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The forcing function sensitivity of two adaptive controller configurations 

is analytically derived and compared for single and simultaneous, 

sinusoidal inputs. Frequency- domain analysis techniques are thereby 

extended for application to these two particular configurations of non- 

linear systems. 
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DESIGN- APPROACH EVALUATION OF MULTIPLE -INPUT, 
MODEL -REFERENCE, ADAPTIVE CONTROL SYSTEMS 

I. INTRODUCTION 

Automatic control of complex physical processes is becoming 

increasingly more demanding because of greater restrictions on 

system -performance characteristics and increasing complexity of the 

processes being controlled. This trend dictates the use of new and 

improved control techniques to provide greater performance capa- 

bilities than are obtainable with conventional feedback controllers. 

Illustrations of this trend are the increasing use of computers to con- 

trol industrial processes and providing control systems with self - 

improvement and /or optimizing capabilities. Adaptive controllers are 

being used in many system applications to provide self- improvement 

where physical process characteristics are either insufficiently known 

or subject to large unpredictable changes as the process traverses the 

range of its operating environment. 

Adaptive -Control Applications 

The adaptive approach is appealing to the designer and applicable 

to the solution of many current control problems. However, because 

this approach introduces increased complexities of control system 

analysis, design, and mechanization, adaptive control should be 

employed only when suitable control performance is unattainable 
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with conventional controllers. A number of specific applications as 

suggested by Hagen (12, p. 20 -21) are as follows: 

1. Aerospace Vehicle Control - -to provide improved operational 

capabilities in the presence of large and rapid changes in physical 

process dynamics while eliminating elaborate controller -gain 

programming. 

2. Improvement of Reliability- -to maintain satisfactory response 

despite partial failure (malfunction) of the system. 

3. Flexible Structure Control - -to adjust compensation for time - 

dependent elastic modes. 

4. Dynamic Performance Identification - -to adjust a model of the 

physical process for tracking or model- matching capabilities. 

Adaptive- Systems Definition 

The following composite definition of adaptive control (control- 

lers) has been gleaned from the reference material: Adaptive control is 

1) a system with a means of continuously monitoring its own perform- 

ance affected by changes in environment, character of forcing func- 

tions (e. g. , input signals), and /or physical process characteristics, 

2) a system that continually evaluates its performance in relation to a 

given figure of merit or optimal condition, and 3) a system with means 

of modifying its own parameters and /or state variables via closed -loop 

action or well- defined changes in dynamic characteristics. 

Numerous adaptive control system techniques have been developed 

and, correspondingly, many classification schemes have been proposed. 
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However, evaluation of the above definition explicitly yields three basic 

modes of operation: 1) identification, 2) decision, and 3) modification. 

Some adaptive systems perform the identification operation implicitly 

evaluating the modification effectiveness via the performance criterion. 

This mode of operation is utilized in the model - reference, adaptive 

control (MRAC) concept as developed by Osburn et al. (10, 12, 14, 

15, 16, 19) of the Massachusetts Institute of Technology (MIT) 

Instrumentation Laboratory. The investigation presented in this docu- 

ment is based on that concept. 

MRAC Concept 

The basic operational philosophy of MRAC systems is to force 

the response characteristics of a control system, which contains the 

physical process, to track the response characteristics of a model. 

This is accomplished by modifying the controller parameters that pro- 

vide compensation for variations of the physical process parameters. 

Conventionally, the model is designed to provide the desired or refer- 

ence response to reference inputs r(t) thereby representing the 

desired control system configuration. Parameter modifications result 

from a minimizing operation on a performance index consisting of a 

function of the response error e(t) between control system and model 

responses c(t) and y(t) respectively. The minimizing operation utilizes 

a weighting function obtained from the variables 61(t) that precede 

the controller adjustable parameters P. or the corresponding variables 

Si( t) in the model as illustrated in Figure 1. 
i 
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Research Objectives 

This thesis presents the double -valued objective: 

1. To provide for adaptive control system designers a 

unified, useful, scholarly, and documented review of MRAC system 

design and analysis techniques based on current and pertinent literature. 

General examples illustrate these techniques and are augmented by 

specific examples in latter sections. 

2. To provide the results of an investigation concerning adaptive - 

controller, steady -state sensitivity to multiple forcing functions. 

Primary emphasis is placed on an analytical method developed to 

evaluate the sensitivity of the adaptive controller to simultaneous, 

sinusoidal r(t) and d(t) inputs. The investigation culminated in an 
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evaluation and comparison of adaptive controller, forcing function 

sensitivities for the two basic MRAC system configurations of using 

either control system variables 6.(t) or equivalent model variables 

6.(t) to force the adaptive -loop weighting filters. The comparison is 

based on the perturbations of P. required to maintain the adaptive point 

(i. e. , minimum performance index) as a function of r(t) and d(t) ampli- 

tudes and frequencies. 
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II. MRAC CONCEPT REVIEW 

The review of design techniques includes a unified basic design 

procedure and a summary of commonly encountered problems with 

various proposed solutions. 

Basic Design Procedure 

The basic MRAC design procedure and philosophy was primarily 

developed by Osburn (15) and has since been expanded by others (2, 4, 

5, 6, 10, 12, 14, 16, 18), although some authors as indicated by 

Aseltine et al (1) have considered the MRAC concept prior to 

Osburn's work. To summarize this procedure in a unified manner 

requires an explicit definition of the functional blocks, performance 

index, minimization process, and a method of approximations neces- 

sary for realizable mechanization. 

Functional Blocks 

Assuming a quasi -linear and quasi- stationary representation and 

expanding the basic MRAC configuration shown in Figure 1 results in 

the system functional -block configuration illustrated in Figure 2. The 

controller may contain a prefilter, feedforward compensation, and /or 

feedback compensation where 

M(s) - ; 
(2 -1) 

Y 
m si 

j =0 

d 
sJ 

S'-v 
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h.J si 
j=0 
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u (2-5) 
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In reality, however, the functional blocks contain time -varying param- 

eters and often nonlinearities. A suitable selection of values for con- 

troller adjustable parameters Pi(i. e. fjk kjk, and /or hjk) may provide 

the required compensation for the variation of physical -process param- 

eters from desired values at any time t. The resulting response char- 

acteristics of the control system will then match those of the model. 

By providing a continuous closed -loop adjustment of the compen- 

sating parameters via the adaptive controller, the response of the 

control system will be slaved to that of the model for -all time t. 

Matching of TFc coefficients to those of TF is then implied for the 
Y 

case of the equal -order control system and model, where 

TFc = control system transfer -function 

F(s) K(s) G(s) 
1 + K(s) G(s) H(s) 

X 
a. s 

J 

J 

n 
=0 

= 
ß 

s 

j=0 

ß ? ; X 

and TF = model transfer -function 
Y 

(2 -7) 

= M(s) (2-8) 

H(s) - ; 

, 

ja 

u 
hin s1 

J 
-o 

g >_ 
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Specifically, the implication of perfect adaptation for cases of 

equal -order control system and model refers to equal transfer -function 

coefficients ajk and mjk. 

The following limiting assumptions, as indicated above, are 

necessary before proceeding with the formal mathematical 

development: 

1. Physical -process parameters g.J vary slowly as compared to 

the basic time constants of TFc and TF . 
Y 

2. Physical -process parameters vary slowly as compared to the 

rates of adjustment of compensating parameters Pi in the controller 

functional blocks. 

3. The adjustment mechanism will provide rapid rates of adjust- 

ment P. as compared to the rate of performance index variation result- 

ing from r(t). 

Performance Index 

As previously noted, desired parameter adjustments are obtained 

by minimizing a performance index consisting of a function of error 

between the response of the control system and the model. Forming 

state vectors from the state variables to express the response error 

results in 
F (t) = T(t) - 7(t) 

-cl(t) - Y1(t) 

c2 (t) - y2 (t) 

cn(t) - Yn(t) (2 -9) 

]. 



where 
n-1 

cn(t) 
d 

n-1 c(t) 
dt 

10 

(2 -9a) 

dn-1 
yn(t) n-1 y(t) (2 -9b) 

dt 

The dependence of c (t), ÿ (t) , and hence F(t) upon r(t) should be noted 

and will be referred to again. 

The performance index (PI) is arbitrarily chosen but must be an 

even function that provides a well- defined minimum condition. The 

integral of a quadratic function of the response error or just integral - 

squared -error (ISE) is commonly used for the PI and will be so used 

here; thus, 

where 

or 

where 

t2 
PI = f f2 (e) dt 

ti 

f2(e) 1f(e)12 

= [ü T Q é (t),2 

= fq1e1(t) + g2e2(t) + ... 

t 

PI = f 2 f(e2) dt 
tl 

f(e2) = ë T(t) Q é (t) 

+ gnen (t) 

(2 -10) 

(2-10a) 

(2-11) 

= rile i (t) + g2e2 (t) + + gnen (t), (2 -11a) 

n n 

= 

- 



and 

Q = fixed diagonal matrix of response -error weighting 

coefficients q1, q2, , . , qn 

= unit vectors 
u 
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n = number of state variables of c(t) and y(t) used; normally no 

more than three which could represent the readily measur- 

able states of position, rate, and acceleration. 

The work discussed here will be based on the PI as defined by equa- 

tion (2-10) although the PI of equation (2-11) is just as applicable. 

The minimum PI is obtained when minimum or zero response - 

error occurs, representing a null condition for adaptive controller 

activity (i. e. , the adaptive point). Thus, 

PI = 0 

= adaptive point (2 -12) 

Before proceeding to the next section, it is interesting to note 

that in most of the work on MRAC originating at MIT, a single -state 

variable e(t) is used to represent the response -error function. This 

may be an overly restrictive choice. 

Minimization Procedure 

The optimum or desired state of the control system may be con- 

sidered to contain a set of adjustable parameters for which a minimum 

PI is obtained as expressed in equation (2 -12). To accomplish this 

objective, the slope of the PI (i. e. , ISE) with respect to each adjustable 

parameter must be used to provide odd -function adaptive control. The 

derivation may be approached directly in the time -domain by either 

minimizing errors between corresponding coefficients of equal -order 

' 
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control systems and models, Donalson and Leondes (6), or by a 

direct application of gradient techniques to the performance index. 

The gradient technique is defined and discussed in Leitmann 

(13, p. 206 -211) for both continuous and discrete cases, and is uti- 

lized in most all MRAC work originating at MIT. Some desirable 

aspects associated with this approach are the lack of restrictions on 

relative control system and model order and the minimization of the 

PI directly with respect to each adjustable parameter Pi . 

Specifically odd -function, closed -loop adaptive control of each P. 

(i. e. , SP.) is obtained via an error quantity equation defined as the 

partial derivative of the PI with respect to the particular Pi . 

where 

Pi = - ai EQi 

EQ1 = 
ó f2(e) dt aP, f i 

tl 

a. = adaptive -loop 
proportionality 
constant 

(2-13) 

and at the adaptive point 

EQi = 0 (2 -14) 

The steepest- descent process in the gradient technique is the 

time derivative of equation (2 -13). 

P. - i - ai aP. f (e) 2 

= - 2ai f(e) óf(e) 
dP. 

1 

= - 2ai (t) , LT aP t 1 i 
(2 -15) l 

1 

(2 -13a) 

(2 -13b) 

[u T Q e Q 



where 

af(e) T u aé (t) 
aP. - 8P. 
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(2 -15a) 

= adaptive -loop weighting function 

Since the performance of the model is invariant with perturbations of 

P., then i 

and 

a é (t) a(t) 
8P. aP. 

pi 

= wi (t) 

= adaptive -loop weighting state (2 -16) 
vector 

= - 2ai [I7T Q e (t)1 t_T 
Q 

wi(t) I (2 -17) 

In the event of f(e2) being used for the response -error function, 

Pi = ai 8P, f(e2) 

- 2ai T(t) Q aPt) 

_- 2ai ë T (t) Q wi (t) (2 -18) 

Proceeding with the development, assume the limits of integration 

in equation 2 -13 to be independent of Pi and that f2 (e) and aft (e) /aPi 

are continuous functions of both P. and t, then the order of integration 

and differentiation is interchangeable. This results in 

SAP. = .a2 f(e) 
t2 

f(e) aP dt 
t1 

_ - "°). 

t2 [17T 
Q e (t), 

[-T 
u Q Wi(t)] dt (2-19) 

t1 

= i 
Q 

i 

i 

é 
i 

i 

- 

c 
- ¡ 
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P. =- 2ai Fat_T Q e(t)l 
l 

ú T Q wi(t)] dt + Pi(ti) (2-20) 

Thus, by employing the control logic of equation (2 -17) for each 

adjustable parameter P., the ISE is then minimized via a contin- 
i 

uous steepest- descent process with equation (2 -20) describing the 

trajectory of each Pi . 

Adaptive -Loop, Weighting Function Mechanization 

To complete the basic MRAC system configuration, a realizable 

mechanization scheme for obtaining the adaptive weighting state vector 

wi(t) must be developed. Two design approaches will be discussed: 

the first method is based on a direct extension of the preceding devel- 

opment, while the second method requires a re- evaluation of the mini- 

mization definition. 

Control System Variable, Weighting Filter Input. This design approach 

is utilized in most MRAC work originating at MIT and is based on 

equation (2 -16). Perturbations of each Pi will effect c(t) only if nom- 

final values of all parameters are assumed to produce a null response 

error. This is based on the nontrivial case of nonzero -valued r(t). 

Expressing equation (2 -7) in state- variable format and taking the 

time derivative of equation (2 -16) results in 

w i(t) - e (t) 
aP.- 

- apl a n r (t) 
1 (2 -21) 

1 

- 

ô 

c(t) 
+ 



where 

F(t) adc(t) + -an (t) r 

15 

(2 -22) 

Equation (2 -21) represents a set of equations with the same coefficients 

and configuration as the original control system, differing only by the 

forcing function. Since it is not feasible, except possibly on a discrete, 

time -share basis, to obtain w. (t) by forcing the control system with 

self -developed variables resulting from other sources, an alternate 

method is necessary. The most desirable method is to approximate 

the system with a filter consisting of model coefficients. This pro- 

cedure is readily applicable and justifiable when the model is of equal 

order to the order of predominant control system characteristics, 

because the control system response is being slaved to the model 

response. However, justification is not as evident when model and 

control system are of unequal order, although adaptation will still be 

achieved but perhaps in a nonoptimum manner. 

Osburn (15, p. 25 -42) shows, in the complex -variables domain, 

that the signals required for wi(t) are usually found to be available in 

the signal paths of the control system without performing the implied 

partial- differentiation of equation (2 -16). The determination of the 

wi(t) is simplified if all Pi are independent of the transform -variable 

s, if the function c(t, P.) is transformable with respect to t with a 

transform C(s, P.), and if ac(t, P.) /aPi exists; then 
1 1 1 

0 
[8P c(t, Pi)] áP. C(s, Pi) (2 -23) 

i 
J i 

Osburn then demonstrates that a suitable approximation to a(t)/8P can be 

generated. This is accomplished by processing the signal found just prior 

- 
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to the adjustable parameter by a filter consisting of model coefficients 

to approximate the predominant control system closed -loop poles. 

This is illustrated in the following example. 

As example 2. 1, consider the general system shown in Figure 3. 

As sume: 

ql = 1 

q2, , qn = 0 

Therefore, 
f(e) = e(t) 

_ c(t) - y(t) 

E(s) = (TFc - TFy) R(s ) 

Pi K(s) G(s) 
_ - M(s) R(s) 

1 + P. K(s) G(s) 

(2 -24) 

(2-25) 

r(t)1 --t-- K(s) 
Si (t) 

Si(t)8Pi 

M(s) 
y (t) 

Figure 3. MRAC System with Adjustable Parameter Pi (Example (2.1) 

e (t) 

( 

I 



and af(e) a e(t) 
aPi aP. 

i i 

aE(s) aTF 
= c R(s) 

ap. ap. 

K(s) G(s) R(s) 
[1 + P. K(s) G(s)] 2 

Evaluation of Ai(s) yields 

K(s) 
Di(s) 

1 + Pi K(s) G(s) R(s) 

Therefore, 
a E(s) 

_ a.1 (s) G(s) (2 -28) 
aPi 1 + P. K(s) G(s) 

Before proceeding, consider the case of parameter perturbations with 

ói(t) aPi as the forcing function. 

(2-26) 

(2-27) 
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aC(s) aE(s) 
Ai(s) aP(s) aPi i 0. 

i 

G(s) (2-29) 
1 + P. K(s) G(s) 

where equation (2 -29) is the same as equation (2 -28) and no differen- 

tiation operation was explicitly performed. 

Now, 

G(s) - TF of the control system exclud- 
1 + P. K(s) G(s) ing portions of the controller (i. e. , 

1 K(s) in numerator) 

(2-30) 

1 

i 

r 

= 
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Since overall performance characteristics of the control system are 

being slaved to those of the model, the following approximation is 

possible: 

where 

Wi(s) = ôE(s) 
a P. i 

M(s) K(s) oi(s) = WFi(s)Ai(s) 

WFi(s) = adaptive weighting function filter 

(2-31) 

(2-31a) 

The factor 1 /Pi is not included in equation (2 -31) because the perturba- 

tions are secondary effects and it is a nonlinearity which would increase 

the complexity of mechanization. See Figure 4 for the resulting system. 

r (t) 

Q P 

M(s) 1 

K (s) 

W¡ (t) 

s 

e( t) W¡(t) 

e (t) 

K(s) 
S¡ (t) --- Pi G(s) 

c (t) 

y (t) 

M(s) 

Figure 4. Complete MRAC Configuration for Example 2.1 

+ 0§) 
- 

= 
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Model Variable, Weighting Filter Input. Donalson and Leondes 

(6, 7) utilize this approach and present a thorough development and 

analysis. 

The basic philosophy involved is similar to that of the previous 

development. The major deviation is the requirement of a steepest - 

ascent gradient- function to minimize the PI. This deviation results 

from the minimization of the PI via the partial -derivative of the ISE 

with respect to a parameter in the model m. that corresponds to the 

control system Pi . Thus, mythical perturbations of a fixed parameter 

are assumed. Since in reality P. is to be adjusted, not m., and the 

perturbation effects of P. on the error function f2(e) are reversed in 

sign from those of m., a steepest- ascent action on f2(e) is necessary 

to control Pi such that the ISE is minimized. Thus, 

and 

where 

t 
LI - ai óm. f 2 f2(e) dt 

i tl 

Pi = ai am. f 2(e) 
i 

W. i 

(2 -32) 

2 ai uT Q e(t)1111T Q wi(t)] (2-33) 

óè(t) 
- ami i 

(2 -33a) 

i 

i 

t 

_ 
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This approach culminates in an adaptive weighting state 

vector wi(t) obtained from a filter WF.(s) mechanized with model coef- 

ficients and equal to the filter WF.s (s) as derived in the preceding sec- 

tion except for possible steady -state gain variations. However, WFi(s) 

is forced by a state variable from the model Si( t) that corresponds to 

the control system variable S .lt) located prior to the adjustable param- 
i 

eter. A sign difference in filter forcing functions or filter transfer - 

function is required as illustrated in the following example. 

As example 2. 2, consider the general system shown in 

Figure 5. 

r (t) + 
K (s) 

S¡ (t) _- G (s) 
c (t) 

L __ 

Mk(s) 

8( (t) 
m¡ Mg(s) 

+ e(t) 

("C 

MODEL 

Figure 5. MRAC System with Adjustable Parameter. Pi (Example 2.2) 

y (t) 

J 



Again assume equation(2 -24), then 

f(e) = e(t) 

E(s) = [TFc - TFY R(s) 

Pi K(s) G(s) mi Mk (s) Mg(s) 

k 1 + P. K(s) G(s) 1 + m. M (s) M (s) 

Since TFc is independent of mi 

where 

then 

af(e1 ae(t) 
8mi 8mi 

8E(s) BTFy 
R(s) am. 8m. 

Mk(s) Mg (s) 

[1 + m. Mk(s) Mg(s)]2 R(s) 

A I 

Mk(s) 
i ( s ) 1 + mi Mk(s) Mg(s) R(s) 

W. (s) aE(s) 
8m. i 

M (s) 

1 + mi Mk (s) Mg(s) Ai' (s) 

- - M(s) m. M s) i (s) 
i k 

- WF. (s) Di (s) 
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R(s) (2-34) 

(2 -35) 

(2 -36) 

(2 -37) 

- 

i i 

_ - 

= 

- 



where 

and 
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M(s) = TFy (2-37a) 

WFi(s) = adaptive weighting function filter 

= WFi(s) (2-37b) 

The weighting filter WF. (s) inherently consists of model coefficients 

and, therefore, is readily mechanized. See Figure 6. 

R(t) 
K(s) 

Mk(s) 
s(t) 

2 ar 

s 

M(s) 

m Ok(s) 

G (s) 
c (t) 

-e(t)wi(t) 
Ç». 

e(t) 

mi 

wi (t) 

Mg (s) 

y (t) 

MODEL 

Figure 6. Complete MRAC Configuration for Example 2.2 

_ _J 

(t) 

- - 
H I 



23 

The approach requires more assumptions and restrictions on applica- 

tion than does the method of forcing the weighting filter with 5i(t). An 

illustration is the assumption of equal -order control systems and models 

with corresponding parameters and variables. Also, the effects of 

1 6í(t) Pi perturbations do not exist in although Hagen (12, p. 93 -148) 

shows these to be second -order effects. 

It is interesting to note that rapid perturbations of any parameter 

will cause a violation of the limiting Assumptions 1 and 2, described 

above in the Functional Blocks Section of the Basic Design Procedure. 

This, in turn, will invalidate some of the derivation procedures. How- 

ever, intuition, stability analyses, simulations, and actual applications 

of MRAC systems (2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18) demonstrate 

that suitable adaptive action is provided by this concept. 

Problem Areas and Available Solutions 

Although this system provides satisfactory control in applications 

where conventional feedback controller capabilities are inadequate, the 

MRAC system has certain design and operational problem areas. 

These problem areas may be categorized as follows: 

1. Sensitivity to forcing function characteristics. 

2. Analytical determination of dynamic response and stability. 

A reasonable amount of information has been published concerning 

these problem areas except for the disturbance and multiple forcing 

function cases which are the subject of the next chapter. 
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Reference -Input Magnitude Sensitivity 

As noted previously, MRAC systems are inoperative (e. g. , 

trivial case) without forcing functions, whether deterministic, random 

reference, disturbance, and /or self- contained oscillations. The 

dependence upon r(t) is noted by 

and 

therefore, 

E(t), ÿ(t), é(t) = f[r(t)] (2-38) 

wilt), wi(t) = f[r(t)] (2 -39) 

f(e) 
ôf(e), 

f( ) 
e - f[r2(t)j api f(e) 8m= (2 -40) 

Equation(2- 40)indicates the adaptive loop gain to be directly proportional 

to the square of r(t). Severe stability and response problems may 

possibly result, thus dictating the use of a compensation scheme if r(t) 

contains or is an unknown function. 

Although many have contributed to the solution of this problem, 

perhaps the most significant effort was by Clark (4). The approach was 

first to modify the adaptive weighted -error function f(e) af(e) /aPi by 

using only the sign of wilt) (i. e. , sgn af(e) /8Pi), reducing the ISE to be 

dependent on the first power of r(t). Next, a peak signal detecting/ 

holding controller with a decay time constant much greater than control 

system time constants was employed to track and hence represent the 

absolute value of af(e) /aP. which is then a function of the r(t) amplitude. 

1 1 



The adaptive loop gain for each P. is then normalized with respect 

to r(t) in the following manner. 

where 

f(e) [sgn af(e)1 
aPi 

2 ai af(e)/aPi 

f(e) (sgn aaP i , ll 

D 
o 

Do = arbitrary threshold 

af(e) 
aPi 

af(e) 
aP. i 

>Do 

< Do 
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(2 -41) 

(2 -41a) 

A problem associated with this method is the hysteresis characteristics 

dependent upon both the sign and magnitude of r(t); thus, wrong final 

values of Pi are possible. 

It is this author's contention that this method could be adapted 

to detection and holding of peak absolute values of r(t) and adjustments 

of f(e) af(e) / aPi made by the reciprocal of r2max(t) for I rmax(t) 
I 

>Do. 

An ISE based on a constant amplitude r(t) could then be maintained. 

Reference -Input Frequency Sensitivity 

Frequency dependence of the adaptive loops in MRAC systems is 

a predictable phenomenon, but difficult to analyze because of the 

inherent nonlinearity of time -domain multiplication in each adaptive 

loop, specifically f(e) af(e) /aPi. 

1,_ 

1 

2 ai 
' I 

i 
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An analytical approach was developed by Farmelo and Sammon 

(10, p. 10 -14) for determining the steady -state frequency dependence 

of the value of Pi required to maintain the adaptive point (i. e. , mini- 

mum PI). This was accomplished for MRAC systems with single 

forcing functions such as r(t). 

their results were as follows. 

Using well defined sinusoidal functions, 

Let 

r(t) = R sin tort r (2-42) 

then 

c(t) = Cr sin (wrt + cr) (2 -43) 

and 

y(t) = Yr sin ( wrt + (2-44) 
Y 
r) 

therefore, 

e(t) = e(t) - y(t) 

= Er sin (w r t+ 4.er ) (2-45) 

and 

wi(t) = Wir sin ( wrt + r) (2 -46) 

Now forming the product, 

E W. 
e(t) wi(t) = 

ir [cos [cos 11 (er - wr) - cos (2wr t + er + wr)J 
(2-47) 

+e 
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The product contains a bias term and a sinusoidal term at twice 

the forcing frequency. Since P. is adjusted (i. e. , controlled) by the 

integral of the error -quantity, only the bias term contributes to the 

steady -state value of P. The bias component cos (4 )er w ) will wr 

determine the direction of Pi motion and will reverse sign at 

cl'er - ci) wr = f90° (2-48) 

Therefore, the value of P. required to maintain the adaptive point can 

be determined as a function of w r via equation (2 -48) in the following 

manner: 

1. Determine 

2. Derive 

E(s) = (TFc - TF ) 
Y 

R(s) (2-49) 

Wir(s) = Ps R(s) 
i 

or W. (s) = óE(s) 
ir am. i 

3. Form the ratio 

4. Since 

when 

E(s) E(jwr) 
Wir(s) Wir( wr) 

E(j wr) 
lm 

Wir(jwr) 
tan(cf)er - wr) 

Re 
Wir( wr) 

=fCO 

(1)er - (l)wr = ±90° 

(2 -50) 

(2 -51) 

(2 -52) 

(2 -48) 

- 
1 

er E(j wr) 

- 



then set 

E(J w ) 

Re r = 0 
W. wr) 

and solve for P. as a function of w . 
i r 
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(2 -53) 

Farmelo and Sammon's results (10, p. 14 -58) indicated that often, 

especially whenever the control system was of higher order than the 

model, the adaptive weighting filter WF.(s) mechanized to approximate 

the control system with model characteristics, did not supply sufficient 

phase -shift characteristics as a function of w . r This results in a 

shift of Pi required to maintain the adaptive point by decreasing the 

phase shift of the control system. The converse is also true. This 

may result in a control system instability or lack of response capability 

as a function of wr. The problem was noted to be the most severe 

when first -order models and weighting filters WF.(s) were used with 

higher -order control systems. A solution for minimizing adaptive - 

point Pi sensitivity to wr was to increase the order of WF.(s) 

(e. g. , additional filtering) to more closely approximate the control 

system. Closer matching of model and control system order also 

aids in minimizing the w r sensitivity of P.. 

It is this author's contention that the problem of adaptive -point 

Pi sensitivity to wr will not be encountered, if during the initial design 

phase, nominal control system parameters and configurations are used 

in lieu of model characteristics in mechanizing the weighting filter 

WFi(s). However, if model characteristics are used for WFi(s) 

and additional filtering is required, this author has noted in several 
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examples, that acceptable Pi insensitivity to wr is often obtained by 

employing the rule of thumb that additional filter time constants for 

WFi(s) be approximately 6 db below the model time constants. 

Dynamic Response and Stability 

Various stability analyses of MRAC systems have been performed 

utilizing nonlinear techniques such as Lyapunov's Direct Method as 

noted in Bekeyand Humphrey (2, p. 22 -30) and Donalson and Leondes (7). 

Restrictions on these applications are equal -order control systems and 

models along with a compensating Pi for each variable gjk in the 

physical process. 

Hagen (12, p. 35 -183) develops a method of representing the 

adaptive control loops in MRAC systems as a set of parallel, piece- 

wise linearized, control loops, each for a separate Pi. This makes 

feasible the application of more conventional analysis techniques. A 

brief summary of Hagen's thorough development, first includes the 

assumption that only small parameter perturbations (i. e. , approxi- 

mately 10 %) are considered. 

Then 

c(t) = lad + d(t)] c(t) + [9:n + an(t)] r(t) (2-54) 

where a convergent series represents the control system output 

n 

e(t) _ ci(t) (2-55) 
i = 1 
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Expanding and using only the first -order effects of parameter 

perturbations or the first two terms of equation(2- 55)results in the 

system shown in Figures 7 and 8. Figure 7 illustrates the separation 

of the Pi adaptive loop from the nominal -parameter control system 

dynamics and model which represent null- response error characteris- 

tics. Figure 8 illustrates the linearized (i. e. , first -order perturbation 

effects), parameter- adapting or identification -process control loop for 

a single adjustable parameter. 

The operational philosophy of each adaptive control loop may be 

defined as either a regulator which minimizes e(t) regardless of AP. or 

an identification process with P. as the controlled output resulting in 

eventual minimization of e(t). 

MODEL 
y(t) 

r (t) cu(t) FIXED 

PARAMETER `CYc(t) 
DYNAMICS (t) + 

OR 

TFc(rsl) 
(t) -i PI 

TFc(SIAPI, 
c) 

FIXED DYNAMICS FIXED DYNAMICS 

4 PI FIXED DYNAMICS 

Figure 7. Separation of First -Order Parameter Perturbation Effects 

e(t) 

A H 



31 

APit) 
Si (t) 

TFc(SI,6,P ¡, c) 

FIXED PARAMETERS 

Cd(t) 

C12 (t) e(t) 

NOTE: CHANGE OF PARAMETER TO VARIABLE 

w1(t) -- -2a1 

r (t) TFc(r 8j) 

FIXED PARAMETERS 

Sig) --- WF1 

FIXED PARAMETER 

w1(t) --% 

Figure 8. Linearized Adaptive Control Loop 

Figure 9 illustrates the representation of a set of linearized, 

adaptive control loops in a MRAC system with a regulator -type mode 

of operation. Adaptive control loop activity is induced by a finite 

response error resulting from a disturbance signal cd(t) in the control 

system. 

Interaction of adaptive control loops is readily illustrated in 

Figure 9. Depending on the desired operational philosophy, interaction 

may or may not be a problem. If decoupling is desired, orthogonalizing 

the adaptive control loops may be accomplished for a limited range of 

parameter perturbations by additional crossfeed functions. Gibson (11, 

p. 30 -33) outlines a method of designing noninteracting control loops. 
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H 

0 P1(t) 

- 
0 Pn(t) 

(t) (t) 

e(t) 

-2a1 
s(t) TFc (NA c) 

s 

--L_ 
wn(t) 8 n(t) TF c (Bn4 Pnc) 

s (t) 
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wl(t) 

wn(t) 

TFc 
( r,81) 

sl(t) 
.1.1111 

WFl( s) 

TFc(r bn) 
8n(t) 

WFn(s) 

Control Loops 9. Multiple Linearized Adaptive 

One of Hagen's general conclusions concerned the possible use of 

unity transfer-function weighting filters WFi (s) to improve MRAC 

system stability and response characteristics. This greatly simplifies 

the mechanization and analyses; however, there is a corresponding 

loss of a defined PI. 

-1 

- 
w1(t) T 

1 

I 

--10 

I 

1 

1 
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III. MULTIPLE INPUT SENSITIVITY 

As noted in the previous chapter, MRAC systems exhibit 

sensitivity to forcing function amplitude and frequency characteristics, 

and although the development was based on a reference input r(t), 

sensitivity to other forcing functions is implied. Several researchers, 

Clark (4), Farmelo and Sammon (10), Hagen (12), Osburn (15), 

Rucker (16), and Whitaker (18), have considered, to a limited extent, 

the problem of MRAC system response to disturbance forcing functions 

d(t). A general conclusion was that d(t) only induced motion of the 

adjustable parameters toward limit values in the MRAC system that 

exclusively used control system variable, weighting filter inputs. 

Specifically, Clark evaluates the stochastic case where d(t) is repre- 

sented by a gaussian distribution; Farmelo and Sammon mention com- 

promise, steady- state, adaptive -point Pi values obtained with an analog 

computer simulation for simultaneous, sinusoidal inputs r(t) and 

d(t), and the direction of P. motion for sinusoidal d(t) excitation 

only; and Rucker considers the effects of d(t) in the identification 

problem. 

In the case of MRAC system excitation via d(t) only, the response: 

error will consist of the control system response only and is generally 

minimum when control system loop gains are either minimum or 

maximum depending on the particular characteristics of d(t), system 

configuration, and point of application. By driving the adjustable 

parameters to their limit values, the MRAC system is then operating 

as designed by minimizing the PI. However, this author does not 
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share the opinion of some who claim that no real problems result from 

all Pi being driven to their respective limit values. Since the MRAC 

system is usually designed to slave the response of the control system 

to that of the model with respect to r(t), limit -value operation of all 

Pi resulting from d(t) does not necessarily allow the control system 

response to any future r(t) to be optimum or even acceptable. Also, 

unstable control system characteristics may be encountered because 

of high loop gains resulting from any particular Pi being driven to or 

toward its limit value. In actual operation, however, simulation 

observations show that a controlled (i. e. , flexible) upper bound is 

provided by the system for the Pi that induces the destabilizing effects 

by developing and adaptively maintaining a controlled oscillation (i. e. , 

limit cycle mode) in which the oscillation supplies a reference variable. 

The results presented herein consist of both qualitative and 

quantitative evaluation of the adaptive loop stability and steady -state 

value of Pi required to maintain the adaptive point as a function of d(t) 

alone and of simultaneous, sinusoidal r(t) and d(t). A frequency - 

domain design criterion is to be developed by which the Pi sensitivity 

to d(t) may be determined and minimized. 

The assumption expressed in equation (2 -24) will be used 

throughout this chapter. That is 

and 

f(e) = e(t) 

f2(e) = e2(t) 

t2 

APi = -2a i f e(t) aPel) dt 
1 

(3 -1) 

(3 -2) 

(3 -3) 
a P. 



where 

or 

where 

and 
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Pi = -2ai e(t) vi(t) (3-3a) 

OPi = 2ai rt2 e(t) mt> dt 
t i 

1 

Pi = 2ai e(t) w(t) 

e(t) wi (t), e(t)w.( t) = adaptive weighted -error 
functions 

Disturbance Sensitivity of Adaptive Controller 

(3 -4) 

(3 -4a) 

The sensitivity of the adaptive controller in MRAC systems to 

deterministic, disturbance forcing functions d(t) may be determined 

analytically in terms of adaptive -point Pi perturbations. Although d(t) 

may enter the control system at any point with equivalent results, the 

controlled output c(t) is conventionally considered to be the summation 

point as illustrated in Figure 2. 

Control System Variable, Weighting Filter Input 

The response error becomes the control system response for the 

case of d(t) input only; that is for 

and 

r(t) = 0 (3-5) 

d(t) (3-6) # 0 



then 

e(t) = c(t) - y(t) 

= [cr(t) + cd(t)] - y(t) 

= cd(t) 

Transforming to the complex- operator domain and referring to 

Figure 2, 

E(s) = Cd(s) 

1 

1 + K(s) G(s)H(s) D(s) 

and each weighting filter, forcing function is 
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(3 -7) 

(3 -8) 

Ai(s) = - f[K(s)]H(s) Cd(s) @ Pi in K(s) (3-9a) 

= f [H(s)] Cd (s) @ Pi in H(s) (3-9b) 

= 0 @ Pi in F(s) (3-9c) 

Recalling that the weighting filter WFi (s) contains model characteristics 

plus possible additional fixed filtering to compensate for reference 

forcing function frequency dependence of the adaptive -point, then 

wi(s) = WFi(s)Ai(s) 

= - WFi(s) 1+KSs(s (H(s) D(s) @ Pi in K(s) 

= WFi(s) f[H(s)] D(s) L P in H(s) 1+K(s) G(s) H(s) 1 

= 0 @ Pi in F(s) 

(3-10) 

(3-10a) 

(3- 10b) 

(3 -10c) 
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Now the method of determining the Pi required to maintain the adaptive 

point, as discussed above in the Reference -Input Frequency Sensitivity 

Section, may be applied to the case of d(t) frequency sensitivity. That is 

for 

e(t) wi(t)dc 
= 

EW. 
cos (fed- 4wd 

= 0 

d(t) = D sin wdt 

which represents the adaptive point and is evaluated by 

E( j wd) 
Re Wl(j = 0 

where 

therefore, since 

(3 -12) 

s = 0 + j wd (3-12a) 

E(j wd) 
-1 

Wi(J wd) WFi(s) H(s) f[K(s)] @Pi in K(s) 

1 

WFi(s) f[H(s)1 

(3 -13a) 

@Pi in H(s) (3-13b) 

and the controller functions f[H(s)] and f[K(s)] consist of known and 

assumed fixed (i. e. , fixed when evaluating each adaptive loop) transfer - 

functions preceding Pi. The polynomial ratios of equation(3- 13a and b) 

then contain only fixed coefficients without the Pi. Also, equation(3- 12) 

which corresponds to (fed fwd) being at ±90 degrees is then dependent 

only on fixed coefficients and the variable frequency wd, and conse- 

quently, will provide only the algebraic sign of the bias term 

e(t) wi(t)dc. 

(3-11) 

(3-11a) 

wd) 

Z 1 
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Since equation(3- 12)provides the direction of Pi motion inde- 

pendently of Pi, the Pi will eventually reach its limit value. However, 

if, as noted in reference material, a control system instability occurs 

because Pi is driven toward its limit value, a limit -cycle will develop 

at the point of conditional stability. This will provide a reference 

variable, and equation (3- 12)will no longer describe the state of 

operation. Consider as example, 3. 1, the second -order control 

system and model conforming 

F(s) = 

K(s) = 

G(s) = 

H(s) = 

M(s) = 

with Figure 2, where 

k1 (adjustable parameter) 

1 

(3 -14a) 

(3 -14b) 

(3 -14c) 

(3 -14d) 

(3 -14e) 

s(Tgs + 1) 

1 

1 

(T ms + 0(-52a. s + 1) 

Proceeding with the conventional MRAC design 

where 

or 

kl - 2a1 e(t) wl(t) 

w l(t) = a8 
kt) 

1 

(3 -15) 

(3-.15a) 

8TF 
W 1(s) - 8k c R(s) (3-15b) 

- Al( s) (3- 15c) 
s T+s+kl 

1 

= 

1 

1 



with 

s(T S + 1) 

1(s) - 2 R(s) 
s Tg+ s + k1 

Assuming perfect adaptation, WF1(s) is mechanized by 

WF1(s) _ 
T m 

(T S+ 1) Z S+ 1) 
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(3 -15d) 

(3 -16) 

Also, recall that al is the adaptive loop dimension and dc gain compen- 

sation for nominal kl and T . Then 

T 

W1(S) _ 

¡m 
A (s) 

1 

(rm s + 
2 

s+l) 

and the system shown in Figure 10 is obtained. 

(3 -17) 

d (t) 

Figure 10. Complete MRAC System Configuration for Example 3.1 

T 

\ 

r(t)=0 

(Tm S+ 11 (Tm S+ 11 

2 

S (Tg S+ 1) 

Tm 

(TRi S+ 1)(111 S+ 1 

2 

y(t)Y 0 



Now apply equations (3 -8 and 3- 9a)for zero -valued r(t). 

and 

E(s) = Cd(s) 

s(T s + 1) 
- g D(s) 

s2 + s + k 
g 

W1(s) = WF1(s)01(s) 

Forming the ratio with 

s 
i wd 

E(j wd) 

W1(j cod) 

T s+]Es(T 

g 
s + 1) 

( 
s2T + s+k 1) 412 s+1/ 

g 1/ 

T 

- (1 + j wdTm) (1 
+ j wd Dim 

D(s) 
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(3 -18) 

(3 -19) 

(3 -12a) 

(3 -20) 

As predicted, equation(3 -20)is only a function of fixed coefficients and 

wd. Using equation(3 -12)to determine the sign or direction of k1 

motion 
E(j wd) 

Re 
W10 (-0 d) 

- 0 

2 

= 1 Tm w2 
2 d 

where 

tan (d) d) ,d) 
Im E(j wd) 

Re W1(j wd) 

(3 -21) 

(3 -2la) 

[(Tm s+ 

m 

E 

= 
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The quadrants through which the angle (fed -fwd) travels as a function 

of wd are defined by the sign of solution perturbations in equation 3 -21. 

Observation of equation(3- 20)provides the proper quadrant sequence 

with respect to increasing wd to be from the third to the fourth. It is 

necessary to refer back to E(s) and W1(s) since equation(3- 21)provides 

a double quadrant choice. Therefore, the cos(4) ed cbwd) will proceed 

from a negative value through zero to a positive value with increasing 

wd. Since by equation (3- 15), the direction of k1 is the reverse of 

cos (4ed fwd), 

wd 

then 

T m 
k1 is driven to maximum limit (3 

null con i ion, uns a e equi i ium condition, bl l'br' (3 

k1 is driven to minimum limit (3 

-22a) 

-22b) 

-22c) 
f 

Since the control system is second -order, a highly oscillatory but not 

unstable mode of operation may possibly result when k1 is driven to 

its maximum limit. 

These results concur with those obtained by Clark (4) for the 

stochastic case and by Farmelo and Sammon (10, p. 59 -63) from 

observations of analog- computer simulations. 

Model Variable, Weighting Filter Input 

Since a model variable, 6.1(t) that corresponds to bi(t), is used to 

force the adaptive weighting filter WF1(s), then 

Wi(s) = WFi(s)Ai(s) 

= 0 (3-23) 

- 

- 



because 

Ai(s) = f[M(s)1 R(s) 

= 0 
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(3 -24) 

Therefore, the adaptive weighted error e(t) w ' 
i 

(t) will be zero -valued 

for any d(t) as long as r(t) is zero -valued, thereby providing an 

adaptive loop null- condition. 

Thus, the method of generating wi (t) in lieu of wi(t) for the 

adaptive weighting function provides a MRAC system that is insensitive 

to any disturbance d(t) during periods of reference r(t) inactivity. This 

is a superior mode of operation for MRAC systems designed to mini- 

mize the error resulting from r(t) with duty cycles containing periods 

of r(t) inactivity and d(t) activity. 

Simultaneous, Sinusoidal Input Sensitivity of Adaptive Controller 

Again referring to Figure 2 and assuming simultaneous, steady- 

state, sinusoidal, forcing functions as defined by 

r(t) = R sin wrt (3 -25) 

d(t) = D sin (wdt + Cdr) (3 -26) 

where Cdr is the initial phase angle of d(t) with respect to r(t). The 

adaptive - controller sensitivity to r(t) and d(t) will be obtained from 

the steady- state, adaptive, weighted error, bias function. 
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Steady- State, Adaptive Weighted Error 

The control system response will contain two simultaneous 

functions that result from r(t) and d(t), thus 

c (t) = cr(t) + cd(t) (3 -27) 

where 

cr(t) = Cr sin (wrt + 4cr) (3 -27a) 

cd(t) = Cd sin (wdt + 
4)cd + 4dr) 

Since the model response results only from r(t), then 

y(t) = Yr sin (wrt + r) Y 

Therefore, the response error is 

e(t) = c(t) - y(t) 

e(t) = sin wrt (Cr cos 4cr - Yr cos .yr) 

+ cos wrt (Cr sin 4) Cr - Yr sin Syr) 

+ Cd sin (wdt + 4cd + 4dr) 

= sin wrt r (Er cos 4er) + cos wrt (Er sin 4) er) 

+ Cd sin (wdt + 4)cd 
+ 

4) 1 'dr' 

= Er sin (wrt + 4'er) + Cd sin (wdt + 4cd + (bdr) 

(3 -27b) 

(3 -28) 

(3 -29) 

The response -error may be represented by the error between the con- 

trol system and model resulting from r(t) and the control system 

response to d(t). 
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Control System Variable, Weighting Filter Input Since, by super- 

position, the control system contains simultaneous variables from 

the forcing functions r(t) and d(t), then b.(t) and hence w.(t) will also 

contain simultaneous r(t) and d(t) dependent variables. That 

is 

wi(t) = wir(t) + wid(t) 

Wir sin (wrt + dwr) + Wid sin (wdt + d>wd 
+ 

Forming the adaptive weighted error 

e(t) wi(t) _ [Er sin (wrt + der) + Cd sin (wdt 

+ 4cd + 4dr)t [Wir sin (w rt + 4)wr) 

+ Wid sin (wdt + fwd + 4dr)J 

4)dr) (3-30) 

Erz 
W. it cos (.tier - wr) - cos (2 wrt+ r + wr)1 

CdWid[cos (cd -wd)- cos (2( wdt+ 
2 L 

E + 
d)wd)J + 

r2 
la [cos ((wr- wd)t+ 4)er d)wd- 4)dr) 

- cos ((wr+ wd)t+ 4er+ 4wd+ 4dr)1 

Cd2 ir 
Lcos 

((wd- wr)t+ cd+ 4)cd+ 4)dr- wr) 

- cos ((wr+ wd)t+ 
4"c d+ 4)dr+ wr)1 (3 -31) 

er 

+ 
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The steady- state, weighted error e(t) wi (t) for the MRAC system 

with two simultaneous, sinusoidal forcing functions r(t) and d(t) is 

noted to contain four basic terms. Each term containing a time- 

independent function such as cos (4 - c ) will contribute a bias to 
er wr 

e(t) wi(t) while the time- dependent functions are sinusoidal with zero 

bias. The first two terms of equation 3 -31 produce the bias for the 

case of nonequal forcing frequencies wr and wd while all four terms 

contribute to the bias when wr and wd are equal due to interaction or 

beat -frequency phenomena. The bias determines the direction and 

magnitude of Pi and over an integral number of cycles, the value of 

Pi. At the adaptive point, the bias is null or zero valued. 

The reason for assuming only single - variable response -error 

e(t) and adaptive weighting function wi (t) will be evaluated in the 

following manner. A complete formal development would use 

f(e) 
2a(Pe) -[ut Q e(t)J 

[ut 
Q wi(t), 

i 
(3 -32) 

where é(t) and w.(t) each represent n state variables. The product 

would result in an increase in the number of terms as expressed in 

equation(3 -31)by a factor of n2. Thus, second -order é(t) and wi( t) 

would produce 16 terms when expanded in the same manner as 

equation(3 -31). Since all the information necessary to establish 

methodology can be obtained from the single - variable representation, 

simplicity of illustration will be maintained. 

1 



46 

Returning to the development and considering only the bias terms, 

e(t) wi(t)dc 

and 

E W. r ir 
2 

cos (4)er 

CdWid cos (4cd 

E W. 
= 

r it cos (der 

+ 
E W. r i 

CdWir 
2 

cos 

cos 

Wrwd 

+ CdWid 
wr) cos 

(4)er ci)wd 4- 'dr) 

('cd 

(3 -33a) 

4)cd - 4)wd) 

+ 
ckdr 

4)wr ) 
wr w 

(3 -33b) 

e(t) wi(t)dc = 0 (3-33c) 

when the value of Pi reaches the adaptive point. 

An obvious conclusion is that a MRAC system, using wi(t) and 

designed to minimize the ISE with respect to r(t), will encounter 

degradation of performance when d(t) is applied simultaneously. Thus, 

equation (3 -33a, b, and c) is an analytical expression representing the 

condition observed by Farmelo and Sammon (10, p. 63) on an analog - 

computer simulation. 

The following is a qualitative analysis of equation (3 -33a, b, and 

c). Forcing function amplitude dependence is noted where the two 

terms of equation (3 -33a) and the first two terms of equation (3 -33b) 

are directly proportional to R2 and D2 respectively. The remaining 

two terms of equation (3 -33b) result from the beat -frequency phenom- 

ena and are directly proportional to RD. Also, all terms are inher- 

ently functions of wr and /or wd. Therefore, adaptive -point Pi would 

_ 

2 

- 
wr) 

wd) I 

- 

- - - 
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be determined as a function of wr, wd, R, D and fixed system param- 

eters from e(t) wi(t)dc. The bias expression consists of multiple 

terms each of multiple -order complex functions. For zero -valued 

d(t), these equations reduce to the single -term functions derived by 

Farmelo and Sammon and discussed above in the Reference -Input 

Frequency Sensitivity Section. 

Model Variable, Weighting Filter Inputs. Consider each adaptive 

weighting filter WF.(s) or WFi(s) to be forced by a model variable 

5i(t) corresponding to 5i(t) in the control system. The following adapt- 

ive weighting function results. 

w!(t) = W.' sin (w t + cf)' ) (3-34) 
1 ir r wr 

where w!(t) consists of response characteristics resulting from r(t) 

only. Now forming the product 

e(t) w!(t) = ¡Er sin (wrt + der) + Cd sin (wdt + 'cd 

+ Cdr)] 1W: ir sin (wrt + 4wr)1 

ravir 
2 [cos (4er - ,r) cos (îwrt + der + wr)] 

W' dir + ((wd wr)t + cd + 
cf) Cdr - 

4,1 
w r) 

- cos ((wd + wr)t 
4)cd + Cdr + 4wr)] 

Therefore, e(t) w!(t) contains only two terms as compared to the four in 

e(t) wi(t). Even more significant is the fact that e(t) w!(t) contains no 

bias function resulting from d(t) for unequal wr and wd and only one 

additional bias function is encountered during beat -frequency conditions 

of wr equal to wd. 

(3 -35) 

E 
= 

[cos 

+ 

- 

C 
- 



Thus, 

and 

E W! 
e(t) 

r ir 

e(t) wi(t)dc 

2 

! r ir 

cos 4)e r 

cos 
( (ker 

+ c'dr - qbw' r 

I 

wr) 
wr # wd 

I 
(A) 

- C 

WI 

wr) + 4 d2 
ir cos (4)cd 

w 
r d 
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(3 -36a) 

(3 -36b) 

e(t) wi(t)dc = 0 (3-36c) 

for adaptive -point operation. 

A qualitative analysis illustrates the dependence of e(t) w! (t)dc on 

a single -term function consisting of wr, R2, and fixed system param- 

eters for the case of unequal wr and wd. For this case the method 

developed by Farmelo and Sammon discussed above in the Reference - 

Input Frequency Sensitivity Section, is readily applicable in evaluating 

adaptive -point Pi . However, double terms of multiple -order complex 

functions are again involved in the beat -frequency case of wr equal to 

wd with e(t) wi(t)dc being dependent on wr, R2, wd, RD and fixed 

system parameters. 

Adaptive -Point Evaluation 

Solving e(t) wi(t)dc and e(t) wi(t)dc as functions of wr, wd, R, D 

and fixed system parameters for the adaptive -point value of P, is a 

difficult problem when the bias functions consist of multiple -terms 

each of multiple -order complex functions. Also, the possibility exists 

that the adaptive -point solutions would result in multiple realizable 

values of In In such a case, the slope of the e(t) wi(t)dc or 

e(t) wi(t)dc function with respect to Pi at each solution point would be 

w! (t) - 
wi(t)dc 

= 

r 

P. 

- 

E 
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required in determining whether the solution represents a stable or an 

unstable equilibrium point. For a system using steepest descent, a 

positive slope of e(t) wi(t)dc through the adaptive point Pi will provide 

convergent (i. e. , stable equilibrium) action on P.. A negative slope 

would produce an unstable equilibrium and would represent the bound- 

ary condition for stable operation of the adaptive controller. The con- 

verse is true for the case of steepest ascent as encountered when 

employing e(t) wi(t)dc. 
A method of solution that is straightforward yet yields a maxi- 

mum of information concerning the adaptive controller would be to 

compute the adaptive weighted error functions e(t) wi(t)dc and /or 

e(t) w!(t)dc as a function of the variables and parameters involved. 

The effects of any one or combination of parameters and variables 

could then be graphically displayed. By observing the open -loop 

adaptive weighted error trends, the system designer could then develop 

insight of adaptive -loop operational characteristics that would be diffi- 

cult to ascertain except by analog- computer simulations. 

Admittedly, this procedure is time consuming and requires 

extensive computations; however, use of Fortran or similar programs 

with a digital computer makes this approach acceptable. 

Application of Developments 

Two examples representing typical MRAC systems designed by 

the methods discussed in Chapter II will be used to illustrate the pre- 

ceding developments. The adaptive weighted errors e(t) wi(t)dc and 

e(t) wi(t)dc, will be qualitatively and quantitatively evaluated as func- 

tions of the variables involved. Since these are specific and not general 
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examples, the procedure and general but not the exact results, 

are directly applicable to other MRAC system configurations. 

Since the effects of g. parameter perturbations are not of pri- 
J 

mary interest for this investigation, the following restrictions and 

assumptions will be used in the two examples. 

R = 1 (3 -37a) 

T - 1 second (3 -37b) m 
T = O. 5 seconds (3 -37c) a 

F(s) = 1 (3 -37d) 

H(s) 1 (3 -37e) 

r(t) = R sin co rt (3 -37f) 

d(t) = D sin wdt (3 -37g) 

q = 1, q2 qn = 0 (3 -37h) 

K(s) = k1 
1 

adjustable parameter, positive valued (3 -37i) 

odr = o (3 -37j) 

where 

then 

Example 3. 2 consists of the following two conditions: 

1. Second -Order Control System and First -Order Model 

2. Control System Variable, Weighting Filter Input 

G(s) _ 

M(s) = 

Er(s) 

1 

s(Tgs + 1) 

1 

T S + m 

- s (T s + 1 - kl Tm) g R(s) 
T s2 + s + kll ¡Tms + 1) 
g /\ 

(3 -38a) 

(3 -38b) 

(3-39a) 

f 

= 

g 

1 



and 

s(T s + 1) 

Ed(s) - g D(s) 
T s2 + s + kl 
g 

To derive WF1(s)1 temporarily assume 

then 

where 
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(3 -39b) 

d(t) = 0 (3-40) 

8TF 
W1r(s) - c R(s) 

1 

1 

2 lr(s) 
T s + s + k 

WF1(s) lr(s) 

s(T S + 1) 

6'1r(s) = 2g R(s) 
Tgs +s+k1 

(3 -41) 

(3 -41a) 

Assuming perfect adaptation, that is slaving the control system 

response to that of the model and therefore matching performance 

functions, and allowing al to be the common proportionality constant 

in the adaptive loop, then 

and 

WF1(s) 

W lr(s) 

Tm 

s(T S + 1) 
R(s) 

(3 -42) 

(3-43) 

= TmS + 1 
TM 

T m 
TmS 

+ 1 
T s2 + s+ k 

g 

ôk 

_ 

g 

g 

( 
I¡ 

= I 



To determine the possible dependence of adaptive -point k1 on w 

let 

Er(j wr) 
- Re 

wl r(j wr 
0 

where 

Tm - 1 T2wr g 
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(3 -44) 

s = j w (3-44a) 
r 

Therefore, solving for k1 

1 + T2 w2 
g r 

kl adapt. pt. Tm 

= 1 + w2 /4 /4 

(3 -45a) 

(3 -45b) 

which is dependent on and proportional to wr for wr > 1 /Tg which is 

not a desirable effect. Therefore, additional filtering is required in 

WF1(s), and equation (3 -42) is redefined as 

then 

and 

T m WF (s) = 
l 

(T ms + lT2 s + 1) 

W lr(s) _ 

(Tins + 1) (-Th2 s + 1) Tgs 
2 

s + k 

(3-46) 

r m S (TgS + 1) 

R(s) 

E (j wr ) 

Re W 
lr(i wr) 

= - kl 

(3-47) 

2 2 

Tm 
+ 

wr 
g m) 

+ (1 + wr Tg/ (3-48) 

r 

0 

+ 

= - (k1 

g 

- 

/ 



Again solving for k1 

1 + w2 T2 r 
k 1 adapt. pt. = 2 2 

Tm + Wr TgTm / 2 

53 

(3 -48a) 

1 (3 -48b) 

which is independent of Wr as is desired. Therefore, WF1(s) will be 

defined by equation (3 -46). See Figure 11. Now temporarily assume 

then 

r(t) = 0 

d(t) # 0 

W ld(s) _ TmTm 

2 

s(TgS + 1) 

, . s + 1 ) Tgs2 + s + k 
1 

D(s) 

(3-49a) 

(3-49b) 

(3-50) 

r (t) 1 
(t) 

s(rgs+1) 

d (t) 

c (t) 

rms+ 1 

4 K1 

rm 

(rm s+ 1) Em S+ 1 

- 2a1 

w, (t) 

e(t) w1(t) 
V+ 

e(t) 

y (t) 

Figure 11. Complete MRAC System Configuration for Example 3.2 
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and by equation (3-13a) 54 

and 

Tm 
Ed(j 

W01) 
- (1 + j wdTm) (1 + j wd 2 

W ld(j wd) Tm 

Ed (j wd) 
Re = 

Wld(Jwd) 
o 

2 

1 w2 Tm = - 
d 2 

From which the following adaptive -loop operations are possible 

d 

(3 -51) 

(3 -52) 

VG 

[k1 is driven to its maximum limit 

Null condition, unstable equilibrium 

k1 is driven to its minimum limit 

(3 -53a) 

(3 53b) 

(3 -53c) 
T m 

Again the maximum possible value of kl may cause a highly oscillatory 

but not unstable control system, since the control system poles tend to 

move out along the imaginary axis in the s -plane for increasing loop 

gains. 

Returning to the case of simultaneous, steady- state, sinusoidal 

r(t) and d(t) 

Er W 

2 
wi(t)dc = 

lr cos kb - wr) + Cd2 ld cos cd-Twd) Of) 

= 

E 1 cos (4)er + ld cos (cbcd wd) 
rW 

ErWld 
+ cos( er -fwd -Cdr) 

CdW 
+ cos 

(d)cd + ckdr wr) wr w d 

wr 
d 

(3-54a) 

(3 -54b) 

w 

e(t) 

2 Cd2 

Ir 
- 

< I 

= 



where 

Er = R Jwr (1 - Tmkl + 

+ wr/ + 

JwrT 
) 

l ( 

g 

kl wrTg 
\1 1w T rm. 

Wir = R 
1 

Cd 

Wld 

(e.rtr) 

( cd -wd) 

wr(1 + j wrTg) 

55 

(3-54c) 

+ jw r Tm ( + jw 1(3-54d) 
TM) (1 + jwr T 

2 / \ 1 
k - w T r g jwr, 

= D 

D 

(4)er 

[tan-1 

((l)cd 

[tan-1 

jwd (1 + jwdTg) 

I 

+ Jwd T) 

(3 -54e) k1 wd Tg + Jwd 

Jwd 1 

(1 + jwdTm) (1 + jwd 

d - dr) 
Tg -1 

TZ Jwd) d/ 

(3 -54f) 

(3 -54g) 

(3 -54h) 

wrT 

2 
TM 

/ (k1 
- wdTg 

+ tan -1 w2 tan 
m 1 

+ ddr (kw r) 

+ tan-1 
w 

g 

wdTm 

To qualitatively and quantitatively analyze equation (3 -54), a 

Fortran program was written and processed on an IBM 1620 for evalu- 

ation of e(t)w 1(t)dc as a function of k1, wr, wd, and D. The remaining 

parameters are defined by equation (3 -37), An analog computer simu- 

lation on a TR -48 employing the circuit diagram shown in the Appendix 

was used to verify the theoretical results. Verification was achieved 

with a maximum variation of 10 percent from theoretical results. 

For the case of no disturbance forcing function d(t), Figure 12 

illustrates the adaptive -point k1 sensitivity to wr. A comparison of k1 

2 

I 

g 
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1 
g 

= 

r r 

- 

- 

- 
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sensitivity is displayed for MRAC systems using first- and second - 

order weighting filters forced by the control system variable 61(t). 

Equations (3 -45) and 3 -48) define the corresponding trajectories. 

For the case of unequal forcing function frequencies wr and wd, 

Figures 13 and 14 illustrate the sustained open adaptive -loop weighted 

error bias e(t)wl(t)dc as a function of k1. The test conditions illus- 

trated are for disturbance levels D of zero, ±50 percent and ±6 db 

about R with ±6 db variations of wd about r. Near adaptive -point 

values of k1 (i. e. , crossover), the slopes are positive indicating 

stable equilibrium points necessary for desirable closed adaptive - 

loop characteristics. Disturbance induced bias effects are noted 

to cause an increase in adaptive -point values of k1 proportional to 

D for conditions of wd less than wr and decrease with D for wd 

greater than wr. Equation (3 -53) predicts the reversal to occur at 

wd equal to /27T111 for the case of disturbance only forcing- functions. 

Therefore, the adaptive loop will minimize the response error by 

increasing the control loop gain for conditions of wd less than VG /Tm 

and decreasing the control loop gain for conditions of wd greater than 

/T for unity wr. 

For the case of equal forcing function frequencies wr and wd, 

Figure 15 illustrates the open, adaptive -loop, weighted error bias 

e(t)wl(t)dc as a function of k1. Stable equilibrium (i. e. , positive 

slope) adaptive -point values of k1 are noted to exist for conditions of 

D less than R. However, realizable unstable equilibrium character- 

istics exist for conditions of D greater than R. Therefore, the condi- 

tion of D equal to R represents an equilibrium boundary between 

convergent and divergent closed, adaptive -loop operation. 

m 
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For the case of null adaptive weighted error, Figures 16 and 17 

illustrate the steady- state, closed -loop, adaptive -point trajectory of 

kl as a function of D, wr, and wd. The reversal of bias effects is 

readily noted to occur at an wd of 2 /T as previously predicted for 

the disturbance only case. Peak sensitivity of k1 to wd and D occurs 

near the control system bandwidth frequency due to the lead -lag con- 

trol system response characteristics to d(t). However, disturbance 

bias effects are relatively minimized when wr is near the model band - 

width frequency due to the reference bias effects peaking near 1 /Tm as 

noted in equation (3 -54). Figure 16 illustrates the discontinuities 

encountered while Figure 17 illustrates the multiple values of k1 that 

may be maintained for the equilibrium boundary condition of D equal 

to R when a beat -frequency phenomenon occurs. 

Example 3. 3 consists of the following two considerations: 

1. Second -Order Control System and First -Order Model 

2. Model Variable, Weighting Filter Input. 

Equations (3 -38a and b) and (3 -39a and b) are directly applicable. To 

derive W(s), 

then 

temporarily assume 

d(t) = 0 (3 -55) 

aTF 
1(s) - 

1 
R(s) 

a-- 
T m 

T 

- m , 

T S + 1 lr(s) m 

= - WF(s) 6'lr(s) (3 -56) 

= 
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Figure 16. Steady -State Adjustable Parameter Frequency Sensitivity for Example 3. 2, col. = 1 
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where 

T S m 
T S + 1 m 

R(s) (3-56a) 

Again the weighting filter WFi(s) derived is a first -order function 

although previous experience in Example 3.2 indicates the use of a 

second -order filter to provide more desirable characteristics. There- 

fore, the effectiveness of the two filters must be compared by evalu- 

ating the the adaptive -point k1 sensitivity to wr. Let 

" 

T m WFi(s) - 
T S + 1 m 

then 
T m S T 

W1(s) [T s+ m 1 T m sm + 1 

and 

Re W lr(wr) 

Er(Jwr) 

solving for k1 

k 1 adapt. pt. 

= 

R(s) 

2 
Tm(1 -k Tm) + Tg - T 

- (1 - k1Tm) (k1 - Tgwr) 

1 

2 
i 

2 1 
- w - rTm Tm 

2 
Tgwr 

2 

± ¡(W m T1 
+ 4wr (1 +Jwr Tg 

m 

= - 2 {(2 - 1) + (.02 

2 

r + 1 + w4 

(3 -57) 

(3 -58) 

(3 -59) 

3 -59a) 

(3 -60) 

64 

k 
1 

0 

w 
r 

r r 

r 

lr(s) 

- - 

- 

g 

g 
) 



which is dependent on and proportional to wr, an undesirable 

condition. 

Next consider equation (3 -46) from example 3.4 and let 

T 
WF1(s) - m 

(T s + 1) S + 1} 

where 

W1(s) _ 

then 

Er(j wr) 
Re W1r( - 0 

S T2 m 
s + 1)2 (Tm s + 1) 

\2 

2 

= w4 gTm w2 
r 2 r 

T m 
2 

3 Tm 
2 

65 

(3 -61) 

R(s) (3-62) 

- klT/II 

fTm(1 -kl m) + 
3Tgi [kl 

+ (kl m 1) (k1 

and again solving for k1 

W2 T 
\ 

r 

+ T 
g 

- T W21 
g r 

2 
1 

T W m r.r (4+T T W21 + 
\\ 

T 

1 adapt. pt. T 2 w2 2 m m g r// g 

2 
in 

1 r 

Tlnwr (Tm(4+TmTgwr 

2 \ 

l+Tgl - 1 

// 

+ 

T 2 w 2 

+ 6TTY Wr 
1 - r 1+T2 Wr 

g 

(3-63) 

(3 -64), 

(T 

( 1 

- 

- - 
g 

k 

1' 

- 

mg ß 



k1 
adapt. pt. w2) r 

2 2 

2 VL()-'j2+4 
1- 2-1+ -Tr- 

66 

(3 -65) 

which is also dependent on wr, but not to the same extent as noted in 

equation(3- 60)for the first -order filter case. Therefore, the second- 

order filter noted in equation(3- 62)will be used for WF1(s). However, 

the solutions of both equations(3- 60)and(3- 64)result in double -valued 

functions with the possibility of both solutions being realizable. 

Evaluation of the slope of e(t)wl(t)dc through the particular 

adaptive -point k1 is necessary to determine the stable and unstable 

(i. e. , boundary values) equilibrium conditions. Also, at wr 2, 

equation (3 -65) becomes an indeterminant; however, this results from 

the method employed for evaluating the adaptive -point value of k1. See 

Figure 18 for the resulting system. 

As noted previously, there is no adaptive loop activity for the 

case of zero -valued r(t). 

e(t)w (t)dc 
EWP r lr 

2 

Returning to the case of simultaneous, steady- state, sinusoidal 

r(t) and d(t) 

cos (4)er :1wr) 
(w 

w r d 

P 

ErWlr cos (der 
CdWlr 

r) + 2 
cos (cl)cd+ 

(3 -66a) 

P 

dr wr) 
wr wd 

(3-66b) 

- 
2 

w 
r 

4 

wr 

2 

I`r 

L 

2 

2 

r 

- 

r - 
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r(t) 1 

s(T S+ 1) 

d(t) 

+ c(t) 

S1(t) 

Ok1 

LTmst1) 
C 

2n1 

T 
in 

H 1 

s m 

1 

S1 

(t) (t)W1i(t) + 

e(t) ® 

y(t) 

Fig. 18. Complete MRAC System Configuration for Example 3. 3. 

where 

Er = R 

Wlr 

Cd = D 

2 
j wr T 

Jwr(1 -k1Tn.1+jwrTg) 

(1+j wr m)2(1+jwr 

jwd(1+jwdTg) 

k1 - WáTg+jwd 

(k -wrTg+io.)r)(1+jw r m/ 

Tm 
2 

W T W 
= 

(3 -66c, 

(3 -66d) 

(3 -66e) 

('er wr) tan-1 - tan-1 
1-k1 m w2T 

+ tan -1 
wr T m 

k 
1 r g 

T 
+ tan 1 wr 2 (3 -66f) 

+ ó1 (t) ® 1 

- 

+ 
- 

_ 

s + 

r 

= R 
1 
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A FORTRAN program was used again to qualitatively and 

quantitatively analyze equation(3 -82). The results are shown and 

discussed in the following. 

For the case of unequal forcing function frequencies wr and wd, 

Figures 19 and 20 respectively illustrate the adaptive point k1 sensitivity 

to wr and the sustained open, adaptive -loop weighted error bias as a 

function of k1. Figure 19 exhibits the desirability for using the second - 

' order filter in lieu of the first -order filter for WF1(s) to produce 

relative insensitivity of k1 to wr. An additional constraint on the maxi- 

mum tolerable value of k1 is necessary when using the second -order 

filter for WF1(s). This results from the realizable double -valued 

solution when wr is greater than [2 /Tm with the upper value represent- 

ing the stability boundary condition. 

For the case of equal forcing function frequencies wr and wd, 

Figures 21 and 22 illustrate the open, adaptive -loop weighed error bias 

e(t)wi(t)dc as a function of k1. Negative slopes of e(t)wi(t)dc through 

adaptive point values of k1 provide stable equilibrium solutions in this 

system. Since multiple -valued solutions are feasible, solutions with 

positive slope functions will represent unstable equilibrium conditions 

that are stability boundaries. When wr is greater than 2/ m, the 

stable solution values of the adaptive -point k1 increase with D while the 

unstable solution values decrease resulting in a common equilibrium 

point for a particular value of wr and D. This shift of the unstable 

14)wr) 

s m 
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equilibrium point with D is also noted by the dotted curve on Figure 19. 

Since e(t)wi(t)dc is normalized with respect to R, the single power of 

D provides a greater disturbance -bias component than does the D2 

function in the preceding example for D less than R. Therefore, the 

disturbance -bias effects induce a stability boundary occurring at a 

value of D less than R and as a function of w r 
For the case of null adaptive weighted error, Figure 23 illustrates 

the steady- state, closed -loop adaptive -point trajectory of k1 as a 

function of D and w. In the event of this system operating in a beat - 

frequency, forcing function environment, restricting wr to be within 

±6 db of the model- bandwidth frequency and D less than O. 5R is 

observed to result in reasonable values of k1. Also, the operation at 

w equal to 12-7T provides a null of disturbance -bias effects. 
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IV. CONCLUSIONS 

A unified review of MRAC system design and analysis techniques 

derived from pertinent literature has been presented. The review con- 

tains a design format with two basic variations and includes methods of 

solving commonly encountered problems. The two basic MRAC systems 

considered employed control system variables b.(t) and corresponding 

model variables .6. (t) to force the weighting filters in each adaptive 

loop. The sensitivity of the adjustable parameters Pi to reference r(t) 

and disturbance d(t) forcing functions were evaluated. A method was 

developed for analytically determining the Pi sensitivity to simultaneous 

steady -state, sinusoidal r(t) and d(t), thereby extending the results of 

Farmelo and Sammon (10) obtained for the single forcing- function case. 

This also represents an extension of frequency- domain analysis tech- 

niques to two particular inherently nonlinear system configurations. 

Three specific examples illustrated the application of the procedures 

developed. 

In general, MRAC systems that force the weighting filter WFi(s) 

with 6.(t) to obtain the weighting function wilt) displayed various 

sensitivity characteristics to all and any d(t). Adjustable parameters 

Pi are driven to limit values for cases of excitation by d(t) only and 

during simultaneous r(t) and d(t) excitation when D is greater than R 

with wr equal to wd (i. e. , beat -frequency case). Otherwise, a compro- 

mise adaptive -point value of Pi with respect to desired values will be 

obtained as a function of wr, wd, R and D. 

MRAC systems that force the weighting filter WF.'(s) with b.'(t) 

to obtain wi'(t) displayed no sensitivity to d(t) unless a beat -frequency 
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condition of wr equal to cod was encountered during simultaneous r(t) and 

d(t) excitation. The control of the adjustable parameter Pi would then 

encounter a beat -frequency sensitive stability boundary for a value of 

D greater than zero but less than R. Operation above this boundary was 

noted to cause Pi to be driven to a limit value. This type of system dis- 

played greater adaptive -point sensitivity to excitation frequencies for 

differences between control system and model order than did a MRAC 

system employing bi(t) to obtain wi(t). However, the use of bi'(t) to 

obtain wi'(t) will offer the advantage of Pi insensitivity to disturbances 

except during beat -frequency cases. 

It is recommended by this author that this investigation be 

extended in future work to include stochastic r(t) and d(t) forcing 

functions. 

x 



DEFINITIONS OF SYMBOLS USED 

Symbol 

a., a.' 
r 

al' al 

C' Cr' Cd 

c(t), C(s), cr(t), 
cd(t), c(t) 

D 

d(t), D(s), d(t) 

E, Er 

e(t), E(s), é(t) 

EQ. 

F(s) 

fjk 

f2(e), f(e2) 

G(s) 

gjk 

H(s) 

hjk 
K(s) 

kjk 

k1 

k1 

Units Definition 

1 /seconds2 

Radians 
second 
Radians 
second2 

General adaptive -loop proportionality 
constants 
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Example adaptive -loop proportionality 
constants 

Amplitude of sinusoidal c(t) 

Control system response (output) state 
variables and the state vector 

Amplitude of sinusoidal d(t) 

Disturbance input state variables and 
the state vector 

Amplitude of sinusoidal e(t) 

Control system and model response 
error state variables and the state vector 

General adaptive -loop error quantity 

Prefilter transfer - function 

F(s) coefficients 

Quadratic functions of response error 

Physical process transfer -function 

G(s) coefficients 

Feedback compensation transfer - 
function 

H(s) coefficients 

Feedforward compensation transfer - 
function 

K(s) coefficients 

Example adjustable parameter 

Rate of change of k1 

i 



Symbol Units Definition 

M(s) Model transfer- function 

mjk M(s) coefficients 

mi Specific m. corresponding to Pi 
J 

MRAC Model- reference, adaptive control 

n Number of state variables 

Pi' AP i' Pi 

78 

General adaptive -loop adjustable param- 
eter state, incremental change, and 
rate of change 

PI Performance index 

Q 

q l' q2' qn 

R 

Fixed diagonal matrix of response - 
error weighting coefficients 

Diagonal elements of Q 

Amplitude of sinusoidal r(t) 

r(t), R(s), f(t) Reference input state variables and the 
state vector 

s radians 
seconds Laplacian operator (i. e. , complex 

variable) 

t seconds Time variable 

TFc, TFm Transfer- functions 

Unit vectors 

W., W.', Wir, Amplitude of sinusoidal wi(t), wit(t) 

W. id' W'ir 

wi(t), Wi(s), 

wi'(t), W.1 ' s), 
wi(t), wi' (t) 

General adaptive -loop weighting state - 
variables and the state vectors 

W1, WIT' Wlr, seconds Amplitude of sinusoidal wi(t), w1'(t) 

Wld' Wir 

wi(t), W1(s), seconds Example adaptive -loop weighting state - 
variables wl'(t), W1'(s) 

... 

ú 



Symbol 

WFi(s), WFi'(s) 

Units 

WF1(s), WF1'(s) seconds 

Y' Yr 
y(t), Y(s), ÿ(t) 

ak, á'd, an 

79 
Definition 

General adaptive -loop weighting filter 
transfer- functions 

Example adaptive -loop weighting filter 
transfer -functions 

Amplitude of sinusoidal y(t) 

Model response state variables and the 
state vector 

Control system transfer -function coeffi- 
cients for polynomial representation 
and square matrices for first -order, 
time -domain representation 

bi(t), ai(s) General control system variable pre- 
ceding Pi 

General model variable corresponding 
to 6. t) 

( 

Example control system variable pre- 
ceding k, and corresponding model 
variable 

Tg, rm seconds Example time -constants 

'cr' 'cd' radians Functional -block response phase shift 
4er' 4wd' angles for sinusoidal forcing functions 

4 wr' wry' yr 

ckdr 

wr wd 

Subscripts 

c 

d 

radians Initial phase shift of sinusoidal d(t) with 
respect to sinusoidal r(t) 

radians ,Forcing function frequencies 
second 

Control system response 

Disturbance input (i. e. , with respect 
to d(t)) 

e Response error 

g Physical process coefficients 

szt:' (1' 

Ai'(s) 

61(t), Ai(s), 

80 0, Ai(s) 
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Symbol Units Definition 

i Subscript for general adaptive loop 
connotation 

j Subscript for polynomial coefficients 
corresponding to operator order 

k Subscript for numerator or denomi- 
nator coefficients of polynomial ratio 

m Model coefficients 

r Reference input (i. e., with respect 
to r(t)) 

w Weighting filter response 

y Model response 

The prime symbol indicates adaptive -loops with model variable, 
weighting filter inputs. 
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VI. APPENDIX 
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