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EFFECTS OF COUPLED ATOMIC STATES ON THE
RESONANCE SCATTERING OF RADIATION

I. INTRODUCTION

The study of scattering processes has always been of signi-

ficant importance in Physics. The photon scattering, in particular,

has provided information about energies, life-times and fine and

hyperfine interactions of atoms, molecules and solids. The scat-

tering of radiation has also been studied in the presence of an

external perturbation.

Colegrove and others (1) demonstrated in 1959 that, under

certain conditions, the crossing of two Zeeman levels of two excited

states of an atom in a magnetic field produces an interference term

in the scattered beam. This interference term has spatial dependence

and also a dependence on the energy difference between the two levels.

The study of such signals provides experimental values for the fine

and the hyperfine structure constants of the levels involved. In 1963,

Eck and others (2) found another kind of signal called anticrossing

signal. This signal arises due to the presence of a perturbation which

couples the two Zeeman levels which cross in the absence of the per-

turbation. Himmell and Fontana (3) have investigated such signals in

atomic Hydrogen.

Hearn and Fontana (4) used the quantum theory of radiation devel-

oped by Heitler and Ma (5) to investigate the resonance scattering

of radiation from a two-atom system. They have studied the frequency

distribution of the scattered radiation as a function of the inter-
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atomic distance. The present work investigates the resonance scat-

tering of radiation from a single atom with two excited states and

one ground state. The two excited states are coupled by an external

static perturbation. The incident radiation is assumed to be of

constant intensity I0 per unit area per unit solid angle per unit

frequency (white light). The method of solving the wave equation is

the same as used by Hearn and Fontana (4). This approach gives all

the probabilities including the final state probability as a function

of time whereas the Wigner Weisskopf (6) approach does not give the

probability for the final state directly.

The absorption and the emission of radiation is studied here

as a function of time and frequency for different special cases.

These special cases are: (i) one of the excited states is non-decaying.

(ii) both the excited states decay with equal decay constants. The

effects of the external coupling on the lineshape and linewidth of

the scattered radiation is investigated.

The intensity of the scattered radiation is calculated for a

given direction and polarization of the incident and the scattered

beams. As an application, this intensity is computed for the 2
2
P

state in Lir( and is compared with the experimental signals observed

by Wieder and Eck (7).
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II. GENERAL THEORY

The system, under study, consists of an isolated atom which

interacts with a radiation field and a time independent external

perturbation. The atom is assumed to have two excited states and one

ground state. The external perturbation couples only the two excited

states. Initially, the atom is in the ground state and a beam of white

light (a continuous spectrum of radiation with constant energy I0 per

unit area per unit solid angle and per unit frequency) is incident on

it.

A. Method of Solution of the Wave Equation

The method used for solving the wave equation is a transformation

of the wave equation into energy space (8). The interaction represen-

tation is used. The units are such that A= c = m = 1 where 'A is the

Plank constant divided by2n, c the speed of light in vacuum and m the

mass of the electron at rest.

If IlTr(f)> is the wave vector in the Schrodinger representation,

then

11V(±))
Ft.t

( 2-1)

is the wave vector in the interaction representation. Ho is the Hamil-

tonian of the atom plus that of the radiation field, when the two are

non-interacting and there is no external perturbation field. The Hamil-

tonian of the whole system in the Schrbdinger representation then is



ul = H, H' (2-2)

4

where N'consists of V, the external perturbation, plus H, the inter-

action of the atom with radiation field.

In the interaction representation, the wave equation is given

by the expression

a c -LHot

at
l'irr(t)) = / e Orr (t) (2-3)

Considering only processes involving one photon, the state vector of

the system in the interaction representation is given by

I1V/C-0 > = 60(.010 + E. ID,: (-0 I I>

+ (t) + (I) (24)

where 1o) represents the ground state; ii> , ij> the excited states

with a photon absorbed and If) the final states. All these states

are the eigenstates of Ho. In terms of the atomic and photon's states,

they are written as

and

10> = Icy lo>R

2> = I k-')R

Li) = lb>l-k-)g

If) = lc> 1k,), I k),)11
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The state vectors wig
,

1-Ix..)Ft and ik.);>it represent the states of the

radiation field with no photons present, an absorbed photon with

wave vector ar and polarization 'er and an emitted photon with wave

vector 12), and polarization a), , respectively.

In Eq. (2 -1+) the summations over i and j are over frequency,

direction and polarization of the incident radiation, and the sum-

mation over f is over frequencies, directions and polarizations of

the incident and the emitted radiations.

The state vector 11.7/(-0> can be written in a simplified form as

(2-5)

where )11 includes all the quantum numbers defining the eigen states

of Ho in the interaction representation.

By inserting Eq.(2-5) into Eq.(2-3), multiplying by .41,11 and

integrating over all space, one obtains the follwing set of equations

s_l bw, () e
cif

where I1 denotes the matrix elements of H.

(2-6)

(2-7)

Since at t = 0, the system is in the ground state to> , the

initial conditions are:

60(0) i 9

c) for 0
(2-8)
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and

bli(t) = 1)0(0 -= 0 for t < 0 -

In order to satisfy these conditions a term involving a Dirac delta

function is added (8) in Eq.(2-6), which gives

i(E-E,)±

c1 b bmet) e 6010 6 (t). (2_9)

dt

To solve Eq.(2-9) the 1)0) are transformed by using the

following Fourier transformation:

co
z(Eh-E)-1

1))1(-)

*4
G h (E) e (2-10)

In a similar fashion the representation of the Dirac delta function

is used:

c42 i(Eo-E)t
(t) = -

217'1
.folE e (2-11)

With these trans2ormations, Eq.(2-9) reduces to

Go i(Em-E)±
idE (E-En) G (E) e
_00

=
t

fclE Hhw. G),(E) -+.

(2-12)



This equation is satisfied if

E -En) Gr (E) = Hylvin (E) t ono

This gives a set of equations for the GI( E):

and

where

(E-E.)Ge(E) = HOI,Go(E) + Ho'iQz(E) +

+- G.fCE) 1

f /
(E-Ez) Gc(E) + G..CE)

a.

÷ X. krd G CE )
` - L

j
(E)

f

(E-E-)G.(E) = Hj. (70(E) 2_ H
Li`

GL (E)J

-I- H j j, g.?(
J""

(2-13)

(2-14)

(2-15)

(2-16)

(E) = Hi.. (E) (2-17)

4-I H,J G.; (E) 41-1;s, Gi- C E)

EC

Ec

E = Eb o
E. = E +

a-

(2-18)

7



Since only processes involving single photon are considered, the

following matrix elements of }rare zero;

H f 0

and also one finds that

where

H = a. gtz
C

HJ
,

= Vb6

=-7 Vab

Vcc Sk,K,

<at HI 1.>

Zol H tVii> Zol

Hz

= H kg. it:

(2-19)

(2-20)

8

v = <eivtrii> t, rn = CL, b, C . (2-21)

Substituting these matrix elements into Eq.(2-14) to Eq.(2-17), one

gets the following equations

(E-E: ) G. (E) = 2 fiet CE) +-I. Ho; Gi(E) -1- I (2-22)
1:
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(E-E2 ) Gi (E) = HL,Go(E) Vab Hof CE) (2-23)

HjoGo(E) -I-VbaGLCE) +.I H.,_G(E)(2-24)JJ J

and

where

CE-Erf ) G # (E) =

Eo E + Cc
cc

Ei +- Vaa

E. E

E = E v/cc.

ii:Gc(e) t Ht.; GJCE) (2-25)

(2-26)

The summation over f in Eq.(2-23) and Eq.(2-24) is over frequency,

direction and polarization of the emitted radiation only, because the

matrix elements 114 and Hit are zero if the state ij-> contains an

absorbed photon which differs from the photon in li> and 1J> , respec-

tively.

Equation(2-25) does not have a unique solution for G1( E) because

division by (E - 4.) is not unique. A solution of the equation, which

satisfies the initial condition, however, can be obtained in the

following way (8)

Gi(e) = (E-E.;) [ 1E) -t- fttJ Gj(E)] (2 -27)



where C(E-y is the Zeta function which has the following

properties:

00

(x) = -a J e
zxt.

dt

krr,
t o

1 e
X

= L'"1Q'. p0 x +io-

(÷) 77. gcx)

X _C.:: (x) I,

ao

C(x) e`xcbc
-a

and

:tort
cx) e

0.

O for > o

_2/2.-Z for t < o

f_ 21T L 5(x)

10

(2-28)

(2-29)

(2-30)

In Eq.(2-28), P(Ibc) is the principal value of '/x , which behaves

like yx everywhere where x # 0 and vanishes at x = 0.

By substituting Gf(E) from Eq.(2-27) into Eq.(2-23) and Eq.(2-24),

one obtains the following equations

I/2 G. (E) = Hco Go CE) Va6G3(E)

Tei Gj. E

( E - L/2 ) Gj CE) =

(2-31)

FijoGe(E) GccE)

1/2 ric Gc CE) (2-32)



where

E 14 1-ifj
2 "J

11

(2-33)

In Eq.(2-31) and Eq.(2-32), the state vectors for the absorbed radiation

field are the same in the two states (i) and G> because the matrix

element V
ab

vanishes if Ii) and u> have different photons.

It can be shown that the
4) for i # j vanish whenever 1(:) and

6) are states of good angular momentum (9)4 For a proof see Ref. (11)j.

This is the case here and thus "r.= 0 for i j.

From Eq.(2-31) and Eq.(2-32), the following expressions for

Gi(E) and Gi(E) are obtained:

,
G c (E.) E 1:672 VC") Ilia 3 Go (E)

"1 /2 ) ( E +92. ) I Val I 2

G
Li(

E )
(40 C E - ra ) \lb a tL'oJ Go CE)

E + 7;i ) (E -+ (:/zIrj ) I/AL 11

These expressions are substituted in Eq.(2-22), which yields

where

Go E)
c1/2 r(E)

_ J./2.r( E) ,= Z C Hot Vab Hjo + Holl/ba

+ Ho,: 12 ( E (:/2 rjj ) )40,112 E: x

(2-34)

(2-35)

C E EZ ± 1%2 r: )( E Ed( + 1,22 ) IVa.101] (2-36)



The summation over IR is over frequency, direction and polariztion

of the incident radiation. The states 1i) and 0) have the same

absorbed photon

Combining Eq.(2-34) and Eq.(2-35), one obtains

and

12

G E) =
Hco (E-Eji 4 LArd;) + )42..b Hjo (2-37)

GjCE)
C ( E- E th:r6: E- Vcid) -I VAL) 2_1 [E Ec14 (/2 P.]

1( E e../zre,-)( E- E;+ [E - E'0-+ r]

. ( E - E .. C/. re. ) -+Ito . (2-38)

B. Determination of the Poles in G(E)

The real parts of ro:(e) and Ve) have the following E

dependence (see Lppendix A-2):

and

Re (17L(E)) (E ) Da

Re( (E)) = ( E E: + kr.) .DI,

(2-39)

where Da and DID are defined in Eq.(A- 9) and Eq.(A-14).

In Appendix A-3, it is shown that the real part of ri does not

depend on E. Thus, absorbing the imaginary parts of re ,1. and r

in the energies of the atomic states (see Appendix A-2), one can

write the denominator of G(E) as

Re( ri:(:)if E-E; ÷ Re ( Y.:41 I VAIN E E. -r 92 Re (p)] ( )
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Substituting the real parts of Tii and Ti from Eq.(2-39) and

replacing Re( r ) by r , one gets

[ E(I ÷cD042)-Ee +(k,-Eci),Da./2}{,E(i-f-t:131./.2)-E;

+ 2: ..D6 /2 1141,12 t, r/21 (2-41)

Combining Eq.(2-18), Eq.(2-26) and Eq.(2-41) and rearranging the

terms, one can write the denominator of G(E) as

Ea. fit- irqx-i2.)

3)1/4
(1+ LDa12)(1-4- iDb/2) CL E

Ec E + kr. Eb L-mt,/2)

1 + 1-1, /4

E D2t;

4 (1 + DEW

E Lla

4(I +1):174)

Eci rob/2

- Vab I 1. 1- Do. /b/zi - (Da.4-1100 ( I +DIA) (1 + DIA)13 x[ Eci+.(r/zi

Since Da and Db are very small (see Eq.(A-13)), one can

neglect the terms

one gets

2 2
Day , and DaDbi compared to unity and

(1 + LIAO.) (1 1- .Db/2) [ E Eaf kr,- E Dia./4 rah. x t E EA, 4- IR,

/ 2-
E /6 , 3 I va.,12 z:(ba.-f-DbAj if/z] (2-42)c 4 b/2 j

4

where

( Ea.- Ec ) Da.

and (2-43)
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It is shown in Chapter III that 1:0 and -Pi, as defined in

Eq.(2-43) are the decay constants of the unperturbed atomic states

la) and lb) , respectively. It is worth mentioning here that /,

and 11, are the real parts of Y",(E) and i(E) evaluated at E

equal to Ez and Ejf, , respectively.

Combining Eq.(2-37) to Eq.(2-39), Eq(2-42) and Eq.(2-43), one

gets

and

q(E) =.[HZ0(E-E6-Eepbi4+/-) +-Vab + L/2 ( Hip% -Vablliobbn

X[RE E-15-10./4 kte. -1to4z)(E - Eel DZ/4 7b/2)

- iVa.b)1( I - (Da. + D6)/2.11 (1 + 1...a/z)( E- 4 I
1

( 2-44 )

GCE) = [ Hio ( E -E0. - EcD0.1 /14 -t-k,., ) + Vb. Hip i/2 (Hjorc Vba. co Do)]

4(E- Et: Da/4 t + tro./2)(E-EJ:E24,/4+i7'02)

Vc,61 2 {I- ( Da + .3)1) /2}}.(1+ C 14/2). ( E rY2 )) (2-45)

Since the matrix elements hlio and V:50) are of the order of Hco

and rb, respectively, and since
-10
)0 (See Appendix A-2), the

second term in (H (o lrb- V H.X1b) can be neglected compared to thea6 Jo
first one. Thus one can set

Hion, Vab NJ° Db (2-46)



and by similar arguments

Hjora. Vbec H co 1)0. 10
kijo -rad

15

(2-47)

Similarly in Eq. (2 -44) and Eq.(2-45), the terms EciD0.a /4 and DI /4

are also very small compared to the other terms and therefore can

be neglected without significant error. Thus one gets

Gi.CE) = [ 14(:0(E-Etai-k,) +V0.6Hjo + Zia il1o11,1)/[1t(E-E4

+ i A) (E E + k, + iTbh) it/0.6 11 (1- (Dcti-1)1))/2)3

X (1 + D012 ) ( E - + 1'/2)J

Gj(E) [ (E Ea_f 4" kr') Vba + 1: H.jo ra, /21 /1{

+ 0+ i.ra/2)( E- + zr6/2) - (Da.+Doi 2)3

X + 141/2 ) E c" r/a ) .
(2-48)

The Fourier coefficients Ge:E) and GiCE) have three poles.

The first two poles are obtained from the roots of the equation

( E Ect/+ ro../2)(E- E +k,-t-Lrbb.)-1Vc46121. 1- Z (pat DO/2} = 0 (2 -49)

and the third pole is at

E = E - L
3

(2-50)

The roots of Eq.(2-49) are obtained by the method discussed



in Appendix A-3. The result is

E;

+ R 17. (x3 1)

2

where X3, R and 1 are defined in Eq.(A-26) and Eq.(A-27).

C. Evaluation of the Probability Amplitudes

(2-51)

The probability amplitude bn(t) is calculated by evaluating

the integral
00 L(E-E)t
GK (E) e .dE

blict) 2Tri J_00

by contour integration.

Thus, using the expressions for Gn(E) from Eq.(2-27),

Eq.(2-35), Eq.(2-37), and Eq.(2-38), one gets the following integrals

for the bn(t):

00 c:(E.-E)t

ibo(t) -- dE27ri (E-- Po

00

I
Hip ( E - Eli + Zhish ) 4- Va,i, Vi (1(Ec..- E)t

dE ebi,(t ) =:- -2 ri- i Jr (i + I Doja)(E-Er ) (E- E;) CE- E; )
coo

00

b.(t) = . idE
_217

- 00

Z(Ed-E)t
HJ o

( E- E
(-

+ih1-a)+ Vbo, V1(:o

(1-4- Db/z) (E-Ez )(E-E (E-

(252)



and

co

6
+

(-0 =
.2/7"i

dE (E-E.f' ) [ Hi.c ( No ( E- E.; + (121.k, ) -I- Val, H jo)x
-co

(1*-i.Da./2) 1 + 14i,j("jo (E-EZ +Lifra.) + Vba. Hio) (I+ "36/2)]

-1 z(E,-E)t
xf(E-E11)(E-E2) (E-E.3)1 , e J (2-53)

17

, ,
where El, , E2 and Es are defined in Eq.(2-50) and Eq.(2-51).

The factors ( I i-i.D0/2) and (1+1%/2.) in the probability

amplitudes bt:(4) and 6,i(+) go to unity when their modulus square

is taken ( Dac<1 and Db << I )
Since the imaginary parts of the poles are negative, the

path of integration in the integrals in Eq.(2-52) and Eq.(2-53)is

taken to be a clockwise infinite semicircular contour in the lower

half of the complex plane. In the case of 6(4) , 61(4) and 63.(4) all

the poles lie in the lower half of the complex plane and thus, they

all contribute to the integral. Thus using the method of residues,

one gets

_i vc,.-t r-V,bp) = e (2-54)

I

k 1.4. kh: 0 ( E /-- E j .4- Z/2 11 ) ± 1/0.6 1.1 i., ( E Et )t
`VI i (E/i - E; ) (E',-E )

'1 e

,
lieo CE-2. Ej -1- Vz'fb ) + 14k6 Ito

-+-
( Ez/ El' ) (' ez"-- E.; )

e. (E,. E2 )t
e



and

/
1-1Cc, ( E3 Ei +

.

1.6/2 ) V0.6 11j0 (Ec-E.; )t

E3 )( E; )

H ( E lra./2) -I- V60, H 0 t

(t) = e
11/2. ) ( Es/-*E.i

/ .

Hjo(E L 'raiz) 1- Vba HL:0
-F ,( E Z E ) E; E3 )

z(EJ-E,c)-t.

e

(2-55)

1.8

/ / (1.( E- E;)t
Hjc, (E3- + 1012 + Vbal-k.0 (2 -56)

) ( E )

The Zeta function .:(E-E:4) in the integral in Eq.(2-53) makes

the path of integration along the real axis to go arround a semicircle

of infinitely small radius, in the upper half of the complex plane,

,

centered at E Ef (see The remaining path of integration

is the same as in the previous cases.

Fig.2 -l. Position of poles in the complex plane



Thus, using the method of residues, Eq.(2-53) gives

6 (0. E Hf .f H. (E'--E,i+ LVz) + VM b H. j
LO J Jo

+ Hfa
J °

( E
/-

E
6

+
,

Ta /2) -I- Vba Hi° fl

X [ ( E / ) ( ) ( Ef- ] e-1 -z.vect

Hco (EILE; L )1/2) + 4J03

+ Oftio C EL:( I; ra/2) + Vba Hco j]

--1 (:(Es.-E;)t
x [ CE, E;)( E,1E;,)( E;-E:3) e

+ 1-1it. C H 0 (E Ej LTJ0/2) +1
Vab to)

+ it (F2 E( + + V1,0,1-Itoj]

-I Cei-E;
[ ( E21-E; )(E2-E; ) Ea= E3/ )j e

+ Fle.0 E3- El+ Criqz Va:. 1_13 03

± Hi j { ( Ec/ -f- "raiz ) + Vba. 1-1L0 }]

-I t: (Et- E3 ) t
E; ) ( El/ ) ( E E2 ) e (2-57)
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From Eq.(2-54), it is seen that the probability bolt) decays

monotonically with a single decay constant r .

The probability amplitudes 60) and bj(t) have three terms.

Each term has two time dependent factors, one is oscillatory and the

other is exponentially decaying. The oscillatory behaviour depends on

the frequencies of emitted and absorbed radiations, the coupling

strength of the external perturbation and the energy difference

between the two excited states. The coupling strength and the energy

difference also affect the decay constants of bi(t) and bj(t).

The amplitude of the final states, bf(t) in Eq.(2-57) has four

terms. The first term is pure oscillatory in time and the other three

terms have an oscillatory and an exponentially decaying factors with

different oscillatory frequency and decay constant. The decay constants

are the same as the ones in bi(t) and bj(t).

As t- +oo,only the first term in bf(t) survives and all other

probability amplitudes decay to zero.

Thus

b (t - 60) - = [Hie / (Es + Lrbh) t i ed , H + f it-o(Ed"E: + LY,_/2)

-1 -Vcct,
Vb, H 603-ix 1.(ef Ei)( E j- E: )(E j-E3f )] . e (2-58)

This gives the probability amplitude for the process where the

atom absorbs a photon with wave vector, and polarization 6 and

emits a photon with wave vector rk> and polarization

The probability of emission of a photon with wave vector Vx and

polarization 4), is obtained by summing over the incident frequencies:



P ( kx) = I bj.( 0-) 2
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(2-59)

The summation over k, is over the frequency of the absorbed photons

only. The symbol I, in the parenthesis stands for the frequency,

direction and polarization of the scattered beam and Lr stands for

the direction and polarization of the incident beam.

For a continuous distribution of incident frequencies, the

T)(e,k) is given by (see Appendix B-1)

P(6,- ;RN) = e441,/(L3rq) Li (k+ 442)2+ Tb3/4.111.4, i2:1 12

4- k 2)2+ ra.2/41 I 2. I cc 12 V2tIP1120C.12 4-1PcXbi.

x x
+ 4 ( P C a . PC ) R ( Pa ; Pb; ) 2 Re ( c a 1:)e E. ID:: P.b: )

+ 21/ LI C zs/2) Ileok12 + (k-4/2)leb1 3 Re (V..c )

+ k &./.2) pere iz + (k-442)1Pcci23 Re ( Pcxt6)

÷ ra Tb I l'c)0,12 ) Z Im ( Pl7c.*)

+ (ra I 111 PL. 11) It"

+ ( k- A/2 )( + A/2) + TexYl, /4/ 2 Re ( Pea. Pe: frexe; Pb7 )

Ah) -r6 k- 4/2 .1 (

x -41/2)1 i (k* 4 /z)2+ rbt/41 (k+ 41/2)2 rolet

,z
tf2.(k-4./2)(k+4/2) ( V 2 + ro.Y.b/0.) J (2 -60)
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This expression has in general two peaks. The lineshapes and line-

widths depend on the external coupling strength, the energy sepa-

ration of the excited states and the decay constants of the excited

states. In the case, where one of the decay constants is zero, a

hole is observed in the frequency spectrum of PCt_,k,A) at the

frequency equal to the frequency difference of the ground state

and non-decaying unperturbed excited state. A detail analysis of

P(4'',',k),) is presented in Chapter III for some special cases.

D. Intensity of Scattered Radiation in a Given

Direction with Definite Polarization

For a beam of incident radiation with polarization o- and

direction Cea,4o) , the intensity of the scattered radiation,

.1(..J20-ief,...d) with polarization and direction Cele,cf,e) is

obtained by integrating the probability P(,,itA)over the fre-

quency IRA:

00

(2-61)
0

where Ilm and .rte indicate the directions; and o- and )1/4 the polari-

zations of the incident and the emitted radiation fields, respectively.

This integral is evaluated in Appendix B-2. The result is

I )1/4

1 (-2a /1.4a, e4I0 . /kb/ itgc!
8 ir2rko Xb
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-1-L v2 (x,÷ xaxb 4 Re (12:0. Pc>N:r ) Re ( Pa; 1;*)

>k a. Xb

(1Pc'Ncif/X0. 11"A 12/X0( 1 P:c 12/)(a.- l'r2c 1/X01

+ V (X0.+Xb) [4. (ear- I eb12) Re(PL.Pbc ) Rteoir)1

_2 CleallAb- iebliXa)ITn(Par.e 1:ec) PL 12 X b- I Pk:: I 2X,a).1),, ca b

4 Xa. Xb (xa-+ Xb) Re ( Pc.'xo. Pcc Pcc)

+ 4 xa. xi. 11 ( Pc r Paa; PbC)

(xek+x02( v2+ xmxb) + xcLici,V (2-62)

The first two terms are constants. They arise from the direct

resonance fluorescence process of the two uncoupled states. The

next six terms are due to the presence of an off diagonal matrix

element Vab of the external perturbation. These terms are called

"Anticrossing - signals". The name "Anticrossing" is given because

the perturbed energy levels of the two excited states repel each

other when plotted as a function of the external perturbation.

The last two terms are "Crossing signals". The name "crossing"

arises from the fact that the perturbed energy levels of the two

excited states cl'oss each other when plotted as a function of the

external perturbation.

The Anticrbssing and Crossing signals disappear if one of

the excited states is non-decaying. As a function of the energy
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separation 4i, the crossing signal has two terms; one is Lorentzian

and the other is dispersion. The crossing signal will be pure

-Lorentzian or dispersion depending on whether p
lccab ,atioc is a

real or imaginary quantity, respectively.

As an application, the intensity for the 22P states

of Li7 is calculated in Chapter IV.
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III. RESONANCE FLUORESCENCE WITH ONE DECAYING
AND ONE NON-DECAYING STATES

The theory developed in Chapter II is used here to discuss

the resonance scattering of radiation from an atomic system where

only one of the excited states is decaying. The atomic state lb)

is considered to be the non-decaying state ( 0).

In general, the energies of the excited states obtained

from the real parts of the poles of G(E) are different from the

energies obtained without considering the radiation interaction (16).

A detail discussion of these energies is presented in the next

section. In the special case where the two excited states decay

with the same rate, the energies obtained by the two different

methods are the same. Hence,here the radiation interaction has no

effect on the energy levels.

A. Discussion of El and E2

The real parts of the poles E) and E2 of G(E) (see Chapter 1I-B)

give the energies of the system when the atom is in an excited state.

From Eq.(2-51), these energies are

Re CEH

Re (EZ)
Eib V2 + 2 4312)Z z

-f- 4:2" X2 +4v2,1 Y2. / /2J

where a,, X and V are defined in Eq.(A-23) and Eq.(A-27).

( 3-1)
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The energy -fit is the energy of the absorbed photon. The

energies of the excited states of the atom are obtained by dropping

the term -ke in Eq.(3-l). Thus,

= (E/3.+ Eh )/2 ± E (A2 -xi +4V 2)2+ x2,62-iY2.

Ez

+ 2x2 + zwaj12 1/2if, , (3-2)

If one does not take into account the radiation interaction, then

the energies of the excited states become

E.? - (E1 + EL )/2 -I- 42 1- 4 1 /2
E°2

(3-3)

This result has been obtained by diagonalising the Hamiltonian of

the atom (see Appendix C).

Comparing Eq.(3-2) with Eq.(3-3), one finds that the energies

Eland E2 are different from the energies El° and Ez 0 provided X 0.

But for X = 0, Eq.(3-2) reduces to Eq.(3-3). This mean that the

radiation interaction has no effect on the energy levels if the two

excited states decay with the same decay rates.

For the case where the excited states are degenerate (&=0) and

X # 0, then Eq.(3-2) reduces to

Ei
+ El: t V 2- X 2 /2

E2

and Eq.(3-3) becomes

E
)/2 + V

E°2

(3J)

(3-5)
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Fig. 3-1. Energies E1 and E2 as a function of the energy separation (E-a- Eb).
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Equation (3-4) shows that the energies E, and El are degenerate

if 4V1Z< x2, because in this case the term within the square root sign

is either zero or imaginary (The imaginary part of the energies

contribute to the decay rates of the excited states). For 41/2"(2, the

two energies are non-degenerate and separated by an energy difference

of /..s41F7i7c7-. On the other hand if one neglects the radiation interaction,

one finds that the external perturbation always removes the degen-

eracy and the two levels are separated by an energy difference of

2Vtsee Eq.( 3-5 )3 .

The energies El and g2, are plotted in Fig.3-1 as a function of

the energy difference A for different V. The value of X is taken to

be li./2 . For v<.25c,.(4v2.. x2) , one observes that the two energies

approach each other and become degenerate for A = 0. But for

10.25)2i. , the two energies are separated.

In Fig. 3-2 , the energies Er and Ele are plotted as a function

of A for V =.25ta and X = .51.(4V2 = X2). The energy El differes

from Er significantely in the visinity of A = 0. At large values

of A , E1 approches El° assymptotically. In Fig.3-3, similar graphs

are plotted for V =.3c, and X =.57Q (1N2) X2). In this case, the

energy difference, ( Er-Et ) decreases as V increases.
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B. Probability Amplitudes in Time and Frequency

For this special case where the state lb> is not decaying, the

probability amplitudes are obtained from Eq.(2-54) to Eq.(2-57) by

setting 1 HJ0 and Ht equal to zero. The results are:

and

z Vic et - ritk,
b.(t ) .

E c

, , L(EF Eidk
1). (t)

Ri,0 ( E,- E j) e
L (Ei-- Ei ) ( El- El )

b.(t)

b ct) _

(EL -Ezr

C E Ei ) a
) El)

L(EL-E3 )t
Fico E 3- ) e

E13- Et ) )

vabH,:o

(E;-E;) [ CE, -E3 )

e
(q-E,;)

-E;) tVba.14-co

1-
(E3-Er )c E3 -E ;)

(E f Es' ) (Ett- q)( q- E, )
(lye ct.

e

(3-6)

(3-7)

(3-8)



1-1 Hco C Et- E.; )ft'
( E;- Elf ) ( El/ E') (E,'-- )

c(E.s"--E; )t
e

lifc: tie° (E2- ) i- -E2
)t

f.- ; )(EL ) ( 3 )
e

f+co ( E3" Ei ) t
)(E3- E3-

e (3 -9)
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Substituting the expressions for Ef' Ef, El' E
2

and E
3
{see Eq.(2-18),

Eq.(2-26) and Eq.(2-51)} into Eq. (3-7) to Eq.( 3-9) , one obtains:

bi(t)= Heo 02k/1 )3 exP{ (4vz-R)t

2(R-41)[ R- (rcd4 +1- 172)]

{4,/z_ _ cr-44-1_)} exp (A/L-1- R crA./4

?(R -c I) [ -t- k, + r/2.)1

+ 3 exP 1.- 4: ( ko7 ) r tyz3
(3-1o)

R +I r/2)){_ C Cr4 /4pr/2) j

ID
r .=./2)t- Cro./q --I) t.(t)

J zrCZ-0.1L tc 9_71- R + Cra/e+-I 172)

expi- CCP-1-.6/2g- (ra/q. 4-r)t3
Kam- R + L /4 + rY2)

Vba, exp {-C(k...÷z/z)t r t/.2
CKN t c, (1.01/4 +I /2)] (lc it+

(3-11)
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ffszifco K.).+-z/2.)
bflt) ,+ '1/2 kx-R era441).][ R Cra-4-1)]

14,:o R A/2 ra/q. +1)3 exPt CCKx-R)t CTA/4
+

kx- R Cralci- tin Ko-7 R+"(r0./9-+I--P/2)(R-C. r).2

i4c0 CR °/2 - t:Crck/4 -I) E XID/ CK )1/4 +R) -(r4/4-I)t3

where

[ KAi-R + C Cra/y. -O]C Kc,+R -Ft (y-014+1. r/2)] C R- I 12

1-1 4/2 .--- rh. exPt.- L( k,,- kx)t rt/2.1sc. CM 0-,
( 3-12 )

[ko 1<x- Ph [ K i(Tai4+-I-P/2)1[ K.+R + (TA/y Ph)

/ r

E ,, -t-- El, /
K = izr, -1- Ec ,Ka 2

Ea.' .1- Ed
Kx r--- iz.), I- Ec

2,

and R and I are defined in Eq.(A-27). The diagonal matrix elements

Vaa, Vbband V" are assumed to be zero in the expression for the

probability amplitudes in Eq.(3-10) to Eq.(3-12). This assumption

is true in most of the cases of practical interest.

From Eq.(3-6), one finds that the probability lb..(t.)12 of the

ground state decays exponentially with a decay constant r
The probability 11,(*)12. gives the probability of the atom

being in the excited state with an absorbed photon with wave

vector it,. This probability has three pure decaying terms with decay

constants (Y-4/2 2I) , (-11,/z-.2 I) and r and three oscillatory terms
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with decaying amplitudes. These oscillation frequencies are 2R,

K0- + R and K.- R and the decay constants of their amplitudes are

1312, 02-04-I +1/2) and (-ta/4 +r +r/2) , respectively.
The probability 16,;(t)12is plotted in Figs. 3_1 to 3-7 as

a function of K iK = k - (E
a

+ E
b
)/2 + E

c
1 for different times.

At short times, this probability is small and quite broad but as

the time increases, the probability narrows up into two peaks

one near K = R and other near K = - R. The peak near K = - R

is weaker than the peak near K0, = R. There are some wiggles on either

sides of the peaks. These wiggles increase in number and become

weaker as time increases. At short times, the hight of the peaks

increases for some time and then starts decreasing at larger times

and becomes zero t =00. An increase in V decreases the hight of the

peak near K0,,= R and increases the hight of the peak near K.,= - R

(compare Fig. 3-6 and Fig. 3-8)). For V = 0, only one peak at ic,= R

is obtained. A physical reason of these changes in the peak hights

can be attributed to the fact that the decaying state to.> is coupled

to the non-decaying state 10 through the coupling matrix element

V and this coupling mixes the two states unequally for 4, 0. This

means that the probability of the atom in state la) is larger at the

energy El (the perturbed energy corresponding to Ea) than the pro-

bability at the energy E2 (the perturbed energy corresponding to Eb).

This explains that the peak near K...;.= R (corresponding to El) is higher

than the peak near Ty - R (corresponding to E2). As V increases, the

probability of the atom in state la> decreases at the energy El and

increases at energy E2. This explains the change in the hights of the
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peaks with the change in V. For A = 0, the two states are mixed

equally and thus the two peaks in Fig. 3-10 have equal hights.

In Fig. 3-10, the probability lb,;Ct)12 is plotted as a function

of time for different frequencies of the absorbed photons. At short

times, all the three oscillation frequencies (2R, K,+ R and Ka.7 R)

contribute to the oscillations in 16,:(t)iI but at large times K,+ R

is the dominant frequency because the term with this frequency dies

out slowely copared to the orther terms. These frequencies depend

on the relative positions of the two excited states and the frequency

of the absorbed photon. A physical reason for these frequencies can

be attributed to the radiation reaction on the basis of the following

classical picture of the system. The atom which consists of two

.

oscillators of frequencies Re(E1)-Ec and Re(E2)-Ec interacts with the

radiation field of frequency Itv through radiative coupling. This

coupling produces three oscillation frequencies which are Re(E1)

+Ec, k, Re(E2) + Ec and Re(E1 - E2). These are the same frequencies

which appear in the probability lb,;(t) 12 tko,-- Re(E1)+ Ec = K - R;

Re(E2)+ Ec = K + R; Re(E1 - E2)= 2R/. The decrease in the ampli-

tudes of the oscillations can be attributed to the fact that the

probability of the incident photon to exist without being absorbed

decreases as time increases and it tends to zero as t-00. Thus, there

are no photons left to interact with the atom and therefore no wiggles

appear in lbc(f.)11 at large times.

From Eq.(3-11), one finds that lbi(t)12 , the probability of

the atom in the excited state ih> with an absorbed photon with wave
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vector 14 , has also three pure decaying terms and three oscillatory

terms with decaying amplitudes. These oscillation frequencies and

the decay constants are the same as those obtained in the case of

161(1)12. The probability Ibp)f4 is plotted as a function of

and time t in Fig. 3-11 and Fig. 3-12, respectively. These plots

have, in general, similar features as those of lbe(t)12 as discussed

earlier.

The probability iyA)12 gives the probability of the atom in

the state Icy with a photon of wave vector 14, absorbed and a photon

of wave vector ha emitted. This probability is plotted in Figs.3-13

to 3-16 as a function of the absorbed frequency f0. for a given emitted

frequency 12a and time t. One principal maximum is observed at k^= k

with many secondary maxima. The principal maximum is wide for short

times and narrowes up at large times. This means that the off channel

(k
o-

k ) scattering is quite significant at small times but becomes

negligible at large times. As t-000, the plot of Ibt(012 as a function

of hr. becomes a Dirac delta function 8(ko..7 k:L) fsee Fig. 3 -16J.

As time increases, the number of secondary maxima increase and their

amplitudes decrease. A physical reason for these secondary maxima

can be attributed to the same reasoning as discussed in the case

of )1:3(..t)12- , previously.
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C. Lineshape and Linewidth of Emitted Radiation

A study of the lineshape and linewidth of the emitted radiation

for the case where Tb= o (state lb> is non-decaying) is presented

in this section. An expression for k)), the probability that

a photon with wave vector r, and polarization eA has been emitted

between time t = 0 to t'>oo, is obtained by setting pCb and 1°,-c in

Eq.(2-60) equal to zero:

,k),)
/0...3rizg )7 i c.)`,nicell(k

[(k- Ai2)(k+A/2)-V232+(<-tA/2)212/z/

This probability has two maxima, one at K 47,10s27-47171;i%and the other at
'2. 23/1

K = -(6+411 /Z .These maxima have equal hights but unequal linewidthS.

These linewidthsare obtained as follows. The values of K for which

kA) is equal to half of it's maximum value, are determined

from the equation:

(Pc -1-a/2)2
[(c- '1/2)(K-rah) - V211 + (K+.6,)2)2T-,2/9

After simplifying the above equation, one gets:

2

( K 2 .6.2/4 _ v ) 2 K z./2 rcx2 /4 = U.

This equation gives four values of K for which P(e
A

k ) is half

its maximum value. The results are:

T°14 ret2/4 + 4 V2 +kz
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The probability P(e.,,,,k) is zero at K = -41/2. Thus the width of the

line at K= I(Aa+41/2)2is

(^)s ra- 2, L I (3,/4
2
+ 4 v -1- ra

7a, /4 4.2 Lt V -Ya (3-14)

and the width of the line at K =
2

(46.2'÷ 4V2ri s

r IP2
1/4)2 1612 2 1_ / 4 +

24-
1+ v 2 + ict

/ 2
Cra / 4 t'A2+.4l, ram ) 3 (3-15)

The two linewidths add up to I'm (the linewidth of the single line

when no coupling is considered). As V increases, the linewidth

decreases and 4);tincreases. But as 41 increases, wi increases and 4)2

decreases. Both linewidths approach 'fa /when V-400. For &= 0, the

two linewidths reduce to the same value 1774.2, and thus are inde-

pendent of V.

For d = .5170 the probability P(S.,, lc,x) is plotted in Figs. 3-17

to 3-19 as a function of K for different V. Figure 3-17 showsthat

only one emission line of linewidth 174 is observed when V = 0. In
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Fig.3-18 where V = .2(ra., a "hole" is observed in the emission line

at K = - .25Ta. (X), = Eb - Ec). This "hole" becomes wider with increas-

ing coupling strength V. The change in V and 4 also effects the line-

widths as discussed earlier (compare Fig. 3-18 and Fig. 3-19 for the

effect of V and Fig. 3-19 and Fig. 3-20 for the effect of LI. ).

For = 0, the probability P(ge., is plotted in Figs. 3-21

to 3-23 as a function of K for different values of V. Comparing

Fig. 3-21 and Fig. 3-22, one finds that one Lorentzian line centered

at K = 0 for V = 0 splits up into two lines for V = .2-fa. with a

"hole" at K = 0. Figure 3-22 and Fig. 3-23 show that as V increases

the two lines move farther away from K = 0 without changing their

linewidths. Thus the linewidth in this case is independent of V and

is equal to lf/2(half of the linewidth of the line when V = 0).

A physical explaination of the linewidth and lineshape of the

emitted radiation can be presented in the following way. The exter-

nal coupling V mixes the two excited states unequally for 0. Thus

state 10.> has some probability at energy E1(perturbed energy corres-

ponding to state ici,"? ) and a lower probability at E2(perturbed energy

corresponding to state 10 ). As V increases, the probability of the

atom in the state la> at the energy E2 increases and the probability

at El decreases. This increase in probability at E2 and decrease in

probability at El explains the increase in the linewidth of the

line at E2 and decrease in the linewidth of the line at E1. For LI= 0,

the two states are mixed equally, thus the probability of the decaying

state la.> at the energies El and E2 are equal for any value of V.
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Therefore the linewidths are independent of V.

The "hole" in the emission line can be attributed to an inter-

ference phenomenon. If one solves for the eigenstates of the Hamil-

tonian of the atom plus the external perturbation, in terms of the

states la> and lb) , then one gets two eigenstates which are not

coupled any more by the external static field. If the radiation

field is now allowed to interact with the atom then the two eigen-

states decay by emitting photons. The amplitudes of these eigenstates

at the energy Eb are such that the photons emitted at that frequency

interfere distructively and produce a "hole" in the emission line. A

similar "hole" was observed by Lamb and Retherford (17) in atomic

Hydrogen for 2
2
S
1/2 1/2' 2251/2-1/2

02,

1/2 1/2
and states. An external

rf field couples the states.



61

IV. RESONANCE FLUORESCENCE WITH TWO DECAYING EXCITED
STATES WITH EQUAL DECAY CONSTANTS

The theory developed in Chapter II is used here to discuss the

resonance scattering of radiation from an atomic system where both

the excited states decay with equal decay constants (ICI. =11, ).

The probabilities ibi 12 , 113,02 and ibf12 as a function of

time t have similar features as those of the probabilities discussed

in Chapter III and thus they are not discussed here.

A study of linewidth and lineshape of the scattered radiation

is presented in the next section. In section B of this chapter an

expression for the total intensity of the scattered radiation is

derived for a given direction and polarization of the incident and

the scattered beam. In section C, this intensity is calculated for

the 2
2
P state in LiT as a function of an external magnetic field.

A. Lineshape and Linewidth of Emitted Radiation

The expression for the probability T)(6,.,Y that a photon

has been emitted between time t = 0 and t = 0° with wave vector k),

and polarization 6,), is obtained from Eq.(2-60) by setting 1-0..--7-1.br-r;

P , e [ (K+A/2)2+ T2/41 Het 12 1 1>a,C.1

L3

&/2.)3- 2 / 4 1 Iaeb 121 + v Hea, 1 13:c.1

+ I1c.')b 2 1 1:L, 1 2 + 4 Re ( Pct, t ) Re ( P:: Re (Pt*. ti).1,41:fc:Ael-c)
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+ 2V Ei(K+46/2)1Pcx,111-1-(14-442.)leb)21 Pa; %..-c#)

K+L/2) 11,17c. 1 A/2) il;c1 2 } Re ( )

+172{ I Pctlz (Pc:CID:C. ) +( lip; 12-1 Pci112) (,ea.li:)}

+ ( K 2 44A2/ + 1-274 ) 2 . Re (, CC ID:: )

+ T.6/2 ( loct* pa'..c. ht) 7 x

I(K-R)2+T2/411(k+R)z+-r1/4,}11
where

and

1< }2a

R = z (4624-442)z

o = Ect Eb

(4-1)

The matrix elements r for i,j = a, b and Q.,7.1 JK1,- are defined

in Eq.(A-4).

From Eq.(4-1), one finds that this probability has two maxima,

one near K = R and other near K = - R. The probability 1)(8,,)k4,) is

plotted as a function of K in Figure 4-1 for different Vab . For

X _these graphs, zhe matrix elements are chosen such that pea- Pb and

PZc = PI; and are real.

Figure 4-1 shows that the increase in V suppresses the maxi-

mum near K = - R and enhances the maximum near K = R. This effect

is easily understood if one thinks in terms of the eigenstates

of the perturbed Hamiltonian (He V) {see Appendix Cj. The two
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eigenstates of this Hamiltonian are Colcs- +1)016> and -Dota>+co\b>

and have energies equal to (E'a+ E.b)/2 + R and (E/a+ E10)/2 - R, respec-

tively. The coefficients Co and Do are defined in Eq.(C-10). As V

increases Co decreases and Do increases. Thus due to the sign diffe-

rence in the eigenstates, the probability of photon emission from

the state cola. + Dolb> is greater than the probability from the

state t- Col b' .

B. Intensity of Scattered Radiation

The intensity of the scattered radiation for a given direction

and polarization of the incident and the scattered beams is obtained

by setting Xa= Xb = /72 in Eq.(2-62):

I C f"-.)-(1 e X) 47;.+.11 ICt. I 2111.; I --I- ebi2 I Itcc 1 ICI

+C1 V tioze (etkt*) Re (CciV) (I ect12-- I 1'1) ( 12- I It: 11) I'

+ V { ( I et t rcs)1:12) Re( Pa; Vc.*) +(iPa7c12-1 Cr_ 1 ) Re iz%

(1p0.12-1 Ir"(ICCIC)

(111712-117:t12) tw' (eci.13::)1}

+2Y'2 Re( jemicx:P.41. ?b0 ) + 2 AI' 1-181 Olte4t PL be x

2 4V 2 ÷)-2- (4-2)
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As discussed earlier in Chapter II section D, the first two terms in

Eq.(4-2) are constant. These terms arise from the direct resonance

fluorescence process. The next six terms arise from the presence of

the non-diagonal matrix elemement V
alp'

These terms are called anti-

crossing signals. The last two terms are crossing signals. The name

anti-crossing and crossing are used because the energy levels repel

and cross each other, respectively, when plotted as a function of

the external perturbation.

The crossing signal is pure Lorentzian or dispersion as a

xt.,..!-
function of the energy difference A depending on whether q0.1-ratti,c

is real or imaginary, respectively. If it is a pure Lorentzian then

it has a half width equal to (.1-/2-4.)-1)i.

Separating the crossing and anti-crossing signals from Eq.(4-2),

one gets:

and

zr Re (leaplkCif,*)+2ADynif-c'ii. v.cr-bc (4_3)

as' it

+ 4v2 + T2-

SR {.2 V 2 i 41- Re. Pc),Z Pc R- 1.1.1 1:CC* ) 1?:Tt. U'ab )

(111112 ik-c.12)1 -2v{ )2) Re(Pal.)1:)

+ (Ileo:z- 10202) Pe( ir,1'irciF)1 11( pec;.12.--11=11;12)Iwqric.1) ::)

(1 p: pc, (lea' ie)})- x

(4 + 4v2 +1- a ) _}
(4-4)
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where S and S
A

stand for the crossing and anti-crossing signals,

respectively. The above signals depend on the direction and polari-

zation of the incident and the scattered radiation.

For an atom which has many coupled excited states with equal

decay constants (coupled by an external static perturbation) and

many ground states, the intensity of the scattered beam is calculated

in the following way.

The total Hamiltonian of the atom (excluding the radiation

interaction) is first diagonalised and then the probability l(t-40012

is calculated (11):

* *
2 HkAA NAc Hy-,4.' HA,:c1 b (t--) 0,) 1 = 1

[Oz).- lz,-) 1 + PY43 E 0)- EA,.+ Et+ .2"/' ri [R- .,,,t. Ec- ie.]A...-
(4-5)

where H stands for the radiation interaction (see Appendix A-1).

Summation over /4- and /4Lt' are over the excited states (the eigen-

states of the total Hamiltonian) and E are the energy eigenvalues

of the excited states 1/.4 . The probability 11:0-4.0012 is the pro-

bability that the atom has absorbed a photon with wave vector,. and

polarization e during a transition from a ground state IC) to the

excited states li) and has emitted a photon with wave vector 12,x and

polarization during the transition from the excited states G4>

to a ground stater) . In this calculation (Eq.(4-5)), the ground

states are considered to be degenerate. The final state if> is defined

as:

If> = ic' > 1-1z,-->R1+k,N)R
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If all the ground states are equally probable at t = 0, then

the total probability that the atom has absorbed a photon with wave

vector k. and polarization gL and has emitted a photon with wave

vector and polarization .e), at t =Oo is given by:

* *

18 (t °°))2= riir
Hfou, H,c Hit,.c

(4-6)

cc' A4.1.4.' Ls °?:-kr) ÷ 4- .1 L. k),-E,tt Ec+1-::z-11{k-E -c-tt)Ce c'

where summations over c and c/are over the ground states.

In order to get the total intensity I.(-n-0711a.P4i) of the scat-

tered beam for a given direction and polarization of the incident

and the scattered radiation, the probability in Eq.(4-6) is integ-

rated over all frequencies of the absorbed and the emitted photons.

Using the fact that 1/1(k) - kf.)2+ r2/43 reduces to wr s(lv-ke)
4t *

for very small r and that the product F131414cHlm,r1:ze can be considered

to be constant near the poles of 11,0)12 , this integration gives:

X X k

I ,-(1e Ck' )
ECCAA," & + Z. (E. ,)

c c'

(4-7)

A
where is the matrix element of p.e.), between states IC'> andl/>

(see Appendix A-1) and 1 is the momentum of the electron. This is the

well known Briet equation ( 9).

The intensity r(fLa-n-e,r-,.X) can be written as:

Ntf w-I (fi-c, ,-n_e Z [ ID
CC' 044

+E Re( leA. iir:c kat') + (E (4-8)

AA.° (E1 )2 + yz"44.'



68

C. Crossing and Anti-crossing Singals

for the 2
2
P State in Liz

As an application of the theory developed in the previous

section, the intensity of the scattered radiation from a LiT atom

in an external magnetic field, is calculated. The frequency range

of the incident beam is so chosen that only the 1
2
S and 2

2
P states

are involved in the scattering process.

Ignoring the hyperfine structure for the moment, the Hamil-

tonian of the Lithium atom in the external magnetic field is written

as:

= (-J-4 -1- A + g-5 it-to + (4-9)

where is the Hamiltonian of the atom excluding the fine structure

and the magnetic field interactions. The symbols 5.5 and 21, stand

for the electronic spin and orbital Lande g-factors, respectively,

A, stands for the Bohr magneton, A for the fine structure coupling

constant, H for the magnetic field, L for the orbital angular

momentum operator and S for the spin angular momentum operator.

The experimental value of the coupling constant A is approximately

6.75 KMC/sec. (12, p. 13).

If the magnetic field is chosen to be along the Z-direction,

then the Hamiltoniant4 in Eq. (4-9) reduces to

-11" A L.S + g.s/ke, H +$e b H (4-9a)
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Due to the presence of the magnetic field interaction terms

in this Hamiltonian, the total angular momentum J is no more a good

quantum number. However, the magnetic quantum number mj is a good

quantum number.

A representation involving Q, $3,1rAt, and ms (leSYNT)D) is

used to diagonalize the Hamiltonian in Eq.(4-9a). The following

eigenstates are obtained as a result of this diagonalization:

41) = I I 1/2 I Vz)

1 (1)2 ADO 1/20 1/2) -I- Go II Ya -h) 1

I Ch) C 01 I/2-11/2> D °11 V2.°

104) = 11 1/2.-1

IBS) 011 1/20 I/ .2> -I- A 61 I/ 2, -1/

4)4) -= Do I 1/2. -1 1/2> 4' C 01 1/2 ° 1/2

and their corresponding energy eigenvalues are:

(4-1o)

E, E° + A/2. I- (.rae, g.,s /2.) /40

E° A/4 ± 1/2 ± AL )A: Hz

( ) /40 HA + q A2/4] lz

E3 = .E ° Apf V221, /40 H + I/2
Os

j.t)2A:

TO /4° HA + qA 1/14. Y2

E4
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E
5'
= E°- A/4 +'/2 chit, H 1/2 [. ( ,-s-lc)art! H2

+ ( 1.5- q,2)/40 H A --I- q A2/4] V2

n ,a , " 2E6 = E°- A/4 I/2 $31. /1-te 1/2Y. (cs-s-- -t)/4) n

(55-1.W-40iA + Cii A2/41/1 (4-11)

where E
o

is the energy of the atom without the fine structure and

the magnetic field interactions. The coefficient A , B , C and D
0 0 0 0

are defined as:

and

A0

Bo

co

Do
}

sr.i.

act
(1

A° H -+ A/2. 1/2_
-I-

1/(At oFi + A/2_2 + 2 Al

Acb H IA/2 Y2
-t-

-1/(AL0H-A/2)2-1-.2A2)

(4-12)

When the energies in Eq. (4-11) are plotted as a function of

the external magnetic field H, one finds that energy E4 crosses

E5 at H = 2 A/(3/4) and E6 at H ---- Ab.,

The hyperfine interaction HD and the electrostatic nuclear

quadrupole interaction H
Q

are (13):

HD----. a'.- --i 1;)U
1-

i' -1 1 -I- 5 g.r , (4_13)
T3

a
T5- i



and

3Coses)H
Q-

= 3
`f

2

-r 3
(4-14)
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where Qstands for the nuclear electric quadrupole moment, e and r

are the coordinates of the P electron and oc and ; are constants and

have the following experimental values (13).

<-471) = 13.37 ± 0.05 MC /sec
(4-15)

-3I.6 1: 0.7 MC/Sec

where <1/7.3) is the average value of 1/T3 in the 2P state in LiT.

The total Hamiltonian V47. of the atom including the hyperfine

and the nuclear quadrupole interaction, is:

V4-r ÷ A L. HD-1-1-14, (4_16)

The presence of the hyperfine interaction in this Hamiltonian,

couples the hyperfine states of the same total magnetic quantum

number "1 (rn = rrlems+Wz). Thus, m is no more a good quantum

number. Near the high field crossing of the energy levels E4 and

E6, the coupling between the hyperfine states of 14)21 andl9i6 is

stronger than the coupling with the other hyperfine states. Thus,

one can just consider the coupling between the hyperfine states of

i440 and Ict3.6 and can neglect the other couplings without

significant error. The intensity of the scattered beam is calculated

near the high field crossing of E4 and E6.
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The following representation is used to diagnolize the total

Hamiltonian t47- in Eq. (4-16):

(Pc: ,m.1> = 1.4>6)1 3/2 )111) ,

where the wave vector 140 are defined in Eq. (4-10). For Li7 the

nuclear spin quantum number I is 3/2.

Considering only the coupling between the hyperfine states of

1470 and I4) near the high field crossing, the following eigenstates

result.

= C ) 4)1. 3/2 ) 1) I 'tit, a 1/2

1Y2 i '4)4 3/2> + CI 4)6 ,172 ,

r i l f3 ) = c2144, + D2,) cp I 2 >

I = D21 434, V2> + cz 41/4 .)--)/2>

( N r 5 = C31 0)- 1/2 ) t D3 1 (134 3/2)

1/1.4 7: -1-cl 4,6,3/2) y

1111-7 ) I (Pzi ) 3/4)

I lis, q 4) 3/2 >

The coefficients in Eq. (4-17) are defined as

(4-17)

c `
== / I Z1(.7

1)4:
472 V40 4-41/.2 ) 3 7: I, 2/ 3 ( 4-18)

c



The energy differences and the off diagonal matrix

elements Vi of the hyperfine interaction areare defined as:

and

------ 4 1)4, Yr 44,4,-rvil) <cp. 14, ->
6J T 6>

7y)

Ve = L44, )11.z I HD cl)e Yri I>

where i = 1,2,3 for m1 = 3/2, 1/2 and -1/2, respectively.

The energy eigenvalues of the states rlo are:

a

E3

E/S

E
7

64)4)312 Wr I 04)342) < ) 1/2 1 Vir J 06)Y2)

2

÷ 1/.6,
2 ÷ 4 V 2 I
t I

44244) Va IlfT I 044 > < <Pc )- Y2 I V-1r 9sc-

2
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(4-19)

(4-2o)

(4-21)

fi 4 .61 (4-22)

< (1)4 7 /2 I /IT I 4)4 7 1/2 ÷ 06 d 3/2 I Wr 1 04,-3/a>
.2

÷ 1 I ZIt 44/32"

< 3/2 I V% 3/2

Eg < 3/2 i 1 06 1/2

(4-23)

(4-24)



where the subscript on E' corresponds to the subscript of the

eigenstatelli> . Using the matrix elements of HD and HQ as calculated

in Appendix D, the following expressions are obtained for the

diagonal matrix elements of the total Hamiltonian:

< 4 ilr'r 1 *-1r. 104)11z> E° A/2 214.
2 5

WIZ ( Li- < 41; 4' ) )4- 7/1I 4)

and

<46,71ri1 1 V-47. ) <4;n12.) ( Dt/2 +472 CD ) A

lnl, of <: yrs> ( 6 Do + 2co t Nr2 . 3 c DO)/5+ CD2 o c) m,

Ca /4-c. H + 6( D62- 2c.; )/4.( YY1- 5/4) (4-25)

The off-diagonal matrix elements of HD as calculated in

Appendix D, are:

= <ckt,rAzIRD14>4,P111-1> = C )
d2 5 T2 0 5 0

Do --1 4(61/2 Y' ) 3/2 + TY) ) (4-26)

where i = 1,2,3 for m1 = 3/2, 1/2 and -1/2 respectively.

If the off-diagonal matrix elements of HD are assumed to be

zero, then there is no coupling between the states of the same

total magnetic quantum number mf, and the states I (1),_0712) and

456,111,0aretheeigenstatesofForthiscase(.1.=o), the

energies of the states 10
4

,771i) and i 454,rnl are plotted in Fig.

4-2 as a function of the external magnetic field H. There are two

sets of levels, one originating from the 2
P3/2_3/2 state and the
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other from the
2
P
1/2-112

state. These two sets of states cross each

other near H = 4825 gausses. In order to get a "crossing" signal in

the scattered beam, the states which cross each other must decay to

a common ground state. There are four such crossings of interest

where the two levels have the same m1.

If the off-diagonal matrix elements of H
D

are considered to be

non zero, the two states of the same m are coupled and the cross-

ings mentioned earlier no longer exist. The energy eigenvalues for

this case (Vi # 0) are plotted in Fig. 4-3 as a function of the

external magnetic field H. There are three pairs of states which

anticross and there are six crossings that contribute to the signal.

These crossings are far apart. The curves in Fig. 4-3 are quite

different from the ones presented by Wieder and Eck ( 7). According

to their graph only two crossings contribute to the signal.

From Eq. (4-8), the intensity of the scattered beam for a

given direction and polarization of the incident and the scattered

beam, is

)N a- /I C-r1 , e )`) c< Z. 11*.t. cz/A Pic /rcc, AL

x- x* 's4N

2 Re ) +
2 5.,) 2 +. -I- 2-

At /(4.'
A Ac' (4-27)

where the summations over ,4a anddkare over the excited states

as defined in Eq. (4-17) and the summation over c and are over

the ground states. The following states are the ground states of Li
7

:

ICS) = I o y2 c. yi )1 3/2



wher j = 1,2,3,4 for mi = 3/2, 1/2,-1/2 and -3/2, respectively,

and

10 1/2 0 - y2) 3/2

78

where j= 5,6,7,8 for m1 = 3/2,1/2,-1/2 and -3/2, respectively. It is

assumed that there is no coupling between the different hyperfine

states of the ground states.

Substituting in Eq.(4-27), the matrix elements 13.)_, , ,' Gt.

ki7c. and CZ' in terms of the states 10 I> 1 db

4
rn, \ , using the\

f T I'

selection rule z1111=o( if Icy and 4,c,) have different m1) and

regrouping the terms with in the numerator, one obtains the

following expression for the anticrossing signals (after some tedious

algebraic manipulations):

S (-02, 2v3 Eitz.x
t. 2.)A t c

+20/1:2 1.2
(4-28)

where the states 10.0 and 110 stand for a set of two states which

are coupled by HD. In terms of Ittif,Yrir) and letpTli>jthe statesia0

and110 are:

lae > = 104, r"I

1 04,1"1-1>
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where i = 1,2,3 for mi = 3/2, 1/2, and -1/2, respectively.

2There are four terms of the form 1<plOilot40T1112.\<P14)4714\

and four of the form 1(cIP`141,,w).,12.1 <OPIcioetri/1.1 in the total

intensity I (J1,..nep.-x). These terms provide a very slowely varying

signal as a function of the external magnetic field. They are not

discussed here and therefore are absorbed in the background signal.

The remaining terms in Eq.(4 -27) give the crossing signal:

* 0. 0., if .)s( 0-*

Slc Ni Re ( ) + (EA. EAA Lin ( )

EA,' )2 + /1. 2/4
At. /at.' cc.'

where

(4-29)

/4 = 1 for 14:= 3,4,5,6,7,8

= 2 for /4./= 3,4,5,6,7,8

= 3 for A:. 5,6,7,8

ft = 4 for At/= 5,6,7,8

= 5 for /= 7,8

/k = 6 for /4 = 7,8

At = 7 for /4 = 8 .

These values of /4 and,44./ are the subscript of the eigenstates /V>

defined in Eq.(4-17).

X* , 0-*
Calculating the product Pc!,AA4,,,P,4c54:,c in terms of the orbital

states IC V (see Appendix E) and substituting the result into Eq.

(4-29), one obtains:

[

Co
c2 tRe(f)+(*E.OLI(f) D2? itRe(f)+(E:-E4)layl(f)

7- i 2 ,

-I 1 (El'--E3' )2 + i'l (E1/--Eizt)2 -1-T2



72Re(s)--(aii-E8)Irn(f) 2 2 -r Re(f)-E(E;-E13)L,(f)+c, c,+ CI
g)2± 7-2-

+czD2 TRe(f)-1-(E; -E4)Irm(f)
(E2- Ez; )2 +T2

+Di2 TRe(5)(C2-E,1)Li(i)
(E2"-E;)2 +

C2 Dz
-1-12e(.5) -4-(E3-E5).&,(i) a z -rRe(f)+CE3-E)iyn(f), , D

-r(E3 2 3 -2 E3'_ ) 2 y"- E' )2 -4-
5

2C2
TRe(f) (E4c-C6)1y.,() +C2 D2 TRe(/) (E;,-E2) Lv. (5)+C Cz
(Eii"-E6)2 +1''z 3 (E"- E"

C.
)2 +724

2 l'' Re( f) (E E;)11,,(1) z Re(f) ( E;) IwIW+ Di ci
(E5' )2 + Tz (EC E.7)-7

(4-3o)

where

8o

f <0011;:),110><1-111)ta)doo><Io14-5,100>oolr).8,..11-

(4-31.)

The energies C are defined in Eq.(4-2l) to Eq.(4-24) and the

coefficients C. and D. in Eq.(4-18). The vector iih) is the momentum of

the valence electron in Li 7
and and define the direction and

polarization of the incident and the scattered beams, respectively.

From Eq.(4-28) and Eq.(4-30), the anticrossing and crossing

signals are calculated for the following experimental situation.
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The incident beam is plane polarized and is along the x-direction.

The scattered beam is also plane polarized and is along the y-direc-

tion. The plane of polarization of the incident beam makes an angle

&and the plane of polarization of the scattered beam makes an angle

49e with the z-axis, respectively. The results are:

and

2

SA C 4o 3 C-E'
se (I - Co2s tAct.)/ VC2/(°cc

er..1,21

(L -32)

.Z 2 /

Sc Co Sw' 9e S4449°-
D E E3 )

(Elf- E3' ) 2 -4-

2 2 (EC- E zi)+DD2
(C-E -4-T2

Ly

,
2 (E8,- )

Cl

E; ) 2 z ( 2 E
41.4_ CI

2
C22

(E2'.-
+ CI Da

(E2 - E; )2 + 1"2 (E.:- El: )2+7'2.

+ ( E E2 )

(Ee- +1'2
2

4,. c21).2. (E;- )1
3 1, (E3- Es )2,± T2

2 2 (E- E) .2 2 )
+ 3)3 D.2 3 -i-C3C

d )2 +Y2
3

1' (E,s'-E-02 T2

± C2 172.
(E/- E )

+ Dz
E;)

(E4-c ) 2 + y-a - (Es -E; )2 + rz

-2 E; )
+ -(E --E ; )2. +

(4-33)
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From Eq.(4-32), one finds that the anticrossing signal vanishes

Cos'
,

for either ea= L.400:9
I

(V5) or 49e= C,0.---Fi(h/nr). Similarly from Eq.

(4-33), the crossing signal is found to vanish if 9 7277aor

Be =7,rhX2, where n and m are integers. Thus, there is no crossing

signal if the polaroids are oriented parallel, perpendicular or anti-

parallel to the magnetic field. These signals are plotted in Fig. 4-

4 and Fig. 4-5 as a function of the external magnetic field. The

anticrossing signal is Lorentizian and the crossing signal is disper-

sion type. In order to compare these signals with the experimental

signals obtained by Wieder and Eck (7), the derivative of the

signals are plotted in Fig. 4-6 and Fig. 4-7 as a function of H. It

is observed that the two signals are in good agreement with the

experimental signals (Compare Fig. 4-6 with Fig. 4-8 and Fig. 4-7

with Fig. 4-9). In Fig. 4-6, the separation between the maximum and

minimum of the derivative signal cl
H
A is approximately 35 gausses

which is the same as that obtained by Eck, Foldy and Wieder (2).

The form of the derivative signal --ctss in Fig. 4-7 is similar to that
cIH

of the experimental signal in Fig. 4-9. The position of the central

minimum is near the center of the anticrossing signal as pointed out

by Wieder and Eck (7). The separation between the prominant maximum

and the minimum is of the order of 36 gausses. Wieder and Eck have

not quoted the experimental value for this separation.

It is interesting to note that the crossing and anticrossing

signals are observed even if the incident and the scattered beams

are unpolarized. The following experimental geometry is considered
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Fig. 4-4. Anticrossing signal in Li 7
as a function of an external magnetic field H.

The incident and the scattered beams are along the x- and y-axes and their
planes of polarization make angles and EL with the z-axis, respectively. CO
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Fig. 4-5. Crossing signal in Li 7
as a function of an external magnetic field H.

The incident and the scattered beams are along the x- and y-axes and their
planes of polarization make angles ea and ee with the z-axis, respectively.
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Fig. 4-7. Derivative of the crossing signal in Li7 as a function of the external
magnetic field H. The incident and the scattered beams are along the x-and
y-axes and their planes of polarization make angles % and 19e with
the z-axis, respectively.

rn
co



87

Fig. 4-8. The derivative of the anticrossing signal in the 22P term

of Li
7 as obtained by Wieder and Eck (7) experimentally.

Fig. 4-9. The derivative of the crossing signal in the 2
2
P term

7
of Li as obtained by Wieder and Eck (7) experimentally.
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for this case. The incident and the scattered beams are unpolarized

and they make angles 0, and 02 with the z-axis, respectively (see

Fig. 4-10).

The anticrossing signal in this case has the same functional

dependence in H and the same angular dependence in el and (9z as

discussed earlier for the polarized beam, except that ect and ere are

now replaced by &, and ez , respectively. This signal is independent

of the azimuthal angle of the incident and the scattered beams.

The following expression is obtained for the crossing signal

Se of Co si^'%-264, S43-, 29.2 [ D P a(E/1-E /3 )

Z 2 IP -1-6Z(* E4) P Gt.( EILE;)+ Da C
)2 + E2' )2 +72

71:) 6"Ea-E;) C2D1 P 'at (6-2-E4)
(E"E'3 )2 + Tz ( E:2--E4; )2 ±T.2

-2

z YP-Q( , 2 2 P 61(E'.- E3)+ (E2'- E.02
C3 D

(E3- Es' )2 -r2

2 2 p +-Q(C-E-)3 P -1- a(Ecr Es)D + C C
3 2 (E3-- E4' T 3 2 (E 4 5 )2 t

,
P-22 T -I- a. (EL,- E4 ) a -rp -i-a(E.;-E;)+ C3 D + Di_

-2 (C-E' )2 ÷ l'2 ' (Es/ - E;)2 +7.-2
zt 6

+ C
P Q(EC-E;)_ 1

3 E;)2 + (4-34)
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Fig. 4-11. Crossing signal in Li 7 as a function of the external magnetic field H.
The incident and the scattered beams are unpolarized and are in the
x-z plane.



1.0

0.5

0.0

-0.5

-1.0

Fig. 4-12. Derivative of the crossing signal in Li 7
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field H. The incident and the scattred beams are unpolarized and are in the x-z
plane.
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I CP2- (PI )P e
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This signal depends on the difference of the azimuthal angles

of the incident and the scattered beams. If (1)2-43 is 7T /2 or 37742 ,

the signal is pure dispersion. If Cb-do
12

is 0 or 77 then the signal

is pure lorentizian. The signal vanishes for &I= rinaor qz=m77/2

where n and m are integers. The signal Sc in Eq.(4-34) is plotted

in Fig. 4-11 as a function of the external magnetic field. The

incident and the scattered beams are in the x-z plane ( = 02 = 0 ).

This signal is pure lorentzian and has a maximum near 4826 gausses.

The derivative signal is also plotted in Fig. 4-12. The separa-

tiontion between the maximum and the minimum in this signal is approxi-

mately 28 gausses.
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APPENDIX A

1. Matrix Elements of H

The perturbation involving the interaction of the radiation

field with the atom is

A

H = (24-r, )2- La(i:z,) e + cit (k,) e
/

(A-1)

where the summation over ke is over frequency, direction and polari-

zation of the radiation field. The operators CL( ) and Q0-(k) are

the anihilation and creation operators, respectively, for a photon

with wave vector A, and polarization ./2e. The vectors I-1 and 11 are

the position and momentum vectors, respectively, of the electron

with respect to the center of mass of the atom. The radiation field

is considered to be enclosed in a box of volume L3.

In the dipole approximation (12,1'<<1 );

and the matrix elements Hft..,Hj.3 ,lioLand lioj reduce to

=

f; kr.] 1-1 I hcp.R1

= e (27v ( L.3 IR),))V2 lea ( x) +1,11/2

(A-2)

e 2 Tr/(L1 ))Y2



and

e (2TricL3o,Vil pra.

(-103 = e (27-170:30,))V2 prb

( A-3 )
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where 71(1?) and 7.1(k,.) are the occupation numbers of the emitted and the

absorbed photons, respectively, and

111 tr--- a, b.(A-4)

Usually, the spontaneous emission process dominates over the

induced one, which means that n ORA Zx 1. Thus, one can neglect the

occupation number 11.(e,),) compared to one in the matrix elements H

and and they therefore reduce to

Ht. e rrT h,
a.7--

1.31R),

rc

and (A-5)

.121T
H53. 1-Cb -

L3 ktx
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2. Evaluation of ilc

In Eq.(2-33),-rec is defined as

(E) = Het .HSt
(E-

2 S'

using Eq.(2-28), the real part of /lc is written as

E ) 2T7- 2 Hcf Hfc; g(g_E) (A-6)

for a continuous distribution of frequencies, the summation is

replaced by an integration:

oo Tr
3

27T

yfiq;a1,,,i-sotee dee (A_T

0 0 0

where ee and cpe are the polar and azimuthal angles of the wave

vector Its, . The summation over X is over the polarization of the

emitted radiation. Thus, using Eq.(A-2) and Eq.(A-7), one gets

71- 2 Tr

e'
Re ( E)) E-Ec' + pc 12 clee citbe. (A-8)

2n- X

If one defines

TT zir

el 7 ea .

svneeclee act)e

21T too

then the real part of 1:: can be written as

(A-9)

Re (1-Ce(E)) = (E-E;+1?.....)Det, (A-10)
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This expression shows a linear E dependence.

The matrix element P;(,. can be written (10) as

pca
( Ec ) <C I a) e.X (A-11)

where E
a

and E
c are the energies of the atomic states Ic0 andic> ,

respectively.

Combining Eq.(A-9) and Eq.(A-11), one obtains

Da 77-

2r2

Ec Ea )21 j I <cl "r) a) eedOe
1. o

e2 ( Ec- Ea.) a,2
0

(A-12)

TT 21

where a
o is the Bohr radius and 2, if e),

2
SAA.% e de. 01 4).e

cp 0

is assumed to be of the order of a
o' For an atomic system, this is

a legitimate assumption.

In relativistic units ('h = m = c = 1 ), the fine structure

constant oc is 1/137, the Bohr radius is

Ei2 = 137

and the energy unit in wave numbers is

I cAvl
1

2 4 x /o
o

Thus the energy difference (Ec - Ea) for an atomic system is of the

order of 10-6 relativistic units and therefore

(A-13)--- 1 0- o

The real part of Y'L. can be obtained in a similar fashion:



Re( rjj(E)) 7-7 (E-Ec:+1Z4.-)Db

where Db is defined by

IT 27

Db = c Rd icL) b> l2 Si,nee aloe c14>e

o 0

The magnitude of Db is of the same order as that of Da.

The imaginary parts of VE) and Tii(E) are

and

(11 (E)) 2 E k*ZI1c,f

E- E'

Im (Th(E)) = 2.z
E Ei
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(A-14)

where the summation over f is over frequency, direction and polari-

zation of the emitted radiation and jp is the principal value

operator defined in Chapter II.

For a continuous distribution of frequencies, the summation

over f is replaced by an integral of the form given in Eq.(A-7).

Thus one gets

00 1r 47T

2L3 2cfs. 1,2 p(Iiiici2)si,,teedEtedoe
Irn ( CO) E_E'

0 0 0

(A-15)



and

oo air

(rji(E))
213 j pti j

E- E
1 0 o 0

100

Combining Eq.(2-18), Eq.(A-2) and Eq.(A-15), the imaginary part of

lrec(E) is written as

ono IT .21T

Tm (r,:,:(E)) = e2 jrifk),A4/23, [P( E-lEct+ I 02\a 1251;rteedeedt
iT) 2

e,00

The integral

217

el ill kcik -(1)( k
)%I tic,' 3,416ed eedt

2T r
o .

00

fcik k f/
0

in the previous equation is divergent which means that the imaginary

part of 1:e(E) is infinite. Similarly, it can be shown that the

imaginary part of E) is infinite. These imaginary parts tImOWEV

and Im(YZ.(E))} are added to the energies, Ea and Eb of the unper-

turbed atomic states, respectively. This results in a shift of the

atomic levels. There is a similar kind of shift in the ground state,

contributed by the imaginary part of r(E). Thus all the atomic states

are shifted relative to each other.

It is important to note here that only the relative separartion

of the states are required in the discussion. Therefore one can use
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the method of renormalization of the atomic states by absorbing

these infinities in the atomic states ( ). One can then set

Ea. 4 Im ("c)

E b CrA) 4 E
6

and

is

Ec + ) Ec

3. Evaluation of r

The expression for r(E) , obtained from Eq.. (2-36) and Eq.. (A-3) ,

2/
r(E) e r

2 L3
L vab rra + Vb pc-r

k
kr

a ac Cb

+ I Ica 2 E E.; + CE).} + I Pri, 2{ E-E + (121.6.CE)}}

-I
x LC E 7;.- E )/2 )( E -+ rij )/2 ) vab 1 J , (A-16)

For a continuous distribution of absorbed frequencies, the summation

over tc, is replaced by an integration:

00 IT VT

2 Tr
0- 000

where 5)(k,.) represents the density of radiation oscillators in

the incident beam with energy between kr and )2,..+-dk. The sum
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over is over polarization. The angles 04 and (pm are the polar

and azimuthal angles, respectively, of the wave vector kr..

The density f'OQ,) is written in terms of Io(k), the inten-

sity (energy per unit area) per unit frequency per unit solid angle

as

1p CRr)
( =

12, 11(0, )

where n(k, ) is an average photon occupation number at the frequency

k of the incident radiation ( 8). Thus Eq.(A-16) can be written as

00

e2/67r)2 Z_ lo".-) C Va. b Celt

cr-

rbK-vba
2e E-E LICE)/21

+ Pc.7,12-t E-EL + i,f6L:CE)/2.1]x

E -E + 1'6; (E)/2 ) ( 6- + L (E)/2 )

2 7
(A-17)

As discussed in the previous section, the imaginary parts of

tc(E) and t(E) in Eq. (A -16) are absorbed in the energies Ei and

Ej, respectively. The real parts have the following E dependence

(see Appendix A-2):

Re ( (E)) = C EEcf +



and

Re (1 ( E)) =-- ( E- Ec ko..)Db
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Thus, the denominator of NE) reduces to

t E + )2 + E EZ+ ko.) E 61+ / -11/40312

By regrouping the terms and factoring out (1+iDa/2).(1+iDb/2), the

above expression becomes

( --I- Da./2 ) -t- Db/2 E Ect./(1+ LlOcch) 1)01 (2+ (1)43

x E Et, At+ Db/2 ) kg,

x t:I=.1./2).1]

c. Ec'DbA2 C.Db) -114, 61.711,0 i.D612.)

= (1 .+ D0.12) (I I- C., D6/2) E{ E + D,;./9)

+ + ( Ea Ec/ p.A2+ path) Ec(3):/{.zio-i-D;tz/031x

E/
E z + 3)1b

I + /Li I + 1)6

Ec 3)b2-

4 (1 + Di:/4) -)

2vab I

(1 4- 2)a-/zi )(I + Dit4)

(Val, 12 Da Db (.l)a. +.%)/21.

(s + Da/9 ) Viet)
(A-18)

Since, the magnitudes of Da and Db are very small (see Appendix

A-2) compared to unity, the terms Da2/4, Db2/4 and DaDb/4 can be neg-

lected in Eq.(A-18). Thus the denominator reduces to
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04- L
Da-

(I LD13/2)L Ea/ + E

÷ ( Eci) Da. /2 x { Et,+ E Ec/ /4- L Eip` Eci

iJ( Dal-D10/21 (I+ iDa/.2)(1-t- I.Db/2)[.k.f2Euc

Ycl,/,2 E + )7, /2 -ivabi2 I --L (2).2.+.30/2 (A-19)

where

Ea

E b

/ Ec Dct
= Ea -I-

+
-- E

z

' Eci Dt E_ E - 4

(A-20)

and and) l are defined in Eq.(2-43).

In Eq.(A-20), the terms E;Da2/4 and E;Db2/4 are very small

compared to other terms and therefore they can be neglected. Thus one

gets

and

Ect = Ea E

E
6

E 4, E

The expression in Eq.(A-19) can be written as

0 i,Do. )CI rLab /2)Cka k )

where k1 and k2 are the two roots of the quadratic equation

(A-21)

(2- Ea" + iro./2)(12,- + Vrb /2) CD,,+Da,)/2 3 o.
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The roots are

121

= ( Ea -t- Et V.2 - E L Cia -fr10/4 -i- -12- [ .6?- x2 + 4 IVO.bla
k2

--i 2 1 AA -1-1V66.)
2

( Da -t-- Dj,)} 1/2

where

(A-22)

.!, :--- Ea- Et,
and (A-23)

X = cra, YID )l2

The complex quantity inside the square root sign in Eq.(A-22)

can be separated into real and imaginary parts as follows:

If

then

and

Y = L A + i. 8 ] 2

1 1

1Re (Y) L.( A' + B2) 2 --1- A )7'= T-2

1

/111 ( Y ) =
I

-i ( A2+ 132 )7- AyilZ.

Thus one gets

ki
1:z z

where

I
= ( Ea -I-- EL )/2 - E + g. -i,(x3-±-,I)

(A-24)

t

R 1I = j [ t 662 2 + 41k/a 61 2 ) 2 ± 4IX 4 f. 1 lial>12( pat' Dijinz
E .2,r2,

± ( is2 X2 + 4 I V402) j 2 (A-25)



and

71,X3

io6

(A-26)

Since Da and Db are much less than one, the term 4iVabl2(Da+Db)2

in the expression for R and I, can be neglected compared to the other

terms. Thus one obtains

where

R ( Al X2 + 4v '1)1' +

I

ti a
V = vab

(A-27)

Thus, substituting the real parts of and from Appendix A-2

into Eq.(A-17), combining Eq.(A-17) and Eq.(A-21) and rearranging,

one gets

oo Tr 217-

i. r(E)/2. (;Trp- 2- 3 31 10.- 60,690- '4)z(:") vo.b h,c-c
0 P.

+ \lab rb at +' I 1.c(1 12 1. ko.(t + Dalz) - + E (t +iDbiz)
2.

E
c'

Dbis
C

+ Pc7b ht. (I + L.D1:12) E (I+ Do./2) t'Ecipa-f21}A

DaV2 (I i'l)b/2.)( k (k0: lq2)11 (A-28)

If the incident beam is monochromatic then the intensity

Io(k,,) in Eq. (A -28) is replaced by lo ), where 1.0 is a

constant, which determines the intensity of the incident beam and

8(ke-k:'..) is a Dirac delta function. The frequency 4,:is the

frequency of the incident beam. Thus, for this case,Eq.(A-28) reduces
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Tr _yr

r ( E ) /. f ead ea (340. k0 2. L vab Pct'o. KG-c.2
(2Tr) o110

c- 2 0 ,

Vb PcP"b f Mo.CItt,Db /2) EbtECi L.D6/2) - ( Ec

12{ (I Dail) Ea.1 ( Da./2) E - EciDo./2.ii

1

X ( I -I- c Da./ 2 ) I DiV2) (12°,,- k0-- /R2) (A-29)

when the state 16> is non-decaying 07, = 0), then Eq.(A-29) becomes

--L-r(E) =
2

E - A-2.Ec/Db+LDL)D0,10 EC,/(1-1-LDb/2)
12°2 (It ZDa./2.)(k?..-I'lt )(

(A-30)

where Da and Db are defined in Eq.(A-9) and Eq.(A-14).

Multiplying the numerator and denominator of Eq.(A-30) by

(1-iDa/2), neglecting the term Da2/4 compared to unity and rearranging

the denominator one gets,

rl (E)
Dar° ( + (E4:-EZ) Db/2)(i- Da../2)

L2 [ )/2, E R C. X3 -I- I )

X I ke,,-(Ect./+ Eb )/2 +E 1.-R L (X3 -I)

where R, I and X3 are defined in Eq.(A-25) and Eq.(A-26).

For an incident monochromatic line of power 10
-3 watts, the

4 / -10
factor DaI0/0,2- is of the order of 10 Ec (Da^,10 ; Io^,10

-11
and
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Ec- 10 -5 in relativistic units). Thus, the magnitude of r(E) is

very small compared to Ec. Therefore one finds that the pole of

G(E) obtained from equation:

E Ec + zr(E ) r= 0

is not significantally different from the pole

E r' ( E )

where r(E) is evaluated at E = E.

The expression for r(E) is:

(A-33)

(A-33)

(1R(3,, El, Ec (sbEc ) D6 I2) Dm/2)Lr(C) =2 c
k °, -2 ( 54 1/ + )I2 R + 6 Cx3 tin

(Ect+Ei, )/2 + R L (x3-I )1) (A-34)

The real part of r(Eci) gives the decay constant of the ground state

IC > (see Eq.(2-54)) and the imaginary part is absorbed in the

energy Ec of the ground state, giving rise to an energy shift. In

this case, the decay constant Re(r) depends on the frequency of the

incident beam.

If the incident beam is such that the energy per unit area per

unit solid angle per unit frequency, Io is constant (white light

beam) then Eq.(A-28) reduces to

.0Tr277.
31 NE) = 2 Io Zc d kr. ao,,d ea, CI 4)ct JC, [ co. hg2 (2 nr )

eb 0

V + 1 1 : ' ; I z t 12, ( I t Lbb/2) + E (1 bb/2) Ebi,/236a.fa.'"c

4- 1 hc7, 12 k, (I + I-13.12) E-'01+ E C Clo- et Da-/2. 1-]
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x (I -rt.. Da 12 )(I -I- Db/2 )( )( ) (A-35)

The term in the square bracket in Eq. (A-35) is a highly peaked

function near the real parts of the poles. Thus one can replace

1/k20.. in Eq. (A-35) by an average value 1/k20 . Thus one gets

277'

rt, e2 I eo, ci ea. d o-

2 k 2. v t3b

r- Croft:, (1 1:1)a/2) (i /2)

Vba. -t- 1:7ci 12 ( ( D 6/2 ) Db /2)

E (11- t,Da./2,) Eti. (. Eci Da /2)j II

-I- IPL. 12( 1+ C'D6/2) 1Pal2'(I +0)a/2)11.2i

where

and

I
f(43 d k

o(kki)(k)z)

co
keik

CIRk1)(k-i2.)1 2, 7=

(A-36)

The limits in the integrals of Il and 12 can be extended into

the non-physical region (k = - 00 to k = 0) without significant error,

because the integrands are negligible in this region. Thus one gets

roo

0-kock-ki)

and

00

1,, f A 00R-ko(k-k2.).}-
-oo

(A-37)
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The method of contour integration is used to evaluate I1 and

12. The results are:

I
1

= 0

I
2
= -iTT

Thus, from Eq.(A-36) and Eq.(A-38) one obtains

Re ( FICE)) Y To3

(A-38)

Tr 2 TT

Svt", ea. d chpal t PL,114-

o
(A-39)

In the above equation, the terms Da
2
/4, Db2/4 and DaDb/4 are neg-

lected compared to unity. This shows that Re(r) does not depend

on E. The average photon occupation number n(k0), in the incident

beam is of the order of 10/k03. Thus Eq.(A-39) can be written as

Tr 217

Re Cr) "- -Y1(kb) ko f isipiectdeacick,i I pcic"a12-Fi 11;123
ff)i. 0.,

CIR0) Cra. +11,

where Ta and Yb are defined in Eq.(2-43)

1:zo Ece ) ( Eci )

(A-4o)

Equation (A-40) shows that the magnitude of Re(r) is very small

compared to frit orrb provided the intensity of the incident beam

is not too high.
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APPENDIX B

1. Evaluation of P(e',,,kA)

The probability of emission of a photon with a wave vector 1Z).,

and polarization gA is

as defined in Eq.(2-59).

For a continuous distribution of frequencies in the incident

radiation field, the summation over k is replaced by an integration

\3
Yin-) 1V(k,)a12,.._

0

where

10(0,-)

71.0R,)

Thus, one can write

oo

PCk-,kA) =.1(1-') jr 1.( Q-) tb.ccocoilcite,... (B-1)
..en.

From Eq.(2 -58), one finds that 16f(00)12contains a factor

1/I(Ef - E3)I which reduces to a Dirac delta function in the limit

when ThisThis can be seen as follows:

1(E;- E; )T2 = [(kJ.- P2/4-3-1

= 27T S (B-2)
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where r stands for the real part of r and the imaginary part is

absorbed in the atomic state E. In Eq.(B-2), the following repre-

sentation of the Dirac delta function is used

I lion 0`..

'8 (X)

The assumption that r is very small is appropriate provided

the intensity of the incident beam is not too high (n(k,)<< 1)

(see Eq. (A- )+0)).

From Eq.(2-51), Eq.(2-58), Eq.(A-3) and Eq.(A-5), bf(t.00 ) is

written as

where

27rezfii.(1e,) r
b

1rc0)

ar
1,0

bc vbL t' rc rac
bf (t

°°) L3 412:7 Va1W7

+ r r
E +Ec ri,/2 + IC)> ( E + Ei=ta. ( bc a c

Lye et

x [ : { ( IR + r/.21 ( ha' z)] e

E Ec ±R c (x3 ±I)

and R, I and X3 are defined in Eq.(A-25) and Eq.(A-26).

(B.-3)

Thus, the probability of having a photon with wave vector k emitted,

provided a photon with wave vector k was absorbed is

2m2e4 ./2.04.)
I b (0.0)12f k.. MA (kx. ),y2 4. r 5vel. Di

(B-4)
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Ni = Ital2)13aP;j2L(kx-Ebi+E)2+/-b2/4]

+ pdt121 pi:c12[( )2+tZ/41

VIt1132cx2IP;;.1 2 -i- I Pb 12 I Po.0 Re ( 1:)) rct-: )

+2.V ( )f ii=c.x6t la RR (p:c.pct21) + rac 12 Re (ei,l'c:: )).

-+ (k),-E0(+)tie,12Re(p....--(1),--*)
Pc)O.

-I- Va. 1 lei, ft, le;,. ) ( pc; p`:,*) -1-tr,pblizibICI2P-21-Y-Otir)]

L Ec: E Ec' ) "reArb ). 2. Re ( ICa Pc6 113; )

rx*1) r-4`)+ [ ( ) -4 (1?,-E.0.+ Ed] ctc_ k,c

and

D, = t IRA- EL+ EZ )+ ro-141 E;) + Ec/ )2- + Tb2/41 +" V 4

2V2 ( ez),- ea,* Ec./ ) ( ) ran./4

Thus, combining Eq.(B-1), Eq.(B-2) and Eq.(B -l), one gets

e
1:1 r
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For an incident radiation beam with constant intensity Io (white

light), the probability of having a photon with wave vector kx is

P(
e I° NI

6% 1R )) =
L3 r DI

(B-5)

This probability k),) depends on the direction and polari-

zation of the incident radiation through the matrix elements p° and

pl7c.

It is shown in Chapter III that P(go., kA) is a highly peaked

function near equal to the frequency difference between the per-

3turbed excited states and the ground state. Thus one can replace 1/kA

by an average value 1/k03. Therefore P( e:, k.x) reduces to

e4I.N,
L3 r pc:s

In terms of a new variable

k = Ea.-t- E6)/2 -I- Ec

one can write

(B-6)

(B-7)

N = l< 1- 4/2 )2+ riD2/43 121 Rre. 12+t( K -4./42+/(x2/4/1 19:,12.1 11;12

V2-{ I 12119,C. 12 1- I 4 :612 4Re (/C);- 4*) Re ( Pac111,-)

Re ( t'c>t CK-c./1,-c*).}.

-1-2VL{(K+ &./2.)lie'a 12 + (k---a/2.)11e1;12} ( )



and

k + A /2- ) I Wc-.1 2 + KA/2)1C112i Re (pa Pc): )

+ (ra I le;,12 ) iv- ( kc: ?),: )

11-c.12 oeso.,p'cx:

Xk. o-*
k z/z)( Kt. A/2) + Yarbi4-3 2. Re ( a 1>cl, rbc.

"Ia.( K + .6/2) 1.6( k 4/2.)

), *
b Pa c Pbc ) ( B-8)

D, (K zN/2. )2 (k A/2)2- ( K + A/2.):10.yzi,

K _ pa) -16214 - 2 V 2 ( k z1/2 )( k Ai2)

+ (V 2' -I- Ta-1-6/4 2 (B-9)

115
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2. Evaluation of i(-0-0.,-flef°-,X)

The intensity of the scattered radiation with polarization

and direction ( 9e, 4), for a given incident radiation with polari-

zation (7,, and direction ( ea, 4'4), is defined in Eq.(2-61) as

rO°
I C-cla. e = (27.rp J P k-x) ..) a

Combining Eq.(B-5) with the above equation, one obtains

.04 TI (mica. N1 . (B-10)
(2/7)3 r D,

Since N
1
/D

1
is a highly peaked function near the real parts of the

poles of N1 /D1, one can replace 1/k)\ by an average value 1/k0 near

the poles. Therefore one can write

00
10 aiRx

(2Tr)3r1k0 0 Di
(B-11)

The limit in this integral can be extended into non-physical region

(kA= -co to k),= 0) without significant error, because the integrand

is negligible in this region. Thus Eq.(B -ll) reduces to

4
oo

I C-r1-0.,--rt
e La t4i ct.kx

(B-12)



The numerator N1 of the int egrand can be written as

N = No + + tv21 k,2 (B-13)
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where

Nc = ( Eci )2+ 1-1,2/41111;L i2 PcC.12 + {, Co )2+ ra1/4111C.Nbnli7c.12

+ Vz { I qt_121 Pb,- 12 +. I le, 121 PL I + Re (1=ft ) R2- ( PC: )

Re Olt. Pe:1)6Vt )

2..VE-[(Ebi-E)IPC.>.:12*+(EaEc)ilek:123-Re(Pa7c1::)

+ C Ecl I 1:13:;,- 12 Et )11%2 12.1 Re ( teo,

Cia I 11),"11 -rt. I ecso, 12 ) Imo, ( P0.7. )

+1.-CLIP:;12-15,1Par.-12)I-m(PAC)1

+ {(Ea.--E; )( Et:- ) +- ra/4 3- -2 Re ( eNb* C.CCAcr-C )

+ ( ) E Ec )3. iy,(1:).:f,bk-pci..c
be 7 (B-14)

N = 2 ( Ei-Eci)113c..12(1,4',12 + ( qt 12) 11,,, 12}

+ 2V { I l>,2112 + I Pc1,12} Re(Pa:irc*)

-÷ I Pac12-4- I 171,7 12} Re OC't1C1):*)

( Eb+ Ec,- 2 Ec ) 2 Re c ,_,

113.,cripc

(1:>ct. izt* r'bf-c * (B-15)



and

Nz ile;.1211=aCil 117c)6,\2\11:;11

+ 2Re(papc
1:).trc Db.; )

and the denominator, one can write

Di = C k.> ) ( ) ( k2,*)

where ki and k2 are defined in Eq.(B-3).

Thus the integral in Eq.(B-12) reduces to

where

and

13

coo

fN, dk + NI/ I; 1- N2.113/

00

k;)(kk2)(k)Zcit)(1RW2*)
-00

00

f(le -le,*)(k-k.1*)
cLiz

-oo

00

azdk
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(B-16)

(B-17)

(B-18)
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The method of contour integration is used to evaluate these

integrals. It can be shown that the integrands vanish on a semicircle

of infinite radius on both sides (upper half and lower half) of the

complex plane. Thus the contour of integration can be chosen either

along C1 or C2 (see Fig. B-1).

Fig. B-1. Position of the poles in complex plane.

Taking one of the contours, one gets the following results for

the integrals:

I

1,2

IYY1 "f"- i22 )

0)T--ni(eR;) E2Re(k;k)--112112-11q112-3

1T
Ira (kik; )

ini(k; Iw(ki.) [ 2 Re (k iz./2



and

, TOR, 121.Th(le)I
3 Dryt(kair.,(1e2)[2.ReCied2'2.)-1k;12-1011.1

Substituting the values of K: and 0.1z (see Eq.(B-3)), the above

expressions reduce to:

and

where

and

120

87Tx3/D (B-19)

2
scrr x 3E ± x4.V.D

n.E 2
3 -I- X32 t E/z1 X/2 -1- (LW 2+4,1- X 2) X3/4

D

Ef =
Ear El,

2

D = 1 6 X3 xa'aesz + 4x3 (4v24-4.z- x2) .

(B-20)

(B-21)

The definitions of 41 , X, X
3

and V are given in Eq.(A-23), Eq.(A-26)

and Eq.(A-27).

Combining Eq.(B-12), Eq.(B-14) to Eq.(B-16) and Eq.(B-18) to

Eq.(B-21) one gets the following expression for the intensity of the

scattered radiation:
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= e4IO f p4 2 ( PL I 2' I C' )1, 121Pbc:11
Tr2rkol- X b

+ V 2
( Xct+- X b ) Xa X 6 ikiZe(Pcx., Pc Re( P:C. c4')

X a Xi,

(11,)ez i2Aa Pcit 12/xi,) (IPaC-11hca I ID:t

+ voc-t- L44(11=N0,11-11":1;12) Re( Pc:c- P:c*) (1h;c11 lit;12) Re(Pc'xalbk)}

(lOct.12X6-1Pcxbi2XcL)Ilvt(Pa'cpc:)

+ (1 11; 12 X I iV2)(0..) 1.1' (pa ?cX:) }]

Xa. X b (Xa+Xb) Re( ea Pc"):13:; ID:c*) + IT" ( Pcic7t tpcX:K: )31

where

and

x[ (x,+x02:( v2+ xaxo xaxi,)

xci, = -ro.,

X6 = 'fb/2

(B-22)

(B-23)
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APPENDIX C

Eigenvalues and Eigenvector of IJA

In the Schn!idinger representation, the Hamiltonian of the atom

with an external perturbation V is

----- H0+1/

where H
o

is the Hamiltonian of the unperturbed atom.

In order to obtain the eigenvalues and eigenstates of the

Hamiltonian one has to solve the time-independent Schrodinger

equation:

i> = E IIlf) (c-i)

The state vector 11r> can be written in terms of the eigen-

vectors 10.> and of Has

Vr> = Cola> i-Dolb> (C -2)

where Co and D
o
are the amplitudes of the states (a) and (b) respec-

tively.

Substituting Eq.(C-2) into Eq.(C-1), one gets:

Co Eal a> + CoVia 4-DoEbb> Dov[1:>) E {cola-) +Dotb>1. (C-3)

where Ea and Eb are the eigenvalues of H
o

for the eigenstates (a.) and

Ib> , respectively.

Multiplying both sides of Eq.(C-3) by the state vector <o. and
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integrating over all space one gets

Co Ecti + DoVctb = Co E (C-4)

and similarly, if one multiplies Eq.(C-3) by 4;b1 and integrates

over all space, one obtains:

where

and

E

E6

V(...

Co Vba. Do Els Do

= Ea. -1- 4alvIct

LblVjb>

<c I v j) 5 i j b

(c-5)

Equation (C-4) and Eq.(C-5) can be written as a matrix equation:

E

Vb

%tab /0

a.
E E

(c-6)

A non-trivial solution of this equation exists, if the deter-

minant of the matrix

(Ea./E

\/k3 a

is zero. This gives

Vab

E

(Ect./ E'( Eb E) IVabI2 = 0 (C-7)



124

The two roots of this equation, are the energy eigenvalues of the

Hamiltonian 4 :

where

and

E°

E02

Ea/ E (4,2-1-4v1)112 (c-8)

A Eb

2

V IV0. 121 .

The eigenstates of the Hamiltonian are obtained by substi-

tuting the energy eigenvalues of i from Eq.(C-8) into Eq.(C-6) and

solving for the coefficients Co and Do.

The normalised eigenstates of ZH are:

and

where

and

( ( 0

I I > Co
0 (co i- Do lb>

(2) (2)

= Co -f- Do

0)

0

(1)
Do = i/r2 ( .n./1/4.2 4- 442 )1/2-

(2)
co

(2) co
Do = Co

(c-9)

(c-lo)
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APPENDIX D

Matrix Elements of the Hyperfine Interaction HD and

the Nuclear Quadrupole Interaction HGLin Li7

The Hamiltonian for the hyperfine interaction is defined in

Eq.(4-13) as:

H = f +3 (r.i'att 1J I+T3 7'5

This Hamiltonian can be written (14) in the following way

yo+yvi2

-I) c(112,wv02)y
2

(-?)

Yvi 1142.

X 17 (5) Ti (i) J ÷ ( D-1)

m +m
where C(112, mim2) are the Clebsch-Gordan coefficients, Y2 1 2(r)

are the spherical harmonics of rank two and T1 is an irreducible

tensor of rank one.

The matrix elements of H
D
between the two states

and > is obtained as follows:

< 3/2 1"; 1 < CP4 I HD I ch)) 3b Mr)

c o <3/2 rvq-l<1-11<1/2-1/4.11-1D1 1/2-A. >(10>pYir>r
s

Doi<3/2 -I I 1/2-V-2. I H.D 14 1/2>11-1>il 3/2 )114
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= co i<3/2 rr); I <1-11 ezIz. ) I ; 01 1/2 wiz)

TP1 r1,100112

112477 Z(-1) 2
C (112 /"IrVIZ)<1-11Y(r) )1°>

P11,
?VI

- mz
<1/2- 1/2. f Ti VO <3/4 Yvli I Ti 312T'li

Al"ni z 0114-Pliz

1)47 e< <713 )1.2 41r/5- 2IH) C C112 IWY112) <I II yicil))1-1>
hi/ ro, 2

x <I/2-1/21T, I 1/21/2> <3/2Y`'Ir 171 13/P11) Do g <Y2-16 I < 3/2/"S I

+ s+I- 5_1+ )11/21/2>13/2)11i> (D-2)

_nu,
The matrix elements of y2 C'el and T

1
m are obtained by using the

Wigner-Eckart Theorem (15)

<iirrif I T,7)1ti.h1,2) = C (1.0 -1Yfrif) )

<ttmfIYe ELYii.) = C (cc t tf, ( CLt Clo 0 oo)

X

p2ti-t-1)(2t÷))
47r (2,ti +I)

(D-3)

Thus, using Eq.(D-3) and the values of the Clebsch-Gordon coeffi-

cients, one obtains from Eq.(D-2)

<954))111. 1 HD I '1'4 ,"11) C `' 73/LTs °

Do 5 )( 3/2 -1-vvi.r) (.
?).,'r r

(D-4)
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The diagonal matrix element of HD in state icp,irnz) is:

< c1)411111 1 H D 434 ,r^z) = °(< 43) <3/2wILIK/2-Y21 4-1 -1 1 iziz

(54.)11-1>\1/2-1/2)13/2/.42>

vy1,+}vil rti + ma

+ a <i,31-247/5 (-I) C(112-,MYY1.2)<I-il Y2 (-79 11-1>

X <V2 -1/2 I T; I Y2 Y2 < 3/2
yr) s 13/2M L>

+5 <!-Ii< 1/2-1/21 < Venziszizt-i(cr+s I÷)\-)1y4-12)13/4y02)

which , after substituting the different matrix elements of Y2 and

T
1

and Clebsch-Gordon coefficients, reduces to

< (1)4 /1/z H1) ckt, rni rriz 1/5 ( )

Similarly, the following matrix elements of HD are obtained:

<3/2 -I I .1-D 1 1 -1> 1 /21/2)1 3/2 )1/1) ;61-11.1I °C(7:It3

.PYILV /2

<3/2 "III< 1/2- 1/2 1 < I° I HD 11°) 1'Ia- 1/2)13/27111)' = niX°<<-:r7J)

5/2 (n -6)

and

< 3/2 rY7z < I/2 i/2 I < I - / I HD 110>11/2-1/2>I3/2)",T)

< 3/2 )1'1 I <. 1/2 1 0 I )+1,11-1>iy2 v2>i 32vviz>

= (3/5T) <1/r3> (D-7)
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Thus, using Eq.(D-6) and Eq.(D -7), the diagonal matrix element of

HD in state
I cfrc is

CP4,7v)/ I HD14)4yri) (E; Do ± 2C 2" +J-2 . 3 C Do) YvA 0(.4-

- Cao )

The nuclear electrostatic quadrupole interaction is

Fick - e2
31. 12 ( 3 cos

2e -1

4I(1j-I) 13

2
e2k 31z. Ys(r)

41(21-1) T3

Using Eq.(D-3), the matrix elements of HQ are written as:

<04/411L1 HQ) CPit)V4) jzat". 01112 514) Shizm;

and

(D-8)

(D-9)

<06,mi I Ita 14)6 ,rni = )(m= 674) 6mz.ml

(D-10)

where

6 2 e2 < 3>
5

and C
o

and D
o

are defined in Eq.(4-12).



.

The experimental value of b for (13) is

b = 0.12 Mc /Sec

129

(D-11)
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APPENDIX E

Some Useful Matrix Elements of

The matrix elements of P'&..), for different excited states and

cr. gn,
ground states are calculated and the products acc),./tipci,t4, rmfe are

computed.

For /tt = 1 and Ai= 3, one gets from Eq. (4-17)

c <c- I S. Cpit V2> + <C. 1 13 \ 4)6 )1/2)

X*
= C2<l)4,1/21 ISa.A e> + D2 (4)4;-1/211;:eale>

The matrix element p equal to zero if the states (C') and 1'l0

do notnot have the same m. Thus the product E ic>
I

reduces to
c'l ci3

-.1-21c2D1<c14-3...),14,4,1/2><(pit,1/211D.esoc,> (E-1)

C'

After writing the matrix elements of 1=,.a in terms of the orbital

states Itne. of the election, one gets

X-*
C C -/e.,411 0> <1--)11:31°°> (E-2)D

I ° <001 z-)

and therefore

re'3 '1c 'lc 0 2C2 D C <001;e,NIIC)><1-11FI'A\C"
CC'

X <00 I 131-&,11-1> <101 13"..-1°°> (E-3)
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Similarly, one obtains the following set of nonvanishing matrix ele-

ments:

o-*

rEll r
c D, ,

eit n C 14CC °
Cc'

tp.x x* I`r i`P-Itc't .c gccc'

I1D>4* P6.- it.C'2 C/3 2C 3C
CC'

cc'

co
a
ci

,.., 2,, 2 L-i

.'21pc)Lf pC lirc Coa C, DZ

hOXit z
re,2 reg plc 1gc Co Di fk

c/c-
h>. bNit ,2 Th2Erc 'S- r3c r5CCc, c

Co L.3

qc 11'c
cc-

cc, f'it rcs rztc r5c.

)'Xet le:19:C 164;cc'

E e,5Pcs",,*1.5`-c1;e*cc-
b bcdOt

r-cc.cc-
where

CO2 D22

2 2, 2Co C c f

2 2
Co 2 1)3 C2 ±

Co2 ±

C0 CI

f = <001-1-..8,110>e:-Iiro.'60,100><0011-)4...11-1><I011-).&s,10.>

(E-14)

(E-5)

and Pt is the complex conjugate of f.

For plane polarized beams of the incident and the scattered

radiation, the polarization vectors and g), are:



and

aG = co. ea

= 7 cos ee si,vt ee

(E-6)
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where ea and ee are the angles between the plane of polarization and

the 7- axis for the incident and the scattered beams, respectively.

iFrom Eq.(A-11), the matrix element Piz°. is written as:

<c = Loo <c I "-Y-4'1'), la>

where 1.40 is the frequency difference between the two states and r is

the position vector of the electron.

From Eq.(E-6), the scalar product and M, can be written

in terms of spherical hermonics of rank one as follows:

and

-p,
'6 41r Y,Th(c) ""( ea ;11/2),, ,

z±Lr-
rLesrlY,/Y)17,( ee Jo)

3

(E-7)

Thus the matrix element <ool V,e;:x1 to> <I- iS:k>,1 0 6> becomes:

<0011S.e,00><1-11 r.8),100> = (47T/3)2 cog

X <001\6°110><I-t1)711100> ee,o) Yil(eeo)

wo <r>2
= . ifK ee Cos ee34 (E-8)
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Similarly

cot? <--f>2lob IDs.e,.100><00113.,1-1) eo, Cos ea. .

(E-9)

The quantity f defined in Eq.(E-5) reduces to

f -=. <0017:7e),00)<I_k crD.),106)kollE,et,.\00>zpokp.kr.10

Li.

=- Goo 4.0 Sim-2 ea.&4,29e
72

(E -10)

This quantity is pure imaginary that means the signal Sc as defined

in Eq.(4-30) is pure dispersion as a function of the external magnetic

field.

If the beams are unpolarised and have the incidence and scat-

tering directions as shown in Fig. 4-10, then T.g,...becomes:

Therefore

4"T
Dynt;_c1;,,91,0)TY:11°)

Th.:. -I
=. I,-

101-1-=:.lee.100><0015.e',11-1> = Leff w4-t>2
3- °

2

x I D11a ( (12.1,60) Do,.. (4),, ell 0) <001y:11 -1> <101.60,00

2 ,2
"10 s-ti /31_ 1-10,(4),, e o) D 00.4 C(1), e, 0)o

G30 GI) . SZiA,BIcesele '1

and similarly

<001 7E,' , 0> <1_1) . 10 cog <y>2/3 co. a e2
.)%
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Hence, for the unpolarized beams of the incident and the scattered

light f becames:

f = <001 iD.g.a.00Ki-115.1e,,,,00><101;

Pc4,4;<,-*4 'lc cA)9 Soyi.2 e
72 (E -12)


