
AN ABSTRACT OF THE THESIS OF

Francisco RodrIguez-HenrIquez for the degree of Doctor of Philosophy

in Electrical & Computer Engineering presented on June 07, 2000.
Title: New Algorithms and Architectures for Arithmetic in GF(2m

Abstract approved:

Suitable for Elliptic Curve Cryptography

cetin K. Koç

During the last few years we have seen formidable advances in digital and mo-

bile communication technologies such as cordless and cellular telephones, personal

communication systems, Internet connection expansion, etc. The vast majority
of digital information used in all these applications is stored and also processed

within a computer system, and then transferred between computers via fiber optic,

satellite systems, and/or Internet. In all these new scenarios, secure information

transmission and storage has a paramount importance in the emerging interna-

tional information infrastructure, especially, for supporting electronic commerce
and other security related services.

The techniques for the implementation of secure information handling and
management are provided by cryptography, which can be succinctly defined as
the study of how to establish secure communication in an adversarial environ-
ment. Among the most important applications of cryptography, we can mention

data encryption, digital cash, digital signatures, digital voting, network authenti-

cation, data distribution and smart cards.

The security of currently used cryptosystems is based on the computational

complexity of an underlying mathematical problem, such as factoring large num-

bers or computing discrete logarithms for large numbers. These problems, are

believed to be very hard to solve. In the practice, only a small number of mathe-

matical structures could so far be applied to build public-key mechanisms. When

Redacted for Privacy

an elliptic curve is defined over a finite field, the points on the curve form an
Abelian group. In particular, the discrete logarithm problem in this group is
believed to be an extremely hard mathematical problem. High performance im-

plementations of elliptic curve cryptography depend heavily on the efficiency in

the computation of the finite field arithmetic operations needed for the elliptic
curve operations.

The main focus of this dissertation is the study and analysis of efficient hard-

ware and software algorithms suitable for the implementation of finite field arith-

metic. This focus is crucial for a number of security and efficiency aspects of
cryptosystems based on finite field algebra, and specially relevant for elliptic curve

cryptosystems. Particularly, we are interested in the problem of how to implement

efficiently three of the most common and costly finite field operations: multipli-

cation, squaring, and inversion.

© Copyright by Francisco RodrIguez-HenrIquez

June 07, 2000

All Rights Reserved

New Algorithms and Architectures for Arithmetic in GF(2m)

Suitable for Elliptic Curve Cryptography

by

Francisco RodrIguez-HenrIquez

A THESIS submitted
to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Doctor of' Philosophy

Completed June 07, 2000

Commencement June 2001

Doctor of Philosophy thesis of Francisco RodrIguez-HenrIquez presented on

June 07, 2000

APPROVED:

Major Professor, representing Electrical & Computer Engineering

Chair of Department of Electrical & Computer Engineering

Dean of Gréd'uate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my

thesis to any reader upon request.

Francisco RodrIguezjmiqiie

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENTS

I acknowledge the fellowships received through my academic life from the
organization of American states (OAS), and the governments of El Salvador and
Mexico.

I thank my advisor, cetin K. Koç for his guidance and help to obtain the
results presented in this dissertation.

I also would like to thank Juan Carlos Ocaña for his gentle reviewing of the
English style of this manuscript.

Finally, I thank all the good friends of mine who have helped me, tolerated
me, and supported me, in so many ways, during the complicated and long process

that led me to the completion of my degree. Particularly, I would like to mention
Miguel Rocha Perez and Daniel Ortiz Arroyo with whom I have had the pleasure

to collaborate and interact in an academical as well as professional way.

TABLE OF CONTENTS

Page

INTRODUCTION 1

2 ELLIPTIC CURVE CRYPTOSYSTEMS IN GF(2m) 7

2.1 Background 7

2.1.1 Rings 7
2.1.2 Fields 8
2.1.3 Finite Fields 8
2.1.4 Binary Finite Fields 9
2.1.5 Binary Finite Field Arithmetic 10

2.2 Elliptic Curves over GF(2m) 11

2.2.1 Definition 11
2.2.2 Operations 11
2.2.3 Order Definitions 12
2.2.4 Representations 13
2.2.5 Addition Formulae 13
2.2.6 Scalar Multiplication in Affine Coordinates 14
2.2.7 An Example 15

2.3 Elliptic Curve Cryptography 19

2.3.1 Discrete Logarithm Problem 19
2.3.2 Elliptic Curve Discrete Logarithms 20
2.3.3 Elliptic Curve Cryptosystem Parameters 20
2.3.4 Key Pair Generation 21
2.3.5 Signature 21
2.3.6 Verification 21

3 DUAL BASIS MULTIPLIERS 23

3.1 Introduction 23

3.2 Polynomial Basis and Dual Basis 24

3.3 Proposed Dual Basis Multiplication 27

3.4 Complexity Analysis 29

TABLE OF CONTENTS (CONTINUED)

Page

3.4.1 General Trinomialls xm + x" + 1 30
3.4.2 Special Trinomials xm + x + 1 31
3.4.3 Equally-Spaced Trinomials xm + Xml2 + 1 32
3.4.4 Equally-Spaced Polynomials + . + x2d + xd + 1 . 33

3.5 Summary of Results and Conclusions 38

4 PARALLEL MULTIPLIERS BASED ON SPECIAL IRREDUCIBLE
PENTANOMIALS 40

4.1 Introduction 40

4.2 Mastrovito Multipliers and their Analysis 42

4.2.1 Type 1 Pentanomials 44
4.2.2 Special Pentanomials xm + x3 + x2 + x + 1 48

4.3 Dual Basis Multiplication 49

4.4 Analysis of Dual Basis Multipliers for Irreducible Pentanomials 52

4.4.1 Special Pentanomials xm + x3 + 2 + x + 1 52
4.4.2 Type 2 Pentanomials 55

4.5 Summary of Results and Conclusions 58

5 KARATSUBA MULTIPLIERS FOR GF(2m) 62

5.1 Introduction 62

5.2 2km_bit Karatsuba Multipliers 64

5.2.1 Complexity Analysis 67
5.2.2 rn-bit Karatsuba Multipliers 70

5.3 Binary Karatsuba Multipliers 72

5.3.1 Binary Karatsuba Strategy 73
5.3.2 Complexity Analysis 76

5.4 Binary Karatsuba Multipliers Revisited 77

TABLE OF CONTENTS (CONTINUED)

5.4.1 An Example
.

5.4.2 Programmability
.

5.4.3 Area Complexity of the Binary Karatsuba Multiplier
5.5 Reduction
5.6 Conclusions and Discussion of the Results

6 EFFICIENT SOFTWARE IMPLEMENTATIONS FOR GF(2)
ARITHMETIC

6.1 Introduction
6.2 Polynomial Multiplication and Squaring in GF(2m)

6.2.1 Look-up Table Method for Squaring Operation
6.2.2 Karatsuba Multipliers

6.3 Standard Reduction
6.3.1 Standard Reduction with Trinomials and Pents.....
6.3.2 Standard Reduction with General Polynomials

6.4 Montgomery Reduction
6.4.1 Montgomery Reduction with General polynomials
6.4.2 Montgomery Reduction with Trinomials and Pents.

6.5 Timings
6.6 Conclusions

7 CONCLUSIONS

BIBLIOGRAPHY

Page

79
82
83

84

85

90

90
91

95

95
101

107

109
114

117

118

119

123

APPENDIX 130

LIST OF FIGURES
Figure Page

2.1. Montgomery binary method for scalar multiplication 15

2.2. Elements in the elliptic curve of equation (2.15) 18

5.1. m = 2knbit Karatsuba multiplier................ 66

5.2. Space complexities of hybrid Karatsuba multipliers for arbi-
trary m using n = 1,2,3 73

5.3. Binary Karatsuba strategy 74

5.4. rn-bit binary Karatsuba multiplier................ 75

5.5. rn-bit binary Karatsuba multiplier if condition (5.19) holds. . 79

5.6. Schematic diagram of a generalized m = 193-bit binary Karat-
suba multiplier 81

5.7. Programmable binary Karatsuba multiplier 82

5.8. Space complexity of the modified binary Karatsuba multiplier 83

5.9. Total area complexity of the modified binary and hybrid Karat-
suba multipliers 84

6.1. Generating a look-up table with the first 2 1 squares . . . 91

6.2. General word polynomial multiplier, based on a look-up table
technique 93

6.3. An algorithm for standard reduction using irreducible trino-mials............................... 97

6.4. Standard reduction for irreducible trinomials.......... 98

6.5. An improved version of standard reduction using irreducible
trinomials 100

6.6. Reduction of a single word.................... 101

6.7. Standard reduction using irreducible pentanomials 102

6.8. A method to reduce k bits at once 103

6.9. Finding a look-up table that contains all the 2c possible scalars
in equation (6.18) 104

LIST OF FIGURES (CONTINUED)

Figure Page

6.10. Finding a look-up table that contains all the 2k possible scalars
multiplications S P 105

6.11. Standard reduction using general irreducible polynomials . . . 106

6.12. A naive algorithm to compute the Montgomery reduction . 108

6.13. A method to Montgomery reduce k bits at once 110

6.14. Finding the look-up table that contains all the 2k possible
scalars in equation (6.22) 112

6.15. Montgomery reduction using general irreducible polynomials . 113

6.16. n-bit Montgomery reduction for irreducible trinomials 115

6.17. Montgomery reduction for irreducible trinomials 116

LIST OF TABLES

Table Page

2.1. Elements of the field F = GF(24), defined using the primitive
trinomial of equation (2.12) 16

2.2. Scalar multiples of the point P of equation (2.16) 19

4.1. The computation of C(x) using equation (4.4)......... 44

4.2. The coordinates in equation (4.7) classified by the number of
operands.............................. 47

4.3. The trace coefficients in equation (4.23) classified by the num-
ber of operands.......................... 57

4.4. Summary of the complexity results............... 58

4.5. Type 1 irred. pentanomials Xm + f1 + + x + 1 encoded
as m(n) 60

4.6. Type 2 irred. pentanomials xm+x2+xTh+l+x+1 encoded
as m(n) 61

5.1. Space and time complexities for several m = 2"bit hybrid
Karatsuba multipliers....................... 71

5.2. A generalized m = 193-bit binary Karatsuba multiplier using
the algorithm in figure 5.4 80

5.3. Summary of complexities for the reduction step. 85

6.1. Look-up table for algorithm 6.2................. 94

6.2. Implementation results (in t seconds) 117

A mis papas, Pepe y Anita;

A mis hermanos, Andrés, AnaMarIa, LilMarIa y José;

con el mismo amor de siempre.

A mi abuelita Rosita, in memoriam.

A Ramaris.

New Algorithms and Architectures for Arithmetic in
GF(2m)

Suitable for Elliptic Curve Cryptography

Chapter 1
INTRODUCTION

También el jugador es prisionero
(La sentencia es de Omar) de otro tablero
De negras noches y de blancos dIas.

Dios mueve al jugador, y éste, Ia pieza.
Qué dios detrás de Dios la trama empieza

De polvo y tiempo y sueño y agonfas?"

Ajedrez, Jorge Luis Borges.

Although historically the most prevalent technique for the exchange of infor-

mation data has been the so-called analog communication, during the latter part

of the XX century, its counterpart, digital communication, has clearly become
the predominant type used in practical applications. Furthermore, all current
predictions clearly indicate that this trend will continue in the foreseen future.
Indeed, during the last few years we have seen formidable advances in digital and

mobile communication technologies, such as cordless and cellular telephones, per-

sonal communication systems, Internet connection expansion to name a few. The

vast majority of digital information used in all these applications is stored and
also processed within a computer system. Digital information is then, transferred

between computers via fiber optic, satellite systems, and/or Internet. In all these

new scenarios, secure information transmission and storage has a paramount im-
portance in the emerging international information infrastructure, specially, for

supporting electronic commerce and other security related services.

The techniques for the implementation of secure information handling and

management are provided by cryptography, which can be succinctly defined as the
study of how to establish secure communication in an adversarial environment.

For centuries, the main usage of this old science was oriented towards diplomacy

2

and military activities. However, in recent years and due to the numerous tech-

nological improvements mentioned above, research in cryptography has addressed

a whole new spectrum of more advanced practical problems, ranging from the

authorization of user access to computer systems, to the implementation of un-

traceable electronic cash. This evolution in the originai purpose of cryptography

has propelled this research area to become as one of the most applied disciplines

in computer science. Among the most important applications of cryptography,

we can mention data encryption, digital cash, digital signatures, digital voting,

network authentication, data distribution and smart cards.

Efficiency and secrecy are two natural but contradicting goals in cryptogra-

phy. Only in 1948 the main theoretical ideas of criptography were mathematically

formulated, thus establishing cryptography as a modern science. In 1948 and 1949,

Shannon published two papers that now are considered to be the origin of informa-

tion theory. One of the possible applications of this theory envisioned by Shannon

was modern cryptography.

After Shannon's work, all cryptographic systems designed by researchers were

based on a secret key, needed to encrypt and to decrypt the information. In all

these schemes, called secret-key cryptosystems, it is assumed that the communi-

cating parties are the only ones who have access to the secret key. Such methods

implement symmetric encryption/decryption schemes, which contrast with the
methods used in public-key cryptography, that were first proposed in the work
of Diffie and Hellman in 1976. The Diffie-HeIlman protocol allows two parties
to agree on a shared, secret key, even though, they can only exchange messages

in public. Shortly after them, Rivest, Shamir, and Adleman proposed the RSA
cryptosystem in 1978. Today, RSA is one of the most widely known public-key

systems. In the public-key model, each party has a pair of keys, one secret and

one public, and the encryption/decryption process is not symmetric anymore.

The security of currently used cryptosystems, whether they are public-key

cryptosystems or not, is based on the computational complexity of an underly-

3

ing mathematical problem, such as factoring large numbers or computing discrete

logarithms for large numbers. These problems, without complete certainty, are

believed to be very hard to solve. In the practice, only a small number of math-

ematical structures could so far be applied to build public-key mechanisms. The

majority of these structures are based on number theory, in particular on the mul-

tiplicative group of integers modulo a large number, which quite often happens

to be a prime number. Consequently, computational number theory traditionally

has played an important role in modern cryptography.

This was the panorama of applied cryptography until 1985, when N. Koblitz

[17] and V. Miller [29] proposed independently the use of elliptic curves for cryp-

tographic purposes.

Elliptic curves as algebraic/geometric entities have been studied since the
latter part of the XIX century. Originally, elliptic curves were investigated for

purely aesthetic reasons, but after 1985, they have been utilized in devising al-

gorithms for factoring integers, primality tests, and in public-key cryptography.

When an elliptic curve is defined over a finite field, the points on the curve form

an Abelian group. The discrete logarithm problem in this group is believed to be

an extremely hard mathematical problem, much harder than the analogous one
defined over finite fields of the same size.

Due to the high difficulty to compute the discrete logarithm problem in el-
liptic curves over finite fields, one can obtain the same security provided by the

other existing public-key cryptosystems, but at the price of much smaller fields,
which automatically implies shorter key lengths. Having shorter key lengths means

smaller bandwidth and memory requirements. These characteristics are specially

important in some applications such as smart cards, where both memory and pro-

cessing power are limited.

Furthermore, and in deep contrast with most of the previous public-key cryp-

tosystems which are inspired in the application of a number-theory problems, the

elliptic curve cryptosystem is the first major cryptographic scheme that incorpo-

rates and takes advantage of the concepts of the Galois field algebra, by using
elliptic curves defined over finite fields.

Although elliptic curves can be also defined over fields of integers modulo a

large prime number, GF(p), it is usually more advantageous for hardware and

software implementations to use finite fields of characteristic two, GF(2m). This

is due largely to the carry-free binary nature exhibit by this type of fields, which is

an especially important characteristic for hardware systems, yielding both higher

performance and less area consumption.

High performance implementations of elliptic curve cryptography depend heav-

ily on the efficiency in the computation of the finite field arithmetic operations

needed for the elliptic curve operations. On the other hand, the level of secu-

rity offered by protocols such as Diffie-Heliman key exchange algorithm relies on

exponentiation in a large group. Typically, the implementation of this protocol

requires a large number of exponentiation computations in relatively big fields.

Therefore, hardware/software implementations of the group operations are, for all

the practical sizes of the group, computationally intensive.

The main focus of this dissertation is the study and analysis of efficient hard-

ware and software algorithms suitable for the implementation of finite field arith-

metic. This focus is crucial for a number of security and efficiency aspects of
cryptosystems based on finite field algebra, and specially relevant for elliptic curve

cryptosystems. Particularly, we are interested in the problem of how to implement

efficiently three of the most common and costly finite field operations: multipli-
cation, squaring, and inversion.

In chapter 2 the reader is introduced to elliptic curve cryptosystems. The ma-

terial presented in this chapter, discuss the most important mathematical concepts

that are fundamental for understanding elliptic curve public-key cryptosystems.

The material presented in this chapter was written based on [35].

In chapter 3, a new approach for dual basis multiplication is presented. In

contrast to the conventional approach, the proposed technique assumes that both

5

operands are given in the polynomial basis. We then give detailed analyses of
the space and time complexities of the proposed multiplication algorithm for irre-

ducible trinomials and equally-spaced polynomials. We show that the time com-

plexity of the proposed multiplier for an equally-spaced polynomial is less than

that of a recently reported multiplier. Furthermore, the proposed approach can

be used to design polynomial basis multipliers using dual basis multiplication.

The state-of-the-art Galois field GF(2m) multipliers offer advantageous space

and time complexities when the field is generated by some special irreducible

polynomial. To date, the best complexity results have been obtained when the ir-

reducible polynomial is either a trinomial or an equally-spaced polynomial (ESP).

For the cases where neither an irreducible trinomial or an irreducible ESP exists,

the use of irreducible pentanomials has been suggested. Irreducible pentanomials

are abundant, and there are several eligible candidates for a given m. In chap-
ter 4 we analyze the use of two special types of irreducible pentanomials. We

propose new Mastrovito and dual basis multiplier architectures based on these
special irreducible pentanomiais, and we give rigorous analyses of their space and
time complexity.

In chapter 5, we present a new approach that generalizes the classic Kara-
tusba multiplier technique. In contrast with versions of this algorithm previously

discussed [26, 28], in our approach we do not use composite fields to perform
the ground field arithmetic. One of the most attractive features of the algorithm

presented in this chapter, is the arbitrary selection of the defining irreducible poiy-

nomial's degree. In addition, the new field multiplier scheme leads to architectures

that show a considerably improved gate complexity when compared to traditional

approaches.

In chapter 6, we address the problem of how to implement efficiently finite

field arithmetic for software applications. This chapter contains our analysis of
complexities as well as the timings obtained by direct C code implementation of

the algorithms proposed. We include a comparative study of Montgomery arith-

metic versus Standard arithmetic for software applications. The main new ideas
presented in this chapter are concentrated in the reduction part. We analyze sepa-
rately the case of trinomial and pentanomial irreducible polynomials, and the case

of general irreducible polynomials. We introduce a fast way to compute standard

reduction for irreducible trinomialls and pentanomials. Our technique requires al-

most no restrictions in the size of the middle term 71 of the irreducible trinomial
P = xm + xTh + 1. In addition, the timing results achieved using our technique

are faster than the ones published in other works. We also introduce a fast way
to compute Montgomery reduction for irreducible trinomials and pentanomials.

The main feature of this method is the no use of a look-up table, which yields fast

timing results. To the best of our knowledge, similar reduction techniques, with

equivalent performance characteristics, have not been proposed before in previous
works.

Chapter 2
ELLIPTIC CURVE CRYPTOSYSTEMS IN CF(2m)

"Coding Theorist's Pledge: I swear by Galois
that I will be true to the noble traditions of
coding theory; that I will speak of it in the
secret language known only to my fellow ini-
tiates; and that I will vigilantly guard the sa-
cred theory from those who would profane it
by practical applications"

J. L. Mas8ey

In this chapter the reader is introduced to elliptic curve cryptosystems. The

material presented in this chapter, discuss some of the most important mathe-
matical concepts, fundamental for the understanding of elliptic curve public-key

cryptosystems. For a more detailed treatment of these aspects, the reader is
referred to Number theory books like [49, 26, 4, 41], and to elliptic Curve math-

ematical books like [28, 16, 27, 8]. The material presented in this chapter was
written based on [35].

2.1 Background

2.1.1 Rings

A ring R is a set whose objects can be added and multiplied, satisfying the fol-
lowing conditions:

Under addition, R is an additive (Abelian) group.

For all x, y, z E R we have,

x(y+z) = xy+xz;
(y+z)x = yx+zx.

. For all x,y e R, we have (xy)z = x(yz).

. There exists an element e E R such that ex = xe = x for all x E R.

The integer numbers, the rational numbers, the real numbers and the complex
numbers are all rings.

An element x of a ring is said to be invertible if x has a multiplicative inverse
in R, that is, if there is a unique u e R such that: xu = ux 1. 1 is called the
unit element of the ring.

2.1.2 Fields

A field is a ring in which the multiplication is commutative and every element

except 0 has a multiplicative inverse. We can define the field F with respect to
the addition and the multiplication if:

. F is a commutative group with respect to the addition.

. F \ {0} is a commutative group with respect to the multiplication.

. The distributive laws mentioned for rings hold.

2.1.3 Finite Fields

A finite field or Galois field denoted by GF(q pfl), is a field with characteristic
p, and a number q of elements. Such a finite field exists for every prime p and
positive integer n, and contains a subfield having p elements. This subfield is
called ground field of the original field. For every non-zero element a e GF(q),
the identity = 1 holds. Furthermore, an element a e GF(qm) lies in GF(q)
itself if and only if a'1 = a.

For the rest of this work, we will consider only the two most used cases in
cryptography: q = p, with p a prime and q = 2. The former case, GF(p),
is denoted as the prime field, whereas the latter, GF(2m), is known as the finite
field of characteristic two or simply binary field.

2.1.4 Binary Finite Fields

A polynomial p in GF(q) is irreducible if p is not a unit element and if p = fg
then f or g must be a unit, that is, a constant polynomial.

Let p(x) be an irreducible polynomial over GF(2) of degree m, and let a be
a root of p(x), i.e., p(a) = 0. Then, we can use p(x) to construct a binary finite
field F = GF(2m) with exactly q = 2 elements, where a itself is one of those
elements. Furthermore, the set {1, a, a2,. . . am_l} forms a basis for F, and is
called the polynomial (canonical) basis of the field [26]. Any arbitrary element
A E GF(2m) can be expressed in this basis as

A = Eajaz.

Notice that all the elements in F can be represented as (m 1)-degree polynomials.

The order of an element E F is defined as the smallest positive integer k
such that y/C = 1. Any finite field contains always at least one element, called
a primitive element, which has order q 1. We say that p(x) is a primitive
polynomial if any of its roots is a primitive element in F. If p(x) is primitive,
then all the q elements of F can be expressed as the union of the zero element
and the set of the first q 1 powers of a [26, 4]

{ 0, a, a2, a3,. . . = i}. (2.1)

Some special classes of irreducible polynomials are more convenient for the im-

plementation of efficient binary finite field arithmetic. Some important examples

are: trinomials, pentanomials, and equally-spaced polynomials. Trinomials are
polynomials with three non-zero coefficients of the form,

T(x) = xk + x" + 1 (2.2)

Whereas pentaiiomials have five non-zero coefficients:

P(x) = xk+xn2+xL1+xfb+1 (2.3)

10

Finally, irreducible equally-spaced polynomials have the same space separation
between two consecutive non-zero coefficients. They can be defined as

p(x) = xm + x(_i)d + + x2' + + 1, (2.4)

where m = kd. The ESP specializes to the all-one-polynomials (AOPs) when
d = 1, i.e., p(x) = xm + x1 + ... + x + 1, and to the equally-spaced trinomials
when d = , i.e., p(x) = xm + x + 1.

2.1.5 Binary Finite Field Arithmetic

In this thesis we are mostly interested in a polynomial basis representation of the

elements of the binary finite fields. We represent each element as a binary string
(am_i . . . a2aiao), which is equivalently considered a polynomial of degree less than
m:

am_lxm_l + . . . + a2x + a1x + a0. (2.5)

The addition of two elements a, b e F is simply the addition of two polynomials,

where the coefficients are added in GF(2), or equivalently, the bit-wise XOR oper-
ation on the vectors a and b. Multiplication is defined as the polynomial product
of the two operands followed by a reduction modulo the generating polynomial

p(x). Finally, the inversion of an element a E F is the process to find an element
a1 E F such that a a' = rnodp(x).

Addition is by far the less costly field operation. Thus, its computational
complexity is usually neglected (i.e., considered 0). Inversion, on the other hand,
is usually the most costly field operation. For instance, inversion based on Fer-
mat's theorem requires at least 7 multiplications in F if m 128. In general,
inversion needs O(log2 in) field multiplications when this method is selected.

11

2.2 Elliptic Curves over CF(2m

The theory of elliptic curves has been intensively studied in number theory and al-

gebraic geometry for over 150 years. Initially pursued mainly for purely aesthetic

reasons, elliptic curves have recently been utilized in primality proving, public-key

cryptography, and also they figured prominently in the recent proof of Fermat's

last theorem. Elliptic curve cryptosystems were first proposed in 1985 indepen-

dently by N. Koblitz [17] and V. Miller [29]. Since then, an enormous amount of
literature on this subject has been accumulated.

Elliptic curves can be defined over real numbers, complex numbers, and any
other field. However, from the cryptography point of view, we are only concerned

with those over finite fields. More specifically, for the rest of this work, we will

consider only the main theoretical aspects of binary elliptic curves, i.e., elliptic
curves over GF(2m).

2.2.1 Definition

Let F = GF(2m) be a finite field of characteristic two. A non-supersingular
elliptic curve E(Fq) is defined to be the set of points (x, y) e GF(2m) x GF(2m)
that satisfy the equation,

y2+xy = x3+ax2+b, (2.6)

where a and b e F, b ? 0, together with the point at infinity denoted by 0.

2.2.2 Operations

There exists an addition operation on the points of an elliptic curve which possesses

the ring properties discussed in the previous section. Let us define the inverse of
the point P = (x, y) as P = (x, x + y). Then, the point R = P + Q is
defined as the point with the property that P, Q and R lie on a common line.
The point at infinity plays the role of the neutral element for the addition. Hence,

12

P+o=P,
(2.7)

P+(P) = 0.

For the case when P = Q, the addition operation 2P = P + P is referred as
doubling operation.

Elliptic curve points can be added but not multiplied. It is, however, possible

to perform scalar multiplication, which is another name for repeated addition of
the same point. If n is a positive integer and P a point on an elliptic curve, the
scalar multiple nP is the result of adding n 1 copies of P to itself.

2.2.3 Order Definitions

Notice that the elliptic curve E(Fq), namely the collection of all the points in Fq

that satisfy the equation (2.6) can only be finitely many. Even if every possible
pair (x, y) were on the curve, there would be only q2 possibilities. As a matter of
fact, the curve E(F) could have at most 2q + 1 points because we have one point
at infinity and 2q pairs (x, y) (for each x we have two values of y).

The total number of points in the curve, including the point 0, is called the
order of the curve. The order is written #E (Fq). A celebrated result discovered
by Hasse gives the lower and the upper bounds for this number.

Theorem [28] Let #E(1'q) be the number of points in E(Fq). Then,

J#E(Fq) (q+ 1)1 2/ (2.8)

As we did in the case of finite fields, we can also introduce the concept of the
order of an element in elliptic curves. The order of a point P on E(F) is the
smallest integer k such that kP = 0. The order of any point it is always defined,

and divides the order of the curve #E(1q). This guarantees that if r and I are
integers, then rP = 1P if and only if r 1 (mod k).

13

2.2.4 Representations

There exist several representations for points on elliptic curves, for purposes of
internal computation and for external communication. In affine-coordinate rep-

resentation, a finite point on E(Fq) is specified by two coordinates x, y E Fq

satisfying equation (2.6). By definition, the point at infinite 0 has no representa-
tion in aJIlne coordinates.

We can make use of the concept of a "projective plane" over the field F, [1].

In this way, one can represent a number using three rather than two coordinates.

Then, given a point P with affine-coordinate representation x, y; there exists a
corresponding projective-coordinate representation X, Y and Z such that,

P(x,y) P(X,Y,Z)

The formulae for converting from affine coordinates to projective coordinates and

vice versa are given as,

affine-to-projective: X = x, Y = y, Z = 1
(2.9)

projective-to-affine: x = , y

2.2.5 Addition Formulae

Explicit rational formulae for the addition rule involve several arithmetic oper-
ations in the underlying field: addition, squaring, multiplication and inversion
[28, 16, 27]. The formulae for adding points in affine coordinates are given as
follows [28]. Let P = (x1, yi) and Q = (x2, 1/2) be two points in E(F), such

that Q P. Then P + Q = (x3, y) is given as,

X1+Z2 X1+Z2x3
((Y1+Y2)2+ Y1+Y2 +xt+x2+a) , if PQ

(2.10)
2 b ifP=Q.x1+

and

x +Z2
((Y1+Y2) (x1 + x3) + + yi), if P

(2.11)+(1+)x3+x3 if P=Q.Xj

14

Notice that the addition operation (P Q) can be computed with three field
multiplications, one field inversion, and several field additions. Normally, however,

we do not pay attention to the number of field additions needed, because as
it was pointed out before, its computational complexity is much less than the

corresponding ones needed for field multiplication and field inversion. We notice

also that the doubling operation can be computed with four field multiplications
and one field inversion.

2.2.6 Scalar MultiDlication in Affine Coordinates

The basic method for computing the scaiar multiplication operation, kP, is the
addition-subtraction method described in [13]. This method is an improved ver-

sion over the well known "add-and-double" or binary method. For a random
multiplier k, this algorithm performs on average log2 k field multiplications and
log2 k field inversions in affine coordinates [22].

A different approach for computing the scalar multiplication was first intro-
duced by Montgomery in [30]. He presented an algorithm based on the binary
method and the observation that the x-coordinate of the sum of two points whose

difference is known can be computed in terms of the x-coordinates of the involved

points only. The algorithm shown in 2.1 performs an addition and a doubling in

each iteration, while maintaining the invariant relationship P2 P1 = P. At
the end of the execution of the loop in lines 4-9, the scalar product Q = kP is

obtained in the variable P1. An improved version of the algorithm in figure 2.1

was presented in [22]. There, it was found that the operation Q = kP can be
computed with N + 1 field inversions, N + 4 field multiplications, 2N + 6 field

additions, and N + 2 field squarings, where N = 2 log2 k].

For the common case where field inversion is a relatively expensive operation,

it is also possible to obtain a projective version of this algorithm, where the scalar

multiplication can be obtained with only one inversion. This is achieved at the

price of an increment in the number of field multiplications and field squaring to

15

3N + 10 and N + 3, respectively. These results yield an speedup of about 14%
when compared to the original Montgomery algorithm for the case of projective
coordinates [22].

Input: An integer k > 0 and a point P
Output: The scalar product Q = kP.
Procedure Binary..Method(P, k).
0. begin
1. k = (k_1.. .

2. P1 = P,P2 = 2P;

4. for i from n 2 downto 0 do
5. if (k == 1) then
6. P1=P1+P2,P2=-2P2;
7. else
8. P2P2+Pi,Pi-2P1;
9. end
10. end

Figure 2.1. Montgomery binary method for scalar multiplication

2.2.7 An Example

Let F = GF(24) be a binary finite field with defining primitive trinomial p(x)
given as,

p(x) = x4+x+1. (2.12)

Then, if a is a root of p(x), we have p(a) = 0, which implies,

p(a) = a4+a+i=0. (2.13)

16

For binary field arithmetic, addition is equivalent to subtraction. Hence, the above

equation can be rewritten as

a4 = a+1. (2.14)

Using equations (2.1) and (2.14), one can now express each one of the 15 nonzero

elements of F as is shown in Table 2.1. Notice that we can define any one of the
q = 2 elements of F using only four coordinates.

Element in GF(2m) Polynomial Coordinates
0 0 (0000)
a a (0010)
a2 a2 (0100)
a3 a3 (1000)
a4 a+1 (0011)
a5 a2+a (0110)
a6 a3+a2 (1100)
a7 a3+a-i--1 (1011)
a8 a2 + 1 (0101)
a9 a3+a (1010)
a10 a2+a+1 (0111)

a3+a2+a (1110)
a2 a3+a2+a+1 (1111)
a13 a3 + a2 + 1 (1101)
a'4 a3 + 1 (1001)
a'5 1 (0001)

Table 2.1. Elements of the field F = GF(24), defined using the primitive trino-
mial of equation (2.12).

Notice that all the elements in F can be described by any of the three repre-
sentations used in table 2.1: polynomial representation, coordinate representation
and powers of the primitive element a.

17

Let us now consider a non-supersingular elliptic curve defined as the set of
points (x, y) E F x F that satisfy

y2 + xy x3 + a'3x2 + a6 (2.15)

Notice that for the coefficients a and b of equation (2.6), we have selected the
values a13 and a6, respectively. There exist a total of 14 solutions in such a curve,

including the point at infinite 0. Using table 2.1, we can see that, for example,
the point

P = (Xp,yp) (a3,a2) (2.16)

satisfies equation (2.15) over F, since

y2+xy = x3+a13x2+a6
(a2)2 + a3a2 = (a3)3 + a13 (a3)2 + a6

a4-i-a5 = a9+a'9+a6
(2.17)

= a9+a4+a6
(0011) + (0110) = (1010) + (0011) + (1100)
(0101) = (0101),

Where we have used the identity a15 = 1. All the thirteen finite points which
satisfy equation (2.15) are shown in figure 2.2.

Let us now use equations (2.10) and (2.11) to double the point P = (a3, a2).

Using once again table 2.1, we obtain,

x2p =

= (a3)2 + a6 (a3)2

= a6+a6a6 = a6-i-1 = a'3

Y2p = x + (xp + x2p + x2p (2.18)

= a6+(a3+a2.a3)a'3+a'3

= a6 + (a3 + a-') a13 + a13

= a6 + a1 + a12 + a13 = a6

y

a'
a1

a1

a1

a---
a--
a7

a---
a5 --

--

a3

a2 * .
a ---

a a a2 a3 a4 a5 a6 a7 a8 a9 a'° a a12 a'3 a14 aT5

Figure 2.2. Elements in the elliptic curve of equation (2.15)

x

it;]

It can be verified from figure 2.2 that the result obtained above is indeed a point
in the elliptic curve of equation (2.15).

As we mentioned in §2.2.3, we can keep adding P to its scalar multiples, but
eventually, after k #E(Fq) scalar multiplications, we will obtain the point at
infinite 0 as a result. Recall that the integer k is called the order of the point P.
For the case in hand, P happens to have a prime order k = 7. Notice that as
it was claimed in §2.2.3, the order k of P divides the order of the curve #E(Fq).
Table 2.2 lists all the six finite multiples of P.

Obviously, in a true cryptographic application the parameter m should be
chosen large enough so that efficient generation of such a look-up table approach,
becomes unfeasible. In today's practice, m 160 has proved to be sufficient.

19

[p 2P 3P 4P 5P 6P
(a3,a2) (a'3,a6) (a'4,a9) (a14,a4) (a'3,a15) (a3,a6)

Table 2.2. Scalar multiples of the point P of equation (2.16)

2.3 Elliptic Curve Cryptography

We briefly discussed in the previous sections the mathematical background needed

to describe the behavior of elliptic curves, their curve operations and the various

methods for doing scalar multiplication. Using this material we can now build a
public-key cryptosystem based on the theory of elliptic curves. The main appli-
cations of these cryptosystems include establishing secret keys for further use in

symmetrical-key cryptosystems and the creation of digital signatures as well as
their digital verification

In essence, elliptic curve scalar multiplication is the basic operation that is
used in all the elliptic cryptosystem applications known to date.

In the remaining part of this chapter, we will briefly discuss some of the most

relevant aspects in the construction and design of elliptic curve cryptosystems.

2.3.1 Discrete Logarithm Problem

Let C be a multiplicative finite cyclic group of order n, a a primitive element of
G and /3 E G. The discrete logarithm of ,[3 to the base a, denoted by loge /3, is the
unique integer ii, 0 ii n such that /3 = a". The discrete logarithm problem is
to find an "easy", i.e., computationally feasible method for computing logarithms

in a given group C.

20

2.3.2 Elliptic Curve Discrete Logarithms

Suppose that the point P in E(Fq) has prime order k, where k2 does not divide
the order of the curve #E(F). Then a point Q satisfies Q IP for some integer
I if and only if kP = 0. The coefficient I is called the elliptic curve discrete

logarithm of Q, with respect to the base point P. By definition, the elliptic curve

discrete logarithm is an integer modulo k [13, 15, 14, 42].

There are many analogies between the discrete logarithm problem in finite
fields GF(F,) and the elliptic curve discrete logarithm. In some sense, both prob-
lems are the same in two different mathematical settings. As a result, the primi-
tives and schemes of both problems are closely analogous to each other. However,

for a single large q there exist many different elliptic curves and many different
orders to choose from. Also, the intractability of the elliptic curve discrete loga-

rithm problem appears to be much harder than the discrete logarithm problem in
finite fields GF(Fq).

2.3.3 Elliptic Curve Cryptosystem Parameters

Let us suppose that a non-supersingular elliptic curve E(Fq) as defined in equation
(2.6) has been selected and that its underlying field Fq, its coefficients a, b, and its
order #E(Fq), are all given. Additionally, suppose that a base point P e E(F),

with prime order k, as it was described in the preceding subsection, has also been

selected. Then, a private/public key pair can be defined as follows:

The private key s is an integer modulo k.

The corresponding public key W is a point on E(Fq) defined by W := sP.

Notice that it is necessary to compute an elliptic curve discrete logarithm in order

to derive a private key from its corresponding public key. It is because of this
reason that we say that the security of this cryptosystem relies in the difficulty of

its discrete logarithm problem.

21

2.3.4 Key Pair Generation

To compute a public/private key pair, we first choose a random integer d e [1, k

1], which is the private key. After that, we generate the public key by computing

the point

Q = (XQ,yQ)=dP (2.19)

2.3.5 Signature

The holder of a private key can uniquely digitally sign a message using the fol-
lowing procedure:

1. A compressed version of the message to sign is obtained via a hash function,

e = H(M).

2. A random integer n E [1, k 1] is selected. ri is secret and is valid only for

that specific message.

3. Using ri, obtain the elliptic curve point, (x1, y') = nP.

4. Using only the field element x1 generated in the step before, generate

and

r = x1 (mod k). (2.20)

s = n (e + dr) (mod k). (2.21)

The signature for this message is the pair r and s. Notice that the signature
depends on both the message and the private key. This implies that no one can
substitute a different message for the same signature.

2.3.6 Verification

When a message is received, the recipient can verify the signature using the re-

ceived signature values and the signer's public key, Q. We will call the received

22

pair(r', s'). If the pair (r, s) is equal to the received one, we say that the signature
has been verified.

1. Verify that r' and s' are between [1, k 1]. If they are not, the signature is
rejected.

2. Hash the received message M' , obtain a value e' = H(M').

3. Compute
c = (s1)1 (mod k)

= e'c (mod k) (2.22)

= r'c (mod k)

4. Compute the point (x1, Yi) = u1P + u2Q. If this point is the point at
infinity 0, the signature is rejected.

5. Compute v = x1 mod k.

If r' = v, we declare the signature valid and the process of verification ends.

23

Chapter 3
DUAL BASIS MULTIPLIERS

"... I hold within my hand
Grains of the golden sand-
How few! yet how they creep
Through my fingers to the deep,
While I weep- while I weep!
O God! can I not grasp
Them with a tighter clasp?
O God! can I not save
One from the pitiless wave?
Is all that we see or seem
But a dream within a dream?"

Edgar Allan Poe, 1827

In this chapter we present a new approach for dual basis multiplication. In

contrast to the conventional approach, the proposed technique assumes that both

operands are given in the polynomial basis. We then give detailed analyses of
the space and time complexities of the proposed multiplication algorithm for ir-
reducible trinomials and equally-spaced polynomials.

3.1 Introduction

Efficient hardware implementations of the arithmetic operations in the Galois
field GF(2m) are frequently desired in coding theory, computer algebra, and el-
liptic curve cryptosystems [26, 28]. For these implementations, the measure of
efficiency is the space complexity, i.e., the number of XOR and AND gates, and

the time complexity, i.e., the total gate delay of the circuit.

The representation of the field elements have a crucial role in the efficiency of

the architectures for the arithmetic operations. Several architectures have been

reported for multiplication in GF(2m). For example, efficient bit-parallel mul-
tipliers for both canonical and normal basis representation have been proposed
[11, 32, 20, 9].

24

Another technique which was first suggested in [3] is known as the dual basis

multiplier [31, 5, 53, 54]. Conventional dual basis multipliers have the property

that one of the input operands is given in the polynomial basis while the other

input is in the dual basis. The product is then obtained in the dual basis [3].
In this chapter we present a new approach for dual basis multipliers. We modify

the conventional dual basis algorithm so that the necessity of having one of the

operands in the dual basis can be avoided.

3.2 Polynomial Basis and Dual Basis

A set of rn elements {/3, /3i, /3,. . . , /3rn-i} forms a basis for GF(2") if the /3s are

linearly independent over the field GF(2). Let p(x) be a degree-rn polynomial,
irreducible over GF(2). Let also a be a root of p(x), i.e., p(a) = 0. Then,

the set {1, a, a2,.. . am_i} is a basis for GF(2m), and is called the polynomial

(canonical) basis of the field [26]. An element A E GF(2m) is expressed in this
rn-i

basis as A = a2a1. The trace of /3 E GF(2rn) relative to the subfield GF(2) is
i=O

defined by
rn-i

32I (3.23)

It is well-known [26] that the trace function is a linear mapping from the fi-
nite field GF(2m) onto the finite field GF(2). Let {ao, ai, a2,. . . , arni} and
{j3, /3k, 12,. . . , /3rn_i} be any two bases for GF(2'), and also let 7 E GF(2m)
with 'y 0. Then, these two bases are said to be dual with respect to 'y if [5],

Ii if i=j
Tr('ya2/33) = , (3.24)10 if ii.

Let 'y be a fixed nonzero element of the field GF(2m) and let the basis of rn
elements, {/3o,,8i,/3,...,/3rn_i} be a dual basis of {1,a,a2,...,am}, the poly-
nomial basis previously defined. Then, any element A can be expressed either in

the polynomial basis or in the dual basis as
rn-i rn-i

A = a& = . (3.25)
i=O i=O

25

Using equation (3.24), we can obtain the jth coordinate of the element A in the
dual basis as

rn-i rn-i
Tr('yaA) = Tr(7a- a/3) = j aTr(ya8) = a. (3.26)

Combining equations (3.24) and (3.26), we can express a; as

rn-i rn-i
Tr('ycA) = Tr('yct ac) = aTr('ya) . (3.27)

i=0 i=0

Therefore, the conversion from the polynomial basis to the dual basis can be
expressed as a matrix-vector product

[a a a; .. a_1 = G [a0 a1 a2 arn_i , (3.28)

where the conversion matrix C is known as the Gram matrix, and is defined as

Tr(7) Tr('ya) rh(7a2) rft.rn_1)
Tr('ycx) rfr(),a2) Tr('ya3) ... Tr('ya)

C rfr(7a2) Tr(7a3) rfr(7a4) ... Tr(ya"1) . (3.29)

rpf(yam_i) rFi.(7am+i) rfl.(7a2rn_2)

The Gram matrix G is a function of the parameter 7 E CF(2rn) and the irreducible

polynomial p(x) generating the field. Since the Gram matrix is guaranteed to be

nonsingular [26], we can also obtain the conversion from the dual basis to the
polynomial basis as a matrix-vector product

TT

{ a a1 a2 am_i] = G1 [a a a; ... a_1
J

. (3.30)

In some cases, the Gram matrix is just a permutation matrix, i.e., a matrix con-

taining a single one in each row or column. For example, this is always the case

when an irreducible trinomial p(x) = Xm + x" + 1 is used to construct the field
GF(2rn) [31, 5]. By selecting 7 E CF(2rn) such that

Ii fori=n-1,rfr(z) = (3.31)
1

0 fori=0,1,....,n-2,n,rz+1,...,(m-1)

26

Then, it is possible to obtain the so-called self dual basis of the polynomial basis

{i3o,/3i,. .,!3m-i} = {aTh_1,cn_2,.. .,1,aml,cm2,.. a} . (3.32)

In other words, we have

fn-l-j forj=0,1,...,(m-1),
()

forj=n,n+1,...,(m-1)

which implies

Tr('ya/i1) Tian_l_i) r1(7an_l) = 1 for i = 0, 1,. . ., (n 1),

rfr(7aiam_l+n_i) = rfl.(yam_l+m) 1 for i = ri, n + 1,.. ., (m 1).

(3.34)

Thus, in the first n rows of the Gram matrix there is a one in every column where

there is the term Tr(7a1). In the remaining rows, there is a one in every column

where there is the term Tr(yam_l+Th). The other locations contain only zeros. As

an example, for the irreducible trinomial Xm + x +1 = xT+ x3 +1, we obtain the
7 x 7 dimension Gram matrix as

G=I

0010000
0100000
1000000
0000001
0000010
0000100
0001000

Since the Gram matrix G is a permutation matrix for the irreducible trinomial
xm +x' + 1 generating the field GF(2m), the conversion from the polynomial basis

to the dual basis and vice versa requires no gates or delays. A rewiring of the
coordinate values is sufficient.

27

3.3 Proposed Dual Basis Multiplication

In this section, we give the derivation of the proposed dual basis multiplication

algorithm. The proposed algorithm will take its input operands A and B in the
polynomial basis, and will compute the product C* in the dual basis. This is in

contrast to the standard definition of the dual basis multiplication, where one of

the input operands needs to be represented in the dual basis.
rn-i

Let A, B E GF(2m) be given in the polynomial basis as A = a2& and
i=Orn-i

B = b&, where a, b, e GF(2) are their coordinates, respectively. Given a
i=O

fixed element e GF(2rn), we are interested in computing the product C* in the
dual basis with respect to 'y given as,

rn-i

C = . (3.35)
k=O

Using equation (3.26), the coefficient c is given by c = Tr(7aIcC) fr('ya'AB)
fork=O,1,...,(m-1)as

/ /rn-1 \ frn-i \\ rn-i rn-i
Tr ('yak

(,
azaz)

(
b3&)

) = . (3.36)
i=O \j=O JJ i=O j=O

Thus, the coefficient c can be written as
rn-i

c = > t+ka . (3.37)
i=o

where the trace coefficients tj+k for i, k = 0, 1,. . ., (m 1) are defined by
rn-i

ti+k = rpc('yai+i+k)b
. (3.38)

j=o
Therefore, the field product C* can be expressed as a matrix-vector product

C*=

*
Co

*
Crn_2

*Cm_i

t0 t1 t2 trn_2 tm_i

t1 t2 t3 tm_i trn

t2 t3 t4 trn trn+i

trn_2 trn_i tm t_4 t3
tm_i tm tm+i t2rn_3 t2m_2

a0

ai
a2

arn_2

am_i
(3.39)

Each row of the multiplication matrix in equation (3.39), corresponds to a state

of the shift register in Berlekarnp's bit-serial multiplier of [3], holding the dual
basis factor "y. Provided that the trace coefficients tk for k = 0, 1,. . ., (2m 2)

are all available, the space and time complexities for computing the matrix-vector

product in equation (3.39) are obtained as

AND Gates = m2
XOR Gates = m2 m, (3.40)

Total Delay = TA + 1og2 ml T

On the other hand, from equation (3.38) we see that in order to obtain all (2m-1)

trace coefficients required in equation (3.39) we need to compute a total of (3m-2)

different traces. This can be accomplished by using the following transformation

matrix of dimension (2m 1) x m, which we will call the extended Gram matrix.

to

tl
t2

tm_i

tm

tm+1

t2m_2

Tr('y) Tr('ya) Tr('ya2) ... Tr('ya'1)
Tr('ya) Tr('ya2) Tr('ya3) ... rh(rn)
rfr(7a2) Tr('ya3) T('ya4) Tr('ya)

rfr(7am_l) rfr(7arn) Tr(yam+l) ... rfr(7a2m_2)

Tr(yam) rfl.(7am+l) rfr(7am+2) ...
rh(m+l) rh(m+2) rfl.(m+3) ... rh(2m)

rpf(7a2m_2) rfi.(7a2m_l) rfl.(7a2m) ...

b0

b2

bm_i

(3.41)

The first m rows of the extended Gram matrix are simply equal to the m x m
Gram matrix. The matrix-vector equations (3.28) and (3.41) show that the first

m trace coefficients are in fact the coordinates of B in the dual basis, i.e.,

ti t2 tm_i b* b* bt ... b*

T

[
0 1 2 rn_i] (3.42)

The matrix-vector equation in (3.41) provides a method to compute the remaining

trace coefficients required in equation (3.39) by using only the coordinates of

29

the operand B in the polynomial basis. The space complexity for computing
all trace coefficients defined in equation (3.41) depends only on the number of
nonzero entries in the extended Gram matrix, which is a function of the irreducible

polynomial p(x) generating the field and the element 'y e GF(2m). Once the
parameter 7 is fixed, the elements of the extended Gram matrix are fixed zero

and one values. Thus, the trace coefficients in equation (3.41) can be computed
using only XOR gates, i.e., no AND gates are required. A good selection of is

crucial in order to obtain an extended Gram matrix with as few ones as possible.

The total complexity of the proposed multiplier consists of two parts:

The space complexity for computing all (2m 1) trace coefficients which are

defined in equation (3.38) or (3.41), and used in equation (3.39). The first
in trace coefficients are simply equal to the coordinates of the operandB ex-

pressed in the dual basis. The remaining (m 1) coefficients are determined

using the extended Gram matrix given by equation (3.41).

The complexity of computing the matrix-vector product in equation (3.39),

which was established in equation (3.40) assuming that the coordinates of
the operand A expressed in the polynomial basis and all (2rn 1) trace
coefficients are given.

3.4 Complexity Analysis

In this section, we analyze the complexity of the proposed multiplication algo-

rithm for several types of irreducible polynomials. First, in subsections §3.4.1 and

§3.4.2 we give the complexity analysis of the proposed algorithm for irreducible

trinomials. Irreducible trinomials over GF(2) are abundant. For example, there
exist 556 in values less than 1024 such that at least one irreducible trinomiall of

degree in exists [53]. In subsections §3.4.3 and §3.4.4 we present the complexity
analysis of the proposed scheme for irreducible equally-spaced polynomials (ESP).

As it is shown there, ESPs allows the design of very efficient field multipliers.

30

3.4.1 General Trinomials m + x + 1

Taking advantage of the fact that, if p(x) = xm + +1 is irreducible over GF(2)

then so is Xm + Xm_m +1 [27], the complexity analysis for general trinomials can be

restricted without loss of generality, to irreducible trinomials p(x) satisfying the

condition n < In the rest of this subsection, this condition will be assumed.

As it was discussed in section 3.2, when irreducible trinomials are used to con-

struct the field GF(2m), a self dual basis of the polynomial basis {1, a, a2,. am_i}

can be found by just permuting the polynomial basis as follows [31, 5],

{ai, a2,. . . , 1, am_i, am_2, a'} (3.43)

Hence, the trace coefficients tk for k = 0, 1,. . ., (m 1) are obtained directly from

the polynomial basis coordinates of the operand B using this permutation:

tk=bk=bn_i_k fork=0,1,...,(n-1),
(3.44)

tn+kbfl+kbm_i_k fork=0,1,...,(mn-1).

Last equation implies that the first m trace coefficients can be obtained using

rewiring only, and therefore, their computation requires no gates or delays. In
order to obtain the remaining trace coefficients tm+k for k = 0, 1,. . ., (in 2), we

will use the property p(a) = 0, and write

am = 1+a,
am+l = a+aTh+l,

a2m_2 = am_2 + am_2

Due to the linearity property of the trace function, we can write

tm+k = Tr(yam B) = Tr(ya/cB) + Tr(7a'B) for k = 0, 1,. . ., (m 2)

(3.45)

Therefore, these remaining (m 1) trace coefficients can be written as

tm+ktk+tn+k fork=0,1,...,(in-2). (3.46)

31

This last equation implies that we can compute the trace coefficients tm+k =
tk + tn+k for k = 0, 1,..., (m n 1) using exactly (m - n) XOR gates with a
time delay of T.

In addition, in order to obtain the last (n 1) trace coefficients tm+k for
k rnn,. . . , (rn-2), we can make use of the (rnn) trace coefficients previously

computed. Notice that the condition n L] guarantees that the entire set of
(ni) pairs (tk+tfl+k) is included in the previously computed set of (rnn) pairs.
Therefore, this computation requires only (n 1) XOR gates and an additional
T gate delay.

In summary, m n + n 1 = (rn 1) XOR gates and 2Tx gate delays are
sufficient to obtain the entire set of tk terms fork = 0,1,..., (2m-2). This result
combined with equation (3.40) gives the complexity of the proposed multiplier for

an irreducible trinomial of the form xm + x' + 1 with 2 n Lrn/2] as

AND Gates = m2

XOR Gates = rn2 1, (3.47)

Total Delay = TA + (2+ log2 ml)Tx

3.4.2 Special Trinomials xm + x + 1

When n = 1, a small reduction in the time complexity can be obtained. For this

case, we can follow the same analysis used in the previous subsection. Thus, the

first m trace coefficients are obtained from the polynomial basis coordinates of
the operand B using the permutation of equation (3.44). This computation is
performed using rewiring oniy, and requires no gates or delays. Then, we can
compute tm+k for k = 0, 1,. . ., (m 2) using (in 1) XOR gates with a time
delay of Tx. This result combined with equation (3.40) gives the complexity of

the proposed multiplier for an irreducible trinomial of the form xm + x + 1 as

AND Gates = rn2
XOR Gates = rn2 1, (3.48)

Total Delay = TA + (1 + log2 inl)Tx

32

3.4.3 Equally-Spaced Trinomials xm + m/2 + 1

In this section, we give the complexity analysis of the proposed multiplier for the

irreducible equally-spaced trinomial p(x) = xm + Xml2 +1 where m is even. It is

known [13] that a trinomial of the form xm + Xml2 + 1 is irreducible over GF(2)

if and only if in is an even number such that is a power of three. For this case,

there exists a dual basis of the polynomial basis given as

{ am'2_2,. , i, aU1, am_2 al} . (3.49)

As before, the first m trace coefficients tk for k = 0, 1,.. . , (m 1) are obtained

directly from the polynomial basis coordinates of the operand B using the per-
mutation as

tk = bm12_ i-k for k = 0, 1,. . ., (m/2 1),
(3.50)

tm+k = bm_i_k for k = 0, 1,. . ., (m/2 1)

In order to obtain the remaining trace coefficients tk for k = in, m+1,. . . , (2in-2),
we write

am 1+aml2,
am+i = a+aml214

a3m/2_1 = am/2_ + am_l

a3m'2 = am'2 + am = am/2 + 1 + am/2 = 1
a3m12+i = a
a3m12+2 = a2

a2m_2 = amh/2_2

These identities can be summarized as follows:

= a' + aml2+lc for k = 0,1,. . ., (m/2 1),
(3.51)

a3m12 = alc for k = 0, 1,..., (m/2 2)

33

Taking advantage of the linearity of the trace function, we can rewrite the previous

identity as,

tm/ç rpf(7am+kB) = Tr(kB) + rf i'(am/2B) = tk + tm/2+k,

t3m/2+k = Tr(7aam/2 B) = r1l.(7akB) = tk.

We obtain the trace coefficients as

tm+k =tk+t7n/2+k fork=0,1,...,(m/2-1)
(3.52)

t3m/2+Jç = tk for k = 0, 1,. . ., (m/2 2)

Therefore, the first m trace coefficients are obtained from the polynomial basis

coordinates of the operand B using the permutation given by equation (3.49). This

computation is performed using rewiring only, and requires no gates or delays.
Using equation (3.52), we then compute tm+k for k = 0, 1,. . ., (rn/2 1) using

(m/2) XOR gates with an associated time delay of T. The remaining terms
t3rn/2+k for k = 0, 1, . . . , (m/2 2) are also computed from the previous values
using rewiring, as given in equation (3.52). Therefore, (m/2) XOR gates with
a time delay of T, are sufficient to obtain the entire set of tk terms for k =
0,1,..., (2m-2). This result combined with equation (3.40) gives the complexity
of the proposed multiplier for the irreducible equally-spaced trinomial xm+xm/2+1

with m even as

AND Gates = m2

XOR Gates = m2 m/2 (3.53)

Total Delay = TA + (1 + 1og2 m])Tx

3.4.4 Equally-Spaced Polynomials + + x2d + xd + 1

Let the field GF(2m) be constructed using the irreducible equally-spaced polyno-

mial (ESP)

p(x) m + + . + 2' + xd + 1, (3.54)

where m = kd. The ESP specializes to the all-one-polynomial (AOP) when
d = 1, i.e., p(x) = m + Xm_l + + x + 1. In addition, the results of this

34

section can also be applied to the equally-spaced trinomials where d = m/2, i.e.,
p(x) __xm+xm/2+1.

We will first show that we can choose a 'y which will result in a Gram matrix
with 2(in d) ones. Our result improves the result obtained in [53], in which the

Gram matrix has (2in d 1) ones. Let p(a) = 0. Thus, we can write

am = 1 + ad + a2d +... +
am a+a+a24+... +a(k_l)d+1

am+d_i = ad_i + a2d_l + a3'' +... + akd_l

= 1

am+d+l = a

a2m_2 am_d_2

These identities can be summarized as

am = ai+ad+i+a2d+i+ .+a(k_l)d+i fori = 0,1,...,(d 1)

fori=O,1,...,(md---2).
(3.55)

Therefore, from the second equation above, we can write

Tr(7am) = Tr('ya2) (3.56)

for i = 0, 1,. . . , (in d 2). Let us select e GF(2m) such that

Ii fori=d-1,
Tr('ya') = (3.57)

10 fori=0,1,...,d-2,d,d+1,...,(m-1).

The selection of as above is easy to accomplish [26, 31, 5]. The coordinates
of can directly be obtained from the d-th column of the inverse Gram matrix

G constructed using 7 = 1. Using equations (3.55), (3.56), and (3.57), and the
linearity property of the trace function, we obtain

Tr(7am+z) = Tr('ya2) + Tya) + .. . + Tr(7a) = 0

35

for i 0, 1, . . ., (d 2). Furthermore, we consider the following two trace coeffi-
cients,

rfr(7am+d_l) = Tr(yad_l) + rh(7a2d_l) + + Tr('ya1) = rfi.(7ad_l) 1,
rfi.(m+2d-1) = Tr(7a'1) = 1.

The remainder of the traces are obtained as

yam) = Tr('ya2) = 0,

for i 0, 1, . . ., (m 2 d) and i d - 1. Therefore, we have exactly three trace
coefficients which are nonzero:

Trya') Tr(yam+d_l) = yam+24_l) = 1 . (3.58)

Due to the symmetry of the Gram matrix, the term Tr(7a) appears in exactly
i + 1 cells if i < in and in (2m i 1) cells if i m. Therefore, the number of
ones in the Gram matrix will be

(d-1+1)+(2m(m+d-1)-1)+(2m(m+2d-1)-1) =2(md) . (3.59)

The selection of as in equation (3.57) yields a Gram matrix where the rows from

0 to (d 1) have a single one, the rows from d to (2d 1) also have a single one,

and finally the rows from 2d to (rni) have two ones. This Gram matrix gives the

transformation from the polynomial basis representation of the operand B to the
dual basis representation. From this analysis, particularly from the nonzero trace

coefficient terms given by equation (3.58), we can give the dual basis coordinates

of the operand B as

bd__1 fori=0,i,...,(di),
b bm+d_i_1 fori=d,d+1,...,(2d-1) (3.60)

bm+2d_i_1 + bm+d_i_1 for i = 2d, 2d + 1,.. ., (m 1)

Therefore, given the polynomial basis coordinates b, we can obtain the dual basis
coefficients b using exactlyini 2d+ 1 = (in 2d) XOR gates with a time delay

36

of T. We also prove by equation (3.60) that the dual basis of the polynomial
basis {1, a, a2,.. am_l} is given as

{ad_l,. , 1, aMl,. al_1+a_1)d_1, .

(3.61)

As we have seen, the first m trace coefficients t for i = 0, 1,. . . , (m - 1) in
the extended Gram matrix are simply given as t = b. In order to obtain the
remaining trace coefficients, we will use the identities in equations (3.55) and
(3.60). We can write for i = 0, 1,. . ., (d 1) as

t = Tr(yamB) = Tr('ya) + T.rya) + Tr(7a2) + Trcya(k_).

Similarly, we can write for i = 0, 1,. . ., (m d 2) as tm+d+j = a2m2B) =
t. Thus, the trace coefficients are obtained as

tj = tj+td+j+t2d+j+ "+t(k_1)d+j for i= 0,1,...,(d 1),
(3.62)

tm+d+jti fori=0,1,...,(md-2)
In order to obtain a concise expression for tm+i for i = 0, 1,..., (d 1) in equation

(3.62), we write the individual terms as

t = b__

td+j = bm_i_i

t2d+j = bm_i_i + bm_i_d_1

t,jj bm_jj_i + bm_i_2d_1

t(k_2)d+j = b4d__1 + b3d_1_1

t(k_1)d+j = b3d_1 + b2d_i_1

Adding these quantities, we obtain

t = bd__1 + b2d__1 . (3.63)

The complexity of the proposed multiplier for an equally-spaced polynomial has
3 parts:

37

. The first m trace coefficients t for i 0, 1,. . ., (m 1) are obtained from
the polynomial basis coordinates of the operand B using (m 2d) XOR

gates with a time delay of T. This is accomplished using equation (3.60).

In parallel, we compute the trace coefficients tm+i for i = 0, 1,. . -, (d 1)

using equation (3.63), which requires d XOR gates.

. The trace coefficients tm+d+i for i = 0, 1,. . ., (m d 2) do not require any
gates, as seen in equation (3.62). These values are obtained from the ones
computed earlier by rewiring.

In summary, a single T gate delay and m 2d + d = (m d) XOR gates are
sufficient to obtain the trace coefficients t2 for i = 0, 1,. . (2m 2). This result
combined with equation (3.40) gives the complexity of the proposed multiplier for

an irreducible equally-spaced polynomial as

AND Gates = m2

XORGates = m2m+(md)=m2d, (3.64)

Total Delay = TA + (1 + [log2 ml)Tx

For an equally-spaced trinomial, we have d = m/2, and thus, the number of XOR
gates becomes m2 m/2 which is the result we obtained in §3.4.3. Furthermore,
the XOR complexity for an AOP is found as m2 - 1 since d = 1.

The proposed technique produces the product in the dual basis. However,
this result may also be directly converted to the polynomial basis. For the case

of the irreducible trinomials studied previously, the penalty for this conversion is

zero since the Gram matrix is a permutation matrix and so is its inverse. Given
C, we can obtain C using rewiring only. Therefore, the proposed method can be
used for polynomial basis multiplication. The resulting multiplier has exactly the

same space and time complexity for direct polynomial basis multiplication, e.g.,

the Mastrovito multiplication [48], for an irreducible trinomial generating the field

GF(2m).

3.5 Summary of Results and Conclusions

In this chapter, we presented a new approach for dual basis multiplication. In
contrast with the standard procedure, in this approach both input operands are

required to be given in the polynomial basis. We gave detailed analyses of the

space and time complexities of the proposed multiplication method for several

types of irreducible trinomials and equally-spaced polynomials. The minimum

XOR complexity is obtained when the irreducible polynomial generating the field
GF(2m) is an equally-spaced trinomial. The results are summarized in Table 1.

Polynomial XOR Gates Gate Delays Comments

xm+xTh+1 rn2-1 TA+(2+Flog2m)Tx 1<n<Lm/2j
xm+x+1 m2-1 TA+(1+[log2m)Tx
xm+xm/2+1 m2m/2 TA+(1+Flog2m)Tx miseven
m+(k_1)d+...+d+l rn2d TA+(1+flog2m)Tx m=kd
m + + + x +1 m2 1 TA + (1+ Flog2 rnl)Tx AOP

Table 1: The complexity of the proposed multiplier for several types of

irreducible polynomials.

The space and time complexities of the proposed multiplication algorithm for

irreducible trinomiais are the same as the conventional dual basis multipliers given

in [53, 54}. However, the proposed method provides an alternative architecture,

which may have lower complexity for other types of irreducible polynomials. As

an example, we showed that the time complexity for an equally-spaced polynomial

is equal to TA + (1 + log2 mnl)Tx. The multiplier in [53] requires

TA + (e+ [lo2 (d+
[m d1)1)

T (3.65)

gate delays, where e = 1og2(m/d). It turns out that these timing results are
actually equal for all possible values of m and d. However, the formulae used to
compute c are much more complicated than our formulae for computing t in

equation (3.63). Due to the timing overlap in computing c and the computation
of the matrix-vector product (i.e., the AND gate array), the authors obtain a

reduced time complexity as given by equation (3.65). For clarification, we refer
the reader to figure 1 and equation 2.4b in [53]. We can also perform the same
(trick) reduction, and say that our time complexity is given as TA + log2 rnlTx.

Our design is much simpler than the design of [53], aiid provides certain other

advantages. For example, it can be used to obtain polynomial basis multipliers.

When an irreducible equally-spaced polynomial is used, then the complexity

of converting an element from the polynomial basis to the dual basis was shown
to require (in 2d) XOR gates with a time delay of Tx. In order to convert the
product C* computed by the proposed multiplier into the polynomial basis, we

need to obtain the inverse Gram matrix. In general, this conversion will have some

cost associated with it. It has been shown in [9, 48] that the Mastrovito multiplier

for an irreducible equally-spaced polynomial requires (in2 d) XOR gates, which

is the exact number of XOR gates required by the multiplier proposed in this
chapter. Therefore, the total number of the XOR gates will exceed this bound
after the conversion of C* to the polynomial basis. It is an open question whether

this result can be improved.

40

Chapter 4
PARALLEL MULTIPLIERS BASED ON SPECIAL

IRREDUCIBLE PENTANOMIALS

"A hen is just an egg's way to make another
egg"

Samuel Butler, 1877

The state-of-the-art Galois field GF(2m) multipliers offer advantageous space

and time complexities when the field is generated by some special irreducible

polynomial. To date, the best complexity results have been obtained when the
irreducible polynomial is either a trinomial or an equally-space polynomial (ESP).

Unfortunately, there exist only a few irreducible ESPs in the range of interest for
most of the applications, e.g., error-correcting codes, computer algebra, and el-

liptic curve cryptography [25, 39]. Furthermore, it is not always possible to find

an irreducible trinomial of degree m in this range. For those cases, where neither

an irreducible trinomial or an irreducible ESP exists, the use of irreducible pen-

tanomials has been suggested. Irreducible pentanomials are abundant, and there

are several eligible candidates for a given rn. In this chapter, we promote the use

of two special types of irreducible pentanomials. We propose new Mastrovito and

dual basis multiplier architectures based on these special irreducible pentanomials,

and give rigorous analyses of their space and time complexity.

4.1 Introduction

Efficient hardware implementations of the arithmetic operations in the Galois
field GF(2m) are frequently desired in coding theory, computer algebra, and ellip-

tic curve cryptosystems [26, 28, 21]. For these implementations, the measure of
efficiency is the space complexity, i.e., the number of XOR and AND gates, and

41

the time complexity, i.e., the total gate delay of the circuit. The representation of

the field elements plays a crucial role in the efficiency of the architectures for the

arithmetic operations. Several architectures have been reported for multiplication

in GF(2m). For example, efficient bit-parallel multipliers for both polynomial

and normal basis representation have been proposed [11, 32, 20, 48]. Another
technique which was first suggested in [3] is known as the dual basis multiplier

[31, 5, 53, 54]. Dual basis multipliers have the property that one of the input
operands is given in the polynomial basis while the other input is in the dual ba-

sis. The product is then obtained in the dual basis [54]. Recently, a new approach

for dual basis multipliers was suggested in [36, 37]. In contrast to the conventional

approach, the technique proposed in [36] assumes that both operands are given in
the polynomial basis.

In all of these state-of-the-art techniques for finite field GF(2m) multipliers,

lesser space and time complexities have been reported when the irreducible poly-

nomial used to construct the field is either an equally-spaced polynomial or a
trinomial [23, 24, 53, 48, 9]. Unfortunately, irreducible equally-spaced polynomi-

als (ESP) are very rare. Including all-one-polynomials there are only 81 m values

less than 1024, such that an irreducible ESP of degree m exists [53]. On the other
hand, an irreducible trinomial does not exist for every value of m. In fact, there
are 468 m values less than 1024, such that an irreducible trinomial of degree m
does not exist [46]. It has been suggested [13] that an irreducible pentanomial
can be used whenever an irreducible trinomial of degree m does not exist. This
is a good, practical suggestion since there exists either an irreducible trinomial
or pentanomial of degree m E [2, 10000], as it was established by enumeration in

[46]. In fact, there is no known value of m for which either an irreducible trine-
mial or pentanomial does not exist [46]. Therefore, the design of multipliers using

irreducible pentanomials is of practical importance, particularly for cryptographic

applications, and efforts to obtain efficient implementations are well justified. This

work is a step in this direction.

42

In this chapter, we study the time and space complexities for multipliers in

GF(2m) generated by using certain special classes of irreducible pentanomials. We

consider the following types of irreducible pentanomials which we name arbitrarily
as type 1 and type 2 pentanomials:

Type 1: xm + x1 + xTh + x + 1, where 2 n Lm/2i 1
(4.1)

Type2: xm+xTh+2+xn+xu1+1 , where 1 n m/2j 1.
The values of m for which an irreducible pentanomial of these types exist are
tabulated in Tables 4.5 and 4.6 for m 515. As it can be observed in Table 4.5,

there are many type 1 irreducible pentanomials: there are 416 in values less than

515 such that an type 1 irreducible pentanomial of degree in exists. Furthermore,

there are 304 m values less than 526 such that an type 2 irreducible pentanomial

exists. Thus, these pentanomials are abundant, and they offer advantageous de-
sign options.

We present efficient architectures for two different types of multipliers: the

Mastrovito and the dual basis multipliers. We give rigorous analyses of these
multipliers in terms of the space and time complexity. In 4.2, we introduce
efficient Mastrovito multipliers based on the aforementioned types of irreducible

pentanomials, and give their complexity analyses. We then introduce efficient
dual basis multipliers in § 4.3, based on the methodology in [36] to obtain the
trace coefficients. The analyses of the dual basis multipliers for these special pen-

tanomials are given in § 4.4. We summarize the findings of this research and give

a comparative analysis of similar multipliers in § 4.5.

4.2 Mastrovito Multipliers and their Analysis

Let A(x), B(x) be elements of GF(2rn), and let P(x) be the degree m irreducible

polynomial generating GF(2rn). Then, the field product C'(x) E GF(2m) can be
obtained by first computing the polynomial product C(x) as

rn-i rn-i
C(x) = A(x)B(x)

(
aixi)

(
bxi) . (4.2)

43

Followed by a reduction operation, performed in order to obtain the (m 1)-degree

polynomial C'(x), which is defined as

C'(x) = C(x) mod P(x). (4.3)

Once the irreducible polynomial P(x) is selected and fixed, the reduction step can

be accomplished using only XOR gates. The Mastrovito algorithm formulates

these two steps into a single matrix-vector product, and then reduces the product

matrix using the irreducible polynomial that generates the field. The degree 2in-2

polynomial C(x) in (4.2) can be written as

CO

Cl

C2

Cm2

Cml =
Cm

Cm+l

C2m_.3

C2m_2

a0 0 0 0 ... 0 0

a1 a0 0 0 .. 0 0

a2 a1 a0 0 ... 0 0

am_2 am_3 am_4 am_5 a 0

am_i am_2 am_3 am_4 a1 a0

o am_i am_2 am_s a2 ai
o o am_i am_2 a3 a2

U U U U . am_i am_2
0 0 0 0 0 am_i

b0

b1

b2

bm_2

bmi

(4.4)

We propose an architecture for computation of the field product C'(x) in (4.3)
by first computing the above matrix-vector product to obtain the vector C which
has 2m - 1 elements. By taking into account the zero entries of the matrix, we

obtain the gate complexity of the computation of C(x) in Table 4.1.

Therefore, the total number of gates are found as

ANDGates: 1+2+...+m+(m-1)+(m-2)+...+2+1=m2,
XORGates: 1+2+."+(m-1)+(m-2)+"+2+1=(m-1)2

44

Coordinates AND Gates XOR Gates TA T

cj forO<i<m-1
cm+iforOi<m-2

i+1
rn(i+l)

i

m(i+l)1
1

1

log2[i+11

log2m-1i

Table 4.1. The computation of C(x) using equation (4.4).

The AND gates operate all in parallel, and require a single AND gate delay TA.

On the other hand, the XOR gates are organized as a binary tree of depth log2hi
in order to add j operands. The total time complexity is then found by taking
the largest number of terms, which is equal to m for the computation of c7i.

Therefore, the total complexity of computing the matrix-vector product (4.4) in

order to obtain the elements c for i = 0, 1,. . . , 2m 2 is found as

AND Gates = m2
XOR Gates = (m - 1)2 (4.5)

Total Delay = TA + log2 ml T

In order to obtain the final product after the reduction in (4.3), we need to use
the irreducible polynomial that generates the field. The complexity of this corn-

putation is determined by the properties of the irreducible polynomial. The corn-

plexity results for several types of irreducible polynomials have been obtained
[23, 24, 32, 48, 9]. In the following section, we first derive the space and time
complexity for type 1 irreducible pentanornials.

4.2.1 Type 1 Pentanomials

Let the field GF(2m) be constructed using the type 1 irreducible pentanornial
defined in (4.1). In order to obtain the final product C'(x), we compute the
reduction array as defined in [48]. We use the property P(a) = 0, and write

am = 1+a+a+a4

45

=

am+2 a2+a3+a2+aTh+3

a2m_n_2 = am_Th_2 + am_n_i + am_2 + am_i

am-n-i + am_n + am-i + 1 + a + a + a

a2m_Th am_n+am_i +1+a+a+a1 +a+a2+a +a2
= am_Th+am_Th+l+1+c+a2+a2

a2m_n+i am_n+i + am_2 + a + + a3 + an+3

a2m_2 = am+2 + am_3 + a2 + a2 + a4 + a4

a2m_3 = am_3 + am_2 + aTh_3 + a2'3 + a' + a2Th_l

a2Th_2 = am_2 + am_l + a'2 + a2n_2 + a' +

The above equations can be summarized based on their number of operands as

follows:

a2 + + an+i + an+i+i

a2 + a + aT + 1 + a
am+i = +a + a

a2 + ai + ai_(m_n) + a2_m+2n

+ai_(m_n)+2 + ai_m+22

for i=O,1,...,mrz-2

for i=mn-1

for i=mn,mn+1,....,m-2.
(4.6)

Furthermore, these equations can be also represented in a matrix form as,

m+3

a2m

2m-n

a2m-Th+l

ii 00... 001100... 000 .. 0000 00
oi 10 0001 10...000...0000 ...00
0011 0000i 1 ..000...0000 00
0001 .000001 ...000...0000 00

1100 00 1 100000 1100 Oi
1010.00 1010 ..00001 10 00
0101 000lOi 000 0011 00

2m-2 I0000 .. 101000... 101 .. 0000 ... ii

46

In order to obtain the coordinates of the product C' as given by (4.3), we

follow the method in [48]. From the matrix representation shown above, we just

need to add the nonzero elements of each one of the m columns. For instance, in

order to obtain the first coordinate c, we just need to add the nonzero coefficients

of the first column to the first coordinate of the product polynomial c0. We can see

that the nonzero elements for the first column of the matrix are the coordinates

Cm, C2m_m_1, and C2m_n added to the CO coordinate, giving the first coordinate as

C CO + Cm + C2m_n_1 + C2m_n

The entire set of coordinates of C' are obtained as follows:

C' = CO + Cm + C2m_m_i + C2m_n

= C1 + Cm + Cm+i + C2m_n_1 + C2m_n+1

C = C2 + Cm+1 + Cm+2 + C2m_n + C2m_n+2

C_2 = Cm_2 + Cm+n_3 + Cm+n2 + C2m_4 + C2m_2

C_1 = + Cm+n_2 + Cm+n1 + C2m_3

C = C + Cm + Cmn_1 + Cm+m + C2m_n_1 + C2m_n + C2rn_2

C1 = + Cm + Cm+1 + Cm+n + Cm+n+1 + C2m_n_i + C2m_n+1

(4.7)

C_2 = C2n_2 + Cm+n3 + Cm+n_2 + Cm+2n3 + Cm+2n2 + C2m_4 + C2m_2
C2fl_1 = C2_i + Cm+n2 + Cm+nl + Cm+2n2 + Cm+2n_i + C2m_3
C = C2n + Cm+n-1 + Cm+n + Cm+2n1 + Cm+2n + C2m_2

Crjfi = C2n+1 + Cm+n + Cm+n+i + Cm+2n + Cm+2n+1

C+2 = C2n+2 + Cm+n+1 + Cm+m+2 + Cm+2n+1 + Cm+2n+2

C_2 = Cm_2 + C2m_n_3 + C2m_n_2 + C2m_3 + C2m_2

C_1 = Cm-i + C2m_n_2 + C2m_n_i + C2m_2

In appendix A, we present an algorithm that obtains the m modular coordinates
of the product C' as they are described in (4.3). In order to obtain the space

47

and time complexities in the computation of (4.7), we can classify these equations

according to their number of operands as shown in table 4.2.

Coordinates Number of equations Number of operands XOR gates

c 1 4 3

n-2 5 4

c_1 1 4 3

Cz"n_2 ni 7 6

1 6 5

c 1 6 5

m-2n-2 5 4

C'm_i 1 4 3

Table 4.2. The coordinates in equation (4.7) classified by the number of operands.

Therefore, the total number of XOR gates needed to obtain all coordinates
of the product C' is obtained as

3+4(n-2)+3+6(n-1)+5+5+4(m-2n-2)+3=4m+2n-3.

However, taking advantage of the inherent redundancy of the set of equations in
(4.7), this number can be reduced even further. For example, we need exactly
3 XOR gates to compute c'ml. Then, in the computation of C'm2, we notice a
redundancy since two of the operands of this coordinate have been already added

in the previous computation, allowing us to save a single XOR gate. Examining
the equations in (4.7) more closely, we observe that the coordinates between c

and C'm2 have the following structure

C+j = Cm+jl + Cm+j + CTfl+fl+jl + Cyn+ni +

c+i+1 = Cm+j + Cm+j+1 + Cm+n+j + Cm+n+j+1 +

Ci+j+2 = Cyfl+j+1 + Cm+j+2 + Cm+n+j+1 + Cm+n+j+2 +

for i = 1,2,. . . , m n 4. Clearly, we can take advantage of the redundancy of

this structure by using the term Cm+, + c twice in the computation of c
and +j+1 Also we can use the term Cm+j+1 + Cm+n+j+1 twice in the computation

of +j+1 and +j+2
Applying this strategy to the whole range of coordinates from CH4 and C'm_2,

we can save a single XOR gate in the computation of each coordinate. This implies

that we can save atotalofm-2(n+1)+1 = mn-2 XOR gates. Also notice
that the term C2m_fl_1 + C2m_n appears in the equations for the coordinates c'0 and

c, and furthermore, the term C2m_m_1+j + c2m_j appears in the equations for
the coordinates c and c, for i = 0,1,. ,n 1. Hence, we can save n XOR
gates for those 2n coordinate equations. These two strategies together yield a
total saving of in n 2+ n = m 2 XOR gates. Thus, the complete set of the
coordinates c in (4.7) can be obtained using only

4m+2n-3(m-2)=3m+2n-1

XOR gates. On the other hand the gate delay depends on the largest number of
terms to be added, which is equal to 6 as seen in Table 4.2, giving the gate delay
as

1log2(6)Tx = 3T

Therefore, we obtain the total complexity of the Mastrovito multiplier based on
the type 1 irreducible pentanomial as

AND Gates = m2

XOR Gates = (m - 1)2 + 3m + 2n 1 = m2 + m + 2m (4.8)

Total Delay = TA + (3+ {log2 ml)Tx

4.2.2 Special Pentanomials xm + x3 + x2 + x + 1

These pentanomials can be considered as a special case of type 1 pentanomials for

n = 2 or as a special case of type 2 pentanomials for n = 1. In fact, these special

pentanomials are the only pentanomials which are both type 1 and type 2 at the

same time. Unfortunately, these special irreducible pentanomials are very rare,
even though both the type 1 and type 2 pentanomials are abundant. There are
only 16 m values less than 1024 such that an irreducible pentanomial of degree m
in this form exists. The existing values are:

7, 10, 17,20,25,28,31,41,52, 130,151,196,503,650,761,986.

In this section, we show that the Mastrovito multiplier described in the preceding

section can be slightly improved for these special pentanomials. As we derived,
the XOR complexity of the reduction step was 3m + 2n - 1. By taking n = 2,
we obtain the XOR complexity as 3m + 3. However, a small improvement can

be obtained for this case. By examining the equation (4.7), we observe that the
coordinate c with n = 2 is given by

C2 = C + Cm + Cm+ni + Cm+n + C2m_n_1 + C2m_n + C2m_2

= C + Cm + Cm+n_1 + Cm+n + C2m_n_1

yielding an extra saving of 2 XOR gates. In addition, the term Cm + C2m_3 is

present in three equations for the coordinates c, c, and c. By computing this
term once and reusing it as needed, we obtain an extra saving of 2 XOR gates. In

summary, 3m+3-4 = 3mi XQR gates are sufficient in the reduction step. This
gives the XOR complexity of the proposed multiplier for these irreducible special

pentanomials as (m - 1)2 + 3m 1 = rn2 + m. Therefore, the total complexity
result is

AND Gates = m2

XQR Gates = m2H-m (4.9)

Total Delay = TA + (3 + log2 ml)Tx

4.3 Dual Basis Multiplication

In this section, we briefly describe the dual basis multiplication algorithm proposed

in [36]. This algorithm takes the input operands A and B in the polynomial basis,

50

and computes the product C* in the dual basis. Let A, B e GF(2m) be given
rn-i rn-i

in the polynomial basis as A = > aa and B = ba2, respectively, where
i=0 i=O

a, b E GF(2) are the coordinates. We are interested in computing the product
C in the dual basis . .,/3rn_i} as

rn-i
C =

Cjj3Jc
. (4.10)

k=0

It has been shown in [36] that the coefficient c can be written as

rn-i
= i: t+ka , (4.11)

i=0

where the trace coefficients tj+k for i, k = 0, 1,. . ., (m 1) are defined by
rn-i

tj+k = 7ai+i+)b . (4.12)
j=O

The trace of an arbitrary element /3 E GF(2m) relative to the subfield GF(2) is
defined by [26]

rn-i
rh(j3) 1:322 . (4.13)

Therefore, the result C can be expressed as a matrix-vector product

*
Co

C*=

to ti t2

ti t2 t3

t2 t3 t4

Lrn_2 tm_2 trn_i trn

Cm_i tm_i trn trn+i

Provided that the trace coefficients tk for k:

the space and time complexities for computin

are obtained as

t_ tfl_

trn_i trn

trn trn+i

a0

ai
a2

t2rn_4 t2rn_3 arn_2

t2rn_3 t2rn_2 arn_i
(4.14)

= 0, 1,. . . , (2m 2) are all available,

g the matrix-vector product in (4.14)

AND Gates = m2
XOR Gates = m2m (4.15)

Total Delay = TA + flog2 ml Tx

51

On the other hand, from equation (4.12), we see that in order to obtain all (2m-1)

trace coefficients required in (4.14), we need to compute a total of (3m-2) different

traces. This can be accomplished by using the following transformation matrix of

dimension (2in 1) x m, which is called the extended Gram matrix.

to

tl
t2

tm_i =
tm

tm+1

t2m_2

Tr('y) Tr(7a) Tr('ya2) ... Ti.(yam_l)

Tr('ya) rfi.(7a2) Tr(7a3) ... Tr('ya)
rFi.()/a2) Tr('ya3) Tr('ya4) ... rfr(m+i)

rB.(7am_l) rfi.(7am) Tr(7am) ... Tr(ya2m_2)

Tr(yam) rfI.(7am+l) rftham+2) ... rFI.(7a2m_l)

'p(7am+l) Tr(yam+2) rft(7am+3) ...

Tr(7a2m_2) rFi.(7a2m_i) Tr(7a2m) ... rfr(7a3m_3)

b0

b1

b2

bm_i

(4.16)

The matrix-vector equation in (4.16) provides a method to compute the trace
coefficients required in (4.14) by using only the coordinates of the operand B in

the polynomial basis. The space complexity for computing the trace coefficients

defined in (4.16) depends only on the number of nonzero entries in the extended

Gram matrix, which is a function of the irreducible polynomial P(x) that generates

the field and the element 'y E GF(2m). Once the parameter 'y is fixed, the elements

of the extended Gram matrix are fixed zero and one values. Thus, the trace
coefficients in (4.16) can be computed using only XOR gates, i.e., no AND gates

are required. A good selection of 'y is therefore, crucial in order to obtain an
extended Gram matrix with as few ones as possible. An algorithm implementation

that obtains both the extended Gram matrix and the trace coefficients of equation

(4.3) is given in appendix A. The total complexity of the dual basis multiplier

consists of two parts:

The space of complexity of computing all (2m 1) trace coefficients which

are defined in (4.12) and used in (4.14). The first in trace coefficients are

52

simply equal to the coordinates of the operand B expressed in the dual basis.

The remaining (rni) coefficients are determined using the extended Gram
matrix given by (4.16).

The complexity of computing the matrix-vector product in (4.14). Assuming

that the coordinates of the operand A expressed in the polynomial basis,

and all (2m 1) trace coefficients are available, this complexity is given by

equation (4.15).

4.4 Analysis of Dual Basis Multipliers for Irreducible Pen-
tanomials

In this section we analyze the complexity of the trace coefficient computation for

the dual basis multiplier as defined in (4.16), using certain types of irreducible

pentanomials as generating polynomials of the field GF(2m).

4.4.1 Special Pentanomials xm + x3 + x2 + x + 1

Let the field GF(2m) be constructed using the irreducible pentanomial P(x) =
xm + x3 + x2 + x +1. It has been shown [5, 31] that there exists a y such that the

dual basis of the polynomial basis {1, a, a2,.. . am_l} is given as

{1+a,1,am_l,am_2,...,a4,a3,am_l +a2} . (4.17)

Therefore, the trace coefficients tk for k = 0, 1,. . ., (in 1) are obtained directly

from the polynomial basis coordinates of the operand B using these relations:

=

t1 =
(4.18)

tk = bbm+l_k for k=2,3,...,(m-2)
tm_i = b_1 = bm_i + b2

53

In order to obtain the remaining trace coefficients tk for k = rn, m+1,. . . , (2in-2),

we use the property P(a) = 0, and write

am = 1+a+a2+a3
am = a+a2+a3+a4
am+2 = a2 + a3 + a4 + a5

= am_4 + am_3 + am_2 + aml

a2m_3 = am_3 +am_2 + am_i +am = 1 +a+a2+a3 + am_3 +am_2 +am_l
a2m_2 = am_2 + am_l + am + am = 1 + a4 + am_2 + am_i

Using equation (4.18), and due to the linear property of the trace function we can

write

tm = tO+ti+t2+t3 = bi+byn_i+bm_2
tm+l = t1 + t2 + t3 + t4 = + bm_i + bm_2 + bm_3

tm+2 = t2 + t3 + t4 + t5 = bm_i + bm_2 + bm_3 + bm_4

tm+k = tk + tk+i + tk+2 + tk+3 = bm+1_k + bm_k + bm_k_i + bm_k_2

t2m_S = tm_5+tm_4+tm_3+tm_2 b6+b5+b4+b3
t2m_4 tm_4+tm_3+tm_2+tm_l b5+b4+b3+bm_i+b2
t2m_3 = tm_3 + tm_2 + tm_i + tm = b4 + b3 + b2 + b + bm_2

t2m_2 = tm_2 + tm_i + tm + tm+i b3 + bm_i + b2 + b0 + b1 + bm_3
(4.19)

We give the complexity analysis as follows:

The first m trace coefficients are obtained from the polynomial basis coor-

dinates of the operand B using the transformation as given by (4.18). This

computation is performed using rewiring in all the coefficients but the first

and the last one. We only need 2 XOR gates to implement this first block
of traces.

54

. We then compute the trace coefficients tm+k = tk + tl+k + t2+k + t3+k for
k=O,1,...,m-5,which are

tm = bi+bm2+bmi
tm+l = bo+bm_i+bm_2+bm_3

tm+2 = bm_i + bm_2 + bm_3 + bm_4

tm+k = bm+1_k + bm_k + bm_k_1 + bm_k_2

tm+m_5 = b6 + b5 + b4 + b3

Notice that the equation for tm requires exactly 2 XOR gates. Similarly,
the computation of tm+1 and t2 requires two XOR gates, if we reuse 1

one of the XOR gates used to compute tm. Similarly, to compute tm+3 and

tm+4 we can reuse one of the XOR gates used in tm+2. Hence, the total
number of XOR gates needed to implement these two traces is also equal
to 2. Applying the same strategy to the other equations we see that all
equations in this block can be implemented using only 2 XOR gates per
trace coefficient. Therefore, this second block of trace coefficients can be
computed using a total of 2(m 4) XOR gates.

For the last three traces we can take advantage of the redundancy of the
equations. We can compute t2m4 using only 2 XOR gates, and furthermore
t_3 and tm_2 require 3 XOR gates each.

We conclude that

2+2(m-4)+2+3+3 2(m+1) XORgates,

and 3T gate delays, are sufficient to obtain the entire set of trace coefficients tk

fork=O,1,...,(2m-2).

1 Reusing an XOR gate means taking its output more than once, as inputs to
other gates.

55

These results combined with equation (4.15) give the complexity of the pro-

posed multiplier for the irreducible pentanomial xm + x3 + x2 + x + 1 as

AND Gates = m2
XOR Gates = m2 in + 2(m +1) = m2 + m +2 (4.20)

Total Delay = TA + (3 + flog2 ml)Tx

4.4.2 Type 2 Pentanomials

Let the field GF(2m) be constructed using the irreducible pentanomial P(x) =
m + n+2 + n+l + x' + 1, where 2 n Im/21 1. It has been shown

[5, 31] that there exists a 'y such that the dual basis of the polynomial basis
{ 1, a, a2,... am_} is given as

rn-i rn-2 n+2 m i,a ,...,a ,a +aTi} . (4.21)

Therefore, the trace coefficients tk for k = 0, 1, . . ., (m 1) are obtained directly
from the polynomial basis coordinates of the operand B using these relations:

t0 = b = b0+b
tk = = ba_k for k = 1,2,..

(4.22)
tk b = brn+n_k for k=n+1,n+2,...,m-2

tm_i = b_1 bm_i + b+i

In order to obtain the remaining trace coefficients tk for k = m, m+1,. . . , (2m-2),
we use the property P(a) = 0, and write

am = 1+aTh+aTh+I+aTh+2

am = a + + + a7+3
m+2 = a2 + aI1+2 + an+3 + aTh+4

= amT_3 + am_3 + am2 + am_i

= am_n_2 + cxm_2 + am_i + am

a2m_2 = am_2 + am_2 + am+_i + am+Th

56

Using equation (4.22), and due to the linearity property of the trace function we

obtain

tm = tO + tn + tn+i + tTL+2
b + bm_i + bm_2

tm+1 = tl + tn+l + tn+2 + tn+3
= bn_i+bm_i+bm2+bm_3

tm+2 = t2 + tn+2 + tn+3 + tn+4
= b_2 + bm_2 + bm_3 + bm_4

tm+fl = tn + t2n + t2Ti+1 + t2n+2

= b0 + bm_n + bmn_i + bm_n_2

tm+n+i = tn+l + t2n+l + t2I2 + t23
= bm_i + bm_n_i + bm__2 + bm_n_3

t2m_n_3 tm_n_3 + tm_3 + tm_2 + tm_i

= b2n+3 +b3 + bnF2 + b1 + bm_i (4.23)

t2m_n_2 = tm_n_2 + tm_2 + tm_i + tm

= b2+2 + b+2 + b+i + b + bm_2

t2m_n_i = tm_n_i + tm_i + tm + tm+i

= b2+1 + b+i + bm_i + b + b_1 + bm_3

t2m_n = tm_n + tm + tm+1 + tm+2

= b2 + b + b_1 + b_2 ± bm_2 + bm_4

t2m_n+i = tm_n+i + tm+i + tm+2 + tm+3

= b2_1 + b_1 + bm_i + b_2 + b_3 + bm_3 + bm_5

t2m_n+2 = tm_n+2 + tm+2 + tm+3 + tm+4

= b2_2 + b_2 + bm_2 + b_3 + b_4 + bm_4 + bm_6

t2m_2 = tm_2 + tm+n_2 + tm+fl_i + tm+fl

= bn+2+b2+bm_n+2+bi+bo+bm_n+bm_n_2.

Some intermediate steps to derive the final m 1 equations are not explicitly

shown above. These equations can be classified by their number of operands as is

57

shown in Table 4.3, which shows the number of XOR gates needed to implement

each one of the trace equations based on the number of operands.

Trace coefficients Number of equations Number of operands XOR gates

tm 1 3 2

tm+1 t2m_n_4 m n 4 4 3

t2m_n_3 2 5 4

t2m_n_1 t_fl 2 6 5

tm_fl+1 TI 2 7 6

Table 4.3. The trace coefficients in equation (4.23) classified by the number of
operands.

The first m trace coefficients are obtained from the polynomial basis coordi-

nates of the operand B using the transformation given by (4.22). This computa-

tion is performed using rewiring in all coefficients except the first and the last one.

Hence, we only need 2 XOR gates to obtain this first block of traces. Therefore,

the total number of XOR gates needed to obtain all the 2m 1 trace coefficients

fromt2 fori=O,1,...,2m-2isgivenas

2+2+3(mn--4)+42+52+6(n-2)=3m+3n-2.

Taking advantage of the inherent redundancy of the rni trace equations in (4.23),

the above number can be further reduced. Any of the rn 1 trace coefficients

from tm to t2m_1 can be implemented by reusing one of the XOR gates used
in computing a previous coefficient. When k is odd, the computation of tm+k

requires 1 less XOR gate since the XOR gate in the computation of tm+k_1 can

be reused. For instance, we notice that the computation of tm+1 requires 2 XOR

gates if we reuse one of the XOR gates required for computing tm. We need 3

XOR gates to compute tm+2. Then, the computation of tm+3 requires only 2 XOR

gates. Continuing in this fashion, it is not hard to prove that this strategy can
be extended. Therefore, the complete set of 2m 1 coefficients can be computed

using only

3m 1(m 2)/21 + 3m 4

XOR gates. Furthermore, only 3Tx gate delays are sufficient to obtain the entire

set of tk terms for k = 0, 1,. . ., (2m 2). Combining these results with (4.15),
we obtain the complexity of the proposed multiplier for an type 2 irreducible
pentanomial as

AND Gates = m2
XOR Gates = m2 + 2m 1(m 2)/21 + 3y 4 (4.24)

Total Delay = TA + (3+ 1og2 ml)Tx

Irreducible Polynomial XOR Gates Gate Delays References
m + x + 1 m2 1 TA + (1 + flog2 m])Tx [23] [24] [32]

xm + x' + 1 m2 - 1 TA + (2 + flog2 ml)Tx [48]

xm + + 1 m2 TA + (1 + flog2 ml)Tx [48]

m2d TA+(l+flog2m])Tx [9]

xm+xm_l+...+x+1 m2-1 TA+(l+flog2m])Tx [9]

xm +x+ 1 m2 +m+2n TA +(3+ flog2m])Tx § 4.2.1
xm+x3+x2+x+1 m2+m TA+(3+flog2m])Tx §4.2.2
xmix3+x2+x+1 m2+m+2 TA+(3+flog2m)Tx §4.4.1
Xm+Xn+2+XnI+Xm+1 m2+2mfj-]+3n-4 TA+(3+[log2m])Tx §4.4.2
xm + xl3 + xTh2 + x'1 + 1 m2 + 2m 3 TA + (3 + flog2 m])Tx [52]

Table 4.4. Summary of the complexity results.

4.5 Summary of Results and Conclusions

The complexity results of the proposed Mastrovito and dual basis multipliers are

given in Table 6. This table also contains the complexity results of previously

59

proposed multipliers based on irreducible trinomials and equally-spaced polyno-

mials [23, 24, 32, 48, 9].While the multipliers based on trinomials and ESPs offer

more advantageous designs, we have no choice but to consider other irreducible

polynomials whenever irreducible trinomials or EPSs do not exist.

In this chapter, we promote the use of special types of irreducible pentanomi-

als, as defined in 4.1. We proposed new Mastrovito and dual basis multiplier
architectures, and obtained their complexity results using these special pentanomi-

als.

It has been shown in [52] that an irreducible polynomial with Hamming weight

(the number of terms) equal to r would require (m - 1)2 + (r 1)(m 1) XOR

gates. We also give this complexity result as applied to pentanomials (r = 5) in
Table 4.4. As can be seen from Table 4.4, the special multipliers described in this

chapter require about m fewer XOR gates than the multiplier in [52].

9(3) 10(3) 12(4) 13(3) 14(4) 15(6) 17(4) 18(6)

19(5) 20(7) 22(6) 23(4) 24(3) 26(3) 27(7) 28(8)

29(6) 31(9) 33(7) 34(3) 35(7) 36(7) 38(5) 39(9)

41(3) 43(5) 44(4) 45(3) 46(20) 47(4) 49(8) 51(15)

52(12) 53(15) 54(19) 55(20) 56(21) 58(5) 59(21) 60(16)

61(15) 62(17) 63(4) 64(3) 65(3) 66(7) 67(9) 68(8)

70(15) 71(8) 73(17) 74(15) 75(10) 76(35) 77(9) 78(19)

79(8) 80(13) 81(27) 84(4) 85(27) 86(12) 89(26) 90(18)

92(12) 93(25) 94(5) 95(16) 96(19) 97(32) 98(6) 99(21)

100(14) 101(6) 102(12) 103(8) 104(3) 105(6) 106(5) 108(16)

109(6) 110(12) 111(39) 112(21) 113(8) 114(49) 115(14) 116(13)

118(20) 119(30) 120(3) 121(47) 122(59) 123(13) 124(23) 126(36)

127(47) 129(4) 131(47) 132(7) 133(51) 134(26) 137(14) 138(7)

140(44) 141(10) 142(36) 143(20) 144(69) 145(5) 146(59) 147(37)

148(17) 150(46) 151(8) 152(65) 153(24) 155(31) 156(25) 157(26)

158(26) 159(9) 160(18) 161(15) 162(15) 163(59) 164(13) 165(30)

166(5) 167(34) 169(21) 171(18) 172(12) 177(84) 178(11) 179(33)

180(36) 181(6) 182(27) 183(52) 185(30) 186(22) 187(57) 188(20)

190(17) 191(8) 192(27) 193(14) 194(15) 195(9) 196(32) 197(61)

198(45) 199(45) 200(41) 201(16) 203(7) 204(73) 205(29) 206(28)

207(72) 209(66) 211(45) 212(22) 213(7) 214(48) 215(75) 217(11)

218(7) 219(18) 220(14) 221(34) 222(87) 223(32) 224(30) 225(24)

226(57) 227(45) 228(72) 229(63) 230(45) 231(18) 232(99) 233(25)

234(49) 235(9) 236(4) 237(25) 238(63) 239(13) 241(84) 242(41)

243(75) 244(39) 246(34) 247(21) 250(99) 252(34) 253(6) 254(18)

255(93) 256(99) 257(44) 258(121) 259(14) 260(20) 261(63) 262(96)

263(12) 264(9) 265(14) 266(6) 267(85) 268(15) 269(6) 271(53)

272(107) 273(6) 274(26) 275(22) 276(88) 277(69) 278(4) 279(4)

280(41) 281(94) 282(7) 283(59) 284(36) 285(105) 286(80) 287(76)

288(10) 289(71) 290(10) 291(58) 292(87) 293(95) 294(43) 295(12)

296(33) 297(4) 298(29) 299(46) 301 (65) 302(50) 303(28) 304(45)

305(12) 308(28) 309(154) 310(15) 311(30) 313(113) 314(63) 315(9)

316(80) 317(95) 318(114) 319(128) 320(3) 321(13) 325(75) 326(12)

327(94) 329(74) 330(15) 332(12) 334(26) 335(41) 336(81) 337(132)

338(3) 340(44) 341(23) 342(84) 343(20) 345(15) 348(22) 349(11)

350(114) 351(118) 352(75) 353(58) 354(15) 355(5) 356(20) 357(69)

358(38) 359(169) 360(25) 361(44) 362(26) 363(7) 364(8) 365(71)

366(24) 367(11) 368(37) 369(79) 370(83) 371(15) 373(99) 374(63)

375(7) 376(141) 377(17) 379(113) 380(17) 382(174) 383(22) 384(163)

385(65) 386(85) 387(7) 388(68) 389(153) 390(93) 391 (21) 392(14)

393(96) 394(66) 397(66) 398(97) 399(49) 400(117) 401(123) 403(149)

404(64) 406(83) 407(117) 410(155) 412(102) 414(45) 415(80) 416(63)

417(30) 418(17) 420(58) 422(82) 423(40) 424(65) 425(198) 426(49)

427(105) 428(24) 430(38) 431(70) 433(32) 434(163) 436(42) 437(37)

438(19) 439(99) 440(3) 441(21) 443(15) 444(24) 445(57) 446(58)

447(25) 448(14) 449(78) 451(195) 452(34) 453(151) 454(35) 455(15)

457(75) 459(135) 460(78) 461(6) 462(60) 463(17) 464(186) 465(48)

466(15) 468(175) 470(8) 471(54) 472(87) 473(125) 474(21) 476(8)

478(80) 479(60) 481(9) 482(41) 484(153) 485(63) 486(48) 487(167)

488(3) 489(79) 490(155) 491(14) 492(7) 493(203) 494(16) 495(25)

496(185) 497(97) 498(75) 500(44) 502(102) 503(62) 505(92) 506(245)

508(8) 509(254) 510(48) 511(182) 512(87) 513(31) 514(21) 515(239)

Table 4.5. Type 1 irred. pentanomials xm + + x'1' + x + 1 encoded as rn(n).

61

10(2) 11(4) 13(5) 14(3) 16(3) 17(6) 19(5) 20(5)

22(3) 23(9) 26(5) 28(5) 29(2) 31(13) 32(11) 35(8)

37(4) 38(6) 40(3) 41(9) 43(4) 44(5) 46(3) 47(15)

49(4) 50(2) 52(4) 53(4) 56(15) 58(4) 59(18) 62(6)

64(2) 65(26) 67(5) 68(8) 70(3) 71(6) 73(2) 74(25)

76(36) 77(5) 79(2) 82(17) 83(12) 85(14) 86(10) 89(10)

91(16) 92(4) 95(13) 97(16) 98(16) 100(5) 101(8) 104(43)

106(41) 107(14) 109(8) 112(3) 113(4) 115(15) 116(5) 118(19)

121(38) 122(49) 124(5) 125(5) 127(35) 128(19) 130(29) 133(62)

137(26) 139(8) 140(5) 142(19) 146(5) 148(21) 149(42) 151(68)

154(5) 155(23) 157(20) 158(11) 160(3) 161(18) 163(66) 164(14)

167(24) 169(14) 170(5) 172(5) 173(15) 175(20) 176(83) 178(9)

181(13) 182(6) 184(7) 185(25) 187(5) 188(12) 190(6) 193(80)

194(2) 196(14) 197(45) 199(72) 203(6) 205(16) 206(50) 209(40)

211(79) 212(84) 214(94) 215(29) 217(4) 218(73) 220(30) 221(78)

223(13) 224(15) 226(28) 227(42) 229(80) 230(6) 233(56) 235(32)

236(26) 238(106) 239(84) 241(70) 242(69) 244(9) 245(13) 247(28)

248(79) 250(21) 251(23) 253(16) 254(75) 256(31) 257(35) 259(43)

260(4) 262(34) 263(38) 265(80) 266(33) 268(10) 269(29) 274(45)

275(9) 277(12) 278(10) 280(31) 281(49) 283(23) 284(102) 286(66)

287(12) 289(54) 290(16) 292(12) 293(13) 295(14) 298(52) 299(65)

301(96) 302(126) 305(57) 307(129) 308(60) 310(7) 311(21) 313(22)

314(40) 316(10) 317(45) 319(29) 320(19) 322(16) 323(38) 325(86)

326(131) 328(19) 329(18) 331(38) 332(8) 334(42) 335(57) 337(42)

338(145) 340(17) 341(21) 343(54) 344(63) 346(93) 347(12) 349(17)

350(22) 353(18) 355(96) 356(108) 358(83) 359(42) 361(73) 362(140)

364(33) 365(42) 367(140) 368(95) 371(34) 373(37) 374(134) 376(119)

377(20) 380(82) 382(27) 383(87) 385(49) 386(20) 388(189) 389(187)

391(78) 392(171) 395(64) 397(108) 398(31) 400(67) 401(121) 403(193)

406(178) 409(135) 410(96) 412(24) 413(39) 416(179) 418(24) 419(48)

421(34) 422(54) 424(83) 425(7) 427(54) 428(69) 430(42) 431(204)

433(29) 434(25) 436(4) 439(185) 442(84) 443(16) 445(74) 446(35)

448(19) 449(35) 451(16) 452(4) 454(78) 455(100) 457(150) 458(32)

461(13) 463(70) 464(103) 466(165) 467(19) 469(87) 470(171) 473(117)

475(114) 476(85) 478(126) 479(174) 481(21) 482(80) 484(188) 485(161)

487(131) 488(99) 490(36) 491(55) 493(64) 494(67) 497(55) 499(42)

500(118) 502(91) 503(76) 505(14) 506(53) 508(197) 509(14) 511(64)

512(87) 514(48) 515(204) 518(118) 521(18) 523(94) 524(89) 526(51)

Table 4.6. Type 2 irred. pentanomials m + x2 + x + x' + 1 encoded as
m(m).

62

Chapter 5
KARATSUBA MULTIPLIERS FOR GF(2m)

"He's dreaming now", said Tweedledee: "and what do you think he's dream-
ing about?"
Alice said "Nobody can guess that".
"Why, about you!" Tweedledee exclaimed, clapping his hands triumphantly.
"And if he left off dreaming about you, where do you suppose you'd be?"
"Where I am now, of course," said Alice.
"Not you!" Tweedledee retorted contemptuously. "You'd be nowhere. Why,
you're only a sort of thing in his dream!".

Through the Looking Glass, Lewis Carroll

In this chapter we present a new approach that generalizes the classic Kara-

tusba multiplier technique. In contrast with versions of this algorithm previously

discussed [26, 28], in our approach we do not use composite fields to perform
the ground field arithmetic. The most attractive feature of the new algorithm
presented here is that the degree of the defining irreducible polynomial can be
arbitrarily selected by the designer, allowing the usage of prime degrees. In ad-

dition, the new field multiplier leads to architectures which show a considerably

improved gate complexity when compared to traditional approaches.

5.1 Introduction

Arithmetic over GF(2m) has many important applications, in particular in the
theory of error control coding and in cryptography [26, 28, 49, 50, 51]. In a finite

field, addition, subtraction, multiplication, and division are defined. Addition
and subtraction are equivalent operations in GF(2m). Addition in finite fields is

defined as polynomial addition and can be implemented simply as the XOR of the

coordinates of the corresponding vectors. Let A(x), B(x) and C'(x) E GF(2m) and

P(x) be the irreducible polynomial generating GF(2m). Multiplication in GF(2m)

is defined as polynomial multiplication modulo the irreducible polynomial P(x),

63

C'(x) = A(x)B(x) mod P(x). In order to obtain C'(x), we can first obtain the
product polynomial C(x) of degree at most 2m 2, as

rn-i rn-i

C(x) = A(x)B(x) = (ax2)(> bx) (5.1)

In a second step the reduction operation needs to be performed in order to obtain

the in 1 degree polynomial C' (x), which is defined as

C'(x) = C(x) (mod P)(x). (5.2)

Notice that once that the irreducible polynomial P(x) has been selected, the re-
duction step can be accomplished by using XOR gates only.

The hardware implementation efficiency of finite field arithmetic is measured

in terms of the associated space and time complexities. The space complexity is

defined as the number of XOR and AND gates needed for the implementation

circuit, whereas the time complexity is the total gate delay of the circuit. Sev-
eral architectures have been reported for multiplication in GF(2m). For example,

efficient bit-parallel multipliers for both canonical and the normal basis represen-

tation have been proposed in [11, 32, 20, 48, 31, 5, 53, 54]. All these algorithms

exhibit a space complexity 0(m2). However, there are some asymptotically faster

methods for finite field multiplications, such as the Karatsuba-Ofman algorithm

[33, 7, 34]. Discovered in 1962, it was the first algorithm to accomplish polynomial

multiplication in under 0(m2) operations [6, 2]. Karatsuba multipliers can result
in fewer bit operations at the expense of some design restrictions, particularly in

the selection of the degree of the generating irreducible polynomial m.
In [33, 7, 32] was presented a Karatsuba multiplier based on composite fields

of the type GF((2'1)3) with m = sm, s 2, t an integer. However, for certain

applications, especially, elliptic curve cryptosystems, it is important to consider

finite fields GF(2m) where m is not necessarily a power of two. In fact, for this spe-

cific application some sources [12] suggest that, for security purposes, it is strongly

recommended to choose degrees in for the finite field, in the range [160, 512] with

m a prime.

In this chapter, we discuss some algorithms that implement generalized field

Karatsuba multipliers in GF(2m), where m is an arbitrary integer. We present
a modified version of the classic Karatsuba algorithm that we call binary Karat-

suba multipliers [38]. The organization of this chapter is as follows: In § 5.2 we

analyze the conventional Karatsuba polynomial multiplier technique for the par-

ticular case of GF(2) with m = 21cm, k an integer, introducing a generalized

hybrid Karatsuba algorithm for arbitrary degrees of m. In § 5.3 and § 5.4 we

present a binary Karatsuba multiplier algorithm. In these sections we include a

design example, programmability capabilities of the proposed technique, and its

corresponding complexity analysis. In section § 5.5 we briefly summarize some

results already found for polynomial reduction. Finally, in § 5.6 we discuss the

implications of the results found in this research, comparing our results to other

field multiplication techniques.

5.2 2nbit Karatsuba Multipliers

Let the field GF(2m) be constructed using the irreducible polynomial P(x) of
degree m = rm, with r 2k, k an integer. Let A, B be two elements in GF(2rn).

Both elements can be represented in the polynomial basis as,
in i in i inrni rni

ax = a2af = > ax+ ax =
i=O i=O i=O i=O

(5.3)

and
in in mrni rni

B = > bx = bx = bx =
i=O i=j i=O i=O i=O

(5.4)

Then, using (5.3) and (5.4), the polynomial product is given as

C = XrnAHBH + (AHBL + A'B')x + ALBL. (5.5)

65

The Karatsuba algorithm is based on the idea that the product of last equation
can be equivalently written as

C = xmABI + (AHBH + ALBL + (AH + AL)(BL + B"))x + ALBL
= mCH+CL

Let us define
(5.6)

MA :=

MB := BL+BH; (5.7)

M := MAMB.

Using equation (5.6), and taking into account that the polynomial product C has
at most 2m 1 coordinates, we can classify its coordinates as

CH [C2m_2, C2m_3, . . . , c,m+1, C7fl};

(5.8)
CL = [Cm_1,Crn2,. . . ,ci,co].

Although (5.6) seems to be more complicated than (5.5), it is easy to see that
equation (5.6) can be used to compute the product at a cost of four polynomial

additions and three polynomial multiplications. In contrast, when using equation
(5.5), one needs to compute four polynomial multiplications and three polynomial

additions. Due to the fact that polynomial multiplications are in general much

more expensive operations than polynomial additions, it is valid to conclude that
(5.6) is computationally simpler than the classic algorithm. Karatsuba's algorithm
can be applied recursively to the three polynomial multiplications in (5.6). Hence,

we can postpone the computations of the polynomial products AHBH, ALBL and

M, and instead we can split again each one of these three factors into three poly-

nomial products. By applying this strategy recursively, in each iteration each
degree polynomial multiplication is transformed into three polynomial multiplica-

tions with their degrees reduced to about half of its previous value. Eventually,
after no more than Ilog2(m)1 iterations, all the polynomial operands collapse into

single coefficients. In the last iteration, the resulting bit multiplications can be
directly computed. Then the corresponding results can be used to solve all the

Input: Two elements A, B E GF(2m) with m = rm = 2n, and where A, B can be
m mexpressed as, A = XTA + A , B = XTB + B

Output: A polynomial C = AB with up to 2m 1 coordinates, where

Procedure Kmul2'(C, A, B)
0. begin
1. if (r == 1) then
2. C = rnuLn(A, B);

3. return;
4. forifromOto 1do
5. MA=Af+A(';
6. Mn_B[+B;
7. end
8. mul2k(Ct,AL,Bl);

9. mu12c(M, MA, MB);

10. mul2k(Cht, A", BH);

11. forifrom0torldo
12. M =
13. end
14. forifrom0torldo
15. Crj =
16. end
17. end

Figure 5.1. m = 2lcrIbit Karatsuba multiplier.

other postponed multiplications from the previous iterations.

Although it is possible to implement the Karatsuba algorithm until the log2 ml

iteration, it is usually more effective (in terms of hardware cost) to truncate the

algorithm earlier. This is because Karatsuba multipliers are not efficient for small

values ofm when compared to other multiplication algorithms. If the Karatsuba

algorithm is truncated at a certain point, the remaining multiplications can be
computed by using alternative techniques (classic algorithm, Mastrovito multipli-

67

ers, and other techniques). The best results are then obtained by using hybrid
techniques, i.e., we use Karatsuba to reduce the multiplier complexity of relatively

big size operands, followed by efficient algorithms to compute the multipliers for

small size operands.

Let us consider the algorithm presented in figure 5.1. If r = 1, then the
product is trivially found in lines 1-3 as the result of the single n-bit polynomial

multiplication C = muLn(A, B). Otherwise, in the first ioop of the algorithm
(lines 4-7) the polynomials MA and MB of equation (5.7) are computed by a di-
rect polynomial addition of A" + A" and B" + B's, respectively. In lines 8-10,

CH and M, are obtalned via -bit polynomial multiplication. After comple-

tion of these polynomial multiplications, the final value of the lower half of C'
as well as the upper half of C" are found. To find the final values of the upper
half of the polynomial C' and the lower half of C", we need to combine the
results obtained from the multiplier blocks with the polynomials C", CL and M,

as described in equations (5.6) and (5.7). This final computation is implemented

in lines 11 through 16 of figure 5.1.

5.2.1 Complexity Analysis

The space complexity of the algorithm in figure 5.1 can be estimated as follows.

The computation of the ioop in lines 4-7 requires 2(i) = r additions. The exe-
cution of lines 8-10, implies the cost of 3 i-bit polynomial multipliers. Finally,
lines 11-16 can be computed with a total of 3r additions. Notice that if m> 1 the

additions in algorithm 5.1 need to be multi-bit operations. Noticing also that m-
bit multiplications in GF(2) can generate at most (2m 1)-bit products, we can
have an extra saving of four bit-additions in lines 12 and 15. Hence, the addition

complexity per iteration of the m = 2cn_bits Karatsuba multiplier of figure 5.1

is given as r + 3r = 4r n-bit additions plus three times the number of additions
needed in a multiplier block, minus four bit additions. Notice that for n-bit
arithmetic, each one of these additions can be implemented using n XOR gates.

Recall that m is a composite number that can be expressed as rn = rn,
with r 21c, k an integer. Then, one can successively invoke i-bit multiplier
blocks, 32 times each, for i = 1, 2,. . . ,log2 r. After k = log2 r iterations, all the

multiplier operations will involve polynomial multiplicands with degree n. These

multiplications can be then computed using an alternative technique, like the clas-

sic algorithm. By applying iteratively the analysis given above, one can see that

the total XOR gate complexity of the m = 2Icnbit hybrid Karatsuba multiplier

truncated at the n-bit operand level is given as

XOR Gates 3log2r
log2 r

+
i:

3i-1('
"

4)
22i=1

log2r 3j-1
+ 8rn

log2r
sii

22j=1

8 log2r3i 4log2r
+

i
3

i=1

= M02n32 3 log2 r
+ 8rn(1) 2(310g2r 1)

+ 8rfl(rl02 1) 2(rl023 1)

= Mxor2n72 + 8fl(rb023 8r) 2(rb023 1)

rb023(8n 2 + Mxor2n) 8rn + 2

(8 2+ M2) 8m +2.r

Where Mxor2n represents the XOR gate complexity of the block selected to imple-

ment the n-bit multipliers.

Similarly, notice that no AND gate is needed in the algorithm in 5.1, except

when the block selected to implement the n-bit multiplier is called. Let M0n be

the AND gate complexity of the block selected to implement the n-bit multiplier.

Then, since this block is called exactly 3Iog2 r times, we conclude that the total

number of AND gates needed to implement the algorithm in 5.1 is given as,

AND gates lO2 3M d2
(7)IOg2 3Mand2nri

We give the time complexity of the algorithm in 5.1 as follows. The execution of

the first ioop in lines 4-7 can be computed in parallel in a hardware implementa-

tion. Therefore, the required time for this part of the algorithm is of just 1 n-bit

addition delay, which is equal to an XOR gate delay Tx. Lines 8-10, can also be

implemented in parallel. Thus, the associated cost is of one i-bit multiplier delay.

Notice that we cannot implement this second part of the algorithm in parallel
with the first one because of the inherent dependencies of the variables. Finally,

lines 11-16 can be computed with a delay of just 3Tx. Hence, the associated time

delay of the m = 2knbit Karatsuba multiplier of figure 5.1 is given as

log2r
Time Delay = Tdelay2n + 3 = Tjeayn + 4T log2 r.

1=1

In this case it has been assumed that the block selected to implement the GF(2Th)

arithmetic has a Tdelay2n gate delay associated with it.

In summary, the space and time complexities of the rn-bit Karatsuba multi-
plier are given as

logXORGates < (') 23(8m2+M)8+2
\ii,

AND Gates (TrI)lo23M
;

(5.9)

Time Delay Tdelay2n + 4Tx log2()

As it has been mentioned above, the hybrid approach proposed here requires

the use of an efficient multiplier algorithm to perform the n-bit polynomial mul-

tiplications. In chapter 3 it was found that the space and time complexities for
the classic n-bit multiplier are given as

XORGates = (ni)2;
AND Gates (5.10)

Time Delay TAND + Tx [log2 n]

Combining the complexities given in equation (5.10), together with the corn-

plexities of equation (5.9) we conclude that the space and time complexities of

70

the hybrid rn-bit Karatsuba multiplier truncated at the n-bit multiplicand level
are upper bounded by

XOR Gates < (8n 2 + Mxor2n) 8m + 2

(n2 + 6n 1) 8m + 2;
AND Gates < 3lOg2r

(5.11)

Time Delay TAND + T (log2 n +4 log2 r)

Let us consider now the cases where rn is a power of two, m = rn 21c, k > 2.
Then, n = 4 is the most optimal selection for the hybrid Karatsuba algorithm.
For this case using equation (5.11) we obtain

XOR Gates fri2 + 6n 1) 8rn + 2

= 13 3k-1 2k+3 + 2;

AND Gates = 16 3k2; (5.12)

Time Delay < TAND + T (log2 n +4 log2 r) =
T±T(log24+4log22k_2) = TAND+Tx(4k-6)

Table 5.1 shows the space and time complexities for the hybrid Karatsuba multi-

plier using the results found in equation (5.12). The values of m presented in table

5.1 are the first ten powers of two, i.e., m for i = 0, 1,. . . , 9. Notice that
the multipliers for m = 1, 2, 4 are assumed to be implemented using the classic

method only. As we will see in § 5.3, the complexities of the hybrid Karatusba
multiplier for degrees m 2' happen to be crucial to find the hybrid Karatsuba
complexities for arbitrary degrees of m. We will also refer again to this table in
the next chapter, when we discuss different software considerations for modular

multipliers.

5.2.2 rn-bit Karatsuba Multipliers

Let us examine the case when m = rn; r n; r not necessarily a power of
two. For this case we caii still use the algorithm in figure 5.1, with the following

modifications:

71

m r n AND gates XOR gates Time delay Area (in NAND units)
1 1 1 1 0 TA 1.26

2 1 2 4 1 TJ+T, 7.24

4 1 4 16 9 2Tx +TA 39.96

8 2 4 48 55 6Tx +TA 181.48

16 4 4 144 225 lOTx +TA 676.44

32 8 4 432 799 l4Tjç +TA 2302.12

64 16 4 1296 2649 l8Tx + TA 7460.76

128 32 4 3888 8455 22Tx + TA 23499.88

256 64 4 11664 26385 26Tx+TA 72743.64

512 128 4 34992 81199 3OTX+TA 222727.72

Table 5.1. Space and time complexities for several m = 2kbit hybrid Karatsuba
multipliers.

The loop in lines 4-6 must consists of iterations.

Both multipliers in lines 8-9 should use -bit polynomial multiplier blocks.

. The multiplier in line 10 should call an [j-bit polynomial multiplier block.

. When r is an odd number, some addition operations can be saved.

In particular, if n = 1, then we are actually using a non-hybrid Karatsuba algo-
rithm. For n > 1, we can only use this scheme for the cases where n I in. If n

does not divide m, we can design instead a Karatsuba multiplier for the closest
multiple of n, say m', such that m' > m. This is specially practical when n is a

small integer.

Unfortunately, the upper bounds of equation 5.11 found in the last section are

no longer valid for this approach. This is due to the fact that log2 r is no longer

an integer for this case. Thus, the exact number of iterations and polynomial

multiplier blocks needed in the algorithm is a complicated function of the precise

value of the numbers and L] for i = 1, 2,..., log2 ri.
Figure 5.2 shows the space complexities for the Karatsuba multiplier in the

range m e [2,512], using n = 1, 2,3. These results were obtained via a simulation

72

program whose pseudo-code is included in appendix A. Figure 5.2 clearly shows

that the AND complexity of the Karatsuba multiplier using n = 1 is much lower

than the corresponding to n = 3. However, exactly the opposite occurs for the
XOR complexity, where the highest complexity is the one obtained using n = 1.

Notice that for any given degree m, the number of XOR gates needed is much

greater than the corresponding number of AND gates. Moreover, the amount of

area needed to implement an XOR gate is usually more than twice the one needed

for an AND gate. Under these assumptions, we conclude that the hybrid Karat-
suba algorithm using n = 3 is the most optimal choice for our range of interest
(m<512).

The technique described in this section has several drawbacks. First, strictly

speaking it cannot be applied for any arbitrary degree m when n> 1 is selected.

In addition, it seems that there is no easy way to obtain reasonable theoretical
upper bounds for the space and time complexities. Finally, because of the very

recursive nature of the algorithm, there is no easy way to upgrade the degree of

the multiplier's operands once that a multiplier for a given degree m has been
designed.

In the next section we study another approach that allows us to overcome
these difficulties by using a non-recursive Karatsuba algorithm.

5.3 Binary Karatsuba Multipliers

In the last section we analyzed hybrid Karatsuba multipliers for composite degrees

of m. However, as it was mentioned in §5.1, for cryptographic applications it
is advisable to use finite fields of prime degree. Therefore, it is important to
investigate a generalized version of the algorithm in figure 5.1 that is not restricted

to special composite degrees of m. In this section we present an algorithm that

allows us to implement a binary Karatsuba multiplier for arbitrary degrees of m.

We also give a rigorous analysis of its corresponding space and time complexities.

x I

12.-

10

Cl,

a)

C 8

0
><

6

0

4
a)

-o

E

2

I (1':/1'
-

/

- ----------------------- j-/ -------------

1/
= 3

//1
- ---------- -------------------------

100 200 300 400 50C

m

4

3.5

Cl)

a)

- 3

0)

o 2.5

z
2

0
1.5

a)

1

E

Z 0.5

0

x

fl./

n=2:

1/i

V
-

/ .7

r" //7 /
-

-- -

100 200 300 400 500

m

73

Figure 5.2. Space complexities of hybrid Karatsuba multipliers for arbitrary m
using n = 1,2,3

5.3.1 Binary Karatsuba Strategy

Let us consider the multiplication of two polynomials A,B GF(2m), such that
their degree is less or equal to m 1, where m 2C

+ d. As a very first approach,

we could pretend that both operands have 21 coordinates each, where their
respective 21 dmost significant bits are all equal to zero. Figure 5.3 shows how

the subpolynomialls A" and A" will be redefined according with this approach.

If we partition the operands A and B as shown in figure 5.3, then, in order

to compute their polynomial multiplication, we can use the algorithm in figure

5.1 with m = 211. Although this approach is a valid one, it clearly implies the

waste of several arithmetic operations, as some of the most significant bits of the

74

operands are zeroes. However, if we were able to identify the extra arithmetic

operations and remove them from the algorithm in figure 5.1, we would then be

able to find a quasi-optimal solution for arbitrary degrees of m. To see how this

can be done, consider the algorithm shown in figure 5.4, which has been adapted

from the one presented in figure 5.1.

2k+l..d AL

A = a2k+d_1,. , a2kl, a2k,a2k_1, a2k_2,.. . , a2, ai,d];

AH = [0,.. .,O,O,a2k+d_1,. . .,a2kl,a2k];

AL = [a2k_1, a2k_2,. . . , a2, a1, ao];

Figure 5.3. Binary Karatsuba strategy

In lines 1-2 the values of the constants k, d such that m = 2k+d are computed.
If d = 0, i.e, if m is a power of two, then the binary Karatsuba algorithm of figure

5.4 reverts to the specialized algorithm in figure 5.1 presented in the previous
section. If that is not the case, our algorithm uses the constants k and d to
prevent us to compute unnecessary arithmetic operations. In lines 6-9, the d least
significant bits ofMA and MB of equation (5.7) are computed using the d non-zero

coordinates of A" and BH. The remaining k d most significant bits of MA and

MB are directly obtained from A' and BL, respectively. Notice that the operands,
A's, BL, MA and MB are all 21-bit polynomials. Because of that, our algorithm

invokes the multiplier of figure 5.1 in lines 10 and 11. On the other hand, both
operands A" and B" are d-bit polynomials, where d, in general, is not a power

of two. Consequently, in line 12, the algorithm calls itself in a recursive manner.

This recursive call is invoked using the operand's degree reduced to d. Clearly

75

Input: Two elements A, B e GF(2m) with m an arbitrary number, and where
A, B can be expressed as A = + A', B = xB't + BL.
Output: A polynomial C = AB with up to 2m 1 coordinates, where
C=XmC+CL.
Procedure mulgenm(C, A, B)
0. begin
1. k = [log2mj;
2. d=rn2';
3. if (d == 0) then
4. C = Krnul2'(A, B);
5. return;
6. forifrom0todldo
7. MA=Af+Af';
8. MB=B+B(';
9. end
10. mul2c(C, A", BL);
11. rnul2k(M, MA, MB);
12. mulgend(C", AH, BH);
13. forifrom0to2k-2do
14. M1 = M+Ct+C(';
15. end
16. forifrom0to2k-2do
17. Ck+ =
18. end
19. end

Figure 5.4. rn-bit binary Karatsuba multiplier.

in each iteration the degree of the operands gets reduced, and eventually, after a

total of h iterations (where h is the hamming weight of the binary representation

of the original degree m), the algorithm ends.

76

5.3.2 Complexity Analysis

The space and time complexities of the rn-bit binary Karatsuba multiplier of
figure 5.4 can be obtained as follows. The computation of the ioop in lines 6-9

requires 2d bit additions. The execution of lines 10-12, implies the additional

cost of two 2kbit multipliers, and one d-bit binary Karatsuba multiplier. Finally,

taking advantage of the fact that some of the most significant bits of the operands

are zeroes, lines 13-18 can be computed with just 3(2k+1 1) d) 1 =
2(2w + d) 4 bit additions, if 2d 2k However, if 2d < 2', we only need
3(21 1) (2k+1 2d) - 1 3(2' 2d) 21c + 8d 4 bit additions.

Additionally, notice that the execution in lines 10-11 implies the AND-gate

cost associated to two 2"-bit multipliers. This is the only AND-gate cost of the

algorithm per iteration. By applying iteratively the analysis given above, one can

see that the space complexity of the rn-bit binary Karatsuba multiplier of figure

5.4 is given as

XOR Gates = [2MuLx(2) + mm (4(k + d1 1), k + 10d11 - 4)]

+MULx(2h_1) (5.13)

AND Gates (2MuLA(2k2)) + MULx(2').

Where

= rn;

k0 = log2 mJ;

d1 = dj_i_2'_1; (5.14)

= log2 dJ;

h = harnrning..weight(rn).

MULE (r) and MULA (r) represent the XOR gate and the AND gate complexities

of the algorithm in figure 5.1, respectively, with r = 2/c, k an integer. Recall that
the complexities, for the first ten powers of two are shown in table 5.1.

77

We give the time complexity of the algorithm in 5.4 as follows. The execution

of the first ioop in lines 6-9, can be computed in parallel in a hardware implemen-

tation. Therefore, the required time for this part of the algorithm is of just one

XOR gate delay, Tx. Lines 10-12 can also be implemented in parallel. The most

dominant contributions are the ones associated with the two 2'-bit multiplies of

lines 10-12. Finally, lines 13-18 can be computed with a delay of just 3T. Hence,

the associated time delay of the rn-bit binary Karatsuba multiplier of figure 5.4,

with m not a power of two, is given as

Time Delay MUL1y(2LI02mJ) + 4Tx; (5.15)

Where MULdelay (r) represents the time complexity of the algorithm in figure 5.1,

with r = 2', k an integer. The corresponding delays for 2kbit multipliers with
k = 0,1,.. .,9 are listed in table 5.1.

5.4 Binary Karatsuba Multipliers Revisited

The algorithm presented in figure 5.4 achieves the goal of obtaining a modular
version of the Karatsuba algorithm for arbitrary degrees of m. However, that
algorithm is inefficient for certain degrees of m, especially for the cases when
d << 2k, m 2' + d. Fortunately, there is an alternative approach that can help

us alleviate this problem. To see this, let us examine agaln the algorithm in figure

5.4. In line 11 the algorithm obtains the value of the polynomial M of equation
(5.7) via polynomial multiplication using a 2!cbit multiplier block. If k > 2, the
space cost of a 2-bit multiplier block is upper bounded by

XOR Gates 13 3k1 2k+3 + 2;
(5.16)

AND Gates < 16 3/2

However, if d << 2k, there is a more efficient way to obtain M. From equation

(5.7), we can reformulate M as,

M = MAMB = = ALBL+ALBH+AIIBIHAIIBH. (5.17)

The first and last terms of the right side of the above equation are obtained in lines

10 and 12 of the algorithm in figure 5.4. Hence, if we compute the intermediate

products ALBH and AHBL we would be able to obtain M using equation (5.17).

Recall that both, A' and B' are 2'-bit polynomials, whereas A" and B" are d-bit

polynomials. By applying the classic multiplier algorithm discussed in chapter 3,

we can compute the products ALBH and AHBL at the space cost of (2/c 1)(d 1)
XOR gates and 2kd AND gates each. Thus, using equation (5.17), the polynomial

M can be obtained at a space cost given as

XOR Gates = 2(21c 1)(d_1)+2(2k+d_ 1)+(2d 1)
= 2d(2c + 1) 1; (5.18)

AND Gates = 2d2.

If we compute M using this approach, we do not need to compute the loop in
lines 6-9 of the algorithm in figure 5.4 anymore, yielding an extra saving of d
XOR gates. Considering this, and by comparing equations (5.16) and (5.18), we

conclude that the polynomial M can be computed more efficiently by using the

equation (5.17) rather than using a 2'-bit Karatsuba multiplier, if the following
condition is satisfied

13 3k1 2k+3 + 3
d

< [2k+1 + 1 j
(5.19)

where m 2k + d, k > 2.
Figure 5.5 shows the algorithm for the binary Karatsuba multiplier if condi-

tion (5.19) is satisfied. Notice that equation (5.17) is implemented in line 8 of the

algorithm. In that line, M is computed as the sum of CL and CH, which were
previously obtained in lines 6-7, plus the result of the products ALBH and AHBL.

These two products are computed using the classic multiplier algorithm.

In practice, for a given arbitrary degree in, the designer has the option to
compute the polynomial M either implementing equation (5.17) or using a 2k-bit

Karatsuba multiplier block. The best option can be selected after evaluating con-

dition (5.19). In the next section we present a design example that illustrates this

design process.

79

Input: Two elements A, B E GF(2m) with in = 2k + d, k > 2, and where A, B
can be expressed as A xA" + AL, B = xB" + BL.
Output: A polynomial C = AB with up to 2m 1 coordinates, where
C=XmCH+CL.
Procedure mulgen..m(C, A, B)
0. begin
1. k = [log2mj;
2. d=m_2k;
3. if (d == 0) then
4. C=Krnul2k(A,B);
5. return;
6.
7. mulgen.d(C", A", B");
8. M = C' + rnuLclassic(ALBH) + muLclassic(AHB) + C";
9. forifrom0to2k-2do
10. M = Mj+Ct+C(';
11. end
12. forifrom0to2k-2do
13. Ck+1 =
14. end
15. end

Figure 5.5. rn-bit binary Karatsuba multiplier if condition (5.19) holds.

5.4.1 An Example

As a design example, let us consider the polynomial multiplication of the ele-
ments A and B e GF(2193). Since (193)2 = 11000001, the Hamming weight
h of the binary representation of rn is h = 3. This implies that we need a
total of three iterations in order to compute the multiplication using the general-

ized rn-bit binary Karatsuba multiplier. Additionally, we notice that for this case

rn = 193 = 2+65.

Using equation (5.14), we find k0 = 7 and d1 = 65. Therefore, condition
(5.19) yields

d1 = 65>
3k0-1 - 2/0+3 + 3 I

2ko+1+l]=32.

Thus, in the first iteration it is preferable to obtain M using a 128-bit Karatsuba

multiplier block. In this first iteration of the algorithm, we need a total of 2d1 =

130 and 2(2k0+1 + d1) 4 = 638 XOR gates, in order to implement the first
loop (lines 9-12) and the second ioop (lines 16-19) of figure 5.4, respectively. We

also need to use two 2k0 = 128-bit multiplier blocks, as well as one mulgenR(65)

multiplier block. The latter multiplier is implemented in the second iteration.

j 2i R Ic2 XOR gates MUL(2c;_1) muLdassic Mulgen(Rj)

0 - 193 7 - - - -

1 1 65 6 768 2mul2c(128) - mulgenR(65)

2 2 1 0 68 mul2k(64) 2muLclassic(64, 1) -

34 0-- mul2k(1) - -

Table 5.2. A generalized m = 193-bit binary Karatsuba multiplier using the
algorithm in figure 5A

In the second iteration we have c1 = 65 = 26 + 1, yielding k1 = 6 and d2 = 1.
From condition (5.19) we see that d2 = 1 < = 20. Thus, in the
second iteration it is better to compute M using equation (5.17). Therefore, in
the second and third iterations we need one 64-bit Karatsuba multiplier block, 2

classical multiplier blocks, 68 XOR gates and 1-bit multiplier. These computations

are summarized in table 5.2.

We can compute the space and time complexities of the generalized m = 193-

bit binary Karatsuba multiplier using equations (5.13), (5.15) and (5.18).

E3!

We also use the space and time complexities values listed in table 5.1, obtain-

ing

XOR Gates = 768 + 2MULx(128) + 68 + MULx(64)

+ 2mul_classicx(64, 1) + MULx(1)
= 768+28455+68-j-2649-+-129+0 = 20524.

AND Gates = 2MULA(128) + MULA(64) + 2mul_classicx(64, 1)
(5 20)

+ MULA(1)
= 23888+1296+128-+-1 = 9201.

Time Delay MULjy(2Lb02mi) + 4T
= + 4Tx = 26T + TA.

=AB

Figure 5.6. Schematic diagram of a generalized m = 193-bit binary Karatsuba
multiplier

The schematic diagram of the generalized in = 193-bit binary Karatsuba
multiplier is shown in figure 5.6. For a 1 .2i CMOS technology, we can assume

that TA Tx = 0.5778. This implies that the fully-parallel polynomial multiplier

presented in this design example would incur in a delay of about 13.577 in such

technology.

Figure 5.7. Programmable binary Karatsuba multiplier

5.4.2 Programmability

The schematic diagram shown in figure 5.6 illustrates two desirable characteristics

of the binary Karatsuba multipliers. First, it is possible to implement them using

non-recursive architectures. In addition, since these algorithms are highly mod-
ular, it is possible to design non-parallel scalable implementations. By scalable

implementations we mean configurations that allow the user to select the size m

of the multiplicands that he/she wants to work with.

Consider the architecture shown in figure 5.7. We use a control logic block

that allows us to execute the algorithms of figures 5.4 and 5.5 in a sequential
manner. To do this, we also take advantage of the intrinsically modular nature of

a 2kbit Karatsuba multiplier, which can itself be programmed to compute multi-

plications that involve operands of a size that is any power of two lower than 2k

The partial multiplications obtained using this approach, are stored in a mem-

ory block as figure 5.7 shows. The control logic can then use these partial results

to compute the remaining operations so that the total polynomial product can
be obtained. Notice also, that the architecture shown in figure 5.7 can be pro-
grammed to implement multiplications with different operands' sizes.

x 10 XOR complexity
9.

8

7

6

5

4

3

2

0
100 200 300 400 500

m

3.5

3

2.5

2

1.5

0.5

0

x 10 AND complexity

100 200 300 400 500
m

Figure 5.8. Space complexity of the modified binary Karatsuba multiplier

5.4.3 Area Complexity of the Binary Karatsuba Multiplier

Figure 5.8 shows the space complexities for the binary Karatsuba multiplier in
the range m e [2,512]. For most of the hardware implementation schemes of

digital logic, it is reasonable to assume that the area costs of an AND gate and
an XOR gate are of about 1.26 units and 2.2 units, respectively, where an area of

1 represents the area cost of a NAND gate. Based on this assumption, we show

in figure 5.9 the estimated total area of the binary Karatsuba multiplier in the

range mentioned above, together with the corresponding area estimation for the

hybrid Karatsuba multiplier (using ii = 1), that was presented in § 5.2.

x 103,-

2.5

2

1 .5

0.5

0

Combined space complexity

HybridKratsu

BnaryKratsuba

50 100 150 200 250 300 350 400 450 5
m

Figure 5.9. Total area complexity of the modified binary and hybrid Karatsuba
multipliers

5.5 Reduction

In this section we study the complexity associated with the computation of the

reduction step defined in (5.2) for several classes of irreducible polynomials.

Let the field GF(2m) be constructed using the irreducible polynomial P(x)

and let A(x), B(x) e GF(2m). Let us assume that we already have computed the

polynomial product C(x) given by (5.1), by using the binary Karatsuba multiplier

method described in the last section. Then, in order to obtain the field product
C', we need to perform the reduction step described in equation (5.2). Recall

that the polynomial product C and, the modular product C', have 2m 1 and
m, coordinates, respectively, i.e.,

C = [C2m_2,C2m_3,. . . .,ci,co];
(5.21)C' = [C'm_i,C'm_2,. .

The reduction step for several classes of irreducible polynomials was studied in
the previous two chapters. Table 5.3 summarizes the reduction step's space and
time complexities found in those chapters.

Irreducible Polynomial XOR Gates Gate Delays References

xm + x' + 1, 1 <n < [j 2m 2 2Tx [23] [24] [32]
m + x +1 1 2T [48]

xm + x(1)d + .. . + xd + 1 2m d 1 2T [48]
xm+xm_l+...+x+i 2m-2 2T [9]

xm+xn+l+xn+x+i 3m+2n-1 3T §4.2.1
xm+x3+x2+x+i 3mi 3T §4.4.2

Table 5.3. Summary of complexities for the reduction step.

5.6 Conclusions and Discussion of the Results

In this chapter we presented a new approach that generalizes the classic Kara-

tusba multiplier technique. In contrast with versions of this algorithm previously

discussed [26, 28], in our approach we do not use composite fields to perform the

ground field arithmetic. It should be emphasized that, in spite of the recursive
nature of the Karatsuba technique, the approach presented in this chapter is not

a recursive one, as long as all the multiplication procedures are implemented it-
eratively, as it is in the implementation shown in figure 5.9.

As it was described in § 5.1, a design technique for a field multiplier consists

of the combination of a binary Karatsuba multiplier followed by the reduction

step. For example, a GF(2193) finite field can be constructed using the irreducible

trinomial P(x) = x193 + x15 + 1. Hence, from the results found in section § 5.4.1

together with the results shown in table 5.3, we conclude that the space and time

complexities for a rn = GF(2'93) generalized Karatsuba field multiplier are given

by,

XOR Gates = 768 + 2MULx(128) +68+ MULx(64)

+ 2mul_classicx(64, 1) + MULx(1) + 2m 2 = 20908.
AND Gates = 9201.

Time Delay = 26Tx + TA.

The same field multiplier would have a much bigger space complexity if any one

of the techniques reported in [11, 32, 20, 48, 31, 5, 53, 54] were used. For instance,

the field multiplier in [54] would require,

XOR Gates = m2 1 = 37248
AND Gates = m2 = 37649

Time Delay = 1OTX+TA.

From these figures, we can see that our design gives us 44% and 76% of savings in

the number of XOR and AND gates, respectively, when compared with the field

multiplier in [54]. This result is accomplished at the price of a slightly bigger time

complexity, which is negligible for any conceivable possible application.

The most attractive features of the new algorithm presented here is that the

degree of the defining irreducible polynomial can be arbitrarily selected by the

designer, allowing the usage of prime degrees. In addition, the new field multi-

plier leads to architectures which show a considerably improved gate complexity

when compared to traditional approaches. Finally, the new multiplier leads to
highly modular architectures and is thus well suited for VLSI implementations.

The binary Karatsuba architecture offers also promising features for achieving

programmable low space-complexity configurations at the price of a loss of paral-
lelism in the execution.

Chapter 6
EFFICIENT SOFTWARE IMPLEMENTATIONS FOR

GF(2m) ARITHMETIC

"Adieu, dit le renard. Voici mon secret. Ii est
très simple: on ne voit bien qu'avec le cur.
L'essentiel est invisible pour les yeux"

Le petit prince, Antoine de Saint-exupéry

The level of security offered by protocols such as Diffie-Heilman key exchange

algorithm relies on exponentiation in a large group [27, 44]. Typically, the imple-

mentation of this protocol requires a large number of exponentiation computations

in relatively big fields. Therefore, software implementation of the group opera-

tions is, for all the practical sizes of the group, computationally intensive. On
the other hand, high performance implementations of elliptic curve cryptography

(ECC) depend heavily on the efficiency in the computation of the finite field arith-

metic operations needed for the ECC's high level primitives. In this chapter we

address the problem of how to implement efficiently these finite field operations

in software. In particular, we study how to implement three of the most common

and costly finite field operations: multiplication, squaring and inversion.

This chapter contains our analysis of the complexities as well as the timings
obtained by direct C code implementation of the algorithms proposed here.

6.1 Introduction

Let the field GF(2m) be constructed using the irreducible polynomial P(x), of
degree m, and let A, B be two elements in GF(2m) given in the polynomial basis

rni rni
as A = ajx and B = bx2, respectively, with a, b2 E GF(2).

i=O i=O

By definition, the field product C' e CF(2m) of the elements A, B e GF(2m) is
given as

C'(x) = A(x)B(x) mod P(x). (6.1)

In most aigorithms, however, equation (6.1) is computed in two steps: polynomial

multiplication followed by modular reduction. Let A(x), B(x), C'(x) E GF(2m)

and P(x) be the irreducible polynomial generating GF(2m). In order to compute

(6.1) we first obtain the product polynomial C(x) of degree at most 2m 2, as

C(x) = A(x)B(x) = (6.2)

Then, in the second step, a reduction operation is performed in order to obtain
the m 1 degree polynomial C'(x), which is defined as

C'(x) = C(x)modP(x). (6.3)

As an alternative, it has been proposed in [19] that instead of computing (6.1), it

is sometimes more convenient to compute,

CM(x) = A(x)B(x)RmodP(x) = C(x)R1modP(x). (6.4)

Where R is a special fixed element of the field GF(2m). This idea is the anal-
ogous to the Montgomery technique for modular multiplication of integers [18].

It turns out that the selection of R(x) = Xm is very useful in order to obtain
fast and efficient software implementations. Hence, R is the element of the field
represented by the polynomial R(x)modP(x), i.e., if P = (pm,prni,. . . ,Pi,Po),
then R = (pm-i,. . . ,Pi, P0). A possible approach to compute the Montgomery
product is to first find the regular polynomial product C(x) of (6.2), followed by

the Montgomery reduction shown in the right side of (6.4)

In the next sections of this chapter we analyze different implementation as-

pects and we propose novel methods to compute efficiently finite arithmetic [40].

In § 6.2 we study the problem of how to compute equation (6.2) efficiently, con-

sidering two separate cases. First, in subsection § 6.2.1 we present an efficient

method to compute polynomial squaring, which is a particular case of the poly-

nomial multiplication. The methods presented there are based in a look-up table

approach. In section § 6.2.2 a practicai implementation of Karatsuba-Ofman al-

gorithm is analyzed as one of the most efficient techniques to find the polynomial

product of (6.2). In § 6.3 we introduce two novel algorithms that compute in a

highly efficient way the reduction step of equation (6.3). In § 6.4 a novel tech-
nique to compute in software the Montgomery reduction of (6.4), is presented. We

show that the Montgomery multiplication can be computed with a competitive
complexity in relation to the standard algorithms of § 6.3.

6.2 Polynomial Multiplication and Squaring in GF(2m)

In this section we study the problem of how to compute equation (6.2) efficiently,

considering two separated cases. First In subsection § 6.2.1, we present an efficient

method to compute the squaring of a polynomial, which is a particular case of

polynomial multiplication. The method presented here is based on a look-up table

approach. Section § 6.2.2 presents a practical implementation of the Karatsuba-

Ofman algorithm.

6.2.1 Look-up Table Method for Squaring Operation

In this section we investigate some efficient methods to compute polynomial
rn-i

squaring. Let us assume that we have an element A given as A Then
the square of A is given as

rn-i rn-i rn-i

C(x) = A(x)A(x) = A2(x) ax1)(a2x) a2x22. (6.5)

The main implication of the above equation is that the first k < m bits of A
completely determine the first 2k bits of A2. We can take advantage of this fact

in order to compute the square of A in an efficient manner. Assume that the
first 2 1 squares have been obtained using equation (6.5), and that they have

been stored in a look-up table. According to our experience, this look-up table

91

Input: The operand A and its word-length wien.
Output: The number T = A2 with a word-length of 2wlen.

Procedure Square(A, wlen)
0. begin

1. for i from 0 to wien {

2. S = SqrTable[Aj[o:l]];

3. S = S + LeftShift(SqrTable[Aj[8:15]], 16)

4. C = SqrTable[Ai[16:23]];

5. C = C + LeftShift(SqrTable[Aj[24:31]}, 16);

6. T2=I2+S;
7. T2+1 = T2+1 + C;
8. }

9. end

Figure 6.1. Generating a look-up table with the first 2" 1 squares

is specially useful if n = 8 is selected. Then, assuming that the processor's word

length is 32 bits, the algorithm in figure 6.1 computes the square of an arbitrary

number A. The same idea can be extended with minor changes for arbitrary sizes
of the processor's word length.

6.2.2 Karatsuba Multipliers

In this section we retake the Karatsuba multiplier studied in last chapter. This

time we briefly discuss how this method can be applied in software implementa-

tions.

Let the field GF(2m) be constructed using the irreducible polynomial P(x) of

degree m, and let A, B be two elements in GF(2m) given in the polynomial basis

rn-i rn-i

as A = ax and B = bx2, where a, b2 E GF(2) are their coordinates,
i=0 i=0

respectively. Both elements can be equivalently represented as

rn-i rn-i 2 2 2

A = a2x = ax+ ax = a+x+ ad =
i=0 i= i=0 i=0 1=0

(6.6)

and
m_1 rn 1rn-i rn-i 2 2B=>b1x1 = >b1x2+>bjxi = Xbj+riX2+bjX2 = xiBhI+BL.

i=0 i=0 i=0 i=0

(6.7)

The Karatsuba algorithm is based on the idea that the product of the last equation

can be equivalently written as

C = xmAfB + (AHBH + ALBL + (AH + AL)(BL + B"))x + ALBL
= XrnCH+CL.

(6.8)

The same idea can be applied recursively to the three polynomial multiplications

in (6.8). Hence, we postpone the computations of the polynomial products and

instead, we can split each one of these three factors again into three polynomial

products. By applying this strategy recursively in each iteration, each polynomial

multiplication is transformed into three polynomial multiplications with degrees

reduced to about half of its previous value.

Recall that in software scenarios we represent field elements of the finite
field F = GF(2m) as bit-strings of length m. For a w-bit processor this implies
operands with a size of wien =] words. Thus, for software implementations it
is highly convenient to truncate the Karatusba algorithm at a word-level point. In

other words, we can use the Karatsuba algorithm to compute the multiplication

at a word level, and then an efficient multiplier algorithm to perform the ground

field arithmetic. In order to implement the Karatsuba multiplier, we can use the

algorithm 5.1 reviewed in the previous chapter. This time we select n = w, where

w is the word-length of the processor. For the ground field multiplier, we chose

a look-up table technique, which was adapted from an algorithm included in a

93

software library package written by Shoup [47. Our adaptation is presented in
figure 6.2 and can be analyzed as follows.

Input: Two operands A and B with word-length of w-bits each.

Output: The polynomial product C AB with a word-length of up to 2w-bits.
Procedure Mult(A, B)
0. begin

1. C{1]=0;
2. C[0] = Mult2bTable[B[w_l:w_2]];

3. forifrom1to-1{
4. C[1] = ShiftLeft(C[1}, 2) + ShiftRight(C[0] , w - 2);

5. C[0] = ShiftLeft(C[0], 2) + Mult2bTable[B[w_2j:w_2i+l]];

6. }

7. if = 1) then {
8. C[1] = C{1] + ShiftRight(B, 1);
9. C[0} = C[0] + ShiftLeft(B, w 1);

10. }

11. end

Figure 6.2. General word polynomial multiplier, based on a look-up table tech-
nique

Let us suppose that we want to compute the product of two w-bits operands
A and B. Let us define A' as the number consisting of the first w 1 bits of
the operand A. Assume also that the look-up table Mult2bTable shown in figure

6.1 has been already pre-computed. Then, one can compute the word polyno-

mial product C = AB using the algorithm shown in figure 6.2. In each itera-
tion the algorithm uses the table Mult2bTablc to compute the partial product
A' . Bw_2j:w_2j+ij, storing the result in C[0]. The two most significant bits of C[0]

94

are then stored in the two least significant bits of C[1]. This operation is repeated

a total of times. Finally, in line 7 an extra computation is made, if the most
significant bit of A happens to be set. After this adjustment, the 2w-bit product

C = AB has been found and stored in the two words C[O] and C[1]. The number

of word additions needed by this algorithm is precisely w, whereas accesses

to the look-up table Mult2bTable are required. Finally, a total of 3 1 shift

operations are needed.

Index Value

Mult2bTable[O] 0

Mult2bTable[1] A'

Mult2bTable[2] 2A'

Mult2bTable[3] 3A'

Table 6.1. Look-up table for algorithm 6.2.

As it was mentioned above, in order to obtain the product of operands with

more than one word-length we can use a combination of the Karatsuba algorithm

of figure 5.1 to perform all the multi-word level computations, and the algorithm

of figure 6.2 to calculate all the w-bit products. Thus, if the operands have a size

of wlen-words, wieri a power of two, the total computational complexities of the

multiplier were given in equation (5.9) as

Word additions = w1enh0923(8 + w) 8wlen.,

Shift operations = 3 - 1w1enh0923 . (6.9)

Look-up table accsesses = wlenh0923

95

6.3 Standard Reduction

Let the field GF(2m) be constructed using the irreducible polynomial P(x) and

let A(x), B(x) E GF(2m). Assuming that we already have computed the product

polynomial C(x) of equation (6.2), by using any one of the methods described in

section § 6.2, we want to obtain the modular product C' of equation (6.3). Recall

that the polynomial product C and the modular product C', have 2m 1 and rn,

coordinates, respectively, i.e.,

C = [C2m_2, C2m_3,. . . C4, Cm,. . . ,Ci, coIl;
(6.10)

C' = k'm-i' C'r,_2,. . . C1 cJ.

Once the generating polynomial P(x) has been selected, the reduction step that

obtains C' from C can be computed by using XOR and shift operations only. In

this section we show the complexity associated in the computation of the reduction

step for several classes of irreducible polynomials. In § 6.3.1 we present a novel

method that is particularly efficient and attractive for the important practical case

of trinomials and pentanomials. In § 6.3.2 we study how to compute efficiently

the reduction step for arbitrary general irreducible polynomials by using look-up

table techniques.

6.3.1 Standard Reduction with Trinomials and Pents.

Let the field GF(2m) be constructed using the irreducible trinomial P(x) = xm +

x"+l with a root a and rnn <w. Let also A(x), B(x) be elements in GF(2m). In
order to obtain the modular product C'(x) of (6.2), we use the property P(a) = 0,

and write

am = 1+a;
am =

a2m3 = am_3 + am_3;
a2m_2 = am2 + am+n_2

(6.11)

The above m 1 set of identities suggests a method to obtain the rn-coordinates

of the modular product C' of equation (6.3). We can partially reduce the 2m 1

coordinates of C by reducing its most significant rn 1 bits into its first rn + n 1

bits, as indicated by (6.11). For instance, in order to obtain the first partially
reduced coordinate c we just need to add the regular product coordinate Cm to

the c0 coordinate, yielding c as c'0 = Co + Cm.

Similarly the whole set of rn + n 2 partially reduced coordinates can be

found as,
=c0 +cm;
= c1 + cm+l;

c_1 = c_ + Cm+n-1

=c +c,+n +cm;
= + Cm+m+i + Cm+i

(6.12)

= Cm-2 + C2m_2 + C2m_n_2

= Cm-i + C2m_n_1

= cm + C2mn

c'm+m3 Cm+-3 + C2m3
ëm+n2 = Cm+n-2 + C2m_2.

Notice that in the reduction process of (6.12), the constant coefficient of the irre-

ducible generating trinomial P(x) reflects its influence in the first rn 1 partially

reduced bits. The middle term of P(x), on the other hand, affects the partially
reduced bits of (6.12) in the range [c, c_2]. Notice also that there is an over-
lap in the range [c, c2], where both the constant and the middle coefficients of

P(x) affect the partially reduced coordinates.

We say that the coefficients in (6.12) have been partially reduced because

in general, if n > 1, we still need to reduce the n 2 most significant reduced

coordinates of (6.12). However, this same idea can be used repeatedly until the

97

in 1 modular coordinates of (6.10) are obtained. Each time that this strategy is

applied we reduce m n coordinates. A pseudo-code version of this algorithm is
shown in figure 6.3. This algorithm needs a total of iterations to compute

Input: The operand C with a length of 2m 1 coordinates.

Output: The modular reduction C' with m 1 coordinates.

Procedure TrinResiduel (C)
0. begin

1. i=0;
2. do{
3. CrJ,m_2_j(m_n)] = C[O,m_2_i(m_n)] + C[m,27n_2_i(m_n)1;

4. C(p,,m+fl_2_j(m_fl) = C[n,m+n_2_i(rnn)] + C[m,2m_2_i(m_n)];

5. i=i+1;
6. } while(i(mn) <rni)
7. end

Figure 6.3. An algorithm for standard reduction using irreducible trinomials

the modular reduction operation, which is not very efficient, especially if the mid-

dle coefficient 1 < n < m of the irreducible trinomial P(x) is a number close to
m. However, with a rearrangement of the addition operations in the algorithm of

figure 6.3 we can obtain a dramatic improvement in the efficiency of the reduction

computation. To see this, consider the diagram shown in figure 6.4. There, it
has been assumed that the 2m 1 coordinates of the polynomial product C can

be stored in exactly pwlen words, where pwlen = Similarly, the first m

coordinates of C, fit in wien = words.

Figure 6.4 shows graphically the reductions described in equation (6.12). This

diagram can also be visualized as the computations executed in the first iteration

of the algorithm in figure 6.3.

C

Figure 6.4. Standard reduction for irreducible trinomials.

The reductions due to the independent term of P(x) are represented by the

arrows in the top part of figure 6.4, which also correspond to the first-iteration

execution of the line 3 in figure 6.3. The bottom arrows in figure 6.4 represent

the reductions due to the middle term of P(x), or equivalently, the first-iteration

execution of the line 4 in figure 6.3.

If we compute first the reductions corresponding to the top arrows and then,

the ones corresponding to the bottom arrows, we will end up with a partially re-
duced vector C' with m + n 2 coordinates, as it was mentioned above. However,

there is no reason to use this sequence of operations. Instead, taking advantage
of the linear properties of the addition operation, one can choose to alternate the

reductions due to the independent and middle term, as suggested by the numer-
ation used in figure 6.4.

Starting from the most significant word of the operand C, one can first reduce

the bits in the word pwlen 1 into the word wien 1 of C. Then, one can use
again the bits in the word pwlen 1 to compute the reduction corresponding to

the middle term, which is shifted n bits to the left with respect to the bits affected

in the word wien 1. After the execution of these two operations, the reduction

process in the word pwlen 1 is completely done, provided that none of the bits

affected by the reductions of the middle term lie in the word pwlem 1. This is

so if
m+n-2 2m-2

[1<1 1
(6.13)

vi w

which is guaranteed if in ii > w holds, where w is the size in bits of the word

processor. After this, we can repeat the same order of reductions for the word

pwlen 2, which is labeled with number 2 in figure 6.4. We can continue this

strategy for the rest of the words in the upper half of C. In each iteration, we
completely reduce the bits of the surviving most significant word. Notice also
that eventually the words in both halves of C will be modified by these reduction

operations. In figure 6.4 this happens in the third reduction, where the word in

wien + 2 does not have the original values of C anymore, but the ones modified

after the middle term reduction 1. Figure 6.5 shows a pseudo-code version of this

algorithm. For the sake of simplicity in the above algorithm it has been assumed

that the first m coordinates of C are stored in its first wien words. The rest of the

m 1 coordinates are stored starting from the word wien to the most significant

word pwlen (see figure 6.4). The algorithm reduces C in a word-by-word basis,

starting from the most significant word of the upper half of C until the least sig-

nificant word of this upper half of C.

In lines 4 and 5 of the algorithm, the reduction due to the independent coeffi-

cient of P(x) and the one due to the middle coefficient are accomplished, respec-

tively. Due to the fact that the bits in C are organized in words, the operations

in lines 4 and 5 will involve, in general, two word additions, two shift operations

and one comparison each. This is so because the 32 bits of the upper half that we

are trying to reduce will possibly lie in two consecutive words of the lower half of

C, as is shown in figure 6.6. Therefore, we conclude that the complexity of the

algorithm in figure 6.5 for irreducible trinomials is given as

XOR operations < 4wlen,
SHIFT operations 4wlen (6.14)

Comparisons = 2wlen.

100

Input: The location of the middle coefficient of the irreducible trinomial n, and

its degree m; an operand C with a length of 2wlen words where wien =

Output: The reduced polynomial defined as C = C mod P, with a length of
wien words.

Procedure TrinResidue2(C, m, n)
0. begin

1. nbits=mmodw;

2. Shiftn =

3. for i from pwlen-1 downto wlen {

4. C[i_wlen,i_wlen+nbjtsl = C[i_wlen,i_wlen+nbitsl + C[,+&Its];

5. C[i_wlen+Shiftnl = C[Wz+shf] + C[11;

6. nbits = w;

7. }

8. end

Figure 6.5. An improved version of standard reduction using irreducible trino-
mials

One remarkable characteristic of the algorithm in figure 6.5 is that in contrast
with the algorithms presented in [45], our algorithm does not require small values

of the middle coefficient n in order to have a more efficient performance. The only

condition required is that the condition m n> w, holds.

This analysis can be easily extended for the case of irreducible pentanomials.

The algorithm in figure 6.5 will be still valid, but for this case we need to add two

more reductions due to the fact that a pentanomial has not just one, but three
middle coefficients. The corresponding complexities are given as

XOR operations 8wlen,
SHIFT operations < 8wlen, (6.15)

Comparisons = 4wlen.

101

Cf pw!en-iJ Cfpw!en-w!en+shiftnj

Figure 6.6. Reduction of a single word.

6.3.2 Standard Reduction with General Polynomials

The algorithms studied in the previous section are highly efficient for irreducible

trinomials and/or pentanomials. However, when general irreducible polynomials

are selected, i.e., irreducible polynomials with an arbitrary number of nonzero

coefficients, the algorithms presented in last section are not efficient anymore.

Because of that, we need to come out with alternative techniques to handle the

reduction step. In this section we present a standard reduction method based in

look-up tables specifically intended for general irreducible polynomials.

Recall that assuming that the polynomial product C with 2m 1 coordinates

is given, we would like to solve equation (6.3), repeated here for convenience

C'(x) = C(x)modP(x). (6.16)

Notice that since we are interested in the polynomial remainder of the above
equation, we can safely add any multiple of P(x) to C(x) without altering the
desired result. This simple observation suggests the following algorithm that can

reduce k bits of the polynomial product C at once. Assume that the m + 1 and
2m 1 coordinates of P(x) and C(x), respectively, are distributed as follows:

C = [C2m_2, C2m_3,. . . , C2m_1_k, C2m_2_k, . . . ,C1, Co];

(6.17)
P = [Pm,Pmi,. . . ,Pi,Po].

102

Input: The location of the middle coefficients of the irreducible pentanomial

nl, n2 and n3, and its degree m; an operand C with a length of 2wlen words where

wlen= 11.

Output: The reduced polynomial defined as C = C mod P, with a length of
wien words.

Procedure PentaResidue(C, m, nl, n2, n3)
0. begin

1. nliits=mmodw;
2. Shiftnl = nl/w;
3. Shiftn2 = n2/w;
4. Shiftn3 = n3/w;
5. for i from pwlen-1 downto wlen {

6. C[j_wjem,j_wlem+nbjts} = C[i_wlen,i_wlen+nbjts] + C[1,1+flbitSl;

7. qi_wzefl+shiftfll] = G[i_w1en+Shiftnh1 + q11;

8. C[i_wlen+Shiftn2I = C[i_wlen+Shiftn2J + C[];

9. C[i_wlen+Shiftn3l = C[i_wlen+Shiftn3l + C111;

10. nbits = w;
11. }

12. end

Figure 6.7. Standard reduction using irreducible pentanomials

Then, there always exists a k-bit constant scalar S, such that

= [Pm, Pmi, ..., Pmk+i, Pmk, ..., P1, po]; (6.18)
S. P = [C2m2, C2m3, ..., C2mik, P._k, ..., P'l, P1

where 1 < k < rn 1. Notice that all the most significant k bits of the scalai
multiplication S P become identical to the corresponding ones of the number C.

By left shifting the number S . P exactly Shift = 2m 2 k 1 positions, we

effectively reduce the number in C by k bits as shown in figure 6.8.

103

C [C2m_2, C2m_3, , C2m_1_k, C2m_2_h, .., Cm2, Cyfl_3, ..., CO] +
2S.tt(S.P) [C2m_2, C2m-3, ... C2m_1_ Pk' .., ji, 0, ..., 0] =

[0, 0, ..., 0, C'2m_k 'm2' Crn-3, ..., co]

Figure 6.8. A method to reduce k bits at once

One can apply this strategy an appropriate number of times in order to reduce

all the most m 1 significant coordinates of C.

In summary, the main design problems that we need to solve in order to
implement the reduction method discussed here are:

Given C and P as in (6.17), find the appropriate constant S that yields the
most significant k bits of the operation SP, identical to the corresponding
ones in C.

Compute the scalar multiplication S P of (6.18).

Left shift the number S . P by Shift positions, so that the result of the
polynomial addition C + 2shift(S P) ends up having k leading zeroes.

Both of the first two design problems, i.e., finding the constant S and computing

the scalar product S.P, can be solved efficiently by using a look-up table approach,

provided that a moderated value of k be selected. In practice, we have found that

for a 32-bits microprocessor a selection of k = 8 yields a reasonable memory/speed

trade-off in the performance of the algorithm.

For all the 2/c different values that the k most significant bits of C can possibly

take, we want the most significant k bits of the operation SP identical to the
corresponding ones in C. Hence, once that k has been fixed, we need to find a set

of different scalars satisfying that requirement.

Figure 6.9 presents an algorithm that, given the irreducible polynomial P and

its degree in and the selected value of k, finds a table containing all the 2/c scalars

needed to obtain the required result.

104

Input: The irreducible polynomial P; its degree m; and k, the number of bits to be

reduced at once.

Output: a scalar table highdivtable with 2' entries.
Procedure GetHighDivTable(P, m, k)

0. begin

1. highdivtable = 0;

2. N=2'1;
3. PMSBk = P[m-k+1,m];

4. forifrom0toN{
5. A = Dec2Birt(i);

6. for j from 0 to k-i {

7. if (A = 1) then {
8. A = A + RightShift(PMSBk,j);
9. highdivtable[i] = highdivtable[i] + 2k1i;

10. };

ii. };

12. };

13. end

Figure 6.9. Finding a look-up table that contains all the 2" possible scalars in
equation (6.18)

The algorithm in figure 6.9 finds all the 2"' scalars needed by reducing each

one of them using the k most significant bits of the irreducible polynomial P. For

convenience, these bits are stored in the variable PMSBk (see line 3 of figure 6.9).

In lines 4-12 the corresponding scalar S for every possible value of the k MSB of

C, is found. In line 5 the value of C to be reduced is translated to its binary
representation and stored in the temporary variable A. Then, in lines 6-il each

one of the k bits of A is scanned and reduced, if necessary, by using an appropriate

105

shift version of PMSBk. Finally, in line 9 the k 1 j-th bit of the i-th entry in
table highdivtable is set. At the end of the inner loop in lines 6-11, the i-th entry

of highdivtable contains the scalar S that would obtain the result in (6.18), if the

k most significant bits of C where equal to the number in A.

In order to compute the scalar multiplication S P of (6.18), we use once
again a look-up table approach as shown in figure 6.10.

Input: The irreducible polynomial P; and k, the number of bits to be reduced at
once.

Output: a table Paddedtable, with all the 2/c S P possible scalar products.
Procedure SPTable(P, k)
0. begin

1. forifrom0tok_1{
2. Pshift{i] = LeftShift(P, i);

3. };

4. N=2'1;
5. forifrom0toN{
6. S = Dec2Bin(i);
7. for j from 0 to k-i {
7. if (S = 1) then
9. Paddedtable[i] = Paddedtable[i] + Pshift[k];
10. };

11. };

12. end

Figure 6.10. Finding a look-up table that contains all the 2c possible scalars
multiplications S . P

The algorithm in 6.10 is quite similar to the one in figure 6.9. In order
to obtain all the 2k scalar products of the irreducible polynomial P, the above

algorithm finds first in lines 1-2 all the first 2 multiples of P for j = 0, 1,. . . , k 1.

Then, in lines 4-11 all the 2k scalars S are examined one by one and bit by bit, so

that the scalar product i P is stored in the i-th entry of the table Paddedtable
for i = 0, 1,... . , N 2k 1. Notice that each entry of Paddedtable has a size of

m + k bits, where m is the degree of the irreducible polynomial P.

Input: The degree m of the irreducible polynomial; the operand C with a length

of 2wlert to be reduced; and k the number of bits that can be reduced at once.

words, where wien =
Output: The reduced polynomial defined as C = C mod P, with a length of wien
words.

Procedure Genreduc(C, m,k)
0. begin

1. Nk=1'1;
2. shift=2m-2k-1;
3. forifrom0toNk{
4. A = C[_(+1)k+1,_k()];

5. S = Highdivtable[A];

6. Pshif ted = LeftShift(Paddedtable{S], shift);
7. C = C + Pshif ted;
8. shift = shift k;

9. };

10. end

Figure 6.11. Standard reduction using general irreducible polynomials

Using the look-up tables from algorithms in figures 6.9 and 6.10, we can easily

obtain the modular reduction of the polynomial C by repeatedly implementing
the operation C + 2shift(S . P).

107

Consider the algorithm shown in figure 6.11, where it has been assumed that

the tables Highdivtable and Paddedtable have been previously computed and are

available.

First, in line 1 given k and the degree m of the irreducible polynomial P,
the number of iterations is computed and stored in the variable Nk. In line 2 it
is computed the amount of shift needed to apply properly the method outlined

in figure 6.8. Then, in each iteration of the loop in lines 3-9, k bits of C are
reduced. In line 4 the k bits of C to be reduced are obtained. This information is

used in line 5 to compute the appropriate scalar S needed to obtain the result of

equation (6.18). In line 6 the S-th entry of the table Paddedtable is left shifted
shift positions so that in line 7 the operation C + 2shift(S P) can be finally
computed allowing the effective reduction of k bits at once. Then, in line 8 the
variable shift is updated in order to continue the reduction process.

The algorithm in figure 6.11 performs a total of N,, = iterations. In
each iteration of the algorithm the look-up tables Highdivtable and Paddedtable

are accessed once each. In addition, the cost associated in the execution of line

6 is in general bounded by 2wlen word shifts and wlen word additions. This,
together with the wien additions associated with the execution of line 7, implies

that the complexity of the general reduction method discussed in this section is

given as

Word Additions < 2Nkwlen,
SHIFT operations < 2Nwlen

(6.19)
Look-up table accesses = 2Nk

Look-up table size (in bytes) 21c(+ wlen)

6.4 Montgomery Reduction

Let the field GF(2m) be constructed using the irreducible polynomial P(x) and

let A(x), B(x) e GF(2m). Assuming that after using any one of the methods

described in section § 6.2 we already have computed the product polynomial C(x)

defined in (6.2), we would like to obtain the Montgomery modular product CM

of equation (6.4), repeated here for convenience

CM(x) = A(x)B(x)1C'modP(x) = C(x)R'modP(x). (6.20)

Where R is a special fixed element of the field GF(2m). In contrast with the stan-

dard reduction given in (6.3), for the Montgomery reduction case we are interested

in the modular reduction of C(x)R'. In spite of its complicated appearance, we
show in this section that the number CM (x) in equation (6.20) can also be com-

puted efficiently. From now on, we will assume that the element R of the finite
field has been selected as the polynomial R(x) = Xm. Again, since we are inter-

ested in the polynomial remainder of (6.20), we can safely add any multiple of

P(x) to C(x) without altering the desired result. This simple observation suggests

the algorithm shown in figure 6.12.

Input: The operand C with a length of 2wlen to be reduced, where wien = 11;
and the irreducible polynomial P and its degree m.

Output: The reduced polynomial defined as C = CR' mod P, with a length of
wien words.

Procedure Genreduc(C, P, m)
0. begin

1. forifrom0tom-1{
2. if (C[o] = 1) then

3. C=C+P;
4. C = RightShift(C, 1);
5. };

6. end

Figure 6.12. A naive algorithm to compute the Montgomery reduction

109

Although the aigorithm in 6.12 is a rather naive approach, the idea contained

in it, is worthy to study in order to devise more efficient Montgomery reduction

methods.

In line 2 of this algorithm, it is investigated if the least significant bit of the

number C is set. If this is so, then the original number C is added with the
irreducible polynomial P. Since P is irreducible in GF(2), it is guaranteed that
its independent coefficient is always set. Hence, after the execution of line 3, the

updated value of C has its least significant bit unset, so C can be divided by two

as shown in line 4. By repeating this operation m 1 times, the number CM of

(6.20) is obtained.

In this section, we present some novel techniques that highly improve the
performance of the algorithm in figure 6.12. We analyze the complexity associ-

ated in the computation of the Montgomery reduction step for several classes of

irreducible polynomials. We show that the Montgomery multiplication can be

computed with a competitive complexity in relation to the standard reduction
algorithms of the previous section. In § 6.4.1 we study how to compute efficiently

the Montgomery reduction step for arbitrary general irreducible polynomials by

using look-up table techniques. Then, in § 6.4.2 we present a novel algorithm
that is particularly efficient and attractive for the important practical case of
irreducible trinomials and pentanomials.

6.4.1 Montgomery Reduction with General polynomials

The algorithm in figure 6.12 can be easily improved for general irreducible poiy-

nomials by following a strategy that is completely analogous to the one used in

§6.3.2 for standard reduction.

The following methodology can reduce, in the Montgomery sense of equation

(6.20), k bits of the product polynomial C at once.

110

Assume that the in +1 and 2m 1 coordinates of P (x) and C (x), respectively,

are distributed as follows:

C = [C2m_2, C2m_3, C2m1k C2m_2_k,
(6.21)

P = [Pm,Pm-i, . . . ,pi,po].

Then, there always exists a k-bit constant scalar 5, such that

= [Pm, Pm-i, ", Pm-k, Pm-k-i, Pi, pol; (6.22)SP = [p', p._1, Pm_ic, Cm_k_i, ..., Cl, Co];

where 1 < k < m 1. Notice that all the least significant k bits of the scalar
multiplication S P become identical to the corresponding ones of number C. By

adding the number S P to C we obtain k zeroes in the least significant bits of
the number in C, as shown in figure 6.13. By shifting the result of the operation

C [C2m_2, C2m_3, ..., Cm+k_1, ..., Ck, Ck_i, . .. Cij] +

S. P [0, 0, ..., 0, P+k-i, .., P'k, Ck_l, ..., co] =

[C2m_2, C2m3, ..., Cm, C'm+k_l, "' k, 0, 0]

Figure 6.13. A method to Montgomery reduce k bits at once

C + S P k bits to the right we effectively reduce the number in C by k bits, in the

Montgomery sense of (6.20). One can apply this strategy an appropriate number

of times in order to reduce all the most in 1 significant coordinates of C. In
summary, the main design problems that we need to solve in order to implement

the Montgomery reduction method discussed here are:

Given C and P as in (6.21), find the appropriate constant S that yields the

least significant k bits of the operation SP, identical to the corresponding

ones in C.

111

Compute the scalar multiplication S P of (6.22).

Right shift the result of the polynomial addition C + (S P) by k positions,

so that the addition result gets divided by xk.

As we did in § 6.3.2, we can compute efficiently the two first design problems by

using a look-up table approach, provided that a moderated value of k be selected.

In practice a selection of k = 8 yields a reasonable memory/speed trade-off in the

performance of the algorithm.

Figure 6.14 presents an algorithm which is analogous to the algorithm of figure

6.9. Given the irreducible polynomial P and its degree m and the selected value

of k, the algorithm finds a table containing all the 2k scalars needed to obtain the

required result. Notice that each one of the entries in the look-up table has a size

of exactly k bits.

The algorithm in figure 6.14 finds all the 2' scalars needed by reducing each

one of them using the k least significant bits of the irreducible polynomial P. The

structure of this algorithm is completely analogous to the one in figure 6.9. At

the end of the inner loop in lines 6-11, the i-th entry of Highdivtable contains the

scalar S that would obtain the result in (6.22), if the k least significant bits of C

where equal to the number in A.

In order to compute the scalar multiplication S . P of (6.22), we use a look-up

table approach. In fact, the algorithm in figure 6.10 can be used in this case
without any modification at all. Once again, these two algorithms can be pre-
computed in order to be used in the main Montgomery reduction routine later on.

Using the look-up tables from algorithms in figures 6.10 and 6.14, we can easily

obtain the modular reduction of the polynomial C by repeatedly computing the

addition C + (S. P) followed by a right shift of k bits. Consider the algorithm

shown in figure 6.15, where it has been assumed that the look-up tables Divtable

and Paddedtable have been previously computed and are available.

First in line 1, given k and the degree m of the irreducible polynomial P, the

number of iterations is computed and stored in the variable Nk. Then, in each

112

Input: The irreducible polynomial P; its degree m; and k, the number of bits to be
reduced at once.

Output: a scalar table Divtable with 2k entries.

Procedure GetDivTable(P, m,k)
0. begin

1. Divtable = 0;

2. N=2'-1;
3. PLSBk=P[k_l,o];
4. forifrom0toN{
5. A = Dec2Bin(i);

6. for j from 0 to k-i {

7. if (A = 1) then {
8. A = A + LeftShift(PMSBk,j);
9. Divtable[i] = Divtable[i] + 2;

10. };

11. };

12. };

13. end

Figure 6.14. Finding the look-up table that contains all the 2' possible scalars
in equation (6.22)

iteration of the ioop in lines 2-7, k bits of C are Montgomery reduced at once. In

line 3 we obtain the k bits of C to be reduced are obtained. This information is
used in line 4, to compute the appropriate scalar S needed to obtain the result of

equation (6.22). In lines 5 and 6 the operation RightShift(C+SP, k) is computed.

The algorithm in figure 6.15 performs a total of Nk = iterations. In
each iteration of the algorithm the look-up tables Divtable and Paddedtable are

accessed once, each. Also, the cost associated in the execution of lines 5 is equal

113

Input: The degree m of the irreducible polynomial; the operand C with a length

of 2wlen to be reduced; and k the number of bits that can be reduced at once.

Output: The reduced polynomial defined as C = C mod P, with a length of wien

words.

Procedure MontGenreduc(C, m, k)

0. begin
1 - fm-li.'kI k I

2. forifrom0toNk{
3. A =
4. S=Divtable[A];
5. C C + Paddedtable[S];
6. C = RightShift(C, k);
7. };

8. end

Figure 6.15. Montgomery reduction using general irreducible polynomials

to wien word additions. The execution cost of line 6 can be, in general, averaged

by 3/2wlen word shifts and by wien word additions. This, together with the wien

additions associated with the execution of line 7, implies that the complexity of
the general reduction method discussed in this section is given as

Word Addition < 2Nkwlen,
SHIFT operations < 3/2Nkwlen,

(6 23)
Look-up table accesses = 2Nk

Look-up table size (in bytes) 2' + wien *)

Comparing this complexity result of equation (6.23) with the one found in (6.19),

we conclude that, for general irreducible polynomials, field Montgomery multipli-

cation can be implemented in software more efficiently than field standard multi-

plication.

114

6.4.2 Montgomery Reduction with Trinomials and Pents.

The algorithms studied in the previous section are intended for general irreducible

polynomials. However, for the specific case of irreducible trinomials or pentanomi-

als, we can use an algorithm which highly improves the performance of the previ-

ous case and does not require the use of any look-up table at all.

Let us consider again the algorithm shown in figure 6.14. We can see that if
the k least significant bits of P are all zeroes except for the independent term,
i.e., PLSBk = 1. Then, at the end of the inner loop in lines 6-11, we obtain
Divtable[i] A as the i-th entry of the look-up table. This implies that, provided
that PLSBk = 1, any entry of the look-up table Divtable is always the identity,

in the sense that the required scalar S to obtain S P as in equation (6.22) is
given by the k least significant bits of C themselves, i.e. S = C[kl,o].

Under these circumstances, we do not need to pre-compute the look-up table

of figure 6.14 anymore, since this table is given by the bits of C themselves.

On the other hand, the design problem to perform the scalar multiplication

can be solved efficiently without the help of any look-up table method. To see
this, consider the case of the irreducible trinomial P(x) = xm + x" + 1. Since the
least n significant bits of P are all zeroes except for the independent term, we set

k = n and S = C[k_1,o] = C[_i,o} = C_1. Then,

5.J = S(xm+x'1+1) C_1(xm+xTh+1) = xmC1 +x'C_1 +C_1. (6.24)

This implies that, for this case, the scalar multiplication S P can be obtained by
computing the three components of the scalar product shown in (6.24). To obtain
the first component XmC_1 one simply needs to left shift the number C_1 by m
places. Similarly, the second component xThC_1 can be obtained by left shifting
the number C_1 by n places. Finally, by adding these two components to C_1

we obtain the desired scalar product S . P.

Now, when we compute CA = C + (S P), as shown in figure 6.16, the result
CA will get all its n least significant bits wiped out to zero. This implies that
we can safely right shift CA by n places, effectively reducing the number C by n

115

places in the Montgomery sense of (6.20). One can repeat this strategy N =
times in order to reduce all the most in1 significant coordinates of C in the

Montgomery sense. Notice that the fact that this algorithm does not make use of

C

S. P
[C2m_2,

[0,

C2m_3,

0,

..., C7k,

..., 0,

Cm+k_1,

P+k-1,

..., C,

.., P'k,

Ck_1,

Ck_1,

..., co] +
co] =

CA [C2m_2, C2m_3, ..., C'm+k_1 ..., C, 0, ..., 0]

Figure 6.16. n-bit Montgomery reduction for irreducible trinomials

any look-up table allows us to have an arbitrary selection of the number k, limited

only by the middle coefficient n of P. In fact if we select the irreducible trinomial

P(x) = Xm + +1 such that n !, then we can completely Montgomery reduce

C in only two iterations. Thus, the bigger the middle term n is, the better this
method will perform. In [46] there is a list of all the irreducible trinomials in
GF(2) with degree m less than 10000. All the trinomials listed there happen to
have their middle term n less than ! Then, by using the following reciprocate

theorem:

Theorem [27] Let m be a positive integer, and let k denote an integer in the
interval [1, m 1]. Then, if the trinomial xm + xTh + 1 is irreducible over GF(2),

then so is Xm + Xm_TI + 1.

We can transform all the irreducible trinomials in GF(2) with degree m less than

10000 in [46] in such a way that, the middle term for each one of them, satisfies

the condition n ¶.
The use of the irreducible trinomials satisfying the above condition, guaran-

tees that the Montgomery reduction method described in this subsection, can be

accomplished in exactly two iterations, as is shown in the algorithm of figure 6.17.

116

Input: The location of the middle coefficient of the irreducible trinomial n, and its
degree in, such that n> an operand C with a length of 2wlen words where
wlen= 11.
Output: The reduced polynomial defined as C = C mod P, with a length of
wien words.

Procedure MontTrinResidue(C, in, n)
0. begin

1. k=n;
2. forifromtto2{
3. C,_i = C[k_1,o];

4. C, = LeftShift(C_i,n)
5. Cm = LeftShift(C_i,m)
6. C=C+Cn+Cm;
7. C = RightShift(C,n);
8. krnn;
9. }
10. end

Figure 6.17. Montgomery reduction for irreducible trinomials

The complexity of the algorithm of figure 6.17 can be given as follows. The
execution of the instruction in line 4 implies, in general, 4wlen left shifts and
2wlen word additions. Also, the execution of lines 6 and 7 has an associated
cost of 4wlen word additions and 2wlen right shifts, respectively. Since the ioop

between lines 2 and 9 has only two iterations, we conclude that the total cost of

the algorithm of figure 6.17 is given as

Word Addition < l2wlen,
(6.25)

SHIFT operations l2wlen,

117

The algorithm in 6.17 can be directly extended to the case of irreducible pen-
tanomials. If an irreducible pentanomial is used, then the computational cost
associated with the Montgomery reduction is given as

Word Addition < 2Owlen,
()

SHIFT operations 2Owlen,

Comparing the complexity results of equations (6.25) and (6.26) with the cor-
responding ones found in § 6.3.1 for standard field multiplication, we conclude

that, for the irreducible trinomials and pentanomials case, field standard multi-

plication can be implemented in software more efficiently than field Montgomery

multiplication.

6.5 Timings

m Gen standard Tri/penta standard Gen Montgom. Tri/penta Montgom.
163 12.4 5.4 10.6 7.7
193 17.5 6.38 13.5 9.5
227 21.32 7.89 17.67 10.35
263 28.5 10.67 24.95 14.11
317 37.83 13.21 31.54 16.12
331 38.75 14.12 33.65 17.22
353 42.1 18.1 36.0 17.75
389 51.08 20.3 45.5 21.4
419 56.2 20.4 50.2 23.0
449 63.1 20.9 55.4 23.5
487 69.75 21.13 63.1 25.0
521 81.8 28.0 73.3 31.9

Table 6.2. Implementation results (in z seconds)

The algorithms presented in this chapter were written using Microsoft Visual

C++ 5.0 development system. The timing results were obtained using a 450-MHz

118

Pentium II processor running Windows NT 4.0 operating system. The timing
results found here, are summarized in table 6.2. From this table, it can be seen that

our Montgomery multiplication algorithm is consistently faster than the standard

algorithm presented here, when a general irreducible polynomial is used to define

the finite field GF(2m). By comparing the second and fourth columns of table
6.2 we see that, for this case, the Montgomery algorithm is in average 14% faster

than the standard algorithm. On the other hand, exactly the opposite occurs when

an irreducible trinomial or an irreducible pentanomial is used as the generating
polynomial of the finite field. For this case, comparing the third and the fifth
columns of table 6.2 we see that the standard multiplication algorithm is in average

15 % faster than the Montgomery multiplication algorithm.

6.6 Conclusions

In this chapter we studied and compared in detail different alternatives for effi-

cient software implementation of two of the most common finite field arithmetic

operations: squaring and multiplication. Some of the ideas presented here can be

used to obtain efficient implementations of both standard inversion, and Mont-

gomery inversion, as defined in [43].

In this chapter, we derived close expressions for the computational complex-

ities of the algorithms introduced here. In particular, the complexities found
in equations (6.23) and (6.19) for general Montgomery and standard reduction,

respectively, predict that the former can be implemented more efficiently than
the latter. Similarly, equations (6.25) and (6.26) for trinomial and pentanomial

Montgomery reduction, and equations (6.14) and (6.15) for trinomial and pen-
tanomial standard reduction, predict that the latter can be implemented more
efficiently than the former. These two predictions were successfully confirmed in

the implementation results shown in table 6.2.

119

Chapter 7

CONCLUSIONS

The main focus of this dissertation was the study and analysis of efficient hardware

and software algorithms suitable for the implementation of finite field arithmetic.

As it was mentioned in the preceding chapters, efficient finite field arithmetic is

crucial for a number of security and efficiency aspects of cryptosystems based on

finite field algebra, and it is especially relevant for elliptic curve cryptosystems.

Particularly, we studied the problem of how to efficiently implement field multi-

plication, the most common finite field operation.

Chapter 3 was written based on the paper [36]. There, we presented a new

approach for weakly dual basis multiplication was presented. We included de-

tailed analyses of the space and time complexities of the proposed multiplication

algorithm for irreducible trinomials and equally-spaced polynomials. The new
proposed scheme provides an alternative method that may yield lower complexity

multipliers for other types of irreducible polynomials.

When an irreducible equally-spaced polynomial is used, the complexity of
converting an element from the polynomial basis to the weakly dual basis was
shown to require (m 2d) XOR gates and a single T gate delay. In order to
convert the product C* computed by the proposed multiplier in the weakly basis

to the polynomial basis, we need to obtain the inverse Gram matrix. In general,
this conversion will have some cost associated with it.

It has been shown in [10] that the Mastrovito multiplier for an irreducible

equally-spaced polynomial requires (m2 d) XOR gates, which is the exact num-

ber of XOR gates required by the multiplier proposed in this chapter. Therefore,

the total number of the XOR gates will exceed this bound after the conversion of

120

C" to the polynomial basis. It remains an open question whether this result can
be improved.

Chapter 4 is based on the paper [37]. In this chapter we analyzed the use of

two special types of irreducible pentanomials as field generators for Galois field

GF(2m) multipliers. To date, the best complexity results have been obtained
when the irreducible polynomial is either a trinomial or an equally-spaced poly-

nomial (ESP). However, there exist only a few irreducible ESPs in the range of

interest for most of the applications. Furthermore, it is not always possible to
find an irreducible trinomiai of degree m in this range. Therefore, the design of

multipliers using irreducible pentanomials is of practical importance, particularly

for cryptographic applications, and efforts to obtain efficient implementations are

well justified. The work reported in chapter 4, is a step in that direction. We pro-

posed new Mastrovito and dual basis multiplier architectures and obtained their

complexity results, using these special pentanomials.

It has been shown in [52] that an irreducible polynomial with Hamming weight

(the number of terms) equal to r would require (m - 1)2 + (r l)(m 1) XOR

gates. As it can be seen from Table 4.4, the special multipliers described in chap-

ter 4, require about m fewer XOR gates than the multiplier in [52].

Chapter 5 was written based on the paper [38]. In that paper, we presented

a new approach that generalizes the classic Karatusba multiplier technique. As
it was described in § 5.1, a design technique for a field multiplier consists on the

combination of a binary Karatsuba polynomial multiplier followed by a reduction

step. We showed that, based on the results found in section § 5.4.1 and the ones

shown in table 5.3, a GF(2193) finite field can be constructed with,

XOR Gates = 768 + 2MULx(128) + 68 + MULx(64)

+ 2mul_classicx(64, 1) + MULx(1) + 2m 2 = 20908.
AND Gates = 9201.

Time Delay = 26Tx+TA.

121

The same field multiplier using any one of the techniques reported in [11, 32, 20,

48, 31, 5, 53, 54] would imply a much bigger space complexity. For instance, the

field multiplier in [54], would require,

XOR Gates = m2 1 = 37248

AND Gates = m2 = 37649

Time Delay = lOTx + TA.

From these figures we can see that our design gives us a 44% and 76% of savings

in the number of XOR and AND gates, respectively, when compared with the

field multiplier in [54]. This is accomplished at the price of a little bit more time

complexity, which is negligible for any conceivable possible application.

The most attractive feature of the new algorithm presented in chapter 5, is

that the degree of the defining irreducible polynomial can be arbitrarily selected

by the designer, allowing the usage of prime degrees. In addition, the new field

multiplier leads to architectures which show a considerably improved gate com-

plexity when compared to traditional approaches. Finally, the new multiplier
leads to highly modular architectures that are well suited for VLSI implemen-

tations. We also concluded that the binary Karatsuba architecture offers quite
promising features for having programmable low space-complexity configurations

at the price of a loss of parallelism in the execution.

Chapter 6 is based on the paper [40]. In this chapter, we addressed the prob-
lem of how to implement efficient finite field arithmetic algorithms for software

scenarios. We included our analysis of complexities as well as the timings obtained

by direct C code implementation of the proposed algorithms. We presented a com-

parative study of Montgomery arithmetic versus standard arithmetic for software

applications. We analyzed separately the case of trinomial and pentanomial irre-

ducible polynomials against the case of general irreducible polynomials.

We presented a method to efficiently perform the reduction step of field mul-

tipliers when an irreducible trinomial or pentanomial is used to generate the field.

The main feature of our technique is that, in contrast with other published meth-

122

ods, our technique requires almost no restrictions in the size of the middle term

ri of the irreducible trinomial P = xm + xTh + 1.

We also introduce a fast way to compute Montgomery reduction for irre-
ducible trinomials and pentanomials. The main feature of this method is that it

does not require the usage of a look-up table, providing fast timing results. Close

expressions for the computational complexities of the algorithms introduced in

chapter 6, were all derived. In particular, the complexities found in equations

(6.23) and (6.19) for general Montgomery and standard reduction, respectively,

predict that the former can be implemented more efficiently than the latter. Sim-

ilarly, equations (6.25) and (6.15) for trinomial and pentanomial Montgomery re-

duction, and equations (6.14) and (6.26) for trinomial and pentanomial standard

reduction, predict that the latter can be implemented more efficiently than the

former. These two predictions were successfully confirmed in the implementation

results shown in table 6.2.

123

BIBLIOGRAPHY

[1] B. Antonescu. Elliptic curve cryptosystems on embedded microprocessors.
Master's thesis, Worcester Polytechnic Institute, 1999.

[2] E. Bach and J. Shallit. Algorithmic number theory, Volume I: efficient algo-
rithms. Kiuwer Academic Publishers, Boston, MA, 1992.

[3] E. R. Berlekamp. Bit-serial Reed-Solomon encoders. IEEE Transactions on
Information Theory, 28(6) :869-874, November 1982.

[4] L. Childs. A concrete introduction to higher algebra. Springer-Verlag, Berlin,
Germany, 1995.

[5] S. T. J. Fenn, M. Benaissa, and D. Taylor. GF(2m) multiplication and
division over the dual basis. IEEE Transactions on Computers, 45(3):319-
327, March 1996.

[6] K. Geddes, S. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kiuwer Academic Publishers, Boston, MA, 1992.

[7] J. Guajardo and C. Paar. Efficient algorithms for elliptic curve cryptosys-
tems. In B. S. Kaliski Jr., editor, Advances in Cryptology CRYPTO 97,
Lecture Notes in Computer Science, No. 1294, pages 342-356. Springer-
Verlag, Berlin, Germany, 1997.

[8] A. Halbuto-ullari. Mastrovito Multiplier for General Irreducible Polynomials.
PhD thesis, Electrical and Computer Engineering Department, Oregon State
University, November 1998.

[9] A. Ha1butoullari and . K. Koç. Mastrovito multiplier for general irre-
ducible polynomials. In M. Fossorier, H. Imai, S. Lin, and A. Poli, editors,

124

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture
Notes in Computer Science, No. 1719, pages 498-507. Springer-Verlag,
Berlin, Germany, 1999.

[10] A. Haibutogullari and . K. Koç. Mastrovito multiplier for general irre-
ducible polynomials. Submitted for publication in IEEE Transactions on
Computers, June 1999.

[11] M. A. Hasan, M. Z. Wang, and V. K. Bhargava. A modified Massey-Omura
parallel multiplier for a class of finite fields. IEEE Transactions on Comput-
ers, 42(10):1278-1280, November 1993.

[12] IEEE P1363. Standard specifications for public-key cryptography. Draft
Version 7, September 1998.

[13] IEEE P 1363. Standard specifications for public-key cryptography. Draft
Version 13, November 12, 1999.

[14] D. Johnson and A. Menezes. Elliptic curve dsa (ecdsa): An enhanced dsa.
http://www.certicom.com/research.html, 1999.

[15] A. Jurisic and A. Menezes. Elliptic curves and cryptography.
http://www.certicom.com/research.html, 1997.

[16] N. Koblitz. Introduction to elliptic curves and modular forms. Springer-
Verlag, Berlin, Germany, 1984.

[17] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203-209, January 1987.

[18] ç. K. Koç and T. Acar. Montgomery multiplication in GF(2k). Designs,
Codes and Cryptography, 14(1):57-69, April 1998.

[19] ç. K. Koc, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Mont-
gomery multiplication algorithms. IEEE Micro, 16(3):26-33, June 1996.

125

[20] ç. K. Koç and B. Sunar. Low-complexity bit-parallel canonical and normal
basis multipliers for a class of finite fields. IEEE Transactions on Computers,
47(3):353-356, March 1998.

[21] ç. K. Koç and C. Paar, editors. Cryptographic Hardware and Embedded
Systems. Lecture Notes in Computer Science, No. 1717. Springer-Verlag,
Berlin, Germany, 1999.

[22] J. Lopez and R. Dahab. Fast multiplication on elliptic curves over GF(2m)
without precomputation. In K. Koc and C. Paar, editors, Cryptographic
Hardware and Embedded Systems, Lecture Notes in Computer Science, No.
1717, pages 316-327. Springer-Verlag, Berlin, Germany, 1999.

[23] E. D. Mastrovito. VLSI architectures for multiplication over finite field
GF(2m). In T. Mora, editor, Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, Lecture Notes in Computer Science, No. 357, pages
297-309. Springer-Verlag, Berlin, Germany, 1988.

[24] E. D. Mastrovito. VLSI Architectures for Computation in Galois Fields.
PhD thesis, Linköping University, Department of Electrical Engineering,
Linköping, Sweden, 1991.

[25] S. Matos, F. RodrIguez-HenrIquez, and V. Stonick. A Reed-Solomon encoder-
decoder algebraic simulator. In Proceedings of the X International Conference
on Electronics, Communications and Computers Conielecomp 2000, 5 pages,
Puebla, Mexico, February 28March 1 2000.

[26] R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, Boston, MA, 1987.

[27] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, Boca Raton, FL, 1997.

[28] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullen, S. A. Vanstone, and
T. Yaghoobian. Applications of Finite Fields. Kluwer Academic Publishers,
Boston, MA, 1993.

126

[29] V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor,
Advances in Cryptology CRYPTO 85, Proceedings, Lecture Notes in Com-
puter Science, No. 218, pages 417-426. Springer-Verlag, Berlin, Germany,
1985.

[30] P. Montogomery. Speeding the pollard and elliptic curve methods of factor-
ization. Mathematics of Computation, 48:243-264, 1996.

[31] M. Morii, M. Kasahara, and D. L. Whiting. Efficient bit-serial multiplica-
tion and the discrete-time Wiener-Hopf equation over finite fields. IEEE
Transactions on Information Theory, 35(6):1177-1183, November 1989.

[32] C. Paar. Efficient VLSI Architectures for Bit Parallel Computation in Galois
Fields. PhD thesis, Universität GH Essen, VDI Verlag, 1994.

[33] C. Paar. A new architecture for a paralel finite field multiplier with low
complexity based on composite fields. IEEE Transactions on Computers,
45(7):856-861, July 1996.

[34] C. Paar, P. Fleischmann, and P. Roelse. Efficient multiplier architectures
for Galois fields GF(24). IEEE Transactions on Computers, 47(2):167-170,
1998.

[35] F. RodrIguez-HenrIquez. Modern cryptography and its applications: An in-
troduction. In Invited Talk of the X International Conference on Electronics,
Communications and Computers Conielecomp 2000, Puebla, Mexico, Febru-
ary 28-March 1 2000.

[36] F. RodrIguez-HenrIquez and . K. Koc. A new approach for weakly dual
basis multiplication. Submitted for publication, April 1999.

[37] F. RodrIguez-HenrIquez and . K. Koç. Parallel multipliers based on special
irreducible pentanomials. Submitted for publication, December 1999.

[38] F. RodrIguez-HenrIquez and c. K. Koç. On fully parallel Karatsuba multi-
pliers for GF(2'). Work in progress, May 2000.

127

[39] F. RodrIguez-HenrIquez, J. M. Rocha-Pérez, and J. Silva-MartInez. Per-
formance of a decision feedback demodulator in a time-dispersive channel
for 1ST cancellation and its implementation in switched- capacitor technique.
In Proceedings of the The 10th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communication PIMRC 1999, 5 pages, CDROM
Format, Osaka, Japan, September 12-15 1999.

[40] F. RodrIguez-HenrIquez, E. Sava., and c. K. Koç. Efficient software imple-
mentations for GF(2") arithmetic. Work in progress, May 2000.

[41] K. Rosen. Elementary Number Theory and its Applications. Addison-Wesley,
Reading, MA, 1992.

[42] RSA Laboratories. BSAFE user's manual, version 4.0. RSA Data Security,
Inc., November 1998.

[43] E. Sava and . K. Koç. The Montgomery modular inverse revisited. IEEE
Transactions on Computers, to appear, 2000.

[44] B. Schneier. Applied Cryptography. John Wiley & Sons, New York, NY,
Second edition, 1996.

[45] R. Schroeppel, H. Orman, S. O'Malley, and 0. Spatscheck. Fast key ex-
change with elliptic curve systems. In D. Coppersmith, editor, Advances in
Cryptology CRYPTO 95, Lecture Notes in Computer Science, No. 973,
pages 43-56. Springer-Verlag, Berlin, Germany, 1995.

[46] G. Seroussi. Table of low-weight binary irreducible polynomials. Hewlett-
Packard, HPL-98-135, August 1998.

[47] V. Shoup. NTL: A library for doing number theory (version 4.Oa).
http://www.shoup.net/ntl/index.html, 1998.

[48] B. Sunar and . K. Koc. Mastrovito multiplier for all trinomials. IEEE
Transactions on Computers, 48(5):522-527, May 1999.

[49] S. Wicker. Error control systems for digital communication and storage.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

128

[50] S. B. Wicker and V. K. Bhargava, editors. Reed-Solomon Codes and Their
Applications. Prentice-Hall, Englewood Cliffs, NJ, 1994.

[51] S. Wilson. Digital Modulation and coding. Prentice-Hall, New York, NY,
1996.

[52] H. Wu. Low complexity bit-parallel finite field arithmetic using polynomial
basis. In ç. K. Koc and C. Paar, editors, Cryptographic Hardware and
Embedded Systems, Lecture Notes in Computer Science, No. 1717, pages
280-291. Springer-Verlag, Berlin, Germany, 1999.

[53] H. Wu and M. A. Hasan. Low complexity bit-parallel multipliers for a class
of finite fields. IEEE Transactions on Computers, 47(8):883-887, August
1998.

[54] H. Wu, M. A. Hasan, and I. F. Blake. New low-complexity bit-parallel finite
field multipliers using weakly dual bases. IEEE Transactions on Computers,
47(11):1223-1233, November 1998.

129

APPENDIX

130

Appendix A
ALGORITHMS

A.1 Computing Optimal Dual Basis
This algorithm obtains the extended Gram matrix of an irreducible polynomial
P(x). It finds the trace functions TR(7x1) for i = 0, 1,. . . , N. If the user requests
to find the regular Gram matrix (flag = 0) then N = 2m 1. Otherwise, if the
extended Gram matrix is requested (flag = 1), then N = 3m 2.

Inputs: An irreducible polynomial P(x) over the field GF(2m) of degree m and
a as a root; a constant element e GF(2m) and a flag to indicate if the output
desired is either the regular Gram matrix of dimension m m, or the extended
one, of dimension (2m 1) m.
Output: A matrix ExtG corresponding to the extended Gram matrix described
in (3.41).
Procedure ExtendedGramMatrix(P, 'y, flag)

0. begin
1. count := 1; m := Degree(P);
2. if (flag = 0) then N := 2m-1;
3. else N := 3m-2;
4. forifrom0toNdo
5. opi :=
6. if (Tr(opi) = 1) then
7. A[count]:= i: count := count+1:
8. od;
9. if (flag = 0) then Dim := m;
10 else Dim := 2m-1;
11. Dim:=2deg-1;
12. for i from 1 to Dim do
13. for j from 1 to m do

131

14. for k from 1 to count 1 do
15. if (i+j-2 = A[i]) then
16. ExtG[i, j]:= 1;
17. fi;

18. od;
19. od;
20. od;
21. end:

A.2 Finding the Trace Coefficients of Equation (3.41)
This algorithm finds the 2m 1 trace coefficients of equation (3.41) by taking an
irreducible polynomial P(x) as an input, and then using the following strategy.

First, in lines 1-2, the regular Gram matrix for 'y = 1 is assigned to the vari-
able G. Then, in line 3 the power corresponding to the smallest non-zero coefficient
of P(x) (other than the constant term 1) is assigned to the variable Pow, and
used in line 4 to obtain the m coordinates of the constant element 'y e GF(2m).
is given as the GF(2) addition of the first and (d 1)-th columns of the matrix G.
In line 5 the extended Gram matrix that corresponds to the chosen element is
obtained and assigned to ExtG. Finally, in lines 6-8 each one of the 2m 1 rows
of ExtG are translated to an algebraic representation and stored in the array T.

Input: An irreducible polynomial P(x) over the field GF(2m) of degree m and a
as a root.
Output: An array T containing the corresponding 2m 1 equations for the trace
coefficients of Equation (3.41).
Procedure TaceCoefficients(P)

0. begin
1. gamma := 1; G := ExtendedGramMatrix(P, gamma, 0);
2. Pow := ObtainSmallestPower(P)
3. gamma := AddColumn(G', 1, Pow);
4. ExtG := ExtendedGramMatrix(P, gamma, 1);
5. for i from 1 to 2m 1 do
6. T[i] := GetPoly(row(ExtG, i));
7. od;
8. end:

132

A.3 Obtaining the m modular Coordinates of Equation
(4.3)

The algorithm presented here produces the m modular equations by taking an
irreducible polynomial P(x) as an input, and then using the following strategy.

First, the reduced version of the powers S = & mod Irred, for i = in, m +
1,.. . , 2m 1, are obtained. In lines 4-8, the nonzero coefficients of the polynomial
S are extracted and stored in the polynomial R. Then, the information contained
in R is stored in the i-th row of an (m 1) in matrix M, such that a 1 will be
assigned to the entry M[i][j], if the & coefficient of the reduced polynomial R is

different than zero. When the loop in lines 1-9 has been executed, the matrix M
contains the distribution of the nonzero coefficients of the reduced polynomials
S = a2 mod Irred, for i = m, m + 1,. . . , 2rn 1. Finally, in line 10 the transposed
matrix M times the transposed vector [a', am+l, am+2,... a22J yields the re-
quired m modular product equations.

Inputs: An irreducible polynomial P(x) over the field GF(2m) of degree m and
a as a root.
Output: An array P containing all the in modular product coordinate equations.
Procedure Modular(P, m)

0. begin
1. for i from 0 to m-2 do
2. g := am+2;
3. S := (g mod P) mod 2;
4. R := ExtractCoefficients(S);
5. N := NumberOfNonZeroCoefficients(R);
6. forjfromltoNdo
7. M[i][R[j]] := 1;

8. end
9. end
10. P := MT. [am, am, am+2,..
11. end

133

A.4 Space and Time Complexities of the Hybrid Karat-
suba Multiplier

This recursive algorithm finds the space and time complexities of the generalized
hybrid Karatsuba multiplier. The first procedure, Hybrid..KaraLCompx performs
the final computations after obtaining all the partial estimations of the complex-
ities computed recursively in the procedure Karat_Compx in line 1.
Inputs: The degree m of the finite field GF(2m) and the degree n of the ground
field GF(2Th), where nim.
Output: Total space and time complexities of the hybrid Karatsuba.
Procedure HybridKaratCompx(m, n)

0. begin
1. [xor, and, delay] := KaraLCompx(m, n);
2. xor := xor+and (n 1)2; and := and.n2;

3. delay := delay + ceil(evalf(1 + log[2](n)));
4. area := 2.2 xor + 1.26 and;
5. end

Inputs: The degree m of the finite field GF(2m) and the degree n of the
ground field GF(2'), where nim.
Output: Partial space and time complexities of the hybrid Karatsuba.
Procedure Karat Compx(m, n)

0. begin
1. if (m == 1) then return([0, 1, 0]);
2. else if (m mod 2 == 0) then
3. [x,a,d] := KaraLCompx(!,n);
4. [x,a] := [4mn-4,0]+3[x,a];
5. d:=d+3;
6. return([x, a, d]);
7. else if (m mod 2 == 1) then
8. [xc, ac, dc] := KaratBompx(1] , n);
9. [xf, af, df] := Karat.Cornpx(L] , n);
10. [x, a] := [4 m n 4,0] + 2[xc, ac] + [xl, af];
11. d := max(dc, dl) + 3;
12. return([x, a, d]);
13. end

134

Index

Algorithms

binary Karatsuba multiplier 75

binary Karatsuba multiplier revis-

ited 79

computing optimal dual basis 130

finding modular equations 132

finding trace coefficients 131

hybrid Karatsuba multiplier 66

Montgomery reduction for general

irreducible polynomials 113

Montgomery reduction for trino-

mials and pentanomials 116

space and time complexities for
Karatsuba multipliersl33

squaring 91

standard reduction for general ir-

reducible polynomials 100

standard reduction for trinomials

and pentanomials 106

Bases

canonical (see polynomial bases)

computing optimal dual basis 130

conversion 26

polynomial 24

dual 24

Binary Karatsuba multipliers 72

algorithm 75

area 83

complexity analysis 76

example 79

programmability 82

revisited 77

revisited algorithm 79

strategy 74

Cryptography 1

private key 2

public key 2

Diffie-Hellman protocol 2

Discrete logarithm problem 19

Dual basis multiplier 27, 27, 49

complexity analysis 29

equally-spaced polynomials 33

equally-spaced trinomials 32

general trinomials 30

pentanomials 52

special trinomials 31

definition 24 complexity summary 29, 58

special pentanomials 52

Type 2 pentanomial 55

Elliptic curves 11

addition formulae 13

cryptosystem 3

definition 11

example 15

operations 11

representations 13

scalar multiplication 14

Elliptic curve crytography 19

discrete logarithm problem 19

elliptic curve discrete logarithm 20

key-pair generation 21

parameters 20

signature 21

verification 21

Fields 8

finite 8

binary 9

Finite field multipliers 40, 62

classic method 43

Mastrovito 42

Gram matrix 25

extended 28

Hybrid Karatsuba multipliers 64

algorithm 66

area 70

135

complexity bounds 70

Irreducible polynomials

equally-spaced polynomials 33

equally-spaced trinomials 32

special pentanomials 42

type 1 pentanomial (table) 60

type 2 pentanomial (table) 61

Karatsuba multipliers 62, 91

algorithm to find the space and
time complexities 133

binary (see Binary Karatsuba mul-

tipliers)

hybrid (see hybrid Karatsuba mul-

tipliers)

software implementation 91

Koblitz N. 3

Mastrovito multipliers 42

complexity summary 58

special pentanomials 48

Type 1 pentanomial 44

Miller V. 3

Montgomery reduction 107

naive algorithm 108

for general irreducible polynomi-

als 109

algorithm 113

complexity 113

for trinomials and pentanomials
complexity analysis 67 114

136

algorithm 116 Trace function

complexity 116 algorithm to find trace coefficients

Reduction step 42 131

algorithm to find modular equa- coefficients 27

tions 132

complexity summary 84

Montgomery reduction 89

standard reduction 95

Rings 7

RSA cryptosystem 2

Shannon 2

Software implementation of GF(2k)

Arithmetic 23

computational complexities for Karat-

suba multipliers 94

implementation results 117

timings 117

word polynomial multiplier 93

Squaring 90

algorithm 91

Standard reduction 95

for general irreducible polynomi-

als 101

algorithm 100

complexity 99

for trinomials and pentanomials

95

algorithm 106

complexity 107

definition 24

