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EFFECTS OF COUPLED ATOMIC STATES ON THE
RuSONANCE SCATTERING OF RADIATION

I. INTRODUCTION

The study of scattering processes has always been of signi-
ficant importance in Physics. The photon scattering, in particular,
has provided iaformation about energies, life-times and fine and
hyperfine interactions of atoms, molecules and solids. The scat-
tering of radiation has also been studied in the presence of an
external perturbation.

Colegrove and others (1) demonstrated in 1959 that, under
certain conditions, the crossing of two Zeeman levels of two excited
states of an atom in a magnetic field produces an interference term
in the scattered beam. This interference term has spatial dependence
and also a dependence on the energy difference between the two levels.
The study of such signals provides experimental values for the fine
and the hyperfine structure constants of the levels involved. In 1963,
Ick and others (2) found another kind of signal called anticrossing
signal. This signal arises due to the presence of a perturbation which
couples the two Zeeman levels which cross in the absence of the per-
turbation. Himmell and Fontana (3) have investigated such signals in
atomic Hydrogen.

Hearn and Fontana (4) used the quantum theory of radiation devel-
oped by Heitler and Ma (5) to investigate the resonance scattering
of radiation from a two—-atom system. They have studied the frequency

distribution of the scattered radiation as a function of the inter-
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atomic distance. The present work investigates the resonance scat-
tering of radiation from a single atom with two excited states and
one ground state. The two excited states are coupled by an external
static perturbation. The incident radiation is assumed to be of
constant intensity IO per unit area per unit solid angle per unit
frequency (white light). The method of solving the wave equation is
the same as used by Hearn and Fontana (4). This approach gives all
the probabilities including the final state probability as a function
of time whereas the Wigner Weisskopf (6) approach does not give the
probability for the final state directly.

The absorption and the emission of radiation is studied here
as a function of time and frequency for different special cases.
These special cases are: (i) one of the excited states is non-decaying.
(ii) both the excited states decay with equal decay constants. The
effects of the external coupling on the lineshape and linewidth of
the scattered radiation is investigated.

The intensity of the scattered radiation is calculated for a
given direction and polarization of the incident and the scattered
beams. As an application, this intensity is computed for the 22P

T

state in Li' and is compared with the experimental signals observed

by Wieder and Eck (7).



II. GENERAL THEORY

The system, under study, consists of an isolated atom which
interacts with a radiation field and a time independent external
perturbation. The atom is assumed to have two excited states and one
ground state. The external perturbation couples only the two excited
states. Initisily, the atom is in the ground state and a beam of white
light (a continuous spectrum of radiation with constant energy Io per
unit area per unit solid angle and per unit frequency) is incident on

it.

A. Method of Solution of the Wave Equation

The m=2thod used for solving the wave equation is a transformation
of the wave equation into energy space (8). The interaction represen~
tation is used. The units are such thath=c = m = 1 where®h is the
Plank constant divided by 27, ¢ the speed of light in vacuum and m the
mass of the electron at rest.

If 1¥)> is the wave vector in the Schrddinger representation,
then

s L H.t
ey, = e [§ed)> (2-1)

is the wave vector in the interaction representation. Hy is the Hamil-
tonian of the atom plus that of theradiation field, when the two are
non-interacting and there is no external perturbation field. The Hamil-

tonian of the whole system in the Schrddinger representation then is



9 = H, + H (2-2)

where H consists of V, the external perturbation, plus H, the inter-
action of the atom with radiation field.

In the interaction representation, the wave equation is given

by the expression

] , CHot —iHot .t
zil?ﬁt)) = e e Ve (2-3)

Considering onliy processes involving one photon, the state vector of

the system in the interaction representation is given by

[VE)> = byolos + I HORES

+ Z bj(t) 1j + 7} bf(t)\f) (2-h)
J

where lo) represents the ground state; |i) , |j) the excited states
with & photon absorbed and 1$) the final states. All these states

are the eigenstaces of Hy. In terms of the atomic and photon's states,

they are written as
0> = [c)loy,
'2.> = la>|-kw>R

1) |b>r‘kr>g

and
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The state vectors io), » 1~ R, and jRyyg represent the states of the
radiation field with no photons present, an absorbed photon with
wave vector R, and polarization 3}. and an emitted photon with wave
vector'ﬁh and polarization 3), respectively.

In Eq.(2-4) the summations over i and j are over frequency,
direction and polarization of the incident radiation, and the sum-
mation over § is over frequencies, directions and polarizations of
the incident and the emitted radiations.

The state vector lﬂ?ff)) can be written in a simplified form as
> = ¥ b)) (2-5)
m

where m includes all the quantum numbers defining the eigen states
of Hy in the interaction representation.
By inserting Eq.(2-5) into Eq.(2-3), multiplying by «n: and

integrating over all space, one obtains the follwing set of equations

d , C(En—Em)t
: 2 b, () = 2. Hpm b, ) € (2-6)
dt m
where '*;",denotes the matrix elements of i4i
Howe = <n|H M) . (2-7)

Since at t = 0, the system is in the ground state o) , the

initial conditions are:
bo(0) =1 >

bnu(e) = ©



and
b“(-t) - bo(t) =0 for t <o
In order to satisfy these conditions a term involving a Dirac delta

function is added (8) in Eq.(2-6), which gives

Ve é(Eh—EM)t i g g
<9 b,®) ;% Hom bm) € +i8no S®. (2-9)
t

To solve Eq.(2-9) the b,(t) are transformed by using the

following Fourier transformation:

[ -]

‘:(Eh"E)t
j de Gp(E) € (2-10)

‘..

bh({-) = T 2

e

- 00

In a similar fashion the representation of the Dirac delta function

is used:

¢'(E°—E)t

iS¢y = —31’—/_-2; de € , (2-11)
Zeo

With these trans’ormations, Eg.(2-9) reduces to

Co

i(E,—E)t
de (E-E,) Gu(E) €

- Qo

o0 . ((E,E) ¢
= [dE [ 3 Hyp Gu(E) +8mcde 7 7 (55
™m

— a0



This equation is satisfied if

(E-Ex)Gn(E) =% Him Gm (E) + Sno . (2-13)

This gives a set of equations for the  E):

(E-Bo)GolE) = HpaGole) + 3 H_.Gi(E) + X,HO}GJ(EJ
T J
+Zf Hop GeB)  +1 (2-14)
- 7/
(E"EC) GC(E) = HL'oGo(E) <+ ZL" Hil'/ Gc/(E)

+Z He; Gye) + % Hig Gy () (2-15)

(E-E;)G, (e) = Hj, Ga(E) + ZL H;-; Ge (E)
—I-ZJ_/ HJ/J-, Gi(E) + z;;- HJJ_G.* L (2-16)
and
(E-Ef) Gy (&) = Hj‘o G, (E) +§E H;,;Gu (2-17)
4+ ZJ H;J G, ) + 5}, H;F/f’ G:F’(E)

where

Eo = E(.‘
B, = E,—R,

(2-18)
EJ- = Eb - k’,



Since only processes involving single photon are considered, the

- . . e
following matrix elements of H are zero;

Hf,o = O
) (2-19)
Hoj' - (&)
and also one finds that
HL'Z’ = \{la— ghrk:_
by - = Voo Sk, K.
Hjo = Vob Bk,
Higr = Ve Sk k.
p (2-20)
Ho; = <elH+VIi) = <elH)&
Héj = Lol HxV]i) = <eolhli)
Higr = Hig Bk k]
HJ".f' = HJ} Sk‘,k’:
where
Vbn = <€IV{M> 3 {L,m = a,b c. (2-21)

Substituting these matrix elements into Eq.(2-14) to Eq.(2-17), one

gets the following equations

(E-E])G.(e) =2, H,;G(E) +2% HOJ- Gy(E) +1 (2-22)
< J



(E-E;)Ge(E) = HioGalE) + V, Gy (E) +§; Ry Gg (B (oop3)

(E-E})Gj(E) = HjpoGo(E) +Via Gy(E) +§ H; 4 Gy (B)(2-24)

and
(E-E;) Gs(B) = HyGe(®) + He; G;CE) (2-25)
where
By = E.+ 1\,
E; = E; ¥ ga
Ef = B+ (2-26)
E;f/ = Eg xl

The summation over § in Eq.(2-23) and Eq.(2-24) is over frequency,
direction and polarization of the emitted radiation only, because the
matrix elements Héfand ﬂﬁ.are zero if the state 1) contains an
absorbed photon which differs from the photon in 1) and V7> , respec-~
tively.

Equation(2-25) does not have a unique solution for G{ E) because
division by (E - E}) is not unique. A solution of the equation, which
satisfies the initial condition, however, can be obtained in the

following way (8)

Gj(G) = g(E-E;)[ Hei G¢ LE) + Hj'd. GJ‘(E)] (2-27)



10

where C;(EuE;) is the Zeta function which has the following

properties:
oo " |
= o f X _ L e
g(x) = zie dt -{t’”}’o X+ L ow
= Lom = ef)<{
t—o X ’
= P&y - irm 8y, (2-28)
XCGxy = |,
e " xt O for tYo
fg(x)e dx = (2-29)
—2ry for t <o
and
£.xt o
Lim Cx)€ = ) (2-30)
4 oo —ami 500

In Eq.(2-28), P(i/x) is the principal value of V/x , which behaves
like l/x everywhere where x # 0 and vanishes at x = 0.
By substituting Gf(E) from Eq.(2-27) into Eq.(2-23) and Eq.(2-24),

one obtains the following equations

(E-Ei+ip Yee) Gi(E) = HioGolE) + YuuGy(E)

— Y/ Tej Gy (&) (2-31)

(E-EE+L/213J:)GJ'CE) = HG.(e) +1,,G:(E)

! Y Ge(E) (2-32)



where

11

2-33)

In Eq.(2-31) and Eq.(2-32), the state vectors for the absorbed radiation

field are the same in the two states (1) and {j) because the matrix

element V. vanishes if 1) and \jy have different photons.
It can be shown that the ﬂb~ for i # j vanish whenever
1} are states of good angular momentum (9){ For a proof see

This is the case here and thus T;= 0 for i # j.

¢

From Eq.(2-31) and Eq.(2-32), the following expressions

G; (E) and Gj(E) are obtained:

G:(E) = [Hio (E-Ef+ {0:/2) + Vab Hys]GolE)
‘ (E-EZ«C/Z-Q‘.)(E—EJ.’.,. AY;) - 1oyl

_ (M (E-El+ 4 1) + Via Bio ] Go (E)

GyCE)

These expressions are substituted in Eq.(2-22), which yields

Go(E) =

E-E7 + ¢, M(E)

where

_i/z.P(E) = % L Hot Vab Hjo + Hojvbch'o

[

P . 2 ’ -
+ Mo 12 (B-Ej+ ¢ V5 ) + HHg | (E-E; +857 ) ] x

: . =
[CE-ei+ S Vo) (E-E + gpr ) — 12T

1¢y and

Ref. (11)}.

for

(2-3k)

(E-El+ 3 Yo ) (E-Ef4¢aY;) — Va2

(2-35)

(2-36)
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The summation over R,_is over frequency, direction and polariztion
of the incident radiation. The states |{) and Jj) have the same
aﬁsorbed photon E;.

Combining Eq.(2-34) and Eq.(2-35), one obtains

Ge) = Heo CE—Ef + %A75) + Vab Hjo (2-37)
‘ LCE-El+ ¢ r Y(E-EZ4¢ 7 ) =W, )2 ] [E-E5+ 4]
< 2 "¢ ) "fz V) 45) J[ o /2

and

Hjo CE-EC + % Yii) + Vealio . (2-38)
CCB-ED+ (aW o) (E-Ef+ 40 ) Va2 ] [e- EL+ 4]

G,jle) =

B. Determination of the Poles in G(E)

The rea. parts of Y::;(€) and TL(Q) have the following E

dependence (see Lppendix A-2):

Re ((B)) = (E-E + k,.)D,

and (2-39)
Re (Y;(6)) = (E-E + R.)D,

where D, and L, are defined in Eq.(A- 3) and Eq.(A-1k).
In Appendix A-3, it is shown that the real part of I does not
depend on E. Thus, absorbing the imaginary parts of Y s Y&f and

in the energies of the atomic states (see Appendix A-2), one can

write the denominator of G(E) as

[SE-Bi+ L Re(M)If E-E) + £ ReCy)f ~luayf ][ E-E, + %aRe(n)] (2-k0)
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Substituting the real parts of %, and 7}j from Eq.(2-39) and

replacing Re(T") by M, one gets
[{ EG+CDayr)-E; + (R,-E.)¢Da/a}{ EC+T Du/2) - Ef

+(R-E)iDp/2} ~lapl*J.LE-EXLT/T | (2-b1)

Combining Eq.(2-18), Eq.(2-26) and Eq.(2-41) and rearranging the

terms, one can write the denominator of G(E) as

. ) x (1= Do /y) E. Da
E+k - Eo (-1 _
CiePafa)(1+EDpp) [LE +R- =) 4(1+ D2 /4)
) t_2
_ ‘ (1={Db E. Db : E.
~L Ec"’chL}'{E +R,. - Ep (1 - Db/2) < - i Ec Dy

i+ DL/4  4(1+Di/y)

- \Vabl? { I—Da.bb/q _",(1)&+.DL)}/{(|+.'D:/,')(|+ Dt/q)}}"[E-ECI-\-"P/z] .

Since D, and D, are very small (see Eq.(A-13)), one can

neglect the terms D:/q, 'Dz/q and DPaDy/, compared to unity and

one gets
. ‘ /.2 - ’
(1+LDaf)(I+1Db/2) [ { E-Ea+ R _-EcDa/y +LT0,/1}X{E—E¢, +k,.

LB L My} - Dal? - Dat DI [E-EL+ T ] (2-k2)
4

where

and (2-43)
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It is shown in Chapter III that 4, and ¥, as defined in

Eq.(2-43) are the decay constants of the unperturbed atomic states

jo.) and Ib) , respectively. It is worth mentioning here that

Ta.

and Y, are the real parts of ’ﬂ‘:(E) and 'EiJ.(E) evaluated at E

4
equal to E; and E; , respectively.

Combining Eq.(2-37) to Eq.(2-39), Eq.(2-42) and Eg.(2-43), one

gets
G(&) =[Hio(E-Bp- EeDb/u +R) +Vab Hjo + L/2 (HioTy, Vab HjoDy) ]
x[[E-E; - E;Da /4 + Ry #lo/2)(E~Ep-Ee Db/ + Rpt L Vn/2)
= NVapl*(1 = £(Pa+ Db)/2)]. (14 i Dafa) (E- B 4 )T (2-41)
and

/ [y X .
GJ.(E) = [ Hjp (E-Ea- EcDafy +R,. Y+ Vo Heo + /2 (W57 Voo D,))
X([(E-El- B Dayy + kot i%/a)(E-EL- EDh /4 +L73)2)

~1
~Vap 1§ 1= L(Da + D)/ 3]J(1+ € Dppy) . ( E-EJ+1T4)] . (2-4s)

Since the matrix elements Hj, and V,, are of the order of H.,

and Y, , respectively, and since Db~ 10'® (See Appendix A-2), the

second term in (Héo'Yb— Vaijénb) can be neglected compared to the

first one. Thus one can set

HL‘OYL - \/db HJ.O Db = H,_'o Tb (2—)46)
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and by similar arguments

HoTo= Vpe HeoDa = WioTa . (2-47)

Jo

T
Similarly in Eq.(2-44) and Eq.(2-45), the terms E.D, [, and E_Dg /,
are also very small compared to the other terms and therefore can

be neglected without significant error. Thus one gets
Gi(e) = [ HeoCE-E+R.) +VapHgo + U2 Heo Ty 1 /[ $(E-EL
+ R+ Tl f2) (E-Ep 4R, + LTy/2) = 1y 12 (1= £ (Dat D))}
x (1+tDas) (E-E +LT/2)]
Gjte) = [ Hip (E-Eq +Ru) +Via Bio + l:Hjora/Z.J/[{(E‘Eaz
Rt L¥a/2 ) (E- Ept ket LVu/a) =1 Yas) (1 - € (Dar+Dp)/2)]

X (|+£1>5/2)(E—E;+5"/z)]. (2-48)

The Fourier coefficients Gy(E) and G, (€) have three poles.

The first two poles are obtained from the roots of the equation

(E-E +k +1Ta/y)(E- E;+k,.+in/z)—lla»}'z{:-é(Dawu/z} = o (2-49)

and the third pole is at

£, = E -tz (2-50)

T he roots of Eq.(2-49) are obtained by the method discussed
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in Appendix A-3. The result is

’

E

L} = EatEr gk 4 R-L(XaEI) (2-51)
Ez 2

where X3, R and 1 are defined in Eq.(A-26) and Eq.(A-27).

C. Evaluation of the Probability Amplitudes

The probability amplitude bp(t) is calculated by evaluating
the integral

oo L(ESE)T

dE
bo() = - 353 | Onl®) € d

-

by contour integration.

Thus, using the expressions for Gnp(E) from Eq.(2-27),

Eq.(2-35), Eq.(2-37), and Eq.(2-38), one gets the following integrals
for the bn(t):
oo C(E,ED)t

b(t) = — =, —_—
oLt 2me J o (B-ER)

Q©
b (t) = L f £ Hl:o.(E—E§+L/zﬁ.) +Vaija . e(.(E‘;—E)t
DA (1+tDaj)(E-E;)(E-E;) (E-E} )

2

-— 00

o . * .
. Hio (-8 +baTa)+ Voa Weo  C(S7E)E

bi(t) == 27 JO G i musa) (Bl ) (E-EN) (555

(2-52)
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and
(& -]
b, (+) = 'z'_n’xde S (B-Eg) [ g (Moo (B-Ej+ {aTe) + 1oy Hjo)x
-co

(|+\..Da/2)—l -+ Hfj(HJO(E-ECI*_L/Z‘Y;) + Vba. H(o)(l'f' (“Db/?)]

z(sj-E)f

=1
x[(e-g')(E-E5) (E-E})]. € (2-53)

where E,’, E; and E_; are defined in Eq.(2-50) and Eq.(2-51).

The factors (!+1Da/z) and (1+1Dp/2) in the probability
amplitudes bc({) and L-,J- (t) go to unity when their modulus square
is taken (Dg<<} and D <<l ).

Since the imaginary parts of the poles are negative, the
path of integration in the integrals in Eq.(2-52) and Eq.(2-53)is
taken to be a clockwise infinite semicircular contour in the lower
half of the complex plane. In the case of b,(t) , by (t) and bJ-('t) all
the poles lie in the lower half of the complex plane and thus, they
all contribute to the integral. Thus using the method of residues,
one gets

—‘.-Vcc't - r't/’—
bty = € (2-54)

(E.- E)t
Hio (Eul’ EJ{+L/2 To) + Vab Hjo <CES 5

(e/ - €3 )(E-E])

b.tt) =

‘o , (Ec-Ej)t
Hdo (_E;_" Ej + ‘/Z.Tb)‘\" Vab H'Jo . et( « 2
/ ’ 4 14
(E/-E")(Eg-E})
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’ . , «(E,~ /
Hio (E3= & + £Tas2) +ab Hjo SCRE,)E (2-55)
(E3-E)(E-EZ)

and

L Er +iTa/2) +Vig Heo CCE-EDE
HJO(E|-—EC+L a/2) + Vpa co'e J

b(‘t) Id V4 7
J (E/- &%) CE/~E])
, (E.-E7)
HJo(E;_‘ Ecl‘f'“Ta/Z) + Vo Heo ¢(Ej-Ez)
(e-E/)CE-E])
) . (E - E3)t
HJO(E;-—E:-b(.Ta/z) +Vbcho_ «CE;~Es (2-56)

+ (E/-€/)(E{fE])

The Zeta function g(E-E;) in the integral in Eq.(2-53) makes
the path of integration along the real axis to go arround a semicircle
of infinitely small radius, in the upper half of the complex plane,
centered at E = E;. (see Fig.2-1). The remaining path of integration

is the same as in the previous cases.

- k > . ’é' » ‘; oo
. E’ E-;
7 ?

Fig.2-1. Position of poles in the complex plane



Thus, using the method of residues, Eq.(2-53) gives

E}(t) = [ Hﬁ{H‘_-o(Ej'—EJ. +i%/2) + Vg Hio }

/ / .
+ H\ﬂ' { Mo (B4~ E.+ (% /2) + Vo Heod)

7 , ' / ¢ =1 '"('\/C‘C-t
X [CE-E/)(E~E)(E~g))] . e

+[Hee { Hio CE-E] + Y% /2) + Vab W0}

+ H:b' HJo (El’" El:/ + U 73-/2’) + Vba. HCo}]

-1 ((E,-E)t
«[CEREpceen (el e f

+ [. H:fC ( Heo (E;‘ EJ{"‘ LYb/z) + Vap Hjo)

+ Hjj% HJO(‘E:’._ E; "'CTa-/z) + Vba.Hf_o}]
/ ’ / / , - \:(E!'Ez,)f
x L(E~E[)(E~E/)(E-E))]. €
1 / -
+ [H;}C{ H{o( E,~Ey+ LY"/1> + Vab H_',o}
+ HJ‘J { Hjo ( E;" EC, + (’Tﬂ/l) + Wa H,‘_o}]

’ ! ! / ’ ’ - k.(-E{--E,;)t
X [ (E.z"E_;) (E;E )(E; B, )] e

(2-57)
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From E3.(2-54), it is seen that the probability by(t) decays
monotonically wi*h a single decay constant I .

The probability amplitudes béf) and b;(t) have three terms.
Each term has two time dependent factors, one is oscillatory and the
other is exponentially decaying. The oscillatory behaviour depends on
the frequencies of emitted and absorbed radiations, the coupling
strength of the external perturbation and the energy difference
between the two excited states. The coupling strength and the energy
difference also affect the decay constants of bj(t) and bj(t).

The amplitude of the final states, bf(t) in Eq.(2-57) has four
terms. The first term is pure oscillatory in time and the other three
terms have an oscillatory and an exponentially decaying factors with
different oscillatory frequency and decay constant. The decay constants
are the same as the ones in bj(t) and by(t).

As t =00 ,only the first term in be(t) survives and all other
probability amplitudes decay to zero.

Thus

bj(t_’”) - [Hj(. § Moo CEG-Ef + CTh/a) +VabHo) +Hy; HJO(E;—E; + o ;)

. , —1 =Vt
/ /
+VbaH(;o}]“[(E;’—”E')(EJ'E;)CL:{E&)]‘ = (2-58)
This gives the probability amplitude for the process where the

atom absorbs a photon with wave vector E; and polarization éL and

.
emits a photon with wave vector R, and polarization @A.

The probability c¢f emission of a photon with wave vector'ﬁ; and

polarization E) is obtained by summing over the incident frequencies:
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P, k) = 2 lb,t(o»)l2 : (2-59)

-~

The summation over R, is over the frequency of the absorbed photons
only. The symbol Ry in the parenthesis stands for the freguency,
direction and polarization of the scattered beam and é,_, stands for
the direction and polarization of the incident beam.

For a continuous distribution of incident frequencies, the
P(€_,kR)is given by (see Appendix B-1)

P ky) = €1, /(P TR) - [{ (k+a/2) + T/ HRAE RS )

w1 Ckma/2) T LR ITTRD T + VARG IR P AR IR
+4Re(B) B ) Re(BERET) = 2Re(Ra RV BRI R )Y
o> O

+ VL { (kv a/2) IR + (k-a) BT Re (L ES™)

+{(K+o2) (BT|* + (k-a/2) ke )] Re (Hu R )

ac

+ R IR =T IR ) L Im (BT BSY)

+ CRIRL - GIRLIY) £+ T (Ra RY
+{ (K- an)(K+ ak) + YaVi/4} 2 Re(RARY R RLY)
1Vl o) ~Mi(k-2)3 Im (R BL :: )]
x[ (k-op)* {krap)+ Toral +(Kt 2, Yol /g

~
_av2i(k_a/)(Kk+4a/2) + (V2+ To¥s/4)" ] (2-60)
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This expression has in general two peaks. The lineshapes and line~
widths depend on the external coupling strength, the energy sepa-
ration of the excited states and the decay constants of the excited
states. In the case, where one of the decay constants is zZero, a
hole is observed in the frequency spectrum of PC€ ,k,) at the
frequency equal to the frequency difference of the ground state
and non-decaying unperturbed excited state. A detail analysis of

P(é;,k)) is presented in Chapter III for some special cases.

D. Intensity of Scattered Radiation in a Given

Direction with Definite Polarization

For a beam of incident radiation with polarization o and
direction (6q ,$,;) , the intensity of the scattered radiation,
I(R, “L 7~2) with polarization A and direction (®e,de) is

obtained by integrating the probability'P(é,,kA)over the fre-

quency R,
ICaa 00 = B/ P&, k) Ridks (2-61)
o

where 2, and -f1g indicate the directions; and e~ and X the polari-
zations of the incident and the emitted radiation fields, respectively.

This integral is evaluated in Appendix B-2. The result is

,\7_ .,.z X 2,02
I(n, n, o~ )\)—elo [l al | c/+1b¢b//€c/
Xb

’ 9mW2rR,
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i - B )
4Re (Bu R ) Re (R Re
+[ VAT XaXs{ chXb

- (IR % ~ IR/ X V(1B %0 1P/ 70 ) ]

R >~ b~ m 21 Re(R)BO))
* Vgt ) Lo { (RAI- 1Rp 1) Re(RicRe ) + (R = IRel) Re (R Ky )
o -~ X

— 2{ (R~ IR X ) Im (R BE ) + (BT x| B 12 40) T (R RO

o~ o ¥
+4Xa ><b(xa."' Xp) RC(P:; Pc,)‘b* Pa.c Pbc_ )
* o~ r’t
+ 4% Xy & T (RuRp R Poc ) )X
=1
[ (Xatxp) (VI XaXp) + 282 XaXp]) (2-62)

The first two terms are constants. They arise from the direct
resonance fluorescence process of the two uncoupled states. The
next six terms are due to the presence of an off diagonal matrix
element Vg, of the external perturbation. These terms are called
"Anticrossing - signals". The name "Anticrossing" is given because
the perturbed energy levels of the two excited states repel each
other when plotted as a function of the external perturbation.
The last two terms are "Crossing signals". The name "crossing"
arises from the fact that the perturbed energy levels of the two
excited states cross each other when plotted as a function of the
external perturbation.

The Anticrossing and Crossing signals disappear if one of

the excited states is non-decaying. As a function of the energy
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separation a, the crossing signal has two terms; one is Lorentzian
and the other is dispersion. The crossing signal will be pure
Lorentzian or dispersion depending on whether PC); 3:}’:; :* is a
real or imaginary quantity, respectively.
As an application, the intensity I (4 4% ~X) for the 2°P states

of LiT is calculated in Chapter IV.
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IIT. RESONANCE FLUORESCENCE WITH ONE DECAYING
AND ONE NON-DECAYING STATES

The theory developed in Chapter II is used here to discuss
the resonance scattering of radiation from an atomic system where
only one of the excited states is decaying. The atomic state ib)
is considered to be the non-decaying state ¢ Yp = O)-

In general, the energies of the excited states obtained
from the real parts of the poles of G(E) are different from the
energies obtained without considering the radiation interaction (16).
A detail discussion of these energies is presented in the next
section. In the special case where the two excited states decay
with the same rate, the energies obtained by the two different
methods are the same. Hence,here the radiation interaction has no

effect on the energy levels.

A. Discussion of £, and E,

The real parts of the poles E, and E, of G(E) (see Chapter II-B)
give the energies of the system when the atom is in an excited state.

From Eq.(2-51), these energies are

Re (E/)

} = (EatEp)/2 + [{(Al—x2+4v2)2+‘/xzéz}é
Re (E;) -

4 o%— @ +4vi] 2 Yoz —R, (3-1)

where A , X and V are defined in Eq.(A-23) and Eq.(A-27).
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The energy -&is the energy of the absorbed photon. The
energies of the excited states of the atom are obtained by dropping

the term -R_ in Eq.(3-1). Thus,

\
E,} —_-(E;+E;,)/2 + [{(A"—X1+4V2)2+QXZA1}/Z‘
E,

)
v s-xteav2]Z Vagg (3-2)

If one does not take into account the radiation interaction, then
the energies of the excited states become

EE } — (E;+Eé Yz + aatewv? /2 (3-3)
E)
This result has been obtained by diagonalising the Hamiltonian of
the atom (see Appendix C).

Comparing Eq.(3-2) with Eq.(3-3), one finds that the energies
E, and E, are different from the energies Ef and E:jprovided X # 0.
But for X = 0, Eq.(3-2) reduces to Eq.(3~3). This mean that the
radiation interaction has no effect on the energy levels if the two
excited states decay with the same decay rates.

For the case where the excited states are degenerate (a=o)and

X # 0, then Eq.(3-2) reduces to

E, } = (EavEl), + Aavix2/2 (3-1)

E,

and Eq.(3-3) becomes

o

E,

EO

} = (E,+E[)/2 v (3-5)
2
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Fig. 3-1. Energies E; and Ep as a function of the energy separation (Eé— Ep).

The origin on the ordinate is set at (Eé + Eg)/Q.
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Equation (3-4) shows that the energies E, and E; are degenerate
if 4vi« Xz, because in this case the term within the square root sign
is either zero or imaginary (The imaginary part of the energies
contribute to the decay rates of the excited states). For 4v7‘7)<‘, the
two energies are non-degenerate and separated by an energy difference
of Y4y x2. On the other hand if one neglects the radiation interaction,
one finds that the external perturbation always removes the degen-
eracy and the two levels are separated by an energy difference of
2V{see Eq.(3-5)}.

The energies E; and E; are plotted in Fig.3-1 as a function of
the energy difference & for different V. The value of X is taken to
be Ya/z . For V<L .250; (4v3g x2), one observes that the two energies
approach each other and become degenerate for A= 0. But for
V) .25% , the two energies are separated.

In Fig.3-2, the energies E, and E,® are plotted as a function
of A for V =.25T4 and X =.5%¢ (V2 = X2). The energy E, differes
from E} significantely in the visinity of & = 0. At large values
of &, E, approches E.° assymptotically. In Fig.3-3, similar graphs
are plotted for V =.3¥; and X =.5% (4v?) X?). In this case, the

. o .
energy difference, (E,~E,) decreases as V increases.
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B. Probability Amplitudes in Time and Frequency

For this special case where the state |b) is not decaying, the
probability amplitudes are obtained from Eq.(2-54) to Eq.(2-57) by

setting % , Hjo and H}J equal to zero. The results are:

i - Nt
by = et TTt2 (3-6)
Hio CE; ’)éiergnt
b, (t) o v E
¢ (e-e;) (E-E])
, ((E,;"Ezl)t
Heo CE,~ B ) e
(&~ ) (ES~€/)
, , ((Ec'e:,{ )t
oo (E5-E/) € , (3-7)
(Ef E')(EfE)
* ((E;-EN)t (8-t
i€ = Eep L TEE) (5 e)
Vin He CCE;-E, )t
+ ba co e J 3 (3—8)

CE;-' El’ ) C E3’—E£)

and

Hee Heo (Eo-ES) Vet
b = —— 2 e
(Ef‘ E, )(Ef' EJ.)(E’(—E_;)
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L Hpo Moo CE-ES) C(EE)DE
(e/-E;)(E - E})(E-E;)

/ ’ ’
Hed Bep (E,~E;) L(Eg-Ep )T
(E-EL)(E-E]) (E-E])

Heq Heo (E;“ EJ,) ec(e}—aé)t
(E;~E; )( Er ENCE-E))

(3-9)

Substituting the expressions for E., Eg, E,, E, and E3 {see Eq.(2-18),

Eq.(2-26) and Eq.(2-51)% into Eq.(3-7) to Eq.(3-9), one obtains:

SR+ &/2 - C(Tasg+I)FexP{c(a2—-R)t ~(a/q+T)t}
2(R-CI)L R-Kp—C(Yaly +1-T/3)]

b(6) = Mo |

. $8/2-R=((Ta/g-I)} exPL AL+ R - (Yayy —1)t}
2(R=CTI) [ Rt Ko + L(Tafy-1-T/2)]

" fKot2/2—(TAY @PL{~{(KT02)t -ty

] . (3-10)
LK R+C (afy+T-4)]L Kot R+ C (Yajy=I-T/p)]

bt) = Yba Mo [ expiicR- /22t (Tajg-1)t
J RQTR-I]L Tk 3R = < —
ot R+ C(Yajy-T-T/2)

expf- ((R+24)t = (Ya/q +T)E ]
KimR + e (layy+1 - 1/2)

Vba Hio @Xxp §-¢(Kntd/2)t — Mt /2]
LR R+ C(Tafy+I-T/2)][Rd R+ ((May-1-T4)]

(3-11)
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and

it (Kata/z)
T LRA=R 4 R T TRAR + C (Yagy+T)][ K+ R— & (Yaly -1)]

bftf)

Hei Hoo LR+8/; —((Ya/g +I)J expf C(Kx-R)t —(Ya/q +I)t]
LKx=R+C((Ta/g+I)][ Koo R+ C(Ya/g+I-/)(R-CI)2

Hyc Heo LR- 8/, — ((Tasq —T) @xpt ¢ (KXTRIE ~(Ta/y~T)t}]
[KxtR+ (/g -I)J[KotR+L(Yafy+1-T/2)JIR-C1]2

L Hsitol ke ro/a-c M2 expi-ilke- K3t -Tt/2) (3-12)
[z k- 12 )k 2 R+ 0y vI-T/2)] [ K 4R +L(Ya/y-I- /2]

where
Ea+Ef /
_ _ te b E
Ko-' = k'_, 2 + e,
Eé_«— E.‘,/ /
Kn = ka- 2 B

and R and I are defined in Eq.{(A-27). The diagonal matrix elements
Vag> Vbpand Ve are assumed to be zero in the expression for the
probability emplitudes in Eq.(3-10) to Eq.(3-12). This assumption
is true in most of the cases of practical interest.

From Eq.(3-6), one finds that the probability \bo(t)\z of the
ground state decays exponentially with a decay constant .

The probability lbf(‘tﬂl gives the probability of the atom
being in the excited state |a)» with an absorbed photon with wave
vector -!;,,. This probability has three pure decaying terms with decay

constants (Yasa +21) , (Ta/2~21) and I" and three oscillatory terms
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with decaying amplitudes. These oscillation frequencies are 2R,
K.+ R and K,- R and the decay constants of their amplitudes are
fra./j,’ (Y ly=L +T2) and (Tajy +I +T1/2), respectively.

The probability IbLUﬂlzis plotted in Figs. 3-4 to 3-7 as
a function of K;'{K;f k,‘ (Ea + Eb)/2 + Ee} for different times.
At short times, this probability is small and quite broad but as
vthe time increases, the probability narrows up into two peaks
one near Ko~= R and other near K, = - R. The peak near K_,= - R
is weaker than the peak near Kw = R. There are some wiggles on either
sides of the peaks. These wiggles increase in number and become
weaker as time increases. At short times, the hight of the peaks
increases for some time and then starts decreasing at larger times
and becomes zero t =o©o . An increase in V decreases the hight of the
peak near K, = R and increases the hight of the peak near K_,= - R
(compare Fig. 3-6 and Fig. 3-8)). For V = 0, only one peak at K,.=R
is obtained. A physical reason of these changes in the peak hights
can be attributed to the fact that the decaying state (&Y 1is coupled
to the non-decaying state Ib) through the coupling matrix element
V and this coupling mixes the two states unequally for & # 0. This
means that the probability of the atom in state (@) 1is larger at the
energy El (the perturbed energy corresponding to Ea) than the pro-

bability at the energy E the perturbed energy corresponding to Eb).

5
This explains that the peak near Kﬁf R (corresponding to El) is higher

than the peak near K = - R (corresponding to E_.). As V increases, the

2

probability of the atom in state &> decreases at the energy El and

increases at energy E This explains the change in the hights of the

0"
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peaks with the change in V. For A = 0, the two states are mixed
equally and thus the two peaks in Fig. 3-10 have equal hights.

In Fig. 3-1lo, the probability lbLCt)lz is plotted as a function
of time for different frequencies of the absorbed photons. At short
times, all the three oscillation frequencies (2R, K+ R and K - R)
contribute to the oscillations in |5£UAIZ but at large times K@f R
is the dominant frequency because the term with this frequency dies
out slowely copared to the orther terms. These frequencies depend
on the relative positions of the two excited states and the frequency
of the absorbed photon. A physical reason for these frequencies can
be attributed to the radiation reaction on the basis of the following
classical picture of the system. The atom which consists of two
oscillators of frequencies Re(E;)-Eq and Re(Eg)—E; interacts with the
radiation field of frequency k, through radiative coupling. This
coupling produces three oscillation frequencies which are hﬁ; Re(El)
+E., k”— Re(Eg) + E, and Re(E] - E5). These are the same frequencies
which appear in the probability IEQ(f)Iz {,hp— Re(E{)+ E. = K - R;

R - Re(Es)+ E. = K + R; Re(E] - Ep)= 2R}. The decrease in the ampli-
tudes of the oscillations can be attributed to the fact that the
probability of the incident photon to exist without being absorbed
decreases as time increases and it tends to zero as t —oo. Thus, there
are no photons left to interact with the atom and therefore no wiggles
appear in Jby(t)1* at large times.

From Eq.(3-11), one finds that Hy(ﬂlz , the probability of

the atom in the excited state (b} with an absorbed photon with wave
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vector hL’ has also three pure decaying terms and three oscillatory
terms with decaying amplitudes. These oscillation frequencies and
the decay constunts are the same as those obtained in the case of

|b£(‘t)lz. The probability le-Cf)lz' is plotted as a function of K_
and time t in Fig. 3-11 and Fig. 3-12, respectively. These plots
have, in general, similar features as those of lbc»(f.)l2 as discussed
earlier.

The probability “%(t)(z gives the probability of the atom in
the state f(c) with a photon of wave vector-g; absorbed and a photon
of wave vector hk emitted. This probability is plotted in Figs.3-13
to 3-16 as a function of the absorbed frequency RN for a given emitted
frequency RA and time t. One principal maximum is observed at kpf kA
with many secondary maxima. The principal maximum is wide for short
times and narrowes up at large times. This means that the off channel
(kr,# KA) scattering is quite significant at small times but becomes
negligible at large times. As t -%oco, the plot of Ib*(t)ll as a function
of R, becomes a Dirac delta function S(ka; k) fsee Fig. 3-16}.
As time increases, the number of secondary maxima increase and their
amplitudes decrease. A physical reason for these secondary maxima

can be attributed to the same reasoning as discussed in the case

of Ib‘n_Lt)lz' s previously.
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C. Lineshape and Linewidth of Emitted Radiation

A study of the lineshape and linewidth of the emitted radiation
for the case where T,= o (state Ib> is non-decaying) is presented
in this section. An expression for P(E_, k,), the probability that
a photon witlh wave vector‘EA and polarization gk has been emitted
. _ . . . A o~
between time t = 0 to t>o00, is obtained by setting Vzb and FLc in

Eq.(2-60) equal to zero:

I, /(3rk3)y] lef; sl Ck + a/2)2
LCk=a72)(K+8/2)=V 22 +(k +22)2 2/,

(3-13)

~ r
P(ew ,k)\) =

This probability has two maxima, one at K ﬁj__i;;;_ and the other at
(£>+4V%$; These maxima have equal hights but unequal linewidths.

These linewidths are obtained as follows. The values of K for which

P(e

> kA) is equal to half of it's maximum value, are determined

from the equation:

(*<+A/9.)1 _ 2
[(c=2/2)(k+a/2) - vaTF 2 (kram)arg, ~ Tt

After simplifying the above equation, one gets:
2 2 .2
(k2= &% -v2) = (K=2/3) Y5 /4 = O

This equation gives four values of K for which P(gw, k)) is half

its maximum value. The results are .

)
1 a—
'}‘"‘ /o 2 5 (ofy+ s r4vieTaa)3
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and

L
K3 } = —-f_'a_ + L(T;/# +A2+4V2-T0,A)2
K., 4 — 2

The probability P('é",,k)) is zero at K = - 4/2. Thus the width of the

1
line at K =$(a’+4vY)3is
. 2 2 2 L
W= Tafy + 5L(Ta/g+5+4VE + 7, 4)7
2 2 2 1
= (Tafy + 874V~ 7 8)2 ] (3-14)

)
and the width of the line at K = - L(a*+4v?)is

n

2 L
Yoyy = 5 [ (Va/a+ 6%+ 4v24Ta0)7

—(Ya/4 +a2ravia)® ] (3-15)

The two linewidths add up to Ta (the linewidth of the single line
when no coupling is considered). As V increases, the linewidth W, »
decreases and wz increases. But as A increases, t; increases and Wq
decreases. Both linewidths approach ‘f‘a/zwhen V20o. For & = 0, the
two linewidths reduce to the same value ‘{'a,/z ,» and thus are inde-
pendent of V.
For 4 = .57, the probability P(€_, k,) is plotted in Figs. 3-17

to 3-19 as a function of K for different V. FPigure 3-17 showsthat

only one emission line of linewidth Y4 is observed when V = 0. In
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Fig.3-18 where V = .27, , a "hole" is observed in the emission line
at K = - .257, (x, = Ep - E,). This "hole" becomes wider with increas—
ing coupling strength V. The change in V and A also effects the line-
widths as discussed earlier (compare Fig. 3-18 and Fig. 3-19 for the
effect of V and Fig. 3-19 and Fig. 3-20 for the effect of A ).

For & = 0, the probability P(’e‘ﬁ, k)‘) is plotted in Figs. 3-21
to 3-23 as a function of K for different values of V. Comparing
Fig. 3-21 and Fig. 3-22, one finds that one Lorentzian line centered
at K =0 for V = 0 splits up into two lines for V = .27y with a
"hole" at K = 0. Figure 3-22 and Fig. 3-23 show that as V increases
the two lines move farther away from K = O without changing their
linewidths. Thus the linewidth in this case is independent of V and
is equal to ‘f&/z (half of the linewidth of the line when V = 0).

A physical explaination of the linewidth and lineshape of the
emitted radiaticn can be presented in the following way. The exter-
nal coupling V mixes the two excited states unequally for A # 0. Thus
state IQ) has some probability at energy El(perturbed energy corres-—
ponding to state lay ) and a lower probability at Eg(perturbed energy
corresponding to state !b) ). As V increases, the probability of the
atom in the state 1) at the energy Es increases and the probability
at E, decreases. This increase in probability at Ep and decrease in

probability at Ey explains the increase in the linewidth of the
line at E, and decrease in the linewidth of the line at El' For A= 0,
the two states are mixed equally, thus the probability of the decaying

state (o) at the energies El and E, are equal for any value of V.
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Therefore the linewidths are independent of V.

The "hole" in the emission line can be attributed to an inter-
ference phenomenon. If one solves for the eigenstates of the Hamil-
tonian of the atom plus the external perturbation, in terms of the
states I&) and Ib)> | then one gets two elgenstates which are not
coupled any more by the external static field. If the radiation
field is now allowed to interact with the atom then the two eigen-
states decay by emitting photons. The amplitudes of these eigenstates
at the energy Eg are such that the photons emitted at that frequency

interfere distructively and produce a "hole" in the emission line. A

similar "hole" was observed by Lamb and Retherford (17) in atomic

2
1/2 1/2° 2 S1/2-1/2

rf field couples the states.

Hydrogen for 228 and 22P states. An external

1/2 1/2
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IV. RESONANCE FLUORESCENCE WITH TWO DECAYING EXCITED

STATES WITH EQUAL DECAY CONSTANTS

The theory developed in Chapter II is used here to discuss the
resonance scattering of radiation from an atomic system where both
the excited states decay with equal decay constants (Ta=Te ).

The probabilities \b,;l2 , \bj\z and \bf\z as a function of
time t have similar features as those of the probabilities discussed
in Chapter III and thus they are not discussed here.

A study of linewidth and lineshape of the scattered radiation
is presented in the next section. In section B of this chapter an
expression for the total intensity of the scattered radiation is
derived for a given direction and polarization of the incident and
the scattered beam. In section C, this intensity is calculated for

the 22P state in Li7 as a function of an external magnetic field.

A. Lineshape and Linewidth of Emitted Radiation

~
The expression for the probability P(€~,R\) that a photon

has been emitted between time t = O and t = ¢ with wave vector R}

and polarization a; is obtained from Eq.(2-60) by setting Tog=Y=T:

4
P&, k) = Sze [ (kear)*+ TYa)lRal? IRk

+ (e + TV RSP + VAR

-~y N o T
AR 1 + 4 Re (RARD™) Re(RILRE) - 2R (RARLFL R
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+2VI{(KkTa2) RS 2 e (k-2/2)1R3) }RQ(P;%?)
+ Lke22) \BTIE + (R-2/ 1R 2 Y Re (R RLY)
AT ARIEA RS MO AR (A TR A

+ ( k2= Y4 + 7)) 2. Re('%a.Pcb b )

+ Ta/y Im(R t%b a: ) ]x

=1
[ £ (K-RZ 4 Y74} {(k+R¥Z+T7Y] (4-1)
where
ko= Ry- (Eg+E)/2 +E
R = é(Az-{-Q-VZ)‘i ,
and

! 14

The matrix elements Be'

j for i,j = a, b and {= N g are defined

in Eq.(A-4).

From Eq.(4-1), one finds that this probability has two maxima,
one near K = R and other near K = - R. The probability 1’(3;,Rm) is
plotted as a function of K in Figure 4-1 for different Vab . For
these graphs, the matrix elements are chosen such that pta= pﬁb and
Pac = ng and are real.

Figure 4-1 shows that the increase in V suppresses the maxi-
mum near K = - R and enhances the maximum near K = R. This effect
is easily understood if one thinks in terms of the eigenstates

of the perturbed Hamiltonian (Ho + V) {see Appendix C} . The two
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eigenstates of this Hamiltonian are cCylad) + Dolb) and —Dlad +C, \b)
and have energies equal to (E + E )/2 + R and (E + E )/2 - R, respec-
tively. The coefficients C, and D, are defined in Eq.(C-10). As V
increases C, decreases and D, increases. Thus due to the sign diffe-
rence in the eigenstates, the probability of photon emission from
the state Colad + Dolb> is greater than the probability from the

state -Dlad + Colbd)

B. Intensity of Scattered Radiation

The intensity of the scattered radiation for a given direction
and polarization of the incident and the scattered beams is obtained

5 = = T i - :
by setting X = X /2 in Eq.(2-62):

~ 2 o
Teae ez = SHER[IRLAE 1 R

PRVE 4R (AR Re G R — (1RGN IR (B 1)}
ravia{ (IR 1R?) Re(RTRE) + (IR 1R Re G
7 { QAR IRL) Im (RERL
+ (IRA-1RE1?) Tm (B 1)
+ 212 Re(RARY R RY) + 24T D (RARLRIPEE )1

-
(a2 +4v? +rr) ] (4-2)
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As discussed earlier in Chapter II section D, the first two terms in
Eq.(4-2) are constant. These terms arise from the direct resonance
fluorescence process. The next six terms arise from the presence of

the non-diagonal matrix elemement V These terms are called anti-

ab’
crossing signals. The last two terms are crossing signals. The name
anti-crossing and crossing are used because the energy levels repel
and cross each other, respectively, when plotted as a function of
the external perturbation.

The crossing signal is pure Lorentzian or dispersion as a

function of the energy difference A depending on whether F. bc

is real or imaginary, respectively. If it is a pure Lorentzian then
. . r by L
it has a half width equal to ( 4V '+ Tr2)3
Separating the crossing and anti-crossing signals from Eq.(L4-2),

one gets:

s 2Y Re (R an, achc.)'*’.?AIT“( aE ac bc (u_3)

¢ A% +4v2 412

S, « [2Vv214Re (RARY I R (B BLT) — (IRMI= VR
ueal’— IR} +2vi 2 URGS 18512 Re(BARDY)
+ (R TRD) ROBZRIMF — TLURMZ IR Im(BES)

+ (RS 1= RS 12) Im (RA RS D3

(8% + 4v2 4y2)"' ] (4-b)
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where SC and SA stand for the crossing and anti-crossing signals,
respectively. The above signals depend on the direction and polari-
zation of the incident and the scattered radiation.

For an atom which has many coupled excited states with equal
decay constants T (coupled by an external static perturbation) and
many ground states, the intensity of the scattered beam is calculated
in the following way.

The total Hamiltonian of the atom (excluding the radiation

2
interaction) is first diagonalised and then the probability’lééf*°”]

is calculated (11):

a LR-R Y +T34T [ Ry-E+E+ r][n E 8- Lr)
(4-5)

Ih;(f-)co)lz =

where H stands for the radiation interaction (see Appendix A-1).
Summation over A and A are over the excited states (the eigen-
states of the total Hamiltonian) and E,‘are the energy eigenvalues

of the excited states I}4> . The probability lhglf-vaﬁlz is the pro-
bability that the atom has absorbed a photon with wave vectori%_and
polarization éL during a transition from a gfound state IC) to the
excited states |A) and has emitted a photon with wave vector'gland
polarization @A during the transition from the excited states | A

to a ground state]é) . In this calculation (Eq.(4-5)), the ground
states are considered to be degenerate. The final state |f) is defined

as:

1§y = 'Cl)i—k'~>a‘+k0~>g’
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If all the ground states are equally probable at t = 0, then
the total probability that the atom has absorbed a photon with wave

N
vector R, and polarization €. and has emitted a photon with wave

vector 5; and polarization é& at t =00 1is given by:

n 2 Hpse Hane Fgas Mo (4-6)
t= 00) E -
Z, (= ol = oy - [(Rx-k, Y4 T RcE+E+ETI(RE e AE-S1)

cc’

where summations over ¢ and ¢ are over the ground states.

In order to get the total intensity I(JL¢,C;°U)J of the scat-
tered beam for a given direction and polarization of the incident
and the scattered radiation, the probability in Eq.(4-6) is integ-
rated over all frequencies of the absorbed and the emitted photons.

Using the ract that l/{(k)\- k,. )2+ rﬂ/h} reduces to 2W/T S(R_x-k,.)

+* *
for very small ' and that the product H:!'PH/“CH;;;(}L'C can be considered
to be constant near the poles of |b (00312 , this integration gives:
XN ON® ek
R 2,7 s
I(y g, n) OCZ CAPQ.AT Pue Buwe (4=17)
/“’ Y + ¢ ( Ef‘— E/: )

cc’
P)\ . . - A ’
where o'u is the matrix element of p.ey between states |¢ ) and | M)
(see Appendix A-1) and P is the momentum of the electron. This is the
well known Briet equation ( 9).

The intensity I(flaldle,'1,$) can be written as:
L(2, 1, HMZ [Z ,,.C#P BL.G/’Y‘

1‘2E: 1\Re( ‘f Fejtz«CELc )'+'(E E«)lbn( A é?:£i2£h *)
A p (E-E.)* +v2
M EL

(4-8)
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C. Crossing and Anti-crossing Singals
for the 22P State in Li7

As an application of the theory developed in the previous
section, the intensity of the scattered radiation from a Li7 atom
in an external magnetic field, is calculated. The frequency range
of the incident beam is so chosen that only the 128 and 22P states
are involved in the scattering process.

Ignoring the hyperfine structure for the moment, the Hamil-
tonian of the Lithium atom in the external magnetic field is written

as:

—

SH = Ho + AL.S +%s/«o§.ﬁ + Gg MoL.H (L-9)

where W, is the Hamiltonian of the atom excluding the fine structure
and the magnetic field interactions. The symbols §.s and Fv stand
for the electronic spin and orbital Lande g-factors, respectively,
Ao stands for the Bohr magneton, A for the fine structure coupling
constant, H for the magnetic field, 'f for the orbital angular
momentum operator and S for the spin angular momentum operator.
The experimental value of the coupling constant A is approximately
6.75 KMC/sec. (12, p. 13).

If the magnetic field is chosen to be along the Z-direction,

then the Hamiltonian H in Eq. (4-9) reduces to

H o= Hy+ AL.3 + Js oS, H +FemolH o (4ga)
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Due to the presence of the magnetic field interaction terms
in this Hamiltonian, the total angular momentum J is no more a good

quantum number. However, the magnetic quantum number m. is a good
quantum number.

A representation involving {, g, m,, and ™M, ( \Qsmg'ﬂ)) is
used to diagonalize the Hamiltonian in Eq.(4-9a). The following

eigenstates are obtained as a result of this diagonalization:

by = hik1'e) ,
1By = Apligola) + BollVel-Y%),

l¢‘3> = C,olia=1%) + Dol o =) -

(4-10)
16y = 11Va=1-Y2) .
1Psy = -BolthaoVa)y + AlIVat=Y2) »
[Py = —DoliVa-thh) +Collipe-%),

and their corresponding energy eigemvalues are:
E = E°+A/2 + (G¢+ $s/2) fcaH
E,= E% Ay + V2 Gy ol + '/2[(.%5‘?01/‘(3 Y
+ (%= 30) koA + QAY4]72

Ey = EO A/g—/2g, MoH +V2[ (s ) AT W
—($s-F0) MaHA + Y402

E, = E°+ A4 —(9¢+%$5/2) foH



ES = ED" A/l{, + V2 %’( /"-oH - l/2[. (%5'3()2/‘4.:}, H2

+(%S"%¢)/<°HA —+ qA2/4] Va |

E, = E°= A/~ V29 MoW — 2] (35 Fe) a2 W2
— (s~ FL) o NA + ‘?Az/‘*]\/:Z' (k-11)

where Eo is the energy of the atom without the fine structure and
the magnetic field interactions. The coefficient Ao, Bo, Co and Do

are defined as:

A, } L (| + Ao +AJ2 >\/2
e, ) Y JnrAm)tean
and (L-12)

\

Co | ( LTS N A/2 V2
= — | X
D, V2 o (KoH—A/2)2+2A2) -
When the energies in Eq. (4-11) are plotted as a function of

the external magnetic field H, one finds that energy Eh crosses

E. at H=2A/(3M) and E, at H = Ak,

> 6

The hyperfine interaction HD and the electrostatic nuclear

quadrupole interaction H. are (13):

Q
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Hy = o<["'s +3(_ﬂ].1 + § §-f, (4-13)

T3 TS
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and

- _eta 313—1 ](3(3059—‘ _
HQ — —e 1 (AT ) (4-14)

where Q stands for the nuclear electric gquadrupole moment, © and r
are the coordinates of the P electron and « and § are constants and
have the following experimental values (13).
-+ = + 0.0 c
*{F,) = 13.37£0.05 MC/sec

(4-15)
€ = -3¢ £0.7 MC/sec
where ([/r3) is the average value of 1/T1® in the 2P state in LiT.
The total Hamiltonian 3ir of the atom including the hyperfine

and the nuclear quadrupole interaction, is:

Hy = H, +AL.3 H3I+GT)-H o+ Hyrhg (h16)

The presence of the hyperfine interaction in this Hamiltonian,
couples the hyperfine states of the same total magnetic quantum

number M, (™My = M+Mg+WMy), Thus, m, is no more a good guantum

J
number. Near the high field crossing of the energy levels Eh and
E6, the coupling between the hyperfine states of |¢5> and [Pgd is
stronger than the coupling with the other hyperfine states. Thus,
one can just consider the coupling between the hyperfine states of
l#%) and I¢%§> and can neglect the other couplings without

significant error. The intensity of the scattered beam is calculated

near the high field crossing of Eh and E6.
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The following representation is used to diagnolize the total
Hamiltonian ¢ in Eq. (L4-16):

1P, ™) = (P32 ma)

where the wave vector |®;) are defined in Eq. (4-10). For Li

T the
nuclear spin quantum number I is 3/2.

Considering only the coupling between the hyperfine states of

¢y and 1@y near the high field crossing, the following eigenstates
result.

W) = Clé,,¥2) +D1¢,,Y2)

M) = —Dild,,3/2) + ¢\ b, V2D

s

1Y) = Caldy,V2) + D\ ,~1/2)
[V3) = —Dal, V2> +Cal Y2y
Wsd = Cal@,~Va) + Dalag, -3y , 77
VS = =Dald,-V2) +ca )by, -3/2)
Y = 1 ¢y -32) »
Vey = 1&g, %2y -
The coefficients in Eq.

(4=17) are defined as

\
C- v + _4c 2
L - = ’ — . L=1 2.3 4-18
D¢ y2 '\/A‘:Z 4..4‘/62 J » s - (k-18)



3
The energy differences A and the off diagonal matrix

elenments Vi of the hyperfine interaction HD’ are defined as:

A; = Ly, M| He by, mp) — L 1 F g mAD (b-19)

and

V; = <¢4,MI'HD]¢6,MI-\> (4-20)

where i = 1,2,3 for m = 3/2, 1/2 and -1/2, respectively.

The energy eigenvalues of the states |¥;) are:

E" } - < ba,¥2) He | by, 3/2) +<¢‘)'/zl§jr[ bs0)2)

y 2
EZ

* Ja? +4v2 (4-21)

E_'; I’ _ Lby, 2] HArl Py, V2) + L pg,~Val Fir e ~Vay
2

+ 4 A; +a4v,r (L-22)

E, } LYo\ Prl o Y2 + L Pe. =32 Hrl bom¥a)
. B 2
E
+ Va2 Favp (4-63)
Eyl = <Py,- Y2 | HE - Y2y

Eg = <¢613/21 wTI¢6’3/2> ’ (h-2L)
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where the subscript on E’ corresponds to the subscript of the

eigenstate ¥y ) . Using the matrix elements of HD and HQ as calculated

in Appendix D, the following expressions are obtained for the

diagonal matrix elements of the total Hamiltonian:

by mp | He ) dymp) = E°+A/2~ 2 AoH
—mp (X<t +5E) + 2 (."‘x £)
and
<, Mz | )b, M) = E°~(Ds/2+12Cs Do) A
— Mg 13> (6DS + 2e¢d + J‘2.3c°D°)/5+3'5(Di—cf)ng
— & Aot +B(DZ-2¢1V/a(ME- 5/4) . (-25)

The off-diagonal matrix elements of HD as calculated in

Appendix D, are:

:<¢9,mIlHD]¢6)mI-'> - zi(ﬁzc ~_D )0(<TB»

- Do§ JW(5/2- M1)(3/2 +™1) (4-26)

where i = 1,2,3 for m, = 3/2, 1/2 and -1/2 respectively.
If the off-diagonal matrix elements of HD are assumed to be
zero, then there is no coupling between the states of the same

total magnetic quantum number m_, and the states |¢%37n1> and

f’
Ip, M) are the eigenstates of ¢H.. For this case (Vi = o), the

energies of the states }q%,mt} and | Q,m_t> are plotted in Fig.
4-2 as a function of the external magnetic field H. There are two

sets of levels, one originating from the 2P state and the

3/2-3/2
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other from the 2?’1/2_1/2 state. These two sets of states cross each
other near H = 4825 gausses. In order to get a '"crossing" signal in
the scattered beam, the states which cross each other must decay to
a common ground state. There are four such crossings of interest
where the two levels have the same m_.

I

If the off-diagonal matrix elements of HD are considered to be
non zero, the two states of the same mf are coupled and the cross-
ings mentioned earlier no longer exist. The energy eigenvalues for
this case (Vi # 0) are plotted in Fig. U-3 as a function of the
external magnetic field H. There are three pairs of states which
anticross and there are six crossings that contribute to the signal.
These crossings are far apart. The curves in Fig. L4-3 are quite
different from the ones presented by Wieder and Eck ( 7). According
to their graph only two crossings contribute to the signal.

From Eq. (4-8), the intensity of the scattered beam for a

given direction and polarization of the incident and the scattered

beam, is

NN e e
I (Dg g o, n) o< z_c [ SRR R Rl /7

P

NN . % s s P
L z 27 Re (B R ble Bie )+ 2 Ec ) Im (B oo Bec
2 Ty 2
e’ ( Eu %Q«’) + 7
A # 4 (4-27)
where the summations over A and &  are over the excited states

as defined in Eq. (4-17) and the summation over c and ¢’ are over

the ground states. The following states are the ground states of Li

IC;Y = 1lolao ) 32mr)

T,
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wher j = 1,2,3,4 for m, = 3/2, 1/2,-1/2 and -3/2, respectively,

and

ICy = loYao-Vahi3LmLy

where j= 5,6,7,8 for n, = 3/2,1/2,-1/2 and -3/2, respectively. It is
assumed that there is no coupling between the different hyperfine
states of the ground states.

Substituting in Eq.(4-27), the matrix elements pC‘Z;“ R Féi::f R
’:’:(_ and E:r: in terms of the states [{o> ,vnﬁ and ]q,,m\, using the
selection rule Amzao( P/‘ o ifie) and [4y have different mI) and
regrouping the terms with V. in the numerator, one obtains the

following expression for the anticrossing signals (after some tedious

algebraic manipulations):

8, o« (-ny 2 CZIRL - ZiRe)

=423

(S VR =3 1R 1Y)
AE +4v 2+ T2

X (L-28)

where the states 1Q;) and Ib;) stand for a set of two states which
are coupled by HD. In terms of |42,,T"I.) and l%,mﬁ, the statesia;)

and |b{) are:
b,y =1®,v 1)
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where 1 = 1,2,3 for m = 3/2, 1/2, and -1/2, respectively.

There are four terms of the form |{c|p M; mﬁ] |\ Pl b, m I)
and four of the form \<C\b\¢""‘1\7\2\ <C|p\¢‘,ml>\2 in the total
intensity I (4%,”4,X). These terms provide a very slowely varying
signal as a function of the external magnetic field.’They are not
discussed here and therefore are absorbed in the background signal.

The remaining terms in Eq.(4-27) give the crossing signal:

4 ! ¥ o o~
ZZZ T Re (R B30 Breb2) + (B —E) Im (B B B Bie)
= (E - E )2 +Y2/4,_

sp el (4-29)
where

M =1 for A= 3,4,5,6,7,8

M =2 for A= 3,4,5,6,7,8

M =3 for W'=5,6,7,8

M=k for M'=5,6,7,8

f=5 for A=T,8

M=6 for A= 17,8

A= T for ,u/= 8.

These values of A and A’ are the subscript of the eigenstates (¥
defined in Eq.(k-17).
. A A - [l S . .
Calculating the product eu‘}%’x&c Poe in terms of the orbital
states [ 7,) (see Appendix E) and substituting the result into Eq.

(4-29), one obtains:

2 ¥ Re () +(E1-E3) In($) D2D2 YRe (§)+(E- EL,)Im(f)

SOQC 1(EE)2+’Y‘2 (E-E. )2 +7r2
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, e sze(f)_@,’—eg)lm(ﬂmzca T Re (£)+(E3-E3) Im ()
EECELARRE SCAEALIEE

2 2 7 Re (£) +(Es=EL Y Ipm () 2 TR($) —(EZES)Im ()
+—C,122 - ~ 4—1%
(EFEL)2+T2 (EFE )2+ 72

L c2pR T Re®) + (BSEQ) Tuep) L IR T Re(5) + (B3~ E) Im(4)

2 4 ’ 3 4 ’
3 (E-Ez ) 4 r2 T(ETE)? 4 v2

N

+C§C22 T Re(£) + (B4~ EZ) Im(f) +C22D§ TRe(H) + (E4-EL) Ima (£)
(Eé—E;)z + T2 (52-52)2_+T2

+ D2 T Re($) + (E5—ENIm(P
3 ’ - \2
(Eg—E)2 + v2

so2 TR + (EL-EJ) Im($)
? (e~ E]) 4 r2

(4-30)

where

f = <00‘Fvé\)“0><|""”-’;'é\)l°°><'°‘B'ép.)oo><°°' };'éwl '_D

(L-31)
/7
The energies Ej are defined in Eq.(L4-21) to Eq.(k-24) and the

coefficients C; and D, in Eq.(4-18). The vector P is the momentum of

the valence electron in Li7 and §,_ and /é)‘ define the direction and

polarization of the incident and the scattered beams, respectively.
From Eq.(L-28) and Eq.(4-30), the anticrossing and crossing

signals are calculated for the following experimental situation.
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The incident beam is plane polarized and is along the x-direction.
The scattered beam is alsoc plane polarized and is along the y-direc-
tion. The plane of polarization of the incident beam makes an angle
E%,and the plane of polarization of the scattered beam makes an angle
8 with the z-axis, respectively. The results are:
S o< (1) CF (1~ 30 8 ) (1 - 3088, 2. Ve (a2 i r)
A o c a L ¢ (

¢=1,273
(L-32)

and

S. X (1) C2 Sim 20 Sirdba D¢ (E~EF)
(El E.3 2 4+ T2

€, Eo—E’)
(c ~g/ )1+ (B 8)2 +72

’ /
+ cRe? (&) o2z (E{-El)

+ |
(B/-g5)2 + 72 ? (8- )R+ T2

4 7
2 (Eg—Ey)

4 r 2
2 —
+:D' 4 c ‘DQ <E3 ES')

Id ’ 3 4‘ I'd Vi
(Eg— E3)2 + 12 (E3-E5)*+72

+&3
F(E -E N2 T2 ?(El~E5)2 + 12

2 E’_E/ /_E/
(E’ E)? + 1R (Ez~E/)2 + T2

c? (E-E) ] _ (4-33)

\3 P rd 2
(E/~E;)2 + ¥
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From Eq.(L4-32), one finds that the anticrossing signal vanishes
for either 8,= Co3'(Y3) or &, = Cos(1/5). Similarly from Eq.
(4L-33), the crossing signal is found to vanish if Ql=‘h7fﬁ or
éé =7”62§, where n and m are integers. Thus, there is no crossing
signal if the polaroids are oriented parallel, perpendicular or anti-
parallel to the magnetic field. These signals are plotted in Fig. bL-
4 and Fig. 4-5 as a function of the external magnetic field. The
anticrossing signal is Lorentizian and the crossing signal is disper-
sion type. In order to compare these signals with the experimental
signals obtained by Wieder and Eck (7), the derivative of the
signals are plotted in Fig. L-6 and Fig. L-7 as a function of H. It
is observed that the two signals are in good agreement with the
experimental signals (Compare Fig. L-6 with Fig. L4-8 and Fig. 4-7
with Fig. 4-9). In Fig. L-6, the seperation between the maximum and
minimum of the derivative signal %ﬁ?\is approximately 35 gausses
which is the same as that obtained by Eck, Foldy and Wieder (2).
The form of the derivative signal‘%% in Fig. 4-7 is similar to that
of the experimental signal in Fig. L4-9. The position of the central
minimum is near the center of the anticrossing signal as pointed out
by Wieder and Eck (7). The separation between the prominant maximum
and the minimum is of the order of 36 gausses. Wieder and Eck have
not quoted the experimental value for this separation.

It is interesting to note that the crossing and anticrossing
signals are observed even if the incident and the scattered beams

are unpolarized. The following experimental geometry is considered
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Fig. 4-8. The derivative of the anticrossing signal in the 2%p term

of Li7 as obtained by Wieder and Eck (1) experimentally.

Fig. 4-9. The derivative of the crossing signal in the 25P term

of Li7 as obtained by Wieder and Eck (1) experimentally.
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for this case. The incident and the scattered beams are unpolarized
and they make angles &, and éa'with the z-axis, respectively (see
Fig. L-10).

The anticrossing signal in this case has the same functional
dependence in H and the same angular dependence in O, and 63 as
discussed earlier for the polarized beam, except that O, and Op are
now replaced by 6, and 83 , respectively. This signal is independent
of the azimuthal angle of the incident and the scattered beams.

The following expression is obtained for the crossing signal

TP + QL(E~E})
(E-E; )2 + T2

S, x C; SmQBSm?Gz[Dz 2

2 TP +Q(E-Ey)

+ D'p]
(E-E/)* + 12

E -E,;
202 TP + &< 9)

C
? (ef-¥ )2+T2

..+-
' (- 58)2 + 72

Yo _YP +Q(E3-EQ)
+D3D2 —— <
(Es-E/ ) + T2

(?Jlfz TP + Q.(Elv‘sc)
(E—E )2 4+ 72

+

(:2 TP— ac( EF'E;)
"(B-EpH2 + 72

C2D2 TP + @ (E2-E;)
2 ( E E Y2 472

2D2 TP + Q(E;EL)

T (EfEL* + 12

+ cRey 1
CH ES)2+Y1

DQ TP+ Q(ES~E;)
'\3 ’ ”
(EL-E; )2 + 72

o2 TP + & (E¢-E5)
3(E[-Ey)2+ 72

] (L-31)



39

Ce| ’43:)
(61,%)

>}rl
xl

Fig. 4-10. The experimental geometry.



0.75

(arbitrary units)

S
o
w

Fig. lL-11.

4800 L8LO 4880

H (gausses)

Crossing signal in Li7 as a function of the external magnetic field H.
The incident and the scattered beams are unpolarized and are in the

X-z plane.

06



1.0
)
e
-
5 o0.5f
£
@
&
o
B
o]
o H (gausses)
e 0.0 t + —+
4800 L840 488
Wiz
DI
-0.5
-1.0

Fig.

4-12. Derivative of the crossing signal in Li7 as a function of the external magnetic
field H. The incident and the scattred beams are unpolarized and are in the x-z
plane.

16



92

where
Priq = e™®

This signal depends on the difference of the azimuthal angles
of the incident and the scattered beams. If 4>2—q>, is M/9 or 37/2 ,
the signal is pure dispersion. If q>2-¢>l is Ooor 7 then the signal
is pure lorentizian. The signal vanishes for § = "7/ or 9_2= m /s
where n and m are integers. The signal S, in Eq.(L-34) is plotted
in Fig. L4-11 as a function of the external magnetic field. The
incident and the scattered beams are in the x-z plane ((R = 4a.=<9
This signal is pure lorentzian and has a maximum near L4826 gausses.
The derivative sign&l%%ﬁc is also plotted in Fig. L-12. The separa-

tion between the maximum and the minimum in this signal is approxi-

mately 28 gausses.
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APPENDIX A

1. Matrix Elements of H

The perturbation involving the interaction of the radiation

field with the atom is

_Ev_,? _Lh Y‘Je
H (L!h ) [a(h)e + @€
(A-1)

where the summation over kr is over frequency, direction and polari-
zation of the radiation field. The operators Q(R)) and cﬂ(%J are
the anihilation and creation operators, respectively, for a photon
with wave vector‘E; and polarization é;,. The vectors ¥ and P are
the position and momentum vectors, respectively, of the electron
with respect to the center of mass of the atom. The radiation field

is considered to be enclosed in a box of volume L3.

In the dipole approximation (R _Y<<1);

(R_.T
e = |

and the matrix elements Hf[’ Hjj’ H,tand Hq)reduce to

Hy = <$IHIL

- - HI-R,Ola
= <elgkag R,.1HI 521 Y

= € (2”/(L3Rx))vz }%ﬁ I M(Ry +1}'/2
(A-2)

Hy = € (2T/(BR))* py { (k) + )k
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\
Hy: = e (2T/ClPR)™ B, YR,

and (A-3)

p o~
Hoy = © (RT/(L3R)® BT /MR

where MN(ky) and M(k,.) are the occupation numbers of the emitted and the

absorbed photons, respectively, and

A B . - -k
BT = <cl€mP|[>, m = }\,W.;L— a’b_(A )

Usually, the spontaneous emission process dominates over the
induced one, which means that M U?)J 4& 1. Thus, one can neglect the
occupation number ’n(k,\) compared to one in the matrix elements Hj-d

and Hj»j and they therefore reduce to

Hj_‘._ = R ca
and (A-5)

DN
21T
H = e [2 - R .
£J L3Ry
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2. Evaluation of ¢

In Eq.(2-33), T;; is defined as
2 — H. .H,. (E-E,
-1 CE) _Zf e S £)
using Eq.(2-28), the real part of Yic is written as

Re( T (B)) = 2m Y HegHeo (e-8)) . (a-6)
5

for a continuous distribution of frequencies, the summation is

replaced by an integration:

3 oo iU 21
P— (_2‘:&) z [h;&h,‘ js‘”eedeejd% (A=T)
5 roo ° °

where ©, and ¢, are the polar and azimuthal angles of the wave
vector E} . The summation over N is over the polarization of the
emitted radiation. Thus, using Eq.(A-2) and Eq.(A-7), one gets

27

S \Pg‘alz Sim Be d 8e dibe . (A-8)

[+

O o

2
e (e-rl+R_))
RE(YI‘L.(E)) = er(E c r').)\
If one defines

am
| 5,12 Simbe doe dé, (A-9)

(=4

2
Da = 37 &

then the real part of ¥, can be written as

Re (Y (E)) = (E-EZ+R~)Da (A-10)
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This expression shows a linear E dependence.

N
The matrix element R, can be written (10) as

b

B> = ((E-E,) <cI¥|ay-8&, (A-11)

where Ea and Ec are the energies of the atomic states {a) and Ic) ,
respectively.
Combining Eg.(A-9) and Eq.(A-11), one obtains

g am
1 2 - - A
D, = -%T (E.- &) %{Zl«rwa).e,\! Sim B dGed,

(A-12)

m ar
. ~ 2 .
where a, is the Bohr radius and Z)‘ le(Clr}a.)-e)] S 6edbedé,
-]

is assumed to be of the order of ay. For an atomic system, this is

a legitimate assumption.
In relativistic units (A =m = ¢ =1 ), the fine structure

constant o is 1/137, the Bohr radius is

a =e? =137

o

and the energy unit in wave numbers is
- —10
[ em' = 2.24xi6 )

Thus the energy difference (E
6

order of 107~ relativistic units and therefore

c Ea) for an atomic system is of the

D, ~ 6 (A-13)

The real part of 7:.

iy can be obtained in a similar fashion:



99

Re (Tj;(e)) = (E-E+R.) Dy
where Dy is defined by

m al
2 —
Dy = _eTr > f g l<c) P-Ex1bd|” Simoedocdd, . (A-1k)
<N
o 0

The magnitude of D, is of the same order as that of Da’

The imaginary parts of ﬁk(ﬁ) and %J(E) are

E- E/

H -H,
Im (Tu,(a)) = 2,§ 6’) <,ﬂ£>
f

and

H,. He
Im(T,(e)) = 2.0 P 3 %
f

E—E;

where the summation over f is over frequency, direction and polari-
zation of the emitted radiation and g‘) is the principal value
operator defined in Chapter II.

For a continuous distribution of frequencies, the summation
over f is replaced by an integral of the form given in Eg.(A-T7).

Thus one gets

co T W
2 ‘Hj'lz .
Im (v ®) = @3%(“&5&) j(D( E_;f, Sin B,de, clg,
© o0 0

(A-15)
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and

o 727

[ kdr, § (lEHfJ )smaedeed,se,
B

Im(r;(E)) (2n)3

Og___\

o

Combining Eq.(2-18), Eq.(A-2) and Eq.(A-15), the imaginary part of
Yoc(€) is written as

wan

jf[k,\dk»\ J (_E—EI_E—?;_)\ 2al 5""Bede dg,

2.€

2
Im(7.e)) = —,7)22:
A

’»3‘

oo

2n

o
oot

= % 2 j ke h+s E’ RaeceroR) [ Rl " Sinedoect,
AN ooo

The integral

f:k R ﬁ(—k{-k,_lj‘E—é’)

in the previous equation is divergent which means that the imaginary
part of'ﬁ((E) is infinite. Similarly, it can be shown that the.
imaginary part of TB(E) is infinite. These imaginary parts {Im(; (E»
and Im(tb-(E))}-are added to the energies, E; and E, of the unper-
turbed atomic states, respectively. This results in a shift of the
atomic levels. There is a similar kind of shift in the ground state,
contributed by the imaginary part of F(€). Thus all the atomic states
are shifted relative to each other.

It is important to note here that only the relative separartion

of the states are required in the discussion. Therefore one can use
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the method of renormalization of the atomic states by absorbing

these infinities in the atomic states ( ). One can then set

B, + Im(%) — B4

E, + Im (Y5) — B

and
I r — E .
Ec + Im (1) C
3. Evaluation of T
The expression for f°(f) , obtained from Egq.(2-36) and Eq.{(A-3),
is

o~ o~ L
= [ van B B+ Voa BT B

_%' M(e) = ( )Z
’;12{ E-€/+ % T ()} + | B, 1* e-g, + ipT, (£)}]

14 ’ . . '}
x L(E-6;+ T (B)2)(E-E; + <VCe)f2) —1Vasl?], (a-16)

For a continuous distribution of absorbed frequencies, the summation

over k,, is replaced by an integration:

ma2

S — (= y ?(k,,)dh,,svmeadeadcpa
R T oo

o

q

where ?(R,-) represents the density of radiation oscillators in

the incident beam with energy between R, and R,.+dk'_. The sum

~
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over o~ is over polarization. The angles o, and ¢, are the polar

—

and azimuthal angles, respectively, of the wave vector h”.
The density §(R.) is written in terms of I, (k, ), the inten-

sity (energy per unit area) per unit frequency per unit solid angle

as

I, (R.)
R, M(R..)

P (k) =

where n(k, ) is an average photon occupation number at the frequency

k, of the incident radiation ( 8). Thus Eq.(A-16) can be written as

[-¥]
-3 F'(E)/2 = 92/(27r)2 Z_ fdhpspnea_dq;dtpa I_"R(_ZL)_ [ Vab F()::!.Pbc
o~ o o

o o~ o~ 12 ‘ K
+ BB Voa +IRal { B-&; + LT;CE)/2}

I BBl + LY (B)/2]] X

/ . / -
{(E—E,; + LWy ) (B-Ef + LT (B)/2)
-
2

—1Vap1? ] (A-17)
As discussed in the previous section, the imaginary parts of
'ﬁd(E) and t}(ﬁ) in Eq.(A-16) are absorbed in the energies E; and

Ej, respectively. The real parts have the following E dependence

(see Appendix A-2):

Re (Yo (8)) = (E—Ec+R.)Dg
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and
/
Re (Y;J(E)) = (E-Ec+kw>Db .
Thus, the denominator of I(E) reduces to

- . 2
{E-EL+R,. + L (E-E ¥R Da/a}{E - Epr Rt ((E-/+R,) Do/} ~lVasl

By regrouping the terms and factoring out (1+iDg/2).(1+iDy/2), the

above expression becomes

(1+iDa/2)(1+Dy) [ § E - Ea /(1+(Daf2) + R,. ~ L Ee Da/(2+(Da))
x{e—E,:/(Hca,,/z) + R~ éEc'Db/(chb)} —\anli/{(l +(Da/;)

x (1+D0/2)}] = (+0Da/2)(1+ ¢Dbj2) [{ E~Ea/C1+Di/4)
+k_+ C(E8)Da /(2+D2/2) — B D&/ {41+ Pa/4)} ]

Y E -
{ 1+Db/q 2 i+ X 6/% b

\Vblz
Er. D,* } a
4(1+D»/4) (1 + Pa/g )+ DE/4)

Vap1® § DaDp/y + 1 (Pa +Db)/2 % ]
(1+ D2/q ) (t+ D/4)

(A-18)

Since, the magnitudes of Dy and Dy are very small (see Appendix

A-2) compared to unity, the terms Da2/h, Db2/h and Dan/h can be neg~-

lected in Eq.(A-18). Thus the denominator reduces to
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(1+itDq /9) (1 +iDp/2)L ¢ Rp—E;i-E-EcI-D:‘/Q»
+ 1(E-E)Da /2 Jx{R—E +E- € /Dy/4 +L(EsEL)DL/2}
—lVale«{l—L(Da*'Db)/z} = (l+iDa/_?)(l-f*i.Db/Q)[_{}q‘;—El;

LMy PXIRe By + 0To /23 ~aul* §1-0(Pa*Db)2]]  (a-19)

where
/2
7" / E. Da
E, = Eap + Z E ,
77 _ / EC Db — E

and T, and Y, are defined in Eg.(2-43).

In Eq.(A-20), the terms EéDag/h and EéDbg/h are very small
compared to other terms and therefore they can be neglected. Thus one
gets

24 ’

Eyp = E.— E

and
1/

E, = E,-E

The expression in Eq.(A-19) can be written as
(1 +iDa /2 )(t +EDb/2) (R=R,) (Ra=Ry) (4-21)

where k, and ko are the two roots of the quadratic equation

(R - EZ-&- iTa/2)(k,=Ep +1Tb/2) - Wap)*§1— 1 (Da+Db)/2} = ©-
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The roots are

h ] 4 »
h' } = (Eu+E )/ 2— € —¢(Vq+Tu)/y + :'z.[A'hx’ + 41V, 1t
2
) 2 2
—125 A% +1Vap) (Da—rDb)}j (A-22)
where
/ /
A = E‘a"' Eb
and (A-23)

X = (Ta'ﬂvb)//z

The complex quantity inside the square root sign in Eq.(A-22)

can be separated into real and imaginary parts as follows:

If
L
Y =[LA+iB]R
then
4 L
Re(y) = 5 [(A+B*)? +A ]2
and (A-2k)

< L
Im(Y) = 'EYCAZ"‘BZ)Z-“ A]Z,
Thus one gets

:' = (E;—PE; )/2—-E * R —‘;CX;’L‘I)
2

where
\
2 !
? } =17 [ { (2%~ X2 4 )+ #fxa +1Vab] (Der o3 JF

n
+ (a2 xpalVap)?) ]z (A-25)
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and

7 (A-26)
Since D, and Dy are much less than one, the term hlVablz(Da+Db)2
in the expression for R and I, can be neglected compared to the other

terms. Thus one obtains

R}= S Liei-x gyt aax}2
I 202
1172

+ (a2 xt+4av (A-27)

where
2 2
V== \V&b‘
Thus, substituting the real parts of ’ﬂi and'ﬁj from Appendix A-2

into Eq.(A-17), combining Eq.(A-17) and Eq.(A-21) and rearranging,

one gets
wan

oo
~ir(e)/2 = 5;)1 2 J])oe smandoader, L ém AR
(o }N -

° o~

+ Voo R B + 1Kal*{ R, (1 +1Da/2) - gL+ E(+iDb/z) ._%EQ'D&
+ IPC»I;IQ.{)Q”Q+LD;,/2)- ECL+E(|+L Da/2) - ¢ E Da—/zU'X

=1
{1+ LDa/ )1+ Db (R R (ke R2D Y ] (A-28)

If the incident beam is monochromatic then the intensity
Io(k, ) in Eq.(A-28) is replaced by TC,S(k’;k:,), where T§ is a
constant, which determines the intensity of the incident beam and
S(k’v—k:_) is a Dirac delta function. The frequency k2 is the

frequency of the incident beam. Thus, for this case,Eq.(A—28) reduces
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to:
man
i‘ _ e'l . fo Lad [ ad
SO G femadadn Sl i

o~

o 2 . . N 1
Vo B B% + TR RO+ iDB/2) —E. + E(1+LDy/2) - CE.Dy/3)

N / ~ N /

FIRTI2 RS (1+ LDaja) = By + (1+8 Dafz) E = EcDa/z}]
—)

X[ (1+iDa/2)(1+iDb2)(-R (K RD] (109

when the state |b)> is non-decaying (7% = 0), then Eq.(A-29) becomes

Dalo k& -EL/(1+iDp/z) +E - LB Db/24iDy)
R? 2 (14 ¢Daj2)(R2-R I (kL-ky)

(A-30)
where D, and Dy are defined in Eq.(A-9) and Eq.(A-1L).
Multiplying the numerator and denominator of Eq.(A-30) by
(1-iDy/2), neglecting the term Dae/h compared to unity and rearranging

the denominator one gets,

- ’ . .
DaT, ( Ko —Ep+E + L (E,~E/) Db/2) (I~ LDa/a)

_.};r1 E =
2 (E) hiz[R::(Eal*El:)/Z'f‘E‘R'*';CX‘3+I)]
x[ R;—(E;‘-f- Eé )2 +E+R + L (xs“l'-)]—' (A-31)

where R, I and X3 are defined in Eq.(A-25) and Eq.(A-26).

For an incident monochromatic line of power lO_3 watts, the

L 0

. ~-4_7 -1 -11
factor DaIO/k‘;e’ is of the order of 10 E_ (Dg~10 775 I~ 10 and
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Eé'\-'lO_5 in relativistic units). Thus, the magnitude of M(8) is
very small compared to Eé. Therefore one finds that the pole of

G(E) obtained from equation:

1] \
E-E. +4T(E) =0 (A-33)
is not significantally different from the pole

/ . i
E= E - §T(E) (A-33)

where [(E) is evaluated at E = Eé.

The expression for r‘(Eé) is:
I .
DpI, (Rx— EL +E + L (Bp— E. Y Db/2) (1 ~iDaj2)
Re2 [RE—(EJ+E/V2+E -R + i (Xz+I)]

_%mec’):

4 . =)
xl'_Ri——(Ea:+Etl>)/2+Ec +R +1(x3~1)) (A-3k)

The real part of r"(Eé)gives the decay constant of the ground state
Icy (see Eq.(2-5k)) and the imaginary part is absorbed in the
energy E, of the ground state, giving rise to an energy shift. In
this case, the decay constant FE(P) depends on the frequency of the
incident beam.

If the incident beam is such that the energy per unit area per
unit solid angle per unit frequency, IO is constant (white light

beam) then Eq.(A-28) reduces to

o T ar
. B el . A o= b\
-yrE = 22 le ;2[ th"smeadamd% bf:[{ Yab Ra R

+Vba,!?:c '%'l; ‘HFé:.\l{ R,. (1+iDb/2) - E.L +E(1+1Db/3) —LEchb/z}

4+ WREIZ$ R, (1 + 1Da/y) ~ By + E(1* tDa /2 _ EEC'DQ/K}]
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x(1+0Dg (2)(1+iDp/2) (R —RDH(RL R2). (A-35)
The term in the square bracket in Eq.(A-35) is a highly peaked

function near the real parts of the poles. Thus one can replace

1/ka in Eq.(A-35) by an average value 1/k§ . Thus one gets

(_;_ E) — e? ‘F Sim Badea dq>a' o~ O
-2F( ‘ (2")2 hl Z (H’LDa/z)Q-H.D;,/z) [_{vacha.Pbc

+ Voo BT R H1RS1Y (B (1 + LDb) —B)- CECDh /2)

+H%211(E(H‘LDG-/Z)" Eg— L Ee Da/2)} I,

4§ IR 1 Sb72) + IRGIR( +1Da/2)} Ls ]

(A-36)
where
53]
L= | e
(o) ! 2
and

co
R dR
1o = ) (r-k)(R-Rz)

The limits in the integrals of Il and 12 can be extended into

the non-physical region (k = -c0to k = 0) without significant error,

because the integrands are negligible in this region. Thus one gets

OO0

dR
I, = Lch—k.)cwz)

(A-37)

and

IZ — Jdk R/%(K“kl)(h‘hz)}

- 00



110

The method of contour integration is used to evaluate Il and

I,. The results are:

2
E (A-38)
I, =-1m
Thus, from Eq.(A-36) and Eq.(A-38) one obtains
2 T armr
Re(M(e)) = Foys 35 2 ] Smeadtndeaf LRLI RS
(A-39)

In the above equation, the terms Dag/h, Dp2/L4 and DgDy /4 are neg-
lected compared to unity. This shows that Re(T') does not depend
on E. The average photon occupation number n(ko), in the incident
beam is of the order of Io/ko3. Thus Eq.(A-39) can be written as

T 217

Re (M) ~ (R 2 { (szmeadead%{[ CARIIAN.

~ M(R) (T +7) (A-k0)

where Y, and Y, are defined in Eq.(2-43)

/ l; 4 /
ho ~ (Ea.- EC) ~ (EB—‘ Ec )

Equation (A-LO) shows that the magnitude of Re([") is very small
compared to Vg or Yy, provided the intensity of the incident beam

is not too high.
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APPENDIX B

1. Evaluation of P(&,.,kx)

The probability of emission of a photon with a wave vector By
and polarization €, is

Pl
P& Rx) =) Ib(eol
R

as defined in Eq.(2-59)

For a continuous distribution of frequencies in the incident
radiation field, the summation over k

is replaced by an integration

Ek — (’iz‘-—,r>3£§’(k,_)dhm

o~

where

U XS
PCe) = SR

Thus, one can write

P(3, k) -—-—\ jl (ko)

ST \bfcoo)\z'olh,_ (B-1)

2
From Eq.(2-58), one finds that lbf(°°)‘ contains a factor
’

l/l(Ef - E3)l which reduces to a Dirac delta function in the limit

when r1"’O. This can be seen as follows

- =1
e )T = [CRy= R+ 724 ]

?,;T. S (kRy-k,.)

(B-2)
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where r stands for the real part of I and the imaginary part is
absorbed in the atomic state Ec' In Eq.(B-2), the following repre-

sentation of the Dirac delta function is used

The assumption that M is very small is appropriate provided
the intensity of the incident beam is not too high (n(k,)<§ 1)
(see Eq. (A-L0)).

From Eq.(2-51), Eq.(2-58), Eq.(A-3) and Eq.(A-5), b_(t+o0 ) is

£l

written as

ame?m (k) [ N sy e
L3m Vab RoPoe +Voa R Pac

E?(t—¢oo)-:

N o~ 7 L N o- ’ /7 .
+ BB (RA-E +E t LT )0) + pcbpbc(h)-saérecnra/z)]

) ' ;oS et
X[{( kl\—kr) +Lr‘/2}(h)'hl)(kxk.ﬂ]‘ e
where
R (o / ,
hl’ = (Ea_‘f-Eb )/2_ - Ec +R - (‘(X3 *+1) ) (B-3)
2

and R, I and X3 are defined in Eg.(A-25) and Eq.(A-26).

Thus, the probability of having a photon with wave vector k emitted,

A

provided a photon with wave vector'f;’was absorbed is

erzeq 71(k~)_ i N, (B-L)

I b(oo)* = -
d ¥ Rokx  (RyeR V412, D
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N, = H%ZIQIP&lzl(kav’ﬁﬁﬁc')z%z/ﬂ

+ 1RSI RSP Ry Ep +EL ) +7%/4 ]
T VALIRGVIRL 12+ IR P11 + 2R (Ba bl BY L)Y
+2V T (Ry-E+EN) { 1R 12 Re (P BZY) + 1R 12 Re (RUB]

+ CRa- B+ € { 1B} Re (BTET) +1R% )12 Re (B B2*)}
FURlB) PR R) 4 TR B+l 1) T ()
+ [ (Ry- Eq+E. Y(Ry- E +E) + YaVb /4] 2.Re E);Pi: Pac Pki )

F0Ta (Ro- ELrE! )~ (ko ELr E0] Im (AR R REY)
and
D, = { (Ra-BarE Y+ N0} { (ka-Ep +E]  + 124} + VY

— V2L (RpA-E o+ E V(RN -EL+E.) — 2T /4 }

Thus, combining Eq.(B-1), Eq.(B-2) and Eq.(B-L), one gets

e iy oS (L) w,
e,., )‘3 = L3f_1k‘>\' b.,? B

R,= Ry
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For en incident radiation beam with constant intensity I, (white

light), the probability of having a photon with wave vector kA is

4
A e Io Nl
P(er}k)\) = BP—k-;D, (B-5)

This probability P(€,, k)) depends on the direction and polari-
zation of the incident radiation through the matrix elements p;é and
pgé-

It is shown in Chapter III that P(E_, kA) is a highly peaked
function near k, equal to the frequency difference between the per-
turbed excited states and the ground state. Thus one can replace l/ki

by an average value 1/k03. Therefore P(a;, k reduces to

N,

a QL'I N,
P(e,_,R = id B-6)
C o~ )\) \_31" Rf D, (
In terms of a new variable
/ / 7
K = Ry~ (E,tEL)/2 +E, (B-T)

one can write

N, ={(K+a/2)* +Tb/4}“2al [Ree | +{(K ~8/2) +YA/4} cb\ | Rl I

+v9~{|l%a| IR 12+ PIR% 12 +4Re( wl’,, ) Re LRI PLS)
~ 2Re (RWEL RLRT™)]

+2VLL(R+am)RE 12 + (K- a/2)[R313 ) Re (BT KX
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S (k+o/2) |RI1: + (K- o) |RS12} Re (RAEL)

+ (Yal B — RMR) & Im (BE KL

N O

+ (Yo IRV - VilRs 12 ) 3 Im (BOR, )

* .. o
+3 (K—2/2)(k+ 2/2) +TaTb/Q-}2-Re(EJ;E);, Pa.c&:)

SV (K+8/2) = Y (k=a72)]%

hY A% o~ o %
Iy (B.QE'.L Fac Pbc ) (-8)

and
D, = (K=2/2)*(R+2/2)% + (K +A%Y /s
+ (k=) R4 = 2V E(K=84)(Kk+s/2)

+(vZ+Gh/4)2 (8-9)
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2. Evaluation of J({2a,Ne,>~,N\)

The intensity of the scattered radiation with polarization A
and direction ( ®¢, &), for a given incident radiation with polari-

zation o~ and direction ( @,, 4&), is defined in Eq.(2-61) as

I (524, fte,~.N) = jP(ew,k)\)h"dR)\

(zv)3

Combining Eq.(B-5) with the above equation, one obtains

‘+I oo
I(ﬂa)_n..e )0*,)\) = e_._%_g Ny d,h)\ . (B-10)
()31 ) R\ D,

Since Nl/Dl is a highly peaked function near the real parts of the

poles of Nl/D one can replace 1/k)\ by an average value l/kO near

l,

the poles. Therefore one can write

T (Na e oo, N) = S22 g LdRy . (B-11)
(Ra, e, N) @ik, . D) x

The 1imit in this integral can be extended into non-physical region
(kJ\= -o0 to ky = 0) without significant error, because the integrand

is negligible in this region. Thus Eq.(B-11) reduces to

4

(S Ny dh

(o, e o, 0) = =0 [ A (B-12)
oo ) (:ur)Br'h
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The numerator N; of the integrand can be written as
4 ’ /
N, = N, + Ny +nNjRE (B-13)

I

where
Ny = {(E(-E Y2+ TYa hRA RIS 12+ L (B Y2 W TR DL
+VALIRGIIRZ P+ 1RO IBS1E +4Re (R RY) ReCRicRL)
- 2Re(RARY BT R
- AVILCEED IRA P + (B B IR 13 Re CRE BT
+ LCER-ENIBIIR + (Em )RS} Re (BA L)
+ L (T BT IRD1?) Im(RERST)
+5 (RIRI =TT R2)?) Im (RA D) )
+ {(E,mE/ )(E-E) +ToTa/a} 2Re (B cb "BTRT)
+ {*b(F_";EC’)—Tb(ELLEc’)}Im(FgQQi‘*B‘: 5':*) » (B-1L)
NS = =288 ~EDN IR IR + Cee) IRDI1IRS 1]
+ avL (IR + IR} Re(RTERY)
+ IR+ TRT 1P} Re (RO BDT)
- (E+EL-2E) 2R (RARLYRORDY)

+ (%) L (RALRY RERZY) (B-15)
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and
R X x,2 2
N, = lRalTRGl” + 1R IRE
N~ -
+ 2 Re(Ra Pep Re BE ) (B-16)
and the denominator, one can write
’ ’ —'k,*) R“'h,*)
D, = (Ry= R )(Rx-R3)(Ry~ Ry ) (R Ry (B-17)

where k] and ké are defined in Eq.(B-3).

Thus the integral in Eq.(B-12) reduces to

oo I'4 !
Nigk = NI +NI;+NyT, (3-18)
..aoDl
where
oo
I ’ - dh )
! (R -k )(R-k])(R-R ¥)(R-R;¥)
- co
oo
'I/ __j- R dRk
27 ] (R-R)(R-R;)(R-R*)(R-R*)
—co
and

(2]

- R2dRr
3 7 ) (R=RNI(R-R7)(k-R/*)(R-R}¥)

-0
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The method of contour integration is used to evaluate these
integrals. It can be shown that the integrands vanish on a semicircle
of infinite radius on both sides (upper half and lower half) of the
complex plane. Thus the contour of integration can be chosen either

along C, or C (see Fig. B-1).

2

Fig. B-1. DPosition of the poles in complex plane.

Taking one of the contours, one gets the following results for

the integrals:

/ Im CR:+—h; )
I, =T , ; 5
Im (R]) Im(R]) [ 2Re (RjRS) — 1R}1*—1R312]
i I k/k/
I,z _ ‘M( 1 z)

Im(R;) Im(k;) [ 2Re (k;k;)-mnz—m;rzj ’
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and

- TR 1% Im (R2) +1R7[2Im (R)) ]
37 Dm(k))Im(R)L 2 Re(RIRY ) —IR) 12 1k112]

Substituting the values of R: and R; (see Eq.(B-3)), the above

expressions reduce to:

I =8mMX3/D

' (B-19)
17: = 9T (X3E £ X2)/D (B-20)
and
/ B % 4—><32 t E'aX/2 +(qviiat - x2) X3/4
I,= g7 =
3 D
(B-21)
where
, EL +Ey /
E 7 e
and

D= |6 Xf— x* a2 +4X31(4V2+A1—-X2) .

The definitions of A , X, X3 and V are given in Eq.(A-23), Eq.(A-26)

and Eq.(A-27).

Combining Eq.(B-12), Eq.(B-14) to Eq.(B-16) and Eg.(B-18) to

Eq.(B-21) one gets the following expression for the intensity of the

scattered radiation:



4 - -2
[(1a 2y o, N) =i[ lRal*(B]®  IRpI*IRC]
’ STk, Xa Xp

X ph¥ o~ o ¥
+V2(XQ+Xb)xa.xb{ Lf‘Re(Pcm Rb )Re("ac c )
Xa Xp

~ (IR~ TREIA) (RET /%= VR %) }
F VOt xp) LA T IRAI 1RSI Re(RTR™) + (1R 1R% 1) Re (BB
- 2§ URAI Xy~ IR X)) I (R R )
b (IR 12X=1 B2 Xa) T (Fa BD )1
A A

o 1 > o ¥ ot
t4 Xaxp{ (Xat+Xp)Re(Ra Ry Pachc*) +Alm(Pc);PacE)l: Poe ) 3]

ot |
x[ (xa."'xb)z-( v XaXp) t+ a? XaXp ) (B-22)
where
Xa = TO-/Z R

and (B-23)

Xb = Yb/l
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APPENDIX C

Eigenvalues and Eigenvector of "H

In the Schr8dinger representation, the Hamiltonian of the atom

with an external perturbation V is
H = H+V

where HO is the Hamiltonian of the unperturbed atom.
In order to obtain the eigenvalues and eigenstates of the
Hamiltonian H, one has to solve the time-independent Schrodinger

equation:

HIY) = Ev) (Cc-1)

The state vector ) can be written in terms of the eigen-

vectors la) and 1bY of H as
\¥) = Cola) +D,Ib) (c-2)

where CO and DO are the amplitudes of the states (@) and |b) respec-
tively.

Substituting Eq.(C-2) into Eq.(C-1), one gets:
CoE la)y +CVIQY + D EL \B) + D,V by = E {C,la) +Do(by} (C-3)

where Ea and Eb are the eigenvalues of HO for the eigenstates (&) and
|b> , respectively.

Multiplying both sides of Eq.(C-3) by the state vector La} and
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integrating over all space one gets
/
— =l
CoE, + DV, = GCoE (C~h)

and similarly, if one multiplies Eq.(C-3) by <bl and integrates

over all space, one obtains:

CoVpy + DoEy = DoE (c-5)
where
g, = E, +Zalvia)
EE: = E, + <bjV]b)
and

j = <ilvyj)ys; L,j =a,b

Equation (C-4) and Eq.(C-5) can be written as a matrix equation:

- E Vab Co 0

I\

(c-6)

Vea E-E Do

A non-trivial solution of this equation exists, if the deter-

minant of the matrix

E,-E Vab

is zero. This gives

(e ) (EE) - Wl = o e
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The two roots of this equation, are the energy eigenvalues of the
Hamiltonian H :

‘Eo , , | . Vﬁ
E'o = (Ea-{-E;,)/,‘Z + E(A +4—V1) (c-8)
2

where

and

v? = l%;bli

The eigenstates of the Hamiltonian Y are obtained by substi-

tuting the energy eigenvalues of H from Eq.(C-8) into Eq.(C-6) and

solving for the coefficients CO and DO

The normalised eigenstates of H are:

1y = lay + Dok
and (c-9)
. (2
|2y = Colay 218>
where
1
& 2 iy e afatead )
|
D) = Y (1= &N a4 >/7~
(2) &
o T T Te (c-10)
and @ )
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APPENDIX D

Matrix Elements of the Hyperfine Interaction Hp and

the Nuclear Quadrupole Interaction Hg in Li7

The Hamiltonian for the hyperfine interaction is defined in

Eq.(4-13) as:

This Hamiltonian can be written (1l4) in the following way
mtm, m M,

- i .

Hp = 1;_ g / I”T Z( 1) C(HZ,W‘«”’z)Yz(T)

- =
X T (s Toery | + §81 (p-1)

where C(112, mlm2) are the Clebsch-Gordan coefficients, Y2m1+m2(?)

are the spherical harmonics of rank two and Tl is an irreducible

tensor of rank one.
The matrix elements of HD between the two states T, , M1y

and l¢2,7n1> is obtained as follows:
<F2mp <Ll Hpl ¢332 ™)
= c,,1<3/2 '"“ﬁ’ ””§ Yo~ValHpl '/2"/:.>sl -o>¢) 3/27"z>l

= Do ¥z wrlI-iK oY | Hpl Y 11131 32 e
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= oL ) [<mmii<- lltz St LI+ LI o %)
'Y" w,+m,

_.'_7/24,7,'/5 Z(-—l) C (n2,m )K= Y, o)

m,;

™2

-m L, -
x <=l T e Y3 T 13y ]

mfml m+m1

— DX L N2 /s ) (=) C iz imp) Km0 i)

m, oy
-m, sy M,y ’
X < ,/2—'/2 { —r, , \/1 ‘/2> <3/2M1' lTl ' 3/2MI> _Da g < I/z-'/zl<3/zm1" S?-'Ii

+4 (S I+ ST ) ) Y2 mr) (p-2)

. me. . m .
The matrix elements of Y, (¥) and T, are obtained by using the

Wigner-Eckart Theorem (15)
<ef.mf|T,"('e‘)1¢-LmL\7 = Ctyrty, memmg) /L (G +0) &
™
KEme Yy [emey = C bty mim M) e (it ey, 000)

(20; +1)(28L+))
" f47r( 2L, +1) (D-3)

Thus, using Eq.(D-3) and the values of the Clebsch-Gordon coeffi=~

cients, one obtains from Eg.(D-2)

! = L 7 - i
<¢4;mr,HDl¢6)mI> = 2[~‘5’_<7_;C° Do) °(<—,-3>

_Dog ]JFS&—MI)(3/2+mI) Sml,m_, (D-L)
I
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The diagonal matrix element of Hy in state Ig¢, ™M) is:

<¢4 my | HD\ Q>4)mx> = o(<7;.-3) {3Bam < V2~ 1al AR H‘zlz

5 (LI + LT ) -0\V2-Y2) 3™
wm W,

+ o<<*#3§ Ja41m/5 Z (__’)m,»mz CH2,mm)<Ki-1) Y, % =D
‘VY),'M

2
=™, ="My
x <Va=Y2 T, "\V2-%)<%rilT, “|32m)

+¥8 <-11< = Y2) < 3z m7) Sng+‘3(S+I—+‘C‘ ISRNEVIZIN A

which , after substituting the different matrix elements of Y2 and

Tl and Clebsch-Gordon coefficients, reduces to
4 m LN —Lwm (D-5)
<¢4/)‘ﬂzl H_DICP‘*)Y”I>:—5- ID<<T3 2 Ig

Similarly, the following matrix elements of HD are obtained:

A

LB m | () L1=MU B 1=V Y2 Yz} 3727000 = = ?."‘I *(TQ
+mrE/2
<Yam1l< Ya=Y2 1 <10 [ Hp 110 [ Ya- Yy 3/ama) = _% mzo<<-.:-_3)
—mrE/a2 (D-6)
and
<32 M| <Y Yal<I=11 Hy l10) 1 Y2-Y2))34™1)

= <3< amalie | Hpl1=1p] Vo VoY P72

= (3/572) M x<Vr) (D-7)
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Thus, using Eq.(D-6) and Eq.(D-7), the diagonal matrix element of
HD in state l¢6,m1> is

2 AL
L M1l Hplp, M) = - "5(6 D2‘+2Co +[2.3CoDa) Mr AT

+4 (DE-cII™T (p-8)

The nuclear electrostatic quadrupole interaction is

2 2 2
2 3Iz-1 3Cos ® -1
o = - € Q[ar(u-n )< T3 )
A 2 O, a
- eza[—ﬁi‘— A
- 41(21-1) | V5 3

Using Eq.(D-3), the matrix elements of HQ are written as:

y b 2 /
<¢4,m1| HQI 4)‘“)’”17 = —lr <mI 5/4) 5mzmz (D-9)

and

2_5 .
{be™rl H (b, mpy = 2 (Di-2c2)(Mi=74) Smym;

(D-10)

where

b = ji: 92Q <'/73>

and co and Do are defined in Eq.(k-12).
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T

The experimental value of b for Li' (13) is

b= ~0.13 +0:12 Mc/sec . (D-11)

-—
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APPENDIX E

—

Some Useful Matrix Elements of b-é.x

The matrix elements of F.'e\/\ for different excited states and

N
ground states are calculated and the products E;‘Pc/ﬂ/ B:_ P”*are

M
computed.

For A = 1 and A= 3, one gets from Eq.(L-17)

N

= €, Le” | B.Eyl by %) + D, < | B85\ 0 Va)

nU.

P}* = C2<¢Q, Y2 | E'é)\‘cl> + D2<(P¢,_‘/2I-E'é~\\c'> ’

e3
. D .
The matrix element ﬁg;“ is equal to zero if the states |¢‘) and \1}:;_)
A%
do not have the same m;. Thus the product 2 Fg}; -B."3 reduces to
C/

A ‘)* -— A \ = A
D BhE, = >.C,D, <clbexio,, 2y<e,, 2l be e’y (8-1)
CI C/
After writing the matrix elements of —Fd’a.x in terms of the orbital

states [UM,) of the election, one gets

2 P)' P)\* = C,ZD'CO<OOIE',é.)“o><l—.”—ﬁ.éA‘oo> (E-2)
¢l e

and therefore
N o oK 2 2.2 28 =2
2z FCD’I c’3 ch P‘sc = Cp Dy C, LoolP-Euliey -1 Bié,100)
ce”

X <oo]E-é‘,]l—«)(lolaérl"“) (E-3)
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Similarly, one obtains the following set of nonvanishing matrix ele-

ments:
A LR ~* 2,22
Y ELRaRES = coolnig
ce’
N PSS - I | \d
czc, E’r Fé’g Prc ch = Co G 5 '
N oD o ek 22,2 2
R ) ReBe = CoCiczs
cc/
LR AN s 2 2.2
ce’
MNRNE et 1.2 %
Z_ PC'Z}:CIS F>2C gc -— CO Dl f J
ce RN Lo~ p- W Cz 2D2f (B-4)
cz RaRs Be Be = Co 3025
c/
PR T W 2 22
Cc”

N I o X 2,2 ,2
cc'Fg"*‘%"" P‘l»c. e = CoC3C; ’
N XX o X 2 2.2

Fé't, c’6 P‘fc 6c Co D.B C2 F
Cc”
NN WY | 2 2
CZ E'S}%ﬁ P5<: 7¢c — S VR
c-
DN AN L e n 2 .2
2 R Ry R Pre cocyf
where

f = <oo[F-é\)]IO)(I-IIF:-é)\l00><0°”;‘ér|“'><lolg-ér\°°> (2-5)
and f* is the complex conjugate of f.

For plane polarized beams of the incident and the scattered

. . . . ~
radiation, the polarization vectors e, and 3} are:
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8, = % cosog — 3§ Simea

e, = "Z‘\Cosee -+->,<\Si/n9€’

where g and 6 are the angles between the plane of polarization and
the ®- axis for the incident and the scattered beams, respectively.

From Eq.(A-11), the matrix element I%’; is written as:
— A . —_—) A
Lolb-€xla)y = tWw,<c|T.€e,)a)

where w, is the frequency difference between the two states and ¥ is
the position vector of the electron.
From Eq.(E-6), the scalar product '—):é,_ and ¥ é;‘ can be written

in terms of spherical hermonics of rank one as follows:

F.6, = ¢ 25 EYTYTE Y (0, T2)
™

”~

and

AaT™M
$.8, = L rTE Y DY (%)

- A
Thus the matrix element <{oco|P-€\lio)<I-I|P-€xloc o> becomes:

Kool B-Exlioy(-1]B-Ealoo) = — (47/3) w3 <1*

X <oo|Y|°lIO><"HY—al|°°> Yib( ©e 0) Yl'(eeo)

wd <1?

-TE—- S-(}Kee Cos6Be (E-8)
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Similarly
> A - A . woa<‘f>2 -
<\ol P-e,.\°°><00| P-e»\\'D - -2 —3—13—-—- Som B4 CosBa. .

(E-9)
The quantity § defined in Eq.(E-5) reduces to
f = <ool BEALY -1 R, )00 <101 B &, \acy Lool F-6, -

4
Wt Lt
72

= —L. S(m,?aa&ﬂ\.:zee ’ (E—lO)

This quantity is pure imaginary that means the signal SC as defined
in Eq.(L-30) is pure dispersion as a function of the external magnetic
field.

If the beams are unpolarised and have the incidence and scat-

-4 A
tering directions as shown in Fig. 4-10, then V.€, becomes:

!
('
1
N
o
3 -
I~
5
k)
J
-i
=<
3
™\
-5
N
™
|
?—"
=

Therefore

— — 2
Y <o|B €, jooy<oolBE -y = AT wlary

=1,
x Z Dl'ﬁ- (¢l;e')o) DO'P (¢|) 6, 0) <OO’Y]l, |"|> <‘D\Y'°) oo>

= — WILNY/3T D, (4.6,.0) D, (B, €., 0)

— Wy (T>2/3. Séw,s,Cese,é“b'

.

and similarly

S < ool F-é\,\]: o) <I—l}F-€)l0°> = —w§<7>773 . Sin B, Ceo azécpz,
N
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Hence, for the unpolarized beams of the incident and the scattered

light § becames:

f =3 CoolB-&aliey 1B Exlood L1l &, looh<ool BrENI-)
N o-

4 (P~
Wit L1 Sim28, Sm 26, € 7 ¢’)'

(E-12)



