

Report No. 80-18

3450
September 1980

an evaluation of cone and seed insects in SElected seed production areas
 IN REGION 1
 (Progress Report II)

by

Jerald E. Dewey and Michael J. Jenkins 1/

Abstract

Insect damage was extensive to Douglas-fir, ponderosa pine, western white pine, and western larch cones at most seed production areas surveyed in 1979. From 70 to 100 percent of the cones from several collecting periods were injured. Moderate damage (40-70 percent of cones injured) occurred to Douglas-fir, ponderosa pine, western larch, and western white pine from a few areas. Light damage (less than 40 percent) occurred on western white pine cones from a few seed production areas, and to all lodgepole pine and western hemlock cones collected.

The primary insect species observed were western spruce budworm on Douglas-fir and western larch; midges on Douglas-fir, western larch, ponderosa pine, and lodgepole pine; cone worms on Douglas-fir,

western larch, and ponderosa pine; and the Douglas-fir cone moth on Douglas-fir.

INTRODUCTION

Seventy-two seed production areas (SPA's) and one seed orchard have been established or planned in the Northern Region (figure 1). With the establishment comes the need for continuous management, including protection of cones from insects. Currently few control alternatives have been developed for cone and seed insects of western conifers. Prior to development of control techniques the problem insects must be precisely identified, their biologies understood, and their impacts defined.

In 1978 we initiated a survey of the Northern Region's SPA's to identify on the basis of area and tree

1/ Respectively, Supervisory Entomologist, USDA-Forest Service, Forest Insect and Disease Management, Missoula, Montana; Graduate Student, Utah State University, Logan, Utah.
species those insects seriously affecting seed production. This survey, which included a damage assessment, was continued in 1979. It is our intent to continue this effort until we have surveyed each SPA during years of light, moderate, and heavy cone crops because insect complexes, population levels, and subsequent injury differ with host; area, and fluctuation of cone crop size.

This report summarizes our observations of 1979.

OBJECTIVES

The objectives of this evaluation are:

1. Determine the primary coneand seed-feeding insects on a host basis at each existing and presently planned seed production area in the Region.
2. Describe the type of injury and quantify the amount of injury caused by each insect species.
3. Where possible, correlate extent of cone and seed injury with such factors as habitat type, elevation, stand age, and stocking density.

This information is to be ultimately used to develop insect management systems for SPA's where intolerable losses occur.

METHODS

Methods used in 1979 were identical with those of 1978 (Dewey and Jenkins 1979) except for cone collection. In addition to 1978 collecting methods, small caliber
(.218 and $.22 / .250$) rifles were used for shooting off cone-bearing branches when other approaches were not feasible.

RESULTS

Sixty-seven SPA's were yisited in 1979 to assess their suitability for monitoring cone and seed insects.

For most tree species throughout the Region, 1979 was a poor cone year. of the 67 SPA's examined, only 29 had sufficient cones to allow collecting, and only 18 of those had enough cones for three or more collections throughout the summer. Survey results are presented in table 1.

DISCUSSION

Much variability is being observed in the extent and type of cone and seed injury caused by insects. Some tree species, such as Douglas-fir, are severely affected by a wide varlety of insects at most locations, whereas other tree species, such as lodgepole pine, are only slightly impacted by just a few insect species throughout the Region.

Cone crops are naturally very sporadic; many species produce good crops at intervals of 5 years or more. Cone collection for regeneration during years of light or moderate cone production should be discouraged, for seed quality will likely be inferior due to insect predation.

Seed production area management should include a fall or winter assessment of the potential cone crop for the following spring. This

can be done by counting first year cones on the pines and by dissecting buds of Douglas-fir, true firs, and spruce. If the potential exists for a large cone crop, plans should be made for protecting and harvesting it. Survey data should be reviewed to determine the impacts of different insects at that site during years of comparable cone crops. Control alternatives should be evaluated if records suggest insect control will be necessary. Appropriate Environmental Assessment Reports or Environmental Impact Statements are then prepared.

Equipment and manpower needs for cone harvesting must be assessed early enough to insure that large numbers of cones can be collected. Viability of stored seed is good for most tree species for 10 or more years. Hence, if sufficient cones are collected during bumper crop years, seed inventories can be used until the next bumper crop. This is the most economical time for cone collecting and the time when seed quality is highest.

REFERENCES CITED

Dewey, Jerald E., and Michael J. Jenkins, 1979. An evaluation of cone and seed insects in selected seed production areas in Region 1. (Progress Report). USDA-Forest Service, Forest
Insect and Disease Management, Report No. 79-16.
Primary pests

[^0]
Percent cones
damaged

	Tree	Cone crop size	Collection dates	Perc d		
SPA	species	19781979	1978 1979	1978	1979	Primary pests
Signal Cr.	ES	- N	- -	-	-	-
Eastman Cr.	ES	$\mathrm{N} \quad \mathrm{VL}$	- -	-	-	-
Ward Cr.		- L	- -	-	-	-
Gemmel Cr .		- L	- -	-	-	-
Little Boulder		- N	- -	-	-	
CLEARWATER NF						
Bertha Hill	WWP	? ?	$\begin{array}{ll} - & 8 / 8 \\ & 8 / 29 \end{array}$		$\begin{aligned} & 43 \\ & 37 \end{aligned}$	unknown
Browns Meadow	PP	- N	- -	-	-	-
Canal Gulch	WWP	- N	- -	-	-	-
Cold Springs	DF	VL VL	- -	-	-	-
Fan Saddle	PP	N VL	- -	-		

\dagger

Percent cones Tree Cone crop size Collection dates

$$
-
$$

6L6I 8L6I 6L6I 8L6I 6L6I 8L6I səṭวəds
-
-
\square
KOOTENAI NF
Bristow Cr.
 səuoว 孔uวつมəd
Tree Cone crop size Collection dates damaged

[^0]: L/ LPP = lodgepole pine; DF = Douglas-fir; PP = ponderosa pine; WL = western larch; ES = Engelmann spruce; WWP =
 western white pine; $\mathrm{L} / \mathrm{N}=$ none; $\mathrm{VL}=$ very light; $\mathrm{L}=$ light; $\mathrm{M}=$ moderate; $\mathrm{H}=$ heavy.

