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MULTI-DIMENSIONAL PARAMETRIC ESTIMATION:
TWO DIMENSIONAL SHARPENING BY PREDICTIVE BANDWIDTH
EXTRAPOLATION AND FAST ALGORITHMS FOR THREE DIMENSIONAL
AUTOREGRESSIVE ESTIMATION

1. INTRODUCTION

1.1. Research Contribution Overview

Multi-dimensional predictive bandwidth extrapolation (BWE) can be applied
either theoretically or experimentally to multi-dimensional data sources, achieving a
super-resolution capability by combining multi-dimensional autoregressive (AR)
algorithms with a multi-dimensional BWE technique as shown in Figure 1. Examples
are shown for one-dimensional (1-D), two-dimensional (2-D), and three-dimensional
(3-D) cases of multi-dimensional data. One-dimensional techniques based on BWE
have been developed [2,4] to add predicted high frequency content to 1-D signals,
where these frequencies were missing, and extended in this thesis to the 2-D case for
handling imagery. The effect of the techniques is to sharpen the temporal content (1-D
signals) or the spatial content (2-D images). In the past 10 years, we have seen the
development of high-resolution 2-D spectral analysis techniques, such as 2-D linear
prediction (LP) [1], 2-D autoregressive (AR) [10,22], and 2-D minimum variance
(MV) methods [19] with associated fast computational algorithms. These algorithms
estimate 2-D LP/AR/MV parameters in the original 2-D signal/image domain in order
to produce high-resolution results in the transform domain [1,3,10,22]. The new 2-D

BWE, the first research contribution of this thesis, switches the domain of application
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Figure 1. Sharpened and enhanced resolution of various 1-D, 2-D, and 3-D data
sources using the BWE technique.
of the 2-D high-resolution techniques from the original signal or image domain to the
transform domain in order to produce sharpened results in the original domain. For
example, an image would be 2-D transformed, a 2-D LP applied to the spatial
frequencies, and then a transform-domain spectral analysis would be performed to
produce a sharpened result. Our research contribution to the new 2-D BWE technique
[31] is shown in Figure 2. Using existing tools in 2-D, it is possible to branch off into
either BWE using a 2-D AR power spectral density (PSD) approach (path #1) or into
2-D LP BWE of the 2-D transform of 2-D data (path #2). For this research, using the
existing 2-D tools that were developed by Marple [3,20], it was possible to develop
new 2-D BWE technique (path #2).
The second emphasis area of this thesis is an extension of the 2-D BWE

technique for computed synthetic aperture radar (SAR) imagery. The 2-D BWE
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Figure 2. Research contributions for the new 2-D BWE technique are shown as a

branch involving 2-D LP Transform BWE (Path #2) in conjunction with existing

2-D AR algorithms.
technique in this case is applied to data already collected in the transform domain.
The research approach for application of 2-D BWE techniques to computed synthetic
radar imagery is shown in Figure 3. Using radar data that is inherently a Fourier
transform in the manner that it is collected, along with existing 2-D algorithms
(2-D Yule Walker, 2-D least squares (LS) Lattice, and 2-D LS Covariance) [1,3,19,22]
and the newly developed 2-D BWE techniques of this thesis, a novel 2-D synthetic
imagery resolution enhancement technique was developed.

The last major emphasis of this thesis is the development of algorithmic
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Figure 3. Research contributions using the 2-D BWE technique for computed
synthetic radar imagery. Using data collected as transform-like structure with
existing 2-D algorithms and the newly developed 2-D BWE techniques, a novel
2-D synthetic imagery resolution enhancement technique was developed.
techniques for fully three-dimensional (3-D) signal processing [28,29,30], which will
become a component of a future 3-D BWE technique that will enhance the resolution
of a 3-D data source (e.g., HSI imagery). This work has to be developed with a fast
algorithm because of the high computational overhead in 3-D signal processing.
Without fast algorithms, some of the more exotic methods of spectral estimation
cannot be considered for practical applications. Furthermore, this thesis proposes two

new 3-D AR fast algorithms that will be components of a future 3-D BWE technique.

We shall demonstrate the use of the algorithms for 3-D spectral analysis with the result
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Figure 4. Research contribution for two new 3-D AR fast algorithms for future
3-D BWE technique using 3-D AR fast algorithms. It is possible to develop future
work in 3-D LP BWE and the algorithms were tested with quality results in
spectral estimation of 3-D AR PSD (Path #1)
that enhanced spectra resolution is achieved over classic 3-D Fourier spectral
estimates. This research will contribute to the use in two new 3-D techniques with fast
algorithm for a future 3-D BWE technique, as illustrated in Figure 4. Using either the
3-D Yule Walker equation set or the 3-D LS Lattice equation set, each with a fast
algorithm, it will be possible to develop the 3-D BWE method in future research. The
3-D LP-based BWE method will sharpen and enhance the resolution of original 3-D

signals.

This thesis is organized as follows. The first chapter reviews research
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contributions, motivations, and concepts of the BWE technique. Some examples of
data sources to which the BWE techniques have been applied will be presented in
Chapter 1. Related techniques, such as prior 1-D sharpening techniques, 2-D signal
processing concepts, and 2-D LP/AR/MV spectral estimation techniques with fast
algorithms [1,3,19,22] will be introduced in Chapter 2. Since the adaptation of
Marple’s techniques to determine the prediction estimator (which is the core of 2-D
BWE) is an important part of this thesis, this chapter will be dedicated to an
explanation of the process in detail. The concepts of Chapter 2 are crucial since the
3-D AR spectral estimation techniques in Chapter 5 are based on the basic equations
and efficient calculation methods found in 2-D AR algorithms. In Chapter 3, an
explanation of the process of 2-D sharpening by the new predictive bandwidth
extrapolation technique, together with test results, will be presented. In Chapter 4, a
variation of the 2-D BWE technique for application to computed synthetic aperture
radar (SAR) imagery will be introduced. In Chapter 5, new 3-D AR fast algorithms,
which include the 3-D Yule-Walker (YW) method and the 3-D lattice LP parameter
estimation method, will be presented. Finally, Chapter 6 will summarize the

contributions of the research reported in this thesis.

1.2. Motivation and Concept of Bandwidth Extrapolation (BWE)

One-dimensional BWE extrapolates the bandwidth of the signal in the
transform domain to enhance and sharpen the resolution of the original signal in the

original domain [4]. This technique extends the 1-D transform of the collected data
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Figure 5. (a) In the case of a small spatial aperture, when analog Fourier transform
is applied to this image that shows a sidelobe pattern representing distortion, its
spectrum will be bandlimited. (b) If the original image has an extremely sharp line
feature with no sidelobe pattern representing distortion as in the case of the ideal
big lens (extremely large spatial aperture), its spectrum would have an infinite
bandwidth [2].
beyond the observed bandwidth by using a linear prediction model [6,11-18] in the
transform domain. Since prediction and estimation techniques are central to the BWE
technique, it will be shown that BWE is different from traditional high-pass filtering
methods of sharpening a signal [23]. An example of the BWE sharpening approach is
shown in Figure 5. An image has bandlimited spatial frequencies (wavenumbers) k

when collected from an optical imaging system with finite aperture. In the case of a

small spatial aperture, the image through the lens shows a sidelobe pattern



Figure 6. Bandwidth extrapolation scheme (fourth-order prediction). The gray dots
represent existing data points, while the black dots represent the forward predicted

extension data.
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Figure 7. A synthetic generated bandlimited data record is used to achieve
sharpened 1-D signal. IFFT is first applied to the signal from the original domain,
then, using the predictive algorithm, the IFFT signal is extended in the backward
and forward direction. A FFT is then applied to the extended transform, which
results in an enhanced resolution.
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representing distortion, since its spectrum (Fourier transform) will be spatially
bandlimited due to the finite aperture. If the original image has an extremely sharp line
feature with no sidelobe as in the case of the ideal big lens (extremely large spatial
aperture), its spectrum would have an infinite bandwidth. Based on this observation, if
a predictive coefficient a can be estimated, then the bandlimited signal S(k) can be

bandwidth extended in Ak increments S(k + Ak) as expressed in Eq (1).

S(k + Ak) =exp(— Ak, )S (k)= aS () L)

Figure 6 illustrates one example of the forward extrapolation procedure [11].
The gray dots represent existing data points, while the black dots represent the forward
predicted extension data. The order of prediction determines the number of past data
points needed to determine the new data. For instance, in this figure, a fourth -order
prediction scheme is shown, where x[n+1] data is determined using the four
previous data x[n—3],x[n—2],x[n—1],and x[n].

In order to present the effect of the high-resolution transform-domain-based
1-D BWE technique, a synthetic idealized bandlimited data record is used to achieve a
sharpened 1-D signal, as illustrated in Figure 7. After forming the inverse transform of
the original signal, prediction techniques are applied in order to extrapolate the
bandlimited transform data. A linear prediction model of the transform data is
combined with the original data to synthesize extrapolated transform data beyond the
original transform bandlimited extent by using a BWE technique.

Note that our bandwidth extrapolation technique should not be confused with
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Figure 8. In this figure, changes in either the original domain or the frequency
domain are indicated to distinguish between BLE and BWE [11,17]. In BLE,
the signal in the original domain is extended which results in the frequency
domain having enhanced resolution. In BWE, the frequency domain is
extended, which results in the time domain having enhanced resolution.

bandlimited extrapolation concepts of prior literature [11,13,14] that simply extend the
time-limited original signal in the time domain without any modification of the
frequency bandwidth. The BWE technique, on the other hand, extrapolates the
bandwidth of the signal in the frequency domain (transform domain) to enhance and
sharpen the resolution of the original signal in the time domain (original domain)
without any modification of its time interval [4,12], as shown in the Figure 8. This 1-D
BWE concept is extended in this thesis to the new 2-D BWE technique by
incorporating the 2-D AR model estimation method of Chapter 3 [3].

Examples of data sources which can be BWE are not limited to time domain
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Figure 9. Three categories that represent possible sources of data for predictive
application of BWE. In 1-D, temporal waveforms and single array snapshots
can be used as data sources [14]. In 2-D direct imagery and computed imagery
are available [4,9], while in 3-D HSI, IF-SAR, and video data can be applied
[21,24]. In each case, the application of predictive BWE results in enhanced
resolution of the original data source.

data. In the 1-D case, temporal waveforms and spatial waveforms can be used. In 2-D,
direct imagery, such as visually acquired imagery, and computed imagery, such as
SAR, can be used. In the 3-D case, hyperspectral imaging sensors, interferometric
synthetic aperture radar imagery, and video data sources can be used with a future 3-D
BWE technique [21]. Figure 9 shows the 3 categories that represent possible sources
of data for application of prediction-based BWE. A pulsed Doppler radar example
application offers insight to understanding distinctions among three possible 1-D

signal sharpening techniques [2]: conventional Fourier spectral processing, parametric
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Figure 10. Moore, Zuerndorfer, and Burt from [Lincoln Laboratory Journal [4]] have
shown three techniques to determine information regarding target position signal;
conventional FFT processing, model-based spectral estimation, and 1-D BWE. The
conventional FFT method makes it impossible to separate all the target scatterers.
Using the parametric-model method, it is possible to determine all scatterer positions,
however the result is limited in information. In the 1-D BWE method, it is possible to
separate and determine all scatterer positions, it can also determine all their amplitudes.
This is possible due to increased predictive bandwidth in the frequency domain.

spectral estimation techniques, and bandwidth extrapolation. As shown in Figure 10,
the top row illustrates the limited range information available from conventional
Fourier processing. The model-based technique provides the most information on
frequency location while the BWE technique provides both frequency-model data and

amplitude data. The middle row illustrates how the conventional model-based
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Figure 11. Comparison of 2-D image sharpening techniques; (a) Original image. (b)
Traditional 2-D highpass convolution filtering increasing the intensity of every high
frequency part of the objects (main lobes and side lobes). (c) Row line by row line
1-D based 2-D BWE. (d) New 2-D BWE technique presented in this thesis.

approach primarily yields enhanced target scatterer position information, and the
bottom row shows how a more conventional target position profile is constructed by
using an extrapolation approach combined with conventional Fourier processing. The
model-based technique provides the most information on frequency location while the
BWE technique provides both frequency-model data and amplitude data. This 1-D

BWE concept is extended in this thesis to the new 2-D BWE technique by combining
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the 2-D AR model estimation methods and fast algorithms, as will be shown in
Chapter 3.

Four examples are shown in Figure 11 that present a comparison of 2-D
techniques for image sharpening. Traditional 2-D highpass convolution filtering [23]
is the least effective of the three methods. Due to the highpass filtering process, the
intensity of all high frequency portions of objects, including both the mainlobe and the
sidelobes, are increased. In the case of 1-D BWE applied only along each row line, the
enhancement is achieved along only a single dimension, so it is not a true 2-D BWE,
and results are not as sharp in both dimensions as a true 2-D BWE. Figure 11 (d)
shows the result of the true 2-D BWE technique that is presented in Chapter 3. It is
obvious from the figure shown that there is a significant resolution improvement along
both dimension, in comparison with Figure 11 (c). In the post-sharpened image, it is
now easier to locate the true location of the two points and the diagonal line, since the

sidelobes from the previous image have been reduced significantly.

1.3. LP/AR/MYV Fast Computational Algorithms

The thesis presents methods for extrapolating bandwidth in the transform
domain utilizing mathematical prediction algorithms. We should note that the
transform-domain step LP fast algorithms are very important because calculating
precise predictors rapidly is important to the BWE technique for realizing the
sharpened signals in the original domain. The BWE technique requires a heavy

computational burden especially for real-time processing, and reducing the amount of
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computation is important. Some existing 1-D AR fast algorithms [2,4], which can also
provide accurate LP parameter models, can be extended to 2-D techniques. However,
extending the 1-D techniques to 2-D has faced certain difficulties due to the
differences in the 1-D and 2-D linear systems theory. One problem in particular has
been the lack of a capability to factor a 2-D polynomial into lower degree polynomials.
The 1-D concept of isolated poles, zeros, and roots does not extend, with certain
exceptions, to the 2-D case. Also the computational burden of some advanced 2-D
spectral estimation methods has restricted testing and application to small 2-D data
sets with simple signal scenarios.

Currently, several techniques, such as the 2-D periodogram and the 2-D AR
spectral density estimation have overcome those difficulties and have seen practical
application to large 2-D data sets [7-10,19,22]. The study of 2-D high-resolution
spectral estimation has been presented in various reports, such as the 2-D lattice LP
parameter estimation method [3] and the 2-D modified covariance method of LP [22].
The resulting fast recursive 2-D algorithms for these methods offer significant
computational reductions and the techniques are useful for high resolution 2-D
spectral analysis applications. These 2-D spectral analysis can be used in space-space
data arrays (e.g., image processing), space-time data arrays (e.g., sonar, seismic, and
synthetic aperture radar processing), or even time-time data arrays (e.g., analysis of
radar pulse repetition interval vs. arrival time). The next chapter, in particular, will
present the 2-D method advanced by Marple [1,3,22], which resolves the

computational difficulties associated with the existing 2-D methods.
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2. 2-D AUTOREGRESSIVE AND LINEAR PREDICTION RANDOM
PROCESSES AND FAST ALGORITHMS

2.1. Two-Dimensional Signal Processing

2.1.1. Classical 2-D Linear System and Transform Theory

A 2-D sequence, or array, of real or complex numbers of any function
X[n,;,n,] that is defined for the ordered pair of integers n, and n, over
—oo<n <o and —owo<n, <o is a discrete 2-D signal. The 2-D unit impulse

function has the following definition,

5[”11 nz] = 5[”1]5[n2]’ (2)
and
1 for n=n,=0
o[n,1o[n,1= oo (3)
[n,Joln ] {O otherwise}
The 2-D discrete convolution sum for a 2-D linear shift invariant system is
Y[nl’nz]:Zzh[nl_i’nz_j]x[i’j] (4)

i=—o0 j=—0

for input x[n,,n,] and output y[n,,n,]. The 2-D sequence h[n,,n,], defined over
an infinite range in each dimension, is the 2-D system impulse response sequence. It is
obtained as the output sequence when the input is x[n,,n,]=dJ[n,,n,]. A 2-D linear
shift-invariant system is assumed to be stable if the output sequence remains bounded
for all bounded input sequences, but unlike 1-D system stability, the stability of 2-D
systems is considerably more difficult to test. Also causality is not inherent for 2-D

signals, in which one or both dimensions of the signal are functions of space rather
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Figure 12. Three regions of support for discrete system sequence h[n,,n,]

(nonzero in shaded area). (a) Nonsymmetric half plane (NSHP) is that
causal. (b) Quarter plane that is causal (QP). (¢) Symmetric half plane (SHP)
that is noncausal (d) Full plane (FP) that is noncausal.

than time. As presented in Figure 12, one region of support for the 2-D discrete
impulse response sequence is the nonsymmetric half plane (NSHP), which can be

considered as a causal 2-D system by following certain rastering operations. The
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symmetric half plane (SHP) is considered to be noncausal since rastering operations
do not allow element sequencing in a “causal” manner. If 2-D impulse response is
restricted to the quarter plane (QP) as a special case region of support, it too can form
a causal 2-D system. The QP case will be the region of support for the purpose of 2-D
spectral analysis. A 2-D recursive difference equation relating the input to the output

of a 2-D system is

> > ali, jIxn, —i.n, = (1= b0, jlyin, in, - ] )

By assuming a[0,0] =1, Eq (5) can be rewritten as

X[y, ] ==Y Y ali, X[, —in, — 1+ Y bl fuln -in, =1 ()

The range of the various summations will denote the order of the 2-D difference
equation. For example, the order of array a[i, j] would be p, x p,, if its region of
support was the rectangular QP spanning 0<i<p, and 0< j<p,.

Assuming that a continuous signal x(t;,t,) is sampled at intervals of T, and
T, along its dimensions to create the sampled sequence x[n,,n,]=x(n,T,,n,T,),

then the 2-D discrete-time Fourier transform (2-D DTFT) of the sampled 2-D signal is

expressed by

0 0

X DTFT ( f1' fz) = T1T2 Z Z X[np nz]eXp(_jZW[ f1"‘1-]-1 + fznsz]) . (7)

ny=-o00 N, =—0

The squared magnitude of the 2-D discrete-time Fourier transform may be interpreted
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as the 2-D energy spectral density:

o  ® 1/2T, 1/2T,

Energy =T,T, > D [xIn,n 1= [ [ [Xorer (f,, £,) df (8)

My =—% Ny=—20 -1/2T, -1/ 2T,

2.1.2. Classical 2-D Random Process and Spectral Estimation

The concept of 2-D PSD requires 2-D array samples from a 2-D random
process to be wide-sense stationary, as in the 1-D case. The 2-D autocorrelation
sequence (ACS) will then be a function of only the differential distance between the
two sampled points in the 2-D plane. The application of the time average of a single
realization of the 2-D random process to yield the 2-D autocorrelation sequence can be

justified under the assumption of ergodicity of the 2-D ACS:

r [n.n,]= lim ! L iix[i+nl,j+n2]x*[i,j] )

lez)“; 2N1 +1 2N2 +1i:—N1 j:_Nz

Using a similar approach to the one used in the 1-D case, it can be shown [1] that two

equivalent representations of the 2-D PSD function are either

2
T T N, N
P [f, f.]=limE L 2 x[n,,n, lexp(=j2~[ f.nT, + f.n.T
oL f1 T2l N {2N1+12N2+1 nl—z—Nlnz—z—Nz[ v lexp(=j2x[ fin T, N, T,1) }
(10)
or, defined as a 2-D Z-transform of the 2-D ACS r, [k,1],
Pu(zz)= Y Dkl 2, (12)

k=—0l=—x

Assuming P, (z,,z,) has a similar Z-transform of r [k,I], then the following



relationship between P, (z,,z,) and P, (z,,z,) exists,

P,(z.,2,) = H(z,,2,)H (U2 1/2,)P,(2,2,)

20

(12)

in which H(z,,z,) is the Z-transform of the system response function. If the input

process is white and the filter has a 2-D transfer function, given by a rational function

of 2-D polynomials, then the output process is a 2-D autoregressive-moving average

process (2-D ARMA) with PSD of

2

B(f., f,)

Pwwa(f1 f) =TT, 0, AT, 1)

in which
Ny

N,
A(f,, f,) = z za[nllnz]exp(_jZﬂ'[ fin, T, + f,n,T,]

n=—N; n,=—N,

N, N,
B(f, f,)= >, D bIn,n,Jexp(-j2z[f,nT, + f,n,T,]

n=—N; ,=—N,

(13)

(14)

are defined over the region of support. If A(f,, f,)=1 forall (f,,f,), thenthe PSD

represents a 2-D moving average process (2-D MA), and if B(f, f,)=1, then the

PSD represents a 2-D autoregressive process (2-D AR).

2.2. Two-Dimensional Autoregressive Spectral Estimation with Fast

Algorithms

First popularized by Burg [1], the one-dimensional (1-D) lattice (reflection

coefficient) technique of parameter estimation has been extended [2,31] to the two-

dimensional (2-D) case and is summarized in this section. The resulting fast recursive

2-D algorithm is a considerable computational simplification over and an estimation
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improvement on previous attempts to extend the 1-D Burg linear prediction algorithm
to 2-D by exploiting some newly discovered matrix structures. The presented
technique is useful for high resolution 2-D spectral analysis applications. Furthermore,
the newly acquired 2-D recursively updated coefficients can be used as part of the 2-D

BWE technique, which will be explained further in Chapter 4.

2.2.1. Two-Dimensional Yule-Walker Equations

Operating directly on the 2-D quarter-plane (QP) LP parameters, the 2-D Yule-

Walker equations for a casual 2-D AR process are expressed as [1]:

. . . |py for [k,1]1=[0,0]
iz;a[lij]rxx[k_l’l_”_{o } (15)

otherwise

Of interest here are the 2-D linear prediction parameters a[i, j] with quarter-plane

support. The summation ranges can be chosen to be any one of the four quadrant plane
regions. In anticipation of the fast computational algorithm to be presented, we shall

assume that subscript p,p, means p,, the point on the “n,’ axis, is a variable order
parameter. Then, the p, point on the *n,’ axis is assumed to be a fixed order

parameter. An alternative representation of the first quadrant Yule-Walker equation is
_plplpZ =R p1p28 150 (16)

The block vector a 1plp2 has a superscript 1 to designate it as set as a first quadrant AR

parameter vector. It is comprised of (p,+1) vectors, each vector of which has

dimension (p, +1). The block vector ,01p is a 2-D variance of the errors that has all

— P1P2
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zero entries, with the exception of the top entry expressed in Eq (17).

1T T

£)1plp2 - [pp1pz 0. 0] (17)

Eq (17) is also defined in terms of the vector elements which are

a,, [il=[a,,[i,0 a,,[i,4 - a,, [ip,]] (18)
and

1 1 T
O =Py 0 01, (19)

The 2-D autocorrelation matrix R~ has a (p,+1)x(p,+1) block-Toeplitz

structure

Rplpz_[ 0] - Rplp%[pl]

B PP

Rop[-p] - R, [0] (20)

with (p, +1)x(p, +1) matrix elements R, [i], which also have Toeplitz structure.

Thus, Eq (20) can be expressed alternately as

R—p1P2 [O] -
T I’[0,0] r[O,l] I’[O, pz] I’[ pl’O] r[pl '1] r[pll pz]
r[0,-1] b | e :
_I’[O,—pz] I’[0,0] r[_ P.— pz] r[pllo]

i r[_plvo] r[_plvl] r[_plvpz] r[010] I’[O,l] I’[O, pz]
rf-p,,-1 : r[0,-1] :

r=pmp,] - o t=p01 | [0~ - - 100 || (21
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Note that J is a (p, +1)(p, +1)x(p, +1)(p, +1) reflection matrix and R, s
complex centrosymmetric

J Bplpz J= (Bpﬂ)z) ) (22)

The above property follows as the result of R = being hermitian and Toeplitz. This

property allows us to express Eq (16) as

. 23
J(B p1pz) JJQ?%Pz =J p::) ( )

— PiP2

Observing that ngp =£lep and using the Eq (22) relationship, Eq (23) can be
expressed as

3 * *
Bplpz(dgplpz) :(_plplpz) :Blplpz (24)

Note that (glpp )* :_plpp because the variance is real. By comparing Eq (16) and

Eq (24), it can be deduced that the third quadrant AR parameters are complex
conjugates of the first quadrant AR parameters. Using the same approach, we can
determine that the fourth quadrant AR parameters are complex conjugates of the
second quadrant AR parameters.

A fast computational algorithm for the solution is not based on the direct
solution for the 2-D AR parameters, but is based on first solving a special variant of

the 2-D AR algorithm with the form

[I A [ Aplpz[pz]]3p1p2=[|°p1p2 0...... 0 ] (25)
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in which T is a (p,+1)x(p, +1) identity matrix, and block linear prediction

parameter matrices A, [i] for 0<i<p, and block linear prediction covariance
matrix P, , have dimensions (p, +1)x(p, +1). We obtain the 2-D AR parameters
by solving

a,,[01=[1 0 0]P,,1" (26)

and, scaling such that al[O, 0] =1, then

1
Py P2 [

a, [Kl=a,, [0]A, [i] forl<i<p,. (27)

Thus, by solving for matrices P, , and A [i] for i=1 to p, from Eq (25) and
applying Eq (27), one can get the 2-D AR parameters. Similarly, solving for and

scaling to force a4[0, 0] =1, one can compute the fourth quadrant parameters.

4 -1
a PPz [0]: [0 -0 1][Pp1p2]
and
a, [Kl=a,, [0]A, [i] forl<i<p,. (28)

2.2.2. Recursive Solution for 2-D Block LP Parameter Matrices

We can show [1] that the 2-D autocorrelation matrix R is hermitian

H . * . H - .
R, =R, and centrosymmetric R =JR J, since R =R is block Toeplitz.

Then we can find the 2-D reflection coefficient matrix, such that the following
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expression is valid

[I Ap+1[1] "'Ap+1[p] Ap+1[p+l]]=
(29)
[[1 A1 A [p] 0]]+[Kp+1[0 JA [p]J---JA [1]J 1

If we multiply both sides on the right by R = atorder p +1, this will yield

[Pp+10“'0]:[Pp 0 0 Ap+l]+Kp+l[Jé>:)+l'J 0 """" 0 JP;‘J] (30)
where K, is the forward block reflection matrixand A, is
p
Aya =R, [p+1+Y A IR, [p+1-i]. (31)
i=1
Also, Eq (29) will be balanced if we select
* -1 * =1
Kp+1:Ap+1[p+1]:_Ap+1(‘JP J) :_Ap+lJ(P ) J (32)
which creates the following order-update recursion
A, i1=A i1+ K, (JA [p+1-i]J). (33)

From Eq (30) and Eq (32), it is possible to derive the following recursion of the

covariance matrix

* T H
Pp+l = (I-K erl[‘J K p+1J])Pp = Pp(l'[‘J K p+1'J]K p+l) ' (34)

The backward matrices B = J A;J are obtained by the pre and post multiplication of
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forward matrices by the reflection matrix. Therefore, only the forward block linear
prediction matrix, forward block linear prediction covariance matrix, and the forward
block reflection matrix need to be computed in the 2-D case. This reduces the

recursive updates by half in the 2-D case.
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3. 2-D SHARPENING BASED ON PREDICTIVE BWE USING 2-D LP
ESTIMATION TECHNIQUE

There have been many attempts to develop different versions of the 2-D BWE
technique [3-6]. However, those techniques have had computational disadvantages,
because one has to alternatively take the Fourier transform of each column and row of
the data matrix simultaneously. Also, the different values of the extended samples that
border with each side of the original data samples and the missing data samples
located at each corner from extrapolation might introduce unwanted errors. Note that
such errors cause the algorithm to fail to achieve an enhanced resolution. Based on our
new perspective, we propose an alternative 2-D spectrogram matrix array using linear
transform operations on data samples, from which an opportunity to apply a highly
sharpened 2-D spectral analysis procedure is created [31]. In this chapter, we will
present a new 2-D BWE algorithm that extrapolates a finite-extent 2-D data matrix by
not just a single sample at a time, but instead extrapolates multiple samples at a time
off one edge of the 2-D data matrix. Furthermore, additional refinements of this
procedure reduce unwanted extrapolation error, which is caused by both bordering
problems and missing extended data samples. A block diagram for the new BWE

processing that enhances the resolution of images is illustrated in Figure 13.

3.1. New 2-D Bandwidth Extrapolation

Once we get the 2-D coefficient set from Eq (33), the multiple samples may be

predicted, or extended by a linear combination of its neighboring samples with
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Figure 13. Flow chart of 2-D BWE processing with a gray scale image. First the
original 2-D data is preprocessed to remove DC offset. A 2-D inverse Fourier
transform is next performed, and due to its resulting conjugate symmetry, the
redundant half is deleted. Next 2-D LP parameter estimation is performed, and the
BWE technique is applied. Finally the missing conjugate symmetrical half is restored
and a 2-D Fourier Transform is applied. Restoration of the offset to bring the image
back to its original gray scale level is made, resulting in an enhanced spatial resolution

image.
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—

[x[0.0] x[1,0] --- x[ p,. O] |} ~[ 2, + L.O]--- x[r, —1.0] |---
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x[nl e 130] x[nl e 1,!‘32]
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Figure 14. The original data is in a vector form, and is partitioned and arranged
into Toeplitz structured matrices

updated A ;. Using the quarter-plane model, the coefficients can be predicted by four

different prediction filters of row order p, and column order p,. To perform the 2-D
column-order-forward-LP extrapolation on the first quadrant, the following equation is

used

X°[n,] =3 A% []1X°[n, - ] (3)

in which p, has to fall between n, and n, in value, and A(;2 is the original data

set discussed in Chapter 2. Eq (35) for the QP support regions can be arranged, or
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ordered, into at least two convenient block matrix forms by constructing the 2-D

parameters either by rows or by columns.

nl
A
I p1+1 I
r—/%
[X[0.0] -+ X[p,.0] -+-X[n, =1,0] -+ X[, =1, p,] -+ X[y =1, ]]
o n, (P, +1) -
o
nl'(n2+1)

Note that the original data set, Eq (36), is a 1-D vector of length n,-(n, +1). AGpz is

a 2-D block vector of appropriate dimension to match the matrix multiplication block

size of Eq (35). Eq (36) is partitioned into a set of block vectors
c (] C (37)
X [0] - X [p,] -+ X [n,]],

where each block vector is constructed as depicted in Eq (38), and as illustrated in

Figure 14,
X[ pl’o] X[nl _1’0]
x°ro1=| - : ,
X[ 0, O] X[nl - P _1’0]
X[plapz] X[nl_]" pz]
X [p,]= ' - : , and

X[ O, pz] X[nl_ p1_la pz]

X[plvnz] X[nl _1’n2]

X [n,]= . :
x[0,n,] -+ x[n, —p,—-1n,] (38)
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starting with XC[O], all data set values for which p, =0 is used to construct the

first column and row of each block vector, as shown in Eq (31). After constructing the
first column and row of each block vector, it is possible to construct the rest of the
block vector as a Toeplitz matrix as shown in Figure 14 which is linked with Eq (39).

The sequential block vectors are created in the same manner for p, =1, 2,.. n,. With

Toeplitz matrices, it is possible to obtain a matrix which has been extended by one

new vector term in the forward column direction.

New term

X[pl’nz] X[nl _1’n2]
I — A, [IX°In, -1+ +A, [p,] X N, - p,]

X0, n,] -~ x[n, —p,=1,n,] (39)

are defined in terms of block matrix entries A, and X ‘.

(nl_ Py _1)
P2 _ A -
~ T .
(p, +1) % (p, +1) X[pl’f'z_ll X[”l_%’”z_l]
x[o,n, -1] --- x[n, — p, -1,n, 1]
A I | | AL :
X[plinZ_pZ] X[nl_l’nz_pz]
forl<j<p, : - :
x[0,n, = p,] -+ x[n,—p,=1Ln,-p,1]] (40)

Note that a new term, x[n, —1,n,] , is shown in Eq (39). By taking the reverse

steps to extract the relevant data set from the column extended data set, it can be

shown that the new term is the missing term not recovered by other BWE techniques
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[25]. Also, by using the technique of reference [2], each line does not need to be
calculated individually, resulting in a fast algorithm when finding individual extended
data sets. To perform the 2-D row order forward LP extrapolation on the first quadrant,
similar steps can be used involving the extrapolation of the column vector, with the
difference being that we use the extended column data set from the column
extrapolation rather than the original data set. The following equation is used for row

extrapolation operations:

X*[n] =3 A} [ X" [n, -] (@)

where superscript " denotes row, and the value of p, has to fall between n, and

n,.
nZ
A
T p,+1 h
—
[X[0,0] X[O, pz] ...)([07 n, _]_] ...... X[ p;, N, _]_] ...... X[nl’ n, _]_]] (42)
~— __
n, '(pl +1)
N— 7
—
n, '(nl +1)

Eq (41) can be rewritten into a set of block vectors ordered by rows

x®r] - X“[pd o X" (43)

where each block vector is

X[O’ pz] X[O,I’Iz _1]
x"[o=| i : ,
x[0,0] --- x[0,n, —p, —1]
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X[plvpz] X[pl!nz _1]
XR[pl]: : R : , and
X[pl!o] X[plinz_pz _1]
X[nl! pz] X[nl’nZ _1]
X" [n,]= : .
X[n11o] X[nl’ n, — P, _1] (44)

Applying the same methods that were used for column extrapolation, Eq (44) terms
are derived from Eq (42) terms. However, when Eq (45) below is carried out, there are

two new terms appearing in the resulting extended row data set, as shown:

New term
X[pl’nz] X[nl_l’nz]

=AU X [, ~1++A, [p]X [0~ p,]

X[ 0; nz] X[nl_ pl_l’nZ] (45)

|:> P, (nz - P _1)
_ /\ ) ~ —~

(p, +D)x(p, +1) A LR L
X[nl_lio] X[nl_l’nz_pz]
A | | ALl || e

x[n, = p;, p,] - X[, — py, N, ]
for1<i<p, : : :

- X[nl_ plio] X[nl_ P, N, — pz] -

As mentioned above, the two new resulting terms, x[n,,n, —1] and X[n,,n,], recover

the missing terms that were not available in other BWE techniques [25]. Note this

method can keep going forward and cover all terms in the time domain’s first quadrant
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with the knowledge of a fixed order. Similarly, the backward extrapolation on the third

quadrant is defined by column and row recursions:

X°In, - p,] =3 (9A}, [19)X° [n, - p, + ]

= (JA, [IX° [, p, +1+-+ (A [p,19)X° [n,] (46)

and
X [0~ p.] =Y (A, [1)X" [n, = p, +1]

= (AL [INX" [0, - p, +1+-+ (A, [p]) X" [n,] (47)

where p, and p, have to be between n, and n,. The steps to determine the

forward column extrapolation and row extrapolations can be used to determine the
backward column extrapolation and row extrapolation using Eq (40) and (41), and the
2-D fast algorithm from [3]. This allows the extrapolation of the original data in the
backward column and backward row direction as shown in Figure 15.

With the combination of the forward and backward extrapolation of columns
and rows, it is possible to extend the original data set in all four directions, as shown
in Figure 15. This proposed BWE technique not only recovers three missing terms,
which are not recovered with other proposed 2-D BWE techniques [5,25], but also
provides a fast algorithm to reduce the computational operations needed to estimate

forward and backward prediction coefficient matrices.
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Backward & Forward Forward & Forward

I
a1

Original
Data

Backward & Backward Forward & Backward

(©)

Figure 15. In previous BWE techniques, a true 2-D BWE technique was not
achieved, which resulted in a poor result relative to our new method. (a)
Column-backward extrapolation and row-backward extrapolation. (b) Column-
forward extrapolation and row-forward extrapolation. (c) The new technique
employs a true 2-D BWE technique, which can be expanded in any arbitrary
direction. For this research the original data is first expanded in the column
forward and backward direction, followed by row expansion in the forward and
backward direction.
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3.2. Experimental Results

In this section, we will apply the new 2-D BWE technique and its companion
spectral estimator to simulated image data. The original data, shown in Figure 16, has
two point objects and one line object that form a gray scale image for testing BWE
algorithms. The synthetic gray-scale image is 128x128 pixels, and it is scaled from
-0.5 to +0.5 along each axis. The image contains blurring effects (sidelobes) due to the
finite optical aperture assumed to capture the image. It also has a tiny amount of noise
added to ensure stable estimated 2-D LP parameter that are used in the 2-D BWE
technique.

Figure 17 shows the result of the alternative 2-D BWE technique presented in
this thesis using the 2-D AR parameter matrix estimated by the 2-D lattice algorithm
[3]. It is obvious from the figure shown that there is a significant resolution
improvement over the pre-sharpened Figure 16. In the post-sharpened image (the
result of extrapolation by a factor of two (256x256 pixels)) using an eighth order
prediction model, it is now easier to locate the true location of the two points and the
diagonal line, since the sidelobes from the previous image have been reduced

significantly.



Figure 16. The original synthetic 128x128 pixel image, with
unit width and height, containing two points and a line object
with blurring effects (sidelobes).

-0.5 0 0.5

Figure 17. Post-sharpened 128x128 pixel image, with unit
width and height, as a result of applying the new 2-D BWE
technique.

37
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4. NOVEL 2-D SYNTHETIC APERTURE RADAR IMAGERY
RESOLUTION ENHANCEMENT TECHNIQUE

In this chapter, the 2-D BWE technique is applied to wideband polarimetric
radar data. A 2-D SAR image represents the magnitude and location in both down
range and cross range of each scattering center [8,9]. SAR resolution is an important
factor in acquiring details of scatterers seen in the image.

The two-dimensional BWE technique can be a promising technique for
enhanced-resolution SAR imagery [5,6,7]. Furthermore, the application of the new
2-D BWE technique increases the number of scattering centers detected in the SAR
image in comparison with that of conventional SAR image generation that uses the
2-D FFT to form the image. A simplified block diagram for the processing steps to

create SAR images is illustrated in Figure 18.

4.1. Two-dimensional Sharpening Based on SAR Radar: Missile Data

SAR images to be formatted from simulated S-band and X-band target
signature data are presented here to validate the proposed 2-D BWE techniques. The
synthetic S-band and X-band data represent phase history data collected from a
hypothesized missile structure as though it was taken in a microwave anechoic
chamber. Such data presumes that data was acquired by a-slowly rotating the target
(“a missile” in this case) within the center of the RF field of the virtual chamber. The
rotation is stepped in degrees of azimuth (nose-on is the 0° reference for the azimuth).

At each azimuth step, the target is illuminated with a stepped frequency sequence. At
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Data collected Polar to Estimate
in Transform Polar Format Cartesian Model
Domain Data Set Interpolation Parameters

Speciral Sharpened/
Estimation/ Enhanced
Analysis Radar Image

Figure 18. A simplified block diagram for creating SAR imagery. 2-D BWE
technique can be a promising resolution enhancement technique for radar imagery.

each frequency and azimuth step, a complex value is recorded (the so-called radar
cross section (RCS)) [16,24]. A stepped frequency sequence RCS response for S-band
between 3.093 to 3.947 GHz in 10.67 MHz steps was synthetically generated from
target microwave backscatter models. A sequence for X-band from 10.240 to 11.093
GHz in similar 10.67 MHz steps was also generated. The step interval in azimuth was
0.015° for both cases.

The data is effectively acquired in a polar format (due to the rotation) [18], and
must be interpolated to a cartesian coordinate format for processing by the 2-D BWE
algorithm. As shown in Figure 19, the phase history data to be processed into radar
imagery has a fan-shaped polar acquisition format. To get it into a cartesian format,
data points are interpolated within the fan-shaped region to a cartesian grid. In Figure
20, the missile’s nose is pointed to the top of the page, while the fin tips are pointed to

the right and left of the page top.
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11.083 GHz radius
10.240 GHz radius

4.35° azimuth aperture

3.847 GHz radius
3.093 GHz radius

S-BAND

853 13 MHz radius

14.26" aamuth aperture

(b)

Figure 19. A variation of the 2-D BWE technique for computed synthetic
radar imagery. The acquired data, shown on the left, is not originally in a
cartesian format. Because of this, pre-processing interpolation is required.
The fan-shaped data, shown on the right, is interpolated to attain a cartesian
format for further processing [24]. (a) The original data acquired in a polar
format (due to the rotation), (b) Interpolated cartesian coordinate data
format.
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Figure 20. S-band SAR image with analysis center azimuth in degrees
(@),(b) radar image of simulated target obtained by 2-D FFT with Hamming
weights (Center azimuth: 180°, 65° respectively) (c),(d) Resolution-
enhanced radar image of simulated target obtained by 2-D BWE (Center
azimuth: 180°, 65° respectively)

Figure 20 and 21 are, respectively SAR images processed by either
conventional Fourier-based SAR imagery operations or the new BWE method. Shown

are S-band imagery with a center frequency of 3.5 GHz and X-band imagery with
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Figure 21. X-band SAR image with analysis center azimuth in degrees (a),(b) radar
image of simulated target obtained by 2-D FFT with Hamming weights (Center
azimuth: 180°, 80° respectively) (c),(d) Resolution-enhanced radar image of
simulated target obtained by 2-D BWE (Center azimuth: 180°, 80° respectively)
center frequency of 10 GHz, both of which used a bandwidth of 400 MHz and a

measurement polarization of VV. The ‘VV channel’ represents the target response

signal [24] when the vertical polarization is both transmitted and received. For the
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Figure 22. Photo of target on pylon in radar anechoic chamber of actual truck (The
data were collected in a 10-story microwave anechoic chamber in Rancho Bernardo,
CA. Data was acquired by Prof. Marple and provided for use in this research.)

original image, nominal down-range resolution and cross-range resolution was
9.4179 cm/pixel. The original image and the image enhanced by applying the 2-D
BWE technique (shown in Figure 20 and 21 in (b),(d)), have higher resolution than the

(a),(c) Fourier-based imagery.

4.2. Two-Dimensional Sharpening Based on SAR Radar: Truck Data

We demonstrate image-enhanced results in this section for phase history data
measured from an actual truck. The data were collected in a 10-story microwave
anechoic chamber located in Rancho Bernardo, CA. The data was acquired by Prof.
Marple and provided to the author of the thesis. SAR imagery processed from
measured S-band target data obtained in the chamber are presented to validate the
proposed 2-D techniques. The rotation is stepped in degrees of azimuth (nose-on is

the 0° reference for the azimuth), and at each azimuth step, the target is illuminated
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with a

(@)
Figure 23. (a) 10-story microwave anechoic chamber (b) A target is
raised on a pylon in the middle of the chamber. Data was acquired
by Prof. Marple and provided for use in this research.

stepped frequency RF generator. The user provided parameters here are same as for
the synthetic missile data. The acquired data is not originally in a cartesian coordinate
format, and so a pre-processing interpolation must be done first to convert from polar
formatted data to cartesian formatted data. As shown in Figure 19, the received data is
in a fan-shaped acquisition format, and to get it into cartesian coordinate format, data
points are interpolated within the fan-shaped image to form square cartesian-formatted
data. The truck was raised on a pylon in the middle of the chamber and rotated on the
pylon that is shown in Figure 23. The radar illuminates the rotating truck and receives

an echoed signal from the truck. As the truck is rotating, the acquisition equipment
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Figure 24. S-band SAR image with analysis center azimuth in
degrees (a) Radar image of truck obtained by 2-D FFT with
Hamming weights (Center azimuth: 75°) (b) Resolution-
enhanced radar image of truck obtained by 2-D BWE (Center
azimuth: 75°)
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Figure 25. S-band SAR image with analysis center azimuth in
degrees (a) Radar image of truck obtained by 2-D FFT with
Hamming weights (Center azimuth: 47°) (b) Resolution-
enhanced radar image of truck obtained by 2-D BWE (Center
azimuth: 47°)
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captures the signal at stepped azimuth angles and stepped frequencies. The images
shown in Figure 24 and 25 are created from the truck data taken in the chamber, at
center azimuth angles of 75° and 47°. These are the SAR images obtained by the
conventional S-band Fourier-based SAR imagery with 3.52 GHz center frequency, 400
MHz bandwidth and the measurement polarization is VV. “VV channel” represents the
target response signal when vertical polarization is transmitted and vertical
polarization is received. The nominal down-range resolution and the cross-range
resolution of the original images are both 18.80 cm/pixel. The original image and the
enhanced image, obtained by applying 2D BWE, show that the resolution is enhanced

by the 2-D BWE approach.



48

5. 3-D AUTOREGRESSIVE AND LINEAR PREDICTION RANDOM
PROCESS THEORY AND ALGROITHMS

The evolution of sensor technology has provided acquisition scenarios today in
which the data format is inherently three-dimensional (3-D). Examples include
hyperspectral imaging (HSI) sensors (x-spatial dimension x y-spatial dimension x
wavelength), interferometric synthetic aperture radar (IF-SAR) imaging (x-spatial
dimension x y-spatial dimension x elevation/height dimension), and space-time
adaptive processing (STAP) of radar (fast time [samples within a received pulse] x
slow time [pulse-to-pulse sampling] x sensor array element number).

The three dimensions often involve a mixture of time, space, and wavelength
dimensions. In all these applications, fully 3-D signal processing that has the
capability (1) to enhance the resolution of the final 3-D analysis result (most often
imagery), and (2) to provide reduced-dimension parametric features of the 3-D data
for purposes of data encoding/compression is highly desirable. This chapter provides
algorithmic techniques applicable to both capabilities. We also illustrate the value of
our technique with a simulated 3-D synthetic aperture radar imagery application

involving point targets in 3-D.

5.1. Three-Dimensional Octant-Based Autocorrelation and 3-D LP Parameter
Matrices

The technique presented here is useful for estimating 3-D autoregressive (AR)
parameters from 3-D autocorrelation sequence (ACS) values [28]. It operates directly

in  3-D octant-space using the 3-D Yule-Walker equations with a recursive solution.
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Figure 26. Eight octant-space regions of support for 3-D AR parameter arrays.
While the prediction direction can be chosen arbitrarily, the indicated division of
3-D space was chosen due to its obvious extension from 2-D quadrants. The origin
is located at the center of the eight octants. Detail descriptions are provided in
Figures 28 and 29.

This computationally simple and fast performing algorithm, which has a close
heritage to the quadrant-based 2-D algorithm [1,3] will be shown using a new
approach involving recursive estimation which has a related set of triply Toeplitz

block matrices. A 3-D AR sequence Xx[n,,n,,n,] is generated by driving a 3-D linear

shift-invariant filter with 3-D white noisew[n,,n,,n,] ,

X[nl’nz’ns]:_zzz a[i, j’k] X[nl_i’nZ o j7n3 _k]+W[n1’n2’n3] .
K (48)

The summation ranges can be selected to be any one of the eight support regions of

Eq (51) and Eq (52).
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Figure 27. The top octant space, when chosen at a [2,3,2] , represents the

3-D AR parameters located in the first octant space. The number of
coefficients is 2x3x2. To further explain the octant space, three examples

were chosen: (a) at a [2,3,0] , (b) at a [2,0,2] and (c) at a [0,3,2] .

A 3-D linear prediction estimate of the array sample x[n,,n,,n,] will have the form

)A([nl,nz,ns]: =¥ > > a[i, j.kl x[n, —1,n, —i,n, — j,n, —K] (49)
m n |

in which a[i, j,k] are the 3-D LP/AR coefficients. If an octant region of support is

selected, the 3-D linear prediction coefficients x[n,,n,,n,]- x[n,,n,,n,] that

} (50)

minimize the LP squared error

Prp :E{

N
x[n;,n,,ny]=x[n;,n,,n,]
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will yield a linear prediction error that is a 3-D white process only if the 3-D LP is of
the same 3-D order as the 3-D AR process that created the data. The region of support
for the first-, second-, third-, fourth-, fifth-, sixth-, seventh-, and eighth octant-space
AR parameter arrays (d = 1,2,3,4,5,6,7 and 8" octant space) are defined below. The

total number of octant-space (OS) AR parameters in any of the eight octant cases is
PP, Ps+ PP, + PP+ P, P+ P+ P, ;. Figures 26 and 27 illustrate the region of

support for these eight OS autoregressive arrays and the prediction directions of the

AR spectral estimator.

ali,jk]: O<j<p, for 1<k<p,,1<j<p, and k=0
0<j<p, for 1<i<p,,1<j<p, and i=0
O<k<p, for 1<i<p,,1<k<p, and i=0

a’[i,j,k]:=p,<j<0 for 1<k<p,,-p,<j<land k=0
-p,<j<0 for 1<i<p,,-p,<j<-land i=0
O<k<p, for 1<i<p,,1<k<p, and i=0

a’li,j,kl:=p,<j<0 for 1<k<p,,—p,<j<-1and k=0
-p,<j<0 for—p, <i<-1,-p,<j<-1landi=0
O<k<p, for —p,<i<-1,1<k<p; and i=0

a'li,j,kl: 0<j<p, for 1<k<p,,1<j<p, and k=0
0<j<p, for —p,<i<-1,1<j<p, and i=0
O<k<p, for —p,<i<-1,1<k<p, and i=0

ali,j,k]: —p,<j<0 for —p,<k<-1,-p,<j<-1and k=0
-p,<j<0 for 1<i<p,,-p,<j<-1land i=0
- p,<k<0 for 1<i<p,,-p;<k<-landi=0

aG[i,j,k]: -p,<j<0 for —p;<k<-1,-p,<j<-1and k=0
-p,<j<0 for —p, <i<-1,-p,<j<-1land i=0
-p;<k<0 for —p, <i<-1,-p,<k<-1land i=0

(51)
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a'li,j,k]: O0<j<p, for —p,<k<-1,1<j<p,and k=0
0<j<p, for —p,<i<-1,1<j<p, and i=0
-p;<k<0 for —p, <i<-1,-p;,<k<-land i=0

a’li,jk]: O<j<p, for —p,<k<-1,1<j<p, and k=0
O0<j<p, for1<i<p, ,1<j<p, and i=0
- p;,<k<0 for 1<i<p,,-p;<k<-land i=0

(52)

5.2. Three-Dimensional Autoregressive Spectral Estimation with Fast
Algorithms

5.2.1. Three-Dimensional Yule-Walker Equations

If the 3-D autocorrelation sequence is known, then it can be shown that the
parameters of each of the eight octants satisfy the following 3-D Yule-Walker (YW)

equations and the corresponding octant 3-D prediction directions. The 3-D YW
equations for a 3-D AR process are obtained by multiplying x*[n1 —i,n, —j,n; —K]

by Eq (48) and by taking the expectation to yield

0 otherwise

S 3 ali i Kl Iy -, - Jon, —k]:{pw for i, j,k]=[0,0,0]} -

The summation ranges can be selected to be any one of the eight octants of ali, j,k].
In anticipation of the fast computational algorithm to be presented, we shall assume
that subscript p,p,p, means p, (point on the ‘i’ axis) is a variable order parameter
and p, (pointon the “ j’axis) and p, (point on the “k ’ axis) in Figures 28 and 29

are assumed to be fixed order parameters. More detailed figures are presented in
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1st Octant-Space and
Prediction Direction

Pt .p, Pt

23

B

2nd Octant-Space and
Prediction Direction

p—t.p >0t

3rd Octant-Space and

Prediction Direction

=1

Py =Py 7 .P Tt

4th Octant-Space and
Prediction Direction

— p1o>=.py .

(c)

(d)

Figure 28. Illustration of the prediction directions in the eight-octant space AR spectral estimator: (a) represents the first
octant space and prediction direction of p; in the positive direction, p, in the positive direction, and ps in the positive
direction. (b) represents the second octant space and prediction direction of p; in the positive direction, p, in the negative
direction, and ps in the positive direction. (c) represents the third octant space and prediction direction of p; in the negative
direction, p, in the negative direction, and ps in the positive direction. (d) represents the forth octant space and prediction
direction of p; in the negative direction, p, in the positive direction, and psin the positive direction.
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Figure 29. Illustration of the prediction directions in the eight-octant space AR spectral estimator: (a) represents the fifth octant
space and prediction direction of pl in the negative direction, p2 in the negative direction, and p3 in the negative direction. (b)
represents the sixth octant space and prediction direction of pl in the negative direction, p2 in the positive direction, and p3 in
the negative direction. (c) represents the seventh octant space and prediction direction of pl in the positive direction, p2 in the
negative direction, and p3 in the negative direction. (d) represents the eighth octant space and prediction direction of pl in the
positive direction, p2 in the negative direction, and p3 in the negative direction.
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Appendix A on pages 88-96. The 3-D Yule-Walker equations for the support regions

can be arranged, or ordered, into at least six convenient super block vector forms

ad ad ad ad a a

=pipyPs | =puPsPy | =PaPiPs | =PyPsPy | =pspip; | =P3P2Py (54)
by ordering the 3-D AR coefficients in a three-tiered hierarchy (one order on outside,
one in middle, one on the inside). An alternative block vector representation of the

first octant-space Yule-Walker equation is

1

:plplp2 P3 - gF’lpz P3 gF“1F32 P3 (55)
where the data vector is also a super block vector of dimension (p, +1).
éplpzp3 = [lpﬂ)zps [I] 5plpzp3 [I _1] ...... 5plpzp3 [I - pl] ] (56)
The super block vector a' , with superscript 1, designates this as a set of the

—P1P2Ps

first-octant AR parameters. It is composed of (p, +1) block vectors, each of dimension

(p, +1)(p; +1) x1.

g(:)lpz b [glplngg [0] glplpszg [ - glplnga [p.] ]T (57)
which are further partitioned in terms of the block vectors
lelpng [1] :lalplngs [1,0] alplngs (- alplngs [, pZ]JT (58)
and even further partitioned in terms of the scalar elements

1 .. 1 T.. . 1 T . . 1 T .. . T
aplpng["J]:[aplpzps["J’O] aplpzps["J’l]"' aplpzp3["J' p3]J (59)
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Scalar Toeplitz Matrix R P e m

(g +Lxipy +1) R R[A]

4 R7.] RI

Block Toeplitz Matrix R,
(pq +D(p; +Nx(py +N(p; +1)

B
|
o
e
=

Super Block Toeplitz Matrix R
=nn

(o + Dipy + Dip + Dx (o + D2y + Dpy + 1)

Figure 30. The hierarchy of the super block Toeplitz matrix in terms of
structure and dimension. The super block Toeplitz matrix is composed of
block Toeplitz matrices, which in turn is composed of scalar Toeplitz matrices.

The super block vector o has all-zero super block vectors 0 and one top
= P1P2P3

super block entry glp . that has all zero entries, except for the top entry, which is

the noise variance p, . Note that ‘0’ is a vector of (p,+1) zeros and 0 is a column

block vector of (p, +1)x(p; +1) zeros.

T

6 =[pg ' 0--0] (60)

= P1P2P3 — PaPaPs

which is defined in terms of the block vectors

[K)lplpz-ga 0 O]T (61)

— P1P2Ps3 B

which is in turn defined in terms of the scalar elements

1

1 T 62
pplpzpaz[pw 00] ( )
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The data vector is a super block vector described in Eq (56) and the autocorrelation

matrix is defined as

E{éplpzpB)z(plpzm }:Bplpng -
X[, j, K]

X[i, J,k = p,]
x[i, j —1,k]

.l._llk_ * . * .
X[I J: p3] .X[le!k]"‘X [l_pllj_pzak_ps]

X[i, j = p,, k= p;]

_X[i — P J - pzak - pa]_ (63)

Super block matrix R has the dimension (p, +1)(p, +1)(p; +1)x

= P1P2Ps

(p, +D(p, +D(p; +1), where each super block consists of (p, +1)x(p, +1) block

Toeplitz matrices (each block element is Toeplitz) and each Toeplitz block consist of

(p; +1) x(p; +1) scalar elements. Therefore, matrix R is said to be triply

— P1P2P3

Toeplitz or super block Toeplitz as shown in Figure 30.

A subscript p,p,p, is used to remind the reader that ‘variable order p,” and
‘fixed orders p, and p,’ ordering has been used for Eq (54). We can describe the

matrix R in terms of the super block matrices,

— P1P2P3
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BF’1P2F’3[ 0] Bplpng[pl]]

—P1P2P3

Bplpzpé)[_pl] Bpﬂ’zpa[ 0] (64)

which are defined in terms of matrix elements with dependence on the variable order

p, . For example, the one for index O is,

R—P1P2P3 [0]:

[0 00 [0 01100 p,] 0, p,, O] HO,p,, 1 - 1[0, p,, p]]
[ 0, 0] ; r[ 0—p, 1] :
1 0,0-p,] e 10,00 M0-p,=ps] - -+ 110 py, O]
M0-p,, 0] 10 p,, I -+~ 1[0 p,, ps] 0, 0 O [0 0 1 - r[0 0 p,]
r0,—p,—1 : Mo, 0, -1 :

L MO—p,,—p,] -+ 10-p,,0] r0,0,—p,] - 10,0, 0] i

(65)

Atindex p,, the block matrix has the form,

Bmpzps[pl]:

[P 0,0 1,00 - 1p,0 p] (P By O Hpy 1 -+ rlpy, Py 3]
Mp, 0-1 : LT V! :
r[ pl’ O’_ps] I"[ pl’ O' O] r[pl’_pza_pa] r[ pl’ pz’o]
rp—p,, O ripy, A -+ 1Py Py Ps] Mmp,00 rMp, 01 - rp,0 p,]
r[ ply_pz !_1] r[ pl’ O'_l] :

L r[p1v_pza_p3] r[pll_pzvo] I’[ plv 0,—p3] r[ pl, O' 0] i

(66)



59

Eq (67) below has previously been shown [1] and used with computationally efficient
algorithms for the 2-D spectral estimate. The structuring has been selected based on

the fact that the 2-D data matrix will have Toeplitz block structure [3,10].

0 =R a'
—pipop;  — PiP2Ps = PiP2P3 (67)

If one ignores the values of p, in Eq (64), the 3-D Yule-Walker equations can be
arranged or ordered in the same way as in the 2-D case. If p, is fixed to 0 and the

second variable p, is changed fromOto p,, R . matrices will look like

Rplpzps[ O] Rp1p2p3[p2]

Bplpz% = : : (68)
Rplpzp3[_p2] Rp1p2p3[ 0]

and this is defined in terms of the matrix elements with the variable order p, and a

fixed order p,,

I’[O, P2, 0] I’[O, pz’l] I’[O, P2, pa]

r[ov p _1]
Rp1pzpa[p2]: 12

r[0, p,,—Ps] -+ 1[0, p,,0] (69)

As mentioned before, the 3-D Yule-Walker (YW) equations have six alternative super

block matrix forms. For example, the YW equations with the p,p,p, order
autocorrelation matrix for the first octant-space would be

g -R & (70)

=P3P2Py P3P2P1 = PaPaPy
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1st
Octant-Space

5th
Octant-Space

\ ¢ = )
: e = . s
| ‘Hermitian
symmetry’

Figure 31. Illustration of the complex conjugate property in the d =1 and
d =5 coefficients. With the origin located at i=j=k: a—a', b-b',

c—c',and d—d" exhibit complex conjugate property.

Similarly, we can also derive R in terms of the super block matrices and defined

— M3M2M1

in terms of the matrix elements with the variable order p, that equals zero.

Bpspzp1[ O] Bp3p2p1[p3]

5p3p2pl ’ :
BP3P2P1[_p3] Bp3p2pl[ 0] (71)
In this case, subscript p,p,p, means ‘variable order p,’ and ‘fixed order p, and

fixed order p, . Super block matrix R, . has a dimension of
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(py +D)(p, +D(p; +)x  (p, +D(p, +1)(p; +1) , where each super block is a

(p, +)x(p, +1) block Toeplitz and each Toeplitz block is a (p, +1)x(p, +1)

scalar element with the form

Bp3p2p1[p1]=
rlp, 0,01 rlp,, 0, -~ r[p,,0, O] r0,p,.01 [0, p, A -+ r[p,. p,.0]]
-1 0, 0] : r-1-p,,0] :
M-p0,0] - - r[000] =p.-p, .00 -+ - 10,p,0]
{0, p,, O] r[0, 52,1] -+ 1Py, p,.0] 0,0 0] f[ld, q - r[p,,0 0]
r-1-p,,0] : -1, 0, 0] :
Lr=p.—p,.0] -+ 1[0, p,, 0] M-p,0,0] - - r[0,00]

(72)
If the 3-D autocorrelation sequence is known, then it can be shown that the first eight

octant-space parameters satisfy the following 3-D Yule-Walker normal equations

1

0 =R a

=p,p,p;  — P1P2P3 =P1P2P3
2 2

0 =R a

=pp,p; — PiP2P3 =PiP2Ps
s 3

P =R

=pppys  — PiP2P3s =PiP2P3
4 4

o =R a

=pp,ps — PiP2P3 =PiP2Ps
J 5

F =R a

=pp,p;s — PiP2P3 =PiP2P3
J 6

Y =R a

=ppaPy  — PiP2Ps =PiP2Ps
Y 7

0 =R a

=ppps  — PiP2P3 =PiP2Ps
8 8

0 =R

a .
=pp,pg  — PiP2Ps =PiP2Ps (73)



The alternative representations are described in Eq (74).

I b (&K\(\&\i)\\\\\ ' :l)
mw\\\\\\\\\\\\ ]

\\ \\\\\\]

This is sufficient to make the super block matrices Ep 0o hermitian. They are also
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JR =R ) (76)

= P1P2Ps3 == P1P2Ps3

inwhich J isa (p, +)(p, +D(p, +1) x(p, +D(p, +1)(p, +1) reflection matrix.

J(BP1P2P3) ___P1sz3 gfl P1P2P3 (77)
Observing that J 0 =0 , Eq (70) then becomes
=plp2p3  =plp2p3
R =0 )=0
= P1P2P3 (_2 P1P2P3 ) (£P1 P2P3 ) =pP1 P2Ps (78)

Comparing Eq (77) with Eq (78), it can be concluded that a* is obtained as the

=P1P2P3

complex conjugate of 35; . Figure 31 illustrates the coefficient sets for octant 1 and

1P2P3

5(d =1and d =5) which have the hermitian symmetry property. Conjugate pairs are

at i jkl=a,, [i-j—K]
a’,  [li—i.kl=a.,, [ ]
a, o [-i-j.kl = a,i T ik
5,5, [0 1K1 = 2 T K] (79)

A fast computational algorithm for the solution of a' is not based on direct

= P1P2P3

solution for the 3-D AR parameters, but it is based on solving a special variant of the

3-D AR algorithm involving the relationship

[! Aplpzpa [1]"'Ap1pzps [p.] :Igplpzps =[ Bplpzpa 0--0] (80)
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0
1 ...
al
R R
= 0
R | R
: 0
R A P

Figure 32. Using the results obtained from Eq (74), a new structure is formed
by combining the super block linear prediction parameter matrixes A and
the super block covariance matrixes P .

in which T isa (p, +D)(p; +1) x(p;, +1)(p, +1) identity matrix. Each block linear
prediction parameter matrix A, . [p,]and the block linear prediction covariance
matrix P, . have dimension (p, +1)(p;+1)x(p, +1)(p;+1) . Multiplying both

sides of Eq (80) by P, . ., the result can be expressed in an alternative form

o _
1 «P xp, | |[P*P T xp | [Ixp -
Reo|Ai*P o | _[0xPxp | | O | Py
= : : : 0

A xPxp | (0P xp, 0 :
0

- - (81)
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In other words,

ReP ' xp x[IA, Al =P xpx[P 007" (82)

As shown above, it is clear that we only care about the elements in the first rows of
A and P. Using the hermitian symmetry property shown in Eq (79), we consider
only four octant coefficient sets and associated variances to build the new structure of
the normal equation. If one now compares Eq (80) with Eq (84), we note that

l
ﬁplpzps P — P1P2Ps3 —Plpng [O] (83)

so that the following relationships are the result

al  [0]=[L+-0 0-:0 0-:0 - 0---0][P,, 1"
_ppp[o] [0---1 0---0 0---0 --- O"'O][Bplpng]_l
_ppp[o] [0---0 1---0 0---0 --- 0"'0][Ep1p2p3]71
a® [0]=[0--0 0---1 0---0 - 0--0][P,,, 1 (84)

Eq (85) below is similar to the conjugate relationships of the forward and backward

LP coefficients observed in the 1-D AR analysis. By scaling to force al[O, 0,0] =

g:I;31I32P3 [I] = é1F’1F’z Ps3 [0] A P1P2P3 [I]
szzpa [I] = §7plpzps [O] Ap1p2p3 [I]
gfhpzp [i]= Qi P2Ps [0] Ao, [i]
8

§p1p2p [I] = a = PP, P3 [ ] — P1P2P3 [I] (85)

Thus, having solved for matrices P and A, . [i] for i=1 to p, from Eq (83),
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the relationships of Eq (85) may then be solved to four 3-D autoregressive (AR)

parameter sets and associated variances.

5.2.2. Recursive Solution for 3-D LP Parameter Matrices

Since R=p = Q'; is super block Toeplitz (triply Toeplitz), we can show that the

3-D autocorrelation matrix is hermitian and conjugate centrosymmetric Ep = Jg;d.

Reflection matrix J has dimension (p, +1)(p; +1)x(p, +1)(p; +1) . The triply
Toeplitz structure can be exploited to develop the 3-D version of the recursive 1-D
Levinson algorithm that solves Eq (80). As this chapter has already presented, Eq (80)
may alternatively be expressed as Eq (86). Using the centrosymmetric property and

the identity matrix I, we can find the 3-D reflection coefficient matrix K such

p+l?

that the following expression is valid
[0 A0 Alp] A,ulp+1]]=

[1 A, A [p] 0]+ [K,.[0 J AL[pld-d ASpild 1] (89)

If we multiply both sides on the right by Ep atorder p+1, it will yield

[P, 0-00]=[P, 0 - 0 A, J+K ,[JA,,J 0--0 JP,J] (87)
where
p p
Ap=R [p+1+D > A [JIR [i+1-]] (88)
i=1 j=1

We can apply the recursive relationship concept from the original Levinson algorithm.
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Also, Eq (69) will be balanced if we select

% -1 1
Kpﬁ—l=_p+1[p—'_:I']z_épﬂ(‘_J Ep‘_J) :_ép+l‘_J(Ep) ';J (89)

which creates the following order-update recursion
A=A [+ K, (4 A [p+1-i]d) (90)

From Eq (87) and (89), it is possible to derive the following recursion of the

covariance matrix

P,u=(1-K,,[JK, ,JDP =P (I-[JK]. JDKI.,. (91)

= p+l=

This concludes the recursive updates, showing that the centrosymmetry introduced by
the pre and post multiplication of reflection matrices has provided a further reduction

in computations.

5.2.3.Three-Dimensional Lattice Linear Prediction Parameter
Estimation Method

Assuming that a finite data record of 3-D data samples x[i, j,k] has been
acquired for 0<i<n -1,0<j<n,-1 and 0<k<n,-1, the 3-D block forward
and 3-D block backward linear prediction error matrices of order p,p,p, and

dimension (n, — p,)(n, — p,)X(p, +D(p, +1) are then defined as

Py . i .
gl:)lpzp3 [nl] :X [nl - pl]"'Z(“_JA PLD, Ps [']“_J) X [nl - Pt ']
i=1

€l 11X [+ 34, 01X [, 1) o
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In which X has dimension (n; — p,)(n, — p,)x(p; +1)(p, +1)

X[p,] < X[n,-1]
XZ X[nz_pz _1] X[pz]
XtO] X[n, _ p, -1 (93)

and this is a super block Toeplitz data matrix as shown in Eq (94).

X[ pl] X[nl _1]
é: X[nl_pl_l] X[pl]
X[O] o X[n1 ! _1]_ (94)

The 3-D forward and backward linear prediction squared error matrices are defined as

1 . .\ H
Efpﬂ’z P Zgllpz P3 [I] (gf;)lpz P3 [I]) (95)
n—pP i=p,
1w . .\ H
b b b
Eplpng = nl -p, nglpzpa [|](§ P1P2P3 [I]) (96)
1=p

Note that E@fplpng}: E{JP® )* J}=P . That the recursive 3-D lattice forms a

P1P2P3
3-D linear prediction error filter relationship between the 3-D forward and backward
linear prediction matrix errors may be seen by using Eq (90). Substituting Eq (91) into

Eq (92) yields

gfp+1 [n] :gf;] [n] + K p+1

e’ [n=e’ [n-1+ YK, J) el [n]. (97)

e)[n-1]
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Figurg 33. Super block vector representations of the 3-D linear prediction error
equation
Rather than estimating the 3-D octant-space parameters directly from the data, it is
more advantageous (for both computational reduction and estimation performance) to
estimate the 3-D super block linear prediction parameter matrices. Using the
relationships cited before in this section, it is possible to obtain the estimates of the

octant-space  linear  prediction  parameters. Based on the property,

E(P }=E{J(P®) J}=P,, we can form an estimate ép of P, by taking half of
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the sum of the forward and backward 3-D linear prediction squared errors

A VNGV I

p

2 2 - p+l

o>

(98)

which is a newer formulation of the squared error sum than those previously cited in
the literature [20]. Since the above sum has positive diagonal elements [3], which was
formed from squared errors, an approach to obtain a least squares estimate can be

obtained by minimizing the sum of the forward and backward 3-D linear prediction

squared errors along the diagonal (that is, the trace), min tr{ELﬁ"l} as shown in

Figure 34.
Let us first define an estimate of the crosscorrelation between the block

forward and backward 3-D linear prediction errors

. 1 n-1 ¢ . ¢ . H (99)
P oipeps = zgmpzm[l](gmpzps [i])

nl - M1 i=p,

Substituting Eq (97) into Eq (96) and (98) and combining the partial correlation matrix

fo o \T
A, =P, +(JP;J) ,the result be expressed as

PUa=P " +K AL +A KD +K

p+1 p+1=

p+1 (J Pf+b J) K p+1 (100)

By completing the square, Eq (100) may be expressed in the form

P —P™ +A [JP™J] A, +cp+l|g(Pf*") JCh., (101)

—p+l

where C . =K ., +A, JP}" J) . To minimize the tr{P""}with respect to the
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(P +10(p, +1)
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i B \ (2y + 12y +1)

Figure 34. 3-D linear prediction squared errors along the diagonal.

single unknown matrix K .., we note that only the third term of Eq (101) depends on

p+l?

K ,.1- Because this third term is a quadratic matrix product that can only contribute

f+b

positive values to the diagonal elements of P,

the only choice that will minimize

the traceis C,,,=0, or (102)

p

b -1
Kon=4,[JPT"J]

By selecting K ., as indicated in Eq (102), the sum of forward and backward 3-D

squared errors that minimize the trace may be obtained by inspection of Eq (101) as

—p+l —p+tl=p

f+b f+b H
Pon=P, +K ,A (103)

In the 3-D case, we need only compute the forward block linear prediction parameter

matrix A , the forward block linear prediction covariance matrix P, and forward
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block reflection matrix K. The backward matrices are obtained by pre- and post-
multiplication of the forward matrix by the reflection matrix J . Thus, the

centrosymmetry property has provided a further reduction in computation.

5.3. Application Example

The 3-D Yule-Walker algorithm and lattice LP parameter estimation method

from the thesis have been implemented in a MATLAB script functions levin_3D,

yulwk_3D, and lattice_3D, available from www.engr.orst.edu/~liewj/mdata.

The spectrum of the 1-D and 2-D plots shown in Figure 35 are well known
[1,3,10]. In the 2-D plot, the spectrum’s peaks are located using the x and y axes, and
the z axis represents the magnitude.

In order to visualize the performance of 3-D spectral estimation, the magnitude
of the 3-D power spectral density is illustrated in 3-D space with the points whose

coordinates are comprised of the i, j,and k elements as shown in Figure 35 (top left

and bottom left). A vertical strip on the right side of the plots indicates the mapping
color (gray scale) of the magnitude of the 3-D PSD. For example, the brightest spot in
the 3-D plot indicates the highest peak point in the 2-D plot. The 2-D plot is a planar
slice from the volume space taken at a specific frequency of interest, where the gray
scale from the 3-D plots now indicate the amplitude. The 1-D plot is line slice from
the 2-D plot, taken at a specific frequency of interest. These slices are useful to show

where interesting regions exist in the space of the spectral estimation volume.
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5.3.1. Three-Dimensional Yule-Walker Spectral Estimation
Figure 35 illustrates the resolution and accuracy of three dimensional (3-D)
spectrum analysis for five complex 3-D sinusoidal signals, embedded in low level
white noise (yielding a signal-to-noise ratio (SNR) of about 30 dB), using two spectral
estimation methods: one based on 3-D FFT spectral estimation and one based on the
3-D Yule-Walker spectral estimation approach. A 32x32x32-point 3-D data set of
noisy sinusoidal samples is generated with MATLAB to implement the algorithm. The
estimates are plotted as fractions of the sampling frequencies
(#1:1=0.00, j =0.00, k =0.00; #2:i=-0.25, j =0.25,k =-0.25; #3:i=0.25, j =-0.25,k =
-0.25; #4:1=0.25, j=-0.25,k =0.25; #5:1=-0.25, j =0.25, k =-0.25) and show five
spots which have their highest magnitudes at the exact sinusoidal frequencies. In this
plot, the color bar indicates the amplitude. The figures in the middle columns of
Figure 35 show the 2-D AR estimated spectra using one slice of the original 3-D PSD
matrix. The sliced 2-D matrix shows the plane at a fractional sampling frequency
1 =0.25. The figures in the last column of Figure 35 illustrate 1-D AR spectral
estimation results using one column vector of the 2-D PSD matrix. The figures in the

last column are a 1-D plot of the plane of j=0.25.

We conclude that the spectral estimate based on 3-D Yule-Walker solution
provides a much better spectral estimate than the estimate given by 3-D FFT-based
estimate in Figure 35. The plots shown in Figure (a) look markedly worse than Figure
35 (b). They have not only bigger mainlobes (bigger spheres), but also several

sidelobes (several small spheres).
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Figure 35. Three-Dimensional autoregressive spectral estimates of five 3-D sinusoidal signals in white noise: (a) Classical FFT-
based estimate (the peak spots at i;=0.00, j;=0.00, k;=0.00; i,=-0.25, j,=0.25, k,=-0.25; i3=0.25, j3=-0.25, k3=-0.25; i,=0.25, j,=
-0.25, k4=0.25; i5=-0.25, j5=0.25, ks=-0.25). (b) AR estimate by the 3-D Yule-Walker algorithm (the peak spots are same as (a))
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5.3.2. Three-Dimensional Lattice LP Parameter Spectral Estimation
Figure 36 illustrates the resolution and accuracy of three dimensional (3-D)
spectrum analysis for five complex 3-D sinusoidal signals, embedded in low level
white noise (yielding a signal-to-noise ratio (SNR) of about 30 dB), using two spectral
estimation methods: one based on 3-D FFT spectra estimation and one based on the
3-D Yule-Walker spectral estimation approach. A 32x32x32-point 3-D data set of
noisy sinusoidal samples is generated with MATLAB to implement the algorithm. The
estimates are plotted as fractions of the sampling frequencies
(#1:1=0.00, j =0.00, k =0.00; #2:i=-0.25, j =0.25,k =-0.25; #3:i=0.25, j =-0.25,k =
-0.25; #4:1=0.25, j=-0.25,k =0.25; #5:i=-0.25, ] =0.25, k =-0.25) and show five
spots which have their highest magnitudes at the exact sinusoidal frequencies. In this
plot, the color bar indicates the amplitude. The figures in the middle columns of
Figure 36 shows the 2-D AR estimated spectrum using one slice of the original 3-D
PSD matrix. The sliced 2-D matrix shows the plane at fractional sampling frequency
1=0.25. The figures in the last column in Figure 36 illustrate the 1-D AR spectral
estimation results using one column vector of 2-D PSD matrix. The figures in the last

column are a 1-D plot of the plane of j=0.25.

We conclude that the spectral estimate based on 3-D Lattice case gives a much
better spectral estimate than the estimate given by 3-D FFT-based estimate as shown
in Figure 36. In the 3-D Yule-Walker case as shown in Figure 36 (b), the plots look
markedly different than Figure 36 (a), which have not only bigger mainlobes (bigger

spheres), but also several sidelobes (several small spheres).
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Figure 36. Three-Dimensional autoregressive spectral estimates of five 3-D sinusoidal signals in white noise: (a) Classical FFT-
based estimate(the peak spots at i,=0.00, j;=0.00, k;=0.00; i,=-0.25, J,=0.25, k,=-0.25; i3=0.25, j3=-0.25, k3=-0.25; i,=0.25, j4=
-0.25, k4=0.25; i5=-0.25, j5s=0.25, ks=-0.25). (b) 3-D Lattice LP parameter estimation method (the peak spots are same as (a))
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5.3.3. Three-dimensional LP-based coding/compression

The use of new 3-D LP fast algorithms is not limited to the examples discussed
so far. For example, by segmenting data into blocks and applying mathematical
predictive extrapolation, data processing such as compression of digital audio (1-D
case), image processing (2-D case), and video coding (3-D case) are possible. The new
3-D techniques introduced in this thesis will have a major impact on future
coding/compression technique developments.

One-dimensional linear prediction (LP)-based coding/compression has long
been used to compress 1-D signals [26]. It should be possible to extend to 3-D
concepts/theory the currently successful 1-D LP-based techniques. The new 3-D
techniques (3-D Yule-walker equation [29] and 3-D LS Lattice case with Fast
Algorithm [30]) presented in this thesis can be applied to future 3-D LP-based data
compression algorithms for efficient transmission and storage of 3-D data sets. If the
data are well characterized by their 3-D LP coefficients, 3-D LP-based compression
techniques could be used to reduce the number of bits to save or to transmit 3-D data.
The quality of the predictive coefficients will directly affect the overall compression
performance and the 3-D algorithm quality; the results of the 3-D spectral analysis in
previous sections suggest that the quality will likely be very good.

There have been many attempts in 1-D to develop different versions of the LP-
based data compression algorithms [26]. Linear predictive coding (LPC) is an
appropriate example to explain how LP coefficients are used for purposes of data

compression, such as speech compression (1-D temporal domain algorithm) based on
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linear predictive modeling [26,27]. Since speech signals are not stationary, we are
typically interested in the similarities over short time intervals. For vowel sounds
which have a high degree of similarity within a selected sampling interval, the
parametric modeling produces an efficient representation of the sound [26]. The

autocorrelation r.[i] which describes the redundancy in the signal s[n] is computed

only over a few time samples i=0,1,---p and the compressed signal s[An] then can

be defined as

s[An] = Zp:ai s[n—i]

Iss [O] I [1] e T [ p- 1] I [1]
Iss [l] Iss [O] o . Iss [2]

I [ p- l] oot Iss [0] Iss [ p] (104)

The basic idea of linear prediction coding/compression is to record the p LP

coefficients as a compressed file in lieu of the actual data samples. Suppose we want

to construct a prediction for a(i) as a linear combination of its previous p samples
called a p th order linear predictor. Obviously, compression can be accomplished only
if one chooses a number p less than the number n of all data samples. If a

compression ratio (p/n) is obtained nominally in the 1-D case, we would expect to

achieve a minimum of (p/n)2 or (p/n)3 for 2-D and 3-D data sets with the 2-D and

3-D LP algorithms of this thesis.
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Figure 37. New 3-D LP algorithms presented in this thesis would become
foundational blocks in future 3-D LP-based compression algorithms. (a)
Compression (b) Decompression.

In the case of a 2-D signal (typically an image), various efficient 2-D LP-based
coding techniques have been developed and applied to the transmission of 2-D signals
[26]. However, these techniques remap the neighboring pixels of a central analysis
pixel into a 1-D vector so that Eq (104) is directly used [32], so it is not a true 2-D LP-
based coding/compression technique. Furthermore, there has not been a 3-D LP-based
coding/compression technique even though many 3-D data sets including
hyperspectral imaging (HSI), interferometric synthetic aperture radar (IF-SAR)
imaging, radar space-time adaptive processing (STAP), and high-definition television

(HDTV) can be the source of data for processing by a 3-D compression technique.
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Figure 38. 32x32x32 data samples. Only an order 2x2x2 LP coefficient super block
vector (about 7 scalar values) is needed to represent all the 323 data values if the 3-D
signal were simply a 3-D sinusoidal. The compression factor is would then be
(27/32), which is a very great savings, in which the 3-D LP coefficient data is saved
in lieu of the original 32° sinusoidal data values.

Figure 37 shows how the new 3-D LP algorithms presented in this thesis could
become foundational blocks in future 3-D LP-based compression/decompression
algorithms.

The coding/compression efficiency factor would likely be the 1-D savings,
only squared or cubed (for 2-D and 3-D data sets respectively). The new 3-D
algorithms presented in Chapter 5 could be used to reduce the number of bits over that

required to save the original 2-D or 3-D data samples. For example, an extreme case is
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a 3-D complex sinusoid of 32x32x32 data samples. If 3-D LP analysis is performed,
only an order 2x2x2 LP coefficient super block vector [28] (about 27 scalar values) is

needed to represent all the 32° data values as shown below in Eq (105).

a0 pdil [Qpl, Py =11 [0]a Pr P2 =11 [ a P p2,=1,1[2]] (105)

which is defined in terms of the block vectors

106
§p3p2p1 = [a P3P2 Py [O] a P3P, Py [1] a P3P, Py [2]]’ ( )

which is in turn defined in terms of the scalar elements
a P3P2P1 [O] = [aP3P2P1 [O’O’O] aP3P2P1 [0’0’1] aP3P2P1 [0’0’2]]’

a P3P2 Py [1] = [a P3P2 Py [0’1’0] a P3Pz Py [0'1'1] a P3Pz Py [0’1’ 2]] !
and

a P3Pz Py [2] = [aP3P2P1 [0'2’0] aPaP2P1 [0'2’1] ap3p2p1 [0’2’2]] (107)

Therefore, the compression factor would be (27/32)°, which is a very great
compression ratio, saving the LP coefficient data in lieu of the original 32* sinusoidal

data values as shown in Figure 38.
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6. SUMMARY OF RESEARCH CONTRIBUTIONS

In this last chapter, the implications of the research contributions presented in
this thesis are summarized and suggestions for future work are provided. The
contributions of this thesis are divided into three main sections: (1) 2-D sharpening
based on predictive BWE using 2-D AR estimation fast algorithms (2-D Yule Walker,
2-D LS Lattice, and 2-D LS Covariance), (2) 2-D synthetic imagery resolution
enhancement techniques using the extensions of concepts introduced for a 2-D BWE
technique, and (3) new tools for future 3-D BWE techniques (3-D Yule-Walker
Equations and 3-D lattice LP parameter estimation method, and fast algorithms for
both).

The first research contribution we introduced was the new 2-D BWE technique
[31] based on the fast 2-D LP algorithm that operated in conjunction with existing 2-D
spectral estimation techniques. This new alternative super-sharpening BWE method,
presented in this thesis, is capable of preserving the full dynamic range of features in
complicated signals that are being analyzed.

The second research contribution was a variation of the 2-D BWE technique
for application to computed synthetic radar imagery. Using radar data collected
already in a transform-like data structure, novel 2-D synthetic imagery resolution
enhancement techniques were developed.

The last research contribution is comprised of novel 3-D spectral analysis
techniques, particularly new 3-D autoregressive spectral estimation algorithms

[28,29,30]. Both the 3-D Yule-Walker equations, for the known 3-D autocorrelation
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sequence (ACS) case and the 3-D lattice linear prediction parameter estimation
method for unknown correlation case were developed, each with a fast recursive
solution operating directly in a 3-D octant-space support region. These techniques
provided enhanced 3-D spectral resolution results, particularly spectral estimation
using the 3-D AR power spectral density technique. These new algorithms will form
the critical component of a future 3-D sharpening algorithm, which will be the subject
of future work and research challenges for implementing a full 3-D BWE technique.
Furthermore, fully 3-D signal processing that has the capability to provide
reduced-dimension parametric features of the multi-dimensional data for purposes of
data coding/compression is highly desirable. The new 3-D algorithms presented in this
thesis could be used to reduce the number of bits to save or to transmit a 3-D (which
would be a new use of 3-D LP coding and compression) data set relative to the number
of bits for just sending the original 3-D data without LP coding/compression in future

research.
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APPENDIX

Appendix treated herein is derived from section 5.2.1 pages on 55-58. The
eight examples represent the first-, second-, third-, fourth-, fifth-, sixth-, seventh-, and

eighth-octant space respectively and prediction directions of p,,p,, and p;
(p,=1,p,=2p;=1) are shown in Figures A-H. In anticipation of the fast
computational algorithm to be presented, we shall assume that subscript p,p,p,
means p, (point on the ‘i’ axis) is a variable order parameter and p, (point on the
‘jaxis)and p, (pointon the ‘k ’axis) are assumed to be fixed order parameters.

Super block matrix and vector representations of the first-, second-, third-,
fourth-, fifth-, sixth-, seventh-, and eighth-octant space Yule-Walker equations are

respectively

1
= R a ,
= P1P2P3 == P1P2P3 =P1P2P3
2
= P1P2P3 = P1P2P3 = P1P2P3
< _ 3
— P1P2P3 = PiPaPs = PiPoPs
4 4
= P1P2P3 = P1P2P3 = P1P2P3
3 5
o =R a ,
= P1P2P3 = P1P2P3 = P1P2P3
9 6
o =R a 1
= P1P2P3 = P1P2P3 = P1P2P3
Y 7
J =R a |
=ppPys  — P1P2Ps =P1P2P3
3 8
Y =R a
=ppps  — P1P2Ps =P:P2Ps

as described in Egs (A-H).
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The First Octant-Space

- Block wector representation of the first octant-space Tule-Walker equation R
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The Second Octant-Space

- Block vector representation of the first octant-space Yule-Walker equation R
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as described in Eq (B
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- This example (p; =1, p; = 2 p; =1} represents the second octant space and prediction direction of p; in the negative direction, p, in the

positive direction, and p; in the positive direction as shown in Figure B.
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Figure B. Tllustration of the prediction directions
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The third Octant-Space

- Block vector representation of the first octant-space Yule-Walker equation R
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- This example (p; =1, p,; = 2 p; =1) represents the second octant space and negative direction of p; in the negative direction, p, in the
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positive direction, and p; in the positive direction as shown in Figure C.
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Figure C Tllustration of the prediction directions
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The fourth Octant-Space

. . 4 4 . .
- Block vector representation of the first octant-space Yule-Walker equation Ww P mﬁ. 5 8 described in Eq (D0
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[ e e Y e e T O = Y e Y e Y e R e Y

- This example (p; =1, p; = 2 p; =1} represents the second octant space and negative direction of p; in the positive direction, p, in the

positive direction, and p; in the positive direction as shown in Figure D
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Figure D Tllustration of the prediction directions



93

The fifth Octant-Space

- Block vector representation of the first octant-space Yule-Walker equation R

[e'-L-1-21] [+B00  »0O0 007
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- This example (p; =1, p,; = 2 p; =1) represents the second octant space and negative direction of p; in the negative direction, p, in the
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negative direction, and p; in the positive direction as shown in Figure E.

LA WW.F? = w“.n:f as described in Eq (E).
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Figure E. Tlustration of the prediction directions
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The sixth Octant-Space

- Block vector representation of the first octant-space Yule-Walker equation R
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- This example (p; =1, p; = 2 p; =1} represents the second octant space and negative direction of p; in the positive direction, p,
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negative direction, and p; in the negative direction as shown in Figure F.
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Figure F. Tllustration of the prediction directions
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as described in Eq (F).
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The seventh Octant-Space

- Block vector representation of the first octant-space Yule-Walker equation R
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- This example (p; =1, p; = 2 p; =1} represents the second octant space and positive direction ofp; in the positive direction, p; in the
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negative direction, and p; in the negative direction as shown in Figure G.
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Figure G Tllustration of the prediction directions
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as described in Eq (G).
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The eighth Octant-Space

. . 8 k) . .
- Block vector representation of the first octant-space Yule-Walker equation Ww P I mﬁ. 5 8 described in Eq (H).
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- This example (p; =1, p; = 2 p; =1} represents the second octant space and positive direction ofp; in the negative direction, p, in the

negative direction, and p; in the negative direction as shown in Figure H
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Figure H Tllustration of the prediction directions
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