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ABSTRACT

Earlier papers by Brown [1973] and Brown and Beattie [1975] showed,
for the common case of positively interrelated explanatory variables, that
the ridge regression estimator of Hoerl and Kennard [1970] gave much larger
bias and mean square error ME) for models with unlike signs. To avoid
this excessive bias and MSF in such cases, a method for partitioning ridge
estimation into compatible blocks is proposed in this paper. The expected
values and variances of the "partitioned" ridge estimates are derived, and
the procedure is applied to a simple experimental model, giving partitioned
ridge estimates that were two to three times more accurate in terms of MSE
than OLS or regular ridge regression. The partitioned ridge method was
also applied to a nonorthogonal subset of data from an empirical produc-
tion study. Both regular and partitioned ridge regression estimates had
about one-half the MSE of OLS for certain ranges of k values. However,
the partitioned ridge estimates were superior to the regular ridge esti-
mates in that a lower MST!: was obtained over a wider range of k values.
Also, a much larger proportion of the partitioned MSF was composed of
easily measured variance, as compared to a high percent of bias squared
component for the NSF of the regular ridge regression estimator. These
results indicate that the partitioned approach should substantially in-
crease the usefulness of biased linear estimation for many regression
problems.
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A PROPOSED "PARTITIONED" RIDGE REGRESSION PROCEDURE

FOR ESTIMATING MODELS UNSUITED FOR

REGULAR RIDGE REGRESSION

William G. Brown

The concept of biased linear estimation received much well-deserved atten-

tion from the papers of Hoerl and Kennard [1970, a, b]. They analyzed the "ridge

regression" estimator which, although biased, is very effective in reducing the

variance of parameter estimates of the general linear regression model fitted to

nonorthogonal data. Following Hoerl and Kennard [1970a], assume the linear model,

(1) Y = X13 + u,

where Y is n x 1, fixed X is n x p, f3 is p x 1, u is n x 1, Eu = 0, and Euu' =
^*

0
2I. The ridge estimator, ki , is defined as

(2) * = (X'X + kI)
-1 X'Y,

where X'X represents the correlation matrix of explanatory variables and k denotes

a small positive increment.

Although a very small variance can be achieved by increasing the level of k,

the bias can become excessive for certain situations. "Excessive" bias from

ridge regression can be expected for the fairly common situation of positive

interrelationship among the explanatory variables if the true regression para-

meters are of unlike sign. This result follows from a theorem by Brown [1973]

and proven more compactly by Brown and Beattie [19-75] following a helpful sugges-

tion from T. D. Wallace. The theorem states that the bias of the ridge estimate

of the j
th standardized regression coefficient can be expressed as

k c
JJ 	 , A*	 !

+ kIl	
bj1.13.,where b . = -1.0 if i = j,31	 1(3) Eca.) — (3. =

1=1

.th
andifi#j,b..denotes the ridge estimate of the r-- regression coefficient of

31
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the model where X.

ables. (13i and.f33

model, Y = )43 + u,

from (X'X + kI).)

has been regressed on the remaining (p-1) explanatory vari-

represent the true regression coefficients in the original
.th

and c. is the minor formed by deleting the 3— row and column

The above theorem is helpful in deciding whether or not to use ridge regres-

sion, since one usually obtains small bias and mean square error (MSE) only if

(for positively interrelated explanatory variables) the true R values all have

the same sign, such as for a Cobb-Douglas production function. However, this

condition is obviously restrictive, since many economic models have positively

interrelated explanatory variables, but with some positive and some negative

expected signs for the true regression parameters. Therefore, it would be ex-

tremely helpful if the ridge regression procedure could be modified so as to

give small bias for cases involving positive interrelationships and mixed signs

of the true regression coefficients. Several possibilities for achieving this

objective are explored in the next sections.

SUPPLEMENTATION OF RIDGE REGRESSION
WITH PRIOR INFORMATION

Ridge regression can be considered to be a special case of earlier proposed

models, such as the Theil-Goldberger [1961] generalized least squares mixed esti-

mator,

(4)
	

b = (1/a
2
X'X + R'T-1R)

-1
(1/a

2
X'y + RAY-1r).

The prior information in (4) is represented by r = RR + v, where r is a known

g X 1 vector (g < p), R is

with E(v) = 0, E(vv') = T.

(4) reduces to (2) and b =

a known g x p matrix, and v is a

If R'T 1R = k/a
2
I and r is a p

^* 1/
.— (Of course, for the prior

g x 1 vector of errors

1 null vector, then

information vector, r,

equal to a vector of zeroes, it would not seem realistic to assume that r was an

unbiased prior estimate of (3, as is assumed for b in (4).)

1/ This fact was first brought to the attention of the author by Don A. Pierce.



Given the above relationship between the ridge estimator and the Theil-Gold-

berger mixed estimator, it is tempting to try to improve upon the null vector as

the prior information vector of 0. In fact, however, the null vector gives sur-

prisingly good results in several situations, as will be shown later. First,

however, it should be noted that prior information is often related to the sample

information, and this case needs to be handled differently than when the prior

vector is independent of the sample data.

Prior Information Vector Independent of. Sample Data 

In this case, the researcher may prefer to use the Theil-Goldberger model

directly, if the prior vector is considered to be unbiased. However, if the pri-

mary motivation is to reduce unduly high variances caused by multicollinearity,

then the researcher may want to use ridge regression supplemented by prior in-

formation, especially if the researcher is not convinced that his prior vector

is unbiased.

As an example, consider the Cobb-Douglas total value production function,

Y = aK
a1 L

a2 , reduced to two inputs, capital and labor, for simplicity. One could

estimate

(5)
	

b = (X'X + kA)
-1 (X'y + kAP),

where X'X represents the 2 x 2 matrix of mean-corrected sums of squares and cross-

products, A is a diagonal matrix of order 2 consisting of the sums of squares, and

P is a 2 x 1 vector of prices for capital and labor.

The proposed prior vector in (5) may not be unbiased since prices expected

by managers for capital and labor may not coincide with historical prices used to

compute P. Nevertheless, even though in practice the P vector may be in error,

a more accurate estimate may still be possible from b, as compared to OLS, if the

labor and capital inputs are highly correlated. If the historic input prices,

P, are assumed to be known essentially without error, then the variance of b

would be computed the same as for the ridge estimator, R* . However, when the

prior information vector is variable or dependent upon the sample data, then the

variance of b will usually exceed that of	 and should be estimated differently.
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Prior Information Related to Sample Data 

In practice, the researcher may not be able to obtain an independent estimate

of the prior information vector. In that case, a prior vector related to the

sample can be used. One such possibility would be to use the mean of the ordin-

ary least squares (OLS) estimates, 0, for the elements of the prior vector.
2/

The variance of

(5a) b = (X'X + 10) -1 (X'y + 1(4)

will differ from the ridge estimator, S . To compute the variance of b, note that

the p x I mean vector,

(6)	 = RX'y

where R represents a restricted p x p matrix with p identical rows, where the

element of each row of R is the simple average of all the elements of the t t

column of (X'X) -1 . Equation (5a) can be written as

(5b) b = [(X'X + 0) -1	+ kAR)] X'y

= AX'y.

As is well known, the variance of any linear estimator, b = AX'y, is equal

to a2
AVXA' if E(uu') = a

2
I
n . (This result follows from the definition of the

variance of b and by taking the expected values.) Using these relationships, the

variances and mean square error of b and 
lc 

are presented in Table 1, using the

simple two-explanatory-variables experimental models reported by Brown [1973] and

summarized by Brown and Beattie [1975].

2/ Again, a helpful idea from Don A. Pierce, who suggested this model to the
author in 1973, is appreciated. This model also appears to be similar to an
estimator analyzed by Benee F. Swindel [1974]. The main objective of Swin-
del's paper appears to be to prove that there always exists some "good" ridge
estimator based on prior information, "good" meaning that the estimator pro-
vides a strictly smaller MSE of every non-null linear combination of the slope
parameters than does the OLS estimator. Although apparently successful in
this regard, Swindel does not attempt to deal with the practical problems in-
volved in actually using and estimating this type of model.



Table 1. Expected Values, Variance, and Mean Square Error for OLS Versus Ridge Regression.

and Ridge Regression Supplemented by the Mean Vector, b ■ (X'X +
-1 (X'y + laa)

where the True Model is Ti ■ a + 81X11 + $2X21 + ui ;	 E(u1)	 0.5(4) + 0.5(-4); and

Fixed X1 and X2 take the 5 Values (1,1.2), 	 (2,1.67335),	 (3,3),	 (4,4.32665), and (5,4.8)

Results for several levels of k
loo0.0 (OLS) k-0.05 k=0.10 k■0.15 k.0.20 k-0.25 k-0.30

V(81) 54.936 3.190 1.258 0.781 0.587 0.485 0.423

V(bi) 54.936 3.209 1.295 0.836 0.658 0.570 0.521

E(81)1
5.330 4.202 3.976 3.835 3.723 3.624 3.535

E(02 ) 2.665 3.597 3.635 3.598 3.541 3.477 3.411

E(b1) 5.330 4.300 4.168 4.116 4.089 4.071 4.060

E(b2 ) 2.665 3.695 3.827 3.879 3.906 3.924 3.935

..*
Ave. MSE(0 ) 54.936 4.261 2.645 2.333 2.262 2.269 2.312

Ave. MSE(b i) 54.936 4.271 2.646 2.309 2.199 2.155 2.135

*
E(B )1

6.655 4.499 4.142 3.950 3.809 3.694 3.593

.*E02 ) 1.331 3.291 3.461 3.475 3.446 3.399 3.345

E(b1) 6.655 4.597 4.334 4.230 4.175 4.141 4.117

E(b2
) 1.331 3.389 3.652 3.756 3.811 3.845 3.869

...*
Ave. MSE($ ) 54.936 7.435 6.684 6.740 6.872 7.007 7.138

Ave. 14SE(b )
i

54.936 7.445 6.685 6.716 6.808 6.893 6.962

E(131) 7.971 4.791 4.304 4.060 3.893 3.760 3.648

E(82) 0.000 2.983 3.284 3.350 3.348 3.319 3.276

E(b1) 7.971 4.889 4.495 4.340 4.258 4.206 4.171

E(b2) 0.000 3.081 3.475 3.630 3.713 3.764 3.800

Ave. MSE(8) 54.936 12.693 13.373 14.038 14.506 14.855 15.101

Ave. MSE(bi) 54.936 12.703 13.384 14.015 14.444 14.741 14.958

E(0 )1
9.918 5.220 4.538 4.219 4.011 3.853 3.724

E(02)
-1.984 2.520 3.016 3.158 3.197 3.194 3.169

E(b1) 9.918 5.317 4.729 4.497 4.374 4.297 4.245

E(b2) -1.984 2.617 3;206 3.437 3.561 3.637 3.690

Ave. MSE(8 ) 54.936 24.367 28.225 30.242 31.457 32.277 32.881

Ave. MSE(b 1) 54.936 24.377 28.266 30.219 31.395 32.166 32.709



6

From the top lines of Table 1, it can be seen that the variances of 0 and b
^lc

are very similar, with the variance of 1 declining somewhat more rapidly as k is

increased. However, this small advantage of lower variance for the ridge esti-

mator is offset at the larger values of k by slightly larger biases. For ex-

ample, for the model Y. = a + 5.330X1 . + 2.665i
2i
 +the expected variance plusui,

expected bias squared, equal to average mean square error (RISE), is slightly lower

at k = 0.05 and k = 0.10 for the ridge estimator. Then, for values of k = 0.15

and higher, there is a slightly lower MSE for b, due to its slightly lower bias.

(There should be a smaller bias for b at the larger k values since b is being

pulled toward the average vector rather than the zero vector. Although b is

biased, the sum of the b. values is unbiased.)

Probably the most striking result of Table 1 is the great similarity of the

ridge estimates to the ridge estimates supplemented by the mean vector, b = 	 +

k(X'X + kA) 	 These results show that the ridge estimator tends to pull its

estimates toward the mean vector, at least in the usually relevant range of k, say

0 < k < 0.3. This fact also fits in with the implication of the theorem of (3).

The bias of an estimate pulled toward the mean vector is bound to be larger when

the true a
i values are more divergent from each other. Thus, higher MSE would

be obtained from ridge regression when some of the true 0 values are positive and

some negative, as compared to the case where all the signs of the 0 values were

the same, assuming the same positive interrelationship among the explanatory

variables and about the same R
2 

for the two models.

At this point, the reader may wonder if he could not do much better than the'

mean vector, especially for a model like the last one shown in Table 1, Y i = a +

9.918X11 - 1.9836X2i + u
1" Suppose that one was sure that 0 1

 was positive and 02
negative. As an approximation, one might use 0 as the prior vector in (5a),

where a is a restricted OLS estimate such that 01 = -02' 
If so, E01 = 5.9508 and

E02 = -5.9508. Intuitively, this vector might be expected to give a lower MSE

than the mean vector, 0, or lower MSE than the null vector of ridge regression.

In fact, however, such is not the case! For example, at k = 0.2, the supplemented

ridge estimate,

(7)
	

b = (X'X + kA)
-1

()Cy + lc/X(3* ),



where E01 = E(-02) = 5.9508 for the model Yi = a + 9.918X11 - 1.9836X21 + ui of

Table 1, had MSE(b) a 109.99, as compared to total MSE(e) = 2(31.457) A 62.91,

bottom of Table 1.

*	 **
It could be argued that 0

1 
= -0

2
 was a poor choice of restriction for 0 .

Aowever, even if one chooses a restriction somewhat closer to the true 0 values,

*	 *	 * .
say a = -202 , the ESE is still not very impressive. For this case, E0 1 = 15.3740,

1
E52 A -7.6870 (using the same experimental model with 01 

= 9.918 and 02 
= -1.9836),

and MSE(b) A 62.12 at k = 0.2, almost the same as for the ordinary ridge esti-
A

mator, MSE(0 ) = 2(31.457) a 62.91, Table 1.

While these results are very limited, they do indicate that it is not so easy

as it might appear to improve upon ridge regression by supplementing the ridge

estimator with a non-zero prior vector. In the preceding model with different

signs for 51
and 

52' 
the reduced bias from using the restricted OLS estimate as

the prior vector was offset by the increased variance which resulted. Certainly

if a restricted OLS estimate is used as a prior vector, the researcher should

compute the new variance, as indicated after Equation (5b), since variances of

supplemented ridge estimates can be much larger than for the ordinary ridge esti-

mator, as just illustrated by supplementing the ridge estimator for the model,

Y = a + 9.918X11 - 1.9836X2i
 + ui

.

Given the problems resulting from attempting to supplement the ridge estima-

tor with restricted OLS prior vectors, a different approach was sought. Inasmuch

as the main difficulty with ridge regression arises (under the condition of posi-

tive interrelationship among the explanatory variables) when there are unlike

signs of the true regression coefficients, the idea of obtaining ridge estimates

of those coefficients with the same expected sign seemed highly desirable. A

"partitioned" ridge regression procedure for accomplishing this objective is pre-

sented next.

"PARTITIONED" RIDGE REGRESSION

For sake of exposition, assume that the model to be fitted has p mean-corrected

explanatory variables that are all positively interrelated and that the true,
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known sign of q coefficients of one block of variables differs from the true,

known sign of the (p-q) remaining variables. Then, for lack of a better term,

the proposed "partitioned" ridge regression procedure consists of the following

steps:

1. Fit the full model, Y = 
X11

+ ;I:32 + u by OLS, where the q

variables with one expected sign are contained in a block of

variables denoted by X and X
2
 contains the remaining (p-q)

1,
block of variables with true coefficients of opposite sign.

2. Construct a new variable, Z = Y - X2 02' then fit Z1 = a1

by regular ridge regression. Similarly, define Z 2 = Y - 
X1t31

and fit Z 2 = 2a2 by regular ridge regression.

*	 * — *
3. Combine these results to obtain Y =Xb +Xb from1 1	 2 2'

(8)	 b* = (m-T +	 )-1 X
I Z	 nd b

* 
= (X 2X2 + a2 ) -1 XTZ

1 1	 1 	 1 and  	 2 2.

In (8), 3E'Y refers to the mean-corrected sums of squares and cross-products

for the block of q explanatory variables with true coefficients of like sign,

as defined in Step 1 above, and similarly for X 2X2 . The q x q diagonal matrix

Ai consists of the main diagonal elements of	 and the (p-q) x (p-q) matrix

A 2 consists of the main diagonal elements of TTe2.

It should be noted that if one of the matrices, X'X or X2X2 , is orthogonal,
1	 2 2'

or nearly so, partitioned ridge regression can not greatly reduce MSE as compared

to the OLS estimates for the variables of the orthogonal matrix. This point will

be elaborated upon with respect to the numerical examples presented later.

It appears intuitively that the variance of b
1
 in (8) will be relatively

lower if the OLS estimate of a in Step 1 is relatively precise, and similarly
2 

for b
2 . 

This result also follows from the derivation of the variance of b1
 and

b2. As defined in (8), the non-standardized p x 1 vector, b1, 
is:



biased only to the extent caused by the

relatively small since, by hypothesis, all

and all variables in block X 1
 are positively

estimate of b i will be

and this bias will be

are of the same sign,

Thus, the

elements of S

elements of S

related.

pected.

1
Thus, as discussed earlier with (3), relatively small bias can be ex-

By definition, the variance-covariance matrix for b 1
 is:

9

b* =	 + kA ) -1	 = (DI + kA ) -1	 (Y -
22

)

=(X1X1 + kA1) -1 RI alai + R2 13 2 - R282 + u)

=+ kA ) -1	 [i	 -	 - f3
2
) + u] .

1 1	 1	 1 1 1	 2

The n x 1 error term, u, is assumed to have expected value equal to zero,

and E(u'u) = a2
I
n

. Assuming R
1 

and R
2 

are fixed,

(10)	 E(b
*
) =	 kAl ) -1 [(X1X1+ kAl) Si - kAll]

1

= a - k(i'R + kA1
)-1 A

1
S

1 .1	 1

(9)

*
(11) Var(bi) = E(bi - Ebi)(b

*
 - Ebl)

=	 + kA1)-1

x{(X1X1 + kA1 ) -1 RI[u

22 - 62)i}

22 - 13
2)]/'

—
=	 + kA ) -1 X'(Euu l )	 (T'Y + kA)-1

	

1 1	 1 	 l 1 1

	

(q1 "1)-1 5
1X

2 [E(S2 - /32)(62 - 13 2)'3 ITC-1 (q	
kA

1 	 1
)
-1

.

Since E(uu') = a2In , by assumption,

(12) Var(b) = 02 (X 1 X + kA ) X1X1 (X1X1 + kA
1

)
1	 1

+ (X1X1 +	 RIR2[Var(S2)] X2X1 (X1X1 + kA1)-1.
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The first term of (12) is simply the variance of the regular ridge estimate of
^ Iv	 - -	 -1 -81 = Cy]. + kyly XIZi . The last term of (12) is the variance added to Var(81)

by constructing Z
1
 = Y - 31

2
8

2
 before making the ridge estimation, as defined in

Step 2. It is clear that the last term in (12) vanishes if all variables in X2

are uncorrelated with the variables of X1. However, even though the X2
 variables

will usually be correlated with 3i
1 

variables, the last term of (12) will be rela-

tively small if the variance of 8
2 

is small. Of course, a substantially smaller

MSE(bi) relative to MSE of the regular ridge estimate of al will result only if

the last term of (12) is substantially smaller than the bias incurred from the

full ridge regression.

The preceding material will next be illustrated with a simple experimental

model.

Results From A Simple Monte Carlo Experiment 

The experimental equation was:

(13)
	

Y
i
 = 18 + 3X11 + 2X

2i 
- 6X

3i 
+ u

i

where X1 , X2 , and X3 always took the fixed values, (0,1,0), (1,0,2), (2,2,1),

(8,8,9), (9,10,8), and (10,9,10). Since E(ui) = 0.5(-4) + 0.5(4) for the experi-

ments summarized in Table 2, there are 2
6 = 64 combinations of the binomial error

term, which results in 64 possible outcomes or samples.
3/ However, some of the

samples give the same parameter estimates, resulting in only 27 unique sets of

estimates, as shown in Table 2. (Some of the samples within unique sets do give

different estimates of a2 , however.)

The outcomes were generated as follows. First, note that if a = 18, the six
expected values of Yi were 20, 9, 22, 4, 17, and 6, respectively. The error
terms, ui , of the first experiment were all negative, or ul = -4, u2 = -4, •••,

u6 =-4,givimgvaluesofY.of 16, 5, 18, 0, 13, and 2, respectively. For the
second trial, ul = u2 = u

3
 = u

4
 = u

5
 = -4, and u

6
 = +4, giving Yi values of 16,

5, 18, 0, 13, and 10, respectively. The third trial had u l = u2 = u3 = u4 = u6

= -4, and u5 = +4, giving Yi values of 16, 5, 18, 0, 21, and 2, respectively.
This truth table type of process was repeated until all 64 possible outcomes had
been generated.
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Table 2. Distribution of Estimated 13. Values for OLS Versus "Partitioned"

Ridge Regression, where Y i = a + 3Xli + 2X2i - 6X3i + ui;

E(ui) = 0.5(4) + 0.5(-4); and Fixed X 1 , X2 , and X3 Take the Six

Values	 (0,1,0),	 (1,0,2),	 (2,2,1),	 (8,8,9),	 (9,10,8), and	 (10,9,10)

= 0.0 (OLS) k = 0.2 (Partitioned Ridge Estimates)
Relative
frequency 3.42 b1 b2b

1/64 10.667 -0.333 -11 5.1927 4.1927

2/64 11.000 -2.000 -10 4.6781 3.4962

2/64 7.000 2.000 -10 4.3144 3.8599

1/64 11.333 -3.667 - 9 4.1635 2.7998

4/64 7.333 0.333 - 9 3.7998 3.1635

1/64 3.333 4.333 - 9 3.4362 3.5271

2/64 7.667 -1.333 - 8 3.2852 2.4671

2/64 6.333 1.333 - 8 3.7089 3.2544

2/64 3.667 2.667 - 8 2.9216 2.8307

4/64 6.667 -0.333 - 7 3.1943 2.5580

1/64 4.000 1.000 - 7 2.4070 2.1343

4/64 2.667 3.667 - 7 2.8307 2.9216

2/64 7.000 -2.000 - 6 2.6797 1.8616

8/64 3.000 2.000 - 6 2.3161 2.2252

2/64 -1.000 6.000 - 6 1.9525 2.5888

4/64 3.333 0.333 - 5 1.8015 1.5288

1/64 2.000 3.000 - 5 2.2252 2.3161

4/64 -0.667 4.333 - 5 1.4379 1.8924

2/64 2.333 1.333 - 4 1.7106 1.6197

2/64 -0.333 2.667 - 4 0.9233 1.1960

2/64 -1.667 5.333 - 4 1.3470 1.9833

1/64 2.667 -0.333 - 3 1.1960 0.9233

4/64 -1.333 3.667 - 3 0.8324 1.2869

1/64 -5.333 7.667 - 3 0.4687 1.6505

2/64 -1.000 2.000 - 2 0.3178 0.5905

2/64 -5.000 6.000 - 2 -0.0459 0.9541

1/64 -4.667 4.333 - 1 -0.5605 0.2577

Average value 3.000 2.000 -6.000 2.3161 2.2252

Variance 16.167 5.500 5.500 1.6188 0.7380

Bias squared 0.000 0.000 0.000 0.4677 0.0507

M.S. error 16.167 5.500 5.500 2.0865 0.7887
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An advantage of the experimental scheme used in Table 2 is that all possible

outcomes are obtained, so that the averages over the entire experiment corres-

pond exactly (except for slight rounding error) to the mathematical expectations

of the parameters, their variances, and their biases. A possible disadvantage is

that the relatively small sample size does not Fcermit as wide a range of extreme

values, even though the expected values of the variances and biases are the same

as for any other type of disturbance term with a
2 

= 16. The dispersion of the

OLS estimates of 0
3 

is shown in Figure 1.

Before discussing the partitioned versus the regular or full-model ridge

regression estimates, the behavior of the OLS estimates of the parameters of

(13) in Table 2 should be noted. The OLS estimates of B1 and 0
2 

were highly

unstable, with A
1 

taking the wrong (negative) sign 20/64 = 5/16 of the time and

a
2 

taking the wrong sign 13/64 of the time! The main reason for this instability

was high intercorrelation among the explanatory variables. For example, correla-

tion between X
1
 and X2, r12, was r

12 
= 0.98. Similarly, r

13 
= 0.98, and r

23 
=

0.94. These high intercorrelations resulted in large main diagonal elements of

the inverted correlation matrix, the so-called "Variance Inflation Factors" (VIF).

The VIF for X1 , X2 , and X3 were 101.042, 34.375, and 34.375, respectively.

These high variances of the OLS estimates can, of course, be reduced by

the use of regular ridge regression on the full model of (13). However, a

rather serious bias quickly results, as the following figures show:

Value of k
Alt

E(0
1

) E(0
2

) EE(R 3
^V(0* )

Total
^lc

MSE ((3 )

0.0 (OLS) 3.000 2.000 -6.000 27.167 27.167

0.05 0.069 1.676 -2.688 1.174 20.840

0.10 -0.106 1.090 -1.910 0.518 27.208

0.15 -0.167 0.771 -1.515 0.310 31.966

0.20 -0.320 0.573 -1.273 0.214 34.591

Although lowest MSE fell at k = 0

MSE(0 ) = 12.59, if one selected k = 0

suit than for OLS! Thus, the model is

.01 (to nearest one-hundredth), giving

.10 or k = 0.20, a higher MSE would re-

somewhat unsuitable for estimation by



OLS Estimates of 83

Figure 1. Distribution of 83 across all samples for the model, Y
i = 18 + 3X11 +

2X2i
 - 6X3i

 + u E(u) = .5(4) + .5(-4), n = 6, where fixed X 1
, X

2
,

and X take the values (0,1,0), (1,0,2), (2,2,1), (8,8,9), (9,10,8),
3

and (10,9,10).
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0.0 (OLS)

0.10

0.20

.30

0.40

0.50

14

either OLS or regular ridge regression. However, use of "partitioned" ridge

regression gives a surprisingly good result, as indicated by the estimates of

the last two columns of Table 2. In contrast to OLS fl
1' 

which took the wrong

(negative) sign 20/64 of the time, the partitioned ridge estimator bl at k = 0.2

took the wrong sign only 3/64 (less than 5 percent) of the time. Similarly,

whereas R
2 had the wrong sign 13/64 a 20.3 percent of the time, the partitioned

ridge estimate b 2 had the correct sign 100 percent of the time.

The expected values, variances, and MSE of b
1
 and b

2
 for various k values

were as follows:

E(b
1

) E(b
2

)

V(b
1 )

+ V(b
2)

MSE(b
1

)

+ MSE(b
2 )

3.000 2.000 21.667 21.667

2.463 2.296 2.944 3.320

2.316 2.225 2.357 2.875

2.202 2.140 2.085 2.741

2.104 2.056 1.889 2.695

2.015 1.977 1.728 2.698

In computing the variances of b l and b2 , care must be taken not to forget

the second term of (12), which must be added to the usual variance of the two-

explanatory-variable ridge regression model. Because of this added term, the

variance of the partitioned ridge estimator is a relatively larger component of
*

MSE, especially at the larger k values. Consequently, MSE(b ) continued to de-

cline over a larger range of k than for similar two-explanatory-variable models

fitted by regular ridge regression, reported by Brown [1973]. Although more

research is needed, it appears that larger k values can be used to obtain lower

MSE for partitioned ridge regression than for regular ridge regression.

Although MSE of the estimates of the model in Table 2 are much lower for

partitioned ridge regression than for OLS or regular ridge regression, several

legitimate questions are in order at this point.



15

(1) What would be the effect on the outcome if all the true coeffi-

cients were proportionately larger or smaller, given the same

X and u values?

(2) How would the outcome be affected if the intercorrelations among

the explanatory variables were lower or higher?

(3) How does partitioned ridge regression compare with variable

deletion, in coping with the multicollinearity of the model

of (13) and Table 2?

Question 1: If the true a values of (13) and Table 2 were all proportion-

ately larger, OLS would do somewhat better relative to regular ridge regression

since the bias increases directly with the absolute magnitude of the true a

values, as shown by (3). Similarly, the bias of the partitioned ridge estimates

would also increase, but should always remain much smaller than for the regular

ridge estimates.

Question 2: The relative advantage of both partitioned and regular ridge re-

gression increases (decreases) as the degree of multicollinearity increases (de-

creases), since the variance can always be effectively reduced with ridge regres-

sion. On the other hand, the bias depends more on the true a coefficients, as

can be seen from (3), and discussed by Brown and Beattie [1975, pp. 23-26].

Question 3: Using variable deletion on the model of Table 2, the variable

X would be most often deleted since the ratio of R to its expected standard
1	 1

error is lowest most often in Table 2. Deleting X 1 , then the total variance for

the OLS estimate of a2 and a3 
will be reduced to 16(0.08591065)(2) A 2.7491.

However, the expected values of the OLS estimates of al , a2 , and a3 will now be

biased, being 0, 3.515464, and -4.484536, respectively, and the bias squared
.

would be (0-3)
2 + (3.515464 - 2)

2 + (-4.484536 + 6)
2 = 13.5933. Thus, the total

MSE would be 2.7491 + 13.5933 A 16.3424. Thus, MSE for the OLS estimate of the

model of Table 2, with al set equal to zero, is less than the variance of the

full OLS estimate, which was 16.167 + 5.500 + 5.50 A 27.167. However, the MSE

of the deleted variable model is considerably higher than for the partitioned

ridge regression model, where MBE at k = 0.2 A 2.0865 + 0.7887 + 5.5000 A 8.3752.
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It should be noted that MSE of the partitioned ridge estimate is slightly

lower at higher values of k. Also, the MSE could be reduced slightly by fitting

a partitioned ridge estimate of $ 3 , using the same general equation of (9). How-

ever, not much reduction in variance would be expected since, for the model of

Table 2, the (p-q) x (p-q) matrix X2X2consists

X'X	 Nevertheless, fitting b
2' 

as defined in3 3.
for k A 0.15, where V(b

*
) A 4.1588, bias

2
(b

*
) a

2	 2
MSE(b 2) a 4.7713. Thus, a reduction of MSE of

tained, only about 13 percent. However, had Te2

X3, a bigger reduction in MSE would be obtained

'of a single number, namely,

(8), a minimum MSE(b2 ) is obtained

(-5.21739 + 6)
2 

A 0.6125, and

(5.5 - 4.7713) = 0.7287 was ob-

contained more than one variable,

, assuming that the variables

were not orthogonal. This fact will be illustrated in the next section, where

partitioned ridge regression is applied to a simple four-explanatory-variable model.

Results from a Four-Explanatory-Variable Model 

For simplicity, consider a four-explanatory-variable model where there is

equal correlation between each variable, say r
12 

= r
13 = r14 = r23 = r24 = r34

0.95. Furthermore, suppose there are 25 observations and the overall R2 of re-

gression is 0.49875, yielding an overall regression F 0 = 4.975 that is signifi-
2

cant at P = 0.01. If we set a
1 = $2 = -0

3
 = -a

4 
and solve, we obtain standard-

ized a
1 

= $
2 = 1.57916117 a

n
d a

3 
= $

4
 = -1.57916117.

Using OLS on the above model, the Variance Inflation

for each explanatory variable, a moderately high level of

responding to r19 = 0.96624 in a two-variable-explanatory

a
2 

= (1-R2
)/20 times the VIF gives V(l) = 0.37765, and t

Factor (VIF) is 15.0649

multicollinearity cor-

model. Multiplying

= 2.57,MSE(R) = 1.51.

If regular ridge regression is attempted on the above model, very poor re-

sults are-otained. For k = 0.1, a badly biased ridge coefficient is estimated,
A* A*	 A*
a1 = !32 = 0.5264 = - a

3 
= -0

4. For k = 0.1, MSE( B*) A 4.6066, over three times

that of OLS!

^*
Admittedly, a smaller MSE( ) can be obtained by using a smaller value of k,

although in practice one would not know just what value of k to select. However,

for this model the optimal value of k to the nearest thousandth is k = 0.008,

giving MSE( ) A 1.3138. But even at this optimal value of k the reduction in
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MSE is not great, being about 1.3138 1.51026 A 87 percent that of OLS.

In contrast to the poor results with regular ridge regression, very good

results can be achieved with partitioned ridge regression over a wide range of

k values. The partitioned ridge estimates, their variances, and MSE were as

follows:

Partitioned
Value	 ridge esti-
of k	 mate of 0 =1	 2 

Partitioned
ridge esti-	 Individual

mate of $
3 
= 0

4 
variances 

Individual	 Total
MSE	 MSE(b*)             

0.0 (OLS)	 1.5791 1.5791
	

0.37756
	

0.37756	 1.51026

0.1	 1.5021
	 -1.5021
	

0.14270
	

0.14270	 0.59456

0.2	 1.4323 1.4323
	

0.11445
	

0.13603	 0.54410

0.4	 1.3104 1.3104
	

0.09050
	

0.16275	 0.65099

For k = 0.2, total MSE of the partitioned ridge estimator was 0.5441, only
*

about 36 percent that for OLS. Even at k = 0.4, MSE(b ) was only about 43 per-

cent that of OLS, still a substantial reduction. Thus, partitioned ridge regres-

sion gives a much better result than OLS or regular ridge regression over a wide

range of k values.

It should be noted that the preceding model is favorable for partitioned

ridge regression in that the a values within blocks are of the same standardized

magnitude. A larger bias would result at a given value of k if the true 0 values

within blocks were of unequal magnitude, although not so large as if the a values

within a block were of unlike sign. It should also be pointed out that the pre-

ceding model would yield even better results for partitioned ridge regression if

the correlation between variables of different blocks were lower than the corre-

lation between variables within blocks; that is, if r13, r	 r	 and r24 
were

13' 14' 23'

less than r12 = r34 = 0.95. Of course, the converse is also true. A higher vari-

ance from the second term of Equation (12) would result from higher values of

r	 r	 r	 and r24' 
In fact, the unfavorable situation for partitioned ridge

13' 14' 23'
regression of higher correlation between variables of different blocks is illus-

trated by the production function example presented next. However, before apply-

ing partitioned and regular ridge regression to an empirical situation, some of
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the difficulties of interpretation and limitations of previous applications of

ridge regression to empirical problems should be examined in order to avoid some

of the limitations of these earlier applications.

Difficulties of Interpretation when Ridge 
Regression is Applied to Empirical Problems 

Although of value in illustrating the use of ridge regression, Hoerl and

Kennard [1970b] do not attempt to actually assess the MSE of their ridge esti-
...*

mates in order to compare MSE(8 ) with OLS. In fact, such a comparison probably

is not possible, since reliable estimates of the true 8 parameters apparently

were not available. A similar criticism can be levelled at the application of

ridge regression by McDonald and Schwing [1973]. Thus, surprisingly little can

be definitely concluded from these empirical examples. Further analyses by Mal-

lows [1973] and Farebrother [1975] question the value of k used by Hoerl and

Kennard [1970b], suggesting that much smaller values of k might have yielded

ridge estimates with lower MSE.

Given the limitations of the preceding applications, how can applications

be made more meaningful in comparing the expected MSE associated with various

estimators?

The first requirement for making better inferences from empirical problems is,

surprisingly, that one should first start with experimental or survey data that 

will provide accurate parameter estimates with OLS. One needs to start with very

good data to be able to measure bias squared. But from these data the second re-

quirement is to purposely select a subset of data which provides high intercorre-

lation among the explanatory variables. Thus, one can simulate conditions con-

ducive to the use of biased linear estimation.

Interestingly, fulfilling the two preceding requirements is still not quite

enough, because analysis of a given subset of data represents only one sample. Vari-

ation of the observed dependent variable for the selected subset will usually give

highly variable and unstable results.

What should be done? One way of coping with the difficulty would be to add

an error term, ui , to the OLS predicted values for the subset (using the model
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fitted from all the data), then to take many samples where ui could be normally

and independently distributed with mean zero and known variance. (One advantage

of such a procedure would be that various methods for selecting k could be evalu-

ated.) However, such a procedure would also be fairly expensive and time-consum-

ing. Fortunately, the expected variances and biases that would occur across all

possible samples can be approximated without doing the actual experiments, using

the following argument: Assuming that the hypothesized very good OLS estimates

are available from the data of the entire experiment, it is reasonable to use

the OLS estimates as proxies for the true parameters. Then, for given values

of k, it is possible to compute the expected parameter estimates and variances,
^

using the usual estimating equations and by using a2 from the OLS fit of the

total experiment as a proxy for a2 .

Thus, the three requirements or steps for making valid inferences from an

empirical problem are the following:

1. Start with a good design or data source that provides reliable

OLS estimates of the true parameters.

2. Select a subset such that the explanatory variables become more

highly intercorrelated, similar to situations that are expected

in practice.

3. Use the reliable OLS estimates as proxies for the true parameters,

then compute the expected MSE that would result from all possible

samples for the various estimators being tested.

The above steps will next be illustrated with the analysis of a production

(yield-fertilizer response) function.

Application of Regular Ridge Regression to 
An Empirical Production Function 

Basic data for this analysis were taken from Table A-14 [Heady, et al.,

1955, p. 330]. However, since the original experiment [Heady, et al., 1955] was

nearly orthogonal in terms of the phosphorus (P) and nitrogen (N) treatments, a

subset of 21 treatments out of the total 57 treatments was selected for analysis.
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The 21 treatments were

Table A-14 in order to

treatments, r A 0.911.

were obtained.
4/

 (The

1.)

purposely selected along or near the main diagonal of

cause a high positive correlation between the P and N

Thus, nonorthogonal data, similar to most economic data,

selected treatments and yields are given in Appendix Table

One advantage, as will be seen later, in analyzing a selected subset from

this particular experiment was that the OLS estimates fitted to the entire experi-

ment were unusually precise. The quadratic form of the production function, fit-

ted by OLS to all 57 treatments and 114 observations, was:

(14) Y = -7.510 + 0.6638P + 0.5843N - 0.001797P2

(.0635)	 (.0635)	 (.000176)

- 0.001581N
2
 + 0.0008113PN.

(.000176)	 (.000155)

R2
 = 0.832

In (14), i refers to the yield of corn in bushels per acre, P denotes

pounds of P
2
0

5 
applied per acre, and N refers to pounds of elemental N applied

per acre. (For more details, cf. Heady, et al., 1955.) Standard errors are given

in parentheses below the corresponding regression coefficients. Values of t ranged

from 5.24 to 10.46, indicating very accurate parameter estimates.

In contrast to the reliable estimates of (14), much worse results were ob-

tained when the same model of (14) was fitted by OLS to the nonorthogonal subset

of 21 treatments and 42 observations (given in Appendix Table A-1):

(15) Y = 16.79 + 0.6678P + 0.3419N - 0.001423P2

(.1333)	 (.1347)	 (.00104)

- 0.0008198N2 + 0.00009386PN.

(.000940)	 (.00186)

R
2
 = 0.893

4/ Little reduction in MSE would be expected from using either regular or parti-
tioned ridge regression on the nearly orthogonal data of the complete experi-
ment. Also, very little knowledge would be gained about the value of ridge
regression for highly multicollinear situations.
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Values of t for the N
2 and interaction term, PN, were quite low, especially

for PN with t A 0.05. Main reason for the unreliability of estimation in (15)

was multicollinearity, brought about by purposely selecting a subset of observa-

tions with high correlation between the two inputs, P and N. The so-called VIF

(the main diagonal elements of the inverted correlation matrix) were the follow-

ing:

Explanatory VIF for VIF for
variable (14) (15)

P 14.6 41.0

N 14.6 44.4

P2 12.6 295.0

N
2 12.6 253.1

PN 5.5 892.1

As would be expected, a serious problem of multicollinearity was created

(purposely) by selecting the nonorthogonal subset, especially for the squared

and interaction terms.

The natural inclination at this point might be to apply partitioned and

regular ridge regression to the values of the explanatory variables and Yi values

of the subset used in fitting (15). But that would be of very limited interest,

as discussed in the preceding section, since the Y i values of the subset repre-

sent only one sample. We do know that if we took all possible samples of Yi

values corresponding to the subset of explanatory variables in (15), we would

obtain an average estimate fairly close to the reliable OLS estimates of (14).

Therefore, it is reasonable to make the analysis, assuming that the estimates

of (14) are the expected values of the parameters, without being very far off

the mark. Using this assumption, and the relationship

(16)	 fi'(X'X)R

we obtain an expected sum of squares due to regression across all possible sam-

ples of about 90,349.32, using 0 from (14) and with X'X being the mean-corrected

sums of squares and cross-products of the subset explanatory variables of (15).

-
2̂ 

Similarly, assuming a 	 377.1199, from (14), is the true a2 , the expected
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deviations from regression for the subset of 42 across all possible samples

would be 36(377.1199) 4 13,576.32. Thus, E(y2i) 4 90,349.32 + 13,576.32 4

103,925.64.

Using the above data, it is relatively easy to compute the expected value

of the non-standardized ridge estimates at various levels of k. However, there

is some advantage in presenting the variances and MSE in terms of the standard-

ized ridge regression estimates, at least for empirical problems. (If not pre-

sented in standardized form, MSE estimates of the coefficients of some variables
A

would receive undue weight in estimating total MSE(0
* 
).5/

Due to the high VIF, variances of the OLS estimates (first set of estimates

in Table 3) were quite large with a total estimated MSE of 5.5357. Smallest

MSE, to the nearest one-thousandth value of k, was obtained at k = 0.002, giving

estimated total MSE(8
*
 ) a 1.84. However, it should be noted that, thus far, there

has been no method demonstrated which will assure such an accurate selection of

optimal k when the true parameter values are unknown. However, one promising

method is to compute the u statistic [Wallace, 1972] to test the hypothesis that

the ridge estimates are lower in weak MSE. However, for k = 0.01, only a low

value of u 4 0.29 is obtained. Not until k = 0.09 and u = 5.14 would one reject

the hypothesis that the ridge estimates are lower in weak MSE, using the tabu-

lated values [Goodnight and Wallace, 1972] for 5 and 36 degrees of freedom at

P = 0.05. But at k = 0.09, estimated MSE for e rose to 3.196.

Even at k = 0.002 in Table 3, the ridge estimate of the important interaction

term, PN, takes a negative sign, but this implied negative PN interaction is con-

trary to other P-N fertilizer experiments with corn. The negative ridge coeffi-

cient for PN also contradicts the relatively precise and unbiased OLS estimate

(fitted to all 114 observations) in (14). The ridge-estimated coefficients for
2
P and N

2 
in Table 2 have also moved in the wrong direction, becoming smaller

in absolute magnitude, even for k equal to only 0.002.

5/
Weighting was not a problem with the regular ridge estimates of (13) and
Table 2 because each explanatory variable was constructed so as to have
a mean-corrected sum of squares equal to 100.
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Table 3. Standardized Ridge Regression Estimates Corresponding to Expected
Values of Non-standardized Estimates of Iowa Corn Production Func-
tion Coefficients, Along with Estimated Variance and MSE for Various
k Values

Type of estimate

Explanatory variable
b/Sum-P N P2 	 N

2 PN

Coefficient @ k = 0.0 	 1.32955 1.20568 -1.24313 -1.11630 0.54296

Variance @ k = 0.0 	 0.1488 0.1610 1.0703 0.9185 3.2371 5.5357

Bias squared @ k = 0.0
a-/ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Estimated MSE 	 0.1488 0.1610 1.0703 0.9185 3.2371 5.5357

Coefficient @ k = 0.002. 1.2644 1.2030 -0.7531 -0.6677 -0.2976

Variance @ k = .002 	 0.0983 0.1083 0.1245 0.1284 0.2324 0.6919

Bias squared @
k = .002- 	 0.0043 0.0000 0.2401 0.2012 0.7050 1.1506

Estimated MSE 	 0.1026 0.1083 0.3646 0.3296 0.9374 1.8424

Coefficient @ k = 0.03 	  0.9816 0.9487 -0.4286 -0.3562 -0.3933

Variance @ k = 0.03 	 0.0162 0.0159 0.0110 0.0118 0.0054 0.0603

Bias squared
k = 0.03- 	 0.1210 0.0660 0.6634 0.5778 0.8765 2.3047

Estimated MSE 	 0.1373 0.0819 0.6744 0.5896 0.8819 2.3651

Coefficient @ k = .10 	 0.6590 0.6465 -0.2138 -0.1566 -0.1970

Variance @ k = .10 	 0.0053 0.0050 0.0043 0.0042 0.0017 0.0204

Bias squared @
k = 0.10- 	 0.4496 0.3127 1.0595 0.9210 0.5475 3.2903

Estimated MSE 	 0.4549 0.3177 1.0637 0.9252 0.5492 3.3107

a/ Estimates of bias squared are based upon the assumption that the coefficients
in (14), estimated from all 114 observations, are the true parameters.

bi Sums may not check exactly, due to rounding-.
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Another possibility for selecting k would be to stop at the first value of

k for which Wallace's [1972] u statistic has P = 0.50, following Burt [1974].

The first value of u not to exceed P = 0.50 (to the nearest one-hundredth value

of k) was at k = 0.03, the third set of estimates in Table 3. Using this pro-

cedure, an estimated MSE of 2.3651 is obtained.W

Higher values of k give progressively higher estimated MSE. For example, at

k = 0.10 in the lower part of Table 3, a total estimated MSE a 3.31 was computed.

The reason for the excessive bias of the ridge estimate of the PN variable

coefficient can be seen from earlier Equation (3). If PN is fitted as an auxil-

iary ridge function of the four remaining explanatory variables, say at k = 0.03,

the following equivalent of (3) is obtained:

OA
5

*
(17)	 B

	
- 0

5
) = 0.03(22.2025) [0.058344(1.32955)

+ 0.084867(1.20568) + 0.450433(-1.24313)

+ 0.432285(-1.11630) - (0.54296)]

a -0.93622.

This estimated bias checks with the assumed true R5 value, given in the first

line of Table 4, and the ridge estimate of a5 for k = 0.03 in Table 4, since

-0.39326 - 0.54296 = -0.93622. The main problem in (17) is that the PN variable

is a strong positive ridge function of the P
2 

and N
2 

explanatory variables, and

the expected true 0 values of P
2 

and N2 are negative, being -1.24313 and -1.11630,

Actually, the correct interpretation is that if one always selected k = 0.03,A*
the non-standardized ridge estimate, a would have expected values correspond-j,

thing to (1/Tiy7) 11-3:T) a (322.375 1172:2) times the j-- ridge estimate inj
Table 3 at k = 0.03. The interpretation is complicated somewhat because the

standardized coefficients do not seem to average out across all experiments in

the same straightforward manner as for the non-standardized coefficients, such

as those presented in Table 2. Nevertheless, the average or expected values

for the standardized coefficients should be fairly close to the expected values

of the non-standardized coefficients times ( 	 322.375).

6/
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respectively. Thus, the effect of P 2 and N
2 is to force a negative sign on the

ridge estimate of 8
5 

in the full ridge regression model.

The auxiliary ridge estimates at k = 0.03 for the other explanatory vari-

ables were the following, where -1.0 below a given explanatory variable indicates

that this explanatory variable is the dependent variable regressed on the other

four remaining explanatory variables:

P N P
2 N

2 PN

-1.0 0.5502 0.6171 -0.3020 0.1154

0.5201 -1.0 -0.3160 0.6152 0.1588

0.5347 -0.2896 -1.0 -0.0648 0.7723

-0.2558 0.5512 -0.0634 -1.0 0.7246

The above auxiliary ridge relationships among the explanatory variables

indicate that P and N should be relatively less biased if one assumes that the

true 8 values are all about the same magnitude, but positive for P, N, and PN,

and negative for P
2 and N

2 . From earlier Equation (3), the main bias for the

ridge estimate of P at k = 0.03 would be from the effect of the negative 8 value

for P
2 . The other ridge estimates are such that the bias should be small. Simi-

larly, for N, only the auxiliary ridge coefficient for N 2 , 0.6152, is of the wrong

sign for minimum bias. However, for P
2 , the bias would have been less if the

auxiliary ridge coefficients for P and PN were of negative sign. Similarly, the

bias of N
2 would have been smaller if the coefficients for N and PN had been

negative. Also, a positive sign for the auxiliary ridge coefficient of P
2 would

have lessened bias for the ridge estimate of the N
2 coefficient in the full model.

Although the preceding examination of the interrelationships among the ex-

planatory variables indicates that the model of (15) is not ideal for ridge esti-

mation, the ridge estimates of Table 3 are, nevertheless, lower in MSE than the

OLS estimates in (15). Sum of the variances for the OLS estimates gives MSE

5.536 in Table 3. Although the ridge estimates had MSE about 60 percent of that

for OLS, provided that k < 0.10, a much smaller bias, but larger variance, was

obtained from partitioned ridge regression, as shown in the next section.



block, X2 . Following this

and are shown in Table 4.

should again be emphasized

unfavorable situation for

high correlation between v

procedure, the partitioned ridge estimates were obtained

However, before examining the results of Table 4, it

that the model of (14) estimated in Table 4 was an

partitioned ridge regression because of the relatively

ariables of different blocks, as shown below:

N	 PN 

	

0.911	 0.940

	

1.0	 0.941

1.0

I	 p

I 0.957

0.853

1 0.963

N
2

0.859

0.962

0.963

1.0

BLOCK 1

2
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Estimation of the Production Function
Coefficients by Partitioned Ridge Regression 

According to prior information based upon other fertilizer experiments, a

positive coefficient would be expected for the PN interaction variable of (15).

Based simply upon the principle of diminishing returns, positive coefficients

would be expected for the linear N and P variables and negative signs for the

coefficients of the two squared terms, N
2 and P

2
.

Given these expected signs and the interrelationships among the explanatory

variables, a partition of the three variables with expected positive coeffi-

cients, P, N, and PN, into one block of variables, X would seem promising.

Similarly, the two squared terms, P
2 

and N
2
, should be partitioned into the second

1'

BLOCK 2 ( 1
1

1.0

1 

0.858

1.0

As hypothesized in an earlier section, smaller MSE was obtained in Table 4

at larger k values for partitioned ridge regression, as compared to regular ridge

regression in Table 3. Smallest MSE = 1.8424 was obtained at k = 0.002 in Table

3, but then MSE rose rapidly for larger values of k. By contrast, in Table 4

MSE continued to decline as k was increased, reaching the lowest point, MSE =

2.2940, for k = 1.00, the largest value of k presented in Table 4. 7/

7/
Slightly smaller MSE = 1.1063 for the estimated coefficients of P

2
 and N

2

were obtained at k = 1.20.
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Table 4. Standardized Partitioned Ridge Regression Estimates Corresponding to
Expected Values of Non-standardized Estimates of Iowa Corn Production
Function Coefficients, Along with Estimated Variance and MSE for Various
k Values

Type of estimate

Explanatory variable
Block #1

Explanatory variable
Block #2

N PN P 2 N
2

Sumo-/

Coefficient @ k = 0.10 	 1.0984 1.0386 0.8340 -1.1567 -1.0822

Variance, k = 0.10 	 0.2108 0.1718 0.9803 0.8888 0.8043 3.0560

Bias squared !
J 0.0534 0.0279 0.0847 0.0075 0.0012 0.1747

Estimated MSE 	 0.2643 0.1997 1.0650 0.8963 0.8054 3.2307

Coefficient @ k = 0.20 	 1.0230 0.9838 0.8665 -1.0914 -1.0387

Variance, k = 0.20 	 0.2378 0.2081 0.6625 0.7825 0.7256 2.6164

Bias squared a/ 	 	 0.0940 0.0492 0.1047 0.0230 0.0060 0.2769

Estimated MSE 	 0.3317 0.2573 0.7672 0.8055 0.7316 2.8933

Coefficient @ k = 0.60 	 0.8710 0.8546 0.8151 -0.9039 -0.8796

Variance, k = 0.60 	 0.2231 0.2105 0.3636 0.5322 0.5102 1.8396

a- 	Bias squared/ 0.2103 0.1232 0.0741 0.1151 0.0560 0.5787

Estimated MSE 	 0.4334 0.3338 0.4376 0.6472 0.5662 2.4183

Coefficient @ k = 1.00... 0.7733 0.7630 0.7411 -0.7748 -0.7590

Variance, k = 1.00 	 0.1875 0.1801 0.2659 0.3906 0.3783 1.4024

Bias squaree 	 0.3094 0.1960 0.0393 0.2193 0.1276 0.8916

Estimated MSE 	 0.4969 0.3761 0.3051 0.6099 0.5060 2.2940

a/ Estimates of bias squared are based upon assumption that coefficients
in (14), estimated from all 114 observations, are the true parameters.

b/ Sums may not check exactly, due to rounding.
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Smaller MSE was obtained for regular ridge regression in Table 3 for small

values of k than for partitioned ridge regression in Table 4. However, as noted

earlier in discussing the results of Table 3, when the true coefficients are un-

known there is no precise method for estimating the optimal value of k to select.

At best, k = 0.03 might be selected most of the time, using one of the more con-

servative rules for selection of k.111

If values of k of 0.1 or larger are used, then smaller MSE values were

obtained with partitioned ridge regression than for regular ridge regression.

For k = 0.1, MSE A 3.31 in Table 3 versus MSE A 3.23 in Table 4 for k = 0.1.

If k = 0.20 were always used, then MSE a 4.13 would be obtained by regular ridge

regression (not shown in Table 3). However, the partitioned ridge estimate has

MSE A 2.89 at k = 0.20 in Table 4, only about 70 percent as high as for regular

ridge regression.

Although not lower in MSE for small values of k, two significant advantages

of partitioned ridge regression for the model of (15) and Tables 3 and 4 should

be noted:

1. The bias squared component of MSE was much smaller for partitioned

ridge regression in Table 4 than for regular ridge regression

in Table 3. This is an important advantage since a fairly pre-

cise and unbiased estimate of the variance component of MSE can

be obtained directly from the sample data.
9/ For example, for

8/
This statement is somewhae-speculative without running a thorough Monte Carlo
study of the model. However, in unpublished Monte Carlo studies by the
author with other models, none of the presently suggested methods for select-
ing k were very accurate in selecting optimal k values.

9/
Admittedly it is possible to estimate MSE of the ridge estimator directly
from the sample data, but such an estimate may be highly variable. It is
simple but tedious to show, using expected values and properties of the
matrix trace, that the expected MSE of the standardized ridge estimator is:

(18) Ece - 0 , (R* - 0) = ga* - a) , (a* - a) a2 tr[2(X'X + kI) -1 - (VX)-1].

Equation (18) follows from the fact that

(continued on following page)
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k = 0.1, the bias squared component is over 99 percent of the

MSE of the regular ridge estimate in Table 3. On the other hand,

bias squared is only about 5 percent of the MSE of the partitioned

ridge estimator in Table 4. Even for k = 1.0 in Table 4, bias

squared is less than 39 percent of the MSE. Thus, the researcher

would be far less apt to be misled by the partitioned ridge esti-

mates, compared to the regular ridge estimates.

2. Another important advantage of the partitioned ridge estimates of

Table 4 over the regular ridge estimates of Table 3 is that the

partitioned estimates are not nearly as sensitive to the value

of k selected. For example, in increasing k from 0.20 to 1.00

in Table 4, MSE decreases from 2.8933 to 2.2940, a change of

0.5993 2.8933 A 21 percent. By contrast, if k were increased

from 0.03 to 0.40 for regular ridge regression, MSE would be

increased from 2.3651 (shown in Table 3) to 4.8968 (not given in

Table 3), or a more than doubling of MSE. The point is that the

researcher should have a much better chance of selecting a satis-

factory value of k for the model of Tables 3 and 4 with parti-

tioned ridge regression than for regular ridge regression, espec-

ially considering that variance would be a much larger component

of MSE, as discussed under Item 1 above.

(Footnote 9 continued):

We - (I) + - or[ 0* - fb + a - oi = E(R* - '6'6* -

* A A
+ 2E0 - 0)(0 - 0) + g2tr(x'x)-1

and that

Ea* - R)' (R - o = trma - oa* - Ry]
1

= trIE[(X'X)
-1 X'u]}{[X'X + kI)

- - (XVX)
-1

] X'(Xfi + u)}'

= a
2 tr[(X'X + kI)

-1 	
(X'X)

-1
] since E(u) = 0 and E(u10) = a

2I
n -
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Supplementation of Partitioned Ridge 
Regression with the Mean Vector 

Given that a ridge regression model can be partitioned into two or more

"compatible blocks" of variables,11V depending upon the expected signs of the

model parameters and the direction of interrelationships among the explanatory

variables, then the researcher can go a step further and supplement the parti-

tioned ridge estimates with the mean vector of each block, similar to the pro-

cedure used for the models of Table 1, combined with the partitioned ridge

regression procedure. To illustrate these remarks, suppose that we have two

compatible blocks of explanatory variables. Then, again use OLS to fit the

full model, i
1 + X282. Also, define Z

1
 = Y - X28

2 and Z
2
 = Y -

just as before for partitioned ridge regression. But instead of fitting these

two partitioned models by regular ridge regression, the ridge estimate of

Z
1 
=0

I can be supplemented by the mean of the OLS estimates of the q coeffi-

cients of X1. That is, let

(19) i
1 =
	 +

1
)-1(I

q 
+ R)]30z = Aliz

	1 	 1 1	 1 1

- TE2 R2) = A 	 -	 - 0 )1-1	 1 1 1	 2 2	 2

In (19), all the symbols are the same as defined earlier in (5b) and (8).

Following the same procedure as used earlier for Equations (9) through (12), it

is not difficult to derive Var(b ) in (20), assuming fixed X values, E(u) = 0,

and E(uu') = a
2
I
n

:

(20) Var(b1) = a2ta1XIP +

It is apparent that Var(b 1) in (20) is of the same form as the variance of

the partitioned ridge estimate given earlier in (12), although the matrix

A 0 (X'X +
1) -1 , except when k = O. (Of course, when k = 0, *b

1 
= b

1 
= 0, •

10/
Perhaps it should be noted explicitly that a "compatible block" should,
ideally, be constructed so that each explanatory variable would be a posi-
tive function of those other variables within the block which have the
same expected coefficient sign and be a negative function of those vari-
ables within the block which have an opposite expected coefficient sign.
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Also, just as in comparing the regular ridge estimates with the OLS-mean-vector

supplemented ridge estimates in Table 1, the variance of b, usually exceeds that
*

of b1.

For the earlier model of (13) and Table 2, the expected values, variances,

and MSE of b
1
 and b

2
 for various k values were computed:

V(b1) MSE(b1)
Value
of k E(b1) E(b2) + V(b2) + MSE(b2)

0.0 (OLS) 3.000 2.000 21.667 21.667

0.50 2.519 2.481 2.695 3.157

1.00 2.510 2.490 2.674 3.155

10.00 2.501 2.499 2.667 3.165

Although the above mean-vector-supplemented partitioned ridge estimates are

slightly higher in MSE at k = 0.50 than for the unsupplemented partitioned ridge

estimate (which had MSE(b 1
) = 2.698 at k = 0.50), it should be observed that

the bias squared component of MSE(bi) is only about one-half as large at k = 0.50.

Along these same lines, if the variance error term, u i , of (13) had been one-

fourth as large, that is if E(ui) = 0.5(-2) + 0.5(2) and E(u 2i) = 4, then a lower

MSE would be obtained from the mean-supplemented partitioned ridge estimator at

k = 0.50. In that case we would have, for k = 0.50,

*
MSE(b1) = V(b1) + Bias2 (b1) A 0.432 + 0.971 A 1.403, 	 and

1

MSE(b 1) = V(b1) + Bias 2 (b1) A 0.674 + 0.462 A 1.136.

Thus, MSE for the mean-supplemented partitioned ridge estimator becomes rela-

tively more favorable when 0
2 and the coefficient variances are smaller relative

to the bias squared component of MSE. Although more research is obviously needed,

the mean-supplemented partitioned ridge estimator appears especially promising for

those economic (and other) models with a high R
2 value for the full regression

model. One other interesting feature of the mean-supplemented partitioned ridge

estimator is that the minimum variances for the coefficient estimates should
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usually be obtained by letting A = R in (20). (It is apparent from (5a) that b

tends to fis as k becomes large.)

SUMMARY AND CONCLUSIONS

Various alternatives for dealing with the problem of multicollinearity have

been explored in this paper. The first method studied was the supplementation

of ridge regression with prior information. Although intuitively appealing,

this type of estimator gave results somewhat less reliable than expected when

the prior information was related to the sample data.

Given the difficulties encountered with supplementation of ridge regression

with a sample-related prior vector, a "partitioned" ridge procedure was developed

and applied to a simple model by means of a simple Monte Carlo study. Mean square

error from partitioned ridge regression was about one-half that from OLS and regu-

lar ridge regression.

Regular and partitioned ridge regression estimates were then obtained for a

production (yield-fertilizer response) function fitted to a nonorthogonal subset

of data from an earlier study [Heady, et al., 1955]. It should be noted that

the production function example was poor from the viewpoint of both regular and

partitioned ridge regression. The interrelationships among the explanatory vari-

ables and the true a coefficients caused fairly high bias for the regular ridge

estimator, as discussed in more detail earlier. On the other hand, the partitioned

ridge estimator had much lower bias, but fairly high variance, the high variance

resulting from the high intercorrelation between variables of different blocks.

Much lower variance could have been obtained if the highest correlations had been

between the variables within blocks rather than between variables located in

different blocks.

Despite these limitations for both types of ridge regressions, both the

regular and partitioned ridge estimates had about one-half the MSE of OLS over a

considerable range of k values. However, given the wider range of k values over

which a low MSE could be obtained, the partitioned ridge estimator was thought to
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be more reliable than the regular ridge estimator, especially considering that

the easily measured variance was the major component of MSE for the partitioned

ridge estimator, whereas the usually unknown bias squared was the major part of

MSE for the regular ridge estimator.

Given the results from fitting the earlier artificial models and the empiri-

cal production function of Tables 3 and 4, the following procedure is recommended:

1. Start by fitting the fully specified model by OLS. Examine the

t values and signs of the OLS-estimated coefficients. If some

signs are illogical and unexpected and t values are relatively

low for some of the coefficients (but with a high level of signif-

icance for the overall regression), then examine the VIF (main

diagonal elements of the inverted correlation matrix) for further

evidence of multicollinearity. If the VIF are quite high for some

of the variables with low t values and/or "wrong" signs, then regu-

lar ridge regression may be appropriate.
11/

2. In fitting regular ridge regression, the procedure should not be

blindly followed. Rather, the interrelationships among the explana-

tory variables, Equation (3), should be examined in conjunction with

the postulated signs of the regression coefficients. If the inter-

relationships and expected signs of the regression coefficients appear

to be fairly compatible in terms of earlier Equation (3), then some

faith in the regular ridge estimates is probably justified. However,

the problem of which k value to use still remains. Some insight may

be gained by using Wallace's [1972] u statistic. Similarly, criteria

used by Mallows [1973] or Farebrother [1975] may be helpful in select-

ing a k value.

In this discussion it is assumed that the model was properly specified at
the start in the sense that no important, relevant explanatory variables
have been excluded. If so, then a low t value and a relatively small VIF
for a given explanatory variable constitute evidence that the variable
should be deleted. However, if the low t value results from a large VIF,
then there is much less justification for deletion.



3. If the interrelationships among the explanatory variables

and expected signs of the coefficients appear to combine

to give large biases in terms of (3), then some other

alternative, such as partitioned ridge regression, should

be explored. It may be possible, as illustrated by the

three models fitted in this paper, to partition the regres-

sion model into two or more "compatible" blocks, thus

significantly reducing unwanted bias. Admittedly, the

reduction in bias is somewhat offset by an increase in

variance, but the increased variance has been small com-

pared to that from OLS in the models fitted thus far.

4. An even further reduction in MSE can sometimes be obtained by

supplementing the partitioned ridge estimator with the OLS

mean vector. This estimator has the advantage of tending to

the mean vector as k becomes large, rather than tending to-

ward zero as for the unsupplemented ridge estimators. Although

the mean-vector supplemented partitioned ridge estimator gave

smaller bias for the example fitted, some of this advantage was

offset by an increase in variance.

Although more research is obviously needed, the partitioned ridge approach

presented in this paper should substantially increase the applicability and accu-

racy of biased linear estimation for many regression problems. One reason for

this alleged increased applicability and accuracy is that the partitioned approach

makes use of the interrelationships existing among the explanatory variables and

uses prior knowledge about the expected signs of the regression coefficients. It

is interesting that there is very little cost for utilizing information about the

interrelationships among the explanatory variables; these relationships are al-

ready inherent within the sample data. Similarly, the researcher should usually

know the direction of the effect of a particular explanatory variable; otherwise,

he is hardly competent to specify the regression model in the first place.

34
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APPENDIX

Table A-1. Subset of Data Analyzed for Production Function Estimation a/-

Pounds
P02 5

per acre

Pounds
nitrogen
per acre

Bushels
corn

per acre

Pounds
P 2d

5
per acre

Pounds
nitrogen
per acre

Bushels
corn

per acre

0 0 24.5 200 160 109.3
0 0 6.2 160 200 105.7

40 0 26.7 160 200 115.5
40 0 29.6 200 200 140.3
0 40 23.9 200 200 142.2
0 40 11.8 160 240 130.5

40 40 60.2 160 240 124.3
40 40 82.5 240 240 121.1
80 80 99.5 240 240 114.2
80 80 115.4 320 240 127.3

160 80 102.2 320 240 139.5
160 80 108.5 280 280 130.0
120 120 119.4 280 280 141.9
120 120 97.3 320 280 131.8
160 120 133.3 320 280 111.9
160 120 124.4 240 320 130.9
120 160 113.6 240 320 144.9
120 160 102.1 280 320 124.8
160 160 129.7 280 320 114.1
160 160 116.3 320 320 127.9
200 160 128.7 320 320 118.8

a Taken from Heady et al., 1955, p. 330.
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