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Achieving sharpened (enhanced detail) features of a multi-dimensional data 

source using the linear prediction (LP) bandwidth extrapolation (BWE) technique in 

the transform domain is the main objective of this research. The evolution of sensor 

technology has provided acquisition scenarios in which the data format is inherently 

multi-dimensional, including hyperspectral imaging (HSI), interferometric synthetic 

aperture radar (IF-SAR) imaging, and radar space-time adaptive processing (STAP). In 

all these applications, fully multi-dimensional signal processing that has the capability 

(1) to enhance the resolution of the final multi-dimensional analysis result, and (2) to 

provide reduced-dimension parametric features of the multi-dimensional data for 

purposes of data encoding/compression is highly desirable.  

This thesis provides algorithmic techniques that achieve both capabilities using 

a novel 2-D BWE approach and its associated fast computational algorithms. 

Furthermore, 3-D LP fast algorithms were developed, as part of this research, that 

estimate 3-D AR parameters of the original 3-D sensor domain data, which are then 

used to produce high resolution 3-D AR spectral estimates. These new 3-D algorithms 

will become components of future research in 3-D BWE algorithms that sharpen 

features in 3-D data sources. 
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MULTI-DIMENSIONAL PARAMETRIC ESTIMATION: 
TWO DIMENSIONAL SHARPENING BY PREDICTIVE BANDWIDTH 

EXTRAPOLATION AND FAST ALGORITHMS FOR THREE DIMENSIONAL 
AUTOREGRESSIVE ESTIMATION 

 

1. INTRODUCTION 

1.1. Research Contribution Overview 

Multi-dimensional predictive bandwidth extrapolation (BWE) can be applied 

either theoretically or experimentally to multi-dimensional data sources, achieving a  

super-resolution capability by combining multi-dimensional autoregressive (AR) 

algorithms with a multi-dimensional BWE technique as shown in Figure 1. Examples 

are shown for one-dimensional (1-D), two-dimensional (2-D), and three-dimensional 

(3-D) cases of multi-dimensional data. One-dimensional techniques based on BWE 

have been developed [2,4] to add predicted high frequency content to 1-D signals, 

where these frequencies were missing, and extended in this thesis to the 2-D case for 

handling imagery. The effect of the techniques is to sharpen the temporal content (1-D 

signals) or the spatial content (2-D images). In the past 10 years, we have seen the 

development of high-resolution 2-D spectral analysis techniques, such as 2-D linear 

prediction (LP) [1], 2-D autoregressive (AR) [10,22], and 2-D minimum variance 

(MV) methods [19] with associated fast computational algorithms. These algorithms 

estimate 2-D LP/AR/MV parameters in the original 2-D signal/image domain in order 

to produce high-resolution results in the transform domain [1,3,10,22]. The new 2-D 

BWE, the first research contribution of this thesis, switches the domain of application  
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Figure 1. Sharpened and enhanced resolution of various 1-D, 2-D, and 3-D data 
sources using the BWE technique. 

 

of the 2-D high-resolution techniques from the original signal or image domain to the 

transform domain in order to produce sharpened results in the original domain. For 

example, an image would be 2-D transformed, a 2-D LP applied to the spatial 

frequencies, and then a transform-domain spectral analysis would be performed to 

produce a sharpened result. Our research contribution to the new 2-D BWE technique 

[31] is shown in Figure 2. Using existing tools in 2-D, it is possible to branch off into 

either BWE using a 2-D AR power spectral density (PSD) approach (path #1) or into 

2-D LP BWE of the 2-D transform of 2-D data (path #2). For this research, using the 

existing 2-D tools that were developed by Marple [3,20], it was possible to develop 

new 2-D BWE technique (path #2). 

The second emphasis area of this thesis is an extension of the 2-D BWE 

technique for computed synthetic aperture radar (SAR) imagery. The 2-D BWE  
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Figure 2. Research contributions for the new 2-D BWE technique are shown as a 
branch involving 2-D LP Transform BWE (Path #2) in conjunction with existing 
2-D AR algorithms. 

 
 
technique in this case is applied to data already collected in the transform domain.  

The research approach for application of 2-D BWE techniques to computed synthetic 

radar imagery is shown in Figure 3. Using radar data that is inherently a Fourier 

transform in the manner that it is collected, along with existing 2-D algorithms     

(2-D Yule Walker, 2-D least squares (LS) Lattice, and 2-D LS Covariance) [1,3,19,22] 

and the newly developed 2-D BWE techniques of this thesis, a novel 2-D synthetic 

imagery resolution enhancement technique was developed.  

The last major emphasis of this thesis is the development of algorithmic  
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Figure 3. Research contributions using the 2-D BWE technique for computed 
synthetic radar imagery. Using data collected as transform-like structure with 
existing 2-D algorithms and the newly developed 2-D BWE techniques, a novel  
2-D synthetic imagery resolution enhancement technique was developed. 

 
 
techniques for fully three-dimensional (3-D) signal processing [28,29,30], which will 

become a component of a future 3-D BWE technique that will enhance the resolution 

of a 3-D data source (e.g., HSI imagery). This work has to be developed with a fast 

algorithm because of the high computational overhead in 3-D signal processing. 

Without fast algorithms, some of the more exotic methods of spectral estimation 

cannot be considered for practical applications. Furthermore, this thesis proposes two 

new 3-D AR fast algorithms that will be components of a future 3-D BWE technique. 

We shall demonstrate the use of the algorithms for 3-D spectral analysis with the result  
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Figure 4. Research contribution for two new 3-D AR fast algorithms for future  
3-D BWE technique using 3-D AR fast algorithms. It is possible to develop future 
work in 3-D LP BWE and the algorithms were tested with quality results in 
spectral estimation of 3-D AR PSD (Path #1) 

 

that enhanced spectra resolution is achieved over classic 3-D Fourier spectral 

estimates. This research will contribute to the use in two new 3-D techniques with fast 

algorithm for a future 3-D BWE technique, as illustrated in Figure 4. Using either the 

3-D Yule Walker equation set or the 3-D LS Lattice equation set, each with a fast 

algorithm, it will be possible to develop the 3-D BWE method in future research. The 

3-D LP-based BWE method will sharpen and enhance the resolution of original 3-D 

signals.  

This thesis is organized as follows. The first chapter reviews research 
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contributions, motivations, and concepts of the BWE technique. Some examples of 

data sources to which the BWE techniques have been applied will be presented in  

Chapter 1. Related techniques, such as prior 1-D sharpening techniques, 2-D signal 

processing concepts, and 2-D LP/AR/MV spectral estimation techniques with fast 

algorithms [1,3,19,22] will be introduced in Chapter 2. Since the adaptation of 

Marple’s techniques to determine the prediction estimator (which is the core of 2-D 

BWE) is an important part of this thesis, this chapter will be dedicated to an 

explanation of the process in detail. The concepts of Chapter 2 are crucial since the  

3-D AR spectral estimation techniques in Chapter 5 are based on the basic equations 

and efficient calculation methods found in 2-D AR algorithms. In Chapter 3, an 

explanation of the process of 2-D sharpening by the new predictive bandwidth 

extrapolation technique, together with test results, will be presented. In Chapter 4, a 

variation of the 2-D BWE technique for application to computed synthetic aperture 

radar (SAR) imagery will be introduced. In Chapter 5, new 3-D AR fast algorithms, 

which include the 3-D Yule-Walker (YW) method and the 3-D lattice LP parameter 

estimation method, will be presented. Finally, Chapter 6 will summarize the 

contributions of the research reported in this thesis. 

1.2. Motivation and Concept of Bandwidth Extrapolation (BWE) 

One-dimensional BWE extrapolates the bandwidth of the signal in the 

transform domain to enhance and sharpen the resolution of the original signal in the 

original domain [4]. This technique extends the 1-D transform of the collected data  
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Figure 5. (a) In the case of a small spatial aperture, when analog Fourier transform 
is applied to this image that shows a sidelobe pattern representing distortion, its 
spectrum will be bandlimited. (b) If the original image has an extremely sharp line 
feature with no sidelobe pattern representing distortion as in the case of the ideal 
big lens (extremely large spatial aperture), its spectrum would have an infinite 
bandwidth [2].  

 

beyond the observed bandwidth by using a linear prediction model [6,11-18] in the 

transform domain. Since prediction and estimation techniques are central to the BWE 

technique, it will be shown that BWE is different from traditional high-pass filtering 

methods of sharpening a signal [23]. An example of the BWE sharpening approach is 

shown in Figure 5. An image has bandlimited spatial frequencies (wavenumbers) k  

when collected from an optical imaging system with finite aperture. In the case of a 

small spatial aperture, the image through the lens shows a sidelobe pattern 

(a) 

(b) 
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Figure 6. Bandwidth extrapolation scheme (fourth-order prediction). The gray dots 
represent existing data points, while the black dots represent the forward predicted 
extension data.  

 
 
 

 

 
 

Figure 7. A synthetic generated bandlimited data record is used to achieve 
sharpened 1-D signal. IFFT is first applied to the signal from the original domain, 
then, using the predictive algorithm, the IFFT signal is extended in the backward 
and forward direction. A FFT is then applied to the extended transform, which 
results in an enhanced resolution. 
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representing distortion, since its spectrum (Fourier transform) will be spatially 

bandlimited due to the finite aperture. If the original image has an extremely sharp line 

feature with no sidelobe as in the case of the ideal big lens (extremely large spatial 

aperture), its spectrum would have an infinite bandwidth. Based on this observation, if 

a predictive coefficient a  can be estimated, then the bandlimited signal S(k) can be 

bandwidth extended in kΔ  increments )( kkS Δ+ as expressed in Eq (1).  

)()()exp()( 0 kaSkSkxjkkS =Δ−=Δ+ π  

Figure 6 illustrates one example of the forward extrapolation procedure [11]. 

The gray dots represent existing data points, while the black dots represent the forward 

predicted extension data. The order of prediction determines the number of past data 

points needed to determine the new data. For instance, in this figure, a fourth -order 

prediction scheme is shown, where ]1[ +nx  data is determined using the four 

previous data ]3[ −nx , ]2[ −nx , ]1[ −nx , and ][nx . 

In order to present the effect of the high-resolution transform-domain-based  

1-D BWE technique, a synthetic idealized bandlimited data record is used to achieve a 

sharpened 1-D signal, as illustrated in Figure 7. After forming the inverse transform of 

the original signal, prediction techniques are applied in order to extrapolate the 

bandlimited transform data. A linear prediction model of the transform data is 

combined with the original data to synthesize extrapolated transform data beyond the 

original transform bandlimited extent by using a BWE technique.  

Note that our bandwidth extrapolation technique should not be confused with  

(1) 
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Figure 8. In this figure, changes in either the original domain or the frequency 
domain are indicated to distinguish between BLE and BWE [11,17]. In BLE, 
the signal in the original domain is extended which results in the frequency 
domain having enhanced resolution. In BWE, the frequency domain is 
extended, which results in the time domain having enhanced resolution. 

 
 
 

bandlimited extrapolation concepts of prior literature [11,13,14] that simply extend the 

time-limited original signal in the time domain without any modification of the 

frequency bandwidth. The BWE technique, on the other hand, extrapolates the 

bandwidth of the signal in the frequency domain (transform domain) to enhance and 

sharpen the resolution of the original signal in the time domain (original domain) 

without any modification of its time interval [4,12], as shown in the Figure 8. This 1-D 

BWE concept is extended in this thesis to the new 2-D BWE technique by 

incorporating the 2-D AR model estimation method of Chapter 3 [3].  

Examples of data sources which can be BWE are not limited to time domain  
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Figure 9. Three categories that represent possible sources of data for predictive 
application of BWE. In 1-D, temporal waveforms and single array snapshots 
can be used as data sources [14]. In 2-D direct imagery and computed imagery 
are available [4,9], while in 3-D HSI, IF-SAR, and video data can be applied 
[21,24]. In each case, the application of predictive BWE results in enhanced 
resolution of the original data source. 

 
 
 
data. In the 1-D case, temporal waveforms and spatial waveforms can be used. In 2-D, 

direct imagery, such as visually acquired imagery, and computed imagery, such as 

SAR, can be used. In the 3-D case, hyperspectral imaging sensors, interferometric 

synthetic aperture radar imagery, and video data sources can be used with a future 3-D 

BWE technique [21]. Figure 9 shows the 3 categories that represent possible sources 

of data for application of prediction-based BWE. A pulsed Doppler radar example 

application offers insight to understanding distinctions among three possible 1-D 

signal sharpening techniques [2]: conventional Fourier spectral processing, parametric  
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Figure 10. Moore, Zuerndorfer, and Burt from [Lincoln Laboratory Journal [4]] have 
shown three techniques to determine information regarding target position signal; 
conventional FFT processing, model-based spectral estimation, and 1-D BWE. The 
conventional FFT method makes it impossible to separate all the target scatterers. 
Using the parametric-model method, it is possible to determine all scatterer positions, 
however the result is limited in information. In the 1-D BWE method, it is possible to 
separate and determine all scatterer positions, it can also determine all their amplitudes. 
This is possible due to increased predictive bandwidth in the frequency domain. 
 
 
 
spectral estimation techniques, and bandwidth extrapolation. As shown in Figure 10, 

the top row illustrates the limited range information available from conventional 

Fourier processing. The model-based technique provides the most information on 

frequency location while the BWE technique provides both frequency-model data and 

amplitude data. The middle row illustrates how the conventional model-based  

f

Range

Range

Range

f
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Figure 11. Comparison of 2-D image sharpening techniques; (a) Original image. (b) 
Traditional 2-D highpass convolution filtering increasing the intensity of every high 
frequency part of the objects (main lobes and side lobes). (c) Row line by row line 
1-D based 2-D BWE. (d) New 2-D BWE technique presented in this thesis. 

 
 
 
approach primarily yields enhanced target scatterer position information, and the 

bottom row shows how  a more conventional target position profile is constructed by 

using an extrapolation approach combined with conventional Fourier processing. The 

model-based technique provides the most information on frequency location while the 

BWE technique provides both frequency-model data and amplitude data. This 1-D 

BWE concept is extended in this thesis to the new 2-D BWE technique by combining 

(a) (b) 

(c) (d) 
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the 2-D AR model estimation methods and fast algorithms, as will be shown in 

Chapter 3. 

Four examples are shown in Figure 11 that present a comparison of 2-D 

techniques for image sharpening. Traditional 2-D highpass convolution filtering [23] 

is the least effective of the three methods. Due to the highpass filtering process, the 

intensity of all high frequency portions of objects, including both the mainlobe and the 

sidelobes, are increased. In the case of 1-D BWE applied only along each row line, the 

enhancement is achieved along only a single dimension, so it is not a true 2-D BWE, 

and results are not as sharp in both dimensions as a true 2-D BWE. Figure 11 (d) 

shows the result of the true 2-D BWE technique that is presented in Chapter 3. It is 

obvious from the figure shown that there is a significant resolution improvement along 

both dimension, in comparison with Figure 11 (c). In the post-sharpened image, it is 

now easier to locate the true location of the two points and the diagonal line, since the 

sidelobes from the previous image have been reduced significantly. 

 

1.3. LP/AR/MV Fast Computational Algorithms 

The thesis presents methods for extrapolating bandwidth in the transform 

domain utilizing mathematical prediction algorithms. We should note that the 

transform-domain step LP fast algorithms are very important because calculating 

precise predictors rapidly is important to the BWE technique for realizing the 

sharpened signals in the original domain. The BWE technique requires a heavy 

computational burden especially for real-time processing, and reducing the amount of 
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computation is important. Some existing 1-D AR fast algorithms [2,4], which can also 

provide accurate LP parameter models, can be extended to 2-D techniques. However, 

extending the 1-D techniques to 2-D has faced certain difficulties due to the 

differences in the 1-D and 2-D linear systems theory. One problem in particular has 

been the lack of a capability to factor a 2-D polynomial into lower degree polynomials. 

The 1-D concept of isolated poles, zeros, and roots does not extend, with certain 

exceptions, to the 2-D case. Also the computational burden of some advanced 2-D 

spectral estimation methods has restricted testing and application to small 2-D data 

sets with simple signal scenarios.  

Currently, several techniques, such as the 2-D periodogram and the 2-D AR 

spectral density estimation have overcome those difficulties and have seen practical 

application to large 2-D data sets [7-10,19,22]. The study of 2-D high-resolution 

spectral estimation has been presented in various reports, such as the 2-D lattice LP 

parameter estimation method [3] and the 2-D modified covariance method of LP [22]. 

The resulting fast recursive 2-D algorithms for these methods offer significant 

computational reductions and the techniques are useful for high resolution 2-D 

spectral analysis applications. These 2-D spectral analysis can be used in space-space 

data arrays (e.g., image processing), space-time data arrays (e.g., sonar, seismic, and 

synthetic aperture radar processing), or even time-time data arrays (e.g., analysis of 

radar pulse repetition interval vs. arrival time). The next chapter, in particular, will 

present the 2-D method advanced by Marple [1,3,22], which resolves the 

computational difficulties associated with the existing 2-D methods. 
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(4)

(2)

(3)

2. 2-D AUTOREGRESSIVE AND LINEAR PREDICTION RANDOM 
PROCESSES AND FAST ALGORITHMS 

2.1. Two-Dimensional Signal Processing 

2.1.1. Classical 2-D Linear System and Transform Theory 

A 2-D sequence, or array, of real or complex numbers of any function 

],[ 21 nnx  that is defined for the ordered pair of integers 1n  and 2n  over 

∞<<∞− 1n  and ∞<<∞− 2n  is a discrete 2-D signal. The 2-D unit impulse 

function has the following definition, 

][][],[ 2121 nnnn δδδ = , 
and 

⎭
⎬
⎫

⎩
⎨
⎧ ==

=
otherwise

nnfor
nn

0
01

][][ 21
21 δδ  

 
The 2-D discrete convolution sum for a 2-D linear shift invariant system is 

∑∑
∞

−∞=

∞

−∞=

−−=
i j

jixjninhnny ],[],[],[ 2121  

for input ],[ 21 nnx  and output ],[ 21 nny . The 2-D sequence ],[ 21 nnh , defined over 

an infinite range in each dimension, is the 2-D system impulse response sequence. It is 

obtained as the output sequence when the input is ],[],[ 2121 nnnnx δ= . A 2-D linear 

shift-invariant system is assumed to be stable if the output sequence remains bounded 

for all bounded input sequences, but unlike 1-D system stability, the stability of 2-D 

systems is considerably more difficult to test. Also causality is not inherent for 2-D 

signals, in which one or both dimensions of the signal are functions of space rather  
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Figure 12. Three regions of support for discrete system sequence ],[ 21 nnh  
(nonzero in shaded area). (a) Nonsymmetric half plane (NSHP) is that 
causal. (b) Quarter plane that is causal (QP). (c) Symmetric half plane (SHP) 
that is noncausal (d) Full plane (FP) that is noncausal. 

 

 

than time. As presented in Figure 12, one region of support for the 2-D discrete 

impulse response sequence is the nonsymmetric half plane (NSHP), which can be 

considered as a causal 2-D system by following certain rastering operations. The 

(a) (b) 

(c) (d) 
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symmetric half plane (SHP) is considered to be noncausal since rastering operations 

do not allow element sequencing in a “causal” manner. If 2-D impulse response is 

restricted to the quarter plane (QP) as a special case region of support, it too can form 

a causal 2-D system. The QP case will be the region of support for the purpose of 2-D 

spectral analysis. A 2-D recursive difference equation relating the input to the output 

of a 2-D system is 

∑∑∑∑ −−=−−
i ji j

jninyjibjninxjia ],[],[],[],[ 2121  

By assuming 1]0,0[ =a , Eq (5) can be rewritten as  

∑∑∑∑ −−+−−−=
i ji j

jninujibjninxjiannx ],[],[],[],[],[ 212121  

The range of the various summations will denote the order of the 2-D difference 

equation. For example, the order of array ],[ jia  would be 21 pp × , if its region of 

support was the rectangular QP spanning 10 pi ≤≤  and 20 pj ≤≤ .   

Assuming that a continuous signal ),( 21 ttx  is sampled at intervals of 1T  and 

2T  along its dimensions to create the sampled sequence ),(],[ 221121 TnTnxnnx = , 

then the 2-D discrete-time Fourier transform (2-D DTFT) of the sampled 2-D signal is 

expressed by 

∑ ∑
∞

−∞=

∞

−∞=

+−=
1 2

])[2exp(],[),( 222111212121
n n

DTFT TnfTnfjnnxTTffX π . 

The squared magnitude of the 2-D discrete-time Fourier transform may be interpreted 

(5) 

(6)

(7)
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as the 2-D energy spectral density: 

∫ ∫∑ ∑
− −

∞

−∞=

∞

−∞=

==
1
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2/1

2/1

2/1

2/1
21

2
21

2
2121 ),(],[

T
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T

T
DTFT

n n
dfdfffXnnxTTEnergy  

2.1.2. Classical 2-D Random Process and Spectral Estimation 

The concept of 2-D PSD requires 2-D array samples from a 2-D random 

process to be wide-sense stationary, as in the 1-D case. The 2-D autocorrelation 

sequence (ACS) will then be a function of only the differential distance between the 

two sampled points in the 2-D plane. The application of the time average of a single 

realization of the 2-D random process to yield the 2-D autocorrelation sequence can be 

justified under the assumption of ergodicity of the 2-D ACS: 

∑ ∑
−= −=

∗

∞→
∞→

++
++

=
1

1

2

22
1

],[],[
12

1
12

1lim],[ 21
21

21

N
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N

NjN
Nxx jixnjnix

NN
nnr  

Using a similar approach to the one used in the 1-D case, it can be shown [1] that two 

equivalent representations of the 2-D PSD function are either 

⎪⎭

⎪
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ffP π  

or, defined as a 2-D Z-transform of the 2-D ACS ],[ lkrxx , 

∑ ∑
∞

−∞=

∞

−∞=

−−
=

k l

lk
xxxx zzlkrzz 2121 ],[),(P  

 
Assuming ),( 21 zzyyP  has a similar Z-transform of ],[ lkryy , then the following 

(8)

(9)

(10)

(11)
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relationship between ),( 21 zzxxP  and ),( 21 zzyyP  exists,  

),()/1,/1(),(),( 21212121 zzzzzzzz xxyy PHHP
∗∗∗

=  
 

in which ),( 21 zzH  is the Z-transform of the system response function. If the input 

process is white and the filter has a 2-D transfer function, given by a rational function 

of 2-D polynomials, then the output process is a 2-D autoregressive-moving average 

process (2-D ARMA) with PSD of 

2

21

21
2121 ),(

),(),(
ffA
ffBTTffPARMA ωρ=  

 
in which 

∑ ∑

∑ ∑
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π
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are defined over the region of support. If 1),( 21 =ffA  for all ),( 21 ff , then the PSD 

represents a 2-D moving average process (2-D MA), and if 1),( 21 =ffB , then the 

PSD represents a 2-D autoregressive process (2-D AR).  

2.2. Two-Dimensional Autoregressive Spectral Estimation with Fast 
Algorithms 

First popularized by Burg [1], the one-dimensional (1-D) lattice (reflection 

coefficient) technique of  parameter estimation has been extended [2,31] to the two-

dimensional (2-D) case and is summarized in this section. The resulting fast recursive 

2-D algorithm is a considerable computational simplification over and an estimation 

(12)

(13)

(14)
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(16) 

(15)

improvement on previous attempts to extend the 1-D Burg linear prediction algorithm 

to 2-D by exploiting some newly discovered matrix structures. The presented 

technique is useful for high resolution 2-D spectral analysis applications. Furthermore, 

the newly acquired 2-D recursively updated coefficients can be used as part of the 2-D 

BWE technique, which will be explained further in Chapter 4.  

2.2.1. Two-Dimensional Yule-Walker Equations 

Operating directly on the 2-D quarter-plane (QP) LP parameters, the 2-D Yule-

Walker equations for a casual 2-D AR process are expressed as [1]: 

∑∑
⎭
⎬
⎫

⎩
⎨
⎧ =

=−−
i j

w
xx otherwise

lkfor
jlikrjia

0
]0,0[],[

],[],[
ρ

 

Of interest here are the 2-D linear prediction parameters ],[ jia  with quarter-plane 

support. The summation ranges can be chosen to be any one of the four quadrant plane 

regions. In anticipation of the fast computational algorithm to be presented, we shall 

assume that subscript 21 pp  means 1p , the point on the ‘ 1n ’ axis, is a variable order 

parameter. Then, the 2p  point on the ‘ 2n ’ axis is assumed to be a fixed order 

parameter. An alternative representation of the first quadrant Yule-Walker equation is  

1
2121

1
21 pppppp

aRρ= . 

 
The block vector 1

21 ppa has a superscript 1 to designate it as set as a first quadrant AR 

parameter vector. It is comprised of )1( 1 +p  vectors, each vector of which has 

dimension )1( 2 +p . The block vector 1

21 pp
ρ is a 2-D variance of the errors that has all 
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(17) 

(18) 

(20)

(21)

(19) 

zero entries, with the exception of the top entry expressed in Eq (17). 

TT
pppp

][
11

2121
00ρρ L=  

Eq (17) is also defined in terms of the vector elements which are 

T
pppppppp piaiaiai ]],[]1,[]0,[[][ 2

1111

21212121
L=a  

and 
 

T
wpp ]00[
11

21
Lρ=ρ . 

The 2-D autocorrelation matrix 
21 ppR has a )1()1( 11 +×+ pp  block-Toeplitz 

structure 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

]0[][

][]0[

2121

2121

21

1

1

pppp

pppp

pp

p

p

RR

RR

R

L

MM

L

 

with )1()1( 22 +×+ pp  matrix elements ][
21

ippR , which also have Toeplitz structure. 

Thus, Eq (20) can be expressed alternately as 
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(22) 

(23) 
 

(24) 

Note that J is a )1)(1()1)(1( 2121 ++×++ pppp  reflection matrix and 
21 ppR is 

complex centrosymmetric 

∗
= )(

2121 pppp RJRJ . 

The above property follows as the result of 
21 ppR being hermitian and Toeplitz. This 

property allows us to express Eq (16) as 

33

212121
)(

pppppp ρJaJJRJ =
∗

 

Observing that 13

2121 pppp
ρρJ = and using the Eq (22) relationship, Eq (23) can be 

expressed as 

113

21212121
)()(

pppppppp ρρaJR ==
∗∗

 

Note that 11

2121
)(

pppp
ρρ=

∗
because the variance is real. By comparing Eq (16) and  

Eq (24), it can be deduced that the third quadrant AR parameters are complex 

conjugates of the first quadrant AR parameters. Using the same approach, we can 

determine that the fourth quadrant AR parameters are complex conjugates of the 

second quadrant AR parameters. 

A fast computational algorithm for the solution is not based on the direct 

solution for the 2-D AR parameters, but is based on first solving a special variant of 

the 2-D AR algorithm with the form 

[ ] [ ]00PRAAI LLLL 212122121 ][]1[ pppppppp p =  (25)
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in which I is a )1()1( 11 +×+ pp  identity matrix, and block linear prediction 

parameter matrices ][
21

ippA for 10 pi ≤≤ and block linear prediction covariance 

matrix 
21 ppP have dimensions )1()1( 11 +×+ pp . We obtain the 2-D AR parameters 

by solving 

11
]][001[]0[

2121

−
= pppp Pa L  

and, scaling such that 1]0,0[
1

=a , then 

1
11

1][]0[][
212121

piforik pppppp ≤≤= Aaa . 

Thus, by solving for matrices 
21 ppP and ][

21
ippA  for 1=i  to 1p  from Eq (25) and 

applying Eq (27), one can get the 2-D AR parameters. Similarly, solving for and 

scaling to force 1]0,0[
4

=a , one can compute the fourth quadrant parameters.  

14
]][100[]0[

2121

−
= pppp Pa L  

and 

1
44

1][]0[][
212121

piforik pppppp ≤≤= Aaa . 
 
 

2.2.2. Recursive Solution for 2-D Block LP Parameter Matrices 

We can show [1] that the 2-D autocorrelation matrix pR is hermitian 

H
pp RR=  and centrosymmetric JJRR

∗
= pp , since H

pp RR=  is block Toeplitz. 

Then we can find the 2-D reflection coefficient matrix, such that the following 

(26)

(27)

(28)
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expression is valid 

         [ ]=++++ ]1[][]1[ 111 pp ppp AAAI L      
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If we multiply both sides on the right by pR at order 1+p , this will yield 

][][][ 1111 JPJ00JJK00P00P
∗∗

++++ Δ+Δ= pppppp LLLL  

where 1+pK is the forward block reflection matrix and 1+Δ p  is 

∑
=

+ −+++=Δ
p

i
pppp ipip

1
1 ]1[][]1[ RAR . 

Also, Eq (29) will be balanced if we select 
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which creates the following order-update recursion 

)]1[(][][ 11 JAJKAA ipii pppp −++=
∗

++ . 

From Eq (30) and Eq (32), it is possible to derive the following recursion of the 

covariance matrix 

   )][(])[( 11111
H
p

T
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The backward matrices JAJB
∗

= p  are obtained by the pre and post multiplication of  
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forward matrices by the reflection matrix. Therefore, only the forward block linear 

prediction matrix, forward block linear prediction covariance matrix, and the forward 

block reflection matrix need to be computed in the 2-D case. This reduces the 

recursive updates by half in the 2-D case.  
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3. 2-D SHARPENING BASED ON PREDICTIVE BWE USING 2-D LP 
ESTIMATION TECHNIQUE 

There have been many attempts to develop different versions of the 2-D BWE 

technique [3-6]. However, those techniques have had computational disadvantages, 

because one has to alternatively take the Fourier transform of each column and row of 

the data matrix simultaneously. Also, the different values of the extended samples that 

border with each side of the original data samples and the missing data samples 

located at each corner from extrapolation might introduce unwanted errors. Note that 

such errors cause the algorithm to fail to achieve an enhanced resolution. Based on our 

new perspective, we propose an alternative 2-D spectrogram matrix array using linear 

transform operations on data samples, from which an opportunity to apply a highly 

sharpened 2-D spectral analysis procedure is created [31]. In this chapter, we will 

present a new 2-D BWE algorithm that extrapolates a finite-extent 2-D data matrix by 

not just a single sample at a time, but instead extrapolates multiple samples at a time 

off one edge of the 2-D data matrix. Furthermore, additional refinements of this 

procedure reduce unwanted extrapolation error, which is caused by both bordering 

problems and missing extended data samples. A block diagram for the new BWE 

processing that enhances the resolution of images is illustrated in Figure 13. 

3.1. New 2-D Bandwidth Extrapolation 

Once we get the 2-D coefficient set from Eq (33), the multiple samples may be 

predicted, or extended by a linear combination of its neighboring samples with  
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Figure 13. Flow chart of 2-D BWE processing with a gray scale image. First the 
original 2-D data is preprocessed to remove DC offset. A 2-D inverse Fourier 
transform is next performed, and due to its resulting conjugate symmetry, the 
redundant half is deleted. Next 2-D LP parameter estimation is performed, and the 
BWE technique is applied. Finally the missing conjugate symmetrical half is restored 
and a 2-D Fourier Transform is applied. Restoration of the offset to bring the image 
back to its original gray scale level is made, resulting in an enhanced spatial resolution 
image. 
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Figure 14. The original data is in a vector form, and is partitioned and arranged 
into Toeplitz structured matrices 

 

updated pA. Using the quarter-plane model, the coefficients can be predicted by four 

different prediction filters of row order 1p  and column order 2p . To perform the 2-D 

column-order-forward-LP extrapolation on the first quadrant, the following equation is 

used 

∑
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22 ][][][
p

j
p jnjn CCC

XAX  

in which 2p  has to fall between 1n  and 2n  in value, and 
C

A
2p  is the original data 

set discussed in Chapter 2.  Eq (35) for the QP support regions can be arranged, or 

(35)
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ordered, into at least two convenient block matrix forms by constructing the 2-D 

parameters either by rows or by columns. 
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Note that the original data set, Eq (36), is a 1-D vector of length )1( 21 +⋅ nn . 
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a 2-D block vector of appropriate dimension to match the matrix multiplication block 

size of Eq (35). Eq (36) is partitioned into a set of block vectors 
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starting with  ]0[
C

X, all data set values for which 02 =p  is used to construct the 

first column and row of each block vector, as shown in Eq (31). After constructing the 

first column and row of each block vector, it is possible to construct the rest of the 

block vector as a Toeplitz matrix as shown in Figure 14 which is linked with Eq (39). 

The sequential block vectors are created in the same manner for 2p  = 1, 2,.. 2n . With 

Toeplitz matrices, it is possible to obtain a matrix which has been extended by one 

new vector term in the forward column direction.  

 

are defined in terms of block matrix entries 
2pA and 

C
X.  

 
 

Note that a new term, ],1[ 21 nnx −  , is shown in Eq (39). By taking the reverse 

steps to extract the relevant data set from the column extended data set, it can be 

shown that the new term is the missing term not recovered by other BWE techniques 
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[25]. Also, by using the technique of reference [2], each line does not need to be 

calculated individually, resulting in a fast algorithm when finding individual extended 

data sets. To perform the 2-D row order forward LP extrapolation on the first quadrant, 

similar steps can be used involving the extrapolation of the column vector, with the 

difference being that we use the extended column data set from the column 

extrapolation rather than the original data set. The following equation is used for row 

extrapolation operations: 

∑
=

−=
1

1
11 ][][][

p

i
p inin RRR

XAX  

 
where superscript 

R
 denotes row, and the value of 1p  has to fall between 1n  and 

2n . 
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Eq (41) can be rewritten into a set of block vectors ordered by rows 
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Applying the same methods that were used for column extrapolation, Eq (44) terms 

are derived from Eq (42) terms. However, when Eq (45) below is carried out, there are 

two new terms appearing in the resulting extended row data set, as shown: 

 

 
As mentioned above, the two new resulting terms, ]1,[ 21 −nnx  and ],[ 21 nnx , recover 

the missing terms that were not available in other BWE techniques [25]. Note this 
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with the knowledge of a fixed order. Similarly, the backward extrapolation on the third 

quadrant is defined by column and row recursions: 
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where 1p  and 2p  have to be between 1n  and 2n . The steps to determine the 

forward column extrapolation and row extrapolations can be used to determine the 

backward column extrapolation and row extrapolation using Eq (40) and (41), and the 

2-D fast algorithm from [3]. This allows the extrapolation of the original data in the 

backward column and backward row direction as shown in Figure 15. 

With the combination of the forward and backward extrapolation of columns 

and rows, it is possible to extend the original data set in all four directions, as shown 

in Figure 15. This proposed BWE technique not only recovers three missing terms, 

which are not recovered with other proposed 2-D BWE techniques [5,25], but also 

provides a fast algorithm to reduce the computational operations needed to estimate 

forward and backward prediction coefficient matrices. 

(46)

(47)
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Figure 15. In previous BWE techniques, a true 2-D BWE technique was not 
achieved, which resulted in a poor result relative to our new method.  (a) 
Column-backward extrapolation and row-backward extrapolation. (b) Column-
forward extrapolation and row-forward extrapolation. (c) The new technique 
employs a true 2-D BWE technique, which can be expanded in any arbitrary 
direction. For this research the original data is first expanded in the column 
forward and backward direction, followed by row expansion in the forward and 
backward direction.  

(a) (b)

(c)
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3.2. Experimental Results  

In this section, we will apply the new 2-D BWE technique and its companion 

spectral estimator to simulated image data. The original data, shown in Figure 16, has 

two point objects and one line object that form a gray scale image for testing BWE 

algorithms. The synthetic gray-scale image is 128×128 pixels, and it is scaled from   

-0.5 to +0.5 along each axis. The image contains blurring effects (sidelobes) due to the 

finite optical aperture assumed to capture the image. It also has a tiny amount of noise 

added to ensure stable estimated 2-D LP parameter that are used in the 2-D BWE 

technique. 

Figure 17 shows the result of the alternative 2-D BWE technique presented in 

this thesis using the 2-D AR parameter matrix estimated by the 2-D lattice algorithm 

[3]. It is obvious from the figure shown that there is a significant resolution 

improvement over the pre-sharpened Figure 16. In the post-sharpened image (the 

result of extrapolation by a factor of two (256×256 pixels)) using an eighth order 

prediction model, it is now easier to locate the true location of the two points and the 

diagonal line, since the sidelobes from the previous image have been reduced 

significantly. 

 

 

 



37 
 

 
 
Figure 16. The original synthetic 128×128 pixel image, with 
unit width and height, containing two points and a line object 
with blurring effects (sidelobes). 
 

 

 
 

Figure 17. Post-sharpened 128×128 pixel image, with unit 
width and height, as a result of applying the new 2-D BWE 
technique. 
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4. NOVEL 2-D SYNTHETIC APERTURE RADAR IMAGERY 
RESOLUTION ENHANCEMENT TECHNIQUE 

In this chapter, the 2-D BWE technique is applied to wideband polarimetric 

radar data. A 2-D SAR image represents the magnitude and location in both down 

range and cross range of each scattering center [8,9]. SAR resolution is an important 

factor in acquiring details of scatterers seen in the image.  

The two-dimensional BWE technique can be a promising technique for 

enhanced-resolution SAR imagery [5,6,7]. Furthermore, the application of the new  

2-D BWE technique increases the number of scattering centers detected in the SAR 

image in comparison with that of conventional SAR image generation that uses the  

2-D FFT to form the image. A simplified block diagram for the processing steps to 

create SAR images is illustrated in Figure 18.  

4.1. Two-dimensional Sharpening Based on SAR Radar: Missile Data 

SAR images to be formatted from simulated S-band and X-band target 

signature data are presented here to validate the proposed 2-D BWE techniques. The 

synthetic S-band and X-band data represent phase history data collected from a 

hypothesized missile structure as though it was taken in a microwave anechoic 

chamber. Such data presumes that data was acquired by a slowly rotating the target  

(“a missile” in this case) within the center of the RF field of the virtual chamber. The 

rotation is stepped in degrees of azimuth (nose-on is the 0° reference for the azimuth). 

At each azimuth step, the target is illuminated with a stepped frequency sequence. At  
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Figure 18. A simplified block diagram for creating SAR imagery. 2-D BWE 
technique can be a promising resolution enhancement technique for radar imagery. 
 

 

each frequency and azimuth step, a complex value is recorded (the so-called radar 

cross section (RCS)) [16,24]. A stepped frequency sequence RCS response for S-band 

between 3.093 to 3.947 GHz in 10.67 MHz steps was synthetically generated from 

target microwave backscatter models. A sequence for X-band from 10.240 to 11.093 

GHz in similar 10.67 MHz steps was also generated. The step interval in azimuth was 

0.015° for both cases.  

The data is effectively acquired in a polar format (due to the rotation) [18], and 

must be interpolated to a cartesian coordinate format for processing by the 2-D BWE 

algorithm. As shown in Figure 19, the phase history data to be processed into radar 

imagery has a fan-shaped polar acquisition format. To get it into a cartesian format, 

data points are interpolated within the fan-shaped region to a cartesian grid. In Figure 

20, the missile’s nose is pointed to the top of the page, while the fin tips are pointed to 

the right and left of the page top.  
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Figure 19. A variation of the 2-D BWE technique for computed synthetic 
radar imagery. The acquired data, shown on the left, is not originally in a 
cartesian format. Because of this, pre-processing interpolation is required. 
The fan-shaped data, shown on the right, is interpolated to attain a cartesian 
format for further processing [24]. (a) The original data acquired in a polar 
format (due to the rotation), (b) Interpolated cartesian coordinate data 
format. 

(b) 

(a) 

X-BAND 

S-BAND 
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Figure 20. S-band SAR image with analysis center azimuth in degrees 
(a),(b) radar image of simulated target obtained by 2-D FFT with Hamming 
weights (Center azimuth: 180°, 65° respectively) (c),(d) Resolution-
enhanced radar image of simulated target obtained by 2-D BWE (Center 
azimuth: 180°, 65° respectively) 

 

Figure 20 and 21 are, respectively SAR images processed by either 

conventional Fourier-based SAR imagery operations or the new BWE method. Shown 

are S-band imagery with a center frequency of 3.5 GHz and X-band imagery with 

(a) (b) 

(c) (d) 

Nose 
Nose 

Nose 
Nose 
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Figure 21. X-band SAR image with analysis center azimuth in degrees (a),(b) radar 
image of simulated target obtained by 2-D FFT with Hamming weights (Center 
azimuth: 180°, 80° respectively) (c),(d) Resolution-enhanced radar image of 
simulated target obtained by 2-D BWE (Center azimuth: 180°, 80° respectively) 

 

center frequency of 10 GHz, both of which used a bandwidth of 400 MHz and a 

measurement polarization of VV. The ‘VV channel’ represents the target response 

signal [24] when the vertical polarization is both transmitted and received. For the  

(a) (b) 

(c) (d) 

Nose Nose 

Nose Nose 
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Figure 22. Photo of target on pylon in radar anechoic chamber of actual truck (The 
data were collected in a 10-story microwave anechoic chamber in Rancho Bernardo, 
CA. Data was acquired by Prof. Marple and provided for use in this research.)  
 

 

original image, nominal down-range resolution and cross-range resolution was  

9.4179 cm/pixel. The original image and the image enhanced by applying the 2-D 

BWE technique (shown in Figure 20 and 21 in (b),(d)), have higher resolution than the 

(a),(c) Fourier-based imagery. 

4.2. Two-Dimensional Sharpening Based on SAR Radar: Truck Data 

We demonstrate image-enhanced results in this section for phase history data 

measured from an actual truck. The data were collected in a 10-story microwave 

anechoic chamber located in Rancho Bernardo, CA. The data was acquired by Prof. 

Marple and provided to the author of the thesis. SAR imagery processed from 

measured S-band target data obtained in the chamber are presented to validate the 

proposed 2-D techniques.  The rotation is stepped in degrees of azimuth (nose-on is 

the 0° reference for the azimuth), and at each azimuth step, the target is illuminated 
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with a 

 

Figure 23. (a) 10-story microwave anechoic chamber (b) A target is 
raised on a pylon in the middle of the chamber. Data was acquired 
by Prof. Marple and provided for use in this research. 

 
 
stepped frequency RF generator. The user provided parameters here are same as for  

the synthetic missile data. The acquired data is not originally in a cartesian coordinate 

format, and so a pre-processing interpolation must be done first to convert from polar 

formatted data to cartesian formatted data. As shown in Figure 19, the received data is 

in a fan-shaped acquisition format, and to get it into cartesian coordinate format, data 

points are interpolated within the fan-shaped image to form square cartesian-formatted 

data. The truck was raised on a pylon in the middle of the chamber and rotated on the 

pylon that is shown in Figure 23. The radar illuminates the rotating truck and receives 

an echoed signal from the truck. As the truck is rotating, the acquisition equipment  

(a) 

(b) 
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Figure 24. S-band SAR image with analysis center azimuth in 
degrees (a) Radar image of truck obtained by 2-D FFT with 
Hamming weights (Center azimuth: 75°) (b) Resolution-
enhanced radar image of truck obtained by 2-D BWE (Center 
azimuth: 75°) 

(a) 

(b) 

(c) 

Head 

Head 
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Figure 25. S-band SAR image with analysis center azimuth in 
degrees (a) Radar image of truck obtained by 2-D FFT with 
Hamming weights (Center azimuth: 47°) (b) Resolution-
enhanced radar image of truck obtained by 2-D BWE (Center 
azimuth: 47°) 

(a) 

(b) 

Head 

Head 
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captures the signal at stepped azimuth angles and stepped frequencies. The images 

shown in Figure 24 and 25 are created from the truck data taken in the chamber, at 

center azimuth angles of 75° and 47°. These are the SAR images obtained by the 

conventional S-band Fourier-based SAR imagery with 3.52 GHz center frequency, 400 

MHz bandwidth and the measurement polarization is VV. “VV channel” represents the 

target response signal when vertical polarization is transmitted and vertical 

polarization is received. The nominal down-range resolution and the cross-range 

resolution of the original images are both 18.80 cm/pixel. The original image and the 

enhanced image, obtained by applying 2D BWE, show that the resolution is enhanced 

by the 2-D BWE approach. 
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5. 3-D AUTOREGRESSIVE AND LINEAR PREDICTION RANDOM 
PROCESS THEORY AND ALGROITHMS 

The evolution of sensor technology has provided acquisition scenarios today in 

which the data format is inherently three-dimensional (3-D). Examples include 

hyperspectral imaging (HSI) sensors (x-spatial dimension × y-spatial dimension × 

wavelength), interferometric synthetic aperture radar (IF-SAR) imaging (x-spatial 

dimension × y-spatial dimension × elevation/height dimension), and space-time 

adaptive processing (STAP) of radar (fast time [samples within a received pulse] × 

slow time [pulse-to-pulse sampling] × sensor array element number).  

The three dimensions often involve a mixture of time, space, and wavelength 

dimensions. In all these applications, fully 3-D signal processing that has the 

capability (1) to enhance the resolution of the final 3-D analysis result (most often 

imagery), and (2) to provide reduced-dimension parametric features of the 3-D data 

for purposes of data encoding/compression is highly desirable. This chapter provides 

algorithmic techniques applicable to both capabilities. We also illustrate the value of 

our technique with a simulated 3-D synthetic aperture radar imagery application 

involving point targets in 3-D. 

5.1. Three-Dimensional Octant-Based Autocorrelation and 3-D LP Parameter 
Matrices 

The technique presented here is useful for estimating 3-D autoregressive (AR) 

parameters from 3-D autocorrelation sequence (ACS) values [28]. It operates directly 

in  3-D octant-space using the 3-D Yule-Walker equations with a recursive solution.  
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Figure 26. Eight octant-space regions of support for 3-D AR parameter arrays. 
While the prediction direction can be chosen arbitrarily, the indicated division of  
3-D space was chosen due to its obvious extension from 2-D quadrants. The origin 
is located at the center of the eight octants. Detail descriptions are provided in 
Figures 28 and 29. 

 

This computationally simple and fast performing algorithm, which has a close 

heritage to the quadrant-based 2-D algorithm [1,3] will be shown using a new 

approach involving recursive estimation which has a related set of triply Toeplitz 

block matrices. A 3-D AR sequence ],,[ 321 nnnx  is generated by driving a 3-D linear 

shift-invariant filter with 3-D white noise ],,[ 321 nnnw ,  

],,[],,[],,[],,[ 321321321 nnnwknjninxkjiannnx
i j k

+−−−−= ∑∑∑ . 

The summation ranges can be selected to be any one of the eight support regions of  

Eq (51) and Eq (52).  
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Figure 27. The top octant space, when chosen at ]2,3,2[

1
a , represents the 

3-D AR parameters located in the first octant space. The number of 
coefficients is 2×3×2. To further explain the octant space, three examples 
were chosen: (a) at ]0,3,2[

1
a , (b) at ]2,0,2[

1
a and (c) at ]2,3,0[

1
a . 

 

A 3-D linear prediction estimate of the array sample ],,[ 321 nnnx  will have the form  

 

∑∑∑ −−−−−=
∧

m n l
knjninlnxkjiannnx ],,,[],,[],,[ 3211321  

in which ],,[ kjia  are the 3-D LP/AR coefficients. If an octant region of support is 

selected, the 3-D linear prediction coefficients ],,[],,[ 321321 nnnxnnnx
∧

−  that 

minimize the LP squared error 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
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−Ε=
∧ 2

321321 ],,[],,[ nnnxnnnxLPρ  
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(a) (b) (c) 
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will yield a linear prediction error that is a 3-D white process only if the 3-D LP is of 

the same 3-D order as the 3-D AR process that created the data. The region of support 

for the first-, second-, third-, fourth-, fifth-, sixth-, seventh-, and eighth octant-space 

AR parameter arrays ( d = 1,2,3,4,5,6,7 and 8th octant space) are defined below. The 

total number of octant-space (OS) AR parameters in any of the eight octant cases is 

321 ppp + 21 pp + 31 pp + 32 pp + 1p + 2p + 3p . Figures 26 and 27 illustrate the region of 

support for these eight OS autoregressive arrays and the prediction directions of the 

AR spectral estimator. 
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5.2. Three-Dimensional Autoregressive Spectral Estimation with Fast 
Algorithms 

5.2.1. Three-Dimensional Yule-Walker Equations 

If the 3-D autocorrelation sequence is known, then it can be shown that the 

parameters of each of the eight octants satisfy the following 3-D Yule-Walker (YW) 

equations and the corresponding octant 3-D prediction directions. The 3-D YW 

equations for a 3-D AR process are obtained by multiplying ],,[ 321 knjninx −−−
∗

 

by Eq (48) and by taking the expectation to yield 

⎭
⎬
⎫

⎩
⎨
⎧ =

=−−−∑∑∑ otherwise

kjifor
knjninrkjia

i j k
xx 0

]0,0,0[],,[
],,[],,[ 321

ωρ  

The summation ranges can be selected to be any one of the eight octants of ],,[ kjia . 

In anticipation of the fast computational algorithm to be presented, we shall assume 

that subscript 321 ppp  means 1p  (point on the ‘ i ’ axis) is a variable order parameter 

and 2p  (point on the ‘ j ’ axis) and 3p  (point on the ‘ k ’ axis) in Figures 28 and 29 

are assumed to be fixed order parameters. More detailed figures are presented in 

(53)

(52)



53 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 28. Illustration of the prediction directions in the eight-octant space A
R

 spectral estim
ator: (a) represents the first 

octant space and prediction direction of p
1  in the positive direction, p

2  in the positive direction, and p
3  in the positive 

direction. (b) represents the second octant space and prediction direction of p
1  in the positive direction, p

2  in the negative 
direction, and p

3  in the positive direction. (c) represents the third octant space and prediction direction of p
1  in the negative 

direction, p
2  in the negative direction, and p

3  in the positive direction. (d) represents the forth octant space and prediction 
direction of p

1  in the negative direction, p
2  in the positive direction, and p

3 in the positive direction. 

(a) 
(b) 

(c) 
(d) 
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  Figure 29. Illustration of the prediction directions in the eight-octant space A
R

 spectral estim
ator: (a) represents the fifth octant 

space and prediction direction of p1 in the negative direction, p2 in the negative direction, and p3 in the negative direction. (b) 
represents the sixth octant space and prediction direction of p1 in the negative direction, p2 in the positive direction, and p3 in 
the negative direction. (c) represents the seventh octant space and prediction direction of p1 in the positive direction, p2 in the 
negative direction, and p3 in the negative direction. (d) represents the eighth octant space and prediction direction of p1 in the 
positive direction, p2 in the negative direction, and p3 in the negative direction. 

(a) 
(b) 

(c) 
(d) 
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Appendix A on pages 88-96. The 3-D Yule-Walker equations for the support regions 

can be arranged, or ordered, into at least six convenient super block vector forms 

d

ppp

d

ppp

d

ppp

d

ppp

d

ppp

d

ppp
and

123213132312231321
,,,,, aaaaaa  

by ordering the 3-D AR coefficients in a three-tiered hierarchy (one order on outside, 

one in middle, one on the inside). An alternative block vector representation of the 

first octant-space Yule-Walker equation is 

11

321321321
ppppppppp

aRρ=  

 
where the data vector is also a super block vector of dimension )1( 1 +p . 

[ ]][]1[][ 1321321321321
piii pppppppppppp

−−= xxxx LL  

 
The super block vector 1

321 ppp
a , with superscript 1, designates this as a set of the   

first-octant AR parameters. It is composed of )1( 1 +p block vectors, each of dimension 

1)1)(1( 32 ×++ pp .  

[ ]TT
ppp

T
ppp

T
ppp

d
ppp

p ][]1[]0[ 1
111

321321321321
aaaa L=  

 
which are further partitioned in terms of the block vectors 

[ ]TT
ppp

T
ppp

T
pppppp piiii ],[]1,[]0,[][ 2

1111
321321321321

aaaa L=  
 

and even further partitioned in terms of the scalar elements 

[ ]TT
ppp

T
ppp

T
pppppp pjiajiajiaji ],,[]1,,[]0,,[],[ 3

1111

321321321321
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Figure 30. The hierarchy of the super block Toeplitz matrix in terms of 
structure and dimension. The super block Toeplitz matrix is composed of 
block Toeplitz matrices, which in turn is composed of scalar Toeplitz matrices. 

 

The super block vector 
321 ppp

ρhas all-zero super block vectors 0 and one top 

super block entry 1

321 ppp
ρ that has all zero entries, except for the top entry, which is 

the noise variance wρ . Note that ‘0’ is a vector of )1( 3 +p  zeros and 0 is a column 

block vector of )1()1( 31 +×+ pp  zeros.  

TT
pppppp

][ 11

321321

00ρρ L=  

 
which is defined in terms of the block vectors 

TT
pppppp

][
11

321321
00ρρ L=  

which is in turn defined in terms of the scalar elements 

T
wppp ]00[
11

321
Lρ=ρ  
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The data vector is a super block vector described in Eq (56) and the autocorrelation 

matrix is defined as 
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Super block matrix 
321 ppp

R has the dimension ×+++ )1)(1)(1( 321 ppp  

)1)(1)(1( 321 +++ ppp , where each super block consists of )1()1( 22 +×+ pp  block  

Toeplitz matrices (each block element is Toeplitz) and each Toeplitz block consist of 

)1()1( 33 +×+ pp  scalar elements. Therefore, matrix 
321 ppp

R  is said to be triply 

Toeplitz or super block Toeplitz as shown in Figure 30.   

A subscript 321 ppp  is used to remind the reader that ‘variable order 1p ’ and 

‘fixed orders 2p  and 3p ’ ordering has been used for Eq (54). We can describe the 

matrix 
321 ppp

R in terms of the super block matrices, 

(63)
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which are defined in terms of matrix elements with dependence on the variable order 

1p . For example, the one for index 0 is, 
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At index 1p , the block matrix has the form, 

=][ 1321
ppppR  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

]0,0,[],0,[

]1,0,[
],0,[]1,0,[]0,0,[

]0,,[],,[

]1,,[
],,[]1,,[]0,,[

]0,,[],,[

]1,,[
],,[]1,,[]0,,[

]0,0,[],0,[

]1,0,[
],0,[]1,0,[]0,0,[

131

1

3111

21321

21

3212121

21321

21

3212121

131

1

3111

prppr

pr
pprprpr

pprpppr

ppr
ppprpprppr

pprpppr

ppr
ppprpprppr

prppr

pr
pprrpr

LL

MM

M

L

L

LL

MM

M

L
MM

LL

MM

M

L

L

LL

MM

M

L

 

 

(64)

(65)

(66)



59 
 
Eq (67) below has previously been shown [1] and used with computationally efficient 

algorithms for the 2-D spectral estimate. The structuring has been selected based on 

the fact that the 2-D data matrix will have Toeplitz block structure [3,10]. 

11
321321321

ppppppppp
aRρ=  

If one ignores the values of 1p  in Eq (64), the 3-D Yule-Walker equations can be 

arranged or ordered in the same way as in the 2-D case. If 2p  is fixed to 0 and the 

second variable 2p  is changed from 0 to 2p , 
321 pppR matrices will look like 
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and this is defined in terms of the matrix elements with the variable order 3p  and a 

fixed order 2p ,  
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As mentioned before, the 3-D Yule-Walker (YW) equations have six alternative super 

block matrix forms. For example, the YW equations with the 123 ppp  order 

autocorrelation matrix for the first octant-space would be 

11

123123123
ppppppppp

aR=ρ . 
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Figure 31. Illustration of the complex conjugate property in the 1=d  and 

5=d  coefficients. With the origin located at kji == : 'aa − , 'bb − , 
'cc − , and 'dd −  exhibit complex conjugate property. 

 
 
 
Similarly, we can also derive 

123 ppp
Rin terms of the super block matrices and defined 

in terms of the matrix elements with the variable order 3p  that equals zero. 
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In this case, subscript 123 ppp  means ‘variable order 3p ’ and ‘fixed order 2p  and 

fixed order 1p . Super block matrix 
123 pppR has a dimension of 

(71)
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×+++ )1)(1)(1( 321 ppp  )1)(1)(1( 321 +++ ppp , where each super block is a 

)1()1( 22 +×+ pp  block Toeplitz and each Toeplitz block is a )1()1( 11 +×+ pp  

scalar element with the form 

=][ 1123
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If the 3-D autocorrelation sequence is known, then it can be shown that the first eight 

octant-space parameters satisfy the following 3-D Yule-Walker normal equations 
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The alternative representations are described in Eq (74).  

 

 

The autocorrelation block matrices ][
321

ipppR  are not hermitian [3]. However, they do 

satisfy the relationship 
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This is sufficient to make the super block matrices 
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R hermitian. They are also 

conjugate centrosymmetric: 
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in which Jis a )1)(1)(1()1)(1)(1( 321321 +++×+++ pppppp reflection matrix.   
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Observing that 5

321

1

321 pppppp
ρρJ = , Eq (70) then becomes 
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Comparing Eq (77) with Eq (78), it can be concluded that 1

321 ppp
a is obtained as the 

complex conjugate of 5

321 ppp
a . Figure 31 illustrates the coefficient sets for octant 1 and 

5 ( 1=d and 5=d ) which have the hermitian symmetry property. Conjugate pairs are 
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A fast computational algorithm for the solution of 1

321 ppp
a is not based on direct 

solution for the 3-D AR parameters, but it is based on solving a special variant of the 

3-D AR algorithm involving the relationship 
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Figure 32. Using the results obtained from Eq (74), a new structure is formed 
by combining the super block linear prediction parameter matrixes A and 
the super block covariance matrixes P. 

 

in which I is a )1)(1()1)(1( 3131 ++×++ pppp  identity matrix. Each block linear 

prediction parameter matrix ][ 1321
ppppA and the block linear prediction covariance 

matrix
321 pppPhave dimension )1)(1()1)(1( 3232 ++×++ pppp . Multiplying both 

sides of Eq (80) by 
321 pppP, the result can be expressed in an alternative form 
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In other words, 
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As shown above, it is clear that we only care about the elements in the first rows of 

A and P. Using the hermitian symmetry property shown in Eq (79), we consider 

only four octant coefficient sets and associated variances to build the new structure of 

the normal equation. If one now compares Eq (80) with Eq (84), we note that 
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so that the following relationships are the result 

18

12

17

11

]][00001000[]0[

]][00000100[]0[

]][00000010[]0[

]][00000001[]0[

321321

321321

321321

321321

−

−

−

−

=

=

=

=

pppppp

pppppp

pppppp

pppppp

Pa

Pa

Pa

Pa

LLLLL

LLLLL

LLLLL

LLLLL

 

Eq (85) below is similar to the conjugate relationships of the forward and backward 

LP coefficients observed in the 1-D AR analysis. By scaling to force 1]0,0,0[
1

=a                  

][]0[][

][]0[][
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Thus, having solved for matrices 
321 pppPand ][

321
ipppA  for 1=i  to 1p  from Eq (83), 

(84)

(85)

(83)

(82)
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the relationships of Eq (85) may then be solved to four 3-D autoregressive (AR) 

parameter sets and associated variances. 

5.2.2. Recursive Solution for 3-D LP Parameter Matrices 

Since H
pp

RR=  is super block Toeplitz (triply Toeplitz), we can show that the 

3-D autocorrelation matrix is hermitian and conjugate centrosymmetric JRJR
*
pp

= . 

Reflection matrix J has dimension )1)(1()1)(1( 3232 ++×++ pppp . The triply 

Toeplitz structure can be exploited to develop the 3-D version of the recursive 1-D 

Levinson algorithm that solves Eq (80). As this chapter has already presented, Eq (80) 

may alternatively be expressed as Eq (86). Using the centrosymmetric property and 

the identity matrix I, we can find the 3-D reflection coefficient matrix 1+pK, such 

that the following expression is valid 

        [ ]=++++ ]1[][]1[ 111 pp ppp AAAI LL  
 

        [ ] [ ]IJAJJAJ0K0AAI ]1[][[][]1[ **
1 ppppp pp LLL ++  

 

If we multiply both sides on the right by 
p

R at order 1+p , it will yield 

][][][ **
1111 JPJ00JJK00P000P pppppp LLL ++++ Δ+Δ=  

 
where 

∑∑
= =

+ −+++=Δ
p

i

p

j
pppp jijp

1 1
1 ]1[][]1[ RAR  

We can apply the recursive relationship concept from the original Levinson algorithm.  

(87)

(88)

(86)
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Also, Eq (69) will be balanced if we select 

JPJJPJAK
1

1
1

111 )()(]1[
−∗

+

−∗
+++ Δ−=Δ−=+= pppppp p  

which creates the following order-update recursion 

)]1[(][][ *
11 JAJKAA ipii pppp −++= ++  

From Eq (87) and (89), it is possible to derive the following recursion of the 

covariance matrix 
T
p

T
pppppp 11

*
111 )][()][( +++++ −=−= KJKJIPPJKJKIP . 

This concludes the recursive updates, showing that the centrosymmetry introduced by 

the pre and post multiplication of reflection matrices has provided a further reduction 

in computations. 

5.2.3. Three-Dimensional Lattice Linear Prediction Parameter  
Estimation Method 

Assuming that a finite data record of 3-D data samples ],,[ kjix  has been 

acquired for 10,10 21 −≤≤−≤≤ njni  and 10 3 −≤≤ nk , the 3-D block forward 

and  3-D block backward linear prediction error matrices of order 321 ppp  and 

dimension )1)(1())(( 212211 ++−− pppnpn X are then defined as  

∑

∑

=

=

−+=

+−+−=
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In which X has dimension )1)(1())(( 232233 ++×−− pppnpn  
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and this is a super block Toeplitz data matrix as shown in Eq (94).  
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The 3-D forward and backward linear prediction squared error matrices are defined as  

H
ppp

n

pi
pppppp ii

pn
])[(][1

321

1

1

321321

1

11

fff
eeP ∑

−

=−
=  

H
ppp

n

pi
pppppp ii

pn
])[(][1

321

1

1

321321

1

11

bbb
eeP ∑

−

=−
=  

Note that ppppppp EE PJPJP
bf ==

∗
})({}{

321321
. That the recursive 3-D lattice forms a 

3-D linear prediction error filter relationship between the 3-D forward and backward 

linear prediction matrix errors may be seen by using Eq (90). Substituting Eq (91) into 

Eq (92) yields 

]1[][][ 11 −+= ++ nnn pppp
bff

eKee  

][)(]1[][ *
11 nnn pppp

fbb
eJKJee ++ +−= . 

(96)
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Figure 33.  Super block vector representations of the 3-D linear prediction error 
equation 

 

Rather than estimating the 3-D octant-space parameters directly from the data, it is 

more advantageous (for both computational reduction and estimation performance) to 

estimate the 3-D super block linear prediction parameter matrices. Using the 

relationships cited before in this section, it is possible to obtain the estimates of the 

octant-space linear prediction parameters. Based on the property, 

ppp EE PJPJP
bf ==

∗
})({}{ ,  we can form an estimate p

∧

P of pP by taking half of 
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the sum of the forward and backward 3-D linear prediction squared errors 

1
1

2
))((

2 +

∧
∗

+
+

=
+

+ p
ppp

P
JPJPP

bfbf

 

which is a newer formulation of the squared error sum than those previously cited in 

the literature [20]. Since the above sum has positive diagonal elements [3], which was 

formed from squared errors, an approach to obtain a least squares estimate can be 

obtained by minimizing the sum of the forward and backward 3-D linear prediction 

squared errors along the diagonal (that is, the trace), min }{ 1
bf

P
+
+ptr , as shown in 

Figure 34. 

Let us first define an estimate of the crosscorrelation between the block 

forward and backward 3-D linear prediction errors 

H
ppp

n

pi
pppppp ii

pn
])[(][1

321

1

1

321321

1

11

fffb
eeP ∑

−

=−
=  

Substituting Eq (97) into Eq (96) and (98) and combining the partial correlation matrix 

T
ppp )( JPJP
fbfb+=Δ , the result be expressed as 

H
ppp

H
pp

H
pppp 1

*
1111 )( +

+
+++

++
+ +Δ+Δ+= KJPJKKKPP

bfbfbf  

By completing the square, Eq (100) may be expressed in the form 

H
pppppppp 1

*
1

1
1 ])([][ +

+
+

−+++
+ +ΔΔ+= CJPJCJPJPP

bfbfbfbf  

where 
1

11 )(
−+

++ Δ+= JPJKC
bf

pppp . To minimize the }{ 1
bf

P
+
+ptr with respect to the  

(98)

(99)
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Figure 34.  3-D linear prediction squared errors along the diagonal. 

 
 

 
single unknown matrix 1+pK, we note that only the third term of Eq (101) depends on 

1+pK. Because this third term is a quadratic matrix product that can only contribute 

positive values to the diagonal elements of bf
P

+
+1p , the only choice that will minimize 

the trace is 01 =+pC , or 

1
1 ][

−+
+ Δ= JPJK

bf

ppp  

By selecting 1+pK as indicated in Eq (102), the sum of forward and backward 3-D 

squared errors that minimize the trace may be obtained by inspection of Eq (101) as 

H
pppp Δ+= +

++
+ 11 KPP

bfbf  

In the 3-D case, we need only compute the forward block linear prediction parameter 

matrix A, the forward block linear prediction covariance matrix P, and forward 

(103)

(102)
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block reflection matrix K. The backward matrices are obtained by pre- and post- 

multiplication of the forward matrix by the reflection matrix J. Thus, the 

centrosymmetry property has provided a further reduction in computation. 

5.3. Application Example  

The 3-D Yule-Walker algorithm and lattice LP parameter estimation method 

from the thesis have been implemented in a MATLAB script functions levin_3D, 

yulwk_3D, and lattice_3D, available from www.engr.orst.edu/~liewj/mdata.  

The spectrum of the 1-D and 2-D plots shown in Figure 35 are well known 

[1,3,10]. In the 2-D plot, the spectrum’s peaks are located using the x and y axes, and 

the z axis represents the magnitude.  

In order to visualize the performance of 3-D spectral estimation, the magnitude 

of the 3-D power spectral density is illustrated in 3-D space with the points whose 

coordinates are comprised of the i , j , and k  elements as shown in Figure 35 (top left 

and bottom left). A vertical strip on the right side of the plots indicates the mapping 

color (gray scale) of the magnitude of the 3-D PSD. For example, the brightest spot in 

the 3-D plot indicates the highest peak point in the 2-D plot. The 2-D plot is a planar 

slice from the volume space taken at a specific frequency of interest, where the gray 

scale from the 3-D plots now indicate the amplitude. The 1-D plot is line slice from 

the 2-D plot, taken at a specific frequency of interest. These slices are useful to show 

where interesting regions exist in the space of the spectral estimation volume. 
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5.3.1. Three-Dimensional Yule-Walker Spectral Estimation 

Figure 35 illustrates the resolution and accuracy of three dimensional (3-D) 

spectrum analysis for five complex 3-D sinusoidal signals, embedded in low level 

white noise (yielding a signal-to-noise ratio (SNR) of about 30 dB), using two spectral 

estimation methods: one based on 3-D FFT spectral estimation and one based on the  

3-D Yule-Walker spectral estimation approach. A 32×32×32-point 3-D data set of 

noisy sinusoidal samples is generated with MATLAB to implement the algorithm. The 

estimates are plotted as fractions of the sampling frequencies 

(#1: i =0.00, j =0.00, k =0.00; #2: i =-0.25, j =0.25, k =-0.25; #3: i =0.25, j =-0.25, k =  

-0.25; #4: i =0.25, j =-0.25, k =0.25; #5: i =-0.25, j =0.25, k =-0.25) and show five 

spots which have their highest magnitudes at the exact sinusoidal frequencies. In this 

plot, the color bar indicates the amplitude. The figures in the middle columns of 

Figure 35 show the 2-D AR estimated spectra using one slice of the original 3-D PSD 

matrix. The sliced 2-D matrix shows the plane at a fractional sampling frequency 

i =0.25. The figures in the last column of Figure 35 illustrate 1-D AR spectral 

estimation results using one column vector of the 2-D PSD matrix. The figures in the 

last column are a 1-D plot of the plane of j =0.25. 

We conclude that the spectral estimate based on 3-D Yule-Walker solution 

provides a much better spectral estimate than the estimate given by 3-D FFT-based 

estimate in Figure 35. The plots shown in Figure (a) look markedly worse than Figure 

35 (b). They have not only bigger mainlobes (bigger spheres), but also several 

sidelobes (several small spheres).  
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 Figure 35. Three-D
im

ensional autoregressive spectral estim
ates of five 3-D

 sinusoidal signals in w
hite noise: (a) C

lassical FFT-
based estim

ate (the peak spots at i1 =0.00, j1 =0.00, k
1 =0.00; i2 =-0.25, j2 =0.25, k

2 =-0.25; i3 =0.25, j3 =-0.25, k
3 =-0.25; i4 =0.25, j4 = 

-0.25, k
4 =0.25; i5 =-0.25, j5 =0.25, k
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alker algorithm
 (the peak spots are sam

e as (a)) 
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5.3.2. Three-Dimensional Lattice LP Parameter Spectral Estimation 

Figure 36 illustrates the resolution and accuracy of three dimensional (3-D) 

spectrum analysis for five complex 3-D sinusoidal signals, embedded in low level 

white noise (yielding a signal-to-noise ratio (SNR) of about 30 dB), using two spectral 

estimation methods: one based on 3-D FFT spectra estimation and one based on the  

3-D Yule-Walker spectral estimation approach. A 32×32×32-point 3-D data set of 

noisy sinusoidal samples is generated with MATLAB to implement the algorithm. The 

estimates are plotted as fractions of the sampling frequencies 

(#1: i =0.00, j =0.00, k =0.00; #2: i =-0.25, j =0.25, k =-0.25; #3: i =0.25, j =-0.25, k =  

-0.25; #4: i =0.25, j =-0.25, k =0.25; #5: i =-0.25, j =0.25, k =-0.25) and show five 

spots which have their highest magnitudes at the exact sinusoidal frequencies. In this 

plot, the color bar indicates the amplitude. The figures in the middle columns of 

Figure 36 shows the 2-D AR estimated spectrum using one slice of the original 3-D 

PSD matrix. The sliced 2-D matrix shows the plane at fractional sampling frequency 

i =0.25. The figures in the last column in Figure 36 illustrate the 1-D AR spectral 

estimation results using one column vector of 2-D PSD matrix. The figures in the last 

column are a 1-D plot of the plane of j =0.25. 

We conclude that the spectral estimate based on 3-D Lattice case gives a much 

better spectral estimate than the estimate given by 3-D FFT-based estimate as shown 

in Figure 36. In the 3-D Yule-Walker case as shown in Figure 36 (b), the plots look 

markedly different than Figure 36 (a), which have not only bigger mainlobes (bigger 

spheres), but also several sidelobes (several small spheres). 
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eter estim
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e as (a)) 
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5.3.3. Three-dimensional LP-based coding/compression 

The use of new 3-D LP fast algorithms is not limited to the examples discussed 

so far. For example, by segmenting data into blocks and applying mathematical 

predictive extrapolation, data processing such as compression of digital audio (1-D 

case), image processing (2-D case), and video coding (3-D case) are possible. The new 

3-D techniques introduced in this thesis will have a major impact on future 

coding/compression technique developments. 

One-dimensional linear prediction (LP)-based coding/compression has long 

been used to compress 1-D signals [26]. It should be possible to extend to 3-D 

concepts/theory the currently successful 1-D LP-based techniques. The new 3-D 

techniques (3-D Yule-walker equation [29] and 3-D LS Lattice case with Fast 

Algorithm [30]) presented in this thesis can be applied to future 3-D LP-based data 

compression algorithms for efficient transmission and storage of 3-D data sets. If the 

data are well characterized by their 3-D LP coefficients, 3-D LP-based compression 

techniques could be used to reduce the number of bits to save or to transmit 3-D data. 

The quality of the predictive coefficients will directly affect the overall compression 

performance and the 3-D algorithm quality; the results of the 3-D spectral analysis in 

previous sections suggest that the quality will likely be very good.  

There have been many attempts in 1-D to develop different versions of the LP-

based data compression algorithms [26]. Linear predictive coding (LPC) is an 

appropriate example to explain how LP coefficients are used for purposes of data 

compression, such as speech compression (1-D temporal domain algorithm) based on 
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linear predictive modeling [26,27]. Since speech signals are not stationary, we are 

typically interested in the similarities over short time intervals. For vowel sounds 

which have a high degree of similarity within a selected sampling interval, the 

parametric modeling produces an efficient representation of the sound [26]. The 

autocorrelation ][irss  which describes the redundancy in the signal ][ns  is computed 

only over a few time samples pi L,1,0=  and the compressed signal 
∧

][ns  then can 

be defined as 
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The basic idea of linear prediction coding/compression is to record the p  LP 

coefficients as a compressed file in lieu of the actual data samples. Suppose we want 

to construct a prediction for )(ia  as a linear combination of its previous p  samples 

called a p th order linear predictor. Obviously, compression can be accomplished only 

if one chooses a  number p  less than the number n of all data samples. If a 

compression ratio ( p / n ) is obtained nominally in the 1-D case, we would expect to 

achieve a minimum of 
2

)/( np  or 
3

)/( np  for 2-D and 3-D data sets with the 2-D and 

3-D LP algorithms of this thesis.  

(104)
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Figure 37. New 3-D LP algorithms presented in this thesis would become 
foundational blocks in future 3-D LP-based compression algorithms. (a) 
Compression (b) Decompression. 

 
 

In the case of a 2-D signal (typically an image), various efficient 2-D LP-based 

coding techniques have been developed and applied to the transmission of 2-D signals 

[26]. However, these techniques remap the neighboring pixels of a central analysis 

pixel into a 1-D vector so that Eq (104) is directly used [32], so it is not a true 2-D LP-

based coding/compression technique. Furthermore, there has not been a 3-D LP-based 

coding/compression technique even though many 3-D data sets including 

hyperspectral imaging (HSI), interferometric synthetic aperture radar (IF-SAR) 

imaging, radar space-time adaptive processing (STAP), and high-definition television 

(HDTV) can be the source of data for processing by a 3-D compression technique. 

(b) 

(a) 



80 
 

 

Figure 38. 32×32×32 data samples. Only an order 2×2×2 LP coefficient super block 
vector (about 7 scalar values) is needed to represent all the 323 data values if the 3-D 
signal were simply a 3-D sinusoidal. The compression factor is would then be 
(27/32)3, which is a very great savings, in which the 3-D LP coefficient data is saved 
in lieu of the original 323 sinusoidal data values. 
 

 

Figure 37 shows how the new 3-D LP algorithms presented in this thesis could 

become foundational blocks in future 3-D LP-based compression/decompression 

algorithms.  

The coding/compression efficiency factor would likely be the 1-D savings, 

only squared or cubed (for 2-D and 3-D data sets respectively). The new 3-D 

algorithms presented in Chapter 5 could be used to reduce the number of bits over that 

required to save the original 2-D or 3-D data samples. For example, an extreme case is 
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a 3-D complex sinusoid of 32×32×32 data samples. If 3-D LP analysis is performed, 

only an order 2×2×2 LP coefficient super block vector [28] (about 27 scalar values) is 

needed to represent all the 323 data values as shown below in Eq (105). 

 
[ ]]2[]1[]0[ 1,1,,1,1,,1,1,,1,1,1,, 212121321

====
= ppppppppp

aaaa  

 
which is defined in terms of the block vectors 
 

[ ]]2[]1[]0[
123123123123 pppppppppppp aaaa = , 

 
which is in turn defined in terms of the scalar elements 
 

[ ]]2,0,0[]1,0,0[]0,0,0[]0[
123123123123 pppppppppppp aaa=a , 

 
[ ]]2,1,0[]1,1,0[]0,1,0[]1[

123123123123 pppppppppppp aaa=a , 
and 

 
[ ]]2,2,0[]1,2,0[]0,2,0[]2[

123123123123 pppppppppppp aaa=a . 
 

Therefore, the compression factor would be (27/32)3, which is a very great 

compression ratio, saving the LP coefficient data in lieu of the original 323 sinusoidal 

data values as shown in Figure 38. 

 

(105)

(106)

(107)
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6. SUMMARY OF RESEARCH CONTRIBUTIONS 

In this last chapter, the implications of the research contributions presented in 

this thesis are summarized and suggestions for future work are provided. The 

contributions of this thesis are divided into three main sections: (1) 2-D sharpening 

based on predictive BWE using 2-D AR estimation fast algorithms (2-D Yule Walker, 

2-D LS Lattice, and 2-D LS Covariance), (2) 2-D synthetic imagery resolution 

enhancement techniques using the extensions of concepts introduced for a 2-D BWE 

technique, and (3) new tools for future 3-D BWE techniques (3-D Yule-Walker 

Equations and 3-D lattice LP parameter estimation method, and fast algorithms for 

both).  

The first research contribution we introduced was the new 2-D BWE technique 

[31] based on the fast 2-D LP algorithm that operated in conjunction with existing 2-D 

spectral estimation techniques. This new alternative super-sharpening BWE method, 

presented in this thesis, is capable of preserving the full dynamic range of features in 

complicated signals that are being analyzed. 

The second research contribution was a variation of the 2-D BWE technique 

for application to computed synthetic radar imagery. Using radar data collected 

already in a transform-like data structure, novel 2-D synthetic imagery resolution 

enhancement techniques were developed. 

The last research contribution is comprised of novel 3-D spectral analysis 

techniques, particularly new 3-D autoregressive spectral estimation algorithms 

[28,29,30]. Both the 3-D Yule-Walker equations, for the known 3-D autocorrelation 
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sequence (ACS) case and the 3-D lattice linear prediction parameter estimation 

method for unknown correlation case were developed, each with a fast recursive 

solution operating directly in a 3-D octant-space support region. These techniques 

provided enhanced 3-D spectral resolution results, particularly spectral estimation 

using the 3-D AR power spectral density technique. These new algorithms will form 

the critical component of a future 3-D sharpening algorithm, which will be the subject 

of future work and research challenges for implementing a full 3-D BWE technique.  

Furthermore, fully 3-D signal processing that has the capability to provide 

reduced-dimension parametric features of the multi-dimensional data for purposes of 

data coding/compression is highly desirable. The new 3-D algorithms presented in this 

thesis could be used to reduce the number of bits to save or to transmit a 3-D (which 

would be a new use of 3-D LP coding and compression) data set relative to the number 

of bits for just sending the original 3-D data without LP coding/compression in future 

research.  
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APPENDIX   

 
Appendix treated herein is derived from section 5.2.1 pages on 55-58. The 

eight examples represent the first-, second-, third-, fourth-, fifth-, sixth-, seventh-, and 

eighth-octant space respectively and prediction directions of ,, 21 pp  and 3p  

)12,1( 321 === ppp  are shown in Figures A-H. In anticipation of the fast 

computational algorithm to be presented, we shall assume that subscript 321 ppp  

means 1p  (point on the ‘ i ’ axis) is a variable order parameter and 2p  (point on the 

‘ j ’ axis) and 3p  (point on the ‘ k ’ axis) are assumed to be fixed order parameters.  

Super block matrix and vector representations of the first-, second-, third-, 

fourth-, fifth-, sixth-, seventh-, and eighth-octant space Yule-Walker equations are 

respectively 
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as described in Eqs (A-H).  
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