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A Survey of Combinatorial Link Invariants
and Their Application to Link Tabulations

I. Introduction

I.1. Motivation

Not only sailors are interested in knots. For mathematicians knot and

link theory is the problem of placing one or more copies of a circle in a

three dimensional space. This has been researched for more than one

hundred years. The interactions with other fields of mathematics are rich

and recent applications to chemistry and even theoretical physics have

brought the theory into the limelight. This increased interest has also

been caused by a discovery in 1984 by Vaughan Jones [Jo] of a new

polynomial invariant of links. Since then, several other polynomial

invariants have been found via similar methods. These polynomials can

be computed in a purely combinatorial way and therefore be easily adapted

to computers and applied to large numbers of data.

In this paper we create a table of all oriented alternating links with

less than 10 crossings. Efforts to list all links or knots up to a given

number of crossings started in the nineteenth century. After years of

work Tait [Ta] and Little [Lit] published lists of certain classes of knots

up to 11 crossings. The use of computers can increase this number
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significantly. But an appropriate notation to encode the links must first be

found. Conway [Co] partitions every link into basic geometric structures

and lists those. This enabled him to get a complete (one error) table of

knots and links with 10 or less crossings. On the other hand Dowker and

Thistlethwaite [D-T] describe knots combinatorially by sequences of

numbers. Using this description, Thistlethwaite compiled a table of all

knots with 13 crossings or less. This is the largest table at the moment.

Unlike most currently used tables which deal only with unoriented

knots and links, our table will list oriented links. Chapter 2 describes the

procedure of creating the table. The notation used to encode the

projections of the links is explained and justified and the algorithms that

perform necessary combinatorial tests on the code are introduced.

Programs following these algorithms were written in Lightspeed Pascal

and implemented on a Macintosh SE computer. This provided a complete

list of all link projections having less than 10 crossings which was used to

produce a list of all alternating diagrams also with less than 10 crossings.

In order to remove repetitions from this list various polynomial and

numerical invariants were computed for each link on the list. Programs to

compute the polynomial invariants were written by Jim Hoste. A brief

survey of these invariants is given in Chapter 3. Finally, the table of

links and associated invariants is given in the Appendix.



1.2. Definitions

Throughout this paper Si will denote the unit sphere in fRi+1,

Si = ((xi, xi+i)I II(xi, x2,..., xii-1)11= 1}. Sometimes it will be

helpful to consider the equivalent description Si = fRi v 10,0. We shall

work entirely in the smooth category.

Definition 1. 1. A link L with k components is the image of a

smooth embedding of k disjoint copies of S 1 into S3. A link of one

component is called a knot.

Definition 1.2. A link L is trivial or an unlink if it is the boundary

of k disjoint embedded discs. We denote the unlink with k components by

Uk.

Two knotted strings can be the same even if they do not look alike.

All transformations done without cutting the strings are allowed. In

mathematical terms we consider an equivalence relation of links:

Definition 1.3. Two links Li. and L2 are ambient isotopic if there

is an isotopy ht: S3 > S3 such that hp = id and h1(L1) = L2, i.e. a map

h: S3 x [0, 11 --> S3 with h(L1, 0) = Li and h(Li, 1) = L2 and such that

for all t, h: S3 x {t} * S3 is a diffeomorphism.

From now on by a link L we usually mean its equivalence class under

ambient isotopy.
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Definition 1.4. An oriented link is a link with an orientation

assigned to each component. Two oriented links are ambient isotopic if

there is an ambient isotopy of S3 that transforms one to the other and

preserves the orientations of the components.

Definition 1.5. A projection P of a link L is the image of L under

an orthogonal projection It: S3 R2. A projection IT is called regular if

for all RE P n-1(x) is either one or two points and if it is a double point,

then the projections of the two strands meet transversally at x. If the

lower and upper strands are marked at each double point of a projection

then we call it a diagram. Usually the lower strands are broken at these

points.

In the case of oriented links the orientations of the components are

indicated by arrowheads on the strands. We can then define the sign E(c)

of each crossing c of the diagram D as follows:

+1 if c appears as ,
E(c) =

-1 if c appears as

If E(c) = +1 the crossing is also called positive or right-handed, otherwise

negative or left-handed.

Definition 1.6. If L is a link in S3, the mirror image L* of L is the

image of L after reflection through a plane. If L is oriented, the complete

reversal pL of L is the result of reversing all orientations of L. A link



5

that is ambient isotopic to its mirror image is called amphicheiral. One

that is ambient isotopic to its complete reversal is called invertible.

A diagram D* of L* can be obtained from a diagram D of L by

changing all undercrossings to overcrossings and vice versa. Note that L,

pL, L* and (pL)* = pL* could represent four different links, two pairs of

links or a single link.

A special class of links are the alternating links.

Definition 1.7. A link L is alternating if there exists an alternating

diagram for L, i.e. a diagram D where an undercrossing always follows an

overcrossing and vice versa in the course of traversing every component.

Note that the existence of only one alternating diagram of a link is

required for it to be alternating. Alternating links have been better

explored than most other classes of links. Recently some properties of

alternating links have been proven that greatly simplify the generation of

the tables in this paper. These properties are described in Chapter 111.3.

Definition 1.8. Let L be a link in S3. If there is an embedded

2-sphere S in S3 which meets L transversally in two points P and Q, then

L is called a connected sum of two links L1 and L2 obtained as follows.

Let N(S) = S x [-1, 1] be a regular neighborhood of S such that

N(S) n L = (P x [-1, 1]) v (Q x [-1, 1]). Then L1 and L2 are the result

of replacing N(S) n L with a x { - 1 } and a x ( 1 ), where a is a path in S

from P to Q. We write L = L1 # L2. If L is not the connected sum of two

nontrivial links then L is prime.
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Given two links L1 and L2 we can clearly form their connected sum.

If additionally L1 and L2 are oriented we require that L be oriented and

induce the correct orientations on L1 and L2. While the connected sum of

knots is well defined (i.e. independent of any choices that have to be

made), connecting two links can give different links depending on the

components that are being connected.

Definition 1.9. A link L is split if there is a 2-sphere S that

separates L into two non-empty sublinks.
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II. Link Projections

ILL Notation

In order to generate a table of links we start by listing all possible

projections of links, which are then used to produce the diagrams. A

notation to encode projections of knots has been described by

Thistlethwaite and Dowker in [D-T] and has been used for the generation

of knot tables up to 13 crossings [Th 1]. We extend their notation for

links as follows.

Given a regular projection P of an unoriented link L we will define a

function a: ( 1, 2,..., 2n} ---- (1, 2,..., 2n), where n is the number of

double points of P. To do so, choose an ordering of the components of L

and select a basepoint and an orientation for each component. Beginning

at the base point of the first component assign consecutive integers,

starting with 1, to the double points that one passes while traversing the

component in the chosen direction. After completion of one component

continue at the basepoint of the next component with the next integer.

This procedure assigns two integers i and j to each crossing point of the

projection. Let a(i) = j and a(j) = i.

The link projection can then be encoded by the sequence of the

images a(1), a(2),..., a(2n) together with marks - we will use 'I' -

between the image of the last number of one component and the image of

the first number of the next component. The following example should

suffice to illustrate the procedure.
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Example:

is 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a(i): 14 13 8 9 121 1 10 3 4 7 6 5 2 1

Figure 1. Example for the sequence

While this procedure automatically produces a parity-reversing

involution (images of even numbers are odd and vice versa) in the case of

knots, this is not necessarily true for links. However, the following

theorem ensures that an enumeration with that property is always possible.

Theorem 2.1. For every projection P of a link L and every choice

of orientations and ordering of the components, there exists a choice of

basepoints such that the involution a , defined as above, is parity-

reversing.

Proof: Begin by coloring the complement of P in a checkerboard

fashion, i.e. color each region of [R2 \ P either black or white such that

every arc of the projection separates regions of opposite colors. Do this in

either of the two possible ways. Now choose a basepoint for each

component on an arc which has the black region on its right with respect

to the given orientation.
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Claim: The labelling with this choice of basepoints has the parity-

reversing property.

Assign to each arc of the projection either a '0' , if the black region is

on the left, or a ' , if the black region is on its right. On every

component the arcs are labelled alternately 0 and 1. Also the basepoint

always lies on an arc labelled 1. Therefore the integers which label each

crossing reduce modulo 2 to the labels of the arcs leading into the

crossing. But the black and white regions can surround a crossing only in

two ways, as shown below.

Or

Figure 2. Checkerboard coloring at a crossing

In both cases the labels of the edges entering a crossing have

opposite parity and so the integers labelling the crossing must have

opposite parity too.

The sequence a(1), a(2),..., a(2n) of any parity reversing involution

a of the set 1, 2,..., 2n) can be recovered from the subsequence of even

numbers a(1), a(2n-1), which we will sometimes write as al,

a3,..., a2n..1. Clearly to every component will correspond an even number

of numbers. Therefore the bars, which indicate the components, are

always placed in front of the image of an odd number. With the result of

Theorem 2.1 we can therefore encode any link projection P with n

crossings by a sequence of n even numbers separated by bars indicating
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the components. Moreover, since we are free to reorder the components,

we may assume that the bars divide the sequence into segments of non

decreasing length. We call such a sequence a reduced sequence.

To encode a given projection we have made choices for the order of

the components, their orientations and base points. All of these choices

yield possibly different reduced sequences. However we may designate a

preferred one, which we call the standard sequence, by taking the

minimum of all these sequences with respect to lexicographic order. In

this order, a reduced sequence al, as,..., a2n.1 is smaller than a sequence

b1, b3,..., b2n_1 if ar < br for the first r where ar * br. In the case that

ai = bi for all i, the sequence that has the bars further to the front is

smaller. Therefore to each projection of a link is assigned a unique

sequence, its standard sequence.

Generating all possible reduced sequences is a trivial, albeit time

consuming task. However, not every reduced sequence represents a link

projection. Thus we need to identify those sequences which do indeed

correspond to projections. Moreover, we are only interested in finding

those reduced sequences which correspond to the projections of prime,

non-split links.
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11.2. Standard sequences and prime projections

Given a sequence S of n even numbers separated by k bars, we

would like to determine if it is a sequence that arises from a link

projection, if it is the standard sequence for that projection and,

moreover, if that projection is of a non-split prime link.

There is only one link with two crossings, the Hopf link 41 2, and

there are no prime links with three crossings. In general, the number of

components of a prime non-split link is limited and therefore also the

number of bars that can be present in a sequence. In particular, we know

the following:

Lemma 2.2. A prime, non-split link with n > 3 crossings has at

most n/2 components.

Proof: First notice that every component has at least 4 crossings with

other components. If one component had only two crossings with other

components, then there would be two edges, emanating from the two

crossings, which separate two non trivial path-components of the

projection. Hence it would not be prime. Now for a link with

components K1,..., Kr, let si be the number of self crossings of Ki and mi

the number of crossings Ki has with other components. Then the total
number of crossings is n= + mi/2) , since the mixed crossings

are counted twice. Hence n mi/2 4r ?. 2r.1=
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This inequality is sharp, as the following example of a circular chain

with n components shows.

Figure 3. Circular chain

Let S be given as al, a2,..., a2n with k bars inserted after the entries

with the indices bk. Let bp= 0 and bk+1= 2n. Since most of the

calculations reflect the cyclic order of the numbers in the components, we

indicate an addition or subtraction that is performed in this manner by

and ' -s' . Specifically, if iE [bs_1 +1, bs], then

i +c k = bs_i + 1 + ((i bs_i - 1 + k) mod (bs bs-1))

If a diagram or projection with more than one double points is

connected and there is no circle in the plane that cuts it in two points not

of the same edge, then it is called prime. A projection with more than one

double points is therefore prime, if it is still connected after any two

edges are removed. This excludes for example

kinks and crossings like

Figure 4. Kink and nugatory crossing
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Since diagrams of minimal crossing number of a prime link are prime,

we are only interested in prime projections. Let [i, j] denote the

subsequence i, i+cl,..., j. The effect of a kink on a sequence is that there

exists an i such that a(i)= i+cl, which can be expressed as a([i, i+c1]) =

[i, ii-c1]. In general, if a projection can be disconnected by cutting two

arcs, then there is a subset I of the numbers (1, 2,..., 2n} that is mapped

onto itself by a. The subset I has to be of the form

I=[bii+1, bi14.1] [bis+1, bis+1] V [r, t]

with [r, t] = 0 or [r, t] C [bj+1, bj+1], i.e. it has to be either all numbers

of some of the components or a subset of the numbers of one component

possibly together with other complete components.

Thus, reduced sequences which correspond to prime connected link

projections must satisfy the following condition.

Condition 2.3. Let S be a reduced sequence with n 4 entries and

k bars. If S corresponds to a projection of a prime non-split link, then S

satisfies

I. k n/2 - 1 and

II. there is no subset I=[bii+1, bi1+1] [bis+1, bis+1] v [r, t]

with [r, t] = 0 or [r, t] C [bj+1, bj+i] with a(I) = I.

Of all the sequences that satisfy Condition 2.3, most are not

standard. This means that if there were a projection that yielded this

sequence, then a different choice of basepoints, orientations or ordering

of the components would produce a sequence that is smaller with respect

to lexicographic order.
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Any reordering of components can be done by repeated exchanges of

components. The new sequence { ai' } after exchanging the components i

and j which have the same length is the following:

Ia(k') , if a(k')E [bi_1 +1, bi]u[bi4+1, bil

a'(k) = bj4+ a(k') - bi4, if a(k')E [bi4+1, bj

bi_i+ a(k') - bki, if a(k')E [bi4+1, 13)

where

fk , if kE bjutbj_1+1,

k' = bki+ k - bm, if ke [bi4+ I , bj
k if ke [bi_i+ 1, bjj

Since moving a single basepoint forward past an odd number of

crossings would destroy the parity reversing property, possible moves of

the basepoints are those where the basepoints of all components are moved

by numbers of the same parity. Then the change in the sequence can be

computed by treating each component separately in the following way:

The new sequence {aj' } is

1
a(p(j)) , if jE [bi_i+ 1, bj and a(p(j))0 [bi4+1, bj

-1

p (a(p(j))) , if jE [bi_i+ 1 , bj and a(p(j))E [1114+1, bj
a'(j)= -1

p (a(j)) , if jE [bi_1 +1, bj and a(j)E [bi_1 +1, bj

a(j) , otherwise

where p(r) = r +c k , if the basepoint of the i-th component is moved k

crossings forward, and p(r) = (bi +1) -c (r - bi_i +k), if the orientation of
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the i-th component is reversed and the basepoint is then moved k

crossings forward.

If none of these procedures yields a smaller sequence, then S is

standard.
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11.3. Realizable sequences

In order to generate a table of links from the set of all reduced

sequences we must be able to eliminate those sequences which do not arise

from link projections. For example the reduced sequence 4 8 10 I 6 12 2

cannot correspond to any projection of a link in the plane. (However, it

does correspond to a link projection on the torus.)

Again let S be a sequence S = a2, , a2n} with k bars bt,

b2,...bk. We define by = 0, bk+1 = 2n. Now S represents an abstract

graph G which we obtain from k + 1 disjoint intervals It, 12,, Ik+1 with

Ij = [bj_i, bj] by identification of bj..1 with bj in Ij and of i in Ir, br_i < i

br, with ai in Im, bm_i < ai bm. At each vertex of G this identification

produces two pairs of opposite edges, so the four edges are cyclicly

ordered.

If S satisfies Condition 2.3, then the graph G has the following

properties:

(i) G is a four-valent graph with n double labelled vertices;

(ii) every edge joins two different vertices;

(iii) if any two of its edges are cut, G remains connected and

(iv) if any vertex is removed, G remains connected.

G can always be embedded in R3, but not necessarily in P, 2 .

Definition 2.4. A sequence S is realizable, if the graph G obtained

from S in the way described above can be smoothly embedded in R 2, such

that the unoriented cyclic order of the edges at each vertex is preserved.

We call the embedding a realization of S.
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The embedding can be viewed as the projection of a link. The two

opposite edges at a vertex are on the same strand at the crossing. We

regard an embedding 11 as lying in S2 = 2 c-D } and define:

Definition 2.5. Two embeddings 11 and t12 in R 2 of a graph G are

equivalent, if there is a homeomorphism h: S2 S2, such that

h 111 = 112.

We have the following theorem:

Theorem 2.6. Any two realizations of a graph G obtained from a

reduced sequence S that satisfies Condition 2.3 are equivalent.

Proof: The theorem is a consequence of Lemma I in [D-T}.

Corollary 2.7. Projections of unoriented links up to isotopy in S2

are in one-to-one correspondence with realizable standard sequences.

Thus, we need to be able to determine if a sequence S is realizable or

not.

Dowker and Thistlethwaite develop a criterion for the realizability of

sequences representing knot projections in [D-T]. Rather than extending

their algorithm to links, we give a different algorithm that applies equally

well to knots or links.

Since the fact that a sequence is realizable does not depend on it

being standard, we may assume in these arguments, that a(bs +1) < bs +1
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for s=1, k. This assures that a component is not disconnected from

the previous ones. For i=1,..., 2n let Hi denote the subgraph of G

corresponding to II v 12 Iry [br + 1, i + 1/2) where br < i br+1

Hence, in the case that G can be embedded ri(Hi)c_i I1(H2n) are

increasingly more complete embeddings of G in IR 2. Our goal will

therefore be to start with an embedding of H1 and to extend it step by step

through embeddings of the Hi until finally an embedding of G = H2n is

reached.

There is no obstruction to doing this before a whole loop is

completed, i.e. before the first crossing is completely embedded. Also the

embedding of the first crossing of a new component, which is just its

connection to a previously embedded component, is always possible. So

S fails to be realizable, if there exists an i such that Hi can be embedded

but Hi+1 cannot. In particular, if there is an i such that

1. Hi can be embedded and

2. a(i +cl) < i and

3. for all possible embeddings tl of Hi, ii(a(i +c1)) is separated

from 1(i) by a closed loop.

Definition 2.8. Assume Hi has been embedded in CR 2. The i-th

obstruction circuit (.1i is the boundary of the component of S2 \ 1(Hi), that

contains 1(i + 1/2).

Figure 5 illustrates H9 and 119 for the sequence 4 8 10 I 6 12 2. The

embedding cannot be extended to H10, because _19 separates 11(9) from

11(aio) = 11(5)



Figure 5. Obstruction circuit

0(9)
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Clearly, Oi depends on i(Hi) and we can extend the embedding of Hi

to Hi4.1 if ii(a(i +c1)) lies on t9i. So we need to know which images of

integers lie on To obtain Oi from i(Hi) imagine r1(Hi) as a

descending diagram, i.e. at any crossing point r>(j) =T (aj) of i(Hi), let

i(j) be-on the overpass if j< aj and vice versa. In this diagram each

crossing has a sign according to the usual rule: has sign +1 and X

has sign -1. After the sign of the first crossing is chosen as +1 all others

are uniquely determined as a consequence of Theorem 2.6. We find efi by

backing up from Ti(i + 1/2) and turning right at every crossing of TI(Hi).

The obstruction circuit will be completed when + 1/2) is reached

again. There are 8 possibilities for eri at a crossing {i(j), Wan) of

n(Hi), relating to the possibilities that i(j) is on the overcrossing or

undercrossing, that the direction of Oi is opposite to the direction of

r1(Hi) at Ti(j) or not, and that the sign of the crossing is +1 or -1.

To proceed in Oi from i(j) we have to jump to the other strand and

continue to ii(aj + 1) in four of these cases and to ri(aj - 1) in the other

four cases.



20

Example:

In this case E = -1, j < aj and the direction of Oj is opposite to the

direction of the strand at j. So the next point is aj 1.

a(j)44--
0(J)

Figure 6. Continuation of the obstruction circuit

If 11(ai.4.1) 0 0i, then ii(Hi+i) cannot be completed as an extension of

ii(Hi). If 11(ai4.1) E 0i, then we can define the embedding of Hi+i,

though not necessarily uniquely. We know that + 1) is on the

underpass since i + 1 > ai4.1 To obtain ei we always turned right, so the

arc from i(i) to 11(ai+1) has to intersect Oi from the right. In the case that

(5i meets 11(ai+1) only once, there is a unique extension to Hi4.1. The

sign of the new crossing is defined as follows. If ('i has the same

direction as the arc through Wai+i), then the induced sign is +1, if it is

opposite, then the sign is -1.

a(i+1)

O(i)
Ti

w sign: +1

a(i+1)

0(1)

Figure 7. Rule for the sign of a new crossing

sign: -1

However, if Oi meets i(ai+i) twice as in the example below,

can be embedded in two possible ways corresponding to the choice of a

positive or negative sign for the new crossing. But only one of the two
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possible embeddings can possibly be extended up to H2n. A similar

choice can be made for the sign of the first crossing of each component.

Example:
9 14

6 12 I 2 10 14 4 16 8
15

After H9 has been embedded, the sign at the

crossing (10, 7} may be chosen, according to

the two possible choices of rl(H10). If the

choice is -1, then H14 cannot be embedded. So

one has to back up and choose the sign at this

crossing as +1. With this choice, the

embedding can be extended all the way to H16.

Hence, the sequence is realizable.

Figure 8. Link 6 12 1 2 10 14 4 16 8
In order to complete the r-th component, not only must n(br_i + 1) be

in Ub(r) but the sign induced by this procedure must be the same as the

sign already chosen for this crossing.

As the above example illustrates, if there is an obstruction in the step

from Hi to Hi+i, then one has to go back to previous stages where choices

were made and try again. The sequence S is not realizable if it is not

possible to complete H2n for any set of possible choices. Clearly, this

algorithm can be applied to knots as well as to links.

11
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11.4. From Projections to Diagrams

With the methods and the justification that has been developed up to

this point, a complete list of projections with a given number of crossings

can be produced. We simply start with all reduced sequences and then

eliminate those which are not realizable or standard. Only one

representative sequence per isotopy class of unoriented projections

remains. Now there are two major steps to be done in order to list all

oriented alternating links without repetitions.

1. All oriented alternating diagrams have to be found and

2. Those diagrams that represent equivalent links have to be determined

and all but one of them eliminated from the list.

Furthermore, we shall only list one of L, L*, pL and pL* even if all

four of these links are pairwise non ambient isotopic. Thus the table of

links given in the Appendix lists, without repetitions, all oriented prime

alternating links with less than 10 crossings up to ambient isotopy, mirror

image and complete reversal. Recall that the standard sequence of an

oriented projection was found by taking the minimum of all the reduced

sequences generated by all possible choices of ordering, basepoints and

orientations. However, to oriented projections we may associate an

oriented standard sequence. This is the minimum reduced sequence of the

projection taken over all possible choices of ordering, basepoints and

complete reversal of the given orientations. Having found all oriented

projections we now want to pass to diagrams. Therefore at each crossing

an overpass and an underpass has to be determined. Hence one projection

yields 2n diagrams. But we are only interested in alternating diagrams.

In this case there can be at most two diagrams of one projection, since the
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choice at one crossing determines all others uniquely. The following

proposition ensures the existence of alternating diagrams:

Proposition 2.9. Each projection P of a link admits an alternating

diagram.

Proof: Choose an orientation for each component of P. Shade the

regions of S2 \ P in checkerboard fashion. At each double point the two

opposite corners are shaded. Of the two incoming strands, one has the

dark region to its right, the other to its left. If the region to the right is

dark, then let this strand be the overcrossing at the next double point.

Otherwise let it be the undercrossing. The resulting diagram is alternating,

since the shading to the right of a component changes at each double

point. The two possible diagrams correspond to the two possible

checkerboard colorings.

The two alternating diagrams associated to a projection are mirror

images of each other. Since we have chosen to not list both a link and its

mirror image, we may choose to put the odd numbers of the sequence on

the overpasses. During the test for realizability the sign at each crossing

was determined under the assumption of creating a descending diagram.

Comparing the descending diagram with the alternating diagram, the signs

of the crossing fj, aj) in the two diagrams are opposite if j is odd and

aj < j. Thus our algorithm to test a sequence for realizability can be used

to determine the signs of the crossings in an alternating diagram

associated to a realizable sequence. Finally, we have established a one-to-

one correspondence between oriented standard sequences and reduced
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alternating diagrams of links modulo isotopy in S2, mirror images and

reversing all orientations.

After listing all oriented alternating diagrams with less than 10

crossings we must still eliminate all but one link from each equivalence

class. To do this we computed the polynomial invariants described in

Chapter III for each link. For those sets of links not distinguished by the

polynomials we showed by hand that in every case but three the links

were indeed equivalent. The cases of inequivalent links with identical

polynomial invariants are the pairs 6 10 I 2 14 1 4 16 112 8 and 6 10 I 2

14 116 4112 8, 6 101 2 14116 4 18 8 12 and 6 101 4 141 2 16 8 18 12, 6

101 2 14 14 16 18 8 12 and 6 101 4 161 14 2 18 8 12. However careful

examination of their linking numbers proves that they are different.

The following table shows the number of links in comparison with

the number of processed data.

Crossings Reduced

Sequences

Standard'

Sequences

Unoriented

Projections

Unoriented

Links

Oriented

Projections

Oriented

Links

1 0 0 0 0 0 0

2 2 1 1 1 1 1

3 6 0 0 0 0 0

4 24 1 1 1 2 2

5 120 1 1 1 1 1

6 2,160 11 6 5 10 8

7 15,120 29 8 7 10 11

8 214,920 210 36 21 74 43

9 2,540,160 1462 97 55 202 103

'Only standard sequences that pass Condition 2.3.11
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III. Combinatorial Link Invariants

III. 1 . Numerical Link Invariants

Since one of the main tasks in link theory is to classify links, it is

necessary to find properties that distinguish links that are not ambient

isotopic. A link invariant is a map that associates to each ambient isotopy

class of links an element of a numerical or algebraic structure. If the links

are oriented we need to use invariants of oriented ambient isotopy which

are defined for classes of oriented links. The best possible invariant

would tell any two different links apart. Such an invariant is called

complete. At the moment there is no such invariant that can easily be

computed.

Many combinatorial invariants can be calculated from the diagram of

the link. However, the diagram by itself is obviously not an invariant.

But the following well known theorem by Reidemeister tells us exactly

which diagrams represent the same link.

Theo rem 3.1. [Re]: Any two diagrams D1 and D2 of ambient

isotopic links L1 and L2 are related by a sequence of Reidemeister moves,

which are as follows:



RI:

R

R

Figure 9. Reidemeister moves
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This result is especially useful in proving that a function defined on

diagrams is an invariant of links. Only invariance under the three

Reidemeister moves must be shown.

In the remainder of this chapter we describe several important

combinatorial link invariants which may be computed directly from a link

diagram. While all of these invariants may, in theory, be computed by

hand, for some a computer is a practical necessity. We have not aimed for

a complete description of combinatorial link invariants. Indeed such a

survey is far beyond the scope of this thesis. Instead we concentrate on

those invariants which were employed to produce the oriented link table

given in the Appendix. We describe several properties of these invariants,

especially those which describe the form these invariants can take.

We begin by describing several classical numerical invariants of

diagrams and links. Let D be a diagram of the oriented link L. Denote by

Di the component of D representing the component Li of L.
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Definition 3.2.

(a) The crossing number of D is the number of crossings or double

points in D. The crossing number of L is the minimum crossing number

of any diagram representing L.

(b) The unknotting number of the diagram D is the smallest number of

crossings of D that have to be changed so that it is a diagram of an unlink.

The unknotting number of the link L is the minimum over the unknotting

numbers of all diagrams of L.

(c) The writhe of the diagram, w(D), is the sum of the signs of all

crossings in D. Clearly the writhe is not an invariant of links since it

changes under Type I Reidemeister moves. However it is preserved by

Type II and III moves.

(d) The linking number, lk(Li, Li), between the components Li and Lj

of L is one half the sum of the signs of all crossings between Di and Dj.

It is trivial to show that this is preserved by the Reidemeister moves and

hence an invariant of the link.

(e) The number of components of L, c(L), is the number of copies of

SI in the preimage of L.
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111.2. Polynomial Link Invariants

A new era of link invariants started with the discovery of the Jones-

polynomial [Jo] in 1984. The similarity between the Jones-polynomial

and the Alexander (or Conway) polynomial led to two generalizations.

The idea is to define a polynomial invariant of the link inductively by

giving the polynomial of the unknot plus a relation between the

polynomials associated to links that are the same except in the

neighborhood of one point. The calculation itself is purely combinatorial

and uses only a diagram of the link. Therefore these polynomials are

easily computed with the aid of a computer.

We will use the standard notation L+, L. and Lo for links with

diagrams that are identical except at one crossing where they appear as

follows:

L+ L.. Lo

Figure 10. L+, L_ and LO

We say Lo results by smoothing the crossing. There are two cases:

If Lo has more components than L+, the smoothing is called a fission, if it

has less components, it is called a fusion. There are two major

independent polynomials based on the concept of changing and smoothing

crossings.
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1,_The_Homfly_or_oriented_polynomial

This invariant was discovered in 1984 independently by several

authors [FHLMOY] and [P-T] after the discovery of the Jones polynomial

[Jo]. The oriented polynomial is described in the following theorem:

Theorem 3.3. [FHLMOY],[P-T] To each oriented link L there is a

unique Laurent polynomial P(L) E [Z±1 v±1] which is invariant under

ambient isotopy such that

(a) P(L) = 1 if L is the unknot,

(b) v-1P(L+) - vP(L_) = zP(L0) where L+, I._ and Lo are as described

above.

An easy application of the defining relation is the calculation of the

polynomial of the unlink:

Proposition 3.4. If Uk is the unlink with k components, then

P(Uk) = qk = k -1

Proof: We shall induct on the number of components k. For k=1, U1

is the unknot and P(U1) = 1. Assume inductively that it is true for every

unlink with less than k components.

The unlink Uk is related to Uk_i via the following smoothing.



Uk-1 = Uk-2

Uk-1 = Uk-2 Uk_2

Figure 11. P-polynomial for the unlink

The defining relation for this tripel is v-1P(Uk_i) vP(Uk-1) =

zP(Uk). Hence clic =
(v-1 ) 1 _ k-1

z
- v

)
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To illustrate that properties (a) and (b) of Theorem 3.3 suffice to

calculate the polynomial of any link let us give an example.

Example: The P-polynomial of the link L below. We start with a

diagram of the link. By smoothing and changing crossings we want to

reduce the diagram to that of an unlink. This is demonstrated by the tree

of diagrams we build. The original diagram is at the top and two branches

descend from it to the diagrams that result from changing and smoothing a

selected crossing. We always draw the changing branch to the left. From

each of the new diagrams two more branches descend. This procedure is

continued until all the outermost diagrams represent unlinks. Their

polynomials are known from Proposition 3.4. Hence, the polynomial of L

is found by tracing back the paths from the final vertices of the tree to the

top. Each path yields one term of the polynomial, found by multiplication

of the correct qi with one factor for each traversed edge. To find this

factor solve the defining relation for the diagram at the upper end of the

branch. We call these factors branching factors. The tree with the

original diagram at the root and the unlink diagrams as final stages is

called a resolution tree of the diagram. The tree of our example is shown



31

below. The changing and smoothing edges are labelled with the branching

factors.

v2

v2 / \ V Z

XX
$2

\ V Z

v2/

1

V Z

v2/

V2/ \ V Z

q2

P(v, z) = z-1(v3-v5)+z(2v3+v5-v7)+z3(v3+v5)

Figure 12. Resolution tree

\ V Z

1
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This definition of a polynomial associated to links is based purely on

the diagram of the link. Since its discovery several relations to

topological properties of the link have been found, mainly for evaluations

at special values of v and z. But one of the main problems is still to find

a general geometric or topological definition of the polynomial.

We know that the P-polynomial cannot depend on the complement of

the link: The links in the following example have homeomorphic

complements but their P-polynomials are different.

Example [Ro, p.49]:

6 81 2 10 4 6 101 2 14 12 4 8

Figure 13. Two links with homeomorphic complements

As this example shows two non equivalent links can have

homeomorphic complements! This is impossible for knots as has been

recently shown by Gordon and Luecke [G-L].

However the P-polynomial is not the omnipotent invariant we would

like to find. For example the Conway knot and the Kinoshita-Terasaka

knot are different knots with the same P-polynomial.
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Conway Knot Kinoshita-Terasaka Knot

Figure 14. Conway knot and Kinoshita-Terasaka knot

These two knots are related by a mutation, i.e. a disc, whose

boundary cuts the knot in four points, was cut out and replaced differently

so that the four points on the boundary still match up. Mutation is a

change which the P-polynomial does not detect at all:

Theorem 3.5. [Ho],[L-M 2] If L is a link and m(L) a link obtained

from L by a mutation, then P(L) = P(m(L)).

In this project we are mainly interested in the format of the

polynomial and the way it changes when we take mirror images or

complete reversals of links.

Theorem 3.6. [L-M 2] P(L) can be written as

P(L)(v,z) = zi-c(L) { Po(v) + z2pi(v) + + z2rpr(v)

where pi is an odd (resp. even) polynomial in v, if 1-c(L) is odd (resp.

even).
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Proof: We shall induct on the crossing number of the link. If there
-1 -are no crossings, L is an unlink and qi = = z1 -i (v-1 v)i-i

satisfies the theorem.

Assume inductively that the theorem is true for all links with less

than k crossings. Let L be a link with k crossings. Let D be a diagram of

minimum crossing number of L and T be a resolution tree for D.

Case 1: L has one component.

Let R be the subtree of T that consists of the changing branches on

the extreme left of T and the immediately descending smoothing branches.

Name the final diagrams of R D1, D2,..., Ds with Ds at the end of the

changing branch. Then Di, i = 1,.., s-1, is the diagram of a link Li

which has two components and less than k crossings. So

P(Li) = z-1P' (Li) and P' (Li) has only even powers of z and odd powers

of v. Also Ds is an unlink with polynomial equal to one. Therefore
s - 1 Vs-1 v2tr±i p' (Lr) v2ts,p(L) r= 1v2tr (±zv±1)P(Lr) + v2ts1 =

which is a polynomial with non negative even powers of z and even

powers of v. (2tr is the product of the factors on the changing branches

that lead to Dr).

Case 2: L has w > 1 components.

Select one component of L. Let R be a tree of changing branches

with the immediately descending smoothing branches where only those

crossings of D are changed at which the selected component crosses under

other components. Name the end diagrams D1,..., Ds as before and the

links L1,..., Ls. Then Ds_1 have w-1 components, since all

smoothings have to be fusions. Therefore, for i=1,.., s-1,

P(Li)=z2-sv P' (Li), where P' (Li) has non negative even powers of z and
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the powers of v have the parity of 2-w. Also Ls is a split link with less

crossings than L but still w components. So P(Ls)=z1-wr (Ls) and P' (Ls)

has the correct form. So
V

sP(L) = Zd=1iv2tr(±zv±1)P(Lr) v2tsp(Ls)

=
/1r./±z3-wv2tr±lp'(Lo zl-wv2tsP'(1,$)
Vs-1= zl-w( Lr.i±v2trtlz2r (Lr) + v2ts131(Ls))

The terms in parentheses have the required properties.

Corollary 3.7. P(L)( -v, -z) = P(L)(v, z)

Theo rem 3.8. [Ho] Let L be a link, L* its mirror image and pL the

complete reversal. Then

(i) P(L*)(v, z) = P(L)(-v-1, z) and

(ii) P(pL) = P(L).

Proof: (i) If T is a resolution tree for L, then a resolution tree T* for

L* is obtained from T by changing all crossings in all diagrams of T. The

polynomials at the outermost diagrams, which are unlinks, are qi and do

not change. But all diagrams labelled L+ have to be changed to L_ and

vice versa. So when going up in the tree the factor of every changing

edge needs to be changed from v2 to v-2 and vice versa and on every

smoothing edge we must trade vz with -v-lz. This is accomplished by

replacing v with -v -1

(ii) Any resolution tree for L is also a resolution tree for pL Also

the unlink and its complete reversal are equivalent. So the algorithm

produces the same result.
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This theorem is of special importance to our link tabulation since we

do not distinguish links from their mirror image or complete reversal. So

two links could be equivalent if their polynomials are different but related

by the substitution v' :=-v-1 and z' :=z. In addition out table only contains

prime non-split links, hence no polynomials for composite links or the

union of links are listed. However they can be easily calculated by the

following theorem.

Theorem 3.9. [Ho] Let R and S be oriented links.
-1 -(i) P(R v vS) = P(R) P(S), where R L.) S is the split union of

two separate links R and S.

(ii) P(R # S) = P(R) P(S), where R # S is the connected sum of R and S.

Proof: (i) Let TR and Ts be resolution trees of the subdiagrams of R

and S in a diagram of R u S. Add the diagram of S to each diagram in

TR. The outermost diagrams are therefore unlinks plus the diagram of S.

Attach a copy of Ts at each of these vertices and carry the unlinks at these

vertices through Ts to get a resolution tree of the diagram of R u S. The

final diagrams of this tree all have one factor (v-1-v)/z more than the final

stages of TR and Ts. This factors through and yields the result.

(ii) Use Figure 15

R

Figure 15. P-polynomial of a split link
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and the defining relation v-1P(R # S) - vP(R # S) = zP(R v S).
S)So P(R # S) = z P(R L.) P(R)P(S) by (i).

v--
, - v

Part (i) of this theorem shows a way to construct different links with

the same polynomial: Although the polynomial of the connected sum of

two links is determined by their polynomials, the connected sum is not

unique.

2,_Thg_F:polynomial_or_lemi:oriented_Rolynomig.l_or_Kauffman:

Rolynomial.

This polynomial is the second generalization of the Jones polynomial

mentioned at the beginning of this chapter. Although it was discovered

after the Q-polynomial, which is introduced on page 47, the Kauffman-

polynomial contains the Q-polynomial as a special case. This polynomial

is defined in two steps. First a polynomial A of unoriented diagrams is

constructed which is invariant under Reidemeister moves II and III. By

multiplication with a balancing factor it is then expanded to a link

invariant of oriented type.

Theorem 3.10. [Ka 4] For every unoriented link diagram D there

exists a unique Laurent polynomial A(D) E [a±1, x±1] that satisfies

(i) A(0) = 1,

(ii) A is invariant under Reidemeister moves II and III,

(iii) A( 111.>`:. ) = aA(L) and A( ( ) = a-1A(L) and
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(iv) A(1.4.) + A(14 = x (A(Lo) + A(L,,))

where L+, L., L0, L. are unoriented diagrams that are the same except near

a point where they appear as follows:

X X )
L+ Lo L.

Figure 16. L+, L_, Lo and L.

Note: This is only a polynomial defined on diagrams. Therefore (i)

does not mean that A(unknot) = 1 but only that A=1 for a diagram that has

one component and no crossings. Moreover it is not possible to

differentiate L+ and L.. or Lo and L. so only the symmetry of (iv) allows

this definition. The proof of the existence of A is similar to the proof of

Theorem 3.3.

From (iii) it is clear that the A-polynomial is not a link invariant.

However, if L is an oriented link note that the right case in (iii)

corresponds to a positive crossing and the left case to a negative crossing

for both possible orientations of the kink. Recall that the writhe has a

behavior similar to that of the A-polynomial: The writhe does not change

under Reidemeister moves II and III but a Type I move adds or subtracts

one to the writhe. Combining writhe and A we construct an invariant of

oriented links.

Theorem 3.11. If L is an oriented link, a unique Laurent

polynomial F(L) E 2[a±1, x±1] is defined by

F(L)(a, x) = a-w(D) A(D)(a, x) where D is any diagram of L.
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Proof: Only invariance under Reidemeister move I needs to be

verified. For example in the case of a positive kink, let D be the diagram

L__20 and D' the altered diagram CID . Then

a-w(D)A(D) = a-(w(D)-1) a-1A(D) = a-w(D')A(D')

Kauffman calls a function on diagrams that is invariant under the

Reidemeister moves II and III an invariant of regular isotopy. This idea

of creating an invariant of ambient isotopy of links from an invariant of

regular isotopy of diagrams is an important idea that can often be made to

work in general.

Before the description of some of the properties of this polynomial,

one should note a different definition of the polynomial:

Theorem 3.12. For every link L the polynomial F(L) satisfies

(i) F(L) = 1 if L is the unknot and

(ii) (a) if in the quadrupel L+, L_, L0, L. the L0- smoothing is a

fission, orient L. in the following way

L+ L.. Lo L.

Figure 17. L+, L_, Lo and L.. if Lo is a fission

and use the formula

aF(L+) + a-1F(L4 = x (F(L0) + a-4XF(L.) where A, is the sum of the
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linking numbers of component x with all other components in L0.

(b) if the smoothing is a fusion, orient Lo, in the following way

L+ L_ L0 Lo,

Figure 18. L+, Lo and L. if LO is a fusion

and use the formula

aF(L+) + a-1F(L.) = x (F(L0) + a-411+2F(1..) where p, is the sum of the

linking numbers of the component x with all other components in L+.

Theorem 3.12 was used for the computation of the F-polynomial in

this project. The computation time increased sharply compared to the

P-polynomial, since a ternary resolution tree needs to be built rather than

a binary tree. Theorem 3.12 can also be used to derive properties of the

F-polynomial similar to those satisfied by the P-polynomial.

Here are the properties of the F-polynomial corresponding to

Theorems 3.8 and 3.9:

Theorem 3.13. [L-M 4] Let L, L1, L2 be oriented links. Then

(i) F(L1 # L2) = F(1.4) F(L2)

(ii) F(L1 v L2) = ((a4 + a)(x-1 1)) F(1-1) F(1-2)

(iii) F(L*)(a, x) = F(L)(a-1, x)

(iv) F(pL) = F(L)

(v) F is invariant under mutation
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The proofs are similar to those for the P-polynomial. Unlike the

P-polynomial, this polynomial behaves regularly when the orientation of

one component is reversed. (Hence it is sometimes referred to as the

semi-oriented polynomial.) This should be expected, since the polynomial

was created from a polynomial of unoriented diagrams by multiplication

with a power of a. There is no similar rule for the P-polynomial.

Theorem 3.14. [Li 2] If L' is the link obtained from the link L by

reversing the orientation of the component K, then F(L') = a4X F(L) where

X is the sum of the linking numbers of K with all other components of L.

Now, for the notation in the table we will use knowledge about the

form of the terms of the F-polynomial.

Proposition 3. 15. In every term of the F -polynomial,

F(L)(a,x) = Icijaix.i, the sum of the exponents of a and x, i + j, is even.

Proof: This is clearly true for the unknot. Also the branching factors

of all possible 3 branchings satisfy the property. For example consider

the branching of a positive crossings where Lo is a fusion:
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L1.

_a-2 . a 1x a1 +41.tx

L. Lo L.

Since each term of the polynomial is a product of those factors and

the unlink values, it is true for the polynomial.

As for the P-polynomial some special evaluations have a significant

value. They are summarized in the following theorem.

Theorem 3.16. [L-M 1] For any oriented Link L

(i) F(L)(l, -2) = (-2)014-1
(ii) F(L)(a, -(a+a-1)) = (-1)c(L)-1 E(L) where E(L) = Ia-41k(S,L-S)

SeL

Initially, it was not clear if the F-polynomial was a new polynomial

or just a special case of the P-polynomial. But there are examples that

show that they are in fact independent. For example, 4 10 12 141 2 18 16

8 6 and 8 12 101 14 6 16 18 4 2. These are the only pair of links in our

table with the same P-polynomials but different F-polynomials. One open

question is, if both P and F are special cases of some master-invariant .

The last two polynomials we mention were found chronologically

before the P- and F-polynomials. They are special cases of P and F.

However understanding them has led to some of the most important recent

results in knot theory.
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3. The Joneszpolynomial or V:Rolynomial

The discovery of this polynomial in 1984 by Vaughan Jones was

responsible for the later discoveries of P and F.

Theorem 3.17. [Jo] To every oriented link L there exists a unique

Laurent polynomial V(L) E z [t±1/2] that satisfies

(i) V(L) = 1 if L is the unknot, and

(ii) t-1V(L+) - tV(L_) = (t112 - t-1/2)V(L0) where L0, L_, L+ are defined

as before.

The Jones polynomial can be derived from both P and F by

Theorem 3.18. [Li 1] For any oriented link L,

V(L)(t) = F(L)(-t-314, t-1/4 + t1/4) and

V(L)(t) = P(L)(t, (t1 /2 - t-1/2))

Different from the proofs for the existence of the P- and F-

polynomials there is an almost trivial proof for the .existence of the V-

polynomial found by Kauffman [Ka 3]: Again he defines an invariant of

regular isotopy of diagrams and combines it with the writhe to get an

invariant of links.



44

Definition 3.19. The unreduced bracket polynomial, < >, of

unoriented link diagrams is defined by:

(i) > = 1,

(ii) <0 v D> = d <D> if D is non empty and

( i i i ) ( ` . ) = A< > + B< >

Calculation of the effects of the Reidemeister Type II and III moves

leads to the substitutions B := A-1 and d := -(A2 + A-2) to get an invariant

of regular isotopy. This regular isotopy invariant is called the reduced

bracket or more simply the bracket polynomial and is still denoted by

<D>. Since <>'> = -A3()> and <>°> = -A-3()>, the polynomial f(K) =

(-A)-3w(D)<D> is an invariant of oriented links if D is any diagram of K.

This polynomial is related to the V-polynomial by

Proposition 3.20. V(K)(t) = f(K)(t-1/4)

Proof: We have

=A( > + A-1< and

> = A-1< > +A( )( >.

Multiplication with -A-1 and A respectively and addition yields

A< > - > = (A2 A-2)< r >.

In oriented diagrams w(7x7 ) = w( 'H') -1 and w(' 7 ) = w +1.

Therefore multiplication with (-A)-3wC"') yields

A. (-A3) f(' ) A-1. (-A-3) f(' ) = (A2 A-2) ),

which equals the defining equation for V after the substitution A:=t-1/4.
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More results about the Jones polynomial are summarized in the

following theorem:

Theorem 3.21. If L is an oriented link, then

(i) V(L*)(t) = V(L)(-t-1)

(ii) V(pL) = V(L)

(iii) Reversing result: Let L' be the link obtained from L by

reversing the orientation of one component K, and A. be

the sum of all linking numbers of K with other

components of L. Then V(L') = t-3XV(L).

Corollary 3.22. (to part i) If L is an amphicheiral link, then the

span of V(L) is even.

The span of V(L) is the difference between the maximal and the

minimal degree of the polynomial.

Besides these properties of V, the Jones-polynomial yielded some of

the best results about the crossing numbers of links. One can be stated as

follows .

Theorem 3.23. [Th 2] If D is a connected diagram with n crossings

of an oriented link L, then n span(V(L)). If D is prime and non

alternating, then n > span(V(L)), if it is prime and alternating then

n = span(V(L)).
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4,_The_Conw ay:Rolxnomial

Chronologically the Conway polynomial was the first polynomial

using the technique of changing and smoothing crossings. The axioms it

satisfies are :

Theorem 3.24. [Ka 1] To each oriented link L there is associated a

unique polynomial V(L), the Conway polynomial, which is an invariant of

ambient isotopy and satisfies

(i) V(L) = 1 if L is the unknot and

(ii) V(L+) - V(L.) = zV(L0).

These defining relations easily give the following property:

Proposition 3.25. If L is a split link, then V(L) = 0.

From equation (ii) it is clear that V(L) is a polynomial that can be

gotten from P(L) by a substitution.

Theo rem 3.26. For every oriented link L

V(L)(z) = P(L)(1, z) .

The Conway polynomial is a normalized form of the classical

Alexander polynomial. Therefore it can be also defined in terms of

algebraic topology and covering space theory.
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5,_The_a-solynomial_or_unoriented_Rolynomial

Although the Q-polynomial is not listed in the Appendix we want to

give a short description of it and some of its properties. It can be viewed

as the evaluation of the semi-oriented polynomial, Q(L)(x) = F(L)(l, x),

but it was found before the F-polynomial [B-L-M], [H]. Its original

definition is worth noting.

Theorem 3.27. [B-L-M],[H] To each unoriented link L there exists

a unique polynomial Q(L) e 71[x±1/2] such that

(i) Q(L) = 1, if L is the unknot

(ii) Q(L.f.) + Q(L) = x(Q(L0) + Q(Le.,))

Again (ii) is only well defined because of its symmetry.

Summary of the properties of Q:

Proposition 3.28. [B-L-M] Let L, L1, L2 be unoriented links.

(i) Q(1-1 # L2) = Q(1-1) Q(1-2)

(ii) Q(1-1 u L2) =1.1.. 1)(L1) P(L2) , t = 2x-1

(iii) Q(Uk) = Rk-t,

(iv) Q(L*) = Q(L),

(v) Q does not change under mutation,

(vi) the lowest power of Q is c(L)-1,

(vii) deg(Q(L)) < c(L).

Proposition 3.29.[B-L-M] Q(L) - 1 is divisible by 2(x - 1).
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Corollary 3.30. Q(L)(1) = 1

Proofs can be found in [B-L-M].

S ummary

We have introduced five polynomials that can be all defined from a

given diagram of the link through smoothing and changing crossings.

Two of them, the P-polynomial and the F-polynomial, are (currently) the

most general polynomials that can be defined in this way. All together

their relation is described by the following diagram:

F(L) P(L)

Q(L) V(L) V(L)

Since their nature is combinatorial, they are especially useful for

applications involving computers. Both P and F were computed for the

links listed in the Appendix and served as our main tool in distinguishing

links.
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111.3. Results for Alternating Links

In [Ta] Tait raises several conjectures concerning alternating links:

(T1) Any two alternating prime diagrams of a link have the same number

of crossings.

(T2) For every alternating link there is an alternating diagram with the

minimum number of crossings.

(T3) Any two prime alternating diagrams of a link L are related by means

of flypes. (A flype is a transformation of a diagram described by =R

1? = . )

(T4) If D is a prime alternating diagram of a link L and w(D) * 0, then L

is cheiral (i.e. L 4 L*).

New light on these almost 90 years old conjectures has been shed by

the Jones-polynomial: Ti, T2 and T4 have been answered positively by

[Ka 2], [Th 2], [Mu]. The flyping conjecture, T3, is still unknown.

Two corollaries to Theorem 3.23 solve the first two conjectures.

Corollary 3.31. [Ka 2], [Th 2], [Mu] (answers T1)

The number of crossings in a prime alternating diagram of a link is a

topological invariant of the link.

Corollary 3.32. (answers T2)

Any diagram with the minimum crossing number of an alternating link is

an alternating diagram.
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According to Kauffman [Ka 2], T4 has been proven by

Thistlethwaite. Thistlethwaite [Th 2] and Murasugi [Mu] also proved

Theorem 3.33. The writhe is an invariant of prime alternating

diagrams of a link.

This would also be a consequence of Tait' s flyping conjecture:

Flypes do not change the writhe, so if all alternating diagrams of a link

were related by flypes they would all have the same writhe. However the

full conjecture has not yet been proven. In searching for counter

examples the unreduced bracket polynomial could be helpful. It is

invariant under flypes, so two prime alternating diagrams of a link with

different unreduced bracket polynomials would contradict the conjecture.

Besides these new results about crossing numbers and the writhe of

alternating diagrams of links Thistlethwaite [Th 2] also proves a theorem

about the form of the Jones-polynomial of alternating links.

Theorem 3.34. [Th 2] The Jones-polynomial of alternating links is

alternating.

This can be observed in the tables at the end of this paper.
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Appendix

How to Read the Tables

In the following pages we list all oriented alternating links with less

than 10 crossings up to mirror image or complete reversal. Let the

oriented standard sequence of a link be the minimum over all oriented

projections of their oriented standard sequences. The (unoriented)

standard sequence of the link is defined similarly.

The data are split in two sections. Part 1 contains all oriented

projections and oriented standard sequences of links. In the second table

the links are listed with some of their polynomial and numerical

invariants. The links in both tables are in groups of links that are

equivalent in the unoriented category and sorted by the lexicographic order

of their unoriented standard sequences.

Detailed description: Table 1 contains all possible projections of

oriented links. Since we only consider alternating links up to mirror

images, each projection determines a diagram uniquely. In the left column

we show the oriented standard sequences of the links and their induced

projections. An underlined sequence indicates that this is also the

(unoriented) standard sequence of the following group of oriented links.

To the right of each projection in the left column are all other oriented

projections and sequences of the same oriented link. So given the

projection of a link you need to find its projection in the list and determine

its oriented standard sequence directly to the left. Since the information

in both tables is sorted by the order of the unoriented standard sequence,
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one has to use the next underlined sequence above the oriented standard

sequence as reference for the other table.

This second table lists four polynomials and two numerical invariants

for each oriented link. Again, the links are ordered by unoriented

standard sequences. Below those underlined sequences are all oriented

links that correspond to it. The polynomials in the second column are P-,

F-, V- and V- polynomial in this order. The last two columns list the

linking numbers and the writhe.

We use the results from Chapter 111.2 about the format of the

polynomials for links. The P-polynomial can be written as P(L)(v,z) =

zi-c(L) (po(v) + z2pl(v) +...+ z2rpr(v)) where the pi are odd polynomials

in v, if 1-c(L) is odd, and even polynomials, if 1-c(L) is even. Therefore

we write 1-c(L) in braces and then every other coefficient of pi(v) between

the i-th pair of parenthesis. If pi is an even polynomial, we enclose the

constant term in brackets, if it is odd an asterisk is placed between the

coefficients of powers -1 and 1. The other polynomials are written in

similar manner. Since F(L)(a,x) = xrfr(a) + xr+I fr+i(a) +...+ xsfs(a),

where fi is an odd or even polynomial in a, if i is odd or even,

respectively, we write (r} and then the coefficients of fr÷i between the

i-th pair of parenthesis with the same convention for the use of ' [1' and

'*' . The Jones- and Conway-polynomials are polynomials in one

variable. In the case of the Jones-polynomial the number in braces is the

lowest power of this variable, for the Conway-polynomial we write 1-c(L)

in braces. The numbers in parenthesis are coefficients of consecutive

terms. The next column lists all linking numbers between components of

L. They are written in the form of the right upper triangle of the linking

matrix (1k(Li, Lp)i,J=1,..,k and the coefficients are in the order induced by
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the oriented standard sequence. Finally, the writhe w(L) is in the last

column. The following example should help to read the table:

Consider the projection with the sequence 6 10 14 12 12 14 8. The

standard sequence is 6 10 12 12 14 14 8. So the data of the

corresponding link can be found in the group after this sequence in the

second table. The listed invariants are:

6 1014 1212 14 8 ( -2)([ 0] 0 1 -2 1)([ 0] 0 3 -3)([ 0] 0 3 1 -1)([ 0] 0 1 1)
{-2)(-1-2-10[0])(2200*)(3530(0])

(-3-300*)(-3-5-5-30[0])(1-3-4000*)
(33110[0])(34100*)(1100[0])

4/2} ( 1 -1 4 -3 4 -3 3 -1)
-2) (0 0 3 2)

1 1

1

This means that

P(L)(v,z) = z-2[(v4-2v6+v8)+z2(3v4_3v6)4.z4(3v4+v6_v8)+z6(v44.v6)],

F(L)(a,x) = x-2(-a-8-2a-6-a-4)+x-1(2a-7+2a-5)+(3a-8+5a-6+3a-4)

+x(-3a-7-3a-5)+x2(-3a-10-5a-8-5a-6-3a-4)+x3(a-11-3a-9-4a-7)

+x4(3a-10+3a-8+a-6+a-4)+x5(3a-9+4a-7+a-5)..Fx6(a-8+a-6),

7

V(L)(t) = t4/2 t6/2 4t8/2 - 3t10/2 4t12/2 _ 3t14/2 3t16/2 - t18/2 and

V(L)(z) = 3 + 2z.

The linking numbers are lk(L1, L2) = 1, lk(L1, L3) = 1 and lk(L2, L3) = 1.

The writhe of the link is 7.

When reading these invariants one should keep in mind that

everything was done for one choice of the quadrupel of possibly different

links that originate from taking the mirror image or reversing all

components. Therefore the numerical invariants of the other possibilities

could differ by their sign and some of the polynomials could change

according to 3.8 and 3.13.
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Table of Projections

Projections_of_Oriented_Links_with_2_Crossings_and_2_Cornuonents

Oriented Stand. Sea. Other Projections
412

Projections_of_Oriented_Links_with_4_Crossings_and_2_Componenls

Oriented Stand. Sea. Other Projections
6_81_2_4

6 81 4 2

Projections_of_Oriented_Links_with_5_Crossings_and_2_Convonents

Oriented Stand. Sea. Other Projections
6_81_2_10_4



Projections_of_Oriented_Links_with_6_Crossings_and_2_ComRonents

Oriented Stand. Seg. Other Projections
6 1014 12 2 84_8_101_2_12_6

4 8 12110 2 6

8_10_121_2_6_4

8_10_121_6_2_4

8 12 101 2 6 4

6 101 2 12 4 8
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Projections_of_Oriented_Links_w ith_6_Cros sings_and_3_ComRonents

Oriented Stand. Sea.
6_8110_121_2_4

6_101_2_121_4_8

6 101 2 121 8 4

Other Projections

59



Projections_of_Oriented_Links_with_7_Crossings_and_2_Convonents

Oriented Stand. Sea.
4_8_121_2_14_6_10

6_8110_12_14_2_4

6_101_2_12_4_14_$

6 1014 12 2 14 8

6_121_2_12_14 4_3

8_12_121_2_6_14_4

Other Projections
6 1012 14 12 4 8

60
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8 10 121 4 2 14 6

8_10_121_2_14__4_6

8 12 101 2 6 14 4



Projections_of_Oriented_Links_w ith7_Cros s ings_and3_ConiRonents

Oriented Stand. Seg.
6_101_2_121_4_14_8

6 1014 1212 14 8

Other Projections
6 101 4 14112 2 8
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P rojections_o f_Oriented_Links_w ith_8_Cro s s ings_and_2_C omponents

Oriented Stand. Sea.
4_8_121_2_14_6_16_10

a
4_8_121_2_14_16_6_10

4 8 14112 2 16 6 10

4_11_121_2_1_14_6_19

4 8 14110 2 16 6 12

4_10_12_141_2_8_16_6

Other Projections
6 101 2 14 12 4 16 8

6 1214 14 16 2 10 8

6 1212 14 16 4 10 8

4 10 8 1412 16 6 12

*IWO
W*111S.

4 10 8 14112 2 16 6 6 1212 16 14 4 10 8
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6 101 2 16 14 4 8 12

6 1214 16 14 2 10 8

4 10 12 16114 2 8 6

8 10 141 2 16 6 4 12

8 10 121 2 16 14 6 4



4_10_12_141_2_16_6_8

4 10 16 14112 2 8 6

4_10_12_141_2_16_8_6

4 10 14 16112 2 8 6

4_10_12_141_8_2_16_6

4 10 16 1412 8 6 12

8 10 141 6 2 16 4 12

8 14 101 2 6 16 4 12

8 10 141 2 6 16 4 12

8 10 141 4 2 16 6 12

4 10 12 16114 2 6 8

8 10 141 2 16 4 6 12

4 10 14 121 2 8 16 6
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8 10 1212 16 14 4 6

8 12 101 6 16 14 4 2



6_8110_14_12_16_2_4

6_101_2_12_14_4_16_8

6_101_2_14_4_16_8_12

6 1014 14 2 16 8 12

6_12110_14_2_16_8_4

6 12110 14 4 16 8 2

8 14 101 2 12 6 16 4

6 8110 14 12 16 4 2

6 101 2 14 16 4 8 12

6 1212 10 14 4 16 8

6 121 4 10 14 2 16 8
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10_12_14_161_2_8_4_6_

10 12 16 141 4 2 8 6

10_12_14_161_2_8_6_4

10 12 14 161 4 2 8 6

10_12_14_161_8_2_4_6_

10 16 14 121 2 8 6 4

10 12 16 141 2 8 4 6

10 12 16 141 4 2 6 8
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Projections of Oriented Links with 8 Crossings and 3 Components

Oriented Stand. Se Other Projections
6 8112 14 16110 2 4

6 8112 16 1412 10 4

6 1012 1414 16 8 12

6 1012 14112 4 16 8

6 1212 14 1614 10 8

6 1212 10 1414 16 8

6 1212 10 16114 4 8

6 1214 10 141 2 16 8

6 1212 14 1618 410

6 101 4 141 2 16 8 12
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6 1214 14 1612 10 8

6 1212 14 16110 4 8

6 1212 16 1414 10 8

6 1214 16 1412 10 8

6 12114 16 218 10 4

6 12116 14 2110 8 4

10 14112 161 2 6 4 8
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10 14112 1614 8 2 6

10 14112 161 2 8 4 6
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Projections of Oriented Links with 8 Crossings and 4 Components

Oriented Stand. Se Other Pro ections
6 101 2 141 4 161 8 12

6 101 2 1 14 16112 8

6 101 2 14116 4112 8

6 101 4 141 2 16112 8



Projections of Oriented Links with 9 Crossings and 2 Components

Oriented Stand. S

4 8 1212 14 16 6 18 10

4 8 14112 2 16 6 18 10

4 8 121 2 16 6 18 10 14

Other Pro ections

6 1214 14 16 2 10 18 8

6 1212 14 16 4 10 18 8

4 8 141 2 12 16 6 18 10

6 101 2 18 14 4 16 8 12

6 121 2 18 16 8 4 10 14

4 8 1212 16 14 6 18 10 4 10 8 141 2 16 6 18 12

6 121 4 18 16 2 10 8 14
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6 121 4 16 18 2 10 8 14

6 1212 16 18 4 10 8 14

6 1012 16 12 4 18 8 14

6 1212 10 16 14 4 18 8

6 1214 16 14 2 10 18 8



4 8 14110 2 16 6 18 12

4 8 1412 16 18 6 12 10

4 8 1412 18 16 6 12 10

4 10 12 141 2 18 16 6 8

4 10 8 14116 2 18 6 12

6 121 2 18 16 4 10 8 14

4 8 141 2 18 16 6 10 12

6 1212 16 18 14 4 10 8

6 1212 18 16 14 4 8 10

4 10 8 141 2 18 16 6 12
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6 1212 16 14 4 10 18 8

4 10 8 1412 16 18 6 12

6 1212 18 14 16 4 10 8

6 1212 18 16 14 4 10 8

4 10 12 1612 18 6 8 14 4 10 12 1618 218 614



4 10 18 16112 2 8 6 14

4 10 12 1412 18 16 8 6
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4 10 12 16114 2 6 18 8 8 10 1412 18 4 16 6 12

8 10 141 2 18 16 4 12 6

4 10 16 14112 2 8 18 6 4 10 18 1412 8 16 6 12

4 10 16 1212 8 18 6 14

8 14 1016 18 16 4 12 2

4 10 12 1612 8 18 6 14

8 14 1016 18 4 16 2 12

4 10 12 1612 18 8 6 14

4 10 14 1812 8 16 6 12 8 12 1614 14 2 10 18 6



4 10 16 18112 2 8 6 14

4 10 14 1612 18 8 6 12

4 10 14 16112 2 18 8 6

rr

4 10 14 16112 2 18 6 8

8 10 1416 18 16 4 12 2

4 10 12 16114 2 8 18 6

4 10 12 1616 2 18 8 14

8 10 141 2 18 16 6 12 4

8 10 1414 2 18 16 612

8 10 1412 6 18 16 4 12

8 10 141 6 2 18 16 4 12
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4 10 14 16112 2 8 18 6

8 10 1412 18 6 16 4 12



4 10 16 1412 18 8 6 12

4 10 14 18116 2 6 12 8

4 10 16 1212 14 8 18 6

6 8110 14 16 18 2 4 12

6 8112 14 16 18 2 4 10

6 8112 16 14 18 10 2 4

6 101 2 12 16 4 18 8 14

8 14 1012 6 18 16 4 12

8 12 1612 18 4 10 6 14

8 16 1216 18 4 10 2 14

6 8112 16 14 18 10 4 2

6 101 2 14 18 4 16 8 12
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6 8116 14 12 18 2 4 10

6 121 2 10 16 18 4 8 14



6 101 2 14 4 16 8 18 12

6 1014 14 2 16 8 18 12

6 1012 14 4 16 18 8 12

6 1014 14 2 16 18 8 12

6 101 2 14 4 18 16 8 12

6 1014 14 2 18 16 8 12

6 10112 14 16 18 2 8 4

6 121 2 10 16 4 18 8 14

6 1214 10 16 2 18 8 14
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6 10112 16 14 18 2 8 4

6 1212 14 16 4 18 8 10

6 1214 14 16 2 18 8 10

6 1212 14 16 4 18 10 8

6 1214 14 16 2 18 10 8

6 121 2 14 16 18 4 8 10

6 1212 14 16 18 4 10 8 6 1212 14 18 16 4 8 10

77
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6 12110 14 2 18 16 8 4

6 12110 14 4 18 16 8 2

8 10 1216 14 16 18 2 4

8 12 1012 14 16 18 6 4

8 10 12114 2 16 18 4 6

8 12 10114 6 16 18 4 2

8 10 12114 2 16 18 6 4



8 10 14112 16 18 6 4 2

8 10 141 2 6 16 4 18 12

8 10 14116 2 6 18 4 12

8 10 1412 6 16 18 4 12

8 10 1414 2 16 18 6 12

8 10 1416 2 16 4 18 12

8 14 101 2 6 16 4 18 12

8 10 14116 4 2 18 6 12

8 10 1414 2 16 6 18 12

79



8 10 1416 2 16 18 4 12

8 14 1012 6 16 18 4 12

8 10 1416 16 4 18 2 12

8 12 1612 14 6 18 10 4

8 12 1612 14 4 18 6 10

8 16 1216 14 4 18 2 10

10 12 14 1612 8 4 18 6 10 12 14 161 2 18 6 4 8
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10 12 18 1414 2 16 8 6

10 12 14 1612 8 18 6 4

10 12 14 1612 18 4 6 8

10 16 14 1212 8 6 18 4

10 12 14 1612 18 8 6 4

10 12 14 1616 4 2 18 8

10 12 14 1614 2 18 6 8
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10 12 16 1414 2 8 18 6

10 12 16 141 2 8 18 4 6

10 12 16 1412 18 8 4 6 10 12 16 1412 18 6 8 4

10 12 16 1412 8 4 18 6 10 12 16 1418 4 2 18 6
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10 12 16 141 2 8 18 6 4

10 12 14 161 6 2 4 18 8

10 12 16 1412 18 8 6 4

10 12 16 141 8 2 18 6 4

10 12 18 1416 2 16 8 4

10 14 12 161 2 8 4 18 6

10 12 18 141 6 16 4 8 2
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10 14 12 161 2 6 18 8 4



Projections of Oriented Links with 9 Crossings and 3 Components

Oriented Stand. Se

4 8 1412 12 1616 18 10

4 8 1412 12 18116 6 10

4 8 1412 16 1816 12 10

4 8 1412 16 18110 6 12

4 8 14116 2 1816 10 12

Other Pro'ections

6 1014 16112 2 18 8 14

6 1012 1414 18 16 812

6 1212 10 16114 4 18 8

6 1014 1412 18 16 812

6 1214 16 18114 2 10 8

6 1214 14 1612 18 10 8

6 1212 14 1614 18 10 8
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6 1214 10 16114 2 18 8

6 1212 10 1614 18 814

6 1214 10 1612 18 8 14

6 1212 16 18114 4 10 8



4 8 1412 16 18112 6 10

4 8 1412 18 1616 12 10

4 8 14118 2 1616 10 12

6 8112 14 18116 2 4 10

6 8112 16 14110 18 2 4

6 101 2 141 4 16 8 18 12

6 101 2 14116 4 18 8 12

6 1214 14 1612 18 810

6 1214 18 16114 2 10 8

6 1212 14 1614 18 810

6 8112 14 18116 4 2 10

6 8112 16 14110 18 4 2
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6 1212 18 16114 4 10 8



6 1014 1412 16 8 18 12

6 1012 1414 16 18 8 12

6 1014 16114 2 18 8 12

6 1014 1412 16 18 812

6 1212 14 1614 10 18 8

6 1212 14 18116 4 10 8

6 1212 16 1814 10 8 14

6 121 2 14 161 8 4 18 10

6 1214 14 1618 2 18 10

86

6 1214 14 18116 2 10 8



6 1214 14 1612 10 18 8

6 1212 14 16110 4 18 8

6 1212 18 1614 10 8 14

6 1214 18 161 2 10 8 14

6 12114 18 218 16 10 4

6 12118 14 2116 8 4 10

6 1214 16 1812 10 814

6 121 2 14 18116 4 8 10

6 1214 14 18116 2 8 10

6 1212 16 1414 10 18 8

6 1214 16 1412 10 18 8

6 12114 18 2116 10 4 8

87

6 1214 14 16110 2 18 8



6 12118 14 2110 16 8 4

10 12114 1816 16 8 2 4

10 12114 181 6 16 8 4 2

10 14112 161 2 6 4 18 8

10 14112 161 2 18 6 4 8

10 14112 1612 6 18 4 8

88

10 14112 161 2 8 4 18 6 12 1618 14 1812 6 4 10

10 14112 1614 6 2 18 8 12 1618 14 1814 6 2 10

10 14112 161 2 8 18 4 6



Projections of Oriented Links with 9 Crossings and 4 Components

Oriented Stand. S Other Pro ections

6 1012 1414 1618 18 12

6 101 2 14118 4116 8 12

6 101 2 14116 418 18 12

6 1014 1412 1618 18 12

89



Table of Invariants

Oriented Alternating Links with 2 Crossings and 2 Components

P-. F-, V-, C- Polynomial
-1)( * 1 -1)( * 1)

{ -1)( -1 -1* )(1 [0])( 11* )
{ 1/2)( -1 0 -1)
( -1)(01)

Oriented Alternating Links with 4 crossings and 2 Components

P.-, F.-, V-. C- Polynomial
( -1)( * 01 -1)( * 11)
( -1)(110* )( -10 [0])( -3 -21* )( 11 [ 0])( 110* )

1/2)( -11-10-1)
( -1)(02)

{-1)(1-10*)(1-30*)(-10*)
-1)(*011)([0]0-1)(*0-3-21)(101011)(*011)

( -11/2)( -11-10-1)
(-1)(0-2-1)

Oriented Altematinz Links with 5 crossings and 2 Components

P-, F-, V-, C- Polynomial
{ -1)(1* -1)( -12*-1)(1*)
{ -1)( 1 * 1)( [ -1])( -2* -4 -2)( [ -1] 01)( 1*32)( [1]1)
( -7/2)(1 -21 -21-1)
-1)(001)

Lk.#
1

W.

Lk.#
2

2

Lk.#
0

2

W.
4

4

W.
-1



Oriented Alternating Links with 6 crossings and 2 Components

Sequence P-. F-. V-. C- Polynomial Lk.# W.
4 8101212 6 { -1)(* 01-1)(* 021-1)(* 011)

{-1)(110*)(-10[0])(-10-1-20*)(-3-300[0])(10010*)
(2310[0])(1100*)

{ 3/2) ( -11-32-22-1)
{ -1) (022)

2 6

4 8 12110 2 6 I -1)(1-10* )( -21* -1)(1* ) -2 -2
-1)( * 011)([0] 0 -1)( -1 * 0 -1 -2)([ -3] -3)(1* 00 1)([2]31)( * 11)

{ -9/2) ( -11-32-22-1)
{ -1 ) (0-21)

8 10 121 2 6 4 { -1)(* 001-1)(* 022-1)(* 011) 3 6
{-1)(-1-100*)(100[0])(-233-20*)(-1-2-10[0])(1-2-210*)(1210[0])

(1100 *)
{ 3/2) ( -11-22-21 -1)
{ -1) (032)

8 10 1216 2 4 { -1)(* 001-1)(* 006-3)(* 005-1)(* 001) 3 6
{-1)(-1-100*)(100[0])(1-14600*)(1-2-300[0])

(1-4-500*)(1100[0])(1100*)
{ 5/2) ( -10-11-11-1)
{ -1) (0341)

8 12 1012 6 4 -1)( * 001 -1)( * 111) 3 6
-1)( -1-100* )( 100[0])( 64 -11*)( -3 -21[ 0])( -5 -410*)(110[ 0])(1100* )

{ 1/2) ( -11-11-10-1)
{ -1) (03)



Sequence

6 8110 1212 4

6 1012 1214 8

6 1012 1218 4

Oriented Alternating Links with 6 crossings and 3 Components

P-. F-. V-, C- Polynomial Lk.# W.

-2)( 1[ -2] 1)([ 0])( -1[ 2] -1)([ 1])
-2)( 1[ 2] 1)( -2 * -2)([ 1])0( -4[ -8] -4)( 1 * -1 1)( 3[ 6] 3)( 2 * 2)
-6/2) ( -1 3 -2 4 -2 3 -1)

I -2) ( 000 1)

-2)([ 0] 0 1 -2 1)([ 0] 03 -3)([ 0] 1 2)
(-2)(-1-2-10[0])(2200*)(3530[0])(-3-300*)(-3-9-51[0])(-1120*)

(1430[0])(1100*)
( 2/2) ( 1 -23 -1 3 -1 1)

-2) ( 003)

( -2)( 1 -2[ 1])( 1 -3[ 2])( 1 -3[ 1])( -1[ 0])
-2}([ -1] -2 -1)( * 2 2)([ 3] 5 3)( * -3 -3)([ -3] -9 -5 1)( * -1 1 2)([ 1] 4 3)( * 1 1)

{ -10/2) ( 1 -2 3 -1 3 -1 1)
( -2)(00-1-1)

00
0

1 1

1

0

6

-2



Sequence

4 8 1212 14 610

6 8110 12 14 2 4

6 1012 12 414 8

6 1014 12 214 8

6 1012 12 14 4 8

Oriented Alternating Links with 7 crossings and 2 Components

P-. F-. V-. C- Polynomial Lk.#

-1)(1* -1)(1* -1-11)(* -1-1)
-1)(1* 1)([ -1])(22-2* -2)( -2 0 2[ 0])( -5 -5 1 * 1)( 1-1 -1[ 1])( 2 3 1 * )(11[0])
-3/2) ( -11-33-32-21)
-1) (00-2)

( -1)(1* -1)(1-2* 1)(1-3* 1)( -1* )
( - 1 ) ( 1 * 1)([ -1])( 2 * 42)( -1[ -2] -3 -2)( -6* -12-51 (1[ -1]13)(3* 74)([ 2] 2)
1-9/2) ( -13-44-53-31)

-1) (00 -1 -1)

(-1)(* 002-31)(* 014-3)(* 012)
(-1)(-1-3-200*)(13300[0])(285-10*)(-2-7-6-10[0])

(-4-10-510*)(12320[0])(25300*)(1100[0])
( 3/2) ( -12-43-43-21)
( -1) ( 023)

-1)( -1* 3 -2)( -2* 6 -2)( -1* 4 -1)( * 1)
-1)( -2-3* -1)(3[3]1)( -158* 2)( -1 -6[ -7] -2)(1-5-10* -4)(23[2] 1)(35* 2

(1[1])
-5/2) (1- 23- 43 -42 -1)

( -1) (0221)

(-1)(-13-2*)(-25-3*)(-14-1*)(10*)
( -1)( * -2-3 -1)([0]331)( * 594)([ 0] -2 -6 -31)( * -4-12-62)

([0] -213)( * 143)([0] 11)
-13/2) (1-23-32-31-1)

( -1) (0021)



I 

I I 

I 

(z o )(I- I 

(I- z- z E- z z- tz/L- 
}I )(Z * £ )(Z )(Z £- *6- it )(I I- [HI *9 t )([0 * 1- } 

* I XI- z * i T- )(T- T *)(T- } tI 9 Z 10I ZI 8 

(I Z I- ) } 

(I- I Z- Z E- Z Z- I ) 
(I 10 D 

E I *Xz [01)(Z £- * )(I I- I- T [01)(1- T 9 t * )(I LO D& I- } 

(*OI)( *I-VI-)( *E-tZ-)(*I-I)}1-} 9 v VI Z IZI OT 8 

(IZTO)(I-} 
(1- Z £- Et- Z Z- ) (Vs- ) 

Xz * I z Co lI z Xs- *8- Z- I )(Z- [Z- 1Z- Z- )(£ *9 Z T- )(i0 iT * T- I- )( } 

* * I- )(Z- *Z- )(I- *)iI- 9 BIZ 17IZI0i8 

(Z-I )(I-} 
Z- Z £ £- Z I- ) (ZS- } 

([0 ]I I ) 
( *Z17Z )([Z }I 0 I )(I * Z- 8- g- )([Z- }Z- Z- Z- )(I- *Z 9 £ )([0 }I )( * I- I- HT- } 

(I- I- *)(1 I- 0 * I )(I- I *)(I- t' t'T 9 Z IZT ()I 8 



Sequence

6 101 2 121 4 14 8

6 101 4 121 2 14 8

Oriented Alternating Links with 7 crossings and 3 Components

P-, F-, V-, C- Polynomial

-2}([ 1] -2 1)([ 2] -3 1)( -1[ 2] -2)([ 1])
( -2)( -1 -2[ -1])( 2 2 * )( 3 5[ 3])( -3 -3 * )( -3 -5[ -5] -3)( -4 * -3 1)

( 1 1[ 3] 3)( 1 4 * 3)( 1[ 1])
I -6/2) ( -1 3 -3 4 -3 4 -1 1)
{ -2} (00-11)

( -2)([ 0] 0 1 -2 1)([ 0] 0 3 -3)([ 0] 0 3 1 -1)([ 0] 0 1 1)
(-2)(-1-2-10[0])(2200*)(3530[0])(-3-300*)(-3-5-5-30[0])

(1-3-4000*)(33110[0])(34100*)(1100[0])
{4/2) ( 1 -1 4 -3 4 -3 3 -1)

-2} ( 0 3 2)

W.



Sequence

Oriented Alternating Links with 8 crossings and 2 Components

P-, F-, V-, C- Polynomial

4 8121214 61610 {-1)(-13-2*)(-14-4* 1)(2-3* 1)(-1*)
-1)(* -2-3 -1)([0]331)(2* 772)( -1[ -1] -2-4-2)

( -5* -11 -9 -3)( 1[ -3] -501)(3* 542)([3]52)( * 11)
( -11/2) (1-24 -65-64-31)
{ -1) (000-1)

4 812121416 610 -1)(* 002-31)(* 005-2-1)(* 0042-1)(* 0011)
{-1)(-1-3-200*)(13300[0])(126500*)(-2-1-2-300[0])

(1-4-6-5-400*)(3-2-6-100[0])(430100*)(34100[0])(11000*)
5/2) ( -11-44-55 -43 -1)

(-1)(0252)

4 8 14112 216 610 -1)(2-3* 1)(1-5* 3-1)( -2* 3-1)(* 1)
( -1)( -1* -3-2)(1[3] 3)(12* 65)( -2 -1[ -2] -3)

(1-4-6* -5 -4)(3 -2[ -6] -1)(43* 01)( 3[4] 1)( 1* 1)
( -7/2) ( -11-44-55 -43-1)

-1) (0-201)

4 812121614 610 ( -1)(* 01-1)(* 0201-1)(* 0111)
( -1)(110*)(-10[0])(10-1-2-20*)(55000[0])(-303110*)

(-7-8010[0])(1-2-2100*)(23100[0])(11000*)
3/2) ( -11-33-43 -22-1)

( -1) (023)

4 8 14110 216 612 -1)(1-10*)(-20* 1-1)(1* 1)
-1)( * 011)([0]0 - 1)(10* -1 -2-2)(5[5])( -30* 311)

( -7[ -8] 01)( 1-2* -21)(2[3]1)(1* 1)
( -9/2) ( -11-33-43-22-1)

-1) (0-22)

Lk.#



0 I- 

(I I- ) (I- } 

(I- £ t 7 - S 9- t 7 1 7 - Z I- ) (Z/L- 
(I * I )(Z [S 1£ XI Z * t7)(g- [6- ]I- £ ) 

(£- 0I- *ZI- tr. I )(Z [Z ]Z- Z- X£ L * 9 Z XI [0 DO- 1- * 
} 

(I * )(I- £ *Z- XI- £ *t- X * 1- I )(I- } 

g- 17 17- ) ) 

I0*)(Z17Z[0])(EZ0I*)(Z08-9-[0])(I *) 
(I-Z-E17[01)(I-1717I Z *)(i00[0])(I- On- I 

(*OI)( *I-£Z-)( *Z-Zt7-IX*00 

(17£0)(I-} 
(I- £- S-1717- Z I- ) (ZS } 

(*000 II)([0100Z17ZX*00 £ZOIX[O10 Z 08- 9-) 
(*01.17-9-17-£-)([0]0 I-Z-£17X*0.1-1717IZX[O]OOIX*00 

9 91 Z 8 WI ZI OI 17 

9 8 Z ZII9I 171 OT 17 

8 £ (IZIO *)(I-O£I 0 *XI-I 00 *)(I-} 9 8 9I Z WI ZI OI 17 

(ZE-0)(I-} 
(I- Z E-1717- £ E- I I-) } 

(I I 0 *)(I £ Z [0 Z- I- Z *)(Z- [Z 1)(t7- 0 Z I- * I ) 
(I-17£ [Z- D(.17 I Z- O *I- XI 0 0 [0 i)(I- I- 0 0 *)(I- 

- - (*I I)(I- *00Z-X*00 9 8 Z 910I17 

(Z9 £0)(1-} 
(I- Z £-1717- £ E- I- ) (ZS } 

(*000 I I)([0]00 I£ZX*00 IZ-I-Z)([0100Z-L-£-Z) 
(*0017-0ZI-I)([O1 OOT-17£Z-X*0017IZ- 0 I-X[O]OOIX*00 

8 £ (II 00 *) (I-£1700 *)(Z-I1700 *)(I-I 00 *)(I- } 8 9 91 Z WI ZI OI 17 

(1 ) (I- } 

(I £-17 9- 9 9- V £- ) (ZS- } 

( 
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410161412 8 612

6 8110 14 12 16 2 4

610121214 416 8

6 1012 14 416 812

6 101414 216 812

-1)(* 1 -1)( * 2-33 -1)( * 1 -32)( * 0-1)
( -1)( -1-1* )(1[0])( 2673* )( -2-222[0])(1-4-12-10-3* )

(3-1-9-5[0])(4521*)(352[0])(110*)
( -1/2) ( -12-44 -65 -43-1)
( -1) (010-1)

-1)(1* -1)( * 1 -2 1)( -1 * 2 -2)( * 1)
-1)(1* 1)([ -1])(242* )( -125[2])( -4 -10-11* -5)

(1 -5 -14[ -7] 1)(345* 4)(49[5])(22* )
-5/2) (1- 45- 77- 75 -31)
-1) (00-11)

( -1)(1-2* 2-1)(1 -4* 4-1)(1-3* 2)( -1* )
-1)( -1-2* -2 -1)([ -1])(310* 103)(3[5] 1-1)

( -3-13* -17 -61)( -5[ -12] -43)(13* 75)(2[6] 4)(1* 1)
{ -9/2) ( -13-55-65 -42-1)
I -1) (000-1)

( -1)( * 1-22-1)(1* 1 -33)( * -1-2)
-1)( -1-2-2-1* )( -10[0])(3893* -1)(263[ A])( -3-11-12-3* 1)

(-5-11-4[2])(1243*)(253[0])(110*)
( -3/2) ( -12-45 -54-42-1)
-1) (02-3)

( -1)(* 1-22-1)(* 2-34-1)(* 1-32)(* 0-1)
-1}( -1-2-2-1* )( -10[0])( -13983* )( -1362[0])(1-3-12-11-3

(2-4-11-5[0])(3421*)(352[0])(110*)
{ -1/2} (-12-44-55-42-1)
( -1) (020-1)

1

0

2

2

4

0

4
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07.17,01T-1 
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(Z * Z )(£ [8 ]g XI I- * t 9 )(8- [9I- ]g- ) 
(Z-S- * ZI- 8- I XS [HI- XI Z *9 XI [EX XI- * £- Z- )1 t- 

0 Z (I *)(I-£ * Z- XI- * £- I XZ- £ * I- )(I- } Z 8 91 17 OIIZI 9 

(SZO)II- 
(I- £ 17- 9 L- 9- £ I- ) [Zi£ } 

(*000ZZ)([0}0058£X*00917I-IX[0]0£S-9I-8-) 
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10 12 14 1618 2 4 6

1016141212 8 6 4

1-1)(* 0001-1)(* 00010-6)(* 00015-5)(* 0007-1)(* 0001)
1 -1)(11000*)(-1000[0])(1-11-7-10000*)(1-236000[0])

(1-31115000*)(1-4-5000[0])(1-6-7000*)(11000[0])(11000*
7/2) ( -10-11-11-11 -1)

( -1)(041061)

f -1)(* 0001-1)(* 1111)
1-1)(11000*)(-1000[0])(-10-71-11*)(63-21[0])(1511-310*)

( -5 -410[0])( -7-6100* )( 1100[ 0])( 11000* )
I 1/2)(-11-11-11-10-1)

-1) (04)

4 8



Sequence

6 8112 14 16110 2 4

6 8112 16 141210 4

61012141416 812

6 1012 14112 416 8

6121214161410 8

Oriented Alternating Links with 8 crossings and 3 Components

P-, F-, V-, C- Polynomial

( -2)(1 -2[ 1])( -1[ 1])( -2 4[ -2])( -14[ -1])(1[0])
( -2)([ -1] -2 -1)( * 2 2)([ 1] 1 1)( * -1 -1)([6] 102 -2)

( -2* -1-3 -3 1)([ -9] -17-53)(1* -304)([ 3] 74)( * 22)
( -12/2) ( -13-46-56-33-1)
( -2) (00021)

( -2)([ 1] -2 1)([ 1] -1)( -1[ 1] 1 -1)([ 1] 1)
-2)( -1 -2[ -1])( 2 2 * )(11[1])( -1 -1 * )( 6 10[ 2] -2)

( -2-1-3* -31)( -9 -17[ -5] 3)( 1 -30* 4)(37[4])(22* )
( -6/2) ( -13-46-56-33-1)
( -2) (0002)

Lk.#

( -2)([ 0] 01 -2 1)([ 0] 03 -3)([ 1] -1 3)([ 0] -1)
( -2)(-1-2-10[0])(2200*)(3530[0])(-3-300*)(-3-602[4])(2-3-5*)

(12-5-5[1])(1023*)(143[0])(110*)
( -2/2) (1-34-46-44-11)
( -2) (003 -1)

( -2)(1 -2[1])(1 -3[ 2])( 1 -1 -2[1])( -1 -1[0])
{ -2)([ -1] -2 -1)( * 2 2)([ 3] 5 3)( * -3 -3)([ -3] -602-1)

( * 02-3 -5)([1] 2 -5 -51)( * 1023)([0] 143)( * 011)
( -14/2) (1-34-46-44-11)
( -2) (00-1-2)

( -2)([ 0] 001 -2 1)([ 0] 005 -6 1)([ 0] 026 -3)([ 0] 0 1 2)
I -2)(12100[0])(-2-2000*)(1-3-8-500[0])(66000*)(-211510-20[0])

(-3-6-6-300*)(1-2-12-810[0])(222200*)(25300[0])(11000*
4/2) (1-24-46-44-21)

( -2) (0053)

00
-1

00
1

1 1

1

1 -1

-1

1 1

2
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(Z- OI CI I [Z- [)(9 9 0 * )(S- 8- E- [I [)(Z- Z- 0 * XI Z I [0 D(Z- 
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0 1 17 8191 Z In 9 



6 12116 14 2110 8 4 ( -2)([ 0] 1 -2 1)([ 0] 2 -2)([ 1] 0 -1 1)([ 0] -1 -1)
-2)( 1 2 1[ 0])( -2 -2 0 * )( -2 -3 -2[ 0])( 2 2 0 * )( -1 5 12 5[ -1])

(-4-4-4-4*)(1-7-16-7[1])(3 1 1 3*)(484[0])(220*)
-2/2) ( 1 -3 5 -5 8 -5 5 -3 1)
-2) ( 0 1 -2)

1 1

0

4

10 14112 161 2 6 4 8 -2)( 1[ -2] 1)( 1 0[ -2] 0 1)( -2[ 0] -2)([ 1]) 0 2 0
( -2)( 1[ 2] 1)( -2 * -2)( 1 -4[ -9] -4 1)( 8 * 8)( -2 5[ 14] 5 -2)

( -2 -12 * -12 -2)( 1 -5[ -12] -5 1)( 2 5 * 5 2)( 3[ 6] 3)( 1 * 1) -2
( -8/2) ( 1 -2 5 -5 6 -5 5 -21)

-2) ( 0 0 -4 1)

10 14112 161 4 8 2 6 -2)( 1[ -2] 1)( 4[ -8] 4)( 3[ -10] 3)( 1[ -5] 1)([ -1]) 0 2
-2)( 1[ 2] 1)( -2 * -2)( 1 -41 -9] -4 1)( 8 * 8)( -2 5[ 14] 5 -2)

( -2 -12 * -12 -2)( 1 -5[ -12] -5 1)( 2 5 * 5 2)( 3[ 6] 3)( 1 * 1) -2
( -8/2) ( 1 -2 5 -5 6 -5 5 -2 1)
(-2)(00-4-3-1)

10 14112 161 2 8 4 6 -2)([ 0] 0 0 1 -2 1)([ 0] 0 1 3 -5 1)([ 0] 0 2 5 -3)([ 0] 0 1 2) 0 2 8
-2)(121 00[0])(-2-2000*)(1-4-9-4 10[0])(8 8000*)(-25 145-20[0])

(-2-12-12-200*)(1-5-12-5 10[0])(25 5 200*)(3 63 00[0])
( 1 1 0 0 0 * ) 2

( 4/2) ( 1 -2 5 -5 6 -5 5 -2 1)
( -2) ( 0 0 4 3)



Sequence

610121414161812

61012141416112 8

6 1012 141 16 4112 8

61014141216112 8

Oriented Alternating Links with 8 crossings and 4 Components

P-, F-, V-, C- Polynomial Lk.#

-3)(* 001-33-1)(* 004-84)(* 006-6)(* 013)
( -3)(133100* )( -3 -6-300[0])( -4-9-9-400* )(815800[0])

(61414600* )( -6-12-600[0])( -4 -11-17-910* )( -5 -23 Of 01)
(127600*)(15400[0])(11000*)

3/2) ( -13-64-74 -51-1)
( -3) (0004)

-3)(1-3* 3-1)(2-6* 6-2)(1 -5* 5 -1)(1 -3* 2)( -1* )
-3)(13* 3 1)( -3[ -6] -3)( -4-9* -9 -4)( 8[ 15] 8)( 6 14 * 14 6)( -6[ -12] -6)

( 4 -11 * -17 -91)([ -5] -23)(12* 76)( 1[5] 4)(1* 1)
{ -9/2} ( -13-64-74 -51-1)
1-3)(0000-1)

-3)(1-3* 3-1)(2-6* 6-2)(1-5* 5-1)(1-3* 2)( -1* )
-3)(13* 3 1)( -3[ -6] -3)( -4-9* -9 -4)( 8[ 15] 8)( 6 14 * 14 6)( -6[ -12] -6)

( -4 -11* -17 -91)([ -5] -23)(12* 76)(1[5] 4)(1* 1)
-9/2) ( -13-64-74 -51-1)

1-3)(0000-1)

-3)(* 001-33-1)(* 004-84)(* 006-6)(* 0041-1)(* 0011)
-3)(133100*)(-3-6-300[0])(-4-9-9-400*)(815800[0])

(61414600*)( -6-12-600[0])(1-9-17 -11-400*)(3-2-5000[ 0])
(672100*)(45100[0])(11000*)

15/2) ( -11-54-74 -63-1)
( -3) (00042)

1 1 0

01
0

1 1 0

0 -1
0

1 -1 0

0 -1
0

1 1 0

01
0



Sequence

4 812121416 6 18 10

4 8 14112 216 6 18 10

4 8121216 6 18 10 14

4 812121614 6 18 10

4 8 14110 216 6 18 12

Oriented Alternating Links with 9 crossings and 2 Components

P-. F-, V-, C- Polynomial

-1)(* 1-22-1)(* 2-22)(* 1- 2 -11)(* 0-1-1)
(-1)(-1-2-2-1*)(-10[0])(4873*)(2772[0])(-4-7-7-7-3*)

(1-8-17-12-4[0])(40-501*)(6952[0])(4620*)(110[0])
{ -1/2) ( -12-57 -99-86-41)

-1) (02-1-2)

{-1)(1-22-1*)(-34-3*)(3-2* 1)(-1*)
(-1)(* -1-2-2-1)([0]0-1)(* 4873)([2]772)(-4*-7-7-7-3)

(1[ -8] -17 -12-4)(4* 0 -501)([ 6] 952)( * 462)([0] 11)
( -13/2) ( -12-57-99-86-41)
(-1)(0-22-1)

( -1)(1-2* 2-1)(1-3* 3 -21)( -2* 2-2)( * 1)
-1)( -1 -2* -2 -1)([ -1])( 258* 83)( -113[3] 2)( -4-7-8* -8 -3)(1 -4 -10[ -9] -4)

(31-3* 01)(46[4)2)(35* 2)(1[1])
{ -7/2) ( -12-57 -88-85-31)
{ -1) (00-21)

( -1)( -1* 3 -2)( -2* 50- 1)( -1* 32-1)(* 11)
-1)( -2-3* -1)(3[3] 1)(1047* 2)(35 -1[ -5] -2)( -200-5* -3)( -7 -11-4[1] 1)

(1-5-71* 2)(343[2])(352* )(11[0])
{ -5/2) (1-24 -77-86-53-1)
f -1) (0232)

{-1)(-13-200*)(3-51-1*)(-32-1*)(10*)
{-1)(* 00-2-3-1)([0] 00331)(* 10472)([0]35-1-5-2)(* -200-5-3)

([0] -7 -11 -411)( * 1-5 -712)([0]3432)( * 0352)([0] 011)
( -17/2) (1-24 -77-86-53-1)
(-1)(0-2-21)
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6 1014 14 218 16 8 12 -1)( -1 2 * 0 -1)( -2 3 * 3 -2)( -1 3 * 3 -1)( 1* 1)
( -1)( -1 0 * 2 1)( 1[ -3] -5 -2)( -1 3 1 * -5 -2)( -1 -1[ 10] 15 5)( 1 -3 2 * 12 6)

( 2 -2[ -13] -13 -4)( 3 -5 * -15 -7)( 3[ 3] 1 1)( 3 * 5 2)([ 1] 1)
-9/21 ( 1 -2 4 -5 5 -7 5 -4 2 -1)

( -1) ( 0 2 4 2)

6 10112 14 16 18 2 8 4 -1)( 1 * -1)( 2 * -4 2)( 3 * -8 3)( 1 * -5 1)( * -1)
( -1)( 1 * 1)([ -1])( 4 -8 * -4)( -1 1 3[ 3] 2)( -4 8 24 * 10 -2)

( 1 -5 -3[ -4] -7)( 3 -7 -22 * -11 1)( 4 0[ -1] 3)( 4 8 * 4)( 2[ 2])
{ -7/2) ( -1 3 -5 6 -9 8 -7 5 -3 1)

-1) (00 -2 -3 -1)

6 10112 16 14 18 2 8 4 ( -1)( 1 -2 * 2 -1)( 1 -2* 0 1)( 1 -2* -2 1)( -1* -1)
-1)( -1 -2 * -2 -1)([ -1])( -1 2 * 6 3)( 2 4[ 6] 4)( 11 13 * -5 -6 1)

( -3 -4[ -14] -10 3)( -11 -22 * -5 6)( 1 -3[ 3] 7)( 3 8 * 5)( 2[ 2])
1 -9/2) ( -1 3 -6 7 -8 8 -7 4 -3 1)
(-1)(00-2-2)

6 1212 14 16 4 18 8 10 -1)(* 0003 -52)(* 0019 -91)(* 0038 -3)(* 0012)
-1)( 253000*)(10 -5 -5000[ 0])(-5 -16 -10100*)(-2 -21112100[0])

(-352615-300*)(1 -1 -6-9-500[0])(2-3 -17 -11100*)(211200[0])
(253000*)(11000[0])

{ 5/2) ( -1 2 -4 4 -7 6 -5 4 -2 1)
f -1) ( 0 2 8 3)

6 1214 14 16 2 18 8 10 -1}( -2 5 * -3)( -5 12 * -5)( -4 13 * -4)( -1 6 * -1)( 1 * )
( -1 )( 3 * 5 2)([ -5] -5 0 1)( 1 -10 * -16 -5)( 1[ 12] 11 -2 -2)( -3 15 * 26 5 -3)

( -5[ -9] -6 -1 1)( 1 -11 * -17 -3 2)( 2[ 1] 1 2)( 3 * 5 2)([ 1] 1)
( -11/2) ( 1 -2 4 -5 6 -7 4 -4 2 -1)
( -1) ( 0 2 5 4 1)



6 1212 14 16 4 18 10 8 -1)(* 0010-21)(* 0041 -3)(* 0132)
( -1)(120 -100*)(-2 -5 -3100[0])(-2-60400*)(51713100[0])

(712-3 -710*)(-4 -15 -21 -730[0])(-7 -16 -3600*)(127600[0])
(264000*)(11000[0])

( 3/2) ( -1 3 -6 6 -8 7 -6 4 -2 1)
( -1) ( 0 2 6)

6 1214 14 16 2 18 10 8 ( -1 )( -1 2 * 0 -1)( -2 4 * 1 -1)( -1 3 * 2 -1)( 1 * 1)
-1)( -1 0 * 2 1)( 1[ -3] -5 -2)( 4 0 * -6 -2)( 1[ 13] 17 5)( 1 -7 -3 * 12 7)

( 3 -7[ -21] -15 -4)( 6 -3 * -16 -7)( 6[ 7] 2 1)( 4 * 6 2)([ 1] 1)
-9/2) ( 1 - 24 -67 -8 6 -63 -1)

( -1) ( 0 2 3 2)

6 1212 14 16 18 4 8 10 (-1)(-25 -30*)(-411 -70*)(-412-50*)(-16 -10*)(100*)
(-1)(* 0352)([0] 0 -5 -501)(* 0- 10- 17- 7)([0]08120 -31)(* 0123012-42)

([ 0] 0 1 -8 -6 3)( * 0 -6 -20 -11 3)([ 0] 0 -4 -1 3)( * 0 14 3)([ 0] 01 1)
( -19/2) ( 1 -2 3 -3 4 -4 2 -3 1 -1)

-1) ( 0 0 3 4 1)

6 1212 14 16 18 4 10 8 -1)(-120-1*)(-240 -2*)(-132-1*)(110*)
{ -1 )( * -10 21)([ 0] 1 -3 -5 -2)( * 3 0 -7 -4)([ 0] 0 7 15 6 -2)( * -3 -3 13 10 -3)

([ 0] -4 -8 -11 -6 1)( * 1 -2 -12 -7 2)([ 0] 2 2 3 3)( * 0 2 5 3)([ 0] 0 1 1)
-17/2) ( 1 -2 4 -6 7 -7 5 -5 2 -1)

( -1) ( 0 0 3 2)

6 12110 14 2 18 16 8 4 -1)(* 01 -1)(* 03- 1)( -1* 1 2 -1)(* 11)
(-1)(110*)(-10[0])(1 -2 -30*)(376[2])(-24101* -3)

(-6 -13 -17[ -9] 1)( 1 -7 -18 -6 * 4)( 3 4 8[ 7])( 4 10 6 *)( 2 2[ 0])
-5/2) ( 1 -4 7 -9 10 -11 8 -6 3 -1)

I -1) ( 0 2 1 2)

21 9

-1

-5

21 3
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10 12114 1816 16 8 2 4 -2)( 1[ -2] 1)( 1[ -3] 3 -1)( 1[ -4] 4 -1)( 1[ -3] 2)([ -1]) 00 1

{ -2)( 1[ 2] 1)( -2 * -2)( -2 -6[ -5] -2)( 1 3 3 * 1)( 5 17[ 17] 5)( -2 -1 3 * 0 -2)
( -6 -22[ -28] -11 1)( 1 -5 -17 * -7 4)( 3 7[ 12] 8)( 4 11 * 7)( 2[ 2]) 0

-8/2) ( 1 -4 8 -9 12 -10 10 -6 3 -1)
-2) ( 0 0 0 -1)

10 12114 1816 16 8 4 2 ( -2)( 1[ -2] 1)( -1 3[ -3] 1)( -1 4[ -4] 1)( 2[ -3] 1)([ -1]) 00 -1
( -2)( 1[ 2] 1)( -2 * -2)( -2[ -5] -6 -2)( 1 * 3 3 1)( 5[ 17] 17 5)( -2 0 * 3 -1 -2)

( 1 -11[ -28] -22 -6)( 4 -7 * -17 -5 1)( 8[ 12] 7 3)( 7 * 11 4)([ 2] 2) 0
-10a) ( -1 3 -6 10 -10 12 -9 8 -4 1)

I -2)(0000 -1)

10 14112 161 2 6 4 18 8 ( -2)([ 0] 1 -2 1)([ 1] 1 -4 3 -1)([ 1] 0 -4 3)([ 0] -1 -2) 0 2 5
-2)( 1 2 1[ 0])( -2 -2 0 * )( -2 -9 -10 -3[ 1])( 1 3 7 5 0 * )( 5 20 20 3[ -2])

(-2-5 -2 -1 -2*)(-7 -22-19 -3[1])( 1 -3 -8 -22*)(3773[0])(3630*)
( 1 1 0[ 0]) 0

( -2/2) ( 1 -2 5 -7 9 -7 8 -5 3 -1)
-2) ( 0 0 -3)

10 14112 1612 18 6 4 8 -2)([ 0] 1 -2 1)([ -1] 6 -7 2)([ -2] 7 -6 1)([ -1] 4 -2)([ 0] 1) 0 0 3
( -2)( 1 2 1[ 0])( -2 -2 0 * )( 1 -3 -10 -9[ -2])( 5 7 3 * 1)( -2 3 20 20[ 5])

( -2 -1 -2 -5 * -2)( 1 -3 -19 -22[ -7])( 2 -2 -8 -3 * 1)( 3 7 7[ 3])( 3 6 3 * )
( 1 1[ 0]) 2

-4/2) ( -1 3 -5 8 -7 9 -7 5 -2 1)
-2} ( 0 0 1 1)

10 14112 161 2 6 18 4 8 -2)( 1[ -2] 1)( -2 6[ -6] 2)( -2 7[ -6] 1)( -1 4[ -2])( 1[ 0]) 00 -1
( -2)( 1[ 2] 1)( -2 * -2)( -4[ -11] -12 -4)( 2 * 6 6 2)( 6[ 26] 30 10)( 4 * 3 -7 -5 1)

( -4[ -22] -35 -14 3)( -6 * -16 -4 6)( 1[ 4] 11 8)( 2 * 7 5)([ 1] 1) 0
f -12/2) ( -1 3 -6 8 -7 9 -6 5 -2 1)

-2) ( 0 0 0 1 1)



Oriented Alternating Links with 9 crossings and 4 Components

Sequence P-, F-, V-, C- Polynomial Lk.# W.

6 1012 1414 1618 18 12 ( -3)(* 1 -33 -1)(* 3- 75 -1)(* 3- 63)( -1* 2-3)(* 1) 1 1 0 3
( -3 )( 1 3 3 1 * )( -3 -6 -3[ 0])( -4 -9 -9 -4 * )( 8 15 8[ 0])( 6 14 14 6 * )

( -6 -12 -6[ 0])( -4 -12 -8 4 * -4)( 2 -7[ -8] 1)( 1 3 4 -2 * 4)( 1 1 6[ 6])
(154*)(11[0]) 01

-5/2) ( 1 -46 -87 -105 -5 1 -1) -1
( -3) ( 000 -21)

6 1012 14118 4116 8 12 (-3)(1 -33-1 *)(1 -57 -3*)(-36 -3*)(-113-1*)(110*) 1 -1 0 -5
-3)( * 1 3 3 1)([ 0] -3 -6 -3)( * -4 -9 -9 -4)([ 0] 8 15 8)( * 6 14 14 6)

([ 0] -6 -12 -6)( * -4 -12 -8 -4 -4)([ 0] 0 2 -7 -8 1)( * 1 3 -4 -2 4)([ 0] 1 1 6 6)
(* 0154)([0]011) 01

-17/2) ( 1 -4 6 -8 7 -10 5 -5 1 -1) -1
( -3) ( 0 0 2 2)


