

AN ABSTRACT OF THE DISSERTATION OF

David Piorkowski for the degree of Doctor of Philosophy in Computer Science pre-

sented on August 10, 2016.

Title: Information Foraging Theory as a Unifying Foundation for Software Engineer-

ing Research: Connecting the Dots.

Abstract approved:

__

Margaret M. Burnett

Empirical studies have shown that programmers spend up to one-third of their time

navigating through code during debugging. Although researchers have conducted

empirical studies to understand programmers’ navigation difficulties and developed

tools to address those difficulties, the resulting findings tend to be loosely connected

to each other. To address this gap, we propose using theory to “connect the dots” be-

tween software engineering (SE) research findings. Our theory of choice is Infor-

mation Foraging Theory (IFT) which explains and predicts how people seek infor-

mation in an environment. Thus, it is well-suited as a unifying foundation because

navigating code is a fundamental aspect of software engineering. In this dissertation,

we investigated IFT’s suitability as a unifying foundation for SE through a combina-

tion of tool building and empirical user studies of programmers debugging. Our con-

tributions show how IFT can help to unify SE research via cross-cutting insights

spanning multiple software engineering subdisciplines.

©Copyright by David Piorkowski

August 10, 2016

All Rights Reserved

Information Foraging Theory as a Unifying Foundation for

Software Engineering Research: Connecting the Dots

by

David Piorkowski

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented August 10, 2016

Commencement June 2017

Doctor of Philosophy dissertation of David Piorkowski presented on August 10,

2016

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my dis-

sertation to any reader upon request.

David Piorkowski, Author

ACKNOWLEDGEMENTS

First and foremost, I’d like to thank my advisor, Margaret Burnett, who had an un-

canny knack for challenging me when I needed to be challenged, encouraging me

when I needed encouragement and laughing with me on the occasions when every-

thing felt as if it was falling apart. I truly believe that I was one of the lucky ones,

who had an advisor who was just as invested (if not more so) in my success as I was.

Thank you Margaret.

Thank you also to the members of my committee for agreeing see me through this

the seven-year long journey. Your influence resonates in this work and within me.

Thank you Chris Scaffidi, Scott Fleming, Anita Sarma, Peri Tarr, and David Kling.

Without external support, much of this research would not have been possible.

These internships provided me not only experience, but also daily mentorship, finan-

cial support, and necessary equipment (even replacing it when it died mid-internship).

I'm especially thankful for the huge amount of flexibility that my mentors gave me to

pursue my own interests, often even at the expense of their own. Towards that end, I'd

like to especially thank those who guided me through my internships (presented al-

phabetically by last name). From IBM: Rachel Bellamy, Pietro Ferrara, Bonnie John,

Marco Pistoia, and Omer Tripp and from Oracle: Michael van de Vanter. Their guid-

ance and expertise left a mark on me and this work.

I would also like to thank the numerous additional collaborators over the years

who given their time, energy and hours of lost sleep to help bring this work to frui-

tion. They are: Irwin Kwan, Chris Bogart, Austin Henley, Tahmid Nabi, Charles Hill,

Sruti Srinivasa Ragavan, Amber Horvath, Jamie MacBeth, Liza John, Cal Swart, and

Josh Jordahl. It has been a joy to work with all of you.

HCI research is often not possible without willing participants. Our research group

thanks our study participants for their time.

Our group would also like to thank IBM for support under an OCR grant and my

PhD Fellowship, NSF for support under NSF-1314384 and NSF-1302113, AFOSR

for support under FA9550-09-1-0213. The views and conclusions in this dissertation

are those of the author and should not be interpreted as representing the official poli-

cies, either expressed or implied, of AFOSR, IBM, or the U.S. Government.

Finally, none of this would have possible without the support and sacrifices of my

family and loved ones. Thank you Mom, Dad, Jess and Béatrice for always being

there and always believing in my potential.

TABLE OF CONTENTS

 Page

Chapter 1 Introduction ... 1

Chapter 2 Background and Related Work ... 3

2.1 Information Foraging Theory Constructs and Propositions 3
2.2 Initial application of IFT: Document Collections .. 6
2.3 IFT and Web Foraging ... 6
2.4 IFT and Software Engineering ... 9

Chapter 3 Predictive Factors as Scent ... 13

3.1 Related Work ... 14
3.2 Methodology .. 15
3.3 Study Environment .. 16

3.3.1 Recommendation Algorithms .. 17
3.3.2 Participants .. 21
3.3.3 Procedure ... 22
3.3.4 Analysis Procedure .. 22

3.4 Results .. 24
3.4.1 Hit Rate .. 24
3.4.2 Demonstrated Usefulness .. 27
3.4.3 Opinion Questionnaire .. 28

3.5 How Recommendations Were Used .. 29
3.5.1 Using Recommendations for Efficiency ... 30
3.5.2 Using Recommendations for Discovery .. 31

3.6 Discussion .. 33
3.6.1 Sensitivity to Momentum .. 33
3.6.2 Changes in Foraging Behavior over Time .. 34
3.6.3 Beyond Word Cues ... 34
3.6.4 Predictive Factors as Scent .. 35
3.6.5 Scent as a Unifier for Software Engineering ... 38

TABLE OF CONTENTS (Continued)

 Page

3.7 Summary of Results ... 38

Chapter 4 Foraging Diet: Unifying Prey and Foraging Strategies 40

4.1 Background .. 41
4.2 Methodology .. 43

4.2.1 Study Data ... 43
4.3 Results .. 49

4.3.1 Preliminaries: How Much Foraging Did Participants Do? 49
4.3.2 RQ1: The What’s of Programmers’ Diets ... 49
4.3.3 RQ2: The How’s: Strategies during Foraging ... 52
4.3.4 RQ3: What’s Meet How’s: Dietary Strategies .. 54

4.4 Discussion .. 61
4.4.1 The Long Tail of Diet What’s ... 61
4.4.2 Scent’s Role in Foraging Diets and Strategies .. 62
4.4.3 Unifying Diet with Strategies .. 63

4.5 Summary of Results ... 63

Chapter 5 Motivations and IFT for Software Engineering 65

5.1 Background and Related Work .. 67
5.1.1 Minimalist Learning Theory ... 67

5.2 Methodology .. 68
5.2.1 Procedure ... 69
5.2.2 Participants .. 69
5.2.3 Qualitative Analysis Methods ... 70
5.2.4 Statistical Analysis Methods ... 72

5.3 Results .. 73
5.3.1 RQ1. What to Look For? Fixers’ and Learners’ Goals 73
5.3.2 RQ2. Turning Points: The Patches Where Decisions Were Made 73
5.3.3 RQ3. Turning Point “Why’s: Cue Types as Sources of Inspiration 78
5.3.4 RQ4. How Should I Go About Foraging? ... 84

TABLE OF CONTENTS (continued)

 Page

5.4 Generalizing Fix Versus Learn to Mobile Environments 85
5.4.1 Methodology and Analysis .. 86
5.4.2 Results RQ5a: Patch Types ... 92
5.4.3 Results RQ5b: Cue Types ... 96

5.5 Discussion .. 97
5.5.1 Production Bias ... 97
5.5.2 Assimilation Bias .. 100
5.5.3 Cue Types in IFT ... 100
5.5.4 Cue Types May Explain Differences Between Mobile and Desktop 101

5.6 Summary of Results ... 101

Chapter 6 Scent Fundamentals: Value and Cost as SE Unifiers 103

6.1 Background and Related Work .. 104
6.2 Empirical Study Methodology ... 105

6.2.1 Participants, Procedures, and Task .. 105
6.2.2 Qualitative Analysis .. 106

6.3 Results .. 107
6.3.1 RQ1: Programmers’ Expectations of Value .. 107
6.3.2 RQ2: Programmers’ Expectations of Cost .. 113

6.4 RQ3: Literature Analysis ... 120
6.4.1 Analysis Methodology .. 120
6.4.2 Results ... 124
6.4.3 The Scaling Up Problem ... 127

6.5 Summary of Results ... 127

Chapter 7 Discussion and Open Questions .. 130

7.1 Between-Patch Foraging Is Difficult ... 130
7.2 One Missing Piece: Time ... 131
7.3 Connecting the Dots: IFT and Software Engineering Research 132
7.4 Generalizability .. 134

TABLE OF CONTENTS (Continued)

 Page

7.5 Threats to Validity ... 134

Chapter 8 Conclusion .. 136

References .. 138
	

LIST OF FIGURES

Figure Page

2.1. Example topology .. 4

2.2. Example of two information patches ... 4

3.1. Eclipse interface with our Recommendation view .. 17

3.2. Formal definition of the PFIS-R Algorithm. .. 20

3.3. The text of the jEdit bug report. ... 21

3.4. Number of navigations by each participant. .. 25

3.5. Hit rate of each algorithm .. 25

3.6. Hit rate (s=10) of each algorithm per task period .. 26

3.7. Number of times that participants clicked recommendations 27

3.8. Percentage of recommendations that participants reported learning 27

3.9. Results of questionnaires on the value of the recommendation system 29

4.1. Frequency of goal pattern. ... 50

4.2. Strategy proportions by goal type .. 56

4.3. The repeat pattern for P3 .. 59

4.4. The Oscillate pattern for P6 ... 60

5.1. Our multi-phase qualitative coding technique ... 70

5.2. An information environment (Eclipse) .. 74

5.3. Example Stack Trace patch. ... 76

5.4. Example Search Results patch. .. 76

5.5. Patches where each treatment’s participants made foraging decisions 77

5.6. P5L's foraging example ... 79

5.7. P3F's foraging example. ... 79

5.8. Episode in which P5L attended to an Output-Inspired cue. 81

5.9. Cue types each treatment’s participants attended to at each navigation decision 82

5.10. Vanilla Music’s bug #148. ... 87

5.11. The lab study setup .. 88

LIST OF FIGURES (Continued)

Figure Page

5.12. AIDE in its debugger mode ... 89

5.13. Patch types where Mobile participants made navigations from 93

5.14. Patch types where Fix participants made navigations from 94

5.15. Patch types where Learn participants made navigations from 94

5.16. Cue types attended to by Mobile participants for each treatment 96

5.17. Cue types attended to by Fix participants for each environment 98

5.18. Cue types attended to by Learn participants for each environment. 98

6.1. Retrospective semi-structured interview questions. .. 106

6.2. Prey in pieces example ... 115

6.3. Endless paths example ... 117

6.4. Disjoint topologies example .. 118

6.5. SketchLink ... 125

6.6. Team Tracks ... 126

LIST OF TABLES

Table Page

3.1. Treatment assignments to participants and task periods 21

4.1. Information goal type examples. .. 45

4.2. Information goal patterns. .. 46

4.3. Debugging strategy code set with example indicators for each strategy. 48

4.4. Time participants spent foraging for information .. 49

4.5. Number of segments spent on the types of information goals. 49

4.6. Frequency of pattern instances exhibited by each participant 50

4.7. Usage (segment counts) of each strategy during foraging 52

4.8. These 6 strategies (out of 12) stood out. .. 54

4.9. Strategy usage by goal types. ... 55

4.10. Goal-pattern segments that co-occurred with each strategy 58

5.1. Types of patches in which participants made foraging decisions 75

5.2. The cue types to which participants attended to .. 80

5.3. Participant tactics usage and success rates ... 85

5.4. The patch types that Mobile participants navigated from. 91

5.5. The cue types to which Mobile Participants attended to 91

5.6. The total number of each patch type .. 92

5.7. A summary of potential confounds in terms of patch types. 95

5.8. A summary of potential confounds in terms of cue types. 99

6.1. Code set for expected and actual values .. 108

6.2. Participants’ expectations of value vs. actual value ... 108

6.3. E(V) research challenges with value estimation .. 112

6.4. Frequency of actual costs (Cb or Cw) that were unexpectedly higher 114

6.5. Research challenges for cost estimation .. 120

6.6. Code set for the literature analysis ... 121

6.7. Results of analyzing 302 papers .. 124

LIST OF TABLES (Continued)

Table Page

6.8. Summary of open research problems and challenges. 128

7.1. 128 SE research papers that are connected using IFT’s abstractions. 133

	

	

1

	

Chapter 1 Introduction

Navigating through code is an expensive, yet essential aspect of software debugging.

In the course of debugging, programmers ask several questions such as where certain fea-

tures are implemented, why certain paths of code are executed or how different parts of

code relate to each other [Sillito et al., 2006]. Answering these questions often requires

programmers to seek out information hidden somewhere in the codebase. For some of the

questions that programmers ask, navigating through the code to find answers is non-

trivial. Prior work [Ko et al., 2006] has shown that programmers can spend 35% of time

on average just on the mechanics of navigation.

To address this problem, several tools have been developed to assist programmers in

the time-consuming task of navigating through code (e.g., [DeLine et al., 2005b; Henley

& Fleming, 2014; Karrer et al., 2011; Kevic et al., 2014; Krämer et al., 2013; Majid &

Robillard, 2005; Singer et al., 2005]). However, there is little foundational knowledge to

support the design and evaluation of such tools. Therefore, the generalizability of those

solutions tends to be limited. To truly understand programmers’ information-seeking be-

havior, we need theory.

The essence of theories is abstraction—in our case, mapping instances of successful

approaches to crosscutting principles. In the realm of human behavior, these abstractions

can then produce explanations of why some software engineering tools succeed at sup-

porting the efforts of programmers and why some tools that were expected to succeed did

not.

As Shaw eloquently explained, scientific theory lets technological development pass

limits previously imposed by relying on intuition and experience [Shaw, 1990]. For ex-

ample, her summary of civil engineering history points out that structures (buildings,

bridges, tunnels, canals) had been built for centuries—but only by master craftsmen. Not

until scientists developed theories of statics and strength of materials could the composi-

tion of forces and bending be tamed. These theories made possible civil engineering ac-

complishments that were simply not possible before, such as the routine design of sky-

2

scrapers by ordinary engineers and architects [Shaw, 1990]. And indeed, in computer sci-

ence, we have seen the same phenomenon. For example, expert programmers once built

compilers using only their intuitions and experiences, but the advent of formal language

theory brought tasks like parser and compiler writing to the level that undergraduate

computer science students now routinely build them in their coursework [Aho et al.,

1986].

Our choice of theory to understand programmers’ information seeking is Pirolli’s In-

formation Foraging Theory (IFT) [Pirolli & Card, 1999; Pirolli, 2007]. IFT provides con-

structs and propositions to explain and predict how people seek information. It has been

well-validated over several domains such as document collections [Pirolli, 1998; Pirolli

& Card, 1995, 1998], web pages [Chi et al., 2000, 2001; Fu & Pirolli, 2007; Pirolli, 2005,

2007; Pirolli et al., 2005; Pirolli & Fu, 2003] and program code [Lawrance et al., 2007,

2008a, 2008b, 2010, 2013; Piorkowski, 2013; Piorkowski et al., 2011].

We would like achieve a higher level of connection among works to support infor-

mation seeking by leveraging IFT as an abstraction. Therefore, in this thesis, we aim to

“connect the dots” between established SE literature and IFT. We focus our efforts on

factors that affect programmers’ navigation in code because navigation is fundamental to

many software engineering activities. We address the following research question:

Thesis Research Statement

Information foraging theory can help to unify SE research via cross-

cutting insights spanning multiple software engineering subdisciplines.

3

Chapter 2 Background and Related Work

2.1 Information Foraging Theory Constructs and Propositions

Originally derived from Optimal Foraging Theory [Stephens & Krebs, 1986], which

describes how animals seek food given a specific environment, Information Foraging

Theory [Pirolli & Card, 1999] adapts its constructs and propositions to explain and pre-

dict how people seek information. A person, the predator, seeks information in an infor-

mation environment. The environment is a collection of information patches (documents,

methods in code) connected by links (e.g., hyperlinks, menu items, scrolling) to form a

topology. Each link has a cost of traversal (e.g., the time it takes to traverse the link,

where time is influenced by a person’s physical and cognitive speed). Predators navigate

the topology by moving between patches by following an outgoing link from their current

patch or backtracking. Figure 2.1 depicts an example topology.

A patch is a collection of information features (words, syntax, pictures, etc.), which

contain information that a predator can process. A predator processes patches in order to

find their information goal (the set of information the predator is seeking). The infor-

mation features that match a predator’s goal are termed prey. Like links, each information

feature has a processing cost associated with it based on the time to read and understand

the feature. Some of these information features are associated with an outgoing link, and

are called cues. Cues act as signposts for the predator and give a clue as to what may be

on the other end of the link that a cue is associated with. Figure 2.2 depicts two example

patches.

According to IFT, at each patch, the predator is faced with three choices: forage within

the patch, move to another patch, or enrich the environment. In the first case, called with-

in-patch foraging, the predator processes some of the information features within the

patch looking for information related to their current information goal. In the second

case, between-patch foraging, the predator decides to traverse a link and move to another,

more promising patch. In the final case, called enrichment, the predator changes the envi-

ronment. Enrichment can take many forms such as highlighting a word or adding a patch

4

(creating a set of search results) or a link (adding a bookmark). The features provided by

the information environment limit the types of enrichment available to the predator.

Figure 2.1. Example topology. Each square represents an information patch. Each directed edge is a navi-
gable link from one patch to another. Each link’s weight represents the cost of traversing the link [Pirolli,

2007].

Figure 2.2. Example of two information patches. Each patch contains a set of information features, depicted
as hexagons. Some information features are cues, which are associated with outgoing links. Dashed lines

11"
12"

3"

4"

8"

16"

11"4"

9"

7"

5"

6"

1"

12"

14"

5
indicate these associations. Each hexagon is also annotated with a processing cost, shown in each hexagon

[Pirolli, 2007].
IFT’s key prediction is that the predator tries to maximize the amount of information

gained per cost of interaction, which Pirolli formalized as follows:

Predator’s desired choice = 𝑚𝑎𝑥 %
&

where V is the value of the information gained and C is the cost of the interaction, that is,

the cost of processing a patch, the cost of traversing a link or the cost of enriching the en-

vironment.

Generally, predators do not have perfect information about the amount of information

gained or the cost of interaction, so they make their choices based on their estimations of

value and cost, which Pirolli formalized as follows:

Predator’s selected choice = 𝑚𝑎𝑥)(%)
)(&)

where E(V) is the expected value of the information gained and E(C) is the expected cost

of interaction. The difference between the predator’s desired choice and the predator’s

selected choice is based on how accurately the predator estimated V and C.

To evaluate where to go next, the predator follows links with the highest information

scent. Information scent lives in the predator’s head, and is summarized by Pirolli as

“terse representations of content … whose trail leads to information of interest” [Pirolli,

2007]. In other words, information scent captures how the predators process information

features and cues in order to make their next foraging decision. Predators seek to maxim-

ize the expected value of information gained while minimizing the cost of traversing the

link. Formally, in the case of between-patch foraging, the predator is currently seeking

current prey G and has a set of available outgoing links L, available to choose from the

current patch. Each link l∈L, has a set of associated cues Jl (such as words in the hyper-

link). IFT predicts that predators will tend to evaluate links according to the following

function:

6

𝐸 𝑉
𝐸 𝐶 = 𝑊6𝑆68

6∈9:8∈;

where Sji (information scent), is the predator’s estimation of the likelihood that some prey

i∈G is at the other end of the link given the presence of some cue j∈Jl. Wj represents the

amount of attention that a predator gives to a particular cue j.	Both Sji and Wj are non-

negative numbers in the above equation.

2.2 Initial application of IFT: Document Collections

The formative work on IFT was developed in the domain of large document collec-

tions. In their first papers on IFT, Pirolli and Card introduced the theory and investigated

its application in two document foraging tasks: collecting relevant documents in large

document collection using the Scatter/Gather interface [Pirolli & Card, 1995] and finding

relevant research publications by following the publications’ citation link structure using

Butterfly [Pirolli & Card, 1998]. In both these works Pirolli and Card operationalized

each of IFT’s constructs first to the domain and then developed a model to explain users’

foraging behavior. In the case of [Pirolli & Card, 1995], Pirolli and Card developed a dy-

namic programming model and compared it to users’ actual behavior. In [Pirolli & Card,

1998], they extended an existing model of cognition, ACT-R [Anderson, 1993], with

IFT-derived predictions and found their cognitive model also matched human users’ for-

aging. In follow up work, Pirolli demonstrated how a dynamic programming model for

Scatter/Gather could be used to analyze and test improvements to Scatter/Gather’s inter-

face [Pirolli, 1998].

2.3 IFT and Web Foraging

One particularly rich application of IFT was in the web domain. The first application

of IFT in this space was a method for collecting web pages through the use of a model

that combined structural (links on web pages), lexical (word similarity) information with

spreading activation [Anderson & Pirolli, 1984] to group web pages into functional cate-

gories [Pirolli et al., 1996]. These methods would be repurposed to explain and predict

7

how users forage on the web [Chi et al., 2000, 2001; Fu & Pirolli, 2007; Pirolli, 2005,

2005; Pirolli & Fu, 2003] and later applied to tools that identified usability issues with

web sites [Card et al., 2001; Chi et al., 2003; Pirolli et al., 2005] or informed their design

[Nielsen, 2003; Spool et al., 2004]. IFT has also been leveraged in tools to help users col-

lect and structure information during web foraging [Kittur et al., 2013], find relevant

links on a web page [Olston & Chi, 2003], and assess the difficulty of a web foraging

task [John et al., 2013].

The models that were used to explain users’ foraging behavior on the web were origi-

nally derived from techniques developed in cognitive psychology to explain human deci-

sion making processes. Models such as the ones used in SNIF-ACT [Pirolli & Fu, 2003]

and WUFIS [Chi et al., 2003] are derived from a spreading activation cognitive architec-

ture first introduced by Anderson and Pirolli in [Anderson & Pirolli, 1984]. In this archi-

tecture, a human’s long-term memory is represented as a graph of nodes. Each node con-

tains a chunk of information with more recently accessed nodes having a higher activa-

tion (value on the node). Each edge represents an association between two chunks of in-

formation where more-similar items have a higher association. Given an information

goal, these models spread activation through the graph to model how human memory

works. Nodes with the highest values after activation represent the relevant information

chunks for the given goal. This spreading activation approach is used to model infor-

mation scent, and is the key behind predicting user navigation on the web.

In the case of SNIF-ACT, Pirolli and Fu’s cognitive model was based on a set of pro-

duction rules similar to ACT-R [Anderson, 1993]. The SNIF-ACT cognitive model rep-

resented each web page of a site as a patch and calculated the scent of each link based on

lexical similarity between text surrounding the link and the goal. The model would pro-

gress through several states representing a web user’s cognitive processes. When the

model reached a state where it could choose a link, the model would either click a link or

leave the page depending on what scent values were calculated. The model’s behavior of

selecting links and backtracking closely approximated how humans foraged on web sites.

8

WUFIS (Web User Flow by Information Scent) combined ideas from SNIF-ACT and

Information Retrieval to predict web site navigation and to identify which pages on a site

were difficult to find. WUFIS would scrape a website and construct a graph representing

the site. Individual pages were represented as vertices and the edges represented the page-

to-page links between pages. Once an information goal was provided, each page’s links

would have their scent calculated. Then, the graph’s edge values were updated to repre-

sent the probability that the corresponding link would be taken. With the graph complete,

WUFIS performed a user-flow simulation that had a large number of users navigate

through the site following edges according to their probability. The result of the simula-

tion provides a measure of which pages users visited most often for a given information

goal. WUFIS served as the backbone behind the Bloodhound project’s usability analysis

[Chi et al., 2003].

One of the first attempts at understanding foraging with multiple users was Collabora-

tive Foraging, a combination of collaborative filtering and IFT [Schultze, 2002]. Schultz

developed a tool called WebWaggle, which allowed users to create and organize list of

bookmarks to web pages. As lists are created and shared, the system makes IFT-based

recommendations for other pages a user may be interested in based on the pages that oth-

er users have added and categorized. Chi and Pirolli analyzed the web site bookmarks of

several users to determine similarities and differences in bookmarked pages across sever-

al topics to help design a collaborative search tool [Chi & Pirolli, 2006]. They found that

users had more web sites in common than expected and that greater diversity among us-

ers leads to better information foraging. Pirolli then extended both IFT and sensemaking,

and developed formal models for Social IFT [Pirolli, 2008, 2009]. Others have built on

this research to describe how programmers collect and aggregate information from multi-

ple web sites [Evans & Card, 2008a], to provide web search results that are ranked based

on users’ actions on the web [Luca et al., 2009] or to frame the practices around asking

questions in social environments on the web [Evans et al., 2010].

Social Information Foraging Theory extends IFT by explaining how multiple foragers

(instead of a single forager) work together when foraging. Social IFT differs from IFT in

9

terms of how the cost and benefit (a synonym for value) are evaluated for each infor-

mation patch. In IFT, the individual determines the costs and benefit whereas in Social

IFT, the group determines the cost and benefit. In this model, individual predators make

their foraging decisions using the group’s assessments of cost and benefit.

2.4 IFT and Software Engineering

Information foraging theory has also been applied to explain how programmers forage

through code during software maintenance. The first work combining software mainte-

nance and IFT investigated how the constructs of patches, scent and diet could be applied

to software maintenance tasks [Lawrance et al., 2007]. In their study Lawrance et al.

found that when given the same tasks, programmers tended to visit the same classes and

that the lexical content of those classes were similar to the bug report or feature request

from the task. Lawrance et al. also investigated what parts of a task’s bug reports and fea-

ture requests were predictors for classes relevant to the task using lexical similarity

[Lawrance et al., 2008a]. They found that for feature requests titles were more accurate

than the entire feature request and that for bug reports, the entire content of the bug report

was more accurate than the title alone.

These two works led to the development of the first predictive model of programmer

foraging behavior, dubbed PFIS, which stands for Programmer Flow by Information

Scent [Lawrance et al., 2008b]. PFIS adapted the approach of WUFIS [Chi et al., 2003]

of building a graph of the source code using the classes and methods as vertices and the

links (structural relationships, method calls, constructors, etc.) between them as edges.

The weights of the edges represented the lexical similarity between a bug report or fea-

ture request to the text surrounding each link. Activation was then spread along the edges

until node values settled. The resulting values represented the probability a given location

in code was likely to be visited for a given bug report or feature request. Lawrance et al.

then compared PFIS’s prediction against participant asked to complete a bug fixing task

or a feature addition task. The study’s results showed that the PFIS model’s predictions

closely mirrored that of participants’ aggregate navigations, with better accuracy for the

10

bug fix task than the feature addition task, suggesting that bug reports had higher scent

than feature requests.

The high predictive accuracy of PFIS suggested that the combination of scent and to-

pology is sufficient for predicting programmer navigation. Yet earlier work described de-

bugging mainly as a process of forming and evaluating hypotheses such as that of

Brooks’ Theory of Comprehension [Brooks, 1983] or Letovsky’s Cognitive Processes of

Program Comprehension [Letovsky, 1987]. In [Lawrance et al., 2013], Lawrance et al.

investigated the relationship between hypotheses and scent and if hypotheses should be

incorporated in models of programmer navigation. Lawrance et al. found (1) that some

hypotheses closely parallel scent and are therefore accounted for in IFT and (2) that pro-

grammers spent comparatively little time processing hypotheses as opposed to processing

scent.

In the same paper, additional analyses focused on reasons why PFIS’s IFT-based

model was successful. One finding showed that scent seeking occurred throughout the

debugging sessions, suggesting that a scent-based approach was appropriate regardless of

whether the programmer was looking for a place to start debugging or whether they were

fixing the defect. Another finding showed that scent seeking was most often triggered

when programmers were looking at source code (as opposed to other parts of the IDE, the

executing program or other artifacts external to the IDE but related to the defect), sug-

gesting that source code may be sufficient for representing the topology if other artifacts

were not available to a tool or model. A lexical similarity analysis found that the bug re-

port text was a better predictor of navigation than programmers’ hypotheses. Taken to-

gether, these results shed light on why PFIS accurately predicted programmer navigation.

In the follow-up to PFIS, fittingly called PFIS2 [Lawrance et al., 2010], Lawrance et

al. extended the predictive model to be reactive both to the programmer’s goals and to

changes to the source code. Unlike PFIS, which used the entire codebase to construct its

underlying topology, PFIS2 builds and changes the graph as a programmer explores and

changes the code. The evolving topology was intended as a more accurate representation

of a programmer’s ever-changing goals. Additionally, PFIS2 accounted for the program-

11

mer’s navigational history when making predictions; more recently visited locations were

favored over less recently visited locations. The incorporation of evolving topology and

programmer history led to a successful predictive model. The results from a seven-month

field study, where PFIS2 was deployed to two professional programmers, showed that of

the 4,795 predictions made by PFIS2, more than half were in the model’s top three pre-

dictions. 27% of the navigations were predicted by PFIS2’s top choice. The results pro-

vided evidence for including programmer’s navigation history and an evolving topology

when predicting navigations.

To investigate exactly what factors mattered in a predictive model of programmer nav-

igation, we investigated each of the factors within PFIS2, other predictive models such as

Parnin and Gorg’s [Parnin & Gorg, 2006], and tools designed to support navigation

[Cubranic & Murphy, 2003; DeLine et al., 2005b; Robillard & Murphy, 2003;

Schummer, 2001; Singer et al., 2005, p. 200; Sinha et al., 2006; Storey et al., 2008;

Zimmermann et al., 2005]. With these factors, we developed and evaluated several sin-

gle-factor and multi-factor models finding that navigation history (Recency in the paper)

was indeed an important factor for accurate predictions [Piorkowski et al., 2011]. In my

thesis [Piorkowski, 2013], I extended this work and investigated the role of lexical simi-

larity by evaluating lexical similarity at the granularity of both methods and classes. (Alt-

hough PFIS2 compared predictive accuracy between classes and methods, it did not con-

sider lexical similarity by itself but combined with other factors.) The results from my

thesis suggested that in addition to history, lexical similarity was also relevant for predict-

ing programmer navigation.

Besides predictive models, researchers have applied IFT or IFT constructs to several

software tools. Niu et al. have investigated how programmer navigation can be used to

build a better-informed patch model for code navigation tools [Niu et al., 2011]. Niu et al.

also developed an optimal foraging model based on IFT for a requirements tracing tool,

identifying opportunities for improvements based on where human analysts differed from

the optimal model’s predictions [Niu et al., 2013]. Our group built a recommendation

system for programmers that utilized IFT to generate its predictions [Piorkowski et al.,

12

2012] (Chapter 3). Inspired by our work on single-factor models, Kramer et al. demon-

strated how including navigation options based on a program’s call graph improved task

completion time [Krämer et al., 2013]. Kuttal et al. have framed how end-users debug

web mashups through an IFT lens, identifying cues in that environment, users’ debugging

strategies and finding implications for design for these sorts of tools [Kuttal et al., 2013].

Our group has also viewed existing software maintenance tools through an IFT lens to

explain why those tools were successful [Fleming et al., 2013]. This work identified sev-

eral design patterns based on IFT that can be used to develop or understand future tools

for software maintenance.

13

Chapter 3 Predictive Factors as Scent

We begin our investigation of how to unify software engineering research with one of

IFT’s key constructs; scent, which explains how predators evaluate cues in a patch when

making their next foraging choice. In this chapter, we start with the assumption that the

factors underlying several existing papers about tools that support programmer navigation

are different types of scent. If the factors are indeed different types of scent, we next de-

termine which of the factors are more important for scent in a tool context. By doing so,

we demonstrate the utility in unifying different tools under the same construct because

once the tools can be explained under the same abstraction, their individual results can be

compared against each other. At the end of the chapter, we will revisit the assumption,

drawing on what we learned in the chapter to decide if the assumption is reasonable.

To investigate this question, we first have to choose which navigation factors to inves-

tigate. We drew candidate factors based on the results of my Master’s Thesis

[Piorkowski, 2013], where I evaluated several predictive factors of programmer naviga-

tion. These factors were drawn from existing tools that ease navigation by providing

shortcuts to code and included factors such as how recently a programmer visited a loca-

tion in code [DeLine et al., 2005b; Robillard & Murphy, 2003; Singer et al., 2005], what

code was modified at the same time [Storey et al., 2008; Zimmermann et al., 2005], tex-

tual similarity, method-invocations, and code structure relationships [Cubranic &

Murphy, 2003; Schummer, 2001; Sinha et al., 2006]. RQ1 already investigates the most

accurate factor Recency, but [Piorkowski et al., 2011] showed that when factors were

combined, accuracy improved. Models that included factors based on source code struc-

ture and word similarity improved predictive accuracy over Recency alone. Given these

findings, we chose to evaluate the factors of recency, code structure and word similarity.

We structure our investigation around the following questions.

First, although Recency was the accurate predictive factor, the question of how much

of a programmer’s recent navigation history to consider for recommendations remains.

As noted in Lawrance’s work on Reactive IFT [Lawrance et al., 2010], a programmer

often investigates code related to a certain goal for a while—which we refer to here as

14

“building up foraging momentum” related to that goal—before shifting to a new goal.

Reactive IFT posits that programmers’ current momentum, reflected by recent navigation

history, can be used to infer the goal, but it is unclear how many recent navigations to use

for this analysis.

• RQ1: How do a Reactive IFT-based tool’s assumptions about foraging mo-

mentum affect its ability to infer a programmer’s goal and produce useful rec-

ommendations?

The second question is what other factors to consider. As mentioned earlier, we lim-

ited our investigation to the most common factors drawn from the SE literature.

• RQ2: Does a Reactive IFT-based tool that considers word similarity and code-

structure cues yield more useful recommendations than another tool that con-

siders only word cues?

Third, because the navigational behavior of programmers changes over the course of a

task (as noted earlier), will different operationalizations be more or less appropriate at

different points in a task?

• RQ3: Does a Reactive IFT-based tool’s ability to provide useful recommenda-

tions change as a task progresses?

Fourth, and related to this point, different programmers might obtain different value

from Reactive IFT-based tools at different points in a task, raising the question of when

and why recommendations are useful.

• RQ4: When and why do programmers find Reactive IFT-based tools’ recom-

mendations useful (or not)?

3.1 Related Work

Code navigation is a key part in a learning process whereby the programmer finds the

information needed to work out a concrete goal to complete the task at hand. At the start

of a maintenance task in laboratory and field studies, a programmer usually searched for

code that could serve as an initial focus point [Sillito et al., 2006; Wiedenbeck & Evans,

1986]. Over the course of a task, the programmer typically began to ask questions about

15

how pieces of code were related [DeLine et al., 2005b; Sillito et al., 2006]. Programmers

also frequently navigated between locations in code, revisiting places to learn about

structural relationships [Parnin & Gorg, 2006; Sillito et al., 2005]. As programmers dis-

covered answers to their questions, they broadened their focus to include more code

[Sillito et al., 2005]. Eventually, they planned specific changes that they believed would

eliminate a defect or create a new feature [Ko et al., 2006; Sillito et al., 2005].

Various tools are aimed at easing these navigations by providing shortcuts to recom-

mended places in the code that might hold valuable information. Several tools provide

“history” links back to code that the programmer has recently visited [Kersten & Murphy,

2005; Parnin & Gorg, 2006]. Others offer shortcuts to places that other programmers his-

torically have read and/or edited after the current location [DeLine et al., 2005b; Hill et

al., 1992]. Still other tools provide shortcuts to code or other artifacts based on textual

similarity, textual proximity, method-invocation, or nesting [Cubranic & Murphy, 2003;

Jakobsen & Hornbæk, 2006; Sinha et al., 2006; Storey et al., 2002].

A limitation of these tools is that they do not explicitly take into account the evolution

in goals that typically occurs as a programmer learns during a task. For example, upon

visiting a Java method’s code at the start of debugging, a programmer might have no idea

what needs to be edited; upon revisiting the location later, the programmer might have

formulated a goal to make certain kinds of edits. Yet most of the tools above would pro-

vide exactly the same shortcuts in both situations, regardless of the programmer’s new

goal. Of the above tools, only those that show a “history” of recent places would behave

differently during a particular task: they would stop showing links to locations that were

not recently visited, which is an implicit model of evolving goals at best.

Reactive IFT [Lawrance et al., 2013] beings to address of some these limitations. The

purpose of this study is to investigate how to apply this theory to help programmers find

the information they need during tasks.

3.2 Methodology

In our empirical study, we invited professional programmers to complete a debugging

task using a new Eclipse plug-in tool that supplied links to places in the code that might

16

provide information needed for the task. Within this plug-in, we activated different rec-

ommendation algorithms based on different operationalizations of momentum and scent.

Specifically, we considered different algorithms in a 2×2 factorial design (with one factor

for the operationalization of momentum and another factor for the operationalization of

scent). We then measured what proportion of the time participants went to locations rec-

ommended by different algorithms. In our analysis, we also examined whether algo-

rithms’ recommendations were more or less useful at different periods of the task, and we

qualitatively analyzed what kinds of benefits participants obtained.

3.3 Study Environment

We implemented our recommendation system as a plug-in for the Eclipse IDE (Figure

3.1). Interface elements 1–4 in Figure 3.1.a are all those that commonly appear in the Ja-

va perspective of Eclipse: (1) Package Explorer view, (2) Outline view, (3) Java editor,

and (4) Console view. Interface element 5 is our Recommendation view.

Figure 3.1.b depicts a close-up of this Recommendation view, which had three areas:

(1) the current method (i.e., the one that the text cursor last entered), (2) the current rec-

ommendations, and (3) methods bookmarked, or pinned, by the programmer. Each time

the programmer navigated to a method, the current method updated to reflect the naviga-

tion, and the recommendations were recalculated (using whichever of our algorithms was

activated at the time). The programmer could also manually drag the current method or

any recommendation into the pinned area to save it for later.

Each recommendation displayed words to help participants assess its relevance

(Figure 3.1.c). These words were sorted based on their importance according to the

amount of weight given to them internally by the recommender algorithm active at the

time. The Recommendation view also distinguished recommendations to methods the

participant had previously visited from recommendations to methods not already visited

by highlighting the latter in gray.

17

For data collection, our plug-in recorded a log of participant interactions with Eclipse.

Additionally, we video-recorded each session and automatically logged screen captures.

3.3.1 Recommendation Algorithms

To investigate whether operationalizing scent as words + structure would produce bet-

ter recommendations than words alone (RQ2), we implemented one recommender algo-

rithm based on words + structure, PFIS-R, and another based on words alone, TFIDF-R.

The PFIS-R recommender is based on the PFIS3 predictive model [Piorkowski et al.,

2011], motivated by PFIS3’s success in predicting programmer navigation. The other al-

gorithm, TFIDF-R, is based on a vector space model commonly used in information re-

Figure 3.1. Eclipse interface with our Recommendation view: (a) Eclipse layout, (b) Recommendation

view, and (c) examples of three recommendations.

18

trieval [Baeza-Yates & Ribeiro-Neto, 1999]. These two algorithms represent the main

camps of how to model information foraging: strong reliance on words (e.g., TFIDF,

LSA) and balancing words with information structure (e.g., [Chi et al., 2001; Lawrance et

al., 2008b, 2010, 2013; Olston & Chi, 2003]). Both share a reliance on words, because

word-based approaches have dominated IFT (e.g., [Card et al., 2001; Chi et al., 2003; Fu

& Pirolli, 2007; Pirolli, 2007]) and the literature contains some evidence that words can

be used to predict where programmers will navigate [Lawrance et al., 2008b]. RQ1 re-

quired a need to manipulate the operationalization of the foraging momentum—

specifically, how much history to use for making recommendations. To take momentum

into account, we parameterized each algorithm with δ, the number of navigations to look

back in making a recommendation. An algorithm with δ=1 uses only the contents of the

last method visited and thus ignores any momentum that the programmer might have

built up; we refer to this algorithm configuration as low momentum. In contrast, an algo-

rithm with δ=10 uses the contents of the last 10 methods visited and will thus be influ-

enced by momentum built up during those navigations; we refer to this algorithm config-

uration as high momentum. Thus, the greater the value of δ, the more momentum the rec-

ommender assumes in making its recommendations. Combining two momentum configu-

rations, δ=1 and δ=10, with the two different algorithms (PFIS-R vs. TFIDF-R) gives the

4 possible combinations of our 2×2 factor design.

The algorithms take as an input the sequence of methods to which a programmer has

navigated so far. In the current study, we recorded a navigation to a method m each time

the programmer performed an action that caused the text cursor to enter the text of m. For

our purposes, the text of a method comprises the method’s signature, body, and (Javadoc)

comments. Both PFIS-R and TFIDF-R normalize this textual input by excluding punctua-

tion and stop words, which include common words, like “the”, as well as the list of Java

keywords. Camel-case words are broken into separate case-insensitive words, although

the original camel-case word is retained as well (e.g., setFoldText would be treated as an

input of setfoldtext, set, fold, and text). For the remainder of the chapter, method text re-

fers to normalized method text.

19

The algorithms produce 10 recommendations as output, divided evenly between meth-

ods previously visited by the programmer and methods not previously visited. Program-

mers commonly revisit methods to recover mental state and explore new methods to find

and understand the program’s essential elements [Parnin & Gorg, 2006]. Thus, by rec-

ommending both visited and unvisited methods, we sought to support both types of navi-

gation. If there are fewer than 5 previously visited recommendations, the algorithms fill

out the remainder of the 10 recommendations with new recommendations, and vice versa.

The algorithms would sometimes need to resolve ties when generating this list. The rea-

son is that although the algorithm ranks methods by computing a continuous measure of

relatedness (as discussed in the algorithm details below), the variables in those calcula-

tions take on a small number of distinct values in practice. When selecting the 10 meth-

ods to recommend, ties were resolved by choosing non-deterministically among the tied

methods.

PFIS-R Recommender

Figure 3.2 summarizes the PFIS-R recommendation algorithm, which builds on the

earlier PFIS2 and PFIS3 models by informing its recommendations using word cues and

code-structure cues (i.e., call dependences) in methods that the programmer previously

visited. In brief, PFIS-R maintains a graph of word and method vertices such that edges

between method vertices capture the structural relationships between methods, and edges

between words and methods capture lexical relationships between methods. The algo-

rithm spreads activation [Anderson & Pirolli, 1984] over this graph, starting from the

vertices for the last δ methods that the programmer visited. To account for momentum,

vertices for methods that the programmer visited more recently are initialized with great-

er activation. The algorithm considers methods with the highest resulting activation to be

the best recommendations, and those are the ones that sort first in Figure 3.1.c.

TF-IDF Recommender

In contrast to PFIS-R, TFIDF-R bases its recommendations on lexical similarity only.

TFIDF-R treats the code base as a corpus of documents with the (normalized) text of

20

each method being a document. The algorithm maintains a word-by-document matrix

MW that specifies the importance of each word in W to each method in M by computing

the TF-IDF (term frequency–inverse document frequency [Baeza-Yates & Ribeiro-Neto,

1999]) weight for every word-method combination. It uses MW to assess the lexical simi-

larity between methods by constructing a document-by-document matrix MS that speci-

fies the cosine similarity measure [Baeza-Yates & Ribeiro-Neto, 1999] for all pairs of

documents. MS(m) denotes the vector of cosine similarity scores associated with a partic-

ular method m in MS.

To account for the programmer’s foraging momentum, TFIDF-R sums the MS(m) vec-

tors for the last δ methods to which the programmer navigated, decaying older naviga-

tions at a rate of 0.9. Specifically, for each method m such that m is the kth method in H,

decayedMS(m) = 0.9|H|–k·MS(m). A final recommendation vector VR	 sums the decayed

PFIS-R Algorithm

Definitions:

•Method set M: set of all methods in the code base.
•Navigation history H: sequence of methods to which the programmer has navigated so far.
•Word set W: set of all words in all method text in M.
•Graph G	=	(Vm	∪	Vw,	Em	∪	Ew) such that Vm and Vw have a one-to-one relationship with M

and W, respectively. For all ma, mb in M and their associated method vertices mva, mvb in
Vm, Em contains one and only one edge connecting mva and mvb if and only if the body of
ma contains a call to mb or the body of mb contains a call to ma. For each word w in W and
method m in M, Ew contains one and only one edge connecting wv and mv if and only if w
is in the method text of m.

Steps for making recommendations:

• Set activation of each vertex in G to 0.
• For each method m such that m is the kth method in H and |H|–δ	<	k, increment the method

vertex mv by 0.9|H|–k.
• Spread activation (α=0.85 and edge weights=1) such that only word vertices receive activa-

tion.
• Spread activation again (α=0.85 and edge weights=1) such that only method vertices re-

ceive activation.
• Recommend methods with greatest activation.

Figure 3.2. Formal definition of the PFIS-R Algorithm.

21

vectors for the last δ methods in H. The algorithm regards the methods with the greatest

values in VR as the best recommendations, and those sort first in Figure 3.1.c.

3.3.2 Participants

We recruited 11 professional programmers from a large company to participate in an

empirical study comparing the usefulness of our four different algorithm configurations.

Technical failures in the study environment invalidated the data for two of these partici-

pants; thus, we analyzed only the data for the remaining nine participants. We asked each

participant to fix a defect in the jEdit software project. jEdit is a text editor designed for

programmers. None of the participants had ever seen the jEdit code before, and with

6,468 methods (98,652 non-comment lines of Java code), the jEdit code base provided a

large space to forage within. The defect was from an actual bug report, #2548764, which

described a problem with jEdit’s text “folding” functionality. Figure 3.3 shows the details

of the bug report.

BUG: Problem with character-offset counter.

In the lower left corner of the jEdit window, there are two counters that describe the position of the text

cursor. The first counter gives the number of the line that cursor is on. The second counter gives the

character offset into the line.

The character-offset counter is broken. When the cursor is at the beginning of a line (i.e., before the first

character in the line), jEdit shows the offset as 1. However, the offset should begin counting from 0.

Thus, when the cursor is at the end of the line, it will display the number of characters in the line rather

than the number of characters plus 1.

Figure 3.3. The text of the jEdit bug report.

Algorithm Task period assignment for each participant
2 3 5 6 7 8 9 10 11

PFIS-R(δ=1) 2nd 2nd 1st 1st
PFIS-R(δ=10) 2nd 2nd 1st 1st 2nd
TF-IDF-R(δ=1) 1st 1st 2nd 2nd 1st
TF-IDF-R(δ=10) 1st 1st 2nd 2nd
Table 3.1. Treatment assignments to participants and task periods. (Participants 1 and 4 removed due to

technical failures).

22

3.3.3 Procedure

Each study session took about 180 minutes. Participants began by filling out a pre-

questionnaire that gathered background information. Next, they engaged in two back-to-

back task periods. Prior to the first task period, we introduced participants to the video

equipment and started recording. Each task period was associated with a different treat-

ment (i.e., one of our four algorithm configurations). Table 3.1 lists the treatment assign-

ments, which we balanced to account for learning effects.

Each task period began with a short tutorial task on the tool. Some algorithms may

have produced poor recommendations in the first task period, and we did not want partic-

ipants who received such treatments to ignore recommendations in the second task peri-

od. Consequently, the tutorial in the second task period informed the participant that the

tool’s recommendation algorithm had been switched and asked the participant to repeat

the tutorial task to see how the recommendations had changed.

Within each task period after the corresponding tutorial, participants worked on the

jEdit debugging task for 35 minutes. To assess how participants used recommendations

and when they were useful, we asked them to “talk aloud” as they worked. At the end of

each task period, we interrupted participants and had them fill out a questionnaire that

asked for their opinion of the recommendations.

After both task periods, the study session ended with a 35-minute semi-structured ret-

rospective interview in which an interviewer stepped through events of interest in the

screen capture videos and asked the participant questions about those events. For each

time the participant navigated to a method, the interviewer asked, “What did you learn

from this place?” and for each time the participant clicked on a recommendation, the in-

terviewer asked the participant why he/she did that. Due to time constraints, the inter-

viewer was sometimes unable to ask about all these events of interest in a session.

3.3.4 Analysis Procedure

Ultimately, a recommender’s quality is its usefulness, but evaluating usefulness raises

challenges. For instance, a participant may ignore recommendations that would otherwise

23

be useful because the participant is unfamiliar with the tool. As professional program-

mers, our participants have honed their navigation strategies over years of experience,

and they might favor their practiced strategies over a relatively unfamiliar tool.

To address this problem, we conducted two analyses. The first was a quantitative

analysis of hit rate. This analysis compared the algorithms’ recommendations to the plac-

es that participants actually navigated, regardless of whether they actually used the tool to

navigate there. The second was a qualitative analysis of demonstrated usefulness, which

assessed whether recommendations participants followed via the tool were useful in the

participants’ opinions.

Hit Rate

To assess hit rate, we computed the top-10 recommendations from the tool algorithm

that was active at the moment before each user made each navigation. We scored the rec-

ommendations as a hit if the user navigated to a recommended location within the next s

navigations. It was difficult to estimate the window of time in which a recommendation

might have been usefully pertinent to a participant, so we explored two time-window siz-

es: a hit within the next 10 navigations (s=10) and a hit on the next navigation (s=1).

Note that the time-window size s is concerned with how we score the hit rate of recom-

mendations (over future navigations), not to be confused with the sensitivity to momen-

tum factor δ in this study, which also had values of 1 and 10 (the number of past naviga-

tions from recent history).

Recall that nondeterminism arises in the case of ties between recommendations. To

account for this nondeterminism, we took the best tie-breaking choice to make a best-case

list of recommendations (maximizing hit rate), and we took the worst tie-breaking choice

to make the worst-case list (minimizing hit rate), thereby bounding the effects of nonde-

terministic tie-breaking.

Given the two choices of s and the two choices of tie-breaking, we obtained four sepa-

rate assessments of each recommendation algorithm's hit rate. Each of these was treated

as a separate dependent variable in a separate regression. Because our dependent variable

was dichotomous (indicating whether or not a recommendation was considered a hit), we

24

used logistic regression. In addition to algorithm, our regression model also included task

period and participant as categorical independent variables (i.e., indicator variables). Af-

ter performing the regression, we used the Wald test to assess whether each variable (al-

gorithm configuration, participant, and task period) had a statistically significant effect on

hit rate. Using the coefficients provided by the regression, we also computed the overall

hit rate of each algorithm, after subtracting out the effects of participant and task period.

Demonstrated Usefulness

To assess recommendation usefulness, we looked at the recommendations that the

programmers followed to see if the recommendations helped the programmers make pro-

gress. To do this analysis, we qualitatively analyzed the verbalizations the participants

made during task performance and their answers to our probes during the retrospective

interview. In particular, for each followed recommendation, our interviewer asked the

participant, “What did you learn from this place?” If the participant responded negatively

(e.g., “I learned nothing”) or with apparent uncertainty (e.g., “I don’t know”), we coded

the navigation as not useful; otherwise, we coded it as useful. Two researchers achieved

an IRR of 100% over 20% of the data (Jaccard index) before splitting up and coding the

participants’ responses individually.

3.4 Results

3.4.1 Hit Rate

Participants averaged one navigation every 90 seconds, or 447 navigations in all

(Figure 3.4). We used this data to analyze hit rate. Figure 3.5 depicts the hit-rate results

by algorithm configuration for window sizes s=10 and s=1. Our data revealed significant

differences in the hit rates for the four configurations. Specifically, we consistently found

χ2(3)	≥	9 and p	≤	0.03 regardless of whether we used s=1 or s=10, worst- or best-case

tie-breaking, and δ=1 or δ=10.

25

Low vs. High Sensitivity to Momentum (RQ1)

Each low-momentum (δ=1) algorithm consistently scored a significantly better hit rate

than the corresponding high-momentum (δ=10) algorithm (Figure 3.5). We found z	 ≥	

2.45, p	 ≤	 0.01 regardless of whether we used s=1 or s=10, worst-or best-case tie-

breaking, and TFIDF-R or PFIS-R. Thus, with respect to RQ1, we found that low-

momentum algorithms outperformed high-momentum.

Figure 3.4. Number of navigations by each participant.

Figure 3.5. Hit rate of each algorithm (averaged over all task periods and participants) for s=10 (left

half) and s=1 (right half), with rectangles indicating ranges between best- and worst-case tie-breaking.
The δ=1 algorithms consistently out-performed the δ=10 ones.

26

Word and Code-Structure Cues vs. Word Cues Alone (RQ2)

We found no meaningful difference between PFIS-R and TFIDF-R, regardless of

whether we used s=1 or s=10, or worst- or best-case tie-breaking. Neither low-

momentum (δ=1) configuration of PFIS-R and TFIDF-R outperformed the other (at p	<	

0.05). Between high-momentum (δ=10) configurations, PFIS-R outperformed TFIDF-R,

but the difference was not statistically significant (at p	<	0.05). Additionally, we found no

significant interaction between algorithm and sensitivity to momentum (δ).

First vs. Second Task Period (RQ3)

Participants navigated almost twice as frequently during the second task period as dur-

ing the first (Figure 3.4). Comparing between task periods (Figure 3.6), we saw sugges-

tive improvements in accuracy when evaluating recommendations with respect to the

programmer’s next navigation (s=1), but these differences were not statistically signifi-

cant (at p	 <	 0.05). However, with respect to the programmer’s next 10 navigations

Figure 3.6. Hit rate (s=10) of each algorithm in the first (TP1) and second (TP2) task periods, with rec-
tangles indicating ranges between best-and worst-case tie-breaking. Hit rates increased in the second

task period (see arrows).

27

(s=10), both algorithms improved significantly in the second task period over the first

(pairwise z	=	2.37, p	=	0.02 for worst-case tie-breaking; z	=	3.44, p	<	0.001 for best-case).

3.4.2 Demonstrated Usefulness

All participants clicked some recommendations (Figure 3.7), for 62 clicks in total, and

we collected interview responses for 44 clicks. Figure 3.8 summarizes the proportion of

those clicks that participants reported as useful. We did not test for statistical significance

due to the low number of clicks in each of the treatments.

Figure 3.7. Number of times that participants clicked recommendations. Annotations indicate partici-

pant ID.

Figure 3.8. Percentage of recommendations that participants reported learning something from, grouped

by algorithm and by low and high momentum.

28

Low vs. High Sensitivity to Momentum (RQ1)

The participants reported as useful a greater proportion of the recommendations from

low-momentum algorithms than the recommendations from high-momentum algorithms

(RQ1). This tendency triangulates with our finding that the low-momentum (δ=1) algo-

rithms demonstrated a higher hit rate than the high-momentum (δ=10) ones.

Word and Code-Structure Cues vs. Word Cues Alone (RQ2)

Also triangulating with our hit-rate results, our demonstrated-usefulness results

showed no consistent difference between PFIS-R and TFIDF-R.

First vs. Second Task Period (RQ3)

Similar to what we saw with hit rate, the participants clicked recommendations more

frequently during the second task period than during the first.

3.4.3 Opinion Questionnaire

Figure 3.9 illustrates the opinion results. Participants completed a total of 18 opinion

questionnaires (1 per task period) that asked the question (5-point Likert) “Was this tool

valuable in getting you to useful parts of the source code?” Again, we omitted statistical

tests when analyzing this data due to the low number of clicks in each treatment.

Low vs. High Sensitivity to Momentum (RQ1)

Triangulating with our hit-rate and demonstrated-usefulness results, participants rated

the low-momentum algorithms more favorably than the high-momentum ones (Figure

3.9.b).

Word and Code-Structure Cues vs. Word Cues Alone (RQ2)

Similar to our hit-rate and demonstrated-usefulness results, the opinion results showed

no suggestive difference between TFIDF-R and PFIS-R.

29

First vs. Second Task Period (RQ3)

Participants seemed to rate all algorithms more favorably in the second task period

than in the first (Figure 3.9.c), consistent with our hit rate analysis where the second task

period had a higher hit rate than the first.

3.5 How Recommendations Were Used

To better understand when and why participants found recommendations useful

(RQ4), we qualitatively analyzed the talk-aloud and retrospective interview recordings.

Figure 3.9. Results of questionnaires on the value of the recommendation system (1 = Entirely worth-

less, 5 = Very valuable).

30

3.5.1 Using Recommendations for Efficiency

Benefits of Recommendations Based on Code Structure

Some participants benefitted from PFIS-R’s use of code structure in making recom-

mendations. For example, Participant 2 found code-structure-based recommendations

useful while using an exception stack trace to navigate through code. He used the stack

trace to open a method that contained a call to another method recalculate-

LastPhysicalLine (i.e., following the call graph structure):

Participant 2: “I wanted to go to the declaration of [recalculateLastPhysical-

Line] and you know, my god, the [recommendation system] had it sitting there so I

thought I'll go over and select it... I like that it was bigger and it was right there so it just

seemed like I would both go to it and maybe learn something in the process...”

This quote reveals a case where a structure-based recommendation led directly to a de-

sired method, making it efficient to navigate there in a single mouse click. PFIS-R’s use

of code-structure cues made a difference in this case. In contrast, running the TFIDF-R

algorithm (with δ=1 and δ=10) on Participant 2’s navigations revealed that this words-

only algorithm would not have made this recommendation (even in the best case).

Recommendations as a Working Set

Several participants used recommendations to efficiently navigate back to previously

visited methods; e.g.:

Participant 9: “At this point, I'm kind of abusing the recommendations as a history be-

cause they are the fastest way to get where I want to go.”

 As another example, Participant 8 took advantage of the implicit “history” when,

using Eclipse’s debugger, he accidently stepped out of a method transactionCom-

plete that he meant to inspect:

Participant 8: “So that kicks me out to the catch and I remembered it was in the trans-

actionComplete method... I had remembered that this recommendation had shown a

bunch of transactionComplete’s, so I was just clicking around to just find where I

was.”

31

It could have taken Participant 8 considerably more effort to get back to transac-

tionComplete (e.g., by rerunning the debugger) without the recommendation. Partici-

pants received historical recommendations from both low- and high-momentum algo-

rithms because all algorithms made recommendations to previously visited methods.

Participants who used recommendations to get back to previously visited methods

were essentially using the recommendations as a sort of working set. Previous research

has shown that programmers tend to navigate frequently to methods in their working set

[Parnin & Gorg, 2006; Piorkowski et al., 2011], and several successful tools have been

developed that emphasize working set [Bragdon et al., 2010b; DeLine et al., 2005b;

Kersten & Murphy, 2005]. A novel feature of our operationalization of Reactive IFT is

that it implicitly supports working set while also helping the user explore new places.

3.5.2 Using Recommendations for Discovery

 “Aha! Moments”

Some participants followed recommendations to methods that they were apparently

unaware of and expressed excitement about how useful the recommendation turned out to

be. For instance, Participant 2 was having difficulty finding code to focus on. He perused

the recommendations:

Participant 2: “‘You might want to go here.’ ... ‘collapseFold’ ... ‘expandFold’ ...

OK, ‘collapseFold.’ [Selects collapseFold recommendation; reads code com-

ments.] ‘Collapses the fold associated at the specified line index.’ OK! Now, this is where

I want to be! Collapsing the fold.”

Participant 6 was having similar difficulty finding code to focus on when he turned to

the recommendations:

Participant 6: “[Selects loadMenu recommendation; reads code comments.] ‘Creates a

menu, the menu label is set from the name property, name.label propery.’ Oh! Oh! Yes! ...

This thing looks like the class that might put up the menu. I like that!”

Our choice to make half of the recommendations be to previously unvisited methods

created opportunities for participants engaged in exploratory navigation to have “aha

32

moments” such as these. However, not all exploratory navigations were to unvisited

methods. Participant 6 had already visited loadMenu when he followed the recommen-

dation. On his first visit, he did not notice anything interesting about the method. It was

only after he followed a recommendation to the method that he discovered needed infor-

mation in the method.

Misleading Cues

In some instances, participants navigated to methods that contained cues that generat-

ed strong scent, but the recommendations did not help them discover methods that would

satisfy their goals. For instance, Participant 6 wanted to find the method that implement-

ed the action for one of the items in jEdit’s Edit menu. All the methods that he navigated

to contained words (i.e., cues) related to his goal, such as menu, edit, and action. He then

noticed a recommendation for JEditAbstractEditAction that included the keywords

edit and action:

Participant 6: “I was looking for the method that would get run when someone picked on

that [Edit] menu item. So again, [the recommendation] could be the mnemonic sugges-

tion of the class that maybe that was some kind of action that would get run in the Edit

menu.”

Participant 6 clicked the recommendation, but unfortunately the method did not con-

tain code for implementing menu-item actions. Instead, it contained code that implement-

ed the menu framework.

The recommendation system (running TFIDF-R, δ=10) could not help Participant 6

because it could not relate the word cues that he was following to the method that would

satisfy his goal. That method contained entirely different word cues from the menu-

framework code. Because the participant was navigating through the framework code,

building momentum on those cues, the algorithm did not recognize the relevance of the

needed method.

Code structure cues used by PFIS-R might help overcome this problem generally;

however, in this particular case, PFIS-R would not have had access to the structural in-

formation needed to connect the menu and action code because that information was con-

33

tained in a properties file that was not part of jEdit’s Java code base. This problem high-

lights the importance of having complete structural information in operationalizing Reac-

tive IFT.

3.6 Discussion

3.6.1 Sensitivity to Momentum

The Reactive IFT tools that were less sensitive to participants’ foraging momentum

(i.e., low momentum, δ=1) produced better recommendations than those more sensitive

to momentum (i.e., high momentum, δ=10). This result runs counter to previous work on

recommender systems, which suggested that using more history was better for predicting

future navigation [Lawrance et al., 2010; Piorkowski et al., 2011]. Outside software

maintenance, successful recommender systems use historical behavior going back days,

weeks, and years [Resnick & Varian, 1997]. In light of this past work, our result that δ=1

produced better recommendations than δ=10 was unexpected.

One interpretation is that this result may be due to participants’ goals evolving rapidly

and repeatedly. Studies have shown that as programmers navigate through code, they

continually ask new questions [Ko et al., 2006; Sillito et al., 2005, 2006]. If participants’

goals did change frequently, it would put the high-momentum operationalizations at a

considerable disadvantage, because a high-momentum operationalization considers cues

associated with a mix of goals, some of which are no longer relevant. We will return to

this question in the next chapter.

These results underscore the importance of understanding a predator’s foraging mo-

mentum in operationalizing Reactive IFT. For these programmers engaged in debugging,

low-momentum was apparently better at inferring goals, but depending on the foraging

context (e.g., government agents performing intelligence analyses or end users debugging

spreadsheets), a higher foraging momentum may produce better outcomes. One limitation

of the current study is that we examined only two values of δ. Future studies could fur-

ther investigate the effect of momentum.

34

3.6.2 Changes in Foraging Behavior over Time

Changes in participants’ foraging behavior as the task progressed may have been re-

sponsible for the algorithms’ improved hit rate in the second task period. Studies have

shown that programmers pursue different kinds of information [DeLine et al., 2005b;

Sillito et al., 2006; Wiedenbeck & Evans, 1986] and engage in different types of activi-

ties [Lawrance et al., 2013] as a task progresses. In our study, the participants may have

had difficulty finding strong scents in the earlier stages of debugging. As they foraged,

they may have homed in on places with stronger scent. Since our algorithms relied on

scentful cues to approximate goals, they might have been less accurate earlier in the task

when the participants were navigating through low-scent methods, and became more ac-

curate as scent increased.

One possible way to handle low-scent periods is to switch algorithms during such pe-

riods. For instance, an algorithm might detect changes in a user’s foraging momentum

and swap in the most appropriate algorithm for approximating the user’s goal. Open

questions for future research include how to detect a user’s shifts in momentum and how

to make recommendations in the absence of scentful cues.

3.6.3 Beyond Word Cues

Although not reaching statistical significance, the hit-rate results showed a tendency to

favor PFIS-R over TFIDF-R, and this tendency triangulates with the suggestive differ-

ence between PFIS-R and TFIDF-R in the opinion questionnaire results (Figure 3.9.a).

This tendency was consistent with the qualitative data. We observed many participants

following call dependences while debugging. Moreover, we saw one instance (Participant

6) where a method that would have satisfied the participant’s goal contained none of the

words that the participant followed scent from.

The implication for tools is that when operationalizing Reactive IFT for a new context,

the tool may need to consider other cues in addition to words. Word cues exclusively

have dominated the work on web foraging, and they may be particularly effective in that

context due to the large volume of unstructured natural language text that web pages con-

35

tain. However, in a context like programming, where there is less natural language text

and more structure, other types of cues may be valuable.

3.6.4 Predictive Factors as Scent

Given these results, we can now assess the assumption initially stated in this chapter,

that the factors used by these tools are actually just different types of scent. First, consid-

er the Lexical similarity factor, which has already been established by Pirolli as an ap-

proach for approximating programmers’ scent.

Lexical Similarity has successfully predicted and explained how predators forage for

information on the web [Chi et al., 2000, 2001; Fu & Pirolli, 2007; Pirolli, 2005; Pirolli et

al., 2005; Pirolli & Fu, 2003] and in predictive models of programmer navigation

[Lawrance et al., 2008b, 2013; Piorkowski et al., 2011]. Pirolli’s rationale for lexical

similarity as an approach for approximating scent rests on the facts that (1) humans use

words extensively to communicate both explicitly and implicitly about information, and

(2) that there is an abundance of lexical cues contained in both web pages and IDEs. As

Pirolli put it:

“Web page designs have evolved to associate (by human design or automated infor-

mation systems) small snippets of text and graphics with such links. Those text and

graphics cues are intended to represent tersely the content that will be encountered by

choosing a particular link on one page and navigating to the linked page. When browsing

the Web by following links, users must use these cues presented proximally on the Web

pages they are currently viewing to make navigation decisions.” [Pirolli, 2005]

Turning to Recency, our argument rests on the definition of scent, which is the preda-

tor’s attempt to optimize actual value per actual cost, using their expectations of value

and cost. We consider Recency in light of this definition of scent.

The high predictive accuracy of Recency (a.k.a. foraging momentum) suggests that

programmers favor patches that they have visited before. A programmer revisiting previ-

ously visited patches can be explained as a way for the programmer to reduce both actual

36

cost1 and their expectations of that cost. Actual cost for within-patch foraging are likely

to be reduced when the programmer has already processed at least part of the patch.

Likewise, actual costs for between-patch foraging are likely to be reduced if the pro-

grammer remembers how to easily go back to that patch. In fact, many IDEs support pro-

grammers’ revisiting of patches by providing affordances that enable programmer to

quickly return to previously visited methods (e.g., the back button in Eclipse), a reduction

of actual between-patch cost.

A key point linking these actual costs to scent is that the programmer has “inside in-

formation” about a patch’s actual costs, if she has recently been to that patch before, and

therefore has a reasonable idea of the cost of getting there and the cost of processing what

is in there. Thus, Recency provides an advantage to programmers’ ability to align ex-

pected cost with cost, thereby facilitating their efforts to optimize scent (expected value

per expected cost) via the expected cost factor.

In certain situations, revisiting code may also help programmers increase the value of

a patch. Consider one situation in which a programmer returns to previously visited

patch: the “prey in pieces” problem (explained later in Chapter 6). In this situation, the

programmer cannot find the answer to her foraging goal in a single location; she must

collect the information from multiple patches and reassemble them. However, to under-

stand the whole, she may need to revisit the relevant patches several times to build the

context necessary to address the foraging goal that she had. With each revisit, she gains

additional context, which may change and potentially increase the actual value2 of the

patch. Another example occurs when the programmer is stepping through a loop with a

step debugger. Consider an off-by-one error. As the programmer steps through the loop

1 Actual cost is a combination of the time it takes for a programmer to go to a new patch (Cb) and

also the time it takes to process a patch (Cw). Actual cost depends on context, and can change if the
context changes. For example, it depends on the predators’ prey (by reducing the number of relevant
patches to forage between or the types of information features to forage within), if predator previously
enriched the environment to reduce cost, etc.

2 Actual value is a measure of the information gained by the predator. Like actual cost, actual val-
ue can also change according to the programmer’s prey (because the amount of information gained
from an information feature changes based on the predator’s foraging goal) or if the predator has pre-
viously enriched the environment.

37

into the iteration where the off by one occurs, the actual value of the patch may increase

as the in-memory values of variables change and the defect becomes evident.

Much like cost, the programmer likely has an advantage in predicting the patch’s actu-

al value if she has recently seen the patch’s contents before and remembers it. That

knowledge facilitates the programmer’s ability to align expected value with actual value.

We can also explain the predictiveness of code structure from a scent perspective in

how programmers use IDE affordances that leverage structure to reduce actual cost.

Structure is a fundamental aspect of program code, and understanding a program’s struc-

ture is a goal that programmers are known to pursue [LaToza & Myers, 2010; Sillito et

al., 2006]. Some questions related to understanding structure include locating an object’s

definition, understanding hierarchy or determining control flow. To efficiently answer

these sorts of questions, programmers tend to follow affordances provided by most IDEs

to follow structural links between patches that otherwise would not exist. By doing so,

programmers reduce the actual cost of foraging because the alternative would be to navi-

gate to all the relevant patches via other links that are less direct (thereby increasing actu-

al cost). For example, Participant 2 leveraged the code structure factor in the recom-

mender to efficiently navigate to a patch relevant to his current prey via a structural link.

Structural-link affordances provided by the IDE tend to be predictable, and program-

mers leverage that predictability to align their expectations of cost with actual cost. Con-

sider the example of a programmer using an IDE affordance that opens an object’s decla-

ration. The programmer can easily align expected and actual between-patch cost using

her prior experience. She expects to follow a structural link to get to the object’s defini-

tion once she uses the affordance, and predictably, that is what happens.

By the same token, in the above example the cues on the structural links enable pro-

grammers to align their expected value with the actual value of the patch. This is because

these affordances provide cues that align with the programmer’s goal (in the above ex-

ample, the object’s definition) (e.g., “Open declaration”).

38

By the above logic, we believe that these factors fulfill the definition of scent, and are

different types of scent a programmer can follow: Lexical scent, Recency scent and

Structure scent.

3.6.5 Scent as a Unifier for Software Engineering

The above demonstrates how viewing tools through this lens translates their approach-

es to supporting programmers’ navigation to attempts to leverage these different types of

scent. This in turn suggests that these tools could be rewritten (and new tools could be

written) to use the same scent-based computational algorithm as a core, and thus unify

the different tools under a single, IFT-based abstraction.

However, writing such an algorithm requires addressing several unanswered questions

regarding the different types of scent. For example, how does a programmer decide

which type of scent to invest in at a given time? One likely possibility is that this decision

is influenced by the prey that the programmer is foraging for at that moment. But that

begs the question of what is the relationship, if any, between the programmer’s prey and

the type of scent they follow? Furthermore, although we have provided some evidence of

how the factors may affect the programmer’s expectation of value and cost, we believe

there is still a knowledge gap not only in terms of how a programmer estimates of value

and cost change at any given moment, but also what other types of scent may be influenc-

ing those estimates.

Successful tools also shed light on other types of scent that are relevant to program-

mers. In this chapter, we identified and discussed three types of scent, but as new tools

are developed and evaluated, we expect additional types of scent to emerge.

3.7 Summary of Results

This chapter investigated how to bring Reactive Information Foraging Theory to rec-

ommender tools for information-intensive, ill-structured problems. The algorithms we

investigated with professional programmers in a debugging task showed that:

39

• RQ1: Surprisingly, assuming low foraging momentum (using only one navigation

to inform its choices) produced better recommendations than those produced by

assuming high momentum (the past ten navigations).

• RQ2: There was suggestive but inconclusive evidence that participants found the

tool to be more valuable when it used words + structure than when it used words

only.

• RQ3: The tool’s recommendations were more useful to participants later in the

task, suggesting that tools may need to be sensitive to shifts in users’ foraging be-

havior.

• RQ4: Recommendations helped participants by revealing useful places that the

participants were unaware of and also by facilitating navigation to known places.

Most important, this chapter has demonstrated how IFT’s scent construct can unify SE

research on tools to support programmer navigation. We explained how the factors un-

derlying the various tools actually supported different types of scent that programmer fol-

lowed. We also evaluated several factors in situ via a recommendation tool to shed light

on what types of factors may be most relevant for a unifying scent-based algorithm. In

the next chapter, we continue the theme of how IFT’s constructs can unify SE by investi-

gating types of prey and the strategies that predators use to pursue them.

40

Chapter 4 Foraging Diet: Unifying Prey and Foraging Strategies

Similarly to how we demonstrated how scent can unify several papers on tools to sup-

port programmer navigation under the IFT construct of scent, in this chapter, we consider

using the IFT construct of prey as a unifier of research works on programmers’ strategies

during debugging.

To do so, we investigate how programmers’ foraging goals affected their foraging be-

havior. Specifically, we ran a study that identified the types of foraging goals that pro-

grammers pursued and what strategies programmers chose to pursue those goals. This

notion is captured in IFT as foraging diet, which is simply the prey that a predator choos-

es to pursue.

Diet so far has been mostly untapped in IFT. A notable exception is Evans and Card

[Evans & Card, 2008b], who investigated the diets of web users who were “early

adopters.” They discovered that these users’ diets were considerably different from the

information commonly provided by mainstream news sites, and they identified the niche

topics that made up the users’ diets. They also noted that the information sources chosen

by these users reduced the cost of attention by lowering the cost of social foraging and

social interpretation. Clearly, these findings have strong implications for the design of

sites to support such users. The Evans and Card work demonstrates the potential benefits

of applying information foraging ideas to understand the diets of people in particular con-

texts.

Inspired in part by the Evans/Card paper, this chapter aims to expand our understand-

ing of IFT diet by investigating the diets of professional programmers engaged in debug-

ging. Work in the software engineering (SE) literature has investigated related ideas, such

as the questions that programmers ask (e.g., [Fritz & Murphy, 2010; Ko et al., 2006;

LaToza & Myers, 2011; Sillito et al., 2006]), but that work was not grounded in a theory,

such as IFT. Thus, by investigating the information diets of professional programmers

from an IFT perspective, our work aims to help bridge the gap between such results from

the SE literature and the IFT foundations and results from the HCI literature.

41

For an understanding of the “what’s” of diet to be truly useful, we also need to under-

stand the “how’s”. Toward this end, we also investigate, from an IFT perspective, the

strategies that programmers use during foraging. The literature contains numerous works

on program debugging strategies (see [Romero et al., 2007] for a summary), but these

have not been tied to IFT. We believe that such strategies both influence and are influ-

enced by programmers’ diets, and this chapter investigates these ties. These ties will

serve as the foundation through which we leverage IFT to unify work on programmer di-

ets and their foraging strategies.

Thus, in this chapter, we address the following research questions with a qualitative

empirical study.

• RQ1 (diet “what’s”): What types of information goals do professional pro-

grammers forage for during debugging, and how do those goals relate to one

another?

• RQ2 (foraging “how’s”): How do professional programmers forage: what for-

aging strategies do they use?

• RQ3 (“what’s” meet “how’s”): Do professional programmers favor different

strategies when foraging for different types of information?

4.1 Background

In the domain of software development (and especially debugging), information forag-

ing often occurs in the context of sensemaking. The sensemaking process in an infor-

mation-rich domain has been represented as a series of two main learning loops: foraging

for information, and making sense of the foraged information [Pirolli & Card, 2005]. In

this model, the role of IFT is central. In fact, in Grigoreanu et al.’s sensemaking study of

end-user debugging [Grigoreanu et al., 2010] (which applied the Pirolli/Card sensemak-

ing model [Pirolli & Card, 2005]) found that the foraging loop dominated the partici-

pants’ sensemaking process.

In the software engineering community, there has been recent research focused on

supporting the questions programmers ask [Fritz & Murphy, 2010; Ko et al., 2006;

42

LaToza & Myers, 2011; Sillito et al., 2006], and these questions can be viewed as surro-

gates for programmers’ information goals. The software engineering analyses and tools

have not been grounded in theory, but their empirical success shows that they are useful.

A premise of this chapter is that IFT may be able to provide a richer, more cohesive un-

derstanding of programmers’ information seeking behaviors than atheoretic efforts. Re-

cently, we and a few others have begun investigating the efficacy of using IFT to under-

stand programmer information-seeking (e.g., [Lawrance et al., 2008b, 2010, 2013; Niu et

al., 2011; Piorkowski et al., 2012]). However, that work focused only on how program-

mers respond to cues. This chapter instead investigates the what’s and how’s of their di-

ets, i.e., the relationship between programmers’ information goals and debugging strate-

gies.

A predator’s information goal3 defines her “ideal” diet, but what predators actually

consume depends also on what information is available in the environment and how cost-

ly the information is to obtain. The relationship between cost and diet in IFT is explained

well by Anderson’s notion of rational analysis, which is based on the idea that humans

tend toward strategies that optimally adapt to the environment [Anderson, 1990]. For ex-

ample, it may make more sense for a programmer to forage for lower value prey if they

find it too expensive to collect the higher value prey (even if that’s in the “ideal” diet).

To help satisfy their diets, predators commonly engage in enrichment, that is, trans-

forming the environment to facilitate foraging. For example, by searching on the Web,

the predator enriches the environment by creating a new patch of search results, which

could potentially satisfy some or all of the predator’s information goals. In addition to

using search tools, other examples of enrichment include writing a to-do list on a piece of

paper and running a test on a program to create a patch of relevant program output. This

work is the first to look at the role of enrichment (and other foraging strategies) for satis-

fying programmers’ foraging diets in the domain of software debugging.

3 Recall that a goal is set of information features that match prey available in the environment.

43

4.2 Methodology

4.2.1 Study Data

To investigate our research questions, we analyzed a set of nine videos we collected in

a previous study of professional programmers debugging in an Eclipse environment

[Piorkowski et al., 2012] (Chapter 3). In that study, the programmers used the usual

Eclipse tools, plus a new IFT-based code recommender tool powered with a variety of

recommendation algorithms. This set-up is consistent with real-world scenarios in which

programmers work on unfamiliar code, such as a new team member being brought

“onboard” a project, a programmer on a team needing to work on code that another team

member wrote, or a newcomer to an open-source project.

To summarize the study setup, each video included screen-capture video, audio of

what the participant said, and video of the participant’s face. Participants “talked aloud”

as they worked. Their task was to fix a real bug in the jEdit text editor4. None of the par-

ticipants had seen the jEdit code before, and with 6,468 methods, it provided a large in-

formation space in which to forage. Each debugging session lasted two hours with a short

break halfway through. No participants completed the task, and all exhibited instances of

foraging throughout the two hours.

Categorization Procedures

We used a qualitative, multi-part coding approach to analyze these videos. First, we

segmented the videos into 30-second intervals, resulting in roughly 70 segments per vid-

eo. (We chose 30 seconds to be long enough for participants to verbalize a goal.) We then

coded each segment to identify (1) instances of foraging, (2) participants’ information

goals, and (3) participant debugging strategies, allowing multiple codes per segment. To

enhance generalizability, these code sets were drawn from prior studies, as we describe

below.

To ensure reliability, we followed standard inter-rater reliability practices. Two re-

searchers first worked together on a small portion of the data to agree on coding rules.

4 See Chapter 3 for the bug’s details.

44

They then independently coded 20% of the segments to test the agreement level. We

computed agreement using the Jaccard index, as it is suitable when multiple codes are

allowed per segment, as in our case. We performed a separate coding pass (with separate

reliability checks) for each code set. For each pass, agreement exceeded 80%, so the two

researchers then divided up the coding of the remaining data.

Information Foraging Behavior Codes

To code whether a participant showed evidence of information foraging within a 30-

second segment, we used a two-part coding process. First, we segmented around partici-

pants’ utterances and coded the segments. The codes were foraging-start, foraging-end,

and foraging-ongoing. This code set was inspired by the scent-following code set used in

[Lawrance et al., 2013], but ours focused only on whether or not foraging occurred, and

not whether scent was lost, gained, etc. We coded an utterance as foraging-start when

participants stated an intention to pursue a particular information goal and then took ac-

companying action to seek that goal, like searching. We coded an utterance as foraging-

end when participants stated that they had learned some information, or expressed giving

up on a goal. We coded an utterance as foraging-ongoing when participants restated a

previously stated goal, or said they were still looking for something.

In the second part of the coding process, we used the utterance codes from the first

part to code each 30-second segment as foraging or non-foraging. A segment was forag-

ing if it had an utterance coded as foraging-start, foraging-ongoing, or foraging-end, else

it was non-foraging. Also, to include segments in which a participant may not have ex-

plicitly made an utterance, we also coded segments in between foraging-start and forag-

ing-end utterances as foraging. However, some segments were exceptions. If a participant

clearly never foraged during a segment, we coded the segment as non-foraging. Non-

foraging activities included configuring Eclipse or reasoning aloud about the task. Using

this coding scheme independently, two researchers achieved 82% agreement on 20% of

the data before dividing up and individually coding the remaining data.

45

Information Goal Codes

We based the Information Goal code set on Sillito et al.’s empirically based taxonomy

of 44 questions programmers ask, which Sillito et al. had grouped into four types [Sillito

et al., 2006]. We coded the 30-second segments against the 44 questions, and then

grouped them into the four types for presentation brevity. Table 4.1 lists the types, with a

few examples of the Sillito questions that were our actual code set. We chose the Sillito

questions for several reasons. First, they are a good fit for the program-debugging do-

main, because they categorize information needs specific to programmers. Second, they

seem generalizable to a broad range of programming languages and environments, since

Sillito et al. collected them from a study that covered seven different programming lan-

guages and at least eight different programming environments. Third, they are consistent

with information goals identified in other studies from both programming and non-

programming domains (e.g., [Grigoreanu et al., 2010; Hearst, 2011; Lawrance et al.,

2013; Pirolli & Fu, 2003]). Finally, they are specific and low-level, enabling a code set

with the potential for high inter-rater reliability.

We coded each participant utterance in the foraging segments (as per our foraging

code set above) to one of Sillito’s questions. We also included a code of other goals, for

utterances that did not match any of the questions. Using this scheme, two coders

achieved 80% agreement on 20% of the data, and then split up the rest of the coding task.

Goal Type Codes Examples of Sillito questions
1-initial:
Find initial focus
points

Sillito
questions
1–5

#2: Where in the code is the text of this error
message or UI element?
#5: Is there an entity named something like this in
that unit?

2-build:
Build on those points

Sillito
questions
6–20

#14: Where are instances of this class created?
#20: What data is being modified in this code?

3-group:
Understand a group
of related code

Sillito
questions 21–
33

#22: How are these types or objects related?
#29: How is control getting (from here to) here?

4-groups:
Understand groups of
groups

Sillito
questions 34–
44

#35: What are the differences between these files or
types?
#43: What will be the total impact of this change?

Table 4.1. Information goal type examples.

46

The coding resulted in 384 goals coded using the Sillito question codes and 286 other

goals. About one fourth of the utterances coded other were similar to one of the Sillito

questions, but were not a precise match, so for reasons of rigor, we did not include them.

The remaining other goals were about concepts (e.g., the bug’s specifications, how to use

the jEdit “fold” feature, the Eclipse environment, etc.) that are beyond the scope of this

chapter.

Information Goal Patterns

To investigate how information goals relate to each other, we categorized the infor-

mation goal data into the five patterns in Table 4.2. Four of the patterns (Stairstep, Re-

start, Pyramid, and Oscillate) came from literature suggesting progressions in these se-

quences (e.g., [Grigoreanu et al., 2012; Pirolli & Card, 2005; Sillito et al., 2006]). The

fifth pattern, Repeat, emerged as a common pattern during the course of our analysis.

Pattern Example Formal Definition
Oscillate: Back and
forth between two
adjacent types
repeatedly.

1121212212 O= O1 | O2
 where:
O1=UpDn(1,2) | UpDn(2,1)
O2=UpDn(2,3) | UpDn(3,2)
UpDn(a,b)=a+b+(a+b+)+a*

Stairstep: From 1 up
through adjacent types
to at least 3.

1122223 Stairstep=
(1+2*)+ (2+3*)+ 3

Restart: Jump off the
Stairstep down to 1

112331 Restart=Stairstep 1

Pyramid: Up then
down the stairsteps.

Constraint: If
Pyramid, then not
Stairstep.

12321 Pyramid= Pup Pdown |
 2+ Pup Pdown 1
 where:
Pup=(1+2*)+(2+3*)+
Pdown=(3+2*)+(2+1*)+

Repeat: One type at
least 10 times.

1111111111 Repeat = 11111111111* |
 22222222222* |
 33333333333* |
 44444444444*

Table 4.2. Information goal patterns. Each definition is a regular expression of Goal Type instances. (+
means 1 or more instances, * means 0 or more instances, | means or). E.g.: 1+2+ means one or more

instances of Type 1, then one or more instances of Type2. We omit Type4s next to Type 3s because 4
never followed 3 in our data.

47

Following the Table 4.2 definitions, we used a greedy pattern-matching algorithm

(which always returned the longest possible matches) to identify instances of the patterns

in the goal data. We did not allow matches that contained a gap of 5 or more minutes

(i.e., 10 or more 30-second segments) between goal utterances or contained an interrup-

tion/intervention, such as the between-session break. We permitted overlapping patterns,

except for instances of Oscillate completely contained within a Stairstep or Pyramid, and

for instances of Stairstep completely contained within a Pyramid. We omitted Oscillate

and Stairstep instances in these cases, because they were essential components of the

containing patterns. A single author performed this analysis because the definitions were

objective and the analysis automatable.

Debugging Strategy Codes

To code participant strategies, we reused Grigoreanu et al.’s debugging strategy code

set [Grigoreanu et al., 2010]. We chose these strategy codes because, while being specific

to the program debugging domain, each also maps cleanly to one of the three key forag-

ing activities [Pirolli & Card, 1999] within-patch foraging, between-patch foraging, and

enrichment. (Technically, enrichment is a subset of within- and between-patch foraging

activities; however, in this chapter, we use the term within-patch foraging and between-

patch foraging to include only non-enrichment activities.)

Table 4.3 lists the strategy codes grouped by type of foraging activity. The Within-

Patch strategies all involve looking for information within the contents of a single patch,

such as in a Java method or web page. The Between-Patch strategies all involve navi-

gating between different patches by selecting and clicking links, such as those provided

by the recommender tool. The Enrichment strategies all involve manipulating the envi-

ronment to facilitate foraging, for example, by creating a new patch of search results.

For each segment, we looked for evidence of the participant applying each strategy us-

ing indicators such as those shown in Table 4.3. A segment could have multiple strategy

codes. Using this scheme, two coders achieved 80% agreement on 28% of the data, and

then divided up the remaining data.

48

Strategy Example Indicators
Within-Patch Strategies
Specification checking Looking for info by reading within the bug description
Spatial Looking for info by reading through the list of package

contents in the Package Explorer
Code inspection Looking for info by reading within a Java code file
File inspection Looking for info by reading within a non-code file, such

as a Java properties file
Seeking help-Docs Looking for info by reading within the jEdit

documentation
Between-Patch Strategies
Control flow Following control dependencies
Dataflow Following data dependencies
Feedback following Following method links from the recommender tool
Enrichment Strategies
Code search Creating a patch of search results with the Eclipse code

search utility
Testing Creating a patch of program output or internal state to

inspect
To-do listing Writing notes on paper
Seeking help-Search Creating a patch of search results with an (external) web

search for info on bug/code
Table 4.3. Debugging strategy code set with example indicators for each strategy.

49

4.3 Results

4.3.1 Preliminaries: How Much Foraging Did Participants Do?

As Table 4.4 shows, participants spent 50% of their 2-hour sessions foraging on aver-

age. We were unable to find prior measures of programmer foraging with which to com-

pare this result, but Ko et al. measured time spent on mechanics of navigation. Their pro-

grammers spent 35% of the time on “the mechanics of navigation between code frag-

ments” [Ko et al., 2006]. Even our participant who foraged the least still did so more than

35% of the time.

4.3.2 RQ1: The What’s of Programmers’ Diets

A Diversity of Dietary What’s

Although all participants had the same high-level information goal (to find the infor-

mation needed to fix the bug), their dietary preferences were diverse, as Table 4.5 shows.

(Recall the four goal types defined in Table 4.1.) In aggregate, participants pursued the

most goals of Type 1-initial, with slightly fewer in 2-build, and many fewer in the more

complex 3-group and 4-groups. However, most participants did not conform to the ag-

gregate: Only P6 and P9 had goal counts consistent with the aggregate. Instead, partici-

pants diets varied considerably.

Participant: P2 P3 P5 P6 P7 P8 P9 P10 P11 Mean
Time
Foraging: 52% 71% 38% 63% 46% 43% 48% 42% 49% 50%

Table 4.4. Participants spent a large fraction of their time, ranging from 38% to 71%, foraging for in-
formation.

Goal Type P2 P3 P5 P6 P7 P8 P9 P10 P11 Total
1-initial 6 76 0 34 18 8 18 8 2 170
2-build 3 1 2 24 34 17 16 15 11 123
3-group 2 2 2 3 2 3 15 9 11 49
4-groups 13 1 0 0 0 9 0 3 16 42
Total 24 80 4 61 54 37 49 35 40 384

Table 4.5. Number of segments spent on the (codeable) types of information goals. Gray highlights
each participant’s must-pursued goal type.

50

Patterns of Dietary Relationships

Despite their dietary diversity, the progression of information goals that participants

pursued often followed certain patterns (summarized in Table 4.6 and Figure 4.1; patterns

defined in Table 4.2). Eight of the nine participants displayed one or more of the patterns,

and 58% of segments in which a participant expressed a goal were part of a larger pat-

tern. Participants exhibited a median of 1.5 patterns each, with P6 exhibiting all five.

For example, P6’s use of the Restart pattern at the end of a Stairstep is shown in the

Figure 4.1.e example. The Restart occurred when his Stairstep progression culminated in

gaining the information he sought about the handleMessage method’s relationship to

the editor (a Type 3-group goal):

Pattern P2 P3 P5 P6 P7 P8 P9 P10 P11
Repeat 1(4) 2(1) 1(1) 1(2) 1(2) 1(4)
Oscillate 1(1,2) 2(1,2) 1(3,2) 1(3,2)
Stairstep 1
Pyramid 1 1 2 1
Restart 1

Table 4.6. Frequency of pattern instances exhibited by each participant. The numbers in parentheses
indicate the type of goals within the pattern (e.g., 1(3, 2) in the Oscillate row indicates patterns like

33322322, as defined in Table 4.2).

Figure 4.1. Frequency of goal patterns. Y-axis is the count of segments in each pattern. Each bar is la-
beled with an example from the participants’ videos. The beige background denotes foraging; white is

non-foraging (e.g., studying the code that has been found); and number denote the goal types.

51

P6: “So this (handleMessage) is handling some events for the editor.”

This was what P6 had wanted to know, so he then changed to a new line of foraging,

thus dropping down to a Type 1-initial goal:

P6: “But I don’t know how the menu is hooked up to this. … I wonder if there is some

method that might be named ‘delete lines’ …” [P6 starts searching in package explorer.]

Some of these patterns were predicted by the literature. Sillito et al. [Sillito et al.,

2006] suggested one progression: find an initial focus (1-initial), then build on it (2-

build), then understand a group of related foci (3-group), and finally understand groups of

groups (4-groups). Other empirical studies have found a similar progression from 1-initial

to 2-build, including previous work on information foraging during debugging (character-

ized there as “debugging modes”) [Lawrance et al., 2008b], and earlier work on how

people seek information in web environments (summarized in [Hearst, 2011]). Further-

more, the notion of progressing from Type 1-initial to 2-build to 3-group to 4-groups is

consistent with prior results from applying Pirolli and Card’s sensemaking model [Pirolli

& Card, 2005] to intelligence analysts and to end-user debuggers [Grigoreanu et al.,

2012].

However, participants did not usually organize their foraging in the ways suggested by

the above literature: Stairstep, Pyramid, and Restart together accounted for only 22% of

the pattern segments. In fact, only four of the participants used any of them at all! This

finding suggests that idealized progressions outlined in prior research miss much of how

programmers forage for information in code, at least in the widely used Eclipse environ-

ment.

In contrast to the patterns from the literature, the Repeat pattern, which emerged from

our study, occurred frequently. In Repeat, a participant spent extended periods following

one information goal type. 6 of the 9 participants exhibited this pattern—greater usage

than any other pattern.

Why did participants exhibit the above patterns? To answer this question, we need two

pieces of information: what strategies they used for their foraging, and how those strate-

52

gies came together with their goals and goal patterns. We discuss each of these in turn in

the next two sections.

4.3.3 RQ2: The How’s: Strategies during Foraging

Recall from Methodology (Table 4.3) that each debugging strategy maps to an IFT ac-

tivity: within-patch foraging, between-patch foraging, and enrichment. Table 4.7 shows

each participant’s strategy usage by IFT category.

Debugging Strategies Meet IFT

Since much of the prior IFT research has focused on between-patch scent following

(e.g., [Chi et al., 2001; Lawrance et al., 2010]), we were surprised that only 24% of par-

ticipants’ foraging fell into that category. Participants spent considerably more time for-

aging within patches and performing enrichment.

Strategy P2 P3 P5 P6 P7 P8 P9 P10 P11 Total
Within-Patch Strategies
Spec. Checking 2 9 0 11 0 0 0 3 0 25
Spatial 25 39 5 28 31 14 47 19 12 220
Code Inspection 4 9 10 16 17 15 22 7 30 130
File Inspection 0 6 0 4 0 0 0 3 0 13
Seek Help-Doc 4 0 0 0 0 0 0 2 0 6
Total: 35 63 15 59 48 29 69 34 42 394
Between-Patch Strategies
Control Flow 19 1 18 14 20 27 23 14 21 157
Data Flow 0 0 5 1 2 4 0 7 5 24
Feedback Following 4 8 12 5 6 4 6 1 6 52
Total: 23 9 35 20 28 35 29 22 31 232
Enrichment Strategies
Code Search 0 51 0 29 33 4 0 12 0 129
Testing 36 0 34 14 5 37 30 22 45 223
Todo Listing 1 1 0 1 1 2 0 0 5 11
Seek Help-Search 0 4 0 0 0 0 0 0 0 4
Total: 37 56 34 44 39 43 30 34 49 366
Overall Total: 95 128 84 123 115 107 128 90 122 992

Table 4.7. Usage (segment counts) of each strategy during foraging. Gray cells indicate the maximum
frequency by participant and by strategy category. Although participants foraged in a total of 660 seg-
ments, the overall total of strategy segments (992) is greater because participants used multiple strate-

gies during some segments.

53

As Table 4.7 shows, participants used a diverse mix of strategies (median of 8 differ-

ent strategies); however, each foraging category had clearly dominant strategies. Spatial

was the participants’ primary Within-Patch strategy; Control Flow was their primary Be-

tween-Patch strategy; and Code Search and Testing were together (but especially Test-

ing) their primary Enrichment strategies.

What Participants Used Enrichment For

Enrichment is an activity wherein the predator changes the environment to facilitate

foraging [Pirolli & Card, 1999]. The participants changed their environments in two

ways. Code Search, Seek Help-Search, and To-Do Listing involved creating a patch of

links to other patches for the predator to navigate. In contrast, Testing involved creating

patches of information content for the predator to process.

Most participants strongly favored one or the other of these types of enrichment strat-

egies. In particular, they either favored creating patches of linked search results with

Code Search, or creating patches of runtime state information with Testing. In fact, over

half of the participants used only one of Code Search or Testing. For example, Participant

P7 used Code Search repeatedly, trying to find methods that implemented line deletion

and folding in jEdit:

P7: “Let’s see if I can find something like what is in that bug report.” [Searches for delete

lines. No results.] “Let’s just look for ‘explicit fold’.” [Searches for explicit fold.]

“Finally, something that actually has to do with folding...”

In contrast, P5 stepped through program runs repeatedly, collecting information about

its internal state:

P5: [Looks at the debugger’s Variable Watch view.] “lineCount is zero.” [Reads code.]

“I’m going to step into that (method)” [Steps.] “count is greater than–now count is zero.

[Steps again.] “I’m stepping through the code. ... I’m trying to understand what this code

is doing.”

Despite prior findings about users’ preference for searching (e.g., [Brandt et al.,

2009]), four of the nine participants used neither Code Search nor Seek Help-Search.

This lack of searching cannot be because the task was too easy (no one finished) or the

54

code base was too small (it had 6468 methods). However, earlier findings on web infor-

mation processing [Hearst, 2011] may explain this result. Hearst points out that, in many

cases, browsing works better than searching because it is mentally less costly to recog-

nize a piece of information than it is to recall it, and recall is often needed to formulate an

effective search query. Consistent with Hearst’s observation, every participant used the

Code Inspection strategy.

Go-To Strategies for Foraging

Reconsidering Table 4.7 from a most-used perspective, some strategies stand out as

having been used particularly often for one or more aspects of foraging. The leftmost four

(white) columns of Table 4.8 summarize.

4.3.4 RQ3: What’s Meet How’s: Dietary Strategies

Strategies by Goal Type

Table 4.9 and Figure 4.2 tie all 12 of the strategies back to the participants’ dietary

goals. As the table and figure show, some strategies were strongly tied to particular goal

types. For example, Specification Checking was used only for Type 1-initial goals, and

Code Inspection was used primarily for Type 2-build goals. Figure 4.2 shows that

Strategy
How many

used it?

Top strategy for...
... which

participants
... which IFT

category
... which

Goal Type
... which
Patterns

Within-Patch Strategies
Spatial all 9 P9 Within 2-Build Pyramid
Code Inspect. all 9 - - - -
Between-Patch Strategies
Control Flow all 9 - Between - Restart
Feedback Follow. all 9 - - - -
Enrichment Strategies
Code Search 5 P3, P6, P7 - 1-initial Repeat,

Oscillate,
Stairstep

Testing 8 P2, P5, P8,
P10, P11

Enrich. 3-group,
4-groups

-

Table 4.8. These 6 strategies (out of 12) stood out. Each of these was used by everyone, was at least one
person’s most-used strategy, or was the top strategy for an IFT category.

55

Strategy
Information Goal Type

Total
1-initial 2-build 3-group 4-groups

Within-Patch Strategies
Spec Checking 24 0 0 0 24
Spatial 92 62 23 8 185
Code Inspection 13 56 20 4 93
File Inspection 10 0 0 0 10
Seeking Help-Docs 2 0 0 0 2
Total: 141 118 43 12 314
Between-Patch Strategies
Control Flow 21 46 14 9 90
Dataflow 1 4 3 1 9
Feedback Following 13 15 7 1 36
Total: 35 65 24 11 135
Enrichment Strategies
Code Search 104 47 2 1 154
Testing 25 26 26 30 107
To-Do Listing 1 4 1 3 9
Seeking Help-Search 0 0 0 0 0
Total: 130 77 29 34 270
Overall Total: 306 260 96 57 719

Table 4.9. Strategy usage by goal types. Gray highlights the maximum strategy usage for each goal type.
The overall total (719) is greater than the total foraging segmetns (660) because some segmetns contained
multiple strategies. The total for Seeking Help-Search was 0 because none of the strategy’s Type 4 goal

instances co-occurred with a goal statement.

56

Figure 4.2. Strategy proportions by goal type. Strategies are color-coded, with black bars separating the IFT

categories. Red: Within-patch. Green: Between-Patch. Blue: Enrichment.

0.0%$

10.0%$

20.0%$

30.0%$

40.0%$

50.0%$

60.0%$

70.0%$

80.0%$

90.0%$

100.0%$

1.ini1al$ 2.build$ 3.group$ 4.groups$

Seeking$Help$
(Search)$
To.Do$Lis1ng$

Tes1ng$

Code$Search$

Feedback$
Following$
Dataflow$

Control$Flow$

Seeking$Help$
(Docs)$
File$
Inspec1on$
Code$
Inspec1on$
Spa1al$

Spec$
Checking$

a$

b$

c$

d$

e$

57

participants used Code Search (labeled a) and Spatial (labeled b) more than the other

strategies with their Type 1-initial goals. From a patch perspective, Spatial seemed

particularly suited to helping participants cope with large patches, and Code Search with

large spaces of patches. For example, P6 spent considerable time performing Spatial in

the Package Explorer view (a patch containing hundreds of lines), looking for a Java

class on which to focus:

P6: “I keep thinking this menu package gotta be involved somehow.” [P6 scans down the

list of Java classes inside the menu package in Eclipse’s Package Explorer view.]

P3, on the other hand, applied Code Search to search the 6468 methods for code

related to deleting lines in jEdit:

P3: “I would imagine that I would look for the word ‘delete’ perhaps, especially given

that that’s the term that’s used in the menu.” [Executes a search for delete.]

Participants tended toward different strategies for the Type 2–4 goals, which express

progressively deeper relationships among code entities. For example, Figure 4.2 shows

the shift away from Code Search and Spatial, and toward Code Inspection (c) and Control

Flow (d) for Type 2-build and Type 3-group goals. Testing in particular (e) increased

markedly from Type 2-build to Type 4-groups goals.

Considering participants’ goal patterns in the context of their strategies (summarized

in Table 4.10) sheds additional light on why the patterns emerged.

Pattern Repeat: Constant Goal Type, Constant Strategies

Pattern Repeat, repeated pursuit of a single goal type, was also characterized by re-

peated participant use of a constant handful of strategies. The Repeat instances occurred

in two cases. In one case, participants’ debugging strategies were producing the desired

goals efficiently, i.e., at such low cost to the participants that staying with that goal type

and strategy was a good way to optimize their costs. In the other case, their strategy for

that goal type was so ineffective, they needed a long time to fulfill that type of dietary

need.

As an example of the first case, P7 followed the Repeat pattern on Type 2-build goals

using three strategies continuously: Spatial, Code Inspection, and Control Flow. Eclipse

58

Pattern Participant Strategy
Within-Patch Between-Patch Enrichment

Repeat(1) P3 70% 6% 71%
 P6 75% 0% 75%
Repeat(2) P7 83% 72% 48%
 P10 50% 38% 63%
Repeat(4) P2 40% 10% 80%
 P11 30% 40% 90%
 Median: 60% 24% 73%
Oscillate(1,2) P6 79% 8% 63%
 P7 74% 57% 60%
Oscillate(3,2) P10 40% 47% 73%
 P11 100% 48% 62%
 Median: 77% 47% 62%
Pyramid P6 62% 57% 76%

P8 53% 53% 88%
P9 100% 21% 7%

P10 53% 29% 76%
Median: 57% 41% 76%

Restart P6 61% 57% 70%
Stairstep P6 62% 57% 76%

Table 4.10. Percentage of goal-pattern segments that co-occurred with each category of strategy. Recall that
multiple strategies were allowed per segment. Gray denotes the maximum category for each pattern.

59

supports all three with low-cost navigation tools, such as one-click navigation to the dec-

laration of any class, method, or variable. P7 used these features to efficiently fulfill his

Type 2-build goals, and fulfilled multiple goals, often building from one goal to the next

using the same strategies.

When participants followed the Repeat pattern on goals of Type 1-initial or of Type 4-

groups, their strategies were still constant, but not as fruitful. In the cases involving Type

1-initial, participants used Code Search (Enrichment) and Spatial (Within-Patch) exten-

sively, but not particularly fruitfully, looking for a place to start. For example, Figure 4.3

shows P3 repeatedly using Code Search to find an initial starting point. Likewise, in

P11’s use of Repeat on his Type 4-groups goals, he used Testing across numerous seg-

ments of the pattern, trying to understand the relationship between changes he had made

and the rest of jEdit’s functionality. He pieced the information together by laboriously

gathering it in small bits, one execution of the program at a time.

Figure 4.3. P3 continuously used Code Search (underlined) to find code relevant to deleting lines of
text. He often complemented it with Spatial (dots). The beige background denotes foraging: white is

non-foraging and the numbers indicate the minutes in the session.

60

Pattern Oscillate: Changing Strategies to Dig Deeper

For the participants who followed the Oscillate pattern on Type 1-initial and 2-build

goals, the story was similar to Repeat on Type 1-initial, except the oscillators tended to

seek additional information from their search results. In particular, the oscillating partici-

pants would typically do a code search, explore the results a bit, decide they were on the

wrong track, and return to searching. Unlike the Repeat pattern, the participants we ob-

served within the Oscillate pattern switched strategies rapidly along with their goals. Fig-

ure 4.4 illustrates this behavior for P6.

Figure 4.4. The Oscillate pattern for P6. The abandonment of goals is highlighted in bold. The under-

lines are segments with Code Search. The dots are segments with Spatial. Note that strategies alternate
with the goal types.

61

Patterns for Enrichment and Goal Switching

Table 4.10 suggests that Enrichment tended to drive the interrelated Pyramid (up then

down the stairs), Restart (stairs followed by starting again), and Stairstep (climb the

stairs) patterns. Participants following the Pyramid pattern used the Enrichment strategies

of Code Search and Testing equally often, but P6’s instances of Stairstep and Repeat

were characterized by almost exclusive use of the Code Search strategy. (Only P6 fol-

lowed these two patterns.)

All three patterns were characterized by rapid goal fulfillment followed by a rapid

switch to the next goal. This rapid fulfillment and initiation of the next goal type is con-

sistent with our previous findings pointing to the reactiveness of foraging in this domain

[Lawrance et al., 2010; Piorkowski et al., 2012] (Chapter 3).

The Most-Used Strategies’ Strengths

This brings us to the particular strengths of different strategies. Refer back to Table

4.8; the rightmost (shaded) columns include the goal types and patterns we have just dis-

cussed for the most-used foraging strategies. As the table shows, certain classic debug-

ging strategies were used heavily in foraging but often were concentrated into dietary

niches. For example, Code Inspection and Feedback Following were generalists—used

by everyone, but not the top in any particular IFT category, any goal type, or any pattern.

In contrast, Code Search was a specialist, dominating some of the patterns and one of the

goal types, but still used by only half the participants.

4.4 Discussion

4.4.1 The Long Tail of Diet What’s

Participants' dietary needs varied greatly. This variety was not only between partici-

pants, but also within each participant’s session from one moment to the next.

Our participants’ diverse diets are reminiscent of the highly varied and personal diets

reported by the Evans/Card study [Evans & Card, 2008b]. Evans and Card attributed this

finding to a “long tail” demand curve, in which an abundance of available information

makes it possible for people to satisfy their own individual, even quirky, desires for in-

62

formation. However, in the Evans/Card study, people foraged as part of their own indi-

vidual tasks. Interestingly, we saw the same phenomenon with our participants, even

though they all had the same overall goal (to fix the bug).

The participants’ sometimes stubborn pursuit of particular information goals—

tolerating very high costs even when their efforts showed only meager promise of deliv-

ering the needed dietary goal—highlights an important difference in the software domain

versus other foraging domains: Programmers’ dietary needs are often very specific. For

an information forager on the Web, one dictionary page is often as good as another. But

for a programmer trying to fix a bug, only very particular information about very specific

code locations will help them in their task. This high dietary selectiveness in this domain

may explain the high costs programmers were sometimes willing to pay.

4.4.2 Scent’s Role in Foraging Diets and Strategies

Recall that both goal types and strategies were derived directly from IFT’s notions of

prey and types of foraging. Goal types stood in for prey, the set of information features

that a predator is looking for. Goal types provided a way to categorize questions that par-

ticipants’ asked during debugging. Similarly, strategies were a way to map actions that

participants took in the IDE to one of the three types of foraging specified by IFT: within-

patch foraging, between-patch foraging and enrichment.

Goal types’ tendency to map to certain strategies suggests a relationship between prey

and how a predator chooses to forage next. IFT already specifies that how a person forag-

es depends on the contents of the predator’s current patch and how they assess value and

cost in that patch and that assessment is in part, based on their current prey. But, the rela-

tionship between the goal types and strategies suggests that certain foraging strategies are

pursued for certain types of prey. This relationship may provide explanations for how

programmers estimate scent based on their types of information that they are looking for.

For example, a programmer foraging for at 4-groups goal type appears to have a higher

expected value per expected cost for enrichment strategies than between-patch strategies.

Thus, if the goal type of the programmer can be determined, the estimates of their ex-

pected values and cost can be more accurately estimated.

63

4.4.3 Unifying Diet with Strategies

We envision that similar approaches to the ones that we used in this chapter can serve

to unify others works on programmers’ diet (e.g., [Fritz & Murphy, 2010; Ko et al., 2006;

LaToza & Myers, 2011; Sillito et al., 2006]) and foraging strategies (e.g., [Grigoreanu et

al., 2010, 2012; Murphy et al., 2008; Pirolli & Card, 1999]). For example, LaToza and

Myers’ work which showed that programmers asked reachability questions [LaToza &

Myers, 2010] could similarly be linked to Murphy et al.’s work on debugging strategies

used by novices [Murphy et al., 2008]. RQ3’s results showed that such a link already ex-

ists, with IFT providing the necessary abstractions to understand the relationship between

diet and strategies.

With an understanding of the way diet and strategies connect, tool developers can lev-

erage findings on how programmers behave and better support these behaviors in their

tools. For example, looking at Table 4.10, when participants were pursuing a repeat pat-

terns, they more often relied on a combination of within-patch foraging and enrichment.

Two possible interpretations of the results follow. If the programmer was successful in

their foraging, then this suggests that any tools supporting this type of diet should support

both these types of foraging. If the programmer was unsuccessful in this type of diet, then

the types of foraging may be indicative of what makes pursuing this diet difficult. With-

out unification, such insights would remain hidden.

4.5 Summary of Results

In this chapter, we considered what programmers want in their diets and how they for-

age to fulfill each of their dietary needs. Some results this diet perspective revealed were:

RQ1 (what’s):

• Diversity: Even though all participants were pursuing the same overall goal

(the bug), they sought highly diverse diets. This suggests a need for debugging

tools to support “long tail” demand curves of programmer information.

• Dietary patterns: Most foraging fell into distinct dietary patterns—including

78% in a new pattern not previously proposed in the literature.

64

RQ2 (how’s):

• Foraging strategies: Participants spent only 24% of their time following be-

tween-patch foraging strategies, but between-patch foraging has received most

of the research attention. This suggests a need for more research on how to

support within-patch and enrichment foraging.

• Search unpopularity: Search was not a very popular strategy, accounting for

less than 15% of participants’ information foraging—and not used at all by 4

of our 9 participants—suggesting that tool support is still critical for non-

search strategies in debugging.

RQ3 (what’s meets how’s):

• Strategies’ diet-specificity: Some foraging strategies were of general use across

information goal types, but others were concentrated around particular dietary

niches. This suggests tool opportunities; for example, tools aimed at supporting

a particular strategy may be able to improve performance by focusing on the

strategy’s dietary niche.

• Cost of selectivity: Participants stubbornly pursued particular information in

the face of high costs and meager returns. This emphasizes a key difference be-

tween software development and other foraging domains: the highly selective

nature of programmers’ dietary needs.

As Evans and Card summarize from Simon: “For an information system to be useful,

it must reduce the net demand on its users’ attention” [Evans & Card, 2008b]. Later, in

Chapter 6, we will consider the essence of how programmers try to optimize this atten-

tion.

65

Chapter 5 Motivations and IFT for Software Engineering

In the previous two chapters we investigated two ways in which IFT can unify SE re-

search. Here we step back and ask if IFT alone is enough to unify SE research, or if we

need to consider other theories of human behavior. Thus, in this chapter, we investigate

the role that Minimalist Learning Theory (MLT) [Carroll, 1998] may play in how pro-

grammers navigate during debugging.

The large number of goals reported in the previous chapter may be symptomatic of

programmers’ preference towards strategies that produce results quickly over those that

require taking the extra time to learn. In fact, a prior observational field study of work

practices revealed that “wherever possible, developers seem to prefer strategies that avoid

comprehension” of existing code [Roehm et al., 2012]. Specifically, that study found that

developers frequently tried to move forward with coding as quickly as possible, with a

minimal amount of activity invested ahead of time in exploring the code they were about

to modify. Such results are consistent with those of other studies [Brandt et al., 2009;

LaToza et al., 2006; Maalej et al., 2014].

Based on such findings, Maalej et al. concluded:

“Software comprehension is a hard and time-consuming task and consequently is avoided

whenever possible. This indicates that Carroll’s minimalist theory [Carroll 1998], which

suggests people put in the minimum effort to maximize their outcome, is applicable …

We think that researchers should consider developers as users and investigate how ‘user-

developers’ analyze application behavior, how they relate observations to code, and how

this behavior can be supported by tools” [Maalej et al., 2014].

This tendency of programmers to view learning as a costly task detracting from their

efficiency is called production bias in Carroll’s theory [Carroll, 1998; Carroll & Rosson,

1987]. To date, the effects of production bias on programmers have not been investigated

in detail.

Production bias suggests that even subtle differences in what is motivating a pro-

grammer to be looking at code may influence how they forage. Carroll’s theory [Carroll,

1998; Carroll & Rosson, 1987] would predict that a programmer who is trying to fix a

66

defect will bias their foraging such that they maximize production. Let us consider two

programmers working on the same defect, one who is fixing a defect (fixer), and another

who is trying to understand the same defect’s code (learner) “enough” to help someone

else fix it. Does the fixer forage similarly to the learner as suggested by IFT (because

they both have similar prey), or does their foraging differ, suggesting that IFT must con-

sider the importance of motivation?

To date, IFT has not specified how people will forage, or how tools should help people

forage, in the face of production bias. The theory suggests only that foraging behavior

would change if production bias affects how people perceive the value and cost of patch-

es and cues (i.e., scent). This chapter fills that gap by uncovering both whether and how

production bias’s tension of learning vs. efficiency affects information foraging during

software maintenance. Specifically, we investigate the effects of production bias on for-

aging. Our investigation is grounded both in Carroll’s theory, and in Information Forag-

ing Theory.

We performed our investigation by conducting two qualitative laboratory studies

across two environments. In both studies, one group of programmers was tasked with fix-

ing a bug, whereas the other group was tasked with learning enough about the bug to help

someone else fix it. We assigned people these subtly different tasks to reveal and analyze

differences in their behaviors from simultaneously an IFT and a production bias perspec-

tive.

In the first study, where participants worked in a desktop environment, we address

four research questions:

• RQ1 (information goals): How does trying to fix a bug versus trying to learn

about the bug affect the types of information that programmers seek?

• RQ2 (information patches): How does trying to fix a bug versus trying to learn

about the bug affect where in the environment programmers make foraging de-

cisions?

67

• RQ3 (information cues): How does trying to fix a bug versus trying to learn

about the bug affect the types of cues programmers attend to when making for-

aging decisions?

• RQ4 (foraging tactics): How does trying to fix a bug versus trying to learn

about the bug affect the tactics that programmers use in making their foraging

decisions?

In the second study, we repeat parts of the first study to investigate if its findings about

Fix versus Learn participants generalize to a new environment. Our research questions

repeat RQ2 and RQ3 but in a mobile environment instead of a desktop one:

• RQ5a (patch types): Does trying to fix a bug versus trying to learn about the

bug affect the where in the environment that Mobile programmers forage

from? If so, how?

• RQ5b (cue types): Does trying to fix a bug versus trying to learn about the bug

affect the types of cues programmers attend to when navigating? If so, how?

5.1 Background and Related Work

5.1.1 Minimalist Learning Theory

In situations where people are primarily motivated to finish a task, information seek-

ing is not the main activity, but a necessity for completing the task. These types of situa-

tions are well described by Minimalist Learning Theory (MLT) [Carroll, 1998]. MLT ex-

plains the learning motivations and behavior of active users, people in situations where

learning is motivated by their current task. According to MLT, active users’ focus on

throughput (finishing their task as quickly as possible) leads to two conflicts that are mu-

tually reinforcing. The first, a motivational paradox named production bias, describes

how active users’ focus on throughput reduces their motivation to spend time learning

about the task they are working on, even if doing so would help them complete their tasks

more effectively. The second, a cognitive paradox named assimilation bias, explains how

active users apply what they already know to new situations and how this knowledge

might lead to incorrect conclusions or misinformation regarding new knowledge [Carroll

68

& Rosson, 1987]. Carroll and Rosson argued that together these paradoxes amplify each

other’s effects.

Not only do programmers fit the role of the active user, but the two biases outlined

above have implications for IFT, specifically for describing the reactivity that we have

observed in previous studies [Lawrance et al., 2010; Piorkowski et al., 2012, 2013]

(Chapter 3), where programmers suddenly changed their goals and their future naviga-

tions through the code. Consider the example of a programmer who encounters some

piece of code that they decide would be too costly relative to the value that the code pro-

vides. Perhaps the code relies on an API that the programmer is unfamiliar with so it

would distract them from their main task (production bias, high expected cost) or the API

calls seem similar to ones that they have already seen elsewhere, but in fact are not (as-

similation bias, low expected value). In both cases, the value of that code would increase

if they later discover that that information was necessary to do their task. This would

cause the programmer to return to the code and explore related code that would corre-

spond to programmer behavior we have seen in prior studies. Intuitively, MLT provides a

means for further understanding and explaining programmers’ navigation while debug-

ging. Therefore, a central goal of this chapter is to understand whether incorporating pro-

duction bias as a factor is worth doing.

5.2 Methodology

To model Minimalist Learning Theory’s tension between learning vs. “doing,” we

randomly assigned each participant to one of two treatments: Fix or Learn. We told par-

ticipants in the Fix treatment group to fix a particular bug in a program. We told partici-

pants in the Learn treatment group to learn enough information about that same bug to be

able to on-board a programmer new to the team—that is, enough to “help the new pro-

grammer fix the bug.” Thus, both groups needed to find the same information, but only

the Fix group was asked to actually fix the bug. Thus, for the Learn group, we framed

learning “enough” as an end in itself.

However, we did not control how much fixing or learning participants actually did.

Indeed, both treatment groups would need to do some learning/comprehension of the

69

buggy code, and would have to decide when they had learned “enough.” Also, we did not

stop any participants from fixing: when Learn participants asked if they could fix the bug,

we told them to feel free to do whatever they felt was necessary to learn what they need-

ed to learn.

5.2.1 Procedure

The code that both groups worked with was from the jEdit project. All participants re-

ceived a copy of bug report #32235 from jEdit’s issue-tracking system6. All participants

had access to the same tools, which consisted of the Eclipse integrated development envi-

ronment and other software commonly found on a Windows PC, including a web browser

with unrestricted access to the Internet.

Randomly dividing the 11 participants into two treatments resulted in 6 Fix partici-

pants and 5 Learn participants. Each participant had an individual session, lasting at most

2 hours. Throughout the session, we collected video recordings of the participant as well

as screen-capture video. First, the participant filled out a background questionnaire, and

we briefly explained what they should do (to learn “enough” or to fix, depending on

treatment). Next, the participant worked for 30 minutes while “talking aloud.”

Participants’ foraging decisions were the moments of trade-off (e.g., forage to fix, to

learn this, to learn that, etc.). Thus, following a short break we conducted a semi-

structured retrospective interview with each participant by playing back all of the screen-

capture video, then asking why the participant made each foraging decision we observed

and what information was learned after making that foraging decision.

5.2.2 Participants

The participants were computer science students with software engineering experi-

ence. All participants had 3–7 years of programming experience (mean: 4 years). All had

5 Bug #3223 is identical to bug #2548764 in Chapter 3 and Chapter 4. The id number changed be-

cause jEdit’s developers migrated to a new repository.
6 See Chapter 3 for the bug’s details.

70

1–7 years of Java programming experience (mean: 3 years), and all were familiar with

Eclipse. They were 20–30 years of age; 9 were males and 2 were females.

5.2.3 Qualitative Analysis Methods

We used a multi-phase qualitative coding process to analyze participants’ information

foraging behavior, as depicted in Figure 5.1. For each coding phase, after two researchers

developed and refined the rules for each code set, they independently coded the same

20% of the data (at least). We then calculated inter-rater reliability using the Jaccard in-

dex. Our inter-rater reliability was 81%–92% on all code sets. Given this high level of

reliability, the two researchers then split up the remaining data to code independently.

Code Set A: Participants’ Foraging Decisions (RQ1–4)

We first focused on participants’ foraging decisions—the moments they explicitly

chose one patch over another (Figure 5.1.A.i). We coded a foraging decision (1) if the

participant verbalized that he/she was making a decision between visiting two or more

patches (e.g., Java methods), (2) if the participant’s mouse movement included hesitation

over two or more hyperlinks from a list (e.g., as in search results), or (3) if the participant

scrolled between two or more methods while deciding which to investigate next.

Figure 5.1. Our multi-phase qualitative coding technique.

71

We then verified our decision codes using the retrospective interviews (Figure

5.1.A.ii). Specifically, after we coded the foraging decisions from the videos, we then

checked what each participant had said during the interview. If he/she stated that no for-

aging decision had occurred in a place where we had a coded one, we removed the code.

If during the interview, the participant pointed out a foraging decision that we had not

coded, we added it. One example was when a participant paused to consider which meth-

od to investigate next without speaking or moving the mouse. If the interviewer did not

ask a participant about an instance that we later identified as a foraging decision, we let

our code stand.

Code set B: Participants’ Information Goal Types (RQ1)

For each foraging decision, we then coded the participant’s information goal type

(Figure 5.1.B). To identify participants’ information goals as they foraged, we coded par-

ticipants’ information goals using 44 previously documented questions programmers ask

[Sillito et al., 2006] (Figure 5.1.B.i). For the purpose of analysis, we used the four catego-

ries that Sillito et al. grouped the questions into. We chose this code set because it was a

good fit for the program-debugging domain and was consistent with information goals

reported in other studies [Grigoreanu et al., 2012; Lawrance et al., 2013; Piorkowski et

al., 2012; Pirolli & Card, 2005]. We then mapped the goals to corresponding foraging

decisions whenever participants said that a foraging decision was connected to a particu-

lar information goal (Figure 5.1.B.ii).

Code Set C: Participants’ Cues (RQ3)

For each foraging decision, we also coded the types of cues the participant considered

when making the decision (Figure 5.1.C). Recall that a cue acts as a signpost, providing

hints as to the information at the end of a link. Since no existing cues code set was avail-

able, two researchers iteratively developed coding rules for the types of cues to which

participants attended based on their verbalizations. That code set is detailed with the RQ3

results (Section 5.3.3) for clarity of presentation.

72

Code set D: Participants’ Foraging Successes (RQ4)

We coded the outcome of a foraging decision as successful if the participant said that

his/her information goal was fulfilled, as unsuccessful if the participant said it was not, or

as unknown if the participant gave no indication (Figure 5.1.D).

Objective Categorizations

In addition to the above subjective code sets, we were able to objectively derive (thus

with 100% reliability) two categorizations directly from the data: patch types (RQ2) and

foraging tactics (RQ4). We detail these categorizations in their associated results sec-

tions.

5.2.4 Statistical Analysis Methods

Although it is atypical to statistically analyze qualitative talk-aloud data, we were able

to obtain enough data to allow quantitative analysis as well. Our statistical analysis inves-

tigated whether participants in the two groups had different information goals (RQ1),

made decisions in different patch types (RQ2), relied on different cues (RQ3), and fol-

lowed different tactics (RQ4).

The simplest analysis approach would have been to use chi-squared tests—for exam-

ple, to construct a two-factor table of treatment group versus patch type, compute for

each table cell the number of decision events from the corresponding treatment group and

patch type, and then to use the chi-squared test to test the null hypothesis that treatment

had no effect. Unfortunately, this simplistic approach would fail to account for the fact

that, within a given participant, navigation events are not statistically independent.

Therefore, we instead relied on a three-factor table of the participant identity, the

treatment group, and the IFT factor of interest (i.e., goal/patch/cue/tactic). Since the chi-

squared test does not apply to three-factor designs, we used the well-established method

of log-linear transformation followed by analysis of residual deviance [Agresti & Kateri,

2011], which yields a chi-squared statistic suitable for computing a valid p value. Even

though we had only 11 participants, we had adequate statistical power because our unit of

analysis with this technique is not participants, but rather decision points (81 total).

73

5.3 Results

We report the results for each research question in turn. In the following, Png denotes

the participant with ID n in treatment g (e.g., P9F is Participant #9 in the Fix group).

5.3.1 RQ1. What to Look For? Fixers’ and Learners’ Goals

For RQ1, participants’ information goals, we coded their goal-related verbalizations

around each decision point (code sets A and B in the previous section). Statistically, Fix

and Learn participants’ information goal types did not differ significantly (Analysis of

deviance, χ2(4)=7.53, p=0.11). Qualitatively, the Fix participants’ and Learn partici-

pants’ goals also seemed similar. For example, participants in both treatments looked for

the “delete lines” menu-item:

P2F: I’m going to search for that delete lines thing in the code to see what it does.

P10F: So I can search for that text. Delete lines.

P4L: Delete lines. I’m searching for delete lines.

P11L: Okay I should be looking for this text (delete lines). How do I find this text?

This lack of a statistical difference in information goals suggests two possible interpre-

tations. If there was in fact no difference, then differences between the groups’ foraging

behavior reported in the upcoming sections occurred despite there being no difference in

the participants’ information goals. On the other hand, if there was a marginal difference,

then it adds to differences reported in the upcoming sections.

5.3.2 RQ2. Turning Points: The Patches from which Fixers and Learners Made
Navigation Decisions

A foraging decision among multiple cues is a turning point: should I go to A to fix

something, to B to learn something about the code, or to C to learn something different?

To address RQ2, we analyzed the patches at which each of these turning points occurred.

Toward that end, we operationalized IFT’s patch construct such that each view (sub-

window) in an Eclipse window and each jEdit window (i.e., the program with the bug)

74

was a patch type, containing one or more patches. For example, Figure 5.2 depicts an

Eclipse window with three patch types, each containing at least one patch.

Table 5.1 shows the types of patches and characterizes the content each type offers.

For example, Package Explorer patches (e.g., Figure 5.2.a) give high-level structural

overviews of the code, whereas Stack Trace patches (e.g., Figure 5.3) give links to low-

level code locations along with an execution path that produced an error (i.e., a thrown

exception), and Search Result patches (e.g., Figure 5.4) give a list of navigable search

results. Table 5.1 only shows patches within the IDE due to a lack of foraging outside of

Eclipse. (The exceptions were P2L, P5L, P9F, who briefly used a web browser.) Patch

types may also exist elswhere, but we did not include them in Table 5.1.

With these patch types, we analyzed participants’ navigation decisions (Code Set A in

Section 5.2.3) among the patches. Because each navigation decision by a forager had a

Figure 5.2. An information environment (Eclipse) as a programmer (predator) might see it during de-

bugging. Patches of information content are visible in the (a) Package Explorer, (b) Editor, and (c) Out-
line View (plus a region (d) where other patches can appear). As the blow-ups of (a) shows, each item

in the Package Explorer is an information feature and also a cue, because the item has a link: clicking it
opens a file. In (b)’s blow-up, the text “openFiles” in the Editor is also an information feature and a cue,

because it has a clickable link.

75

Patch Type Information and Navigational Links #

Editor
Provides a listing of the code in a file. Identifiers in the code are linked
to associated Call Hierarchy and/or Search Results patches. Example in
Fig. 1b.

37

Stack Trace

Provides a list of code locations along an execution path that produced
an exception (i.e., internal error) in the running jEdit program. List
items are linked to the associated lines of code (opened in an Editor
patch). Example in Fig. 4.

23

Package Explorer
Provides a hierarchical list of the components (e.g., packages, classes,
fields, methods) in the project. List items are linked to associated lines
of code (opened in an Editor patch). Example in Fig. 1a.

18

Search Results
Provides a generated list of occurrences of user-entered text or a user-
selected identifier in an Editor patch. List items are linked to the
associated lines of code (opened in an Editor patch). Example in Fig. 5.

18

Call
Hierarchy

Provides a hierarchical list of the invocations of a programmer-selected
method (i.e., subroutine). List items are linked to the associated lines in
code files (opened in an Editor patch).

3

jEdit
Running Instance

Provides the interface of the running jEdit program being worked on.
Such patches do not provide any direct navigational links to other types
of patches.

2

Open
Resource

Provides a list of all classes in the project filtered and sorted based on a
programmer-entered text query. List items are linked to the associated
lines of code (opened in an Editor patch).

2

Outline View
Provides a hierarchical list of the components (e.g., classes, fields,
methods) of the file in the Editor patch. List items are linked to the
associated lines of code (opened in the Editor). Example in Fig. 1c.

2

Variables View
Provides a list of variables and associated values at a given point in the
execution of the jEdit program. Such patches do not provide any direct
navigational links to other types of patches.

1

Total 106
Table 5.1. Types of patches in which participants made foraging decisions. The rightmost column is the

number of foraging decisions made from that patch type.

76

Figure 5.3. Example Stack Trace patch.

Figure 5.4. Example Search Results patch.

start and a destination, there are two patches of potential interest for each decision: the

starting patch and the destination patch.

For example, a programmer might be reading in the Package Explorer view (Figure

5.2.a), and make a navigation decision, clicking on one of the hyperlinked items in the

view. As a result, the Editor (Figure 5.2.b) would automatically open a file and scroll to

display a particular line of code. In this example, the starting patch was in the Package

Explorer and the destination patch was in the Editor.

The links provided by Eclipse views predominantly lead to Eclipse’s editor view (as

destination), so it is not surprising that most (76%) of navigation decisions led to the Edi-

tor, regardless of treatment group. So the two treatment groups did not differ in their de-

cisions’ destination patch types.

However, as shown in Figure 5.5, Fix and Learn participants demonstrated significant

differences in the starting patch types, i.e., those from which they made navigation deci-

sions (Analysis of deviance, χ2(11)=28.8, p=0.002).

Specifically, Learn participants tended to make navigation decisions in patches that

were like the table of contents (ToC) of a book: Package Explorer and Search Results

patches (e.g., Figure 5.2.a and Figure 5.4, respectively). These patches were ToC-like be-

cause the information they contained described the hierarchical structure of the code

components (i.e., the chapters and sections of the book), and the links connected to code

77

Figure 5.5. The proportion of patches where each treatment’s participants made foraging decisions (show-
ing the 4-most often used patch types). Percentages indicate the number of navigation decisions in a patch
type divided by the total number of navigation decisions (per treatment). In parentheses is the number of

participants in each treatment that made at least one navigation decision in that patch type.

0%#

10%#

20%#

30%#

40%#

50%#
Editor#

Stack#Trace#

Search#
Results#

Package#
Explorer#

Fix$

Learn$

(5#fix,#5#learn)#

(4#fix,#2#learn)#(4#fix,#4#learn)#

(2#fix,#3#learn)#

78

elements at the granularity of components. Although Search Results patches might not

immediately seem ToC-like, their results were presented as a structural hierarchy similar

to Package Explorer patches (i.e., with hierarchical package and class file nodes that par-

ticipants had to expand to reveal their contents).

In contrast to the Learn participants, Fix participants tended to make navigation deci-

sions in patches that were like the index of a book: Stack Trace patches (e.g., Figure 5.3).

Like an index, Stack Trace patches contained a flat (non-hierarchical) list of elements,

and their links connected to individual lines of code. Unlike Search Results and Package

Explorer patches, these index-like patches provided few cues regarding how destination

patches were embedded within the context of the overall code structure.

For example, consider two participants: Learn Participant P5L and Fix Participant

P3F. P5L foraged extensively within a ToC-like Search Results patch. As Figure 5.6 de-

picts, he stepped sequentially through the code-hierarchy tree, expanding many elements

to reveal their inner structure. In contrast, P3F made considerable use of an index-like

Stack Trace patch for between-patch foraging, as Figure 5.7 illustrates. Whereas P5L was

concerned with the code’s hierarchical structure, P3F preferred to bypass the structure,

linking into the middle of structural components to inspect individual lines of code.

P3F in fact commented explicitly on a desire to avoid certain types of patches…

P3F: Since [the bug is] something that I'm trying to fix in a hurry, I would prefer to do as

little of that really high level architectural stuff.

5.3.3 RQ3. Turning Point “Why’s: Cue Types as Sources of Inspiration

A turning point in navigation is not likely to occur in a vacuum: something the pro-

grammer has seen often inspires their ensuing decisions. Thus, for RQ3, the cue types we

coded (Table 5.2) pertain not to the content of the cues, but rather, to the source of inspi-

ration causing the participant’s attention to be drawn to that cue.

For example, as Figure 5.8 shows, P5L made a navigation decision in an Editor patch

(c), and as he did so, indicated that his attention was on cues that were “something like a

click on a menu button” (d). The source for this inspiration came from a preceding visit

79

Figure 5.6. Learn participant P5L engaged in considerable within patch foraging for code-structure infor-
mation using a ToC-like Search Results patch. Each box from left to right shows a snapshot of the patch.

The highlighted areas show the sequence of sub-items that P5L expanded.

Figure 5.7. Fix Participant P3F used the Stack Trace patch from Figure 5.3 as an index to forage for partic-

ular lines of code in a variety of Editor patches. Each box from left to right shows a snapshot of a patch,
alternating between the Stack Trace patch and Editor patches. The arrows show the links from the Stack
Trace Patch and the destination lines of code within the Editor patches. In the Editor patches, the shaded

areas were never visible to P3F (i.e., off-screen).

!795

"152
"827

80

Cue Type Definition: Participant utterances about… #

Output-Inspired … cues related to jEdit output they had seen, such as thrown
exceptions (errors) or GUI widget labels 44

Domain Text … cues related to text they had seen specific to jEdit’s domain, such
as “folding text” 35

Level of
Abstraction

… cues related to the level of abstraction of the a code location they
had seen; e.g., “This method is too specific” 21

Source-Code
Content Inspired

… cues related to source code they had seen, such as relating to a
particular variable or parameter, or reminiscent of a code comment 19

Position … cues related to the position of non-code elements they had seen on
screen, such as the top item in a list of search results 8

Familiarity … cues that seemed familiar to the participant; e.g., “I’ve seen this
before” or “This looks familiar”. 6

File Type … cues related to the type of a file they had seen, such as Java vs.
XML 5

Documentation-
Inspired

… cues related to external documentation they had seen, such as the
bug report 2

Source-Code
Appearance
Inspired

… cues related to how source code they had seen appears visually,
such “large” methods or “nearby” methods 2

Contrasts … cues related to a contrast among items they had seen, such a
method being from a different package than the others in a list 2

Total 144
Table 5.2. The cue types to which participants attended when making foraging decisions. The rightmost

column is the number of foraging decisions in which participants attended to that cue type.

81

Figure 5.8. Episode in which P5L attended to an Output-Inspired cue. The source of the inspiration came from jEdit
output (a and b). P5L attended to the Output-Inspired cue (“Maybe … something like click on a menu button”) while

choosing code to inspect in an Editor patch (c and d).

(a)$Navigates$to$jEdit$Patch$

(b)$Triggers$bug$with$
menu$bu:on$

(c)$Navigates$to$Editor$Patch$

(d)$While$choosingamethodtoinspect:$“Maybe$…$
something$like$a$click$onamenu$bu:on.”$

82

Figure 5.9. The proportion of cue types each treatment’s participants attended to at each navigation deci-

sion, showing the four most-often attended cue types. Percentages indicate the number of cue types attend-
ed divided by the total number of cue types attended to (per treatment). In parentheses is the number of

participants in each treatment that attended to that cue type at least once. Fix and Learn participants attend-
ed to different cue types for foraging decisions. Shown are the percentages of each group’s total number of

cue types talked about when they decided among competing cues for the most mentioned cue types.

0%#
10%#
20%#
30%#
40%#
50%#

Source/Code#
Content#

Domain#Text#

Output#
Inspired#

Level#of#
AbstracDon#

Learn&

Fix&

(6#fix,#5#learn)#

(4#fix,#5#learn)#

(5#fix,#3#learn)#

(4#fix,#4#learn)#

83

to a jEdit Output patch (a) in which he used the jEdit menu item to trigger a failure

caused by the bug (b). Thus, the cue in this case was of type Output-inspired.

Applying these cue types, our results revealed marked differences in the cues to which

Fix and Learn participants attended. A log-linear analysis of the cue-type frequencies

showed a significant difference (Analysis of deviance, χ2(19)=33.3, p=0.02). Figure 5.9

highlights these differences for the most-attended cue types.

One difference apparent in Figure 5.9 is that the Learn participants particularly attend-

ed to Output-Inspired cues, citing Output-Inspired cues in about 45% of their decisions,

compared to only 28% for Fix participants. One possible reason for this tendency was

that many Learn participants followed a bug-reproduction-driven approach in which they

followed up on the application’s expected or observed output from the very outset of their

session. For example, Learn participants P6L, P7L, and P11L all began by replaying the

error in jEdit, and then attending to cues inspired by the relevant GUI elements (e.g.,

menu items). Although Fix participants also sometimes attempted to reproduce bugs, they

did so much less than Learn participants.

The sources of output that inspired Fix and Learn participants also differed. Whereas

Learn participants primarily found inspiration in the program’s visual output (i.e., from

running jEdit), Fix participants predominantly attended to Output-Inspired cues that orig-

inated in a Stack Trace patch or Variables patch, which were more closely related to low-

level code details. In fact, only one Fix participant, P2F, had Output-Inspired cues that

were inspired by running jEdit.

Fix participants’ foraging stayed “closer to the code” than that of Learn participants in

two additional ways, as well. First, as shown in Figure 5.9, Fix participants attended to

Source Code-Content Inspired cues more than Learn participants (approximately 21% for

Fix participants versus 8% for Learn participants). Second, all but two of the instances

when Fix participants attended to this cue type occurred in an Editor patch. In contrast,

Learn participants attended to Source Code-Content Inspired cues over a wider spread of

patch types, including high-level patch types such as Package Explorer and Outline View,

as well as low-level patch types like Editor and Stack Trace. Thus, although both treat-

84

ments sometimes attended to cues inspired by source code they had seen, Fix participants

attended to those cues mainly while the source code, but Learn participants tended to

those cues more broadly, even in patches not directly related to the details found in the

source code.

5.3.4 RQ4. How Should I Go About Foraging? Fixers’ and Leaners’ Foraging Tac-
tics

For RQ4 (Fix versus Learn participants’ foraging tactics), participants used two dis-

tinct foraging tactics in deciding which cues to attend to: a Favorites tactic and a Switch-

ing tactic. Using the Favorites tactic, a participant would, from one foraging decision to

the next, attend to cues sharing at least some of the same cue types. In contrast, a partici-

pant using the Switching tactic would, from one foraging decision to the next, attend to

cues of entirely different types.

We counted the Favorites and Switching tactics using discrete, objective patterns in

the sequence of cue types to which each participant attended. In particular, if the set of

cue types attended for one foraging decision was disjoint from the set attended for the

next decision, we counted it as an instance of the Switching tactic. If the sets intersected,

we counted it as an instance of the Favorites tactic.

To illustrate the difference in these tactics, consider Fix participants P10F and P9F.

P10F used the Favorites tactic heavily, attending to cues of Domain Text type for every

foraging decision, continually asking throughout the session where “delete line” was lo-

cated. In contrast, Fix Participant P9F attended to Familiarity type cues in one successful

foraging decision, but then switched to the Source Code-Content Inspired and Domain

Text cue types in his next foraging decision only one and a half minutes later.

At first glance, little difference was apparent between the tactic participants used

(Table 5.3, “Most-Used Tactic” column). Most participants, regardless of treatment,

tended toward the Favorites tactic. Analysis of their activity showed a suggestive, but

non-significant difference between treatments (Analysis of deviance, χ2(3)=5.93,

p=0.12).

85

However, a difference between treatments becomes apparent with situations where the

outcome of a foraging action was successful (code set D in Section 5.2.3). In these situa-

tions, Fix participants were equally likely to be successful regardless of whether they

used the Favorites tactic or the Switching tactic (Analysis of deviance, χ2(1)=1.10,

p=0.29). In contrast, Learn participants were significantly more likely to be successful

when they used the Switching tactic (Analysis of deviance, χ2(1)=5.49, p=0.019).

Thus, not only did the Fix and Learn participants make foraging decisions in different

types of patches (RQ2) and while attending to different types of cues (RQ3), from the

RQ4 analysis in this section, we know they also differed in which foraging tactics most

strongly associated with whether or not their decisions yielded success.

5.4 Generalizing Fix Versus Learn to Mobile Environments

So far, we have investigated the role of production bias in foraging during debugging

in a single environment using a single defect. However, theories need to be evaluated

over several different situations and domains. We take a first step in this direction by re-

peating the study in a new environment, so as to investigate whether the same differences

between Fix and Learn participants generalize to the mobile environment.

Treatment Participant Most-Used Tactic Success Rate
Favorites Switching

Fix

P2F Favorites 1/7 0/2
P3F Favorites 1/6 0/2
P8F Favorites 2/5 0/2
P9F Switching 1/1 1/4
P10F Favorites 0/3 0/1
P12F Both Equally 0/1 0/1

Total instances of success: 5/23 (22%) 1/12 (8%)
Total participants who had success: 4/6 (67%) 1/6 (20%)

Learn

P4L Switching 0/2 2/4
P5L Favorites 1/5 0/0
P6L Favorites 0/4 0/2
P7L Both Equally 0/2 2/2
P11L Favorites 0/4 0/1

Total instances of success: 1/17 (6%) 4/9 (44%)
Total participants who had success: 1/5 (20%) 2/5 (40%)

Table 5.3. Participant usage and success rates for the Favorites and Switching tactics.

86

As mobile devices become ever more pervasive and ever more powerful, the likeli-

hood of programming directly on a mobile device as opposed to through a traditional

computer seems ever more likely. Being able to develop mobile applications directly on

mobile devices tightens the traditional edit-compile-run cycle (compared to develop with

an emulator or a mobile device tethered to a desktop) thereby reducing the cognitive gap

between program code and execution. For example, according to a study performed by

Nguyen, et al., programmer productivity is significantly enhanced when programmers are

offered the opportunity to write mobile applications directly on mobile devices, particu-

larly when writing small applications [Nguyen et al., 2012b].

In this section, we investigate if our findings generalize to the mobile environment.

We focus on RQ2 and RQ3: patch types that participants make navigations7 from and the

cues types that they attended to. (In this section, we will refer to the previous results on

Eclipse and jEdit as the Desktop environment. This section’s environment will be re-

ferred to as the Mobile environment.) Thus our research questions are:

• RQ5a (patch types): Does trying to fix a bug versus trying to learn about the

bug affect the patch types that Mobile programmers forage from? If so, how?

• RQ5b (cue types): Does trying to fix a bug versus trying to learn about the bug

affect the types of cues programmers attend to when navigating? If so, how?

5.4.1 Methodology and Analysis

Mobile Environment Study Design

The methodology follows a similar approach as to the one in Section 5.2.3, with some

modifications to account for the mobile environment we used: an IDE that runs natively

on Android mobile devices called AIDE8.

7 Only 7% of navigations were foraging decisions for Mobile participants compared to 28% on

desktop. Due to the lack of data, we analyzed the full set of 501 desktop navigations and 217 mobile
navigations.

8 http://www.android-ide.com/

87

We randomly divided our participants into two treatments: Fix and Learn, giving them

the same prompt to each treatment as described before. Participants from both treatments

worked on the same Android app and defect for the study. The application was Vanilla

Music9, a mature open-source music player for Android. Vanilla Music is written in Java

and it contains 67 classes and 13,369 non- comment lines of code. We tasked participants

to work with issue #14810 taken from the Vanilla Music’s issue tracking system on

GitHub. The issue described a problem with playback regarding an enqueued song and is

presented in Figure 5.10.

9 Vanilla Music is a popular application that has between 500,000 and 1,000,000 downloads on the

Google Play Store.
10 https://github.com/vanilla-music/vanilla/issues/148

Figure 5.10. Vanilla Music’s bug #148.

88

During the experiment, participants used a Samsung Galaxy Tab S 10.5-inch tablet

paired with a Bluetooth keyboard (Figure 5.11). This tablet has 3GB of RAM and a

1.9Ghz Quad-core + 1.3 GHz Quad-core processor, making it one of the most powerful

Android tablets currently available. The programming environment was AIDE11, a full-

featured programming IDE for Android. Figure 5.12 shows a screenshot of AIDE inter-

face.

Each session started with a brief introduction explaining the experiment followed by a

brief background questionnaire. We then provided a 10-minute tutorial to teach AIDE’s

features to each participant. Features included basic navigation, various find utilities, set-

ting up breakpoints, using the debugger, running the application and accessing the Log-

Cat output. We allowed participants to ask any questions they had about using AIDE dur-

ing the session as we did not want unfamiliarity with the IDE to impede participants from

11 AIDE is one of the most popular Android IDE with 2 million downloads on the Google Play

Store.

Figure 5.11. The lab study setup. Participants used a combination of touch input on the tablet and typing

on the keyboard during their tasks.

89

working. The tablet recorded the screen (and finger presses) along with the participants’

utterances.

Each participant was placed into either the Fix or Learn treatment and given 30

minutes to complete the task. Following the task, we performed a retrospective interview

where we played back the entire session to the participant and asked them questions

about what they did. Both the treatment tasks and the retrospective followed the same

procedure as described in Section 5.2. However, unlike before, we asked participants

questions about each navigation instead of just the navigations where foraging decisions

were made.

Participants

The participants consisted 8 professional programmers (7 males and 1 female) at a

large software development company. They had 1 to 38 years (mean of 19.25 years) of

software development experience, 2 to 20 years (mean 11.875 years) of Java develop-

ment experience and they had 0.5 to 5 years (mean of 2 years) of Android development

Figure 5.12. AIDE in its debugger mode. The left view can be changed to fit the context. Here it gives
the stack trace and the currently initialized variables. Other contents include the File Explorer, Search

Results, Current Breakpoints and the LogCat.

90

experience. None of the programmers were familiar with AIDE or Vanilla Music. Their

ages ranged from 20 to 55 years.

Foraging Decisions versus Navigations

Due to a lack of foraging decisions in the Mobile environment, we instead decided to

focus our analyses using the full set of navigation data for both Desktop and Mobile envi-

ronments. Hence, our analysis is based on navigations instead of foraging decisions.

Unlike a desktop IDE, the text cursor’s position in the file was not an accurate way to

determine navigations, since participants often scrolled the editor’s view instead of mov-

ing the text cursor. Instead, we counted a navigation when two conditions were met: (1) a

new method or file was visible in AIDE’s editor and (2) the participant indicated interest

in the method either by reading it aloud or hesitating in the method. We used participant

validation to verify each of these navigations during the retrospective, by asking partici-

pants if they were considering the content of the method during these hesitations.

Code Set: Patch Types

We coded the patch types using the methodology described in Section 5.2.3. AIDE

had fewer patch types available than Eclipse. The patches and the number of instances

that participants made a foraging decision from that patch are presented in Table 5.4.

Code set: Cue Types

We coded the cue types using the methodology described in Section 5.2.3. The cue

types and the number of navigations that participants attended to a given cue types for a

navigation are presented in Table 5.5.

Changes to Desktop Methodology

To make a fair comparison between Mobile (where we counted navigations) and

Desktop (where we counted foraging decisions), we recoded all the patch types that

Desktop participants navigated from to include all navigations. A summary of the counts

for each patch type is presented in Table 5.6.

91

Patch Type Information and Navigational Links #
Editor Provides a listing of the code in a file. 99
Search Results Provides a generated list of occurrences of user-

entered text or a user-selected identifier in an Editor
patch. List items are linked to the associated lines of
code (opened in an Editor patch).

64

Package
Explorer

Provides a list of the files in the project. List items
open the files in the Editor Patch.

47

Stack Trace Provides a list of code locations along an execution
path that produced an exception (i.e., internal error) in
the running Vanilla Music program. List items are
linked to the associated lines of code (opened in an
Editor patch).

5

Debug Provides a list of the currently executing code and
program state for the user-specified breakpoint
location.

2

Total 217
Table 5.4. The patch types that Mobile participants navigated from. The rightmost column is the number of

occurrences for each patch type was navigated from.

Cue Type Definition: Participants’ utterances about… #
Source-code
Content Inspired

… cues related to source code they had seen, such as
relating to a par- ticular variable or parameter, or
reminiscent of a code comment

67

Level of
Abstraction

… cues related to the level of abstraction of the a
code location they had seen; e.g., “This method is too
specific”

40

Domain Text … cues related to text they had seen specific to
Vanilla Music’s domain, such as “playlist”

20

Position … cues related to the position of non-code elements
they had seen on screen, such as the top item in a list
of search results

15

File Type … cues related to the type of a file they had seen,
such as Java vs. XML 6

Output-Inspired … cues related to Vanilla Music out- put they had
seen, such as thrown exceptions (errors) or GUI
widget labels

5

Documentation-
Inspired

cues related to external documentation they had seen,
such as the bug report 2

Total 155
Table 5.5. The cue types to which Mobile Participants attended to when navigating. The rightmost column

is the number of navigations in which participants attended to that cue type.

92

The table presents two columns for Desktop participants to reflect an outlier in the

navigation data. Desktop Participant 5’s behavior was non-typical as he was not familiar

with how to use Eclipse’s debugger. This became evident when early in his debugging

task, he performed a Google search to find “how to set the current line of execution.” Af-

ter viewing four posts on Stack Overflow12, and expressed frustration about not finding a

solution. He said, “Maybe what I’m trying to do can’t be done in Eclipse, or I just don’t

know how to do it.” Despite the lack of understanding, Desktop Participant 5 decided to

use the debugger regardless. When using the debugger, he rapidly stepped through code,

often not pausing to read what was on the screen (for 112 navigations). This resulted in

him having a much higher number of navigations than other participants. Alone, he ac-

counted for 140 out of 553 navigations across 11 participants. Desktop Participant 3

made the second largest number of navigations with 61, less than half of Desktop Partici-

pant 5’s 140 navigations. Thus, the following present the data for Desktop participants

without Desktop Participant 5.

5.4.2 Results RQ5a: Patch Types

Where Fixers and Learners Navigated From on Mobile

Fixers and Learners significantly differed in which patch types they chose to navigated

from (Analysis of deviance, χ2(4)=28.49, p<0.001) as shown in Figure 5.13. The largest

12 Stack Overflow is a website where programmers can post questions and reply to posted ques-

tions (stackoverflow.com).

Patch Type # Desktop # Desktop (no P5) # Mobile
Debug 135 23 6
Editor 259 235 95
Open Call Hierarchy 14 14 n/a
Outline View 27 25 n/a
Package Explorer 33 31 47
Search Results 33 33 64
Stack Trace 74 74 5

Table 5.6. The total number of each patch type that participants made navigations from for both Desk-
top and Mobile participants. The column labeled ‘# Desktop (no P5)’ has total with Participant 5 re-

moved because he was an outlier.

93

differences were in the Editor patch type, which was more often used by Learners, and

the Package Explorer patch type, which was more often used by Fixers.

Patch Types Across Environments

Although the result that Fixers and Learners foraged differently generalized across the

Desktop and Mobile environments, their most common patch types did not. Figure 5.14

shows the five most commonly navigated from patch types for Fixers on Desktop and

Mobile. The graphs show very little overlap suggesting that Fixers on Desktop did not

emphasize the same patch types as Fixers on Mobile did.

Mobile learners likewise emphasized different patch types than their Desktop counter-

parts. Figure 5.15 shows the five patch types Desktop versus Mobile Learn participants

most often navigated from. Of these, the only one in common was the Editor, which was

similarly emphasized by both Desktop (54%, 101 out of 186 navigations) and Mobile

Learners (52%, 53 out of 103 navigations).

Figure 5.13. The proportion of patch types where each treatment’s Mobile participants made naviga-

tions from. Percentages indicate the number of navigations in a patch type divided by the total number
of navigations (per treatment). We limited the chart to include the 5 most commonly patch types navi-

gated from.

94

Figure 5.14. The proportion of patch types where each environments’ Fix participants made navigations

from. Percentages indicate the number of navigations in a patch type divided by the total number of naviga-
tions (per environment’s Fix treatment). We limited the chart to include the 5 most commonly patches nav-

igated from

Figure 5.15. The proportion of patch types where each environment’s Learn participants made navigations

from. Percentages indicate the number of navigations in a patch type divided by the total number of naviga-
tions (per treatment per environment). We limited the chart to include the 5 most commonly patch types

navigated from.

0%

10%

20%

30%

40%

50%

60%
Debug

Editor

Package	ExplorerSearch	Results

Stack	Trace

Desktop

Mobile

0%

10%

20%

30%

40%

50%

60%
Editor

Outline	View

Package	ExplorerSearch	Results

Stack	Trace

Desktop

Mobile

95

Even viewed at a higher level, participants’ patch type emphases were different be-

tween the two environments. Recall our observation that on Desktop, Fixers tended to

navigate from patch types that were low-level (index-like) and close to the code whereas

Learners tended to navigate from ones that were high-level (ToC-like). On Mobile, Fixers

and Learners did not have the same preferences. Fixers instead split their patch types

choices between both low-level patch types such as Editor and Search Results13, as well

as the higher-level, hierarchy-revealing patch type, the Package Explorer. In contrast,

Learners almost exclusively pursued low-level patch types like the Editor and Search Re-

sults.

Why Desktop Versus Mobile Emphasized Different Patch Types

For the patch types that differed between Desktop and Mobile, we considered several

reasons for the differences between environments that we cannot dismiss. As Table 5.7

summarizes, the possibilities range from lack of data, differences in the bugs, and differ-

ences in the IDE.

13 Unlike Eclipse, the Search Results patch type in AIDE does not reveal hierarchy and is there-

fore, a low-level patch type.

Reasons we cannot dismiss the
differences between Desktop and

Mobile Participants

Fixers’ patch types
affected

Learners’ patch types
affected

Insufficient navigation data on
some patch types

Debug, Package Explorer,
Stack Trace Debug

Patch type did not exist in Mobile Outline View, Open Call Hierarchy
Participants verbalizations did not
explain why Search Results Editor, Package Explorer,

Search Results
Differences in the bugs

Stack Trace: For Desktop,
most Stack Trace
navigations came from an
exception stack trace that
printed every time
participants reproduced the
bug. No such stack trace
was printed when Vanilla
Music’s bug was
reproduced.

Table 5.7. A summary of potential confounds preventing conclusions about Mobile Fixers versus Desk-
top Fixers or Mobile Learners versus Desktop Learners in terms of patch types.

96

However, these potential confounds are present only in comparing Fixers versus Fix-

ers or Learners versus Learners; there are no such confounds in comparing Fixers versus

Learners within one environment. Thus, the fact that Fixers versus Learners forage dif-

ferently does generalize, but the question of which patch types Fixers versus Learners

emphasize remains open.

5.4.3 Results RQ5b: Cue Types

Which Cues Fixers and Learners Attended To

Participants also differed significantly in terms of the cue types that they attended to

when making navigations (Analysis of deviance, χ2(6)=19.73, p=0.003) as shown in Fig-

ure 5.16. Mobile Fixers more often attended to Source Code Content Inspired cue types

(53% Fix versus 31% Learn), whereas Mobile Learners more often attended to Domain

Text (21% Learn versus 6% Fix) and Output Inspired (7% Learn versus 0% Fix) cue

types.

Figure 5.16. The proportion of cue types attended to by Mobile participants for each treatment. Percent-
ages indicate the number of navigations where those cues were attended to divided by the total number

of navigations (per treatment). We limited the chart to include the 5 most commonly attended to cue
types.

97

Cue Types Across Environments

As with patch types, even though the results that Fixers and Learners foraged differ-

ently in terms of cue types generalized across Desktop and Mobile which cue types Fixers

versus Learners emphasized differed in the two environments. Figure 5.17 shows the five

most often attended to cue types for Fixers in both environments. The figure shows little

overlap, suggesting that Desktop Fixers and Mobile Fixers emphasized different cue

types in their foraging.

Mobile Learners also emphasized different cue types compared to Desktop Learners.

Figure 5.17 Figure 5.18 shows the five most often attended cues for Desktop versus Mo-

bile Learners. Only one cue type was similarly attended to. Desktop Learners attended to

the Level of Abstraction cue type for 25% of the coded cue types (24 out of 98) and Mo-

bile Learners attended to 26% of them (18 out of 70).

Why Desktop Versus Mobile Emphasized Different Cue Types

Like patch types, the differences between Desktop and Mobile Learners had several

potential confounding factors, or were otherwise difficult to explain. Table 5.8 summa-

rizes. In addition to the reasons provided in the patch type section above, differences be-

tween the jEdit bug and the Vanilla music UI provided additional confounding factors.

Like patch types, these confounds are present only when comparing a treatment across

two environments (Desktop Fixers versus Mobile Fixers or Desktop Learners versus Mo-

bile Learners), not when comparing within one environment (Mobile Fixers to Mobile

Learners). Thus, the differences in cue types between Fixers and Learners generalizes.

However, due to the confounding factors, the question of which cue types Fixers versus

Learners emphasize remains open.

5.5 Discussion

5.5.1 Production Bias

Production bias affected how Fixers and Learners perceived scent as shown by their

differing preferences in both patch types and cue types. Recall that the patch types that

98

Figure 5.17. The proportion of cue types attended to by Fix participants for each environment. Percentages
indicate the number of navigations where those cues were attended to divided by the total number of navi-
gations (per environment’s Fix Treatment). We limited the chart to include the 5 most commonly attended

to cue types.

Figure 5.18. The proportion of cue types attended to by Learn participants for each environment. Percent-
ages indicate the number of navigations where those cues were attended to divided by the total number of
navigations (per environment’s Learn Treatment). We limited the chart to include the 5 most commonly

attended to cue types.

0%

10%

20%

30%

40%

50%

60%
Domain	Text

Level	of	Abstraction

Output	 InspiredPosition

Source	Code	Content	
Inspired

Desktop

Mobile

0%

10%

20%

30%

40%

50%

60%
Domain	Text

Level	of	Abstraction

Output	 InspiredPosition

Source	Code	Content	
Inspired

Desktop

Mobile

99

Desktop Learners preferred tended to include cues that revealed where in the code’s hier-

archy a given patch was (i.e. search results that were categorized by package), and they

took advantage of these patch types to quickly navigate between patches within that

patch. In contrast, Desktop Fixers tended to stay in one patch at a time, focusing on the

details of that patch.

These differences may be explained as differences in Structure scent (Section 3.6.4)

between Fixers and Learners, with Desktop Learners more attuned to structure cues than

Desktop Fixers. In the case of Mobile Fixers and Learners, the importance of Structure

scent appears to have been reversed with Mobile Fixers more focused on ToC-like patch

types than Mobile Learners.

We speculate that, because of differences in cost in the two environments, the way that

participants in each environment perceived scent differed as well. Consider the case of

running the application in a debugger. In the case of Eclipse, the application opens and

can bel placed next to the debugger. Thus, the programmer can easily see changes in the

application as she steps through the debugger. In AIDE, using the debugger is much cost-

Reasons we
cannot dismiss
the differences

between Desktop
and Mobile
Participants

Fixers’ cue types affected Learners’ cue types affected

Insufficient
navigation data
on some cue
types

Documentation, Familiarity, File
Types, Source Code Appearance
Inspired

Documentation, Familiarity, File
Type, Position, Source Code
Appearance Inspired

Differences in the
bugs

Output Inspired: For Desktop, Output Inspired cues came from an
exception stack trace that appeared whenever the bug was reproduced.
No such stack trace appeared when Vanilla Music’s bug was reproduced.

Differences in the
defective
program’s GUI

Domain Text: For Desktop participants, the GUI provided several words
relevant to the defect as part of the UI (e.g. “Delete Line(s)”) in the
menu). For Mobile participants, the UI was dependent on the media
content: Vanilla Music’s UI provided artist names and track titles,
instead of words related to the bug.

Participants’
verbalizations did
not explain why

Position, Source Code Content
Inspired

Source Code Content Inspired

Table 5.8. A summary of potential confounds preventing conclusions about Mobile Fixers versus Desk-
top Fixers or Mobile Learners versus Desktop Learners in terms of cue types.

100

lier because only one application can be on the screen at a time. Thus, as the programmer

steps through the code in AIDE, they do not see how the application changes, instead

having to switch back and forth, remembering the previous visual state and identifying

the changes in the new visual state.

These differences in cost may have been magnified for Mobile participants since none

had ever used AIDE. Therefore, their expectations from using other IDEs may have hin-

dered their ability to use the Mobile IDE. Fundamentally, these mismatches of expecta-

tion may be explained by assimilation bias, but as of now remain an open question.

5.5.2 Assimilation Bias

This chapter investigated the effect of production bias on how programmers forage

during debugging, but the implications MLT’s other bias—assimilation bias—remain un-

explored. Recall that assimilation bias occurs when active users apply what they already

know to new situations potentially leading to incorrect conclusions or misinformation

regarding new knowledge. For example, an experienced text-editor programmer may al-

ready have an expectation of how a text editor program is structured. If her expectation

aligned with jEdit’s structure, that may be beneficial. But if their prior experiences with

text editor code used a different paradigm, assimilation bias may manifest in their forag-

ing.

Going one step further, Carroll argued that production bias and assimilation bias were

mutually reinforcing [Carroll, 1998]. The interplay between biases may cause the experi-

enced text editor programmer to be so convinced that their assumed structure is correct.

This could cause the programmer to ignore evidence to the contrary just to make progress

on her task, a clear influence on her foraging behavior. More work is needed on these

types of question and to understand assimilation bias’s effects on foraging.

5.5.3 Cue Types in IFT

Our results suggest a possible new direction for IFT. Prior IFT research has often op-

erationalized cue content through the use word-similarity metrics like TF-IDF (e.g.,

[Lawrance et al., 2008b; Piorkowski et al., 2012]). Our findings are consistent with this

101

approach: several commonly attended types of cues were text based (e.g., Source Code

Content Inspired and Domain Text). However, our cue types also revealed differences

between the treatments without considering cue content. Thus, our inspiration-based cue

types were able reveal effects on foraging that cue content alone might not have. Future

IFT-based models of cues should take into account not only the content of cues but also

the type of these cues when generating predictions about developers’ foraging behavior.

5.5.4 Cue Types May Explain Differences Between Mobile and Desktop

Recall that mobile fixers and learners attended to different cue types and patch types

than desktop fixers and learners. One possible reason for the differences is the value and

costs associated with similar cues in each environment. For example, search results on

the Desktop are presented in a hierarchical view, providing a better estimate of value (by

providing context) and reducing actual cost (by enabling the programmer to read the line

of code without navigating there). In contrast, the search results on the Mobile environ-

ment are presented as shortened text, due to the smaller screen size, and do not provide

any additional context. This makes it more difficult for the programmer to estimate the

value of the patch and also increase the actual cost (relative to Desktop) since they are

likely to have to navigate to the patch just to determine if the search result was relevant.

Such differences would alter how programmers perceive scent in the environment.

5.6 Summary of Results

The results of our empirical studies show, for the first time, how Minimalist Learning

Theory’s concept of production bias can influence programmers’ foraging for infor-

mation. Programmers engaged with fixing the bug (and doing whatever learning they

needed to along the way) vs. those engaged with learning “enough” about the bug to help

someone else, differed considerably in their foraging on both the Desktop and Mobile

environments:

• RQ2 (Patch Types): Learn vs. Fix participants’ turning points—should I go

here or should I go there—occurred in significantly different types of patches.

On Desktop, Learn participants tended to work their way through hierarchical,

102

table-of-contents-like patches that made explicit information structure, whereas

Fix participants tended to favor low-level index-like patches that took them di-

rectly to a line of code.

• RQ3 (Cue Types): Desktop Fix and Learn participants also differed significant-

ly in the types of cues that drew their interest during these foraging decisions.

Learn participants followed cues they had seen in program output in nearly

half of their navigation decisions (45%, almost twice as often as Fix partici-

pants). In contrast, Fix participants favored following cues inspired by source

code content.

• RQ4 (Foraging Tactics): Desktop Learn participants’ successful tactics were

different from those of Fix participants. Desktop Learn participants were more

successful when switching among cue types in sequential decisions, whereas

Fix participants were more successful foragers when they used the same cue

types repeatedly over several decisions.

• RQ5 (Generalizability): As with the Desktop environment, Mobile participants

emphasized significantly different patch types and cue types, generalizing the

result that Fixers forage significantly differently from Learners regardless of

environment. However, the question of which patch types and cue types Fixers

versus Learners emphasize remains open.

A recurring theme discussed in the previous chapters is the role of scent as a unifying

construct. In Chapter 3, navigational factors leveraged by SE tools corresponded to types

of scent and explained how programmers navigated. In Chapter 4, scent served as a pos-

sible explanation for the relationship between goals and strategies. Here, in Chapter 5,

how programmers perceived scent may explain the differences we observed in program-

mers’ foraging between the two environments.

Given this seeming importance to software engineering tools, the fundamentals of

scent as applied to SE tools are understudied. We address this gap in the next chapter.

103

Chapter 6 Scent Fundamentals: Value and Cost as SE Unifiers

Despite software engineering researchers developing numerous tools to reduce pro-

grammers’ foraging costs (e.g., [DeLine et al., 2005b; Henley & Fleming, 2014; Karrer et

al., 2011; Kevic et al., 2014; Krämer et al., 2013; Majid & Robillard, 2005; Piorkowski et

al., 2012; Singer et al., 2005]), little is known at the foundational level of programmer

navigation—how well programmers go about choosing where to navigate. Thus, in this

chapter, we address this gap and investigate one of the fundamental aspects of navigation

as explained by IFT: programmers’ expectations of value and cost.

Recall that programmers are not omniscient, that is, they cannot exactly determine the

actual value and cost of a navigation prior to making the navigation. Instead, they rely on

cues in the environment to predict the value and cost of the navigation. When they carry

out these navigation decisions, they may be in for disappointments if (1) their destination

does not provide as much value as expected or (2) the cost of extracting the information

or getting to it is higher than expected.

This suggests that the fundamental issue behind navigations is how accurate pro-

grammers are about predicting value and cost, and whether their accuracy is “enough” for

them to be productive. To investigate this issue, we conducted an empirical study and lit-

erature analysis, grounded in IFT and structured according to the following research

questions:

• RQ1 (Value): How often do programmers’ foraging decisions yield less value

than they expect, and why?

• RQ2 (Cost): How often is the cost to gather and process desired information

more than foraging programmers expect, and why?

• RQ3 (Trends in aligning actual value/cost with programmers’ expectations):

What aspects of the above questions do current SE research trends address, and

how?

104

6.1 Background and Related Work

Recall from Chapter 2 that IFT’s central proposition says that the predator treats forag-

ing as an optimization problem. More specifically, the predator’s foraging actions try to

maximize the value V of information gain from a patch per their cost C of getting to and

interacting with that patch, i.e.:

Predator’s desired choice = 𝑚𝑎𝑥 %
&

However, predators’ knowledge is imperfect, so they make their choices based on

their expectations of value V and of cost C, i.e.:

Predator’s selected choice = 𝑚𝑎𝑥)(%)
)(&)

How accurate are foragers in forming these expectations? Software engineering re-

search has much to say about information professional programmers seek (e.g.,

[Lawrance et al., 2013; Sillito et al., 2006]), but has not systematically considered the

question of how well programmers can predict these values and costs, or the accompany-

ing implications for SE tools. These are the questions this chapter investigates.

Little empirical work has investigated the specific question of programmers’ abilities

to predict the value and cost of their navigations. One study examined navigations of

analysts through documents and code as they attempted to recover requirement

traceability between use cases and Java classes, revealing that the subjects spent a

disproportionate amount of time in low-value patches (i.e., more time than the value of

those patches justified) [Niu et al., 2013]. This result was consistent with an earlier study

into the challenges of information foraging by programmers, such as the fact that

searches in code frequently failed to turn up desired results, and that programmers spent

substantial time organizing and re-organizing files and bookmarks in the IDE [Ko et al.,

2006]. Another study of how programmers search online resources corroborated that

105

searches often lead to irrelevant code and supporting documents, except after

programmers had determined the right search terms for specific subtopics [Bajracharya &

Lopes, 2012]. Our work builds on these results.

6.2 Empirical Study Methodology

To answer our first two research questions, RQ1 and RQ2, we conducted a think-aloud

study of professional programmers. The programmers worked on a debugging task, and

we recorded their work. We then collected programmers’ insights by playing back the

recording for the programmer and pausing it to ask them questions about key events.

Through this method, we gathered data on the programmers’ navigation decisions and

their assessment of expected vs. actual values and costs relative to those decisions, as

they worked on the debugging task.

6.2.1 Participants, Procedures, and Task

Ten professional programmers at Oracle participated in the study. The participants had

4.5–40 years of professional software development experience and 2–19 years of profes-

sional experience programming with Java specifically. We conducted the study one-on-

one with each participant.

The sessions lasted no more than 2 hours. At the beginning of the session, participants

filled out a background questionnaire. They then worked for 20 minutes on the debugging

task. The task, by design, was sufficiently complex that no participant finished it in the

allotted time. During the debugging task, we prompted participants to “talk aloud” as

they worked so as to gather data on their information goals and intentions of their naviga-

tions. We recorded participants as they worked, capturing the computer screen, the partic-

ipants’ facial expressions, and their verbalizations.

The participants’ task was to debug an actual bug (issue #3223) in the jEdit open

source project14. Participants used the Eclipse IDE on a Windows PC to complete the

14 See Chapter 3 for the bug’s details.

106

task. We also allowed them to use any other tools they wanted to complete the task as

they saw fit, including using the web.

After the debugging session, we conducted a retrospective semi-structured interview.

The purpose was to collect participants’ expected value before a navigation, and then the

value they actually received. To collect the data, we played the session video for the par-

ticipant, pausing it at each to-method event and away-from-method event on the video, to

ask the questions shown in Figure 6.1. The to-method pauses occurred just as the partici-

pant navigated to a Java method (just before arriving there), and the away-from-method

pauses occurred just as the participant navigated away from the method (just before see-

ing the new location). If participants visited other kinds of files (e.g., properties files), we

asked them the same questions as for the methods.

6.2.2 Qualitative Analysis

To analyze the data, we used a qualitative coding approach to map key concepts

(“codes”) to participants’ navigations [Seaman, 1999]. Specifically, we coded the videos

(which included both navigation actions and corresponding verbalizations by the partici-

pants), whenever participants talked about the value or cost of a navigation.

For the purposes of this chapter, we defined a navigation to a method to be any occur-

rence of the Eclipse editor’s text cursor automatically moving to a method, or the partici-

“To-method” questions:
What about location ____ made you go there?
What did you expect the content to be at location ____?
Did you consider other options?

à If yes: What other options did you consider?
à If yes: Why did the other options not jump out at you, like ____?
à (If partial list of foraging choices is abandoned) What about these options
made you not select any of them?

“Away-from-method” questions:
Did you find what you expected at location ____?

à If no: What did you find at location ____?
What did you learn from location ____?
Did what you learned cause you to change your course?

Figure 6.1. Retrospective semi-structured interview questions.

107

pant scrolling to bring a method into view while also talking about the method. The des-

tination point of a navigation was a method in the editor. The starting point of a naviga-

tion was any view in Eclipse from which a participant scrolled or clicked to arrive at a

method. For example, selecting a search result or a link in an exception stack trace would

open the corresponding code file in the editor, and place the text cursor within the rele-

vant method.

We coded each navigation for which participants assessed value or costs as follows.

First, two researchers iteratively refined the code set. Then, using the resulting code set

on fresh data, they independently coded 20% of the data. Their resulting inter-rater relia-

bility was 86% agreement using the Jaccard index (the intersection of all applied codes

over the union of all applied codes) on 20% of the data for the value codes, and 81%

agreement on 20% of the data for the cost codes. Given that rate of agreement, the coders

then divided up the coding of the remaining data. We detail each code set in the Results

sections that refer to them.

6.3 Results

6.3.1 RQ1: Programmers’ Expectations of Value

Did Programmers Get the Value They Expected?

To investigate the participants’ assessments of a patch’s value, we used an ordinal

scale of measurement. That is, rather than attempting to quantify their value assessments

numerically, we derived from their verbalizations simply an “order”: whether they re-

ceived greater, equal, or less value than they had expected.

To perform this measurement, we coded participants’ responses to the retrospective

interview questions (Figure 6.1). For expected value (before they processed the patch),

we coded their responses to the “to-method” questions, and to measure their perceived

actual value of the method (after they processed it), we coded their responses to the

“away-from-method” questions. Table 6.1 shows the code set we used to analyze these

navigations.

108

By these measures, the participants’ expectations of the information value they would

receive for their foraging efforts were optimistic: they expected Necessary or Sufficient

information from about 84% of their navigations (Table 6.2’s top two rows’ totals). The

first row shows navigations in which participants expected to find everything they needed

(Necessary and Sufficient: about 25%), and the second shows navigations in which they

expected to find at least something they needed (Necessary, but not Sufficient: about

59%).

However, many of these expectations of value were not fulfilled. As the Table 6.2’s

bottom row shows, 63 of participants’ 179 navigations (about 35%) produced lower value

than expected. Adding to these disappointments, 28 of the 29 “desperation” navigations

(not expected to be either Necessary or Sufficient)—in which participants actually ex-

pected no value but tried anyway—indeed led to no actual value. Thus, in total, about

51% of participants’ navigations (highlighted cells in Table 6.2) ended in some degree of

disappointment in the information value they received.

Category Definition
Sufficient Participants believed that the navigation will (E(V))

or did (V) fully answer their current foraging goal.
Necessary Participants believed the information in the patch at

the end of the link will be (E(V)) or was (V)
necessary & related to their current foraging goal.

Table 6.1. Code set for expected (prior to navigating) and actual (after navigating) values.

 Actual V
Expected E(V) V > E(V) V=E(V) V<E(V) Totals

Necessary and Sufficient n/a 27
(15.1%)

17
(9.5%)

44
(24.6%)

Necessary, but not Sufficient 4
(2.2%)

56
(31.3%)

46
(25.7%)

106
(59.2%)

Not Necessary, not Sufficient 1
(0.6%)

28
(15.6%) n/a 29

(16.2%)

Totals 5
(2.8%)

111
(62.0%)

63
(35.2%) 179

Table 6.2. Participants’ expectations of value vs. actual value. Gray cells highlight navigations in which
participants had some degree of disappointment (50.8% of navigations).

109

Participants rarely found more value than they expected. As Table 6.2’s first column

shows, participants found higher information value than expected in only 5 navigations,

and only one was a participant “lucking into” information in a desperation navigation.

Why: The Challenges of Signposting

To find out why participants’ efforts so often returned disappointing value, we ana-

lyzed the 63 navigations in which participants received less value than expected, from the

perspective of IFT’s “cues” construct. What we found was patterns of cues (signposts)

that led participants astray in multiple ways.

Many of the words in IDEs refer to places in the code (e.g., method names) and in

memory (e.g., variable names), and when they are associated with a clickable or easily

scrollable way to navigate to the place to which they refer, these words serve as cues. Be-

cause cues like this are identifiable by lexically analyzing source code, we term them lex-

ical cues. Participants almost exclusively used lexical cues—mostly method names—to

predict the value of a patch to which they were considering navigating.

Unfortunately, this type of cue often misled them to irrelevant patches—even when

participants expressed high confidence that the patch would be relevant to their infor-

mation needs. In particular, three types of problems with lexical cues interfered with the

participants’ expectations of a patch’s value prior to going there: (1) cues that seemed to

advertise falsely, (2) synonym cues, and (3) cues answering the “wrong” question.

False Advertising: Content + Where the Cue Points

Some lexical cues beckoned participants toward a patch with a “false advertisement”

of the value. By way of analogy, imagine this sign next to a store window: “Buy <brand

name> Coffeemakers”. This sign might be just what a shopper needs if the store actually

has those coffeemakers, but might lead them astray if it is merely advertising the coffee-

makers (e.g., sold advertising space). Here the falseness of the advertising lies not in the

content of the sign, but the combination of its content and its apparent association with

this store.

110

At this point let us briefly consider whether the foundations-oriented perspective we

follow in this chapter yields useful insights not produced by prior works. For the case of

programmer navigations, the results produce a new agenda of research challenges, start-

ing with the following:

Research Challenge #1 (False Advertising): How to reduce the problem of

cues programmers interpret as “advertising” prey in a patch that does

not, in fact, have that prey.

The false advertising problem was very common among our participants: P2, P4, P7,

P8, P9 all suffered instances of it. For example, P8 navigated to method KillRing be-

cause “it’s obviously to do with deletion”. Yet, upon arriving in the method, he was

quickly disappointed when he realized it did not actually perform any of the work of de-

letion:

P8 (when asked if he was hoping for something):

“some more connection to deletion of the actual text...[but] it was just the abstraction”

The Problem with Synonym Cues

Some participants used their knowledge of synonyms to navigate. For example, in

looking for code that deletes, it seems reasonable to also look for code with names that

mean the same as “delete”. However, synonyms sometimes led our participants astray.

P8’s KillRing false advertising problem above was exacerbated when synonym diffi-

culties also arose. Other examples were:

P2: “‘clear.bsh’, is that related to deleting? No it’s not”

P7: “I’m assuming ‘invalidate’ means ‘delete’ ... Uh, it just doesn’t delete”

We were surprised to see the problems that arose with synonyms as cues, because sev-

eral tools use synonyms directly or indirectly to good effect (e.g., tools powered by natu-

ral language vocabulary devices like TF-IDF). For example, the search tool FindConcept

uses synonyms to expand the search query [Shepherd et al., 2007; Sridhara et al., 2008],

and Krec uses standard English synonyms [Robillard & Chhetri, 2015].

111

These approaches bring to mind seminal work on what was originally termed the “vo-

cabulary problem” [Furnas et al., 1987]. That paper showed how huge variations in de-

signers’ terminology across numerous application domains are an inherent property of the

English language. This result suggests not only the advantage of automatically agglomer-

ating synonyms but also its disadvantage—bringing together synonym-related patches

greatly expands programmers’ search space, as with P2, P6, and P8 above. Thus, too little

synonym agglomeration produces too many false negatives, but too much synonym ag-

glomeration produces too many false positives.

Research Challenge #2 (Synonyms): How to improve programmers’ for-

aging through synonym-filled code without incurring high navigation

costs from numerous false positives or false negatives.

The synonyms problem may relate to Ge et al.’s observation that over 90% of relevant

synonyms are unique to software engineering [Ge & Murphy-Hill, 2014]. For example, in

software, “invoke” is a synonym of “execute”, and “instantiate” is a synonym of “create”.

They point out that tools could use a thesaurus tailored to the lexicon of SE. Our results

are consistent with this point, but also suggest that the problems with synonym cues may

extend beyond that solution.

Cues That Answered the “Wrong” Question

Our participants often used lexical cues, such as method names, to try to answer vari-

ants of the following foraging question: what will that patch do for my goal? Unfortu-

nately, many of the method names they encountered were never intended to answer that

question. Instead, method names generally reflect a method’s purpose (“what is this

method?”). However, instead of asking “what is” questions, participants often asked

“where does” questions, and method names often failed to answer these.

For example, 7 of our 10 participants (P1, P2, P4, P5, P8, P9, P10) ran into trouble

foraging for the methods that actually update jEdit’s underlying model when a jEdit user

performs an editing action. For example, while navigating among numerous method calls

in the stack trace, P10 said:

112

P10: “I’m trying to figure out which piece of [method] actually updates the buffer state”

Variables raised even harder “where does” questions, and here again, lexical cues did

not help. For example, P1 was working his way up the exception stack trace, trying to

understand where physicalLine’s value came from. After several navigations follow-

ing the execution flow of the program, he finally arrived at a method that did some com-

putations on physicalLine.

P1: “This is the first place where ... there was some computing of physicalLine, as op-

posed to just passing it along and throwing exceptions.”

Some systems try to address “where does” problems. For example, WhyLine [Ko &

Myers, 2008] is well-suited for “where does” questions about state and variables, and

Reacher [LaToza & Myers, 2011] answers “where does” questions about methods. How-

ever, proof-of-concept tools like these need to be investigated in the context of the entire

IDE. Such tools require programmers to navigate away from the “main” part of the envi-

ronment into other tools and screens, potentially causing them to lose context and adding

to programmers’ costs simply by the cost of navigating to other tools.

Research Challenge #3 (Answering the Wrong Question): How to more of-

ten answer the “right” question, i.e., the one a programmer is actually

asking in their particular situation—given their particular context and

state of the IDE.

An open problem: The “Value Estimation” problem with programmers’ navigations

Table 6.3 summarizes the research challenges in better supporting programmers’ at-

tempts to predict patch values before paying the cost of navigating to those patches. The-

se research challenges come together to reveal a large, open problem space:

Research Challenge Participants who
encountered it

#1: False advertising (content + where) P2, P4, P7, P8, P9
#2: Synonym false positives P2, P7, P8
#3: Cues answering the “wrong” question P1, P2, P4, P5, P8, P9, P10

Table 6.3. E(V) research challenges with value estimation and the participants who experienced them.

113

The Value Estimation Problem (Aligning E(V) with V): How to help pro-

grammers more accurately predict the value they will gain from planned

navigations—without bearing the cost of navigating among a plethora of

special-purpose tools.

The challenges identified so far in this chapter show that this problem is nuanced, dif-

ficult, and multidimensional. Even so, addressing this problem promises high rewards.

Recall from Table 6.2 that solving this problem could potentially improve programmers’

navigation efficiency by up to 51%.

6.3.2 RQ2: Programmers’ Expectations of Cost

Did Participants Incur the Costs They Expected?

Participants did not verbalize their expectations of cost before navigating so we did

not measure E(C) and C separately. Instead, we measured how E(C) related to C, because

after navigating they often verbalized a navigation’s cost exceeding their expectations

(C	>	E(C)). Thus, our code set (Table 6.4) allocated these verbalizations among the two

possible ways costs can be incurred: by navigating between patches (Cb), or by processing

within the patch once there (Cw). Thus, C	=	Cb	+	Cw. The results in Table 6.4 show that

participants discussed facing unexpected costs in 66 of the 179 navigations analyzed

(36.9%).

Why: Unanticipated Costs Between Patches

Although there were several instances of unexpectedly high within-patch costs Cw

(about 13% of the navigations), those can be summarized as simply being time-

consuming to understand:

P1: “Uh, the whole thing was really frustrating. The code was hard to read.”

P5: “looking for ... but then I got so lost in [that method], that I didn’t really fully under-

stand what was going on.”

However, the dominant type of unexpected cost was between-patch, Cb, affecting over

25% of participants’ navigations.

114

For between-patch cost Cb, we identified three patterns that the participants faced that

repeatedly led to unexpectedly high costs: (1) the prey was in pieces scattered among

multiple patches, (2) the path to the prey was long with no end in sight, and (3) some-

times there simply was no available path to the prey.

Prey in Pieces, Scattered among Multiple Patches

Having prey in pieces spread over multiple patches made foraging costlier than ex-

pected because participants had to locate all the relevant patches and assemble the prey

themselves. Using the coffeemaker analogy from before, this would be like buying a cof-

feemaker in parts, with a different store exclusively selling each part. To get a working

coffeemaker, one would have to go to one store to get a handle, another to get the glass

container, yet another to get a lid, and so on, only to then also assemble the gathered

components before brewing any coffee.

Category Definition Examples Navigations
affected

Complexity
of patch
(Cw)

Participants decided that the
cognitive difficulty of this
patch was unexpectedly high.

Can’t understand comments/
documentation.
Code too long.
Can’t figure out what the code is
doing.

24 (13.4%)

Surrounding
context (Cb)

Participants decided they
would now need additional
information found only in
other patches before they
could gain value from this
one.

Don’t know how to use this code
“correctly” without visiting other
patches.
Don’t know what the identifiers
represent.
Don’t know how this code relates
to or affects other code.

46 (25.7%)

Time
(Cb or Cw)

Participants decided (for
unspecified reasons or for
reasons other than the above)
that the cost of this patch is
too high.

Not enough time to process the
patch. 10 (5.6%)

Total: 66 (36.9%)
Table 6.4. Frequency of actual costs (Cb or Cw) that were unexpectedly higher than the programmers
had expected (E(Cb) or E(Cw)). (The total is 66 instead of 80 because categories can co-occur in the

same navigation.

115

Research Challenge #4 (Prey in Pieces): How to better support program-

mers who are having to assemble prey that is in pieces scattered among

multiple patches.

One situation in which participants had to collect and assemble information from mul-

tiple patches was when they tried to learn semantic information, such as what a variable

represented. For example, P1, P3, P6, P7, and P9 were confused by all of the different

line variables. Documentation for the semantic differences between the variables existed

within comments in the code, but participants sometimes needed a combination of

knowledge from several patches to understand the different variables.

P5: [Did you consider any other choices besides <method name>?] “No, because the

names didn’t really say much to me ... I basically had no clue about context...”

To illustrate the cost involved in establishing such context, consider P1’s case. As

Figure 6.2 shows, for P1 to build the context he wanted, he would have had to not only

move up the call stack to find the relevant relationships and documentation, but also had

Figure 6.2. P1 was looking for the relationship between screen lines and visible lines, after seeing both
in the starred method. But jEdit has three line types, so he would have also needed to understand physi-

cal lines from the dashed locations (far right).

116

to locate and navigate through the call relationships through the dashed methods in the

figure before putting together his desired prey. Of course, P1 had no way of knowing this,

and after foraging within the first four methods of the call stack, he gave up.

Several other participants faced similar difficulties when they wanted to understand

where and how the value of a variable changed during execution. P1, P3, P6, and P10 all

navigated between several methods that executed during the Delete Line action to deter-

mine how specific values of variables changed. One example was the physicalLine

variable. To understand where physicalLine came from, participants navigated up the

call hierarchy and identified patches where physicalLine was being modified only to

reach a method that showed that physicalLine was calculated using a screenLine as

a parameter. Then they had to navigate through another call hierarchy. With each addi-

tional variable, there was yet another call hierarchy to investigate, and the number of

patches to investigate grew rapidly. Eventually, all four of these participants decided the

cost was too high, and gave up.

The Path to the Prey Is Too Long, with No End in Sight

In contrast to the above, with the prey being scattered about in pieces, some partici-

pants’ prey was already fully assembled and in only one patch—but the path was so long

(due to the many layers of abstraction and objects involved), participants thought they

were going in the wrong direction and gave up.

Returning to the coffeemaker analogy, imagine entering a store searching for a cof-

feemaker, but having the clerk tell you they do not sell them, but they can point you to a

store that might. Then, upon entering that store, having that clerk send you to yet another

store. Eventually, you might get to a store with the coffeemaker, or you might give up

before you get there because with each trip to a new store, it seems less and less likely

that any of the stores has a coffeemaker available. Several participants engaged in this

behavior of going from patch to patch, until finally giving up.

Research Challenge #5 (Endless Paths): How to better support program-

mers when the path to the prey is very long, so that the programmer does

not erroneously decide that the prey is not on that path.

117

For example, when P3 was looking for methods related to folding or deleting text, he

set a breakpoint in the exception-throwing method that he identified earlier. He then for-

aged through the sequence of methods in the debugger’s stack frames working his way

down the stack, sometimes returning to a previous frame to regain lost context. After sev-

eral navigations, he gave up—still three methods away from the deleteLine method

that he was looking for (Figure 6.3). P1, P2, P3, P4, P5, P8, and P9 all experienced this

expense of navigating through long sequences of patches en route to their desired prey.

Sometimes There is No Navigable Path

Some participants could not find a path to their prey because the information they

wanted was located in a different topology altogether. A topology is a collection of

patches and the links between them. In this study, one topology was the code itself, with

units of code (such as methods or classes) being the patches and the ways to navigate be-

tween them (like scrolling or using various IDE navigation affordances) being the links.

Another topology, disjoint from the code topology, was the jEdit running instance, with

its own patches and navigation affordances not connected to code. In the Eclipse IDE,

participants sometimes formulated their foraging goal while in one topology, but had to

Figure 6.3. P3 navigated down the debugger’s stack frames searching for methods related to folding or
deletion. After several navigations down the stack, he gave up only three methods away from the meth-

od he was looking for.

118

fulfill the goal in another. What was missing was a way for participants to easily navigate

between related patches from one topology to another.

Research Challenge #6 (Disjoint Topologies): How to enable program-

mers to navigate through related patches among multiple, disjoint topolo-

gies.

This inability to move between topologies in a low-cost way primarily manifested

when participants were mapping runtime GUI behavior to code. For example, several

participants, while recreating the bug in jEdit’s running instance, formulated the goal of

finding the code that was triggered by GUI actions. However, after formulating that goal,

they then had to switch over to jEdit’s code and start a fresh set of navigations, since

there was no direct way to go from executing the action in jEdit to the code that handles

that action. Instead, participants located the relevant code by using search tools, by inves-

tigating the stack trace, or by setting a breakpoint and stepping through code. Figure 6.4

shows one common missing link between the two topologies, mapping the Delete Lines

menu action to the deleteLine method.

Figure 6.4. P7 said he wanted to navigate from the Delete Lines menu action to the deleteLines method
in the code, but the environment had no link from the action to the code it triggered. (Solid lines: links

present. Dashed line: missing link.)

119

In the above situation, participants had to resort to finding the relevant representations

of GUI elements in the code by navigating through code, which was both costly and un-

fruitful. P3 set a breakpoint and then navigated through several frames trying to find in-

formation. P4 chose to trigger an action related to the bug and step through several meth-

ods of code to find relevant prey. P5 simply selected a relevant-looking method from the

outline view and started to read code.

For jEdit, there were four disjoint topologies: the GUI runtime, the source code, the

external menu library, and the XML properties file. Besides the GUI runtime topology

and source code topology, jEdit uses an external library—the third topology—to automat-

ically build menus based on the content of an XML properties file—the fourth topology

disjoint from the others. The properties file defined the content of the menus and speci-

fied which methods to fire for each menu item. The disjointedness was a source of confu-

sion for participants, since many of the methods that were called by menu items had no

callers when an open call hierarchy action was used in Eclipse.

There are a few beginnings toward addressing the disjoint topologies challenge. For

example, Whyline [Ko et al., 2006] builds a path just-in-time to bridge the gap between

two topologies: from GUI output to its relevant source code, and SketchLink [Baltes et

al., 2014] links sketches to code. Mining approaches like Chen and Grundy’s [Chen &

Grundy, 2011] are also emerging to find relationships among disjoint topologies such as

documentation and source code. However, Whyline does not scale to a program of jEdit’s

size, approaches like Chen/Grundy’s do not support navigations per se, and few of the

approaches we have located reason with more than two disjoint topologies. Still, these

beginnings provide promising starts upon which to build.

An Open Problem: The “Cost Estimation” Problem with Programmers’ Navigations

As Table 6.4 showed, about 37% of programmers’ costs were much higher than they

had expected. In essence, programmers had to navigate to patches without knowing what

it would cost until after they had paid—a situation not unlike writing a blank check for

the coffeemaker of our earlier analogy. Table 6.5’s summary of cost-related foraging re-

120

search challenges contributing to these issues reveal a substantive and difficult open

problem space analogous to the Value Estimation Problem presented in Section 6.3.1:

The Cost Estimation Problem (Aligning E(C) with C): How to enable pro-

grammers to more accurately predict the foraging costs they will incur be-

fore they incur them.

6.4 RQ3: Literature Analysis

To answer our third research question, whether recent trends in software engineering

research have begun to address these problems, we conducted a literature analysis of 302

papers from three literature repositories. The first repository was the 99 papers cited in

the most recent (2013) journal paper surveying SE tools that contribute to programmers’

information foraging [Fleming et al., 2013], which included, for example, tools helping

collect information for debugging, reuse, or infering what a programmer seeks, and for

recommending appropriate resources (e.g., [Cottrell et al., 2008; Ko & Myers, 2008;

Robillard & Chhetri, 2015; Sawadsky et al., 2013]). The 2013 journal paper [Fleming et

al., 2013] sampled literature from a wide range of dates, so to ensure currency, we added

two very recent repositories. Thus, the second repository was FSE’14 (104 papers),

which was the most recent FSE available at the time we began this analysis, and the third

was ICSE’14 (99 papers), i.e., the same year as the FSE repository.

6.4.1 Analysis Methodology

From the resulting 302 papers, we selected for detailed analysis all papers that met the

following criteria: (1) it must describe a tool that supports a software engineering forag-

ing activity, (2) the activity must have a before-navigation and an after-navigation state,

Research Challenge Participants who encountered it
#4: Prey in pieces scattered among
several patches

P1, P3, P4, P5, P6, P7, P9, P10

#5: Path too long, no end in sight P1, P2, P3, P4, P5, P8, P9
#6: No path across different
topologies

P1, P2, P3, P4, P5, P6, P7, P8, P9, P10

Table 6.5. Research challenges for cost estimation and the participants who faced them.

121

and (3) the paper (or related resources) must include information of the navigation choic-

es a programmer can make.

We then qualitatively coded the 55 papers that met these criteria based on the descrip-

tion of the foraging activity supported by the paper’s tool (or by following references in

the paper to other resources describing the tool), using the code set given in Table 6.6. As

the table shows, the codes cover every possible way to align value V with E(V) if V<E(V),

and to align cost C with E(C) if C>E(C) for the two factors of C, namely Cb and Cw.

To ensure reliability of our analysis, we followed the same inter-rater reliability (IRR)

practices we described for the other code sets in this chapter. Specifically, two research-

ers independently coded the same 20% of the data, and calculated their level of agree-

ment using the Jaccard index. After achieving 90% inter-rater reliability on the first re-

pository and 81% inter-rater reliability on the remaining two, they divided up the coding

of the remaining data.

 Code Description

A
lig

n
of

 e
xp

ec
te

d

Aligns accuracy of E(V)
with V.

Prior to a navigation, a cue hints at the value of
information at the end of the link.

Aligns accuracy of E(Cb)
with Cb of navigating
between patches.

Prior to a navigation, a link gives clues (via the
cues) as to the cost of navigating to the patch at
the end of the link.

Aligns accuracy of E(Cw)
with Cw of processing
within a patch.

Prior to a navigation, a link gives clues (via the
cues) as to the cost of processing a patch (e.g.,
context, complexity, time).

Im
pr

ov
e

ac
tu

al

Increases V of a patch The patch has been modified to increase its
value, either by adding relevant information or
removing irrelevant information.

Decreases Cb of between-
patch foraging

Programmers can navigate to a desired patch
more quickly.

Decreases Cw of within-
patch processing

After a navigation, the patch itself has been
modified to decrease its processing costs, either
through the removal of irrelevant information
features or by drawing attention to relevant
information features.

Table 6.6. Code set for the literature analysis. E(V) = expected value, E(C) = expected cost. V = actual
value. C = actual cost.

122

Paper Supports what foraging goal In
cr

ea
se

 V

D
ec

re
as

e
C

b

D
ec

re
as

e
C

w

A
lig

n
V

 &
 E

(V
)

A
lig

n
C

b &
 E

(C
b)

A
lig

n
C

w
 &

 E
(C

w
)

[Alimadadi et al., 2014] Understand interaction between
source code components.

[Alves et al., 2014] Locate potential errors caused by
manual refactoring.

[Ashok et al., 2009] Locate relevant information
associated with a bug. 	 	 	 	 	 	

[Baltes et al., 2014] Locate/link sketches/diagrams
relevant to part of the code.

[Bragdon et al., 2010a] Locate and visually organize code. 	 	 	 	 	 	
[Caldiera & Basili, 1991] Locate reusable code. ?	 ?	 ?	 	 ?	 	
[Coblenz et al., 2006] Collect relevant code in a separate,

easy-to-navigate patch. 	 	 	 	 	 	

[Cottrell et al., 2008] Locate reusable code. 	 	 	 	 	 	
[Cubranic et al., 2005] Locate artifacts relevant to the

current context. 	 	 	 	 	 	

[de Alwis & Murphy, 2008] Locate and collect code based on
programmer’s query. 	 	 	 	 	 	

[DeLine et al., 2005a] Find relevant code via team
members’ navigation histories. 	 	 	 	 	 	

[Duala-Ekoko & Robillard,
2007]

Locate and collect code clones for
modification. 	 	 	 	 	 	

[Ducasse et al., 1999] Locate duplicated code. 	 	 	 	 	 	
[Dudziak & Wloka, 2002] Locate potential bad code via code

smells. 	 	 	 	 	 	

[Dunn & Knight, 1993] Locate reusable code. ?	 ? ?	 	 ?	 ?	
[Fritz & Murphy, 2010] Locate/organize code collaborated

on by several programmers. 	 	 	 	 	 	

[Galenson et al., 2014] Find code snippets that meet the
requirement/specification.

[Ge & Murphy-Hill, 2014] Locate and/or fix errors caused by
automated refactoring.

[Henninger, 1994] Locate reusable code. 	 	 	 	 	 	
[Hermans & Dig, 2014] Locate source code files that may

contain the bug.
[Hill et al., 2009] Locate relevant program elements

based on NL-queries. 	 	 	 	 	 	

[Holmes et al., 2006] Locate examples for a particular
source code element. 	 	 	 	 	 	

(continued	on	next	page)	

123

[Holmes & Walker, 2007] Organize and annotate code
fragments during reuse tasks. 	 	 	 	 	 	

[Kaleeswaran et al., 2014] Identify changes needed to a fix a
buggy piece of code.

[Kersten & Murphy, 2006] Collect relevant code in a separate,
easy-to-navigate patch. 	 	 	 	 	 	

[Ko, 2008] Locate code that caused a particular
output. 	 	 	 	 	 	

[Lanubile & Visaggio,
1993]

Reverse-engineer components. 	 	 	 ?	 	 	

[Layman, 2008] Identifies code relationships for a
given code element. 	 	 	 	 	 	

[Lin et al., 2014] Locate clones and identify
similarities and differences.

[Manotas et al., 2014] Identify possible changes for more
energy-efficient code.

[McMillan et al., 2012] Locate relevant software projects
based on NL-query. 	 	 	 	 	 	

[Mens et al., 2003] Locate potential bad code via code
smells. 	 	 	 	 	 	

[Minto & Murphy, 2007] Locate an expert for a given section
of code. 	 	 	 	 	 	

[Mirakhorli et al., 2014] Find code that matches a certain
architectural pattern.

[Mockus & Herbsleb, 2002] Locate an expert for a given section
of code. 	 	 	 	 	 	

[Ocariza et al., 2014] Identify possible changes to fix a
buggy piece of code.

[Okur et al., 2014] Identify fixes to bugs with asynch.
programming constructs.

[Olivero et al., 2011] Locate and visually organize code. 	 	 	 	 	 	
[Parnin & Gorg, 2006] Locate and recommend context-

relevant code. 	 	 	 	 	 	

[Reiss, 2009] Locate code based on programmer-
supplied specification. 	 	 	 	 	 	

[Schiller et al., 2014] Identify formal behavioral
specifications & document them.

[Simon et al., 2001] Locate code suitable for refactoring
via code smells. 	 	 	 	 	 	

[Storey et al., 2007] Locate code tagged with user-
determined categories. 	 	 	 	 	 	

[Subramanian et al., 2014] Understand what code does via
documentation & examples.

[Thung et al., 2014] Locate the files that may potentially
contain the bug.

[Tokuda & Batory, 2001] Locate code for refactoring. 	 	 	 	 	 	
(continued	on	next	page)	

124

[Toomim et al., 2004] Locate code duplicates. 	 	 	 	 	 	
[van Emden & Moonen,
2002]

Locate bad-smelling code. 	 	 	 	 	 	

[Würsch et al., 2010] Locate code based on NL-queries. 	 	 	 	 	 	
[Xiao et al., 2014] Find relationships between classes. [Ye et al., 2000] Locate code for reuse. 	 	 	 	 	 	
[Ye et al., 2007] Locate an expert for a given section

of code. 	 	 	 	 	 	

[Zhang & Ernst, 2014] Locate/fix configuration-related
errors in a newer version.

[Zhang et al., 2014] Identify code where similar
systematic changes occurred.

[Zimmermann et al., 2005] Recommend code needing
modification. 	 	 	 	 	 	

Table 6.7. Results of analyzing 302 papers, showing the 55 tools that assist programmers with tasks involv-
ing foraging. Shaded = some support, blank=none, ? = unclear in the paper.

6.4.2 Results

Table 6.7 presents the results of our analysis of the 55 SE research tools. As per the

underlying code set (Table 6.6), Table 6.7 has a column for every possible way a tool

could improve programmers’ mismatches in actual versus expected value or cost, and

shadings show which tools contributed to each.

A visual scan of the shaded cells in Table 6.7’s columns 3-8 reveals four results. The

first is good news regarding SE research’s commitment to enhancing the value and cost

of programmers’ information seeking—100% of the 55 tools make some kind of

contribution to helping programmers with aspects of value or cost.

Improving the Actuals: V and C

The second result, shown by Table 6.7’s columns 3-5, is that most of these tools

(47/55=85%) are working toward improving programmers’ actual value V or cost C.

More specifically, Table 6.7’s column 3 (“Increase V”) shows that just over half of

these 47 papers (26) work toward increasing the value V a patch delivers to programmers

who make their way there. These tools do so by adding information features to that

patch.

125

One example is SketchLink [Baltes et al., 2014], which adds sketch diagrams relevant

to the current method (Figure 6.5)—which increases V provided that these added in-

formation features help to answer the question(s) the programmer actually had, as per Re-

search Challenge #3 (Answering the wrong question). When that provision is met, a best

case is that value V to a programmer might increase from necessary up to sufficient. This

best-case increase could help with Table 6.2’s result that programmers’ navigations did

not usually produce value that was sufficient.

Turning to the next two columns, work to reduce costs dominates the “actuals”—47

papers contribute toward decreasing Cb and/or Cw. All except one of these 47 focuses on

decreasing cost Cb of navigating to a patch, but over half (29) focus also (or in one case,

instead) on the cost Cw of navigating within that patch.

For example, SketchLink [Baltes et al., 2014] (Figure 6.5) reduces Cw by making ex-

plicit information the programmer would otherwise need to infer by studying the code. It

also reduces Cb by adding links between two disjoint topologies, sketches and code, as per

the two-topology case of Research Challenge #6 (Disjoint topologies).

Figure 6.5. SketchLink improves V, Cb, & Cw in overlapping ways:

Increasing V: It adds information (the floating sketch) about the current method.
Decreasing Cb: Programmers can get the sketch without a tedious sequence of navigations.
Decreasing Cw: Programmer do not need to study code to infer information the sketch makes explicit.

126

Aligning Expectations: E(V) and E(C)

Improving actual V and C is important, but it still leaves an important gap—it does not

resolve the waste than ensues if programmers cannot predict in advance whether they

will receive value until after they pay the cost. This is why aligning E(V) and E(C) with V

and C matters.

The third result is about this alignment. At first, Table 6.7 gives an impression visually

that aligning E(V) with V is very common among these tools, with 52/55 (95%) making

some effort to do so. However, this impression is a bit misleading, because most ap-

proaches help programmers predict patch values only for patches that are nearby (one

navigation away), a point we shall return to shortly. Still, one excellent example of sup-

port of E(V) is Team Tracks [DeLine et al., 2005b], which helps programmers predict

value by rating patches according to how often the programmer’s team visited them

(Figure 6.6, left), regardless of how many navigations away the patch is.

The fourth result Table 6.7 reveals is that tools helping to align E(C) with C were rela-

tively rare—only 4/55 (7%) made any attempt to align E(Cb) with Cb, and only 10/55

(18%) worked to align E(Cw) with Cw. As an example of supporting E(Cw), when pro-

grammers using Team Tracks select an item in the list Team Tracks recommends, it

shows a preview (Figure 6.6, right), to help programmers predict the cost of understand-

ing the code. However, as with the E(V) work, few tools handle patches that reside more

than one navigation away.

Figure 6.6. Team Tracks’ support for both E(V) and E(Cw): (Left) Aligning E(V) with V: Shows how

often fellow team members visited a location in code as an estimate of value V. (Right): Aligning E(Cw)
with Cw: If a programmer selects a method, it shows a preview, helping programmers predict how long

they will spend understanding the method.

127

6.4.3 The Scaling Up Problem

Section 6.4.2’s examples provide useful ideas toward ultimately addressing some of

the research challenges of Section 6.3, but only a few help the programmer align E(V)

with V or E(C) with C for patches more than one click away. This leaves the programmer

in a state of acute myopia (near-sightedness), unable to see beyond one navigation

away—and thus unsupported in coping with long-distance problems such as those illus-

trated by Figure 6.2 and Figure 6.3.

This suggests our third and final open problem space:

The Scaling Up Problem (More than one click away): How to enable pro-

grammers to accurately predict value/cost of multiple “distant” patches

(i.e., more than one navigation away).

Fortunately, our literature analysis points to a few notable starts in this direction. Be-

sides the examples above, other examples are MCIDiff [Lin et al., 2014] and

CloneTracker [Duala-Ekoko & Robillard, 2012]. These two clone-tracking tools consider

the possible set of clones, show the length and the number of instances of all code clones,

not just nearby ones, to help the programmer predict E(Cw) of handing any or all of these

clones. Another useful example is the query system Ferret [de Alwis & Murphy, 2008],

which helps programmers predict E(Cw) beyond the one-click-away distance. Ferret al-

lows programmers to ask conceptual queries about a particular program element such as

“What methods instantiate this type?” and while displaying the results, also shows the

number of results for the query, thus allowing the programmer to gain some idea of the

sum of all the E(Cw)’s they will incur. Promising starts like these works can serve as the

ground floor upon which SE researchers can build toward ultimately addressing this

problem.

6.5 Summary of Results

In this chapter, we used an Information Foraging Theory perspective to investigate

programmers’ navigation decisions, how often these decisions led to disappointment, and

the fundamentals of why.

128

The results suggest that how well a programmer can predict the value and/or cost of a

navigation path are critical factors of the lower bound of a programmer’s navigation effi-

ciency in a given information space. The results further suggest a new area of inquiry for

SE researchers: how large, feature-dense SE environments can support programmers’

ability to predict the value they will receive from a navigation path and the cost they must

expend to receive that value. As Sections 6.3 to 6.4.3 showed and Table 6.8 summarizes,

this area of inquiry appears to be rich, challenging, and cross-cutting, with three open

problem spaces involving (at least) six research challenges.

Our empirical study showed these problems to have significant effects on program-

mers’ productivity, with high percentages of expensive wasted programmer effort. For

example, about 51% of the programmers’ foraging decisions led to disappointing value of

information obtained, and about 37% of the programmers’ foraging decisions resulted in

higher than anticipated costs. Conservatively assuming that all value and cost foraging

disappointments overlapped, about 51% of their foraging resulted in disappointment; a

worst-case summation that assumes no overlap in these disappointments is 88% of their

navigations leading to disappointment.

Further, our literature analysis revealed only a little evidence of SE research tools that

aim squarely at helping programmers to align their predicted navigation value and cost

with the actual values and costs they will incur. Fortunately, a few such tools make useful

inroads in directions needed to help address the issues, as we pointed out in the literature

analysis.

Together, these results are a call for action. Programmers’ future productivity will de-

pend on SE researchers’ ability to make significant progress toward solving the open

Open Research Problems and Challenges
Research Challenge #1: False advertising
Research Challenge #2: Synonyms
Research Challenge #3: Answering “wrong” question
Research Challenge #4: Prey in pieces
Research Challenge #5: Endless paths
Research Challenge #6: Disjoint topologies
The Scaling Up Problem

Table 6.8. Summary of open research problems and challenges.

129

problems and challenges that were revealed by considering programmer navigation at a

foundational level.

P8: “... really hard … it’s just, you know, miles of methods, miles of methods.

130

Chapter 7 Discussion and Open Questions

7.1 Between-Patch Foraging Is Difficult

Several of the findings presented in this thesis echo the same conclusion: that pro-

grammers face and endure significant challenges when foraging between patches. Our

evidence shows that programmers deal with cues that often fail to fulfil their foraging

needs or topologies that do not provide links to the information that they are seeking.

They face unexpected costs when arriving at promising patches and sometimes give up

on their foraging before they arrive at the patch or patches that contain the information

they were looking for (Chapter 6).

However, despite these difficulties, and due to their specific information needs, pro-

grammers endure these challenges. The long tail from Chapter 4 showed that program-

mers’ information needs can be very specific. That specificity manifested in P3’s debug-

ging session with a repeat patterns that repeatedly pursued the same goal. Difficulties

such as these may also explain why between-patch foraging was the least common type

of foraging that we observed in Chapter 4.

But why is between-patch foraging more difficult than within-patch foraging or en-

richment? Within-patch foraging tends to be higher value and lower cost than between

patch-foraging. In the within-patch foraging case, all the available information features

are found within a single location (a method) and there are several affordances provided

by the Eclipse IDE to better understand the content of the patch in a low-cost way (such

as locating a variable’s declaration or investigating an object’s type hierarchy).

In the case of enrichment, the Eclipse IDE lowers the cost by providing several af-

fordances to generate patches automatically, sparing the programmer the cost of finding

relevant links themselves. Contrast this with between-patch foraging, where programmers

often cannot assess the value and cost until they navigate to the destination patch (due to

the problems discussed in Chapter 6).

Addressing the challenges of between-patch foraging likely requires addressing a

combination of problems discussed in Chapter 6. To illustrate this point, consider the

recommendation system from Chapter 3. Although the recommender correctly identified

131

cues of interest to Participant 6 (thereby aligning E(V) with V), it was unable to under-

stand the questions that the programmer was actually pursuing (effectively providing

links that answered the wrong question) and did not contain topologies where the answers

to those questions were (the disjoint topologies problem). For example, because the menu

was not defined in the code, but in an XML properties file, the recommender was unable

to provide links to the menu’s definitions. Simply put, because the recommender did not

consider all the relevant topologies, no amount of aligning value or cost would have led

to the answer to the participant’s actual question. The takeaway here is that tools de-

signed to support between-patch navigation must go beyond “just” programmers’ as-

sessments of value and cost with the actual value and cost, and it remains a rich and in-

teresting question.

7.2 One Missing Piece: Time

IFT’s central proposition is framed in terms of the singular decision that a programmer

faces at a particular moment (Chapter 2): should the programmer stay in the current

patch, navigate to another patch, or enrich the environment? Our results suggest the need

for modeling of foraging at a higher level that considers the programmers previous forag-

ing actions.

One body of evidence suggesting the apparent importance of the predator’s previous

actions. For example, in Chapter 3, we observed that navigation history (foraging mo-

mentum in the chapter) was an important predictor of where a programmer went to next.

In Chapter 4, we found that participants’ foraging was reactive, and the fulfillment (or

abandonment) of a goal influenced the next navigation. One way this manifested was the

distinct patterns of goal types, such as Repeat. In Chapter 5, we found that Learn partici-

pants were more likely to succeed by switching among different cue types at each deci-

sion point. Such results demonstrate well that programmers often do not forage in the

moment; they are influenced by what they have seen before.

Another body of evidence pointing to the same thing is how a predator’s previously

visited patches influenced the foraging decisions the predator made in the current patch.

The findings in Chapter 5 suggest that when programmers are processing cues to build

132

information scent, they consider not only cues in the current patch (as is stipulated by

IFT), but also cues that they have seen before in previously visited patches (cue types).

These cases suggest the need for IFT to explicitly consider how the programmers’ forag-

ing changes over time.

7.3 Connecting the Dots: IFT and Software Engineering Research

Not only have we connected the dots between the factors and IFT’s constructs, prior

work has also demonstrated how SE research papers connect with IFT, thus providing

additional evidence for IFT’s applicability as an abstraction for software engineering re-

search. Recall that in Section 6.4, we conducted a literature analysis that analyzed how

tools to support navigation addressed value and cost across six dimensions. This coding

resulted in 55 papers coded in terms of value and cost. Of these, 37 papers were sourced

from [Fleming et al., 2013], where we applied IFT to identify recurring design patterns

from existing software engineering research tools. However, 8 more papers from that

work were not included in Section 6.4, but were explained by IFT design patterns. Thus,

[Fleming et al., 2013] demonstrated how IFT abstracts across 45 papers across three

types of software engineering tasks: debugging, refactoring and reuse.

Nabi et al. continued the work of [Fleming et al., 2013] and built an IFT design pattern

catalog15 authored by members of the SE research community [Nabi et al., 2016]. This

catalog wiki introduced new IFT design patterns and demonstrated how an additional 66

papers (at the time of this writing) are explained by IFT’s constructs and propositions.

Together with the 5 papers not covered by these surveys but previously described in this

thesis, a total of 128 software engineering papers so far have been connected to IFT. Ta-

ble 7.1summarizes the totals.

15 http://research.engr.oregonstate.edu/ift/readonly.php

133

Source Paper citations #

Table 6.7

[Alimadadi et al., 2014; Alves et al., 2014; Ashok et al., 2009;
Baltes et al., 2014; Bragdon et al., 2010a; Caldiera & Basili, 1991;
Coblenz et al., 2006; Cottrell et al., 2008; Cubranic et al., 2005; de
Alwis & Murphy, 2008; DeLine et al., 2005a; Duala-Ekoko &
Robillard, 2007; Ducasse et al., 1999; Dudziak & Wloka, 2002;
Dunn & Knight, 1993; Fritz & Murphy, 2010; Galenson et al.,
2014; Ge & Murphy-Hill, 2014; Henninger, 1994; Hermans &
Dig, 2014; Hill et al., 2009; Holmes et al., 2006; Holmes &
Walker, 2007; Kaleeswaran et al., 2014; Kersten & Murphy, 2006;
Ko, 2008; Lanubile & Visaggio, 1993; Layman, 2008; Lin et al.,
2014; Manotas et al., 2014; McMillan et al., 2012; Mens et al.,
2003; Minto & Murphy, 2007; Mirakhorli et al., 2014; Mockus &
Herbsleb, 2002; Ocariza et al., 2014; Okur et al., 2014; Olivero et
al., 2011; Parnin & Gorg, 2006; Reiss, 2009; Schiller et al., 2014;
Simon et al., 2001; Storey et al., 2007; Subramanian et al., 2014;
Thung et al., 2014; Tokuda & Batory, 2001; Toomim et al., 2004;
van Emden & Moonen, 2002; Würsch et al., 2010; Xiao et al.,
2014; Ye et al., 2000, 2007; Zhang & Ernst, 2014; Zhang et al.,
2014; Zimmermann et al., 2005]

55

Table 7.1 [Carroll, 1998; Carroll & Rosson, 1987; Grigoreanu et al., 2010;
LaToza & Myers, 2010; Sillito et al., 2006] 5

Additional papers
from [Fleming et

al., 2013]

[Bellon et al., 2007; Dagenais & Robillard, 2010; Lanubile et al.,
2010; Murphy-Hill et al., 2012; Murphy-Hill & Black, 2008;
Treude & Storey, 2011, 2012; Xing & Stroulia, 2006]

8

IFT design
patterns catalog

[Abreu et al., 2007; Agrawal et al., 1995; Arnold et al., 2007;
Asaduzzaman et al., 2014; Beller et al., 2015; Bergel & Peña,
2014; Binkley et al., 2007; Brun et al., 2011; Campos et al., 2012;
Cornelissen et al., 2008; de Oliveira Arantes & de Almeida Falbo,
2010; Duan & Cleland-Huang, 2007; Egyed et al., 2007;
Eisenberg & De Volder, 2005; Gabel et al., 2008; Gall et al., 2009;
Gouveia et al., 2013; Guzzi et al., 2011; Han et al., 2009; Henley
& Fleming, 2014; Henninger, 1991; Hill et al., 2007; Holten,
2006; Hong et al., 2008; Hou & Pletcher, 2011; Hu & Liu, 2004;
Jones & Harrold, 2005; Ko & Myers, 2009; Koenemann & Belkin,
1996; Landi, 1992; Lanza & Ducasse, 2003; LaToza & Myers,
2011; Mahmoud & Niu, 2011; Mantyla et al., 2003; McBurney &
McMillan, 2016; Mockus et al., 2009; Myers & Storey, 2010;
Nguyen et al., 2012a; Niu et al., 2013; Omar et al., 2012; Opdyke,
1992; Panichella et al., 2012; Pastore et al., 2013; Perez & Abreu,
2013, 2014; Qi et al., 2012; Ren et al., 2004; Safyallah & Sartipi,
2006; Savage et al., 2010; Scaffidi, 2010; Servant & Jones, 2012;
Stolee et al., 2014; Thummalapenta et al., 2011; Treude et al.,
2011; Treude & Storey, 2010; Weiser, 1981; Wilde & Scully,
1995; Yu et al., 2012; Zhang & Hou, 2013; Zhao et al., 2004]

60

Total 128
Table 7.1. 128 SE research papers that are connected using IFT’s abstractions.

134

7.4 Generalizability

Any work that builds theory needs to show that it generalizes beyond the initial situa-

tion in which it was developed.

Thus, here we summarize aspects of this work for which we have evaluated generali-

zability. In Chapter 3, we showed that predictive factors that previously were evaluated in

offline situations (i.e., in predictive models) generalized to an in-context situation with

different participants (the recommender tool). The foraging goals in Chapter 4 started

with the goals that Sillito’s work had already reported from a wide spectrum of environ-

ments and situations on questions that programmers ask [Sillito et al., 2006] and reap-

plied them to IFT’s notions of diet and information goals in a new empirical situation.

Chapter 5’s extension of cues into cue types has recently been generalized into Srinivasa

Ragavan et al.’s [Srinivasa Ragavan et al., 2016] work on information foraging with vari-

ants. In that work, she reused cue types to explain how programmers foraged across vari-

ants of a JavaScript program (not Java programs as in our work) in a new IDE (Cloud9,

not the Eclipse environment in our work). Finally, Chapter 5 showed that Fixers versus

Learners forage significantly differently in two different environments (Eclipse and

AIDE) on two different platforms (Desktop versus Mobile) given two different programs

(jEdit vs. Vanilla Music) in different domains (a text editor versus a music player).

7.5 Threats to Validity

As in any empirical research, the results in this thesis may have been influenced by the

environments the participants used, the tools available to them, the tasks they worked on,

etc. However, our methodology was designed to strengthen generalizability through the

use of code sets and methodological conventions from other pertinent studies (e.g.,

[Grigoreanu et al., 2010, 2012; Romero et al., 2007; Sillito et al., 2006]), and through the

use of realistic elements: both jEdit and Vanilla Music are real open-source projects; the

defects were sourced for actual bug repositories; the participants were experienced pro-

fessionals (except Desktop participants in Chapter 5) using a popular IDE (Eclipse or

AIDE).

135

The primary threat to external validity of the empirical studies is that all studies’ par-

ticipants were new to the code base. This is a common situation for new hires and when

programmers transfer to different development teams, but we do not expect results to

generalize to other kinds of debugging situations. All our studies required the participants

to use the Java programming language, thus there is a question of generalizability to other

programming. Finally, although IDEs share many of the same features, our findings may

not generalize beyond Eclipse and AIDE.

We guarded against threats to internal validity in several ways. For our participant

studies (Chapter 3, Chapter 4, Chapter 5 and Chapter 6), our Jaccard inter-rater reliability

was at least 80% on all code sets. To help assure construct validity (the extent to which a

measure actually captures what is intended), we did not rely on our raters’ interpretations

of participants alone, but also used follow-up questionnaires and retrospective interviews.

In the retrospectives, played back videos of the task sessions to remind participants where

they were and also to gather participants’ interpretations of which events mattered and

why they did what they did (Chapter 4, Chapter 5, and Chapter 6). For Chapter 3, we in-

stead triangulated using a follow-up questionnaire. However, participants’ recollections

of what happened later may have biased their responses. Issues like these can be resolved

only through additional studies.

136

Chapter 8 Conclusion

Without theory, ad-hoc tool development aiming to support programmer navigation

limits our ability to explain and to leverage promising ways to assist programmers’ forag-

ing. Information Foraging Theory provides a solution. IFT provides a theoretical founda-

tion to unify those tools’ various approaches under a single abstraction, i.e., to “connect

the dots” – enabling understanding of why a particular approach does or does not work.

Therefore, in this dissertation, we showed how IFT can help unify SE research spanning

multiple software engineering disciplines.

First, we evaluated predictive factors of programmer navigation in situ by building and

empirically investigating a recommendation tool to support programmer navigations. We

found that factors underlying the tools’ models fundamentally served as different types of

scent. This led to insights into what types of scent matter to programmers’ foraging. Our

findings suggest further that as new tools are developed, new types of scent will emerge,

thus further improving our understanding of how programmers estimate value and cost

while foraging.

Second, we investigated programmers’ foraging goals and strategies and the relation-

ship between them from the perspective of IFT’s diet construct. We found that foraging

goal types tended to be pursued more often by certain foraging strategies, yet IFT makes

no mention of this relationship. Without making relationships like this explicit, consum-

ers of IFT may find it challenging to find the best way to leverage the theory.

Third, we investigated the role of Minimal Learning Theory’s production bias on pro-

grammers’ foraging behavior finding that it influenced programmers’ scent, affecting

which patch types they navigated from and the cue types that they attended to. This was

the first work to consider IFT’s constructs of patches and cues that was not dependent on

their content, potentially simplifying future models for IFT-based tools. Additionally, in

terms of IFT’s utility, we showed that parts of IFT findings for debugging generalized

beyond jEdit and beyond Eclipse.

Fourth, we found that programmers faced significant difficulties estimating scent, re-

sulting in about 51% of participants’ navigations ending in some degree of disappoint-

137

ment in the information value they received and higher than expected costs in about 37%

of their navigations. Digging deeper, we identified seven IFT-based open research prob-

lems revolving around value and costs in foraging.

Together, these findings highlight how to connect the dots between the ways that

software engineering research tools and studies explain programmers’ foraging and what

those works’ findings mean for IFT. We view this work as step towards advancing IFT as

a foundation to abstract programmers’ information seeking under a unifying theory.

Hopefully, these insights provide useful information for those looking to leverage IFT to

better support programmers’ foraging in the future.

138

References

Abreu, R., Zoeteweij, P., & van Gemund, A. J. C. (2007). On the Accuracy of Spectrum-
based Fault Localization. In Testing: Academic and Industrial Conference Prac-
tice and Research Techniques - MUTATION, 2007. TAICPART-MUTATION 2007
(pp. 89–98). http://doi.org/10.1109/TAIC.PART.2007.13

Agrawal, H., Horgan, J. R., London, S., & Wong, W. E. (1995). Fault localization using
execution slices and dataflow tests. In , Sixth International Symposium on Soft-
ware Reliability Engineering, 1995. Proceedings (pp. 143–151).
http://doi.org/10.1109/ISSRE.1995.497652

Agresti, A., & Kateri, M. (2011). Categorical data analysis. Springer. Retrieved from
http://link.springer.com/10.1007/978-3-642-04898-2_161

Aho, A., Sethi, R., & Ullman, J. (1986). Compilers Principles, Techniques, and Tools.
Addison Wesley. Retrieved from
http://140.118.105.174/Courses/SE/2012/14_WebService.pdf

Alimadadi, S., Sequeira, S., Mesbah, A., & Pattabiraman, K. (2014). Understanding Ja-
vaScript Event-based Interactions. In Proceedings of the 36th International Con-
ference on Software Engineering (pp. 367–377). New York, NY, USA: ACM.
http://doi.org/10.1145/2568225.2568268

Alves, E. L. G., Song, M., & Kim, M. (2014). RefDistiller: A Refactoring Aware Code
Review Tool for Inspecting Manual Refactoring Edits. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (pp. 751–754). New York, NY, USA: ACM.
http://doi.org/10.1145/2635868.2661674

Anderson, J. (1990). The adaptive character of thought. Psychology Press. Retrieved
from
https://books.google.com/books?hl=en&lr=&id=Vp_wcfyIKH0C&oi=fnd&pg=P
R3&dq=The+Adaptive+Character+of+Thought&ots=1OCagYlukX&sig=KxthY
XPfwgVRknbmAYuuWQftrms

Anderson, J. (1993). Rules of the mind. Psychology Press. Retrieved from
https://books.google.com/books?hl=en&lr=&id=1KOYAgAAQBAJ&oi=fnd&pg
=PP1&dq=Rules+of+the+Mind&ots=jIzD1FTwdY&sig=sH46Dd8z-
8SwAAdoM0_sEt0A2hk

Anderson, J., & Pirolli, P. L. (1984). Spread of activation. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 10(4), 791.

Arnold, D. C., Ahn, D. H., de Supinski, B. R., Lee, G. L., Miller, B. P., & Schulz, M.
(2007). Stack Trace Analysis for Large Scale Debugging. In 2007 IEEE Interna-
tional Parallel and Distributed Processing Symposium (pp. 1–10).
http://doi.org/10.1109/IPDPS.2007.370254

139

Asaduzzaman, M., Roy, C. K., Schneider, K. A., & Hou, D. (2014). CSCC: Simple, Effi-
cient, Context Sensitive Code Completion. In 2014 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME) (pp. 71–80).
http://doi.org/10.1109/ICSME.2014.29

Ashok, B., Joy, J., Liang, H., Rajamani, S. K., Srinivasa, G., & Vangala, V. (2009). De-
bugAdvisor: A Recommender System for Debugging. In Proceedings of the the
7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering (pp.
373–382). New York, NY, USA: ACM. http://doi.org/10.1145/1595696.1595766

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval: The Con-
cepts and Technology Behind Search. ACM. Retrieved from
ftp://mail.im.tku.edu.tw/seke/slide/baeza-
yates/chap10_user_interfaces_and_visualization-modern_ir.pdf

Bajracharya, S. K., & Lopes, C. V. (2012). Analyzing and mining a code search engine
usage log. Empirical Software Engineering, 17(4-5), 424–466.
http://doi.org/10.1007/s10664-010-9144-6

Baltes, S., Schmitz, P., & Diehl, S. (2014). Linking Sketches and Diagrams to Source
Code Artifacts. In Proceedings of the 22Nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (pp. 743–746). New York, NY,
USA: ACM. http://doi.org/10.1145/2635868.2661672

Beller, M., Gousios, G., & Zaidman, A. (2015). How (Much) Do Developers Test? In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering
(Vol. 2, pp. 559–562). http://doi.org/10.1109/ICSE.2015.193

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., & Merlo, E. (2007). Comparison and
Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineer-
ing, 33(9), 577–591. http://doi.org/10.1109/TSE.2007.70725

Bergel, A., & Peña, V. (2014). Increasing test coverage with Hapao. Science of Computer
Programming, 79, 86–100. http://doi.org/10.1016/j.scico.2012.04.006

Binkley, D., Gold, N., & Harman, M. (2007). An Empirical Study of Static Program Slice
Size. ACM Trans. Softw. Eng. Methodol., 16(2).
http://doi.org/10.1145/1217295.1217297

Bragdon, A., Reiss, S. P., Zeleznik, R., Karumuri, S., Cheung, W., Kaplan, J., … LaVio-
la, J., Jr. (2010a). Code Bubbles: Rethinking the User Interface Paradigm of Inte-
grated Development Environments. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1 (pp. 455–464). New
York, NY, USA: ACM. http://doi.org/10.1145/1806799.1806866

Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S., Cheung, W., Kaplan, J., … LaVio-
la, J., Jr. (2010b). Code Bubbles: A Working Set-based Interface for Code Under-
standing and Maintenance. In Proceedings of the SIGCHI Conference on Human

140

Factors in Computing Systems (pp. 2503–2512). New York, NY, USA: ACM.
http://doi.org/10.1145/1753326.1753706

Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., & Klemmer, S. R. (2009). Two
Studies of Opportunistic Programming: Interleaving Web Foraging, Learning, and
Writing Code. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 1589–1598). New York, NY, USA: ACM.
http://doi.org/10.1145/1518701.1518944

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. Inter-
national Journal of Man-Machine Studies, 18(6), 543–554.
http://doi.org/10.1016/S0020-7373(83)80031-5

Brun, Y., Holmes, R., Ernst, M. D., & Notkin, D. (2011). Crystal: Precise and Unobtru-
sive Conflict Warnings. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering (pp.
444–447). New York, NY, USA: ACM. http://doi.org/10.1145/2025113.2025187

Caldiera, G., & Basili, V. R. (1991). Identifying and qualifying reusable software com-
ponents. Computer, 24(2), 61–70. http://doi.org/10.1109/2.67210

Campos, J., Riboira, A., Perez, A., & Abreu, R. (2012). GZoltar: An Eclipse Plug-in for
Testing and Debugging. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (pp. 378–381). New York, NY,
USA: ACM. http://doi.org/10.1145/2351676.2351752

Card, S. K., Pirolli, P. L., Van Der Wege, M., Morrison, J., Reeder, R., Schraedley, P., &
Boshart, J. (2001). Information Scent As a Driver of Web Behavior Graphs: Re-
sults of a Protocol Analysis Method for Web Usability. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp. 498–505).
New York, NY, USA: ACM. http://doi.org/10.1145/365024.365331

Carroll, J. (1998). Minimalism beyond the Nurnberg funnel. MIT Press. Retrieved from
https://books.google.com/books?hl=en&lr=&id=LvXiZJEUJjAC&oi=fnd&pg=P
R11&dq=Minimalism+Beyond+the+Nurnberg+Funnel,&ots=1lnD2P1lyk&sig=t
Ow4nV8DVQPKebRUYZrQK7e7F0A

Carroll, J., & Rosson, M. B. (1987). Paradox of the Active User. The MIT Press. Re-
trieved from http://psycnet.apa.org/psycinfo/1987-98055-005

Chen, X., & Grundy, J. (2011). Improving Automated Documentation to Code Traceabil-
ity by Combining Retrieval Techniques. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (pp.
223–232). Washington, DC, USA: IEEE.
http://doi.org/10.1109/ASE.2011.6100057

Chi, E. H., & Pirolli, P. L. (2006). Social information foraging and collaborative search.
In Human Computer Interaction Consortium. Fraser, Colorado, USA. Retrieved
from

141

https://www.researchgate.net/profile/Peter_Pirolli/publication/247563469_Social_
Infor-
mation_Foraging_and_Collaborative_Search/links/02e7e52965b7e05894000000.
pdf

Chi, E. H., Pirolli, P. L., Chen, K., & Pitkow, J. (2001). Using Information Scent to Mod-
el User Information Needs and Actions and the Web. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp. 490–497).
New York, NY, USA: ACM. http://doi.org/10.1145/365024.365325

Chi, E. H., Pirolli, P. L., & Pitkow, J. (2000). The Scent of a Site: A System for Analyz-
ing and Predicting Information Scent, Usage, and Usability of a Web Site. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems
(pp. 161–168). New York, NY, USA: ACM.
http://doi.org/10.1145/332040.332423

Chi, E. H., Rosien, A., Supattanasiri, G., Williams, A., Royer, C., Chow, C., … Cousins,
S. (2003). The Bloodhound Project: Automating Discovery of Web Usability Is-
sues Using the InfoScent Simulator. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 505–512). New York, NY, USA:
ACM. http://doi.org/10.1145/642611.642699

Coblenz, M. J., Ko, A. J., & Myers, B. A. (2006). JASPER: An Eclipse Plug-in to Facili-
tate Software Maintenance Tasks. In Proceedings of the 2006 OOPSLA Workshop
on Eclipse Technology eXchange (pp. 65–69). New York, NY, USA: ACM.
http://doi.org/10.1145/1188835.1188849

Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., & van Wijk, J. J.
(2008). Execution trace analysis through massive sequence and circular bundle
views. Journal of Systems and Software, 81(12), 2252–2268.
http://doi.org/10.1016/j.jss.2008.02.068

Cottrell, R., Walker, R. J., & Denzinger, J. (2008). Semi-automating Small-scale Source
Code Reuse via Structural Correspondence. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (pp.
214–225). New York, NY, USA: ACM. http://doi.org/10.1145/1453101.1453130

Cubranic, D., & Murphy, G. C. (2003). Hipikat: Recommending pertinent software de-
velopment artifacts. In Proceedings of the 25th International Conference on Soft-
ware Engineering (pp. 408–418). ACM/IEEE.
http://doi.org/10.1109/ICSE.2003.1201219

Cubranic, D., Murphy, G. C., Singer, J., & Booth, K. S. (2005). Hipikat: a project
memory for software development. IEEE Transactions on Software Engineering,
31(6), 446–465. http://doi.org/10.1109/TSE.2005.71

Dagenais, B., & Robillard, M. P. (2010). Creating and Evolving Developer Documenta-
tion: Understanding the Decisions of Open Source Contributors. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of

142

Software Engineering (pp. 127–136). New York, NY, USA: ACM.
http://doi.org/10.1145/1882291.1882312

de Alwis, B., & Murphy, G. C. (2008). Answering conceptual queries with Ferret. In
Proceedings of the 30th International Conference on Software Engineering (pp.
21–30). ACM/IEEE. http://doi.org/10.1145/1368088.1368092

DeLine, R., Czerwinski, M., & Robertson, G. (2005a). Easing program comprehension
by sharing navigation data. In 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’05) (pp. 241–248).
http://doi.org/10.1109/VLHCC.2005.32

DeLine, R., Khella, A., Czerwinski, M., & Robertson, G. (2005b). Towards Understand-
ing Programs Through Wear-based Filtering. In Proceedings of the 2005 ACM
Symposium on Software Visualization (pp. 183–192). New York, NY, USA:
ACM. http://doi.org/10.1145/1056018.1056044

de Oliveira Arantes, L., & de Almeida Falbo, R. (2010). An Infrastructure for Managing
Semantic Documents. In 2010 14th IEEE International Enterprise Distributed
Object Computing Conference Workshops (pp. 235–244).
http://doi.org/10.1109/EDOCW.2010.17

Duala-Ekoko, E., & Robillard, M. P. (2007). Tracking Code Clones in Evolving Soft-
ware. In 29th International Conference on Software Engineering (ICSE’07) (pp.
158–167). http://doi.org/10.1109/ICSE.2007.90

Duala-Ekoko, E., & Robillard, M. P. (2012). Asking and Answering Questions About
Unfamiliar APIs: An Exploratory Study. In Proceedings of the 34th International
Conference on Software Engineering (pp. 266–276). Piscataway, NJ, USA:
ACM/IEEE. Retrieved from http://dl.acm.org/citation.cfm?id=2337223.2337255

Duan, C., & Cleland-Huang, J. (2007). Clustering Support for Automated Tracing. In
Proceedings of the Twenty-second IEEE/ACM International Conference on Au-
tomated Software Engineering (pp. 244–253). New York, NY, USA: ACM.
http://doi.org/10.1145/1321631.1321668

Ducasse, S., Rieger, M., & Demeyer, S. (1999). A language independent approach for
detecting duplicated code. In IEEE International Conference on Software Mainte-
nance, 1999. (ICSM ’99) Proceedings (pp. 109–118).
http://doi.org/10.1109/ICSM.1999.792593

Dudziak, T., & Wloka, J. (2002). Tool-supported discovery and refactoring of structural
weaknesses in code. Retrieved from
http://wloka.org/publications_files/dudwlo02-jart-master-thesis.pdf

Dunn, M. F., & Knight, J. C. (1993). Automating the Detection of Reusable Parts in Ex-
isting Software. In Proceedings of the 15th International Conference on Software
Engineering (pp. 381–390). Los Alamitos, CA, USA: IEEE Computer Society
Press. Retrieved from http://dl.acm.org/citation.cfm?id=257572.257660

143

Egyed, A., Binder, G., & Grunbacher, P. (2007). STRADA: A Tool for Scenario-Based
Feature-to-Code Trace Detection and Analysis. In Companion to the Proceedings
of the 29th International Conference on Software Engineering (pp. 41–42). Wash-
ington, DC, USA: IEEE Computer Society.
http://doi.org/10.1109/ICSECOMPANION.2007.70

Eisenberg, A. D., & De Volder, K. (2005). Dynamic feature traces: finding features in
unfamiliar code. In 21st IEEE International Conference on Software Maintenance
(ICSM’05) (pp. 337–346). http://doi.org/10.1109/ICSM.2005.42

Evans, B., & Card, S. (2008a). Augmented Information Assimilation: Social and Algo-
rithmic Web Aids for the Information Long Tail. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 989–998). New York,
NY, USA: ACM. http://doi.org/10.1145/1357054.1357207

Evans, B., & Card, S. K. (2008b). Augmented Information Assimilation: Social and Al-
gorithmic Web Aids for the Information Long Tail. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 989–998). New York,
NY, USA: ACM. http://doi.org/10.1145/1357054.1357207

Evans, B., Kairam, S., & Pirolli, P. L. (2010). Do your friends make you smarter?: An
analysis of social strategies in online information seeking. Information Processing
& Management, 46(6), 679–692. http://doi.org/10.1016/j.ipm.2009.12.001

Fleming, S. D., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R., Lawrance, J., &
Kwan, I. (2013). An Information Foraging Theory Perspective on Tools for De-
bugging, Refactoring, and Reuse Tasks. ACM Transactions on Software Engi-
neering Methodologies, 22(2), 14:1–14:41.
http://doi.org/10.1145/2430545.2430551

Fritz, T., & Murphy, G. C. (2010). Using Information Fragments to Answer the Ques-
tions Developers Ask. In Proceedings of the 32nd International Conference on
Software Engineering (pp. 175–184). New York, NY, USA: ACM.
http://doi.org/10.1145/1806799.1806828

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The Vocabulary
Problem in Human-system Communication. Commun. ACM, 30(11), 964–971.
http://doi.org/10.1145/32206.32212

Fu, W.-T., & Pirolli, P. L. (2007). SNIF-ACT: A Cognitive Model of User Navigation on
the World Wide Web. Human–Computer Interaction, 22(4), 355–412.
http://doi.org/10.1080/07370020701638806

Gabel, M., Jiang, L., & Su, Z. (2008). Scalable detection of semantic clones. In 2008
ACM/IEEE 30th International Conference on Software Engineering (pp. 321–
330). http://doi.org/10.1145/1368088.1368132

Galenson, J., Reames, P., Bodik, R., Hartmann, B., & Sen, K. (2014). CodeHint: Dynam-
ic and Interactive Synthesis of Code Snippets. In Proceedings of the 36th Interna-

144

tional Conference on Software Engineering (pp. 653–663). New York, NY, USA:
ACM. http://doi.org/10.1145/2568225.2568250

Gall, H. C., Fluri, B., & Pinzger, M. (2009). Change Analysis with Evolizer and
ChangeDistiller. IEEE Softw., 26(1), 26–33. http://doi.org/10.1109/MS.2009.6

Ge, X., & Murphy-Hill, E. (2014). Manual Refactoring Changes with Automated Refac-
toring Validation. In Proceedings of the 36th International Conference on Soft-
ware Engineering (pp. 1095–1105). New York, NY, USA: ACM/IEEE.
http://doi.org/10.1145/2568225.2568280

Gouveia, C., Campos, J., & Abreu, R. (2013). Using HTML5 visualizations in software
fault localization. In 2013 First IEEE Working Conference on Software Visualiza-
tion (VISSOFT) (pp. 1–10). http://doi.org/10.1109/VISSOFT.2013.6650539

Grigoreanu, V., Burnett, M., & Robertson, G. (2010). A Strategy-centric Approach to the
Design of End-user Debugging Tools. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (pp. 713–722). New York, NY, USA:
ACM. http://doi.org/10.1145/1753326.1753431

Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., & Kwan, I. (2012).
End-user Debugging Strategies: A Sensemaking Perspective. ACM Trans. Com-
put.-Hum. Interact., 19(1), 5:1–5:28. http://doi.org/10.1145/2147783.2147788

Guzzi, A., Hattori, L., Lanza, M., Pinzger, M., & Deursen, A. v. (2011). Collective Code
Bookmarks for Program Comprehension. In 2011 IEEE 19th International Con-
ference on Program Comprehension (ICPC) (pp. 101–110).
http://doi.org/10.1109/ICPC.2011.19

Han, S., Wallace, D. R., & Miller, R. C. (2009). Code Completion from Abbreviated In-
put. In 24th IEEE/ACM International Conference on Automated Software Engi-
neering, 2009. ASE ’09 (pp. 332–343). http://doi.org/10.1109/ASE.2009.64

Hearst, M. (2011). User interfaces for search. Modern Information Retrieval, 21–55.

Henley, A. Z., & Fleming, S. D. (2014). The Patchworks Code Editor: Toward Faster
Navigation with Less Code Arranging and Fewer Navigation Mistakes. In Pro-
ceedings of the 32Nd Annual ACM Conference on Human Factors in Computing
Systems (pp. 2511–2520). New York, NY, USA: ACM.
http://doi.org/10.1145/2556288.2557073

Henninger, S. (1991). CodeFinder: A Tool For Locating Software Objects For Reuse. In
Automating Software Design: Interactive Design Workshop Notes AAAI–91 pp
(pp. 40–47).

Henninger, S. (1994). Using iterative refinement to find reusable software. IEEE Soft-
ware, 11(5), 48–59. http://doi.org/10.1109/52.311059

Hermans, F., & Dig, D. (2014). BumbleBee: A Refactoring Environment for Spreadsheet
Formulas. In Proceedings of the 22Nd ACM SIGSOFT International Symposium

145

on Foundations of Software Engineering (pp. 747–750). New York, NY, USA:
ACM. http://doi.org/10.1145/2635868.2661673

Hill, E., Pollock, L., & Vijay-Shanker, K. (2007). Exploring the Neighborhood with Dora
to Expedite Software Maintenance. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering (pp.
14–23). New York, NY, USA: ACM. http://doi.org/10.1145/1321631.1321637

Hill, E., Pollock, L., & Vijay-Shanker, K. (2009). Automatically Capturing Source Code
Context of NL-queries for Software Maintenance and Reuse. In Proceedings of
the 31st International Conference on Software Engineering (pp. 232–242). Wash-
ington, DC, USA: IEEE Computer Society.
http://doi.org/10.1109/ICSE.2009.5070524

Hill, W. C., Hollan, J. D., Wroblewski, D., & McCandless, T. (1992). Edit Wear and
Read Wear. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 3–9). New York, NY, USA: ACM.
http://doi.org/10.1145/142750.142751

Holmes, R., & Walker, R. J. (2007). Supporting the Investigation and Planning of Prag-
matic Reuse Tasks. In Proceedings of the 29th International Conference on Soft-
ware Engineering (pp. 447–457). Washington, DC, USA: IEEE Computer Socie-
ty. http://doi.org/10.1109/ICSE.2007.83

Holmes, R., Walker, R. J., & Murphy, G. C. (2006). Approximate Structural Context
Matching: An Approach to Recommend Relevant Examples. IEEE Transactions
on Software Engineering, 32(12), 952–970. http://doi.org/10.1109/TSE.2006.117

Holten, D. (2006). Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data. IEEE Transactions on Visualization and Computer Graphics,
12(5), 741–748. http://doi.org/10.1109/TVCG.2006.147

Hong, L., Chi, E. H., Budiu, R., Pirolli, P., & Nelson, L. (2008). SparTag.Us: A Low
Cost Tagging System for Foraging of Web Content. In Proceedings of the Work-
ing Conference on Advanced Visual Interfaces (pp. 65–72). New York, NY, USA:
ACM. http://doi.org/10.1145/1385569.1385582

Hou, D., & Pletcher, D. M. (2011). An evaluation of the strategies of sorting, filtering,
and grouping API methods for Code Completion. In 2011 27th IEEE Internation-
al Conference on Software Maintenance (ICSM) (pp. 233–242).
http://doi.org/10.1109/ICSM.2011.6080790

Hu, M., & Liu, B. (2004). Mining and Summarizing Customer Reviews. In Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 168–177). New York, NY, USA: ACM.
http://doi.org/10.1145/1014052.1014073

Jakobsen, M. R., & Hornbæk, K. (2006). Evaluating a Fisheye View of Source Code. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

146

(pp. 377–386). New York, NY, USA: ACM.
http://doi.org/10.1145/1124772.1124830

John, B. E., Swart, C., Bellamy, R., Blackmon, M. H., & Brown, R. (2013). An Open
Source Approach to Information Scent. In CHI ’13 Extended Abstracts on Human
Factors in Computing Systems (pp. 355–360). New York, NY, USA: ACM.
http://doi.org/10.1145/2468356.2468419

Jones, J. A., & Harrold, M. J. (2005). Empirical Evaluation of the Tarantula Automatic
Fault-localization Technique. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (pp. 273–282). New York, NY,
USA: ACM. http://doi.org/10.1145/1101908.1101949

Kaleeswaran, S., Tulsian, V., Kanade, A., & Orso, A. (2014). MintHint: Automated Syn-
thesis of Repair Hints. In Proceedings of the 36th International Conference on
Software Engineering (pp. 266–276). New York, NY, USA: ACM.
http://doi.org/10.1145/2568225.2568258

Karrer, T., Krämer, J.-P., Diehl, J., Hartmann, B., & Borchers, J. (2011). Stacksplorer:
Call Graph Navigation Helps Increasing Code Maintenance Efficiency. In Pro-
ceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology (pp. 217–224). New York, NY, USA: ACM.
http://doi.org/10.1145/2047196.2047225

Kersten, M., & Murphy, G. C. (2005). Mylar: A Degree-of-interest Model for IDEs. In
Proceedings of the 4th International Conference on Aspect-oriented Software De-
velopment (pp. 159–168). New York, NY, USA: ACM.
http://doi.org/10.1145/1052898.1052912

Kersten, M., & Murphy, G. C. (2006). Using Task Context to Improve Programmer
Productivity. In Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (pp. 1–11). New York, NY, USA: ACM.
http://doi.org/10.1145/1181775.1181777

Kevic, K., Fritz, T., & Shepherd, D. C. (2014). CoMoGen: An Approach to Locate Rele-
vant Task Context by Combining Search and Navigation. In Proceedings of the
2014 IEEE International Conference on Software Maintenance and Evolution
(pp. 61–70). Washington, DC, USA: IEEE.
http://doi.org/10.1109/ICSME.2014.28

Kittur, A., Peters, A. M., Diriye, A., Telang, T., & Bove, M. R. (2013). Costs and Bene-
fits of Structured Information Foraging. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (pp. 2989–2998). New York, NY,
USA: ACM. http://doi.org/10.1145/2470654.2481415

Ko, A. J. (2008). Asking and Answering Questions About the Causes of Software Behav-
ior. Carnegie Mellon University, Pittsburgh, PA, USA.

147

Ko, A. J., & Myers, B. A. (2008). Debugging Reinvented: Asking and Answering Why
and Why Not Questions About Program Behavior. In Proceedings of the 30th In-
ternational Conference on Software Engineering (pp. 301–310). New York, NY,
USA: ACM/IEEE. http://doi.org/10.1145/1368088.1368130

Ko, A. J., & Myers, B. A. (2009). Finding Causes of Program Output with the Java
Whyline. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (pp. 1569–1578). New York, NY, USA: ACM.
http://doi.org/10.1145/1518701.1518942

Ko, A. J., Myers, B. A., Coblenz, M. J., & Aung, H. H. (2006). An Exploratory Study of
How Developers Seek, Relate, and Collect Relevant Information during Software
Maintenance Tasks. IEEE Transactions on Software Engineering, 32(12), 971–
987. http://doi.org/10.1109/TSE.2006.116

Koenemann, J., & Belkin, N. J. (1996). A Case for Interaction: A Study of Interactive
Information Retrieval Behavior and Effectiveness. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 205–212). New York,
NY, USA: ACM. http://doi.org/10.1145/238386.238487

Krämer, J.-P., Karrer, T., Kurz, J., Wittenhagen, M., & Borchers, J. (2013). How Tools in
IDEs Shape Developers’ Navigation Behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 3073–3082). New
York, NY, USA: ACM. http://doi.org/10.1145/2470654.2466419

Kuttal, S. K., Sarma, A., & Rothermel, G. (2013). Predator behavior in the wild web
world of bugs: An information foraging theory perspective. In 2013 IEEE Sympo-
sium on Visual Languages and Human Centric Computing (pp. 59–66). IEEE.
http://doi.org/10.1109/VLHCC.2013.6645244

Landi, W. (1992). Undecidability of Static Analysis. ACM Lett. Program. Lang. Syst.,
1(4), 323–337. http://doi.org/10.1145/161494.161501

Lanubile, F., Ebert, C., Prikladnicki, R., & Vizcaíno, A. (2010). Collaboration Tools for
Global Software Engineering. IEEE Softw., 27(2), 52–55.
http://doi.org/10.1109/MS.2010.39

Lanubile, F., & Visaggio, G. (1993). Function recovery based on program slicing. In
Proceedings of the 1993 Conference on Software Maintenance (pp. 396–404).
http://doi.org/10.1109/ICSM.1993.366923

Lanza, M., & Ducasse, S. (2003). Polymetric views - a lightweight visual approach to
reverse engineering. IEEE Transactions on Software Engineering, 29(9), 782–
795. http://doi.org/10.1109/TSE.2003.1232284

LaToza, T. D., & Myers, B. A. (2010). Developers Ask Reachability Questions. In Pro-
ceedings of the 32nd International Conference on Software Engineering (pp. 185–
194). New York, NY, USA: ACM. http://doi.org/10.1145/1806799.1806829

148

LaToza, T. D., & Myers, B. A. (2011). Visualizing call graphs. In 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 117–124).
IEEE. http://doi.org/10.1109/VLHCC.2011.6070388

LaToza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining Mental Models: A Study
of Developer Work Habits. In Proceedings of the 28th International Conference
on Software Engineering (pp. 492–501). New York, NY, USA: ACM/IEEE.
http://doi.org/10.1145/1134285.1134355

Lawrance, J., Bellamy, R., & Burnett, M. (2007). Scents in Programs:Does Information
Foraging Theory Apply to Program Maintenance? In 2007 IEEE Symposium on
Visual Languages and Human-Centric Computing (pp. 15–22). IEEE.
http://doi.org/10.1109/VLHCC.2007.25

Lawrance, J., Bellamy, R., Burnett, M., & Rector, K. (2008a). Can information foraging
pick the fix? A field study. In 2008 IEEE Symposium on Visual Languages and
Human-Centric Computing (pp. 57–64).
http://doi.org/10.1109/VLHCC.2008.4639059

Lawrance, J., Bellamy, R., Burnett, M., & Rector, K. (2008b). Using Information Scent
to Model the Dynamic Foraging Behavior of Programmers in Maintenance Tasks.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems (pp. 1323–1332). New York, NY, USA: ACM.
http://doi.org/10.1145/1357054.1357261

Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., & Fleming, S. D. (2013).
How Programmers Debug, Revisited: An Information Foraging Theory Perspec-
tive. IEEE Transactions on Software Engineering, 39(2), 197–215.
http://doi.org/10.1109/TSE.2010.111

Lawrance, J., Burnett, M., Bellamy, R., Bogart, C., & Swart, C. (2010). Reactive Infor-
mation Foraging for Evolving Goals. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (pp. 25–34). New York, NY, USA:
ACM. http://doi.org/10.1145/1753326.1753332

Layman, L. (2008, December 16). Information Needs of Developers for Program Com-
prehension during Software Maintenance Tasks. North Carolina State University.

Letovsky, S. (1987). Cognitive processes in program comprehension. Journal of Systems
and Software, 7(4), 325–339. http://doi.org/10.1016/0164-1212(87)90032-X

Lin, Y., Xing, Z., Xue, Y., Liu, Y., Peng, X., Sun, J., & Zhao, W. (2014). Detecting Dif-
ferences Across Multiple Instances of Code Clones. In Proceedings of the 36th
International Conference on Software Engineering (pp. 164–174). New York,
NY, USA: ACM. http://doi.org/10.1145/2568225.2568298

Luca, L., Stephen, B., & Pierpaolo, D. (2009). Information Foraging Theory as a Form of
Collective Intelligence for Social Search. In N. T. Nguyen, R. Kowalczyk, & S.-
M. Chen (Eds.), Computational Collective Intelligence. Semantic Web, Social

149

Networks and Multiagent Systems (pp. 63–74). Springer Berlin Heidelberg. Re-
trieved from http://link.springer.com/chapter/10.1007/978-3-642-04441-0_5

Maalej, W., Tiarks, R., Roehm, T., & Koschke, R. (2014). On the Comprehension of
Program Comprehension. ACM Trans. Softw. Eng. Methodol., 23(4), 31:1–31:37.
http://doi.org/10.1145/2622669

Mahmoud, A., & Niu, N. (2011). TraCter: A tool for candidate traceability link cluster-
ing. In 2011 IEEE 19th International Requirements Engineering Conference (pp.
335–336). http://doi.org/10.1109/RE.2011.6051663

Majid, I., & Robillard, M. P. (2005). NaCIN: An Eclipse Plug-in for Program Naviga-
tion-based Concern Inference. In Proceedings of the 2005 OOPSLA Workshop on
Eclipse Technology eXchange (pp. 70–74). New York, NY, USA: ACM.
http://doi.org/10.1145/1117696.1117711

Manotas, I., Pollock, L., & Clause, J. (2014). SEEDS: A Software Engineer’s Energy-
optimization Decision Support Framework. In Proceedings of the 36th Interna-
tional Conference on Software Engineering (pp. 503–514). New York, NY, USA:
ACM. http://doi.org/10.1145/2568225.2568297

Mantyla, M., Vanhanen, J., & Lassenius, C. (2003). A taxonomy and an initial empirical
study of bad smells in code. In International Conference on Software Mainte-
nance, 2003. ICSM 2003. Proceedings (pp. 381–384).
http://doi.org/10.1109/ICSM.2003.1235447

McBurney, P. W., & McMillan, C. (2016). An empirical study of the textual similarity
between source code and source code summaries. Empirical Software Engineer-
ing, 21(1), 17–42. http://doi.org/10.1007/s10664-014-9344-6

McMillan, C., Grechanik, M., Poshyvanyk, D., Fu, C., & Xie, Q. (2012). Exemplar: A
Source Code Search Engine for Finding Highly Relevant Applications. IEEE
Transactions on Software Engineering, 38(5), 1069–1087.
http://doi.org/10.1109/TSE.2011.84

Mens, T., Tourwé, T., & Muñoz, F. (2003). Beyond the Refactoring Browser: Advanced
Tool Support for Software Refactoring. In Proceedings of the 6th International
Workshop on Principles of Software Evolution (p. 39–). Washington, DC, USA:
IEEE Computer Society. Retrieved from
http://dl.acm.org/citation.cfm?id=942803.943730

Minto, S., & Murphy, G. C. (2007). Recommending Emergent Teams. In Fourth Interna-
tional Workshop on Mining Software Repositories (MSR’07:ICSE Workshops
2007) (pp. 5–5). http://doi.org/10.1109/MSR.2007.27

Mirakhorli, M., Fakhry, A., Grechko, A., Wieloch, M., & Cleland-Huang, J. (2014).
Archie: A Tool for Detecting, Monitoring, and Preserving Architecturally Signifi-
cant Code. In Proceedings of the 22nd ACM SIGSOFT International Symposium

150

on Foundations of Software Engineering (pp. 739–742). New York, NY, USA:
ACM. http://doi.org/10.1145/2635868.2661671

Mockus, A., & Herbsleb, J. D. (2002). Expertise Browser: A Quantitative Approach to
Identifying Expertise. In Proceedings of the 24th International Conference on
Software Engineering (pp. 503–512). New York, NY, USA: ACM.
http://doi.org/10.1145/581339.581401

Mockus, A., Nagappan, N., & Dinh-Trong, T. T. (2009). Test coverage and post-
verification defects: A multiple case study. In 2009 3rd International Symposium
on Empirical Software Engineering and Measurement (pp. 291–301).
http://doi.org/10.1109/ESEM.2009.5315981

Murphy-Hill, E., & Black, A. P. (2008). Refactoring Tools: Fitness for Purpose. IEEE
Software, 25(5), 38–44. http://doi.org/10.1109/MS.2008.123

Murphy-Hill, E., Parnin, C., & Black, A. P. (2012). How We Refactor, and How We
Know It. IEEE Transactions on Software Engineering, 38(1), 5–18.
http://doi.org/10.1109/TSE.2011.41

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., & Zander, C.
(2008). Debugging: The Good, the Bad, and the Quirky – a Qualitative Analysis
of Novices’ Strategies. In Proceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education (pp. 163–167). New York, NY, USA: ACM.
http://doi.org/10.1145/1352135.1352191

Myers, D., & Storey, M.-A. (2010). Using Dynamic Analysis to Create Trace-focused
User Interfaces for IDEs. In Proceedings of the Eighteenth ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (pp. 367–368).
New York, NY, USA: ACM. http://doi.org/10.1145/1882291.1882351

Nabi, T., Sweeney, K. M. D., Lichlyter, S., Piorkowski, D., Scaffidi, C., Burnett, M., &
Fleming, S. D. (2016). Putting Information Foraging Theory to Work: Communi-
ty-based Design Patterns for Programming Tools. In 2011 IEEE Symposium on
Visual Languages and Human-Centric Computing (p. 5). IEEE.

Nguyen, A. T., Nguyen, T. T., Nguyen, H. A., Tamrawi, A., Nguyen, H. V., Al-Kofahi,
J., & Nguyen, T. N. (2012a). Graph-based Pattern-oriented, Context-sensitive
Source Code Completion. In Proceedings of the 34th International Conference on
Software Engineering (pp. 69–79). Piscataway, NJ, USA: IEEE Press. Retrieved
from http://dl.acm.org/citation.cfm?id=2337223.2337232

Nguyen, T. A., Rumee, S. T. A., Csallner, C., & Tillmann, N. (2012b). An Experiment in
Developing Small Mobile Phone Applications Comparing On-phone to Off-phone
Development. In Proceedings of the First International Workshop on User Eval-
uation for Software Engineering Researchers (pp. 9–12). Piscataway, NJ, USA:
IEEE Press. Retrieved from http://dl.acm.org/citation.cfm?id=2667089.2667092

151

Nielsen, J. (2003, June 30). Information Foraging: Why Google Makes People Leave
Your Site Faster. Retrieved July 24, 2016, from
https://www.nngroup.com/articles/information-scent/

Niu, N., Mahmoud, A., & Bradshaw, G. (2011). Information Foraging As a Foundation
for Code Navigation. In Proceedings of the 33rd International Conference on
Software Engineering (pp. 816–819). New York, NY, USA: ACM/IEEE.
http://doi.org/10.1145/1985793.1985911

Niu, N., Mahmoud, A., Chen, Z., & Bradshaw, G. (2013). Departures from Optimality:
Understanding Human Analyst’s Information Foraging in Assisted Requirements
Tracing. In Proceedings of the 35th International Conference on Software Engi-
neering (pp. 572–581). Piscataway, NJ, USA: ACM/IEEE. Retrieved from
http://dl.acm.org/citation.cfm?id=2486788.2486864

Ocariza, F. S., Jr., Pattabiraman, K., & Mesbah, A. (2014). Vejovis: Suggesting Fixes for
JavaScript Faults. In Proceedings of the 36th International Conference on Soft-
ware Engineering (pp. 837–847). New York, NY, USA: ACM.
http://doi.org/10.1145/2568225.2568257

Okur, S., Hartveld, D. L., Dig, D., & Deursen, A. van. (2014). A Study and Toolkit for
Asynchronous Programming in C#. In Proceedings of the 36th International Con-
ference on Software Engineering (pp. 1117–1127). New York, NY, USA: ACM.
http://doi.org/10.1145/2568225.2568309

Olivero, F., Lanza, M., D’Ambros, M., & Robbes, R. (2011). Enabling program compre-
hension through a visual object-focused development environment. In 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp.
127–134). http://doi.org/10.1109/VLHCC.2011.6070389

Olston, C., & Chi, E. H. (2003). ScentTrails: Integrating Browsing and Searching on the
Web. ACM Transactions on Computer-Human Interaction, 10(3), 177–197.
http://doi.org/10.1145/937549.937550

Omar, C., Yoon, Y., LaToza, T. D., & Myers, B. A. (2012). Active Code Completion. In
Proceedings of the 34th International Conference on Software Engineering (pp.
859–869). Piscataway, NJ, USA: IEEE Press. Retrieved from
http://dl.acm.org/citation.cfm?id=2337223.2337324

Opdyke, W. F. (1992). Refactoring object-oriented frameworks. University of Illinois at
Urbana-Champaign. Retrieved from
http://embedded.cs.ccu.edu.tw/OldVersionWebPages/vertaf/internal/wares/Quant
um%20Framework/Resources/Opdyke92.pdf

Panichella, S., Aponte, J., di Penta, M., Marcus, A., & Canfora, G. (2012). Mining source
code descriptions from developer communications. In 2012 IEEE 20th Interna-
tional Conference on Program Comprehension (ICPC) (pp. 63–72).
http://doi.org/10.1109/ICPC.2012.6240510

152

Parnin, C., & Gorg, C. (2006). Building Usage Contexts During Program Comprehen-
sion. In 14th IEEE International Conference on Program Comprehension
(ICPC’06) (pp. 13–22). IEEE. http://doi.org/10.1109/ICPC.2006.14

Pastore, F., Mariani, L., & Goffi, A. (2013). RADAR: A tool for debugging regression
problems in C/C #x002B; #x002B; Software. In 2013 35th International Confer-
ence on Software Engineering (ICSE) (pp. 1335–1338).
http://doi.org/10.1109/ICSE.2013.6606711

Perez, A., & Abreu, R. (2013). Cues for scent intensification in debugging. In 2013 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW) (pp. 120–125). http://doi.org/10.1109/ISSREW.2013.6688890

Perez, A., & Abreu, R. (2014). A Diagnosis-based Approach to Software Comprehen-
sion. In Proceedings of the 22Nd International Conference on Program Compre-
hension (pp. 37–47). New York, NY, USA: ACM.
http://doi.org/10.1145/2597008.2597151

Piorkowski, D. (2013, November 18). Modeling programmer navigation : an empirical
evaluation of predictive models. Retrieved from
http://ir.library.oregonstate.edu/xmlui/handle/1957/44671

Piorkowski, D., Fleming, S. D., Kwan, I., Burnett, M., Scaffidi, C., Bellamy, R., & Jor-
dahl, J. (2013). The Whats and Hows of Programmers’ Foraging Diets. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems
(pp. 3063–3072). New York, NY, USA: ACM.
http://doi.org/10.1145/2470654.2466418

Piorkowski, D., Fleming, S. D., Scaffidi, C., Bogart, C., Burnett, M., John, B. E., …
Swart, C. (2012). Reactive Information Foraging: An Empirical Investigation of
Theory-based Recommender Systems for Programmers. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp. 1471–1480).
New York, NY, USA: ACM. http://doi.org/10.1145/2207676.2208608

Piorkowski, D., Fleming, S. D., Scaffidi, C., John, L., Bogart, C., John, B. E., … Bella-
my, R. (2011). Modeling programmer navigation: A head-to-head empirical eval-
uation of predictive models. In 2011 IEEE Symposium on Visual Languages and
Human-Centric Computing (pp. 109–116). IEEE.
http://doi.org/10.1109/VLHCC.2011.6070387

Pirolli, P. L. (1998). Exploring Browser Design Trade-offs Using a Dynamical Model of
Optimal Information Foraging. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 33–40). New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co. http://doi.org/10.1145/274644.274650

Pirolli, P. L. (2005). Rational analyses of information foraging on the web. Cognitive Sci-
ence, 29(3), 343–373.

153

Pirolli, P. L. (2007). Information foraging theory: Adaptive interaction with information.
Oxford University Press. Retrieved from
https://books.google.com/books?hl=en&lr=&id=LADEE_1fwLQC&oi=fnd&pg=
PR11&dq=information+foraging+theory&ots=NpZR7wwxF_&sig=3ydAT-
wm0c3VNvfklXDiL9RKhlE

Pirolli, P. L. (2008). Social information foraging and sensemaking. In Sensemaking
Workshop. Retrieved from
https://www.researchgate.net/profile/Peter_Pirolli/publication/228845456_Social_
Information_Foraging_and_Sensemaking/links/02bfe50f09ca794c52000000.pdf

Pirolli, P. L. (2009). An Elementary Social Information Foraging Model. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (pp. 605–
614). New York, NY, USA: ACM. http://doi.org/10.1145/1518701.1518795

Pirolli, P. L., & Card, S. K. (1995). Information Foraging in Information Access Envi-
ronments. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (pp. 51–58). New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co. http://doi.org/10.1145/223904.223911

Pirolli, P. L., & Card, S. K. (1998). Information Foraging Models of Browsers for Very
Large Document Spaces. In Proceedings of the Working Conference on Advanced
Visual Interfaces (pp. 83–93). New York, NY, USA: ACM.
http://doi.org/10.1145/948496.948509

Pirolli, P. L., & Card, S. K. (1999). Information foraging. Psychological Review, 106(4),
643.

Pirolli, P. L., & Card, S. K. (2005). The sensemaking process and leverage points for ana-
lyst technology as identified through cognitive task analysis. In Proceedings of in-
ternational conference on intelligence analysis (Vol. 5, pp. 2–4). Retrieved from
https://www.e-education.psu.edu/geog885/sites/www.e-
educa-
tion.psu.edu.geog885/files/geog885q/file/Lesson_02/Sense_Making_206_Camera
_Ready_Paper.pdf

Pirolli, P. L., Fu, W., Chi, E. H., & Farahat, A. (2005). Information scent and web navi-
gation: Theory, models and automated usability evaluation. In Proc. HCI Interna-
tional. Retrieved from
https://www.researchgate.net/profile/Peter_Pirolli/publication/228963831_Inform
ation_scent_and_web_navigation_Theory_models_and_automated_usability_eval
uation/links/0912f50d23f3e9e9e6000000.pdf

Pirolli, P. L., & Fu, W.-T. (2003). SNIF-ACT: A Model of Information Foraging on the
World Wide Web. In Proceedings of the 9th International Conference on User
Modeling (pp. 45–54). Berlin, Heidelberg: Springer-Verlag. Retrieved from
http://dl.acm.org/citation.cfm?id=1759957.1759968

154

Pirolli, P. L., Pitkow, J., & Rao, R. (1996). Silk from a Sow’s Ear: Extracting Usable
Structures from the Web. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 118–125). New York, NY, USA: ACM.
http://doi.org/10.1145/238386.238450

Qi, D., Roychoudhury, A., Liang, Z., & Vaswani, K. (2012). DARWIN: An Approach to
Debugging Evolving Programs. ACM Trans. Softw. Eng. Methodol., 21(3), 19:1–
19:29. http://doi.org/10.1145/2211616.2211622

Reiss, S. P. (2009). Semantics-based Code Search. In Proceedings of the 31st Interna-
tional Conference on Software Engineering (pp. 243–253). Washington, DC,
USA: IEEE Computer Society. http://doi.org/10.1109/ICSE.2009.5070525

Ren, X., Shah, F., Tip, F., Ryder, B. G., & Chesley, O. (2004). Chianti: A Tool for
Change Impact Analysis of Java Programs. In Proceedings of the 19th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications (pp. 432–448). New York, NY, USA: ACM.
http://doi.org/10.1145/1028976.1029012

Resnick, P., & Varian, H. R. (1997). Recommender Systems. Commun. ACM, 40(3), 56–
58. http://doi.org/10.1145/245108.245121

Robillard, M. P., & Chhetri, Y. B. (2015). Recommending reference API documentation.
Empirical Software Engineering, 20(6), 1558–1586.
http://doi.org/10.1007/s10664-014-9323-y

Robillard, M. P., & Murphy, G. C. (2003). Automatically inferring concern code from
program investigation activities. In 18th IEEE International Conference on Auto-
mated Software Engineering, 2003. Proceedings (pp. 225–234). IEEE.
http://doi.org/10.1109/ASE.2003.1240310

Roehm, T., Tiarks, R., Koschke, R., & Maalej, W. (2012). How Do Professional Devel-
opers Comprehend Software? In Proceedings of the 34th International Confer-
ence on Software Engineering (pp. 255–265). Piscataway, NJ, USA: IEEE Press.
Retrieved from http://dl.acm.org/citation.cfm?id=2337223.2337254

Romero, P., du Boulay, B., Cox, R., Lutz, R., & Bryant, S. (2007). Debugging strategies
and tactics in a multi-representation software environment. International Journal
of Human-Computer Studies, 65(12), 992–1009.
http://doi.org/10.1016/j.ijhcs.2007.07.005

Safyallah, H., & Sartipi, K. (2006). Dynamic Analysis of Software Systems using Execu-
tion Pattern Mining. In 14th IEEE International Conference on Program Com-
prehension (ICPC’06) (pp. 84–88). http://doi.org/10.1109/ICPC.2006.19

Savage, T., Revelle, M., & Poshyvanyk, D. (2010). FLAT3: Feature Location and Textu-
al Tracing Tool. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2 (pp. 255–258). New York, NY, USA: ACM.
http://doi.org/10.1145/1810295.1810345

155

Sawadsky, N., Murphy, G. C., & Jiresal, R. (2013). Reverb: Recommending Code-related
Web Pages. In Proceedings of the 35th International Conference on Software En-
gineering (pp. 812–821). Piscataway, NJ, USA: IEEE. Retrieved from
http://dl.acm.org/citation.cfm?id=2486788.2486895

Scaffidi, C. (2010). Sharing, finding and reusing end-user code for reformatting and vali-
dating data. Journal of Visual Languages & Computing, 21(4), 230–245.
http://doi.org/10.1016/j.jvlc.2010.06.001

Schiller, T. W., Donohue, K., Coward, F., & Ernst, M. D. (2014). Case Studies and Tools
for Contract Specifications. In Proceedings of the 36th International Conference
on Software Engineering (pp. 596–607). New York, NY, USA: ACM.
http://doi.org/10.1145/2568225.2568285

Schultze, S. J. (2002). A Collaborative Foraging Approach to Web Browsing Enrichment.
In CHI ’02 Extended Abstracts on Human Factors in Computing Systems (pp.
860–861). New York, NY, USA: ACM. http://doi.org/10.1145/506443.506635

Schummer, T. (2001). Lost and found in software space. In Proceedings of the 34th An-
nual Hawaii International Conference on System Sciences, 2001 (p. 10 pp.–).
http://doi.org/10.1109/HICSS.2001.927261

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Engineering, 25(4), 557–572.
http://doi.org/10.1109/32.799955

Servant, F., & Jones, J. A. (2012). WhoseFault: Automatic Developer-to-fault Assign-
ment Through Fault Localization. In Proceedings of the 34th International Con-
ference on Software Engineering (pp. 36–46). Piscataway, NJ, USA: IEEE Press.
Retrieved from http://dl.acm.org/citation.cfm?id=2337223.2337228

Shaw, M. (1990). Prospects for an engineering discipline of software. IEEE Software,
7(6), 15–24. http://doi.org/10.1109/52.60586

Shepherd, D., Fry, Z. P., Hill, E., Pollock, L., & Vijay-Shanker, K. (2007). Using Natural
Language Program Analysis to Locate and Understand Action-oriented Concerns.
In Proceedings of the 6th International Conference on Aspect-oriented Software
Development (pp. 212–224). New York, NY, USA: ACM.
http://doi.org/10.1145/1218563.1218587

Sillito, J., Murphy, G. C., & De Volder, K. (2006). Questions Programmers Ask During
Software Evolution Tasks. In Proceedings of the 14th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (pp. 23–34). New
York, NY, USA: ACM. http://doi.org/10.1145/1181775.1181779

Sillito, J., Voider, K. D., Fisher, B., & Murphy, G. C. (2005). Managing software change
tasks: an exploratory study. In 2005 International Symposium on Empirical Soft-
ware Engineering, 2005. (p. 10 pp.–). IEEE.
http://doi.org/10.1109/ISESE.2005.1541811

156

Simon, F., Steinbruckner, F., & Lewerentz, C. (2001). Metrics based refactoring. In Fifth
European Conference on Software Maintenance and Reengineering, 2001 (pp.
30–38). http://doi.org/10.1109/.2001.914965

Singer, J., Elves, R., & Storey, M.-A. (2005). NavTracks: supporting navigation in soft-
ware. In 13th International Workshop on Program Comprehension (IWPC’05)
(pp. 173–175). IEEE. http://doi.org/10.1109/WPC.2005.25

Sinha, V., Karger, D., & Miller, R. (2006). Relo: Helping Users Manage Context during
Interactive Exploratory Visualization of Large Codebases. In 2006 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (pp. 187–194). IEEE.
http://doi.org/10.1109/VLHCC.2006.40

Spool, J. M., Perfetti, C., & Brittan, D. (2004). Designing for the scent of information.
User Interface Engineering.

Sridhara, G., Hill, E., Pollock, L., & Vijay-Shanker, K. (2008). Identifying Word Rela-
tions in Software: A Comparative Study of Semantic Similarity Tools. In The
16th IEEE International Conference on Program Comprehension, 2008. ICPC
2008 (pp. 123–132). IEEE. http://doi.org/10.1109/ICPC.2008.18

Srinivasa Ragavan, S., Kuttal, S. K., Hill, C., Sarma, A., Piorkowski, D., & Burnett, M.
(2016). Foraging Among an Overabundance of Similar Variants. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 3509–
3521). New York, NY, USA: ACM. http://doi.org/10.1145/2858036.2858469

Stephens, D. W., & Krebs, J. R. (1986). Foraging theory: monographs in behavior and
ecology. Foraging Thoery: Monographs in Behavior and Ecology.

Stolee, K. T., Elbaum, S., & Dobos, D. (2014). Solving the Search for Source Code. ACM
Trans. Softw. Eng. Methodol., 23(3), 26:1–26:45. http://doi.org/10.1145/2581377

Storey, M.-A., Best, C., Michaud, J., Rayside, D., Litoiu, M., & Musen, M. (2002).
SHriMP Views: An Interactive Environment for Information Visualization and
Navigation. In CHI ’02 Extended Abstracts on Human Factors in Computing Sys-
tems (pp. 520–521). New York, NY, USA: ACM.
http://doi.org/10.1145/506443.506459

Storey, M.-A., Cheng, L.-T., Singer, J., Muller, M., Myers, D., & Ryall, J. (2007). How
Programmers can Turn Comments into Waypoints for Code Navigation. In 2007
IEEE International Conference on Software Maintenance (pp. 265–274).
http://doi.org/10.1109/ICSM.2007.4362639

Storey, M.-A., Ryall, J., Bull, R. I., Myers, D., & Singer, J. (2008). TODO or to bug: Ex-
ploring How Task Annotations Play a Role in the Work Practices of Software
Developers. In Proceedings of the 30th International Conference on Software En-
gineering (pp. 251–260). ACM/IEEE. http://doi.org/10.1145/1368088.1368123

157

Subramanian, S., Inozemtseva, L., & Holmes, R. (2014). Live API Documentation. In
Proceedings of the 36th International Conference on Software Engineering (pp.
643–652). New York, NY, USA: ACM. http://doi.org/10.1145/2568225.2568313

Thummalapenta, S., Xie, T., Tillmann, N., de Halleux, J., & Su, Z. (2011). Synthesizing
Method Sequences for High-coverage Testing. In Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems Languages
and Applications (pp. 189–206). New York, NY, USA: ACM.
http://doi.org/10.1145/2048066.2048083

Thung, F., Le, T.-D. B., Kochhar, P. S., & Lo, D. (2014). BugLocalizer: Integrated Tool
Support for Bug Localization. In Proceedings of the 22Nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (pp. 767–770).
New York, NY, USA: ACM. http://doi.org/10.1145/2635868.2661678

Tokuda, L., & Batory, D. (2001). Evolving Object-Oriented Designs with Refactorings.
Automated Software Engineering, 8(1), 89–120.
http://doi.org/10.1023/A:1008715808855

Toomim, M., Begel, A., & Graham, S. L. (2004). Managing Duplicated Code with
Linked Editing. In 2004 IEEE Symposium on Visual Languages and Human Cen-
tric Computing (pp. 173–180). http://doi.org/10.1109/VLHCC.2004.35

Treude, C., Barzilay, O., & Storey, M.-A. (2011). How do programmers ask and answer
questions on the web?: NIER track. In 2011 33rd International Conference on
Software Engineering (ICSE) (pp. 804–807).
http://doi.org/10.1145/1985793.1985907

Treude, C., & Storey, M.-A. (2010). Awareness 2.0: staying aware of projects, develop-
ers and tasks using dashboards and feeds. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering (Vol. 1, pp. 365–374).
http://doi.org/10.1145/1806799.1806854

Treude, C., & Storey, M.-A. (2011). Effective Communication of Software Development
Knowledge Through Community Portals. In Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Software
Engineering (pp. 91–101). New York, NY, USA: ACM.
http://doi.org/10.1145/2025113.2025129

Treude, C., & Storey, M.-A. (2012). Work Item Tagging: Communicating Concerns in
Collaborative Software Development. IEEE Transactions on Software Engineer-
ing, 38(1), 19–34. http://doi.org/10.1109/TSE.2010.91

van Emden, E., & Moonen, L. (2002). Java quality assurance by detecting code smells. In
Ninth Working Conference on Reverse Engineering, 2002. Proceedings (pp. 97–
106). http://doi.org/10.1109/WCRE.2002.1173068

158

Weiser, M. (1981). Program Slicing. In Proceedings of the 5th International Conference
on Software Engineering (pp. 439–449). Piscataway, NJ, USA: IEEE Press. Re-
trieved from http://dl.acm.org/citation.cfm?id=800078.802557

Wiedenbeck, S., & Evans, N. J. (1986). BEACONS IN PROGRAM COMPREHEN-
SION. SIGCHI Bulletin, 18(2), 56–57. http://doi.org/10.1145/15683.1044090

Wilde, N., & Scully, M. C. (1995). Software reconnaissance: Mapping program features
to code. Journal of Software Maintenance: Research and Practice, 7(1), 49–62.
http://doi.org/10.1002/smr.4360070105

Würsch, M., Ghezzi, G., Reif, G., & Gall, H. C. (2010). Supporting Developers with
Natural Language Queries. In Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1 (pp. 165–174). New York, NY,
USA: ACM. http://doi.org/10.1145/1806799.1806827

Xiao, L., Cai, Y., & Kazman, R. (2014). Titan: A Toolset That Connects Software Archi-
tecture with Quality Analysis. In Proceedings of the 22Nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (pp. 763–766).
New York, NY, USA: ACM. http://doi.org/10.1145/2635868.2661677

Xing, Z., & Stroulia, E. (2006). Refactoring Practice: How it is and How it Should be
Supported - An Eclipse Case Study. In 2006 22nd IEEE International Conference
on Software Maintenance (pp. 458–468). http://doi.org/10.1109/ICSM.2006.52

Ye, Y., Fischer, G., & Reeves, B. (2000). Integrating Active Information Delivery and
Reuse Repository Systems. In Proceedings of the 8th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering: Twenty-first Century
Applications (pp. 60–68). New York, NY, USA: ACM.
http://doi.org/10.1145/355045.355053

Ye, Y., Yamamoto, Y., & Nakakoji, K. (2007). A Socio-technical Framework for Sup-
porting Programmers. In Proceedings of the the 6th Joint Meeting of the Europe-
an Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (pp. 351–360). New York, NY, USA:
ACM. http://doi.org/10.1145/1287624.1287674

Yu, K., Lin, M., Chen, J., & Zhang, X. (2012). Practical isolation of failure-inducing
changes for debugging regression faults. In 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering (ASE)
(pp. 20–29). http://doi.org/10.1145/2351676.2351681

Zhang, S., & Ernst, M. D. (2014). Which Configuration Option Should I Change? In
Proceedings of the 36th International Conference on Software Engineering (pp.
152–163). New York, NY, USA: ACM. http://doi.org/10.1145/2568225.2568251

Zhang, T., Song, M., & Kim, M. (2014). Critics: An Interactive Code Review Tool for
Searching and Inspecting Systematic Changes. In Proceedings of the 22Nd ACM

159

SIGSOFT International Symposium on Foundations of Software Engineering (pp.
755–758). New York, NY, USA: ACM. http://doi.org/10.1145/2635868.2661675

Zhang, Y., & Hou, D. (2013). Extracting problematic API features from forum discus-
sions. In 2013 21st International Conference on Program Comprehension (ICPC)
(pp. 142–151). http://doi.org/10.1109/ICPC.2013.6613842

Zhao, W., Zhang, L., Liu, Y., Sun, J., & Yang, F. (2004). SNIAFL: towards a static non-
interactive approach to feature location. In 26th International Conference on
Software Engineering, 2004. ICSE 2004. Proceedings (pp. 293–303).
http://doi.org/10.1109/ICSE.2004.1317452

Zimmermann, T., Zeller, A., Weissgerber, P., & Diehl, S. (2005). Mining version histo-
ries to guide software changes. IEEE Transactions on Software Engineering,
31(6), 429–445. http://doi.org/10.1109/TSE.2005.72

