
hydraulic properties for a field in west-central Nebraska, USA. The measured soil hydrau-
lic properties were also compared to other readily available landscape and geophysical 
datasets including elevation, TWI and ECa maps. Based on this work the authors present a 
future sampling strategy to better understand spatially varying hydraulic properties within 
a field, as well as the delineation of IMZs. The new data products could be used within cur-
rent irrigation management practice to improve water use efficiency by providing soil spa-
tial datasets for the management of irrigation rates and times in relation to depletion below 
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field capacity and above wilting point. Having an accurate quantification of field capacity 
and wilting point is especially important when volumetric SWC sensors are used for irriga-
tion management. The authors do note that the strategy presented here constitutes a signifi-
cant increase in effort as compared to more traditional and widely used techniques. How-
ever, as irrigation allocations become more stringent, there will likely be an increased rate 
of adoption of precision techniques that require more accurate mapping of soil hydraulic 
properties. The technology and framework presented here provides one potential strategy 
to better utilize precision agricultural technologies to increase water use efficiency while 
maintaining crop yields in varying topo-edaphic landscapes.
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