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With the advancing solid-state technology, it is necessary to

develop new techniques for synthesizing digital networks. The regular

pattern of cellular circuits seems to be the best fitted for the new LSI

technology. Recently, cellular implementations of corribinational cir-

cuits have received considerable attention but very little attention has

been given to sequential circuits. In this paper, we present two new

methods for realizing sequential machines, both using cellular circuits.

These new techniques will also enable us to do away with the time-con-

suming and difficult problem of state assignment. State-assigned

(Moore) machines are assumed throughout.

The first method converts sequential functions into combinational

like equations. In order to do so, the machine must be either definite

or finite input and feedback memory (FIFM). If the machine is neither

definite nor FIFM, it is made FIFM by constructing a proper feedback



function. These combinational like equations can easily be implement-

ed by conventional combinational cellular circuits, such as the cutpoint

cellular arrays, together with delay elements.

The second method utilizes matrix methods. It is noted that

when a machine is in a certain state and is subject to an input, it does

two things: it makes a state transition and it produces outputs. If the

diagonal elements of an nxn array of cells are thought as represent-

ing n states, the transition of states can be accomplished by first

moving horizontally and then vertically and the output can be collected

by an added bottom collection row.

In both cases, bounds on the number of cells are established and

minimal realizations are studied. Methods for starting these cellular

machines are also investigated. In order to make the machine more

flexible, techniques are devised to initialize the machine into any state

desired.

It is safe to predict that future computing systems will continue

to increase the demands on several sophisticated design areas. They

will need to be more readily expandable and modifiable. Automatic

error detection and correction will also play a more significant role.

Therefore, besides modularity, reliability and programmability are

also important aspects of any new design techniques. Both synthesis

methods presented in this paper can easily be modified to include these

'eatures.
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CELLULAR SYNTHESIS OF SYNCHRONOUS
SEQUENTIAL MACHINES

I. INTRODUCTION

1. 1 Problems, Objectives, and Results

The two major problems in designing a synchronous sequential

machine are state reduction and state assignment. The latter is espe-

cially difficult and is still a subject of intensive research. However,

if we can devise a new synthesis technique which is independent of the

assignment of states, then we do not have to bother with this difficult

state assignment problem.

It cannot be denied that the current computer hardware technolo-

gy is going toward large scale integration (LSI). The advantages of

LSI are many and are well known. Cellular circuits seem to be the

best fitted for this new technology. But, though work has been done in

cellular combinational circuits, there have been few results, as yet,

in the cellular synthesis of sequential machines.

It is safe to predict that future computing systems will continue

to increase the demands on several sophisticated design areas. They

will need to be more readily expandable and modifiable. Automatic

error detection and correction will also play a more significant role.

Therefore, modularity, reliability, and programmability are all im-

portant aspects of any new design techniques.
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Our objectives are to derive new synthesis techniques which do

not require state assignment and can be achieved by interconnecting

uniform building blocks in a regular pattern. For easy addition or

reduction of building blocks as desired, we emphasize the uniformity

and the regularity requirements. For simplicity, we consider only

binary, finite-state, deterministic synchronous sequential machines

of the Moore type. All of our techniques, however, can be extended

to include other types of machines.

Two synthesis methods are developed, each is able to achieve

the above objectives. The first method converts sequential functions

into combinational-like equations. These combinational-like equations

can then be implemented by conventional combinational cellular cir-

cuits together with delay elements. The second method employs an

array of cells in which state transitions are accomplished by "row

operations" and outputs are obtained by "column operations". Both

methods are readily expandable to include features such as reliability

and programmability. In each case, bounds on the number of cells are

established and minimal realizations are studied. Methods of starting

these cellular machines from a given state are also investigated.

For easy reference, all Figures are collectively given at the end

of the text material and all example machines are listed in Appendix I.

cept where specific references are made, all developments present

=d in this paper are original.
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1. 2 Definition of Terms

We define the iiig basic terms that are important to the

understanding of this paper.

A sequential machine, SM, is a quintuple M=(I, Z, S,f, g), where

I = (il, i2, , i ) is a finite set of input symbols,

Z = (z1, z2, , z ) is a finite set of output symbols,

S = (si, s2, is a set of states,

f SXI -3-S is the next-state function or the transition function,

and

g : S is the output function.

A sequential machine in which the state set S contains only a

finite number of elements is called a finite-state machine. A machine

that satisfies all of the above requirements is called a Moore machine.

If f is defined for all values of SXI the machine is transition corn -

plete; otherwise it is transition incomplete and the undefined values

are called "don't cares". Similarly, if g is defined for all values of

S, the machine is output complete; otherwise it is output incomplete

and the unspecified values are also don't cares. If both transition and

output are complete, the machine is completely specified; otherwise

it is incompletely specified. Since the transition function and the out-

put function characterize a machine, they are referred to as character-

izing functions. A machine whose characterizing functions are not
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subject to any uncertainty is deterministic. When inputs and outputs

of a machine are restricted to binary signals, the machine is a binary

machine. A sequential machine is synchronous if the transition of

states occurs only at prescribed instances of time controlled by a

clock. The time unit in synchronous sequential machines is one clock

time (see Figure 1).

A sequential machine is often described by a flow table. A flow

table for a Moore machine is the tabular form of Figure 2. Columns

labelled by input symbols are next-state columns; columns labelled by

output symbols are outout columns; each row represents a state of the

machine; each entry at the intersection of the h-th input column and

the j-th state row is the next-state f(s
j, h

); the entries in the output

.columnsat the j-th state row are outputs g(s.)

A next-state column is a permutation column if every state of

the machine appears exactly once in that column; a next-state column

is a reset column if all entries in that column are the same. A

machine that consists only of permutation columns is a permutation

machine; a machine that consists only of reset columns is a reset

machine; a machine that consists only of permutation and reset

columns is a permutation-reset machine or simply a P-R machine.

Zeiger in 1967 [29] showed that any machine can be composed of cas-

caded connections of only P-R machines.
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A machine can also be represented by a state graph, which is an

alternative representation of the flow table. An example of a state

graph for a Moore machine (Figure 3a) is shown in Figure 3b. Each

node in the graph is a state-output pair. There are as many nodes as

there are states. There is an arrow labeled by ih going from node

s. to node sk if and only if sk = f(s j'
i
h

). If there exists a finite se-

quence of arrows going from node su to node sv, state s is said
121

to be a predecessor state of the state sv, and state s a successor
v

state of the state s . If there exists such a sequence in which the
U

number of arrows is exactly one, then state s is an immediate pred-
u

ecessor of the state sv and state sv an immediate successor of the

state su. A state s. is called a transient state if there is a state
3

s.E S such that s. is not a predecessor state of s..
1 1

In circuit realizations of machines, sometimes an output is

routed back into the circuit and is used as a decision influence para-

meter. This is called feedback. The function that describes this feed-

back is the feedback function. Since a feedback is essentially another

input to the circuit, it is often referred to as a feedback input. If a

machine can be realized without any feedback inputs, it is said to be

feedback free. Friedman in 1966 [7] showed that any finite-state

machine can be realized by sequential circuits with at most one feed-

back input. If none of the available output functions can be used as the

feedback function, then an additional function must be constructed. If
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we let F be this feedback function, then a machine is finite input and

feedback memory (FIFM) if and only if its characterizing functions can

be described by the present inputs and a finite number of past inputs

and a finite number of past feedbacks. That is, for every non-tran-

sient state s at any given time t,

st G(It, It-1' It -k1'
Ft-1' Ft-2' ' Ft-k2)'

where k
1

and k
2

are smallest integers such that the above equation

holds for all non-transient states of the machine. k
1

is called the

input memory of the machine; k
2

is the feedback memory of the ma-

chine. Let

K = max (k1, k2)

K is the memory of the machine. When K =O, the machine is com-

binational, otherwise it is sequential. If k
2

= 0, it is feedback free

and is often called definite. Thus, in a feedback free machine, all

non-transient states can be distinguished by applying a finite number

of successive inputs. Transient states can be entered only by external

manipulations and will be discussed later.

1. 3 Historical Background

Aside from the general switching theory, the following areas are

of special interest to this study.
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A. Machine Decomposition. The decomposition of machines by

partition was first introduced by Hartmanis and later expanded by

Hartmanis and Stearns [10]. Gill [8], Yoe li [27] and Kohavi and

Smith. [13] also made considerable contributions in this area. Another

approach to the problem of decomposition of machines is by the theory

of semigroups. Krohn and Rhodes in 1962 [14] proved an abstract

theorem which in effect says that any machine can be composed of cas-

caded connections of only two types of machines. This theorem was

also proved by Zeiger in 1967 [29] who introduced P-R machines.

Most of the work in this area are well discussed in the book by Hart-

manis and Stearns [10] . The theory of machine decomposition pro-

vides us a good understanding of machine structures and difficulties

involved in cellularizing sequential circuits by way of decompositions.

B. Definite Machines. A pioneer paper in the area of feedback

free machine was given by J. M. Simon (1959) in his "A Note on the

Memory Aspects of Sequential Transducers" [23] . Gill treated this

subject in his 1962 book and called it an "output-independent machine"

[9]. A more complete but abstract treatment of the topic was given

by Per les, Rabin and Shamir in 1963 [20] . Several persons, such as

Brzozowski [1] and Friedman [7], have since used the properties of

definite machines for feedback studies. The FIFM machine which will

the center of this study is really an extension of the definite machine
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to include a feedback.

C. Shift Registers and Feedbacks. Elspas' paper [4] presented

an excellent state-of-the-art compilation of linear feedback shift reg-

ister circuits in 1959. Since then, the work has received much atten-

tion and has been expanded by many. Among them are Brzozowski [1]

and Friedman [7] . Their results will be the bases for this study.

They both discussed single-loop realizations of sequential machines.

As was mentioned, properties of definite machines are used in their

studies. Friedman showed that all sequential machines can be real-

ized using only one feedback loop and presented techniques of con-

structing this feedback function.

D. Cellular Circuits. Cellular circuits can actually be identi-

fied in designs of contact arrays in the 1930's and diode arrays in 1947.

The contemporary investigation of cellular circuits was initiated in

1962 by Maitra in his classical paper "Cascaded Switching Networks

of Two-input Flexible Cells" [16] . Unfortunately, the Maitra cascade

is not logically complete. Short [22] in 1965 proposed two-rail cas-

cades and these were shown to be complete. Other major contributions

are made by Minnick and Short (1964)[17], and Spandorfer and Tonik

(1965) [24] in fixed cell arrays and Minnick (1964) [18] in variable

cell arrays. A good summary of results in this area with extensive



9

bibliography can be found in [ 19] . More recent and advanced theory

of cellular logic can be found in a series of SRI reports [5, 6] .
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II. SM SYNTHESIS USING FIFM PROPERTY

Z. 1 Introduction

Friedman [7] has shown that all finite-state sequential machines

can be realized by circuits with only one feedback. Hence we shall

start our discussion by limiting the number of feedbacks to either zero

or one. The following questions must be answered for efficient syn-

thesis of a sequential machine.

1. Can we realize the machine without any feedback?

2. If the answer to question 1 is negative, can we use one of

the outputs as the feedback?

3. If answers to both questions 1 and 2 are no, how can we

construct a function which can be used as the feedback

function?

The first two questions will be answered in Section 2. 2 by giving

testing procedures. The third question will be answered by illustra-

tions in Section 2. 3. In Section 2.4 we shall show that the memory K

of a machine can be obtained from the tests performed. Two methods

of characterizing an FIFM machine are given in Section 2. 5. These

characterizations will lead us directly to the hardware synthesis of

sequential machines. In Section 2. 6 we shall study three types of

cellular structures. They are the linear cascade, the array, and the

tree. Some aspects of minimal realizations and bounds on the number
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of cells required will be discussed in Section 2. 7. The question of

how to initialize a machine to a certain desired state in cellular struc-

tures will be ansered in a separate chapter.

2. 2 Tests for FIFM

2. 2. 1 Definiteness Test

Tests to determine whether a machine is feedback free or not

are called definiteness tests. We present two definiteness test meth-

ods.

A. D-successor Tree Method. A state set is an unordered collec-

tion of a finite number of states in which all elements (states) are dis-

tinct. Let A C S be a state set consisting of states sl, s2, , sr,

the ih -successor of the state set A is another state set B ( S,

formed by next states f(sl, ih )
'

f (s ih )" f(s r' i
h

) with don't cares

and repeating states eliminated. A D-successor tree is a tree struc-

ture as shown in Figure 4 for Ml. The structure is composed of

branches arranged in successive levels, the highest level being the

zeroth level. In a machine with p input symbols, each branch in the

j-th level is plit into p branches in the (j+l)st level. The state sets

in the (j+l)st level under the j-th level state set A are i
h

-successors

of the state set A, where h = 1, 2, , p. Two state sets are said to

be connected if they are connected by branches going only upward (or
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downward). A state set including all states of a machine is called the

universal state set, designated by 1. Hence 1 = S. A state set with

no states is a null state set, designated by 0.

A D-successor tree always starts with the universal state set.

Any state that is not a successor state of any state (including the state

itself) of the machine will disappear in the lower levels of the D-suc-

cessor tree. Each branch of the tree is terminated by one of the

following conditions.

1. The state set consists of a single state.

2. The state set is empty (don't cares only).

3. The state set is identical to a connected state set appearing

in a lower order level.

Lemma 2.1. A machine M is not definite (i. e., is not feed-

back free) if and only if at least one of the branches in its D-successor

tree is terminated by condition 3.

Proof: Without loss of generality, we assume, as an example,

that state set (A, B) is a terminal state set due to condition 3. That is,

state set (A, B) repeats itself along a path in the tree. We name this

path R. In this case, we can write equations in the form given at the

top of page 6 neither for state A nor for state B because an input

sequence corresponding to the path R (or multiple repititions of R)

could not determine whether the machine is in state A or in state B.
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In other words, knowing a finite number of successive inputs is not

enough to determine whether the machine is in state A or in state B.

On the other hand, if M is not definite, then at least two states,

say C and D, cannot be distinguished by a finite number of success-

ive inputs. This implies that at least one branch in the D-successor

tree is terminated by condition 3 with the state set (C, D). For, if it

is terminated by condition 1, say with state C, then only state C will

have the term corresponding to this path. If it is terminated by con-

dition 2, then the state corresponding to this path is undefined.
Q.E. D.

Theorem 2.2. A machine M is feedback free (definite) if and

only if its D-successor tree is terminated by conditions 1 and 2.

Proof: By contra positive of Lemma 2.1

Q. E. D.
Corollary 2. 3. If a machine is completely specified and feed-

back free, its D-successor tree is terminated by condition 1.

Hence, to test whether a machine M is feedback free or not,

we construct the D-successor tree of M. A machine is not feedback

free as soon as we find a branch in the D-successor tree that is termin-

ated by condition 3. If every branch of the tree is terminated by either

conditions 1 or 2, then M is feedback free. Figure 4 shows the D-

successor tree of Ml. Since some of its branches are terminated by

condition 3, Ml is3 not a feedback free machine.



14

B. D-pair table Method. A D-pair table is a flow table of the

form shown in Figure 5.

1. A column for every input symbol; no output columns are

needed.

2. A row for each pair of distinct states s. and sk.

3. The entry at the intersection of the ih
-column and the

(s
3,

sk)-row is (s
u

, sv) or (s
v

, s
u 3

) where s = f(s., ih) and

sv = f(sk, ih). If s = s
v

enter only s
u

(or s
v

).

As an example, the D-pair table of Ml is given in Figure 5.

To test whether a given machine is feedback free or not, we follow

Algorithm 2. 1.

Algorithm 2.1. (D-pair table test)

1. Construct the D-pair table of the machine.

2. Let k = 0.

3. Cross out the rows in which all next-state entries are either

one of the following types or combinations of them.

a. don't care,

b. single state,

c. a state pair have already been crossed out in an earlier

ite ration.

4. If not even a single row can be crossed out in step 3, go to

step 7; otherwise go to step 5.
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5. If all rows of the table have been crossed out, go to step 8;

otherwise go to step 6.

6. Let k go to step 3.

7. The machine is not feedback free. Stop.

8. The machine is feedback free. Stop.

Theorem 2. 4. Algorithm 2. 1 works.

Proof: The D-pair table method is equivalent to the D-successor

tree method going backwards. A crossed-out state pair in the D-pair

table represents a pair of states that can be distinguished by a finite

input sequence. If every state pair in the D-pair table is crossed out,

then every pair of states can be distinguished by a finite number of

successive inputs. Hence M is feedback free. Q. E. D.

Figure 5 shows the D-pair table of Ml. Since no rows can

be crossed out by following the steps of Algorithm 2. 1, we conclude

that Ml is not feedback free, which agrees with the conclusion of

the D-successor tree test.

2. 2. 2 Finiteness Tests

Tests to determine whether a machine can use one of its output

functions as the feedback are called finiteness tests. Since feedback

free machines are particular cases of FIFM machines, we would ex-

pect that the testing methods presented in the previous section can be



16

expanded for finiteness tests. This is indeed the case.

A. F-successor Tree Method. Let k be a state set consisting

of states s s
2'

sr, the i
h
/z

d
-successors of the state set A are

state sets formed by next states f(s1, ih), f(s2, ih), , f(sr, ih) with

equal zd-output. Thus in a binary machine, there are two ih /zd-

successors to each state set. Don't cares and repeating states are

eliminated in all state sets. An F-successor tree is a tree structure

similar to a D-successor tree as shown in Figure 6. Each branch in

the j-th level is split into 2p branches in the (j+1) -st level, where p

is the number of input symbols. The state sets in the (j+1)-st level

under the state set A of the j-th level are i
h
/z

d
-successors of A.

To form an F-successor tree we always start with the universal state

set as the zeroth level state set. The conditions for terminating a

branch are identical to those given for the D-successor trees. The

following properties are analogous to Lemma 2.1 and Theorem 2.2

and are presented without proof.

Lemma 2. 5. An output function zd of a machine M can not be

used as the feedback function if and only if at least one of the branches

in its F-successor tree is terminated by condition 3.

Theorem 2. 6. An output function zd of a machine M can be

used as the feedback function to make M an FIFM machine if and

only if its F-successor tree is terminated by conditions 1 and 2.



In summary, if we wish to test whether an output function zd

can be used as the feedback function, we simply construct the F-

successor tree for zd.
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Conclusions can then be drawn according to

the above Lemma and Theorem. Figure 6 shows the F-successor

tree of Ml. It shows that the output function can be used as the feed-

back function.

B. F-pair Table Method. An F-pair table for an output zd is

a flow table of the following form.

1. A column for every input symbol; no output columns are

needed.

2. A row for each pair of distinct states s. and sk.

3. If g(sj) = g(sk) for zd, the entry at the intersection of

(si, sk)-row and ih- column is (s
u

, s
v

) or (s
v

, s
u

) where

su = f(si, ih) and sv'-' f (sk, ih). If g(si) g(sk) for zd, the

entries at the row (s j,
sk) are don't cares under all inputs.

As an example, the F-pair table of Ml is given in Figure 7.

Algorithm 2.2 describes the procedures of performing the F-pair table

test.

Algorithm 2. 2.(F-pair Table Test)

1. Let c = 0, d = 1.

2. Construct the F-pair table for zd.

3. Let k = 0 .
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4. Cross out all rows in which all next state entries are either

one of the following types or combinations of them.

a. don't care,

b. single state,

c. a state pair have already been crossed out in an earlier

iteration (smaller k but same d).

5. If not even a single row can be crossed out in step 4, then zd

cannot be used as the feedback function, go to step 10. If all

rows have been crossed out, go to step 8; all other cases go to

step 7.

7. Let k = k + 1, go to step 4.

8. zd can be used as the feedback function. If we wish to con-

tinue tests of other output functions, go to step 9; otherwise

stop.

9. Let c =c +1.

10. Is d = q? If not, go to step 11; if yes, go to step 12. q is

the number of output functions.

11. Let d = d + 1, go to step 2.

12. Stop. c = the number of output functions can be used as the

feedback function. If c = 0, there is no output function can

be used as the feedback function.

Theorem 2.7. Algorithm 2.2 works.

Proof: By following the proof of Theorem 2.4. Q. E. D.
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Figure 7 shows the F-pair table of Ml. Since all rows can be

crossed out by carrying out Algorithm 2. 2, we conclude that Ml is

FIFM by using the output function as the feedback function.

2. 3. Converting non-FIFM Machines to FIFM Machines--Construc-
tion of the Feedback Function

If we find a machine is not feedback free and also none of its

output functions can be used as the feedback function, how can we con-

struct a function such that the machine becomes FIFM? Friedman [7]

has answered this question. In this section, we simply present the

basic principles involved and illustrate them by simple examples.

More detailed treatment can be found in Friedman's paper.

A D-implication graph of a machine M is a state graph con-

structed according to the D-pair table of M. A loop on a D-implica-

tion graph is a closed directed path. If the path does not pass through

any node more than once, then the loop is called an elementary loop.

A machine M is feedback free if and only if the D-implication graph

of M has no elementary loops.

Figure 8a shows the flow table of M3. The D-pair table test in

Figure 8b shows that M3 is not feedback free. The F-pair table test

in Figure 8c tells us that the output function cannot be used as the

feedback function. Hence, we must construct a function, together with

the inputs, will make M an FIFM machine. We call this function F.
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F is not only an output function but also an input. The D-implication

graph of M3 is shown in Figure 8d. There are four elementary loops

in that graph. They are

1. (C, D) 1 (C, D)

i
2. (C, D) (A, C) 1 (C, D)

2 2
i

2
3. (C, D) (A, C) (B, C) (C, D)

i
2

i
2 i2

4. (A, B) (B, D) (A, D) (A, B)

Since it is the elementary loops that are causing the trouble, we wish

to add an additional input, F, such that all elementary loops become

non-loop. To do so, at least one state pair in each loop should have

different values of F for the two states. For example, if we assign

0 as the F value for state C and 1 for state D, then the state pair

(C, D) will go to state C under input it -0 (original input plus F) and

will go to state D under input i 1-1. Thus eliminate the elementary

loop (1). Hence, to break the elementary loop (1), state C and D

should have different F values. Similarly, to break the elementary

loop (2), either states C and D or states A and C should be

assigned different F values. Similar reasonings apply to the other

two loops. If we use the notations

Al state A has assigned F value 1,

A
0

state A has assigned F value 0,
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A
1
BO = Al and B

0'

Al + B0 = Al or B0,

then, we can write the requirements for F in a more compact form.

To break loop (1), we need C
0

D
1

+C
1
D0

'

to break loop (2), we need C0D1 + C1 D
0

+ A0C1 + A1C0
'

to break loop (3), we need C
0

D1 + C
1
D0 + A

0C1
+ A1C0

+ B0C1 + B1C0;
'

to break loop (4), we need A OB1 + A
1
B0 + B

0
D1 + B1D0

+ A
0

D1 + Al DO.

F must satisfy all above criteria. Hence,

F = (C0D1 + C1D0)(CoDI + C1D0 + A0C1 + A1C0)

(C
0

D1 + C
1
D0 + A0C1 + A1C

0
+ B0C1 + B1C 0)

(A0B
1

+ A1B0 + B0D1 + B1D0 + A0D1 + A1D0).

By using the obvious properties that

A0A1 = 0,

Al Al = Al'

AA = A
0 0 0'

OX = 0,

where X = A0 or Al

A0 +A1 = 1,

Al + Al = Al'

A + A = A
0 0 0'

1 + X = 1,

We can simplify Equation 2.1 to

F = (C0 D
1

+C1D0)(1 + A0C1 + A1C0(1 + B0C1 + B1C0))

(A0B
1

+ A1B0 + B0D1 + B1D0 + A0D1 + A1D0)

(2. 1)



(2. 2)

Hence, F can be obtained by choosing any one of the following assign-

ments:

a. B
1

C
1

D
0'

i. e.,

b. B
0

C
0

D l' i. e.,

c. Al C
1

D
0'

i. e.,

d. A
0

C
0

Dl' i. e.,

1 - -B, 1 - -C, 0--D, A can be either 0 or 1,

0--B, 0--C, 1--D, A can be either 0 or 1,

1- -A, 1 --C, 0--D, B can be either 0 or 1,

0--A, 0--C, 1 --D, B can be either 0 or 1.

Note that whatever assignments we choose, the F values are associ-

ated with states and can be obtained by making F an output function

of the machine. Figure 9a shows M3' (M3 with an added output F).

The F-pair table test of M3' using F as the feedback function is

shown in Figure 9b. It shows that M3' is an FIFM machine. Thus,

F is a valid feedback function.

There are cases when a simple feedback function cannot be found

because of conflicting conditions required to resolve all elementary

loops. In these cases, some or all states have to be split. The pro-

cess of state splitting is given in [7] .

Sometimes when the D-implication graph is complicated, it is

rather difficult to find all elementary loops. D-pair trees may be

helpful in this respect. A D-pair tree is like a D-successor tree

except that it is constructed according to the D-pair table and the



23

zeroth level state set is a state pair. To find all elementary loops,

we construct a D-pair tree for every state pair of the machine. Any

branch which is terminated by condition 3 represents an elementary

loop (not necessarily different from the other elementary loops). As

an example, the D-pair trees of M3 are given in Figure 10. Though

all four types of elementary loops are evident in the first D-pair tree,

in general we must construct all D-pair trees of M to make sure that

there are no other loops. Of course, experience can always cut a

great amount of unnecessary work.

2. 4. Determination of K

In this section, we shall relate the memory K of a machine M

to the testing methods of earlier sections.

Theorem 2.8. The memory K of a feedback free machine M

is equal to the last level number, L, in a longest branch of the D-

successor tree. i. e., K = L.

Proof: Without loss of generality, we assume that the state set

along a longest branch in the (L-1)st level is (A, B). Then, one of

the following conditions must be true for h = 1, 2, -, p.

a. f(A, ih) = f(B, ih) or

b. f(A, ih) and/or f(B, ih) are undefined.

If not, then the tree would either have (L+1)-st level or is terminated

by condition 3 --- both contradict our assumptions. Therefore, L
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past inputs together with the present input are sufficient to determine

the present state of M. It is obvious that L is the minimal number

of successive past inputs required. Hence, K = L. Q.E.D.

Theorem 2. 9. The memory K of a feedback free machine M

is equal to the final k value in carrying out the D-pair table test.

Let N be the final k value, then K = N.

Proof: By similar arguments given above. Q. E. D.

Theorem 2.10. The memory K of an FIFM machine with zd

as the feedback function is equal to the total number of levels in a

longest branch of the F-successor tree for zd. i. e., K = L + 1.

Proof: Similar to that of Theorem 2.8. Since the feedback ob-

tained at t-1 is used as an input at t, the feedback input at t-L is

the feedback obtained at t-(L+1). In other words, the feedback input

has one more delay than the original inputs. Hence, K = L + 1. Q.E.D.

Theorem 2.11. The memory K of an FIFM machine M with

zd as the feedback is equal to the total number of iterations required

in carrying out the F-pair table test for zd. i. e., K = N + 1.

Proof: Obvious. Q. E. D.

If an added function is used as the feedback function, we simply

consider it as an output function zd and K can then he found.

From the above results, we can see that if different output functions
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are used as the feedback function, we may have different memory K.

For economy (see Section 2. 7), we usually choose the output function

that will give the minimal K as the feedback function. By the same

reason, we always select the feedback function, among all possibilities,

the one will give minimal K. This is done, more or less, by trial

and compare method.

2. 5. Characterization of FIFM Machines

In this section we shall introduce two methods of characterizing

a machine using the results developed earlier in this chapter. They

will lead us to easy construction of sequential circuits in the subse-

quent section.

2. 5. 1 Difference Equations

When time also becomes a factor in a Boolean equation, it is

called a difference equation. We define

Acif(t) = f(t).

of(t) = Alf(t) = f(t-1).

Amf(t) = f(t-m).

L\-mf(t) = f(t+m).



D is called the difference operator. Examples:

A (x
t

+ yt-1
+ xt-2 t ) xt + yt-1 + xt-2zt

A(xt + yt + )

A3(x
t

) = xt-3

= xt-1 + yt-1 + xt-2 yt-2

-2
A (xt-2 + yt-3 + zt-4) = xt + yt-1 + zt-2

Some direct and obvious properties of the difference operator are

given below.

AC = C, C is a constant.

A[Af(t)] = A2f(t).

Am+nf(t).

nm[f (t) + g(t)] = Amf(t) + Amg(t).

Anirti" {g(t)}] {Amf(t)} {Amg(t)}

Am[f(t) + g(t)] = Amf(t) + Amg(t).

Am{ [f (t)] } = {Arrif (t)}

{[ Anif(t)] [Ang(t)] = [Amf(t)]' + [Ang(t)]'

{Amf(t) + ,Ang(t)} I = [Amf(t)] [An g(t)]

26

We now show that how an FIFM machine can be described by

difference equations. M2 with X as the input variable is shown in

Figure lla. The D-pair table test in Figure llb shows that M2 is a
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feedback free machine with K = 3. Hence, we would expect that the

machine can be described by the present input and three successive

past inputs.

Note that the output of M2 is 1 when it is in states B, C or E.

We associate our output Z with the state set (BCE).

Zt (BCE)t (2. 3)

Also note that M2 is in the state set (BCE) only if it was (assuming

zero transition time)

1. in the state set (BCD) and the input is 5c, or

2. in the state set (CE) and the input is X.

In our notation,

(BCE)t = TtA(BCD)t + XtA(CE)t .

By similar reasonings,

(BCD) t
= t

A(BD)t
+ X

t
A(ABCDE)

t t
A(BD)

t
+ X

tAl

= YtA(BD)t t

(CE)t =
t
A(BcD)

t'

(BD) t
= YtA(ABCDE) = X Al = Xt.

Note that we use 1 for the universal state set and 0 for the empty

set. Hence,

zt = (BCE)t

= t
MBCD)

t
+ X tA(CE)t
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r
t { t

(BD)
t

+ X
t}

+ X
t to (BCD)t}

77-1

t
A {V A(X) + Xt} + X

t
{R7

t
[

t
A(BD)

t
+ Xt] }

t t

= t
{5(t

A(xt) + Xt} + Xt {-5-ct t
Apc t

+ xt]

.65c 6,2(x ) + R AX + X A3T A3X + X AR A2X
t t t t t t t t t t t t

= R-R x +3-c.x +xT )7. x +x)(- x
t t-1 t-2 t t-1 t t-1 t-2 t-3 t t-1 t-2

(2. 4)

As another example, Ml is again given in Figure 12a. It was

shown that Ml is FIFM using the output as the feedback. Since the

feedback is used as another input, we expand the original flow table to

that shown in Figure 12b. The next state entries for impossible com-

binations of inputs are don't cares, e.g., if the machine is in state A,

then the Z value has to be 1. Hence the next state entries of A in

the columns with F (where Ft is the same as Z t-1 ) are don't cares.

Zt = (AC )t

c)t = X tZ t-1 A(D AC) + z A(A0 BD) + X Z (DO AC)
t t Y-1 t t t-1 t

+Xt z (CO BD)

Notation: 0 The term in front of 0 is required while the term

after 0 is don't care and can either be included or not

included as desired.
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(D 0 AC)
t

)7C
t t-1 A(ABCD)t + Kt zt-1A(ABcD) t

+ x
t t- A(A.BcD)t

1

+ XtZt-1A(0)

7( t
+ Rtzt-1 + xt

(A 0 BD)t = 5c2t-1A(0) Ktzt-1A(0) + xt Zt-1 A(ABCD)
t

+ XtZt-1 A(0)

X 2
t t-1

(C O BD) = 7(t 2 t-1 A(ABcD) t
+ t

z t-1 A(A.BcD)t + xt2t-10(0)

+ XtZ t-1 (ABCD)t

Tcz- +3(z
+t-1 t t-1 t

z t-1

Zt = (AC )t

= X
t
Z t-1 A(D 0 AC) t

+ Xt Z t-1 A(A 0 BD)t

X
t

A(D 0 AC)t
+ X

t
Z t-1 (C 0 BD)

t

3c 45c z +XZ +XZ ) +XZ .6,(x )
t t-1 t t-1 t t-1 t t-1 t t-1 t t-1

+ XZ 0(7( +XZ +XZ )
t t-1 t t-1 t t-1 t t-1

+ XZt-1,6( t Zt-l+RZ +XZ )
t t t-1 t t-1

RtZt-1Rt-1 2t-2 + 5ct Zt-1Tct-1zt-2 +
t
Zt-1)(t-1 Z

+ xz x z +x.-2, ,+x-2-, 5:( z
t t-1 t-1 t-2 t t-1 t-1 t -1 t t-1 t-1

+x-2 x z +x z x z +x z x z
t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

+ X tZt-1Xt-1Zt-2
(2. 5)
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As the third example, we write the characterizing equations

for M3 where F is the constructed feedback function. The expanded

flow table with the feedback as one of the inputs is shown in Figure

13b.

Zt = (CD)t (2. 6)

Ft = (AC)t (2. 7)

(CD)t
- 1 A(BD

0 AC) t
+ Ft-16(AC 0 BD)t

+ x
t t

A(B OAC)t + Xt Ft-16(C 0 BD) t

(B 0 AC)
t= t t-1 A(0) +5c tFt-1,6(0)+Xt t-1 A(0) + X tFt-1A(ABCD)t

Xt Ft-1

(C 0 BD)t= RtPt--1A(ABCD) t
+ t

Ft-1 (ABCD)
t

+ X t
Tt-1 (0)

+ XtFt-ld(ABCD)t

= Tt-1 tFt-1 Xt Ft-1

Zt = (CD)t

= 5Ct Ft-la (BD 0 AC) t
RtFt-1A(AC 0 BD)t

+ Tt-3. (B 0 AC) t + XtFt- (C 0 BD)t

Tt-1 + t
Ft-.1 + Xt t -1

A (Xt Ft-1 )+ X F a(X
t

t t-1 t t-1

+
t
Ft-1+ Xt Ft-1 )



5Cf- d-RF +xi X F +XF
t t-1 t t-1 t t-1 t-1 t-2 t t-1 t-1 t-2

+ X tFt-1Rt-1 Ft-2 + XtFt-iXt Ft-2
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(2. 8)

Similarly,

= tPt-17(t-1 Tt-2 + t t-1 t-lFt-2 +
t t-lxt-1Pt-2F t

+ 5(F X F + x F X F +XT X F
t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

+ x F X F +XF X F +XF X F
t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

+ X tFt-1Xt-IFt-2
(2. 9)

The techniques described in this section are completely general

and can be used for machines with multiple inputs and outputs. The

difference equations thus obtained, however, may be long and it is

easy to make mistakes in the calculations. We now introduce a more

compact way of characterizing a sequential machine.

2.5.2 Predecessor Trees

When f(s3 ., ih) = sk ; s. is said to be the immediate predecessor

state of sk under i
h.

We use the notation s = f
-1(sk,

h).
Let A

be a state set consisted of states s1, s2" s r' the ih -predecessor
-1

of A is a state set formed by immediate predecessor states f (s

-1 -1
i
h

) f (sz, ih), , f (sr, ih). The immediate predecessor states of

don't care states can be included, if desired, in the i
h

-predecessor
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of A. The z
d

-predecessor tree is a tree structure as shown in

Figure 14. The structure is composed of branches arranged in suc-

cessive levels, the highest level being the zeroth level and is a state

set composed of states with g(s) = 1 for zd. In a machine with p

input symbols (including the feedback input ), each branch in the j-th

level is split into p branches in the (j +l) -st level. The state set in

the (j +l) -st level under a j-th level state set A and a branch ih is

the i
h

-predecessor of A. A branch is terminated by meeting one of

the following conditions.

1, A state set consisted of all states,

2. A state set consisted of no states,

(1)

(0)

3. A state set repeats a connected state set appeared in an

earlier level.

A machine that has identical outputs for all states or has nonzero out-

puts for transient states only is a trivial machine.

Lemma 2. 12. For a nontrivial feedback free machine M, at

least one branch of its predecessor tree is terminated by condition 1.

Proof: A nontrivial machine has at least one nontransient state,

say state B, in the zeroth level state set of its predecessor tree. By

definition, a feedback free machine is a machine which can start on

any state and be led to any nontransient state by an input sequence.

This is the case for state B. Hence, there must be a branch in the
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tree, corresponding to that input sequence, that is terminated by con-

dition 1. Q. E. D.

Theorem 2.13. The predecessor tree of a feedback free ma-

chine M is terminated by conditions 1 and/or 2.

Proof: Necessity: 1. There are branches which are termin-

ated by condition 1 as was discussed in Lemma 2.12. 2. There are

states under a specified input does not have any predecessor states.

If every state in a state set has no predecessor under ih' then the ih

branch under that state set is empty and is terminated by condition 2.

Sufficiency: We simply show that whenever a branch of

a predecessor tree is terminated by condition 3, then M is not a

feedback free machine. 'Without loss of generality, we assume that a

state set (A, B) repeats itself along a certain path of the tree. If we

consider this path in reverse order, it is exactly an elementary loop

in a D-pair tree (or D-implication graph). Hence, M is not feedback

free. Q. E. D.

If in an FIFM machine, we consider F as an output and the

feedback input as another input, the expanded machine, e. g., Figure

13b, can be thought as feedback free. Hence, an FIFM machine can

also be characterized by predecessor trees. Examples used in Sec-

tion 2.5.1 are again used in Figures 14--16 to illustrate this charac-

terization technique.
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Note that the reasoning behind the construction of predecessor

trees i s exactly the same as that of difference equations. Hence,

there are close relations between the two. If we consider the branch

between the zeroth level and the first level corresponding to the input

at time t and the feedback at t-1, those between the first level and

the second level corresponding to the input at time t-1 and the feed-

back at t-2, etc., we can easily write the difference equations for a

given machine from its predecessor trees. The difference equation

consists of a sum of product terms. Each product term is formed by

the product of the terminal condition and the path leading to that term-

inal from the zeroth level. For example, the difference equation of

Ml can be obtained from Figure 15b.

zt = (17( + 1-Rt-1 t-2Z + 1X t-1 t-2Z + Øxt-1
t-2z)t t-1 t-1 t-2

+ z ( 0 . 3 ( + yi-Rt-lzt-2 +1.X +0. t -1t -2)tt-1 t-i t-2 t-1 t-2

+ x t
+ 1.7(t-lZt-2+1Xt-12,t-2+16.Xt-lZt-2)

+ x z (1X Z + 1.Xt-1 t-2 t-1 t-2 t-1 t-2z+0.X2+1Xz)
t t-1 t-1 t-2

=
t
2t-13ct-1 2t-2 5ct

5(t
2t-lxt-1 2t-2

+5cz x Z +x2, X 2 +x2 5c z
t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

+x2, x +xz 2, +xz z
t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

+X Z X Z
t t-1 t-1 t-2
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This is exactly the same as Equation 2.5 derived in the previous sec-

tion. Note that unnecessary work can be eliminated by simply writing

down the branches terminated by (1) and summing them up.

2. 6 Cellular Synthesis

Since all sequential machines can be described by combinational

type equations, they can be realized by conveAtional combinational

circuits if variables of different time subscripts are all available at

the same time. This can be easily achieved by delay elements. Be-

cause the number of input variables and the memory K are both

finite, the required number of delay elements is also finite.

Prior to the advent of integrated circuit technology, the goal of

every logic designer was concentrated around minimizing the number

of individual components in hardware realizations. But with the new

technology, aside from a given upper limit, a large percentage of the

cost is independent of the complexity of each building block. The

main objective is, instead, to minimize the number of building blocks

(modules). The more uses that can be found for a given module, the

less expensive the per unit cost will be. Hence, to adapt large scale

integration into future machines,

1. the number of types of modules must be small, and

2. the interconnection of modules to form larger structures

must be simple and regular.
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To meet the first criterion, we limit our cell types to just one. That

is, all cells are identical. To meet the second criterion, we investi-

gate the feasibility of three different cellular structures. They are

the linear cascade, the array, and the tree.

2. 6. 1 Linear Cascade

There are many ways to make linear cascades. We shall limit

our investigation to that of unilatral linear cascades. The earliest

cascade is the Maitra cascade [16] as shown in Figure 17. (These are

called tributary switching network by Sklansky). The Maitra cascade,

however, is not logically complete even if one allows redundant cas-

cade (Stone and Korenjak [25] ) in which the same external input may

be connected to inputs of several cells. As pointed out by Short [22],

in order to make the linear cascade functionally complete, the only

logical direction is to expand the number of the interconnecting leads

between cells. He showed that the two rail cascade is functionally

complete. As an example, the realization of M2 using the two rail

cascade is shown in Figure 18.

There are two ways to obtain necessary delays for the inputs.

All delay elements are assumed to be unit delay elements in our study.

1. Delayed input: inputs are delayed at different stages as

shown in Figure 19a.
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2. Delayed logic: delays are distributed throughout the logic

circuits as shown in Figure 19b.

The circuit of Figure 19b has one more delay than that of Figure

19a and the output is actually

Zt =A(BCE)=,A(TCR X +3-(X +XX X
t t t-1 t-2 t t-1 t t-1 t-2 t-3

+ xtXt-1Xt-2)

x + X x + x Tc X xt-1 t-2 t-3 t-1 t-2 t-1 t-2 t-3 t-4

+ Xt-1 -2Xt 3
.

Thus, when delayed input circuit is used, we are assuming the output

is obtained with zero time. When delayed logic circuit is used, the

output is obtained in one clock time. The advantage of delayed input

is that it uses less delay elements while that of delayed logic is more

uniform in structure.

The two rail cascade, however, can realize only one function

per cascade. In many sequential machine syntheses, we need to real-

ize both the output function and the feedback function not to mention

multiple output functions. Although some studies in multiple function

realization using two rail cascades have been done [3, 281, it is com-

plicated and not efficient for general sequential machine realization.

Of course, we can always realize multiple functions by multiple two

rail cascades. This sort of approach comes very close to the array
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type circuit we will discuss in the next section.

If we expand the number of the interconnecting leads further,

we have the general multiple-rail cascade. But if the cell is to re-

main relatively simple, the number of rails that we may have must

remain small. The difficulties of realizing multiple functions encount-

ered in the two-rail cascade will also be present in this case.

Now we consider the synthesis from the other direction--that of

machine decomposition. Krohn and Rhodes [14] stated that each finite

state machine M can be built as a cascade connection of two-state

machine and permutation machines. Zeiger [Z9], in studying the cas-

caded P-R machine synthesis of sequential machines, also proved that

this is possible. This is done by further decomposition of P-R ma-

chines into two-state machines and permutation machines. (Note that

a two-state machine is a P-R machine. ) However, in this kind of

cascade, the number of different cell types can be very large (there

are infinite number of P-R machines) and does not meet our criterion

of single cell type.

Therefore, we conjecture that, at the present, there is no linear

cascade which is general enough to realize all finite state sequential

machines with just a single cell type and yet the cell structure is

quite simple.



39

2. 6. 2 Array

The natural direction for extending the linear cascade is to the

two dimensional array. Several cellular array structures for combin-

ational logic have been studied and are discussed in Appendix II. Since

we can write all characterizing equations as the combinational results

of a finite number of successive inputs and feedbacks, all combination-

al cellular arrays can be used to synthesize sequential machines by

slight modifications--addition of delay elements. For example, Fig-

ure 20 shows the cellular realization of the function.

w = XOXIXZ + X0x1 + x0x1x2 + X0 3c
1
x

2

using Spandorfer's technique [24].

Recall that the output equation for M2 was found to be

(2. 12)

z =57c x +3(x +XX X X +XX X . (2. 13)
t t t-1 t-2 t t-1 t t-1 t-2 t-3 t t-1 t-2

If we make the following correspondances,

Zt = W, Xt = X0, Xt..1 = X1, Xt_2 = X2, Xt..3 =. X3 and Xt_4= X4,

then Equation 2.12 and Equation 2.13 are identical. Figure 21a shows

the delayed input realization of M2. Figure 21b is the delayed logic

realization of M2.

As another example, the realization of M3 is shown in Figure

22.
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The above are examples of fixed cell-function arrays, i. e., the

functional performance of each cell is fixed. When cell functions can

be varied over some useful set of possible functions, the structure is

called variable cell-function array. One such array is known as the

cutpoint cellular array. In a cutpoint cellular array, each cell is able

to perform one of the nine specified functions. These functions are

listed in Figure 23 where x and y are inputs and z is the output.

The number N indicates the function the cell is to perform. Origin-

ally, a specific function is achieved by cutting certain circuit connec-

tions within the cell, hence the name cutpoint. Figure 24 shows the

cutpoint cellular array synthesis of M2.

The synthesis of Ml (a machine with the feedback) using cut-

point cellular array with delayed input is shown in Figure 25.

From above examples, we can see that once the difference equa-

tions were obtained, the sequential machine can be easily realized by

cellular arrays.

2.6.3 Tree

In combinational logic, the tree represents a special case of

design structure and has received a good deal of attention. A general

tree of n variables has 2n terminal nodes and each represents an

n-variable minterm. Any n-variable function can be realized by com-

6ining appropriate minterms. For example, Figure 26a realizes the



function

W T(
OR 1

X2 + XO 5c
1

+ x
0
x

1
X2 .
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(2. 14)

The tree structure of Figure 26a can be composed of either re-

lays or gates. Consider the case of using relays (which are bidirec-

tional), we can turn around and get the output from the tip of the tree

as shown in Figure 26b. If we call the left terminals the boundary

terminals, then Figure 26b shows that all functions can be realized by

giving proper boundary conditions.

Figure 27 shows the same two ways of realization of Equation

2.14 using gates. From Figure 27b, we can see that all functions can

be realized by giving proper boundary conditions. Note the uniform

structure in Figure 27b. To simplify the work, we use the symbol

shown in Figure 28b to represent the gate network of Figure 28a and

use the symbol in Figure 29b to represent the gate network of Figure

29a.

Thus, a sequential machine can easily be realized by tree cir-

cuits once the difference equations for the machine are obtained. Fig-

ure 30 shows the tree realizations of M2. For uniformity, we demand

that all branches in the tree have an equal number of levels, even

though some of them could otherwise be shortened.

Before we discuss how the feedback input, the multiple inputs

and the multiple output are implemented, we now relate the realization
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to the predecessor tree. Recall that a predecessor tree also describes

an output function. If we extend all branches of the predecessor tree

to K-th level, we have a uniform tree. Note that all branches of a

predecessor tree must be terminated either by (1) or by (0). For

branches terminated before the K-th level with a (1), we extend it to

the K-th level with all (1)Is. For branches terminated before the K-th

level with a (0), we extend it to the K-th level with all (0)T s. The

K-th level in the predecessor tree provides us the proper boundary

conditions for the tree realization. Of course, we must be careful to

make the correct correspondences between the branches of the pre-

decessor tree and those of the cellular tree. This enables us to syn-

thesize any sequential machine in tree form directly from its prede-

cessor trees. When multiple output functions are required, we simply

use one tree for each output function. If the machine has multiple

inputs (including the feedback input), we use a multiple "layer" for

each level as illustrated in Figure 31c. Thus, for notational conven-

ience, if there are p-inputs, we shall combine 2P-1 cells and call it

a super cell. Examples of super cell symbols are given in Figure 32.

Note that if we use the notation of super cells, the realization tree

will have the similar structural form as the extended predecessor

tree in all cases.
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2.7 Minimal Realizations and Bounds

A. Tree Structure. In the tree structure, many cells are in-

active and can be eliminated. But for uniformity, we demand that all

branches have equal length. Hence, the number of cells required is

N q(2P(K+1)_1) (2. 15)

where p = total number of input variables (including the feedback

input if any),

q = total number of output functions (including the feedback

function if any), and

K = memory of the machine.

If each super cell is considered as one unit, then

N = q(2K+1-1) (2.16)

If the machine is feedback free, we must study the tradeoff problem

between K and p and q. If the decrease in K more then offsets

the increase in p and q by using a feedback, then it is more econom-

ical to have the feedback. Since we restrict our study to that of only

a single feedback, the trade off between multiple feedback and p and

q will not be discussed. Of course, we always choose the feedback

which gives the minimal K, hence the minimal N. In Figure 33, the

numbers on slanted lines indicate the numbers of K that can be de-

creased by having the feedback. The region above that slanted line
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indicates the combination of p and K that will give lower N by

having the feedback. For FIFM machines, it is always more econom-

ical to use the feedback function that will give minimal K.

B. Array Structure. The number of cells required will depend

on the type of array being used. But for both types of arrays discuss-

ed in the previous section, the process involves realizing the product

terms and then summing them. If we consider four NAND gates as a

single cell in our fixed function arrays, then the number of cells re-

quired for both fixed and variable function arrays are

N = (pK + I w) (mi+ m2 . (2. 17)

where p = total number of input variables (including the feedback

input, if any),

q = total number of output functions (including the feedback

function, if any),

K = the memory of the machine,

Since

m. = number of product terms in the i-th output function,
1

w = 0, if there is a feedback, and

1, if there is no feedback.

i=1

m. < 2p
K+1 + w

< q 2p K+1 + w



Hence,

N < [p K_El (q 2p(K+1) + w)
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(2. 18)

The trade-off problem, however, is not as simple. For most

cases, a minimal K would mean a minimal realization. But this is

not necessarily true for all cases since a minimal K may have large

number of minterms for output functions that would make N large.

The conjecture is that there is no general optimal solution for this

case. For the lack of such solution, we would assume that the reali-

zation is minimal if K is minimal. Of course, for any chosen K,

we would always try to minimize the number of terms in each output

function using normal combinational techniques.

2.8 Summary

For any given machine M, we first test whether M can be

realized without any feedback. Two methods, the D-successor tree

and the D - -pair table, are available by feedback free circuits. The

next step is to test whether one of its output functions can be used as

the feedback function. This can be done by one of the two finiteness

test methods--F-successor tree and F-pair table. In both the definite-

ness test and finiteness test, the pair table method is preferred be-

cause of its simplicity and its necessity in constructing the D-implica-

tion graph if needed. The D-implication graph is used as an aid to

determine the feedback function required if M fails both the definiteness
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test and the finiteness test. The successor tree method is introduced

because it is a straight forward interpretation of the definition of

FIFM machines. It also introduces the notion of a tree structure. D-

pair tree essentially break the a-implication graph into several sub-

graphs. They help to identify elementary loops when the D-implica-

tion graph is too complicated. The memory K of a machine can also

be found as a side result of the tests.

Two mathematical tools that can be used to characterize a given

sequential machine were developed in Section 2. 5. The difference

equation obtained by using difference operator is mathematically more

vigorous while the predecessor tree is much simpler to construct. If

a machine M is feedback free, we can use one of the two methods to

describe its output functions in terms of a finite number of successive

inputs. If a machine M is FIFM, we first obtain the expanded flow

table of M and then use one of the two methods to describe its output

and feedback functions in terms of a finite number of successive inputs

and feedbacks. In other words, all sequential machines can be char-

acterized by combinational equations if we consider a variable with

different time subscripts as different variables. We then studied the

characteristics of several cellular structures that are appropriate for

synthesizing finite-state sequential machines. The restriction we

imposed are that 1. cells must be identical; 2. cells must be rela-

tively simple; 3. intercell connections must be uniform except for the
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final synthesis connections. After investigating several possible

linear cascades, we conjectured that there is no linear cascade which

is general enough and yet satisfy all above restrictions. Sequential

machine synthesis using two dimensional arrays or tree structures is

very simple once the difference equations are obtained. The prede-

cessor tree, described in Section 2.5.2, not only helps to find differ-

ence equations but is particularly fitted to the tree structure.

The number of cells required for synthesizing any given machine

using cellular techniques is also derived. In general, we would try

to minimize the memory K for minimal realizations,. However, this

is not true for all cases.
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3. 1 Introduction
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In this chapter, we introduce a completely different approach to

the problem of cellular realization of sequential machines. This

method is also developed independently by the writer It was pointed

out by R. A. Short that it has some resemblence to the "Flow Table

Logic" introduced by Law and Mealy [15] . However, the differences

are significant enough, both in structure and approach, that we present

our method here.

3. 2 Matrices

First, we introduce the transition matrix. A transition matrix

of M is a matrix of size nxn, n being the number of the states of M.

which shows the transitive relationship between each pair of states.

The entry at the intersection of row s. and column sk is it overr

all possible r such that sk = f(s., i ). For example, the transitionr

matrix of M4 is given in Figure 34b. An i
h

-transition matrix is a

transition matrix for the input ih. The it -transition matrix of M4 is

shown in Figure 34c. The i2-transition matrix of M4 is shown in

Figure 34d.

Personal communications.
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An output matrix is an nxn matrix, again n being the number

of states, whose n diagonal entries are the n states of the machine--

the entry at row s. and column s. is s., etc. All non-diagonal

entries are entered with zeros and are of little interest to us. The

ih -output matrix is a diagonal matrix of all states by eliminating the

elements corresponding to all zero columns in the i
h -transition matrix.

For example, the i1-output matrix and the i2-output matrix are the

same for M4,

A 0
1 0 B

We define "+" as the normal matrix addition, e. g.,

it

0

0

1

0

i2

i2

0

ii

2

i
2

it

To synthesize a sequential machine, we first obtain all inputs

transition matrices and output matrices of the machine. Then, we

combine as many input-transition matrices as possible without violat-

ing the following restriction.

Restriction: No single entry in a combined matrix can have

multiple terms, i. e., no "+" sign can appear

in any entry of the matrix.

When some input-transition matrices are combined, the corresponding

output matrices are also combined by the rules,
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A + 0 = A,

A + A =

+ 0 = 0.

The final synthesis connections are then made according to the final

input-transition and output matrices.

3. 3 Cellular Synthesis

The matrix synthesis of M4 is shown in Figure 35. The circuit

before the final synthesis connections are made consists of

1. p input buses (horizontal lines on top),

2. m(n+-q)n cells for an n-state machine with q outputs;

m is the final number of input matrices.

3. a horizontal bus line, called H-line, for each row of cells,

4. p vertical lines, called V-lines, for each column of cells,

each ;V -line carries an input signal,

5. two constant buses, carrying 0 and 1, at the bottom.

Algorithm 3.1. (For matrix synthesis of sequential machines)

1. Find all i
h

-transition matrices and i
h

-output matrices for

h= 1, 2, p.

2. Combine as many ih-transition matrices as possible without

violating the restriction. Call these combined matrices C

matrices. Combine corresponding i
h

-output matrices and

call them B-matrices. Let m be the number of C-matrices
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(hence, also the number of B-matrices).

3. Let j = 1

4. For the "matrix" formed by the first n rows and the j-th

n columns of cells,

i. a terminals are connected to appropriate V-lines for

proper inputs according to the C.-matrix,

b terminals are connected to their respective H-lines,

iii. the c terminal of each cell is connected to the e

terminal of the cell directly above it,

iv. d terminals are connected to H-lines according to the

B. - matrix.

5. For the (n÷1)-st row,

i. connect all c terminals to the H-line,

ii. connect each b terminal to the e terminal of the nth

row cell directly above it,

if g(sk) = 1, connect the terminal a of the kth cell to

1-bus; if g(sk) = 0, connect the terminal a of the k-th

cell to the 0-bus.

6. Repeat step 5 for (n+2)-nd row, (n+3)-rd row, , (n-l-q)-th

row for a machine with q outputs.

7. Is j = m? If yes, go to step 9; otherwise go to step 8.

8. Let j = j+1, go to step 4.

9. Stop. The output functions can be obtained from the last
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q H-lines.

For example, we now synthesize M2 using the matrix structure.

The i
h

-transition matrices are:

For il'

For i
2'

ABCDE
A 0 0 0 0

B 0 0 it 0 0

C 0 0 0 0

D 0 0 it 0 0

E i
1

0 0 0 0

ABCDE
A

B

C

D

E

0

0

0

0

0

0

0

i
2

0

i
2

0

0

0

0

0

i2

i
2

0

i
2

0

0

The output matrices are:

For il' ABCDE
AA 0 0 0 0

B 0 13 0 0 0

C O O COO
D 0 0 0 100

E 0 0 0 0 F.
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For i2,

A

B

COOCCOO

ABCDE
X. 0 0 0 0

0 B 0 0 0

DOO ODO
E 0 0 0 0 E

Hence, the C-matrix is

it 0 0 0 0 0 0 0 i2 0 i 0 0 i2

0 0 i
1

0 0 0 0 0 i2 0 0 0 i i2 o

C= 0 0 0 0 it 0 i2 0 0 0 0 i2 0 0 i

0 0 i
1

0 0 0 0 0 i2 0 0 0 i
1

i
2

0

i
1

0 0 0 0 0 i
2

0 0 0
1

i20 0 0

and the B-matrix is

A0006- 00000 A 0 0 0 0

0 0 0 0 0 OB000 OB000
B= 0 OCOO + 0 0 0 0 0 = 0 OCOO

0 0 0 0 0 000D0 0 0 0 D 0
0 0 0 0 E 00000, 0 0 0 0 E

The entire structure is shown in Figure 36.

3. 4 Minimal Realizations and Bounds

The number of cells required is

N= (n+q) x n x m, (3. 1)
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where n = number of states,

q = number of output functions,

m = number of C-matrices required.

Since n and q are fixed parameters of a given machine, the number

of cells required varies with m, the number of C-matrices. For

minimal realizations, we want m to be minimal.

Algorithm 3. 2 (For finding minimal m)

1. Construct a pxp matrix and let all diagonal entries be 1.

(p is the number of input symbols).

2. Compare each of the next-state column with all other next-

state columns. If the two columns, say j and lc, being

compared has no identical next state in every row, enter 1

in the entries of j-th row and k-th column and k-th row and

j-th column. Enter 0 for all empty entries of the matrix.

3. By permuting rows and columns (identical permutations

must be performed at the same time for both rows and

columns. e.g., if row 1 and row 5 are permuted, then

columns 1 and 5 must also be permuted), we are able to ob-

tain square submatrices along the diagonal in which each

submatrix is a unit matrix (all entries are 1). If t is the

minimal number of such unit square matrices required to

include every diagonal element, then m = t and is minimal.
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Note m is at most n since the matrix has 1 for all diagonal

entries to start with.

4. Those rows (or columns) consisting a unit square matrix

represent those ih -transition matrices that can be combined

without violating the restriction.

Example: M =

i
1

i
2

i3 i
4

Z1 Z2

ABCF A 0 1

BDEDC 1 0

CFGCG 0 0

DCF BF 1 1

EGG F D 1 0

FAB C E 0 1

GEE A B 0 0

The initial 4 x 4 matrix is

it i2 i3 i
4

11
1 : o 0 1 1

i2 0
1

1

1 1 0
1

i3 0
1

1 1 1

1

i
4

1 j 0 1
1

1

Clearly, three unit square matrices along the diagonal are sufficient

to cover all diagonal entries. But if we permute columns 1 and 3 and

rows 1 and 3, we come up with the matrix



i3

it 0

i
2

it i4

1 1 0 0

1 i u 0

0
1

1 1

0 I 1 1
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which shows that only two unit matrices are needed. Hence, n = 2.

2 is the minimal number because m = 1 means the original matrix

must be a unit matrix which it obviously :riot. The final matrix also

shows that i 3-transition matrix and i 2-transition matrix can be com-

bined; also the i
1
- transition matrix and the i - t r an s it ion matrix can

be combined.

3. 5 Summary

The method presented in this chapter was developed directly by

utilizing a suitable matrix representation. It is noted that when a

machine is in a certain state and is subject to an input, it does two

things: it makes a state transition and it produces outputs. If the

diagonal elements of an nxn array of cells are thought as represent-

ing n states, the transition of states can be accomplished by first

moving horizontally and then vertically and the output can be collected

by a bottom collection row. The number of cells required for a mini-

mal realization of a given machine is also derived. This method

appears to be simpler and more attractive than the first.
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4.1 Introduction
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Classically, the starting state problem is important because the

behavior of the machine is not deterministic unless the starting state

is known. More positively, however, we can take the point of view

that by starting the machine from different initial states we might be

able to specify any one of a diverse set of possible machine behaviors.

That is, the specific behavior of the machine may be determined as a

function of the initially selected starting state. For example, Figure

37 shows a machine whose behavior as starting from state A is com-

pletely different from that of starting from state D.

In sequential circuits different states of the machine are repre-

sented by different flip-flop conditions. Generally, we can start the

machine from any specified state by setting the flip-flops directly to

the conditions corresponding to those of the specified state. But in our

cellular realizations of sequential machines, the initialization proced-

ure is not so simple since the states are not represented by flip-flop

conditions. If a machine is synthesized in matrix form discussed in

Chapter 3, it is still very easy to start it from any desired state. For

example, if we wish to start M2 from state A, we simply apply a

pulse to the HA line (see Figure 36) at the same time with this first

input. The problem is not so simple with other cellular structures,



58

however, and we must consider them in a little more detail.

Another way of starting a machine from a specified state is to

apply an "initialization input sequence?' to force the machine into the

desired state. The initial outputs due to the initialization input se-

quence are discarded. This technique of applying an initialization se-

quence to force the machine into a certain state can be used to initial-

ize our cellular circuits presented in Chapter 2. But states that can

not be reentered present a special problem. These cannot-be-reenter-

ed-states, though may not occur very often, do exist and their treat-

ment is the special concern of this chapter.

4. 2 Recoverable Machines

A state in a machine is recoverable if the state can be reached

from any other states of the machine by a finite sequence of inputs (in-

cluding the feedback input, if exists). This finite sequence of inputs

is called a recovering sequence. There may be more than one such

sequence for a given state. We shall always use a minimal recovering

sequence, i. e., a recovering sequence of least length. Hence, if we

say R is a recovering sequence of state A, it is understood that R

is a minimal recovering sequence of state A. A state with no recover-

ing sequence is a transient state. A machine wherein every state is

recoverable is called a recoverable machine.
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Clearly the problem is caused by those states having no recover-

ing sequences, i. e., transient states. We shall approach this prob-

lem of initializing to a transient state by expanding the flow table of

M in the expectation that the expanded flow table might make origin-

ally transient states recoverable. There are basically two ways that

we may consider. We can either enlarge (1) the number of columns

(inputs) or (2) the number of rows (states). We shall call the first

approach the input approach and the second the state approach. These

two approaches are illustrated by state graphes shown in Figure 38.

Figure 38 shows the state graph of M which has three transient

states D, E and F. If a third input i3 is used, transient states D,

E and F can be made recoverable as shown in Figure 38b, where

transitions indicated by dotted lines are transitions due to the added

input i3. i3 is used only during the initialization phase. On the other

hand, Figure 38c shows the recoverable version of the machine using

an added state G. ix is a special signal used during the initialization

phase. Note that the only way for states A, B, or C to reach any

added states (for that matter, even states D, E, F) is by signals other

than it and i2. This signal, however, could be the one that indicates

the initialization phase. Also, note that either i
1

or i2, if combined

with the initialization signal, can be considered as a third signal.

Thus, whether we use the input approach or the state approach, one

thing is common, i. e., a signal to indicate that the machine is in the
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initialization phase is required. Since we shall show in this chapter

that when input approach is used, a nonrecoverable machine can be

made recoverable by using just one additional signal (and this can be

just the signal that indicates the initialization phase), we will not dis-

cuss the state approach that requires additional states on top of the

initialization signal.

4. 3 Input Approach

One basic idea behind this method is that if the ih -column in

the flow table is a reset column for state s. , we can always get to

state s. by simply applying the input ih.

Theorem 4.1. A nonrecoverable n-state machine can be made

recoverable by adding at most n columns.

Proof: 1. Add a reset column for each transient state. This

makes all transient states recoverable.

2. Since there are at most n transient states, we

need to add at most n reset columns.

3. We have made all states recoverable, hence a re-

coverable machine. Q. E. D.

Usually, a machine has only a few transient states, hence the

number of columns to be added is usually not many. Example: Figure

39a shows a machine M5 which is not recoverable since states B
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and E are not recoverable. Two next-state columns are added to

M5 in Figure 39b and the machine is now recoverable.

Note two things, however.

1. Once state B is made recoverable, E also becomes recov-

erable. So i
4

is not essential.

2. The i
3

column does not have to be a reset column. Since

states A, C and D are recoverable, we only require that

state B be the next state of one of these three states. This

will make state B recoverable. Same argument applies to

state E. If we choose states B and E to be the next

states of different recoverable states, say states A and C

respectively for this example, then only one additional col-

umn is needed. The rest of the entries in that column are

immaterial for the time being.

This brings us another idea behind this method, that is, if a

column of a flow table M is a complete permutation column, then M

is recoverable. By a complete permutation column we mean a permu-

tation column from which a single-loop state graph that includes all

states of M can be constructed.

Note that not all permutation columns are complete permutation

columns. For example, Figure 40 shows a permutation column but not

a complete permutation column. Figure 41 shows a complete permu-

tation column. It is very easy and straight forward to form a complete
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permutation column. One way to construct such a column is by a

sort of end-around shift of the present state column. Figure 41 is one

example. Thus, we have proved the following theorem.

Theorem 4. 2. All nonrecoverable machine can be made recov-

erable by adding at most one column.

Obviously; the column added is not unique since a complete

permutation column can be constructed by other methods. Note in our

cellular realizations, the number of cells required is proportional to

the number of input variables. Since the inputs are normally of bi-

nary signals, 5 columns and 8 columns make no difference in hardware

since they both require 3 input variables. Hence, if we need at least

5 columns, then we may as well expand it to 8 columns if we can gain

something. This something gained turns out to be shorter recovering

sequences.

Let R = a set of recoverable states.

T = a set of transient states.

u = the length of a longest recovering sequence of a recover-

able machine,

v = number of added input variables.

From Theorem 4. 2 v is at most one.

We define a minimal recoverable machine M as a machine with

minimal u with the prerequisite that v is minimal. Since v can be
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easily found to be either 0 or 1, the problem is to keep u minimal.

This is a very complicated and involved problem. There seems no

way to find the minimal recoverable machine. We can only present an

algorithm which tends to give a good low u value. First, we need

some definitions.

A state in R (set of recoverable states) which has a shortest

recovering sequence among all states in R is called an S-state. A

state in R which has a longest recovering sequence among all states

in R is called an L-state. A partial state graph which is formed by

transient states only is called a T-state graph. A state s which has

the most number of distinct successor states is a preferred state.

Notation #(P) represents the number of elements in the set P.

Algorithm 4.1. (For constructing a minimal recoverable ma-

chine)

1. If M is recoverable, go to step 11; otherwise go to step 2.

2. Find R
0

and T
0

of M.

3. Construct a T-state graph.

4. Add a new column. Let j = 0.

5. If #(R0) = 0, choose a preferred state from the T-graph and

make this a reset column for the chosen state, go to step 2.

If #(R0) / 0, go to step 6.

6. Select an S-state r. from R.; select a preferred state t.

from the T-state graph formed by T.; enter t, as the next
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state of r. in the new column.

7. Find T. = T.-t.-(all successors of t.).
J J

8. If #(Tj+1) = 0, go to step 11; otherwise go to step 9.

9, Find R. = - r ,+ (all successors of t.).
3+1 J J 3

1 0. j = j+1, go to step 6.

11. If the number of total columns = 2 p+v, go to step 20; other-

wise go to step 12. (p is the original number of input vari-

ables and v is the added number of input variable, which is

either 0 or 1. )

12. Add a new column. Let j = 0.

13. R
0

should be the set of all states now.

14. Select an S-state r. from R,; select an L-state p. from

R..

15. If the recovering secin.enceof is two or more greater
Pi

than that of r, go to step 17; otherwise go to step 16.

16. If j = 0, and if this is not the last column to be added, select

a preferred stated from R
0

and make this column a reset

colu.mn for that state and go to step 12. If j = 0 and this is

the last column to be added, make this a reset column for

PJ
., and go to step 20. If j / 0, go to step 11.

17. Enter as the next state of r. and erase all p. in other
PJ

entries of added columns.

18. R. = Ro-r.-Fp..
34-1 3 3
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19. j = j+1, go to step 14.

20. The unspecified entries of added columns are don't cares.

If an added column contains only one state, make that column

a reset column for that state.

21. Stop.

Again, the expanded machine is not necessarily unique because of the

choices of states in many steps are not necessarily unique. Since

most practical machines have relatively few degenerate states, a

machine with the minimal u can usually be obtained with more exper-

ience. Many optimal solutions can actually be obtained by inspection.

An example is given in Figure 42 where X is the added input and can

be considered as the signal for initialization.

4.4 Implementation of Recoverable Machines

Now that we have made all machines recoverable, how do we

implement them? The answer is simply by following the procedure

described in the earlier chapters. We illustrate this by an example.

Figure 43 shows a machine, M6, and the successive steps in synthe-

sizing it directly in the nonrecoverable version. Figure 44 shows the

same machine, M6, which is first made recoverable and then

synthesized by following the same procedure.

Now we compare Figure 43g with Figure 44g and Figure 43h

with Figure 44h. M6 can be identified from M6' as indicated by
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dotted lines. In the tree realizations, we use Figure 44g during the

initialization phase and change the bottom half boundary conditions to

O's during the normal machine operation. In the array realizations,

we simply let X = 0 at all times when we are not initializing. To

initialize a machine to a desired state is to apply the recovering se-

quence of that state to the machine.

4.5 Initialization Sequence

The tree structure of Figure 45 is called a recovering tree. It

is a slightly modified version of the D-successor tree. The only dif-

ference between the two is their terminating conditions. The termin-

ating condition for a recovering tree are:

1. When every state of the machine appears at least once as a

singleton in the tree, terminate the entire tree.

2. When a state set repeats a state set appeared at the same

or earlier level, terminate that branch.

3. When the state set is empty, terminate that branch.

When all branches are terminated, the tree is terminated. The se-

quence of branches that take the zeroth level state set to a singleton

state s. are recovering sequences for state s.. We always choose

a minimal sequence as the recovering sequence. A recoverable ma-

chine should have its recovering tree terminated by condition 1. From

Figure 45 we can see that the recovering sequences for the four states
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of M6' are

for

B XY,

C XY,

The following two theorems are obvious.

Theorem 4. 3. A recoverable machine is feedback free only if

its nonrecoverable version is feedback free.

Theorem 4. 4. A recoverable machine is FIFM only if its non-

recoverable version is FIFM.

4. 6 Summary

There are states in a machine that are not attainable by applying

a finite sequence of inputs. If we wish to start the machine from any

of these states, we must first make the machine recoverable. Methods

were developed to make nonrecoverable machines recoverable by add-

ing at most one input variable to the machine. This input is the signal

used to indicate that the machine is in the initialization phase. The

synthesis procedures of recoverable machines are identical to those

given in earlier chapters. The circuit for the original nonrecoverable

machine is a distinct section of the circuit for the new recoverable ma-

chine. The recovering sequence for each state can easily be obtained
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by constructing a recovering tree. Since most practical nonrecover-

able machines have none or only a few transient states, the process

is usually quite simple.
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V. RELIABILITY AND PROGRAMMABILITY

5, 1 Introduction

It is safe to predict that future computing system will continue

to increase the demands on several sophisticated design areas. They

will need to be more readily expandable and modifiable. Also auto-

matic error detection and correction will play a more significant role.

Therefore, modularity, reliability and programmability are important

aspects of a digital system. The past chapters can be considered as

an effort to make hardware modular and readily expandable. We now

examine the reliability and programmability characteristics of our

cellular sequential machines.

As the digital system becomes more complex, it demands com-

ponents of unrealistically high reliability in order to yield a reliable

system. In recognition of the impossibility of building perfect com-

ponents, significant effort has been devoted to the development of

techniques for realizing reliable digital systems from nonperfect com-

ponents in recent years. Thus, in addition to making all components

as reliable as possible and to utilizing proper worst case design and

adequate assembly technology, it is also necessary to incorporate into

the system some kind of redundancy so that the desired reliability of

overall system operation may be achieved.
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There are two sources of error in a digital system. One is the

transient error due to time delay or noise pickup, etc. The other is

the permanent error due to the failure of a component or components.

We shall consider primarily the permanent type of error since tran-

sient errors can generally be minimized by careful design and choice

of environment. In electronic gate network terms, therefore, interest

is in the correction of faults caused by inputs or outputs of a logic

block to be either "stuck at one or "stuck at zero'', though some of

the techniques we shall discuss will correct transient errors as well.

Redundancy techniques employed for improving reliability of a

digital system are generally classified into two categories: static

redundancy and dynamic redundancy (see [21] for an excellent survey

and discussion). Techniques presented in this chapter will, strictly

speaking, correct or locate only a single fault. This is based on the

assumption that the probability of simultaneous occurance of two or

more faults is very small. Of course, these techniques can be modi-

fied to include multiple faults. Also, we shall use different cellular

structures to illustrate each redundancy technique. It must be remem-

bered that these techniques are perfectly general and can be applied to

any other cellular structures.

As the microelectronic technology advances, multipurpose de-

vices begin to appear. Programmable circuits represent one step

further in this direction. A programmable circuit is a circuit that is
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able to perform many different system functions (in our case, the

realization of many different sequential machines) by proper repro-

gramming. One of the advantages of our cellular circuits is that they

can be made readily programmable. Of course ,any programmable

circuit has its special limitations and these might include, for exam-

ple, the number of inputs, the number of outputs and/or the number

of states. The limitations for our cellular sequential circuits are

slightly different according to the particular implementation methods

used, hence will be presented separately for each case. The pro-

gramming techniques we shall develop in this chapter are divided into

two categories: minterm select, and coincidence or linear select.

They are discussed in Sections 5.3.1 and 5. 3.2.

5. 2 Reliability Improvements

5. 2. 1 Static Redundancy

Static redundancy (or active redundancy) requires two or more

identical units operating at same time. In the event of failure of one

or more, the also-operating-but-nonfaulty unit or units will continue

to provide adequate responses. The most important technique in this

category at the network level is fault-masking by replication. The

faults are corrected within the network and terminal behaviors are not

affected until the tolerance limit of the network is exceeded. Depending
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upon the network structure, static redundancy techniques are usually

divided into two groups: voting schemes and nonvoting schemes. In

both cases, the correction of errors is accomplished "on-line" while

performing digital logic.

A. Voting Scheme. In this scheme, each circuit is replicated

several times, each independently of the other, and then a weighted

measure, usually a majority vote, is taken over these outputs. The

weight placed on each line may be fixed or variable. Figure 46 illus-

trates a triplicated version of the cell used in matrix structures. For

this enlarged cell to operate successfully, at least two of the three

parallel units must have correct signals. The interconnections be-

tween cells are also triplicated such that each unit in a cell receives

an input from a unit in a preceeding cell. Any single fault in the cir-

cuit will be corrected after it goes through a majority gate. This

scheme will also correct multiple faults if they do not occur at the

same level, i. e., if each majority gate has at most one faulty input.

B. Nonvoting Scheme. In this scheme, we replace each com-

ponent by a network of components. Faulty signals are corrected

down the path by mixing with correct signals. The only difference

between a nonvoting scheme and a voting scheme is in the absence or

presence of a decision making (vote taking) element. The most famous

in this class of redundancy technique is Tryon's "quadded logic".

Figure 47 illustrates such a version for the cell used in fixed function
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array. The 16 NAND-gate network shown in Figure 47 replaces each

4 NAND-gate group in the original array. The interconnections for

each NAND -gate are such that the output interconnections are differ-

ent from that of the input. For example, the inputs for the NAND-

gate A is from the first and fourth line while the output of A goes

to the first and the second line. The error correcting mechanism is

explained in Figure 48. The quadded logic has the ability to correct

any single fault and many more as long as 1. faulty gates are not

directly connected to each other, and 2. each gate has at most one

faulty input.

5.2.2 Dynamic Redundancy

Dynamic redundancy (or standby redundancy) requires schemes

for the detection and diagnosis of faults and replacement of faulty parts

by standby units either automatically or manually. To perform cor-

rection operation, normal operation of the system is usually interrupt-

ed. Most of the studies done in this area are in the systems or the

subsystems level. We shall first illustrate the repairing process and

then the development of a diagnostic software.

Assume that a cut-point cellular array is aranged as shown in

Figure 49 where spare columns are normally grounded at the bottom.

Also for simplicity, all cells below and including the collection array

are cut to perform the OR operation. If a faulty element is discovered
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in the main array, say row i and column j, the fault is corrected by

following these steps:

I. Gound column j at the bottom so that this column is, in

effect, eliminated from the collection array.

2. Choose a spare column, u, and cut the cells to match those

of column j.

3. Remove the grounding of column u.

If a faulty element exists in the collection array, say row k

and column p, the fault is corrected by:

1, Use a spare row v to replace row k.

2. Obtain the output from row v instead of row k.

Note that a faulty element in either spare rows or columns does

not affect the output.

The detection and location of faults, however, represents a

major problem. The method presented below is good for any single

error detection and location. For multiple errors, similar steps may

be followed but becomes much more involved. We use the simple tree

structure of Figure 50 for clearer illustrative purposes. Similar

procedures can be used for other type of cellular structures.

In general, if

1. a cell has 1 output at all times, then we don't care if the cell

is stuck at 1;
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2. a cell has 0 output at all times, then we don't care if the cell

is stuck at 0;

3. two or more errors are such that they cancel each other and

the outputs are not affected, we don't care.

In othe- words, we are only interested in obtaining the correct output

response. The output function of the tree structure shown in Figure

50 is given, in terms of a truth table, in Figure 51a. If cell A is a

faulty cell, i. e., it is stuck at 1 (we don't care if it is stuck at 0), the

output would be as indicated by fA in Figure 51b. If cell B is a

bad cell, the output would be given by fB. If cell C is bad, we must

consider two cases: that of stuck at 1 and that of stuck at 0. We use

fCl for cell C stuck at 1 and f
C 0

for cell C stuck at 0. Other

functions in Figure 51b are similarly constructed. Note the regular

pattern in these functions. For example, f is the same as the

boundary conditions; f
A

is the same as f except the first two entries

are changed to l's (due to cell A stuck at 1); 1B is the same as

except that the 3rd and the 4th entries are changed to 0's (due to cell

B stuck at 0). We then rearrange the rows of Figure 51b to fit a

testing sequence of 00011101000. This is shown in Figure 51c. Thus,

if an input sequence of 00011101000 is applied and the output sequence

is 001001100, we conclude that cell D is stuck at 0. In cases where

feedback exists, the feedback path is broken and the above procedures
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are followed. This is one of the reasons that we consider only a

single feedback.

5.3 Programmability

5.3.1 Minterm Select

Recall that the boundary conditions in the tree structure corre-

spond to minterms. Since a sequential machine can be expressed by

sum of appropriate minterms, different sequential machines are

realized by applying different boundary conditions. These boundary

conditions can be obtained from a register which in turn can be con-

trolled by programming. This very same technique can also be appli-

ed to array structures. For example, Figure 52 shows a cut-point

cellular array from which each column of cells realizes one minterm.

Thus, for a sequential machine with m variables (remember that

different time subscripts represent different variables) we need 2m

columns of cell. The contents in the register just above the bottom

collection now decide which minterm or minterms are to be included,

with the help of AND gates, for implementing a particular machine.

The bounds on the class of sequential machines that can be

realized are p, q and K. In other words, a programmable cellular

network which is originally designed to realize a sequential machine

with p total inputs, q total outputs and memory K, it can be
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reprogrammed to implement any sequential machine which satisfies

the following:

total number of inputs < p,

total number of outputs < q, and

memory < K.

5.3.2 Coincidence or Linear Select

Coincidence and linear select methods are well known in

the addressing systems of core memories. These techniques can be

used to make our matrix array programmable and are described below.

A. Coincidence Select. Consider the array in Figure 53a and

the cell structure in Figure 53b, each cell is "addressed" by a hori-

zontal addressing line and a vertical addressing line. The intersect

of a vertical addressing signal and a horizontal addressing signal is

fed into a shift register. The shift register stores the program from

which the operation of the cell is determined. It is obvious that one

row of cells can be programmed at the same time. Whether the sig-

nal to be stored in the register is 0 or 1 is determined by the signal

from the vertical addressing line. For example, if row 2 is to be

programmed, 1 is applied to line PH2 and either 0 or 1 to PV lines

depending on the functions C21 and C22 are to perform. For the

cell structure shown, three successive programming signals are

needed for each cell. The first one (stored in R1) determines
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whether the delayed cell output is to be fed to the horizontal bus line.

The second signal (stored in R2) determines whether input x2 is an

input to the cell or not. The third signal (stored in R3) determines

whether x
1

is an input to the cell.

B. Linear Select. A cell structure for this scheme is showxv

in Figure 54. In linear select, the programming signals are entered

through a single programming bus for all cells. There are many

ways this programming bus can be arranged. Some of these are given

in Figure 55. In whatever form the programming bus is arranged,

the registers of all cells are connected in series. The earlier pro-

gramming signals are propagated into registers further down the line.

Thus, a matrix with m cells and each cell with an n bit register

needs mn programming signals. Cell operations are identical to

those of coincidence select and are determined by the contents of the

register.

In both coincidence select and linear select, a matrix designed

for n state sequential machine with p inputs and q outputs can

realize any n or less state sequential machine with p inputs and

q outputs. Note that for programmable matrix structure, m = 1 (see

p. 50) and the restriction given on page 49 is no longer necessary.
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5.4 Summary

The need for redundancy to increase the overall system reliabil-

ity is apparent. Examples of both static redundancy and dynamic re-

dundancy techniques have been studied. In static redundancy, errors

are corrected "on-line" while the circuit is performing digital logic.

In dynamic redundancy, diagnostics are used to locate the fault and

spares are switched in to replace faulty elements. For a system

employing static redundancy, the amount of hardware components are

usually many times larger. On the other hand, dynamic redundancy

techniques may not require as many hardware components but general-

ly require machine down time for diagnostics and switchover. Also

the task of developing a good diagnostic test can be quite involved.

From the LSI point of view, static redundancy techniques seem to be

favorable since extra components add little to the cost (if the limitation

is not exceeded). Also note that reliability is already increased by

LSI because of fewer solder joints and contacts.

The programmability feature is one advantage in using cellular

circuits. By programmability we mean the ability of a circuit to per-

form various functions by reprogramming. Two techniques are pre-

sented: A. minterm select and B. coincidence or linear select.

Since any sequential function can be expressed as combinational like

equations, these equations can be expanded as the sum of appropriate
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minterms. Different functions are realized by collecting different

rninterms. Coincidence select and linear select techniques are bor-

rowed from conventional core memory addressing systems.



VI. SUMMARY AND CONCLUSIONS

6. 1 Summary
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With the advancing solid-state technology, it is necessary to

develop new techniques for synthesizing digital networks. The regular

pattern of cellular circuits seems to be the best fitted for the new LSI

technology. Recently, cellular implementations of combinational cir-

cuits have received considerable attention but very little attention has

been given to sequential circuits. In this paper, we have presented

two new methods for realizing sequential machines, both using cellu-

lar circuits. Moore machines are assumed.

The first method converts sequential functions into combinational

like equations. In order to do so, the machine must be either definite

or FIFM. Successor trees and pair tables are presented as the means

for testing whether the given machine satisfies this requirement. If

the machine is neither definite nor FIFM, it is made FIFM by con-

structing a proper feedback function. When a machine is definite or

FIFM, it can be described by either predecessor trees or difference

equations. These equations are combinational like equations and can

easily be implemented by conventional combinational cellular circuits

together with delay elements.
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The second method is developed more or less by direct applica-

tion of a convenient matrix representation. It is noted that when a

machine is in a certain state and is subject to an input, it does two

things: it makes a state transition and it produces outputs. If the

diagonal elements of an nxn array of cells are thought as represent-

ing n states, the transition of states can be accomplished by first

moving horizontally and then vertically and the output can be collected

by an added bottom collection row. A formal synthesis method was

then developed using these matrix type cellular arrays. This method

appears to be simpler and more attractive then the first.

In both cases, bounds on the number of cells were established

and minimal realizations were studied. Methods for starting these

cellular machines were also investigated. In order to make the ma-

chine more flexible, techniques were devised to initialize the machine

into any state desired.

An important engineering problem, reliability, was also con-

sidered. Although reliability in general is increased by using LSI

techniques because of fewer solder joints and contacts, there are

cases where ultra reliable systems are desired. Various existing

redundancy techniques are all suitable for reliability improvement of

our cellular circuits. However, static redundancy techniques seem to

be the better solution for LSI cellular circuits. One of the advantages

of these cellular circuits is the ease by which they can be made
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programmable. That is, our cellular circuits are easily modified so

that it is able to implement different sequential machines, within a

given class of sequential machines, by programming. The minterm

select (by collecting proper minterms) technique was introduced to

make the first kind of cellular circuits programmable, while the sec-

ond type of cellular circuit relied on the coincidence or linear select

method used in conventional core memory addressing systems.

6.2 Problems for Further Research

There are several problems in the course of this study that are

not fully resolved. They are given below.

1. Is there an easier way of constructing the feedback function

if the machine is not FIFM to start with?

2. Is the conjecture given on page 38 true? Or, can we find

a simple sequential machine (which can be considered as a

single cell) such that all sequential machines can be realized

by cascading several of these simple sequential machines?

3. What if multiple feedback is used? What are some of the

tradeoffs? Even the tradeoff problem among parameters

p, q and K for a single feedback are not fully known for

the array structure.

4. Algorithm 4. 1 does not guarantee a minimal recoverable

machine. Can a better but not too complicated (for example,
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by exhaustive testing) algorithm be developed?

5. Can cellular structures be modified so that for a particular

circuit, a large class of sequential machines can be realized

by reprogramming? In other words, can we find a way to

ease our limitations on the class of sequential machines that

is realizable by reprogramming?

6. 3 Conclusions

The purpose of this study has been to develop cellular methods

of synthesizing sequential machines. From the point of view of LSI,

cellularization represents a great saving in cost, space and weight.

From the designer's point of view, cellularization does away with the

difficult state assignment problems (although other problem may be

introduced). A further advantage of cellularization lies in its pro-

grammability. Future computing systems will be large and complex,

and must be easily modifiable. Programmable sequential machines

are thus important in such reconfigurable systems. Also static re-

dundancy techniques can be employed in LSI without amplifying the

cost. Further, because of the inherent reliability of LSI circuits, very

reliable sequential machines can be designed.

The techniques presented in this paper, of course, only open up

new approaches to the cellular design problem. Although methods

developed are not exploratory, very good insight into the problem has
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been gained. It is anticipated that further improvements and improved

design techniques will result in the near future.
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Figure 1. Time unit of a synchronous sequential
machine.
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of a Moore machine, Ml.
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Figure 3. (a) Flow table of M2.
(b) State graph of M2.
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Figure 5. D-pair table test of Ml.
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Table 7. F-pair table test of Ml.
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Figure 8. (a) Flow table of M3.
(b) D-pair table test of M3.
(c) F-pair table test of M3.
(d) D-implication graph of M3.
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(a)

k

0

1

0

1

1

0

(b)

Figure 9. (a) Flow table of M3'--M3
with an added output, F,

(b) F-pair table test of M3'.
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(Continued)
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(Continued)
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#0

11
i2

(C,D) (A,C)
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(Continued)

(C, D)

(A,C)

(C,D) (B,C)
#0 #0

(A, D)

(C)

(C, D)
#0

(C, D) (B, D)

#0

(A,C)

(C, D)

2

(B, C)

(D)

92

(C, D)
#C)



93

(A,C)

(C,D)
#0

(B,C)

(D) (C,D)
#0

Figure 10. D-pair trees of M3 (# indicates
branch that is terminated by con-
dition 3. Numbers inside small
circles are elementary loop num-
bers as given on page 20.)

k

3 -AB

2 -AC

3 -AD

1 AE

3 -BC

0 -B-D-

3 -B-E

3 -C-D-

2 -C-E-

3 DE

X

AG --P--
AE- -BD--

A -D--

-A- -B-D-

BD

-B--
AE-

-CE BD

-kE -B

-AC- -BD-

(b)

Figure 11. (a) Flow table of M2 using X
as the input variable.

(b) D-pair table test of M2.
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(a)

RI XF XF XF Z

B

C

D

0

1

(b)

Figure 12. (a) Flow table of Ml using X
as the input variable.

(b) Expanded flow table of Ml to
include the feedback input.

5(f XF XT. XF Z F

A C B 0 1

B D D 0 0

C D C 1 1

D C A 1 0

(b)

Figure 13. (a) Flow table of M3'.
(b) Expanded flow table of M3' to

include the feedback input.
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A A

B C D 1

C E B 1

D C D 0

E A

(a)

(B, C, E)

(B, C, D)

X/ \C

(B, D) (1)

X X

(0) (1)

(b)

(C,E)

X X

(B,C,D) (0)

(1)

Figure 14. (a) Flow table of M2.
(b) Predecessor tree of M2.
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XF XF XF Z

A B 1

B D 0

C C 1

D 0

XF

(DOAC)

RT. F XF

XF F F F

XF

(1) (1) (1) (0) (0) (0) (1) (0)

(a)

(A C)

XF

(AO BD)

(b)

XF

XF

(DOAC) (COBD)

XF
XF \XF

XF

XF

(1)(1)(1)(0) (1) (1) (0) (1)

Figure 15. (a) Expanded flow table of Ml.
(b) Predecessor tree of (a).



XF

Tar XF XF XF Z F
A C B 0 1

B 0 0

C 1 1

D

XF

3CF

(1)

(a)

(C, D) Z

(1)

XF

(BOAC)

XF

(COBD)

(0) (0) (0) (1) (1) (1) (0) (1)

(A,C)*F

XF

(DOAC)

3CF XY

(1) (1) (0) (1)

(AQBD)

XF

(0) (0) (1) (0)

( c )

(b)

XF

(1) (1) (0) (1)

Figure 1 6 . (a) Expanded flow table of M3.
(b) Z-predecessor tree of (a).
(c) F-predecessor tree of (a).
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zn-

X2 X3

98

n

(final output)

Figure 17. Maitra cascade. (zn is the final output).

zt = 5x +cx +x-R 7K-x +x xt t-i t-2 t t-1 t t-1 t-2 t-3 t t-1 t-2

X
t -3

(a)

Ci

Xt-2 Xt-1 Xt

(b)

Figure 18. (a) The difference equation for the output
of M2.

(b) Two-rail cascade realization of (a).
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A

C2

A

Cl

(a)

CO t

Cl A

(b)

Figure 19. Two-rail cascade realization with (a) delayed
input, and (b) delayed logic.
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Z t

X

: NAND gate

: Synthesizing
Connections

Wiggle
Buses

Figure 20. Cellular array synthesis of Equation 2.12
using Spandorfer's technique.
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(a)

(b)

Figure 21. (a) Delayed input realization of M2.
(b) Delayed logic realization of M2.



= )(t-ft-1+RF F +ZF X +XF F +XF X Ft t-1 t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

F= 5Cf X F +X-T X F +RP X F +RF Xt t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

+xf- X F +xf- X F +x Ft-1Rt-1 t-2F +XF F +X F X Ftt t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2.

F

*******
*

Figure 22 (a) Difference equation characterizing M3.
(b) Array realization of M3 using delayed

input.
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y

z

z

0 1

1

2
3 RT
4 x + y
5 x7
6 xey
7 0

F x = S, y = R

Figure 23. Functional description
of a cutpoint cell.

Z= RR x +Rx +xR R x +x7 xt t t-1 t-2 t t-1 t t-1 t-2 t-3 t t-1 t-2
X 0 0 1

Figure 24. Cutpoint cellular array synthesis of
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z t t t - 1
Xt 12t-2 + 3c- t2t

1 t- 1zt-2 + Rt2t-lxt- 12 t-2

+ Rz x z +x2 X -2 +x2 X z
t t - 1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

X

+ x2 x Z +xz X Z +xz X z
t t t-1 t-2 t t-1 t-2 t t-1 t-1 t-2

+ X tZt-1Xt-1 Zt-2.

0 0 0 0 0 0 0 0 0 0

4

A

4

Figure 25. Cutpoint cellular array synthesis of Ml.
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Figure 26. (a) Tree realization of Equation 2.14.
(b) Another way of tree realization of

Equation 2. 14.
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> W

Figure 27. Two ways of realizing Equation 2. 14 using gate
circuits.
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X

X

X (b)

106

Figure 28. (a) Detailed gate circuit of a cell in a delayed input
tree structure.

(b) The symbol represents the gate network of (a).
X

X

(a)

X

Figure 29. (a) Detailed gate circuit of a cell in a delayed logic
tree structure.

(b) The symbol represents the gate network of (a).
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z x +5cx +xi x +x7( xt t t-1 t-2 t t-1 t t-1 t-2 t-3 t t-1 t-2

0

0

1

1

1

1

1

1

0

1

1

1

0

0
0

0

(a)

(c)

> Z

X

X

Figure 30. (a) Output equation of M2.
(b) Delayed input tree realization of M2.
(c) Delayed logic tree realization of M2.
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XFI F XF

(0) (0) (0) (1) (1) (1) (0) (1)

A C)F

(DOAC) (AOBD)

X/XFN\F RAF

(1) (1) (1) (0) (0) (0) (1) (0)

(b)

XF

XF

(DOAC)

XF XF
XF F

(1) (1) (1) (0)

(C ontinued)
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0

0

0
1

1

1

1

0
1

1

0

1

2nd layer

2nd level

(c)

1st level

Figure 31. (a) Predecessor tree for Z of M3.
(b) Predecessor tree for F of M3.
(c) Tree realization of M3.
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p

(a)

(b)

(c)

Figure 32. (a) Symbol for a super cell.
(b) Gate structure for a 2-input super cell.
(c) Gate structure for a 3-input super cell.
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8

7

P 6

5

4

3

2

0
I I I I I I I 1 I I I

2 4 6 8 10 12 14 16 18

K

Figure 33. Tradeoff graph.
(K original memory of the feedback free

machine.
p = original number of input variables.

Numbers on slanted lines indicate the
number of K being decreased by having
a feedback. If the original p and K are
such that their intersection lies above the
line, then N would be smaller by having
that feedback).
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A
B
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B

B
A

0

1

A

B

A

B

A

B

(b)

A B

i1 0

0

(c)

A

0 i2

i2

(d)

Figure 34. (a) Flow table of M4.
(b) Transition matrix of M4.
(c) i 1-transition matrix of M4.
(d) i2-transition matrix of M4.
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Figure 35. (a) Cell structure.
(b) Matrix synthesis of M4.
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Figure 37. A machine whose
behavior depends on
its starting state.

2

(c)

Figure 38. (a) State diagram of a machine with
transient states.

(b) Added input i
3

makes transient
states D, E and F recoverable.

(c) Added state G makes transient
states D, E and F recoverable.



it
2

A C D 1

B D 0

C C A 1

D C D 0

E A C 0

(a)

it i2 i3 i4 Z

ACDBE
B E D B E 0

C C A B

D C D B E 0

E A C B E 0

(b)

Figure 39. (a) Flow table of M5.
(b) Recoverable version of M5.

2 loops

Figure 40. A machine with a permutation
column but not a complete
permutation column.
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A B

B C

C D

D A
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1 loop

Figure 41. A machine with a complete permutation
column.

(a)

XY XY XY XY Z

A B C 1

B C B A D 0

C C C E F 1

D B B 0

E B C 0

F C B 1

(b)

Figure 42. (a) An example machine M.
(b) A recoverable version of (a).



(a)

(B, D)

(A,B,C,D)

(B, D)

YF YF YF YF

A B D 0

B B 1

C D I 1

D B B 0

YF

c)

(A, B, C, D)

YF/ \YF
(B) (D) (B, D)

YF

(B, D)

YF YF/

(B) (C) (B) (B) (B) (D) (B) (B)

(b)

(d)

(1) (0)
Y

YF

(BC)AD)

YF

Y7

YF

(0) (1) (1) (1) (1) (0) (1)

(e)

(Continued)

(1)

(B, D)
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z ,71 -1-Y1 Y F +Yi Y F +Y1 Y Ft t t-1 t t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2

+YF Y F +YF Y F +YF Y Ft t-1 t-1 t-2 t t-1 t-1 t-2 t t-1 t-1 t-2
A F

(f)

1

1

1
1

0
0

0

0

1

1

0

1

1

(g)

z

(h)

Figure 43. M6 and it synthesis procedures. (a) Flow table.
(b) D-successor tree test. (c) M6 with the feed-
back input. (d) F-successor tree test. (e) The
predecessor tree. (f) Output equation. (g) Tree
realization. (h) Array realization.
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XYF XYF XYF XYF XYF XYF XYF XFY ZABD A C 0

B D B A C 1

C D D A C 1

D B B A C 0

(c)

(Continued)
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(A,B C, D)
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B C
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7)(1)(1)(/4 1\\
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z =5"-(7 F 1-7(yr F Y Y F )
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+X Y F ,Y +3Z Y +7( Y F )
t t t-1 t-1 t-1 t-2 t-1 t-1 t-1 t-1 t-2
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(Continued)
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(h)

Figure 44. Recoverable version of M6 and its synthesis
procedures.
(a) Flow table of M6' -- recoverable version of M6.
(b) D-successor tree test.
(c) M6' with the feedback input.
(d) F-successor tree test.
(e) The predecessor tree.
(f) Output equation.
(g) Tree realization.
(h) Array realization.
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XY

(B, D)

(A,B,C,D)

XY

(B,D)

Figure 45. Recovering tree of M6°.

--61-- _ a_ _. -a

Figure 46. Cell structure for matrix arrays
by employing triplicated redun-
dancy technique and using major-
ity gate as the decision making
element.
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Figure 47. Quadded version of Spandorfer's array.
(This network replaces four NAND-
gate group. Dashed lines show possible
synthesizing connections. )

E F G H IJKL MNPQ
Correct signals: 0 0 0 0 1 1 1 1 0 0 0 0

E is stuck at 1: 1 0 0 0 1 1 1 1 0 0 0 0

Correct signals: 1 1 1 1 0 0 0 0 1 1 1 1

E is stuck at 0: 0 1 1 1 1 0 0 0 1 1 1 1

All gates are NAND gates.

Figure 48. Error correcting mechanism in
quadded logic.
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Main Array

Collection Rows

Spare Rows

Spare
Columns

Figure 49. Cellular array with spare arrangement.

1

1

Figure 50. Tree structure for realizing the function
f = X

0
X1 + X

0
X

1
X2 + X0X1X2.
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0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1

(a)

0

1

1

0

1

1

X2X1X0f f
A

f
B

f
CO

f
Cl

f
DO

f
D1 E0

f
El

f
FO

f
F I

f
GO

f
G1

o 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1

0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1

0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1

1 0 0 0 0 0 0 I. 0 0 0 0 1 1 0 1

1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1

1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1

1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1

(b)

X2 X1 X f f
A

f
B

f ()If
G C 1 DO

f
D1 EO

f
El

f
FO

f
F 1 GO

f
G1

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1

0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1

1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1

1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1

1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1

0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

(c)

Figure 51. (a) Truth table describing the tree circuit of Figure SO.
(b) Possible functions for a single fault in Figure 50.
(c) Same as (b) with some row permutations.
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Figure 52. Programmable cut-point cellular array.
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X

X

H12
PH1

H2

PH2

H3

PI -I3

0

PV1 PV2

f

C31 C32

(a)

(b)

Figure 53. (a) Programmable matrix structure.
(b) The structure of cells used in (a).
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I Programming
i Line to the next

cell in order.

Figure 54. Cell structure used in linear select
scheme of programming.

Each circle represents a cell

Figure 55. Some possible arrangements of the pro-
gramming bus in linear select scheme.
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APPENDIX II

Some of the better known two dimensional cellular arrays are

discussed in this appendix. The material presented here is based on

[19].

Spandorfer and his associates at UNIVAC developed several

cellular array structures using NAND gates. One of such arrays uses

two-input NAND gates. These NAND gates are arranged in two dimen-

sional form as shown in Figure A-1. Two types of "wiggle busses"

are used to form the initial connections of the array--the horizontal

interconnection structure, called the "horizontal wiggle busses", and

the vertical connection structure, called the "vertical wiggle busses".

These are also shown in Figure A-1. These wiggle busses are com-

mon for any combinational functions having a given number of vari-

ables and product terms. The array can be used to realize a particu-

lar function by depositing "synthesizing arcs". This is shown in Fig-

ure A-2. To synthesize a particular switching function, the function

is first expressed in minimal sum-of-products form. Each product

term is realized by two columns of NAND gates. Products are then

collected (summed) by top two rows of NAND gates. As as example,

the realization of the function

f = 71x3 + x273 + xix2x3
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using two-input NAND gate array is shown in Figure A-3. In general,

for an n variable function with p product term, 2(n+1)(2p+1) cells

are required.

Another way of arranging NAND gates in array form is as

shown in Figure A-4. This is called the diamond array. In this

array, some of the cells are three-input NAND gates. The realiza-

tion of the same three variable function using diamond array is shown

in Figure A-4. The number of cells required is generally less than

the one above. For an n-variable function with p product terms,

the required cell number is (n+1)(2p+1)-p.

Short at SRI developed a type of cellular array using majority

gates. It is obvious that a majority gate becomes an AND gate if one

of the input is a constant 0 and becomes an OR gates if one of the

inputs is a constant 1. A majority-gate array for three input vari-

ables is shown in Figure A-5. The function to be realized is first

expressed in fundamental sum-of-products form. If the function in-

cludes the term x
1

)7
2
x3' then the values of f(101) is 1, otherwise is

0. This type of array takes (2n-1)(211+n) majority gates for an n

variable function.

In a cutpoint cellular array, each cell is able to perform one of

the nine specified functions. These functions are listed in Figure A-6

where x and y are cell inputs and z is the cell output. The num-

ber N in each cell indicates the function the cell is to perform.
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Originally, a specific function is achieved by cutting certain circuit

connections within the cell, hence the name cutpoint. Figure A-7

shows the cutpoint cellular array synthesis of the three variable func-

tion given earlier. In general, it takes (n+l)p cells for a function of

n variables with p product terms.

There are many other types of cellular structures, but those

presented above are, in our opinion, more practical and easier to

implement.
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-3 Vertical Wiggle Bus
Horizontal Wiggle Bus

Figure A-1. Two-input NAND gate array.

Synthesizing Arcs
> Wiggle Busses

Figure A-2. Synthesizing arcs for two-input
NAND gate array.
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Figure A-3. Cellular synthesis of the function f = X1X3
+ X

2
X3 + X

1
X

2
X3 using two-input NANA),

gate array.
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Figure A-4. Diamond array, synthesis of the function
f = X

1
X3 ÷ X

2
X3 + X

1
X

2
X3*
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3
f(000)

X
3f(001)

X3f(010)

X
3f(011)

X3f(100)

X
3
f(101)

Figure A-5. Majority-gate array for three variable
functions.
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Figure A-6. Functional description of a
cutpoint cell.
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Figure A-7. Cutpoint cellular array synthesis of the
function f = X

1
X3 + X

2
X3 + X1X2X3.


