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A STUDY OF THE WAVE EQUATION

FOR THE DIPOLE

In 1923 Louis de Broglie suggested that waves and
particles mey be intimately bound together in the phe-
nomens of radiant energy., Soon after, Erwin Schroedinger
published = mathematical approach to ithe determination
of the energy states of a radiating atom, His method
of treatment hee come to be known zs "wave mechanics"
and involves the ecuation
(1) 2 2 2

J
i3 * S 5

czlled the Schroedinger wave equation,

+e %(E- \{‘g,'h‘s)q:oa

Tris wave ecuation follows from the idea that there
is some sort of & de Broglie wave associated with the
motion of a particle whose total energy isE and whose

—
potentizl energy is V(E;nﬂg) the potentiasl energy
being ¢ function of the Cartesian coordinates SJLScﬁ‘the
particle, The assumption is made that the allowable
energy levels are those values of E that determine

finite and single valued solutions of the wave equations

through-out space,
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This assumption becomes the working rule of wave

mechanlies and permits the caleulation of allowed ener-

gy 1le
tial

expre
There
the i

and z

()

where

and use this form as the b

vels of an electron moving in a field of poten-
—

ensray V(g,n,s) .

Since no attempt will be made to echeck our find-

ageinst experimental results they need not be

ssed in terms of the usual physiecal quantities.

fore, our work will be greatly simplified by

> 4 B
X, ¥

&)

ntroduction of new independent veriable

sueh that

— -+ - =
§77) ;%t .)%i a%k) __ll‘_“x o j'%.!a* 3%& .
We can now write (1) as

Pl 3"y

dx'+'0y G v + (E - Vosny )Y =0,

Vg = Vixin, %) o
asis of our investigation.




PARTICULAR PROBLEM

The problem treated in this paper is that of set-

ting up the wave eguation in the case of an elsctron
found in %the neighborhood of an electric dipole and
of finding the least values of the parameters involved

for which solutions of this equation are possible.

It 1a to be stated at the outset that there is no

m . 1 3V Diadions NP ) M wd +h +¥ Apa al v
'he problem was undertaken with the idea of gsining

gome insight Into the methods and technics of wave

EXPLANATION OF DIAGRAM

mis 2 42 £ Lt - 41 - - 2

he position of the electron in three dimensional
~a o 3 ~2 xr ey : tarmea f +he arhernal ooTrdInatec r

Jpace 119 ivVen-in terms ol 018 dpnerical coorainaices >

©, 6, where
= rcos - sin e,

X
y=r5i"p-3£ne)
Z

= r cos e .
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SETTING UP THE WAVE EQUATION j
The wave equation for finding the allowed ensrgy
levels of a free slectron moving in a potential field
eontains a2n expression for the total energy as well as
one for the potential. The totel energy is hereafter

denoted by E and the determination of 1ts lowest per- ;

missible values is the plan of this paper. The allowed

satisfies the condition that the integral

4 8%

b

, values of B are those for whieh the wave function
is finite throughout 2ll space.

The electrostatie potential due to the nueleus,
as eonsidered in this paper, is to be thought of as
the l1limiting case of the potential due to two single
cherges, one positive and the other negative, as the

|
|

dlstenee between them approaches zero. We will denote

byYV the potential energy of the electron in the fielad

of the nucleus.
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For the purposes of this paper let C.be the
charge at (o, o, b), G, that at (o, o, -b) and,

furthermore, let these charges be defined by the

(e

following expressions

The expression for the potential energyV may
now be written as the sum of the potentials energiles
due to each of the individual charges Gand G, and,
consequently, is given by
S it

Y - ‘7355 e

On combining the terms in the right hand expression

we nave

N

—— o .
e

i sa(rirn) + % (5-12)
v, 2

Turning back to the diagram on page 4 it is seen

that, by ucse of the law of coslnes, rq and ro may

o

be expressed in terms of r, b and the angle 8 so

that ?
2 _ 26 e
':z = r (L+ f& 7o ) 2
b2 25 e} .
);z___ YR s Bl )




Expanding r7 and rg in powers of b/r we have

2
rn = r[1—2 cos & + 2 (1= cos*6) + higher powers]
2
and
r = r[l-l—.i cos O 4.21('_ C°519)+ higher powers
2 r rt 2 9 P J
Hence

L= [z + O + 2nd and higher powers ]

PRl = rl-__gbrcos»e

On substituting these last two results in the

sion for the potential we get

)

+ 3rd and hig her powe-rs]

/
e

expres-
: 3rd and

_%r( 2+ zéwgwoénglnqher) - g{(z} oy O huqherpowers]
(1= 2cos0+---)(1+ Leosd + -~ )

As b is allowed to approach zero the above equation

becomes:
Xre. - —er + kcos®
— — J
e Y’-
% k
V. = = R dNe st g
& Y"

The wave equation may now be written as

(2)

4 2 ke r=) — o 1 )
Rt £:4 £ per by 608 i
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SEPARATION OF THE VARIABLES

In order to treat the foregoing wave equation
effectively we will separate the variables in the
manner commonly employed when dealing with central
force problems expressed in spherical coordinates.
On letting

Y = qg@).@(e). R (r)
equation (3) may be separated into the following

three differential equations of the second order,#*
(4) ¢ (p)+cCq#) =0,

I sIneL i G, A}
(5) 3 [ Jg] + [kecosa+7\ TG ]@‘—Os

sin @
B 2
| A R LS R e

The determination of the characteristic values of

the parameters Cu: A and E , appearing in the above e
equations, 1s the object of this thesis. These
values must be such that there will exist non zero,
single valued solutions of the differential equa-
2
tions for which the space integral .f ¢ dv
expressed in spherical coordinates as
oo , NN A 277 '

jjf R’“Q"@"v"sine de de dr

£ o o
is finite.

# The symbol C, does not denote the same quantity
as C, previously used.




X

The above integral may be expressed in the follow-

ing form ;
[ J;“Rz' r‘dr]‘[.ﬁ’&zsin ede]{ J:,”de;s] =],

from which it is evident that, in order for the triple
integral to be finite, it is necessary for each of the
single integrals to remain finite in the indicated
intervals.

It is seen that for all values of C; the angular
equation in @ will possess solutions making

2
[['®ae]
finite. However, the necessary condition of single
valueness for solutions of the differential equation
<I>"(,‘) +C §A=0

restricts the selection of values for the parameter C,.
Therefore, the only values of C; that are acceptable
are those for which the solutions of the differential
egquation are both single valued and finite, and for
which the single integral previously mentioned is
finite.

Before a similar inquiry is made into the angu-

lar equation in © certain substitutions will be

made., These substitutions are those that were found

necessary to bring the differential equation
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L Alsi egel
"~ Sin
(5) [sing 26 ] +[k¢ cose+7\_sigie]®= O

into a form permitting the numerical calculation of A .

In order to simplify the work we will set ke=l, and
F o 2

t
4 £ 24 y A *
let C =0 the least of its allowed wvaliues.

If we now Introduce the new independent variasbles

Cosesx 2 ®=y)

k. o dysin®
d® dx d© d x

equation (5) takes the form
dy
6) d](1-x*

or

(1-x2) y" —2xy + [x+ )\] y=0
This equation in its present form has simple singular
points at #1 and -1, and since the behavior as X
varies from -1 to +1 is desired, a substitution is
made to increase the range of investigation so as to
include the end values. This may be done by multi-
plying equation (6) through by (1-x2) and mak ing

the substitutions

- R
Bicd i iy
X

* A complete treatment of this problem waald in-
r

£ & value

] 1

volve determining the effect of
such that ke # 1.
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T A 2 O
S il l.L.L i
2

On

g et T
dz*

Aot -2 4
€ note tTinav

— sin © d©

the single intes

_xl) d

ing (7)

dz (I-y’)
[( tanhz + A ) (/-tanh?;z )] y =0
becomes

[scchzz ( tanh 2 +7\)]y =0

on making the substitution
2
= sech®zd:z

rT 0
'

#
f @?% sin©d®o
o

W
9

0]

comes

o}

(

1rou

now
A the allow

are

) -0
:/‘@zsec#zdz
+ 0

he solutions of (8) are finlte and s

follows

precisely those for

<0

2
@° sech®z dz
/ o0

+hha i
|

the allowed values of A are those

WML U

2
-

ngle

b g
sSpeclile

chout the d range, and (9) 1is

that for any determined value of

ed values of the energy parameter

h

AL

whic

pos
Jf Rr*dr
°

L 4



is finite in the given interval and R is a non-zero,

single valued solution of

2 A
R gR
rz:_rz+2rdr +r(E+f_—-—%)R=O

14



THE ANGULAR EQUATION FOR P.

If the arbitrary constant Cq is set equal to N2
the anguler equation in becomes
) + N (k) = O,

In order that thils solution be single valued
throughout the region investigated it 1is apparent
that certain values of N must be barred.

Only positive values of N need be considered
since negative values of N do not glve new solutions.
Non-integral values of N meke the solution multiple
valued thus barring them.

This leaves positive whole integer values of N

as the allowable characteristic values of the para-

meter N appearing in the angular equation for 2}




ATITITI D THAT N YTTNTA MPTO T ' -
NUMBRICAL DETERMNINATIO Vi s

NIT A 2 A A,\‘ "l'(i,!]T’| ‘(." T M
wIANNALU LLALOLLY VALULO Ul -

A - =2 A +Mat Taas 3 p S e 1 ~ | s g

An equation that has been studied a great deal
K - $ s 2% B e Ty N3 L e | o e Y " e "
in connection with wave mechanics 1s the well known

Sturm-Liouvillel equation
(10)
P(z
Af—;—jﬂ-qu)y +Ap(2)y =0

in the intervals 0<z2{« or -«©<z{«¥, By the substi-
tution y = Up- this equation becomes

PSm

Bl 2 ’ A - & - A ¥l = e 3 . d a0 i s Al
rovided p does not vanish in the interval and its
I _ i 1 its

first and second derivatlive exist.

1 M4 1n W chvaical o o e 1L T n iz Q%)
AR IR S ..xe, Veliey ﬂAlJS_;.Qa_L tevie ig QU 863 (lgu‘u).

2. 1[);(.
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It is assumed that G(z,2A)is continuous in z and when
z 1s large
G (z,2)= O

for all values of A discussed ,
Now the necessary and sufficient condition that

a glven set of solutions U, (z) and U,(2) of a second

order differential equation be linearly independent

is that

Let two such solutions of (11) satisfy
U(z) =1 , Ul(z) =0 ,

:( ) = O 5 U}_(Z‘) * O Ly s
where =z, is a value of z in the interval - {z £*

These solutions satisfy the identity
k45 U (2)- Uz) — U,()-U(2) = a

where a is srbitrary. It has been shown by 1 Milnel
that a new function W(z) may be defined in terms

of these two solutions as
L

(13) W(z) = [Uie) + Y(2)]°

l. Milne, W.E., Physical Review, 35, 863 (1930).
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whose first and second derivatives are

)

W= 2 (U %) (2U,U+ 24,Up)
and

)’ - ! '
Loy yu+ Ui

2 - X " " ,2
£ (U+U) i’(u, U+UFUU+U) ) .
Using the relationships;

"
W:"G()\,z)W )

2 / b
w= (U2 U)E U U,-yU = «

)

we may now write

" aZ
WG (a,2)W-3,=0

(14)
of which (13) is a solution. The general solution
of (11) is not known! but can be expressed in the form of
(15) - 3
U(z)=C W (2) sin{afw-zdz b q/}

2o 2
in which € and & are arbitrary constants. Since with

the given boundary conditions W(z) remains finite at

1. Milne, W.B., Physical Review, 35, 863 (1930).




o
b

2 +ha of +3} tomtarual : B ~NTya Y -
either end of the interval, it is apparent

will satisfy these conditions if', and only if,

where n is a positive integer.

- @

an increasing function of 3 so tha

=0
/]

: < J - - .y - 7 r ~ ¥ P
1s evaluated for several values of the

9 - ' . - ’ y SRS e P ~ £
will be obtained an jual number of

"he procedure for determining the characteris

values of A for the equation

.

d W . sech’; (tanh z +2) =0
d 2%

=

now be outlined

| @
.

=8
}—




NUMERICAL DETERMINATION OF CHARACTERISTIC

VALUES OF A FOR THE EQUATION

w" + sech’z(tanhz+ A)W = 0O

If, as previously shown, a functionWwW(z) be de-

fined in terms of two solutions @, and U, of (8) as

2 2 B
Wela) = ) - P0G
where
B2 ) vl Ul(z,) = 0 ,
' ! — a #
U’ (Z.) =O ) U?. (zp) = & OJ
then W(z) satisfies the equation
(18) " 2
Wae o+ sechzz(’lanhz-rA)W-—g——a: 0,

Since a is an arbitrary constant it may be set equal

o 7"‘50 that (18) becomes:
e s 0

(19) W" + sech;(fenhz + A)W— s

This equation will now be integrated numerically for

the following values of A:
-1, 0, +0.001, 0.0625, 1.0 and 2.0.
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The initial conditions are
Wi(z,) =1, W'(z,) = O.
In order to start the numerical integration of (19)
it will be necessary to have three values of W be-
sides the initial value. These may be obtained from
a Taylor's series for W, the first four terms of which

are found as follows:

W‘z°)=l >
w’('zo) = 2

o Al %3“ scch"z.(fanh 2.+tA)=0

W2 =—3 AW W' = (sach®z, =2 sach? z, tanh?z,
—2 A sech?z, tanh 2, )W
—(sech?z, tanh z, + A sech®z, ) W =I "

W RAWSW' =3 AW w" (- 4sach?ztanh 2,

+ 4 sech®z tanh’2_ + 4 sech?z tanh z_

— 42 sech ztanh*z,— A sech?z) W

+(terms in sechz«tanhz )W

—( s G Wy




WY=-60W +2W SW"-3w *w"

=(+ 16 sech’z tanh’2— 4 sech®z +(2 sech; tanh?;

+4sech’z — 8 sech’z tan®z + 4 Asech 2 tanh®;
—4 sech?z tanh®*z — 8 A sech’; tanh 2

+ 82 sech*z tanh 2 )W

=(— 4sach?z tanh z + 4 sech?z tanh?;

+4sech?z tanh z — 4sech 2 tanh?;

— 22 sech?2) W'+( f%rnnés lgnsl?ghz JW!

+ *fx‘;‘"és '“ Se°h2 ) W' =(sech®z tanh 2

+A sech®z )W"=31

The Taylor series, for the first four terms may now

be written
e 3 2)1‘1 3)25:‘, o . -

from which the starting values of w may be obtained
for use in the numerical method of integrationl.

l. Milne, W.E., Amer. Math, Monthly, XL, 322,
(1933).
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An attempt to carry the numerical calculations
forward for negative values of A will give extremely

large values for the integral
+

WdZ v

-
For all such values it is apparent that for positive

values of z the right hand member of

W = — sech?; (tanh z + A )W - -\%‘.

will be negative. It then follows that the W's

)

n
the predictor and corrector formlas :
h! " a ”
Wh#l =w.+w_a—w.’ + T (swn +2w".|+ sw,._a) 23
b skt 90
i - w -2*‘E (Wn + 'o Wa-I M-z)

W, =2W, 4
actually used in the numerical work will be negative

n-l
for all positive values of z thus causing W to di-
minish throush zero. For increasingly small W's the
integral of 1/W2 will become increasingly large over
the specified range.

For A= O the same reasoning holds causing us
to rule out zero and all negative numbers as pos-
sible values of A .

O
/
For »=0.00| , since N =,2‘:{ —sz )
- WV



our calculations show N & 1LO . TFor A=/

the value is over [Q. This is an encouraging start
as 1t indicates that the N's are an increasing
function of A .

The following tables show the values of G(A,z2)
and the initial numerical steps used in determining
the first two characteristic values of A . The
actual interval used, however, was 0.1l and the
computations were carried out with thié interval

over the ran~e indicated at the head of each table.

24

The interval was then doubled and the work proceeded

until W became a linear function of z.
At this point the linear relationship 1s ex-
pressed by
W= az+b

and the value of

g
I
Jf az +b
X

is found. Since G(A,z) is not even in z 1t 1s nec-
sssary to calculate both ways from zero. The com-

plete evaluation of N, therefore, consists of four

applications of Simpson's rule and the determination

of two definite integrals.
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It is to be noted that, in this method of deter-
mining characteristic values of the parameter being

investigated, the integral
oc
W-2d;
-x

must be finite. Therefore, it is essential that W
increase steadily as z increases in either the pos-
itive or negative direction. The following pages
show this condition to be satisfied and on page 36
appear the least values of A as obtained by the

Milne methodl.

1. Milne, W.E., Physical Review, 35, 863 (1930).
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TABLE I (a),

Computation of G(A,z) for A= 0.001 .

0.008

z G(A,-2) G(A,+2)
0.0 0.001 0.001
0.2 0.191 0.191
0.4 0.324 0.326
0.6 0.381 0.383
0.8 0.371 0.372
1.0 0.319 0.320
1.2 0.254 0.254
1.4 0.191 0.191
1.6 0.138 0.138
1.8 0.098 0.098
2.0 0.067 0.068
2.2 0.047 0.047
2.4 0.032 0.032
2.6 0.027 0.027
2.8 0.015 0.015

0.008



TABLE I (Db)
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"
Numerical integration of W + sech'z(icnhz*))w-—\},o: Q

w
0. 999
1.000
1.001
1.010
1.032
1.070
1.118
1.180
1.254
1.338
1.429
1.526
1.627
1.731
1.837
1.945
2.054
2.165
2.276
2,387

o
0.189
0.000
0.190
0.330
0.396
0.399
0.352
0.502
0.240
0.185
0.140
0.104
0.077
0.052
0.047
0.027
0.014
0.008
0.003
0.001

1/1000W°
0,001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000

1/we
1.0020
1.0000
0.9980
0.9807
0.9388
0.8733
0.7999
0.7181
0.6360
0.5586
0.4897
0.4295
0.3777
0.3337
0.2964
0.2643
0.2371
0.21353
0.1930
0.1754
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TAELE I (c).
A

Numerical integration of W'+ sech’z(tanh z +A )W — 77 e 0,
z W W 1/1000W3 1/we
-0.2 1.001 0.000 0.001
0.0 1.001 0.000 0.001 1.0000
0:2 0.999 - 0.189 0.001 1.0020
0.4 0.991 -0.322 0.001 1.0181
0.6 0.970 -0.371 0.001 1.0629
0.8 0.934 - 0.346 0.001 1.1449
1.0 0.884 - 0.282 0.001 1.2791
2.8 0.823 ~ 0.207 0.002 1.4762
1.4 0.754 - 0.142 0.002 1.7582
1.6 0.679. ~0.091 0.003 2.1897
1.8 0.800 -0.054 0.005 2.7688
2.0 0.519 —0.028 0.007 3.7133
B2 0.437 0.006 0.012 5.2349
2,4 0.355 0.011 0.022 7.9298
2.6 0.275 0.043 0.049 13,4175
2.8 0.193 0.136 10.139 26,8427
3.0 0.120 0.578 0.579 69,4588
3.2 0.075 2.368 2.369 177 .6889
3.4 0.113 0.693 0.693 78,3048
3.6 0.183 0.162 0.133 20.8552




rn
.
(o)

W
-

|
(0412 -0.30)°

e

0,002 0.00%g
~ VU L Q.QO:L
0.000 0.001

0.001

AT N
Ge %10
1 el
e {00

1.7366
1.1968
1.0080
0.8611

0.7430

é.0
| |
dz + [—5dz+ dz
/ W (05532 +0.389)°
~3.4 6.0

=04.492 ,
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TABLE II (a).

Computation of G(A,x) for A= 1/16.

P G(1/16,-2) G(l/16,4z)
0.0 0.062 0.062
0.2 0.129 0.249
0.4 0:291 0.378
0.6 0.337 0.426
0.8 0.356 0.406
1.0 0.293 0.546
De2 0.235 0.273
1.4 0s177 0.204
1.6 0.129 0.147
1.8 0.091 0.104
2.0 0.063 0.071
Lo 0.043 0:049
2.4 0.029 0.032
246 0.020 0.022
2.8 0.013 0.015
5.0 0.007 0.008
Oel 0.006 0.005
5.4 0.004 0.003
3.6 0.002 0.002
3.8 0.001 0.001

4.0 0.000 0.001
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TABLE II (b),
Numerical integration of
W"+ sech‘z(fcnz+7\)W—-v%3=O. A= /—é'.

z W w" 1/16WS 1.W2
%02 0.998 - 0.186 0.062 1.0040
0.0 1.000 0.000 0.062 1.0000
~Q.8 1.001 0.191 0.062 0.9980
-0.4 1.009 0.535 0.060 0.9820
-0.6 1.030 0.524 0.0587 0.9424
-0.8 1.006 0.409 0.051 0.8798
-1.0 1.118 0.372 0.044 0.7999
=12 1.185 0.514 0.037 0.7121
-l.4 1.264 0.253 0.030 0.6250
~1.6 1.353 0.201 0.025 0.5461
1.8 1.450 0.141 0.020 0.4755
-2.0 1.552 0.114 0.016 0.4151
® 20 1.659 0.084 0.013 0.3633
-2.4 1,765 0.062 0.011 0.3192
~2.6 1.881 0.0456 0.009 0.2825
-2.8 1.995 0.033 0.007 0.2512
-3.0 2.110 0.021 0.006 0.2245
~ e 2.226 0.018 0.005 0.2017
S.4 2.342 0.014 0.004 0.1822

3.6 2.458 0.008 0.004 0.1654



-3.8
-4.0
-4.2
4.4
-4.6
-4.8

~5.0

2.574
2.690
2.806
2.922
3.038
3.154
5.270

gig e
j .'_zdz el |
1s w 5 (0.5802 % to.

0.005
0.004
0.002
0.002
0.002
0.001
0.001

0.005
0.0035
0.002
0.002
0.002
0.001
0.001

dz

37)%

32

0.1509
0.1581
0.1269
0.1171
0.1083
0.1004
0.0935

=2.95540.




TABLE II (c),

Numerical integration of

0.2
0.0
0.2
0.4
0.6

0.8

W
1.001
1.000
0.998
0.990
0.970
0.936
0.890
0.836
0.777
0.717
0.659
0.607
0.564
0.054
0.519
0.522
0.542
0.577
0.624
0.681

a0

w
0.191
0.000

-0.186
- 0.298
~ 0.345
- 0.305
-0.219
- 0.122
- 0.025
0.061
0.149
0.256
0.521
0.589
0.448
0.432
0,387
0.522
0.254

0.197

W”+ sech’z (tan z +A)W—\}v, =0,

1/16W3

0.062
0.062
0.062
0.065
0.068
0.075
0.082
0.106
0.1353
0.168
0.217
0.279
0.348
0.406
0.459
0.438
0.392
0.325
0.256
0.198

33

/

/6 *

1/We
0.9980
1.0000
1.0040
1.0201
1.0629
1.1406
1.2611
1.4504
1.6563
1.9452
2.5012
2.7126
3¢1455
5.0043
3.7094
3.6672
3.4040
3.0032
2.0664
2.1550




3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0

0.746
0.817
0.892
0.971
0.055
1.157
1.222
1.309
1.398
1.488
1.578
1.668

6 oc
i Ly ‘
w? ¢ (045

0.149
0.115
0.088
0.068
0.053
0.042
0.054
0.027
0.021
0.017
0.01%
0.013

0.150
0.114
0.088
0.06€8
0.053
0.042
0.054
0.207
0.021
0.017
0.01%
0.013

z-/032)*

34

1.7956
1.4981
1.2566
1.0588
0.9017
0.7735

0.6695
0.5844
0.5116

0.4515
0.4015

0.3594

dZ e ']‘ 5 870,




Computation of G(A z) for A = 1

Z

o
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TABLE III (a).

G(A,-2z)
1.000
0.771
0.530
0.329
0.187
0.100

0.050
0.024
0.011

0.005
0.002

0.001
0.000

35

G(n,+z)
1.000
1.150
1+178
1.093
0.930
0.739
0.559
0.407
0.289
0.201
0.138
0.092
0.064
0.043
0.029
0.019
0.007
0.004
0.002
0.001

0.000




Numericel integration of W +sech®z (tonh 24 A) W =

Z
+0.2
0.0
-0.2
-0.4
-0.6
-0.8

W
0.998
1.000
1.001
1.011
1.038
1.086
1.1357
1.249
1.389
l.482
1.616

1.759

TABLE III (b),

W
-0.146
0.000
0.227
0.432
0.552
0.584

0.530

0.041

0.034

1/w°
1.003
1.000
0.997
0.967
0.893
0.780

36

}%3==<>
1/w?
1.0020
1.0000
0.9980
0.9783
0.9279
0.8478
0.7470
0.6409
0.5414

0.4552




-3.8
-4.0
-4.2
~4.4
-4.6
~4.8
-5.0

|
A L (+372-2317)*

37

34252 0.029 0.029 0.0957
3404 0.025 0.025 0.0862
5877 0.021 0.021 0.0781
3.751 0.018 0.018 0.0710
3.925 0.016 0.016 0.0649
4.099 0.014 0.014 0.0595
4.275 0.01% 0.012 0.0547
-
o dz =2.0802.



TABLE III (e¢).

58

Numerical integration of W * sech®z (tanh z+A )W - A=

z
-0.R
0.0
0.2

0.4
0.6

0.8
1.0
1.2
l.4
1.6
1.8
2.0
2.2
2.4

2.6
2.8

3.0
3.2
3.4

3.6

"

W w
1.001 0.227
1.000 0.000
0.998 -0.146
0.992 - 0,147
0.980 -0.014
0.968 0.122
0.962 0.410
0.972 0.545
1.002 0.582
1.056 0.544
1.132 0.460
1.225 0.373
1.334 0.2986
1.454 0.230
1,584 0.182
l.721 0.146
1.864 0.117
2,011 0.107
2.162 0.097
2.,3175 0.075

1/w°
0.997
1.000
1.003

1.023
1.038

1.099
l.121
1.088
0.991
0.849
0.689
0.543
0.420
0.324

0.251
0.197

0.154
0.122
0.098

0.082

&
1/w?
0.9980
1.0000
1.0020

1.0150
1.0383

1.0650
1.0795
1.0580
0.9942
0.8966
0.7803
0.6656
0.5616
0.4722

0.3981
0.3388

0.1575
0.2471
0.2133

0.1826

O’



3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0

-—

wl

2.475
2.635
2.797
2.961
3.127

54295
S5.462

3.630
3.799
3.968
4,137
4,506

0.064
0.052
0.045
0.038
0.032

0.027
0.024

0.020
0.018
0.016
0.014
0.012

0.065
0.052
0.045
0.038
0.052

0.027
0.024

0.020
0.018
0.016
0.014
0.012

39

0.1634
0.1440
0.1278
0.1140
0.1022
0.0920
0.0834
0.0759
0.0692
0.0655
0.0586
0.0539

o
dz ‘Y ! - dz =3.1643.
(0.645+074Y)
¢



TABLE IV (a) .

Computation of G(A, z) for

Z
0.0
0.2
0.4
0.6
0.8
1.0
1.2
l.4
1.6
1.8
2.0
2.2
2.4
2.6

G{Nh,=-2z)

2.000
1.732
1.386
1.041
0,746
0.520
0.353
0.240
0.162
0.10¢9
0.073
0.049
0.033
0.022
0.014
0.010
0.006

0.004
0.003

0.002

0.001

G(A,-2)

2,000
2.111
2.036
1.805
1.489
1.159
0.864
0.623
0.439
0.305
0,209
0.142
0.096
0.065
0.044
0.029
0.0019

0.013
0,008

0.005

0.003



41
TABLE IV (b).

Numerical integration of W'+ sech?z (tanh 2 "’A)W“v%‘: =y

2 W W 1/w3 1/w
0.2 0.999 0.105 2,006 1.0020
- 0.0 1.000 0.000 8.000 1.0000
-0.2 1.001 0.262 1.994 0.9980
-0.4 1.012 0.521 1.929 0.9763
0.8 1.044 0.671 1.757 0.9173
20.8 1.102 0.672 1.494 0.8233
-1.0 1.186 0.582 1.198 0.7108
1.2 1.293 0.468 0.924 0.5979
-1.4 1.419 0.350 0.699 0.4966
~1.6 1.559 0,274 0.527 0.4113
-1.8 1.710 0.213 0.399 0.3418
-2.0 1.869 0.170 0.306 0.2862
-2.2 2,035 0.137 0.236 0.2414
-2.4 2.206 0.114 0.186 0.2054
-2.6 2.381 0.096 0.148 0.1763
_2.8 2.559 0.083 0.119 0.1526
~3.0 2.740 0.070 0.097 0.1331
3.2 2,924 0.062 0.079 0.1168
3.4 3.108 0.054 0.066 0.2034

~3.6 3.294 0.046 0.055 0.0921




=3.8

4.0

4.2
4.4
~4.6
-4.8
-5.0
-5.2
-5.4
-5.6
-5.8

_600

3.481
3.669
3.858
4.048
4.239
4.431
4.624
4,818
5.012
5.206
5.400
5.594

0.041
0.036
0.034
0.030
0.026
0.022
0.020
0.017
0.015
0.014
0.012

0.011

0.047
0.040
0.034
0.030
0.026
0.022
0.020
0.017
0.0156
0.014
0.012
0.011

42

0.0824
0.0742
0.0671
0.0610
0.0556
0.0509
0.0467
0.0430
0.0398
0.0369
0.0342
0.03819




Numerical integration of W +sech’ (fanh z +A)W -

Z
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

2.0
2.2
2.4

2.6
2.8
3.0
3.2
3.4
3.6

W
1.001
1.000
0.999
0.995
0.991
0.997
1.024
1.074
1.151
1.251
1.369

1.501
1.644
1.796
1.955
2.119
2.288
2.461
2.637
2.816

TABLE IV (e).

L1

w
0.266
0.000
0.105
0.005
0.266
0.534
0.676
0.685
0.593
0.471
0.362

0.277
0.219

0.183

0.140
0.117

0.099
0.087
0.075
0.065

2/wW°
1.998
2.000
2.006
2.030
2.054
2.018
1.862
1.612
1.310
1.021
0.779

0.591
0.450

0.345

0.267
0.210

0.166
0.134
0.109
0.089

A
W,:O

43

1/w2
0.9980
1.0000
1.0020
1.0100
1.0180
1.0060
0.9535
0.8658
0.7548
0.6388
0.5334

0.4193
0.3699

0.3099

0.2616
0.2226

0.1909
0.1650
0.1437
0.1260
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3.8 2.997 0.060 0.074 0.1112
4,0 3.180 0.055 0.062 0.0988
(4.2 3,365 0.046 0.052 0.0822
4.4 3,551 0.040 0.044 0.0792
4,6 3.738 0,035 0.038 0.0715
4,8 3.926 0.051 0.053 0.0648
190 4,115 0.027 0.028 0.05920
19+ 4,504 0.024 0.025 0.0539
+5.4 4.494 0.022 0.022 0.0495
t5.6 4,685 0.019 0.019 0.0455
45.8 4.876 0.017 0.017 0.0420
6,0 5.067 0.015 0.015 0.0389
+
/ N Gl ! dz =2.4667.

2 ]
S . (09552-0.663)>
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The calculations shown on the preceding pages

together with the extended evaluations of
f_i.idz
il

+
I ;zdz
z (az +b)

give the following values of the N's for the re-

and

spective values of the A's investigated;

Y N
0.001 3.000/r
0.0625 3.5352/7
1.000 5.2445/11
2.000 6.2833/7

From these values, and a trial calculation for
N=0.002 giving N=3.142, the first two characteristic
values of A are found to be 0.002 and 2.000. These
values will now be used in the determination of the

least values of the energy parameter.
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The above equation, on setting

R = e

-
becomes
" gz
(20) STHLES ooee) Si= 0
This may be put into a neater form if a new parameter

1

N and a new variable x¥ (not to be confused with pr

(0]
@

vious X ) are introduced according to the equetions

A

E =+ o r =nx
S e ) “er =

so that (20) becomes
" I da
(21) s (¥d e A )ys=0 .
4 X x2
Striking out the terms that approach zero in value

as x——» 00, we may write (21) as

Considering the negative sign, one of the two solutions

1. Condon and Morse,




¢e-? and o*% remain finite as x ——°= ., Since

only negative values of E are being considered , the
following substitution is made;

S= yxt* o1 !
so that the differential equation (21) becomes

(22)
xy*H2(J+1)=x1y' +(n=f-1)y=0

for whose power series solution the relation between

successive coefficients is found as follows. Let

y =a+ax +Gx* 4+ - -----—- g x"
Taking the first and second derivatives and substitu-

ting in (22) the following array is arrived at:

4[a+2 [ayx +3faxt+ 4 fqx’+---- - -
+2a,+4a,x +6a,x* +4gxP+-------

—qr—2axt—3apx? 4+ ---------
+ N+ NnoX + nax? + nogd 4+ -- - - .o
—Ja, —Jox —Ja,xt—Jagd 4 - - o oo - .

— Qo —AX—QX— QX2 —ayx>—--------.

+4Jax™' 4+ 4ax"" + nap x"

— Jax™ —Anax"'=0 -
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The relationship between successive coefficients

of like powers of x is now found to he
a;, (1)) j+ 21+ 2 YT a; (e ity ))

T RN T

It 1s apparent that the series will break off and cive
pl, L

a polynomial solution if n is set equal to
Tpe o e B

where | is related to A by the equation
JRl %) = o

Since 0.002 is the least value of A it follows

that there are two corresponding values of m, that 8

‘ 23 IH[F:ZI—- i & { - 000I]9,
2 -+

n =) + ‘,00’9,

of which the smaller and negative value is, of course,

the least value of m that is belng sought for.
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