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propose using two deep neural networks that work in parallelone for foreground object
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foreground and background indeed outperforms a baseline that tracks only the target
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Chapter 1: Introduction

This research report presents an approach to semi-supervised video object segmentation.

Our goal is to segment an object of interest from the background in a video, given the

ground-truth segmentation for the first frame. Figure 1.1 shows the target input/output

for our system. We focus on settings where object classes are not known, and cannot

be learned in advance. Our system is not designed for a set of predefined classes; it

is designed to segment all types of objects. We also assume that target objects are

prominently featured and occupy a large area in input frames.

Several challenges make highly accurate segmentation a difficult task that make ob-

ject segmentation an actively researched topic. One challenge is that many objects do

not move in a smooth manner, making it difficult to accurately capture drastic changes

in object appearance. Second, objects may be subject to some level of shape deforma-

tion, making object appearances more complex to capture with a model. Next, video

capture is not always reliable; viewpoint changes and other camera related issues make

it necessary for networks to be more versatile. Finally, dynamic backgrounds, can create

a variety of issues, with one of the most challenging being occlusion. The combina-

tion of these challenges make creating a state-of-the-art object segmentation network a

formidable task. Figure 1.2 exemplifies some of these issues: despite being less than a 4

second video, motion blur and heavy occlusion cause the segmentation system to fail.

Current methods suffer from large processing times. In this work, we focus on ef-

ficiency. Therefore, our design choices are limited to relatively simple, feed-forward

Figure 1.1: Example of the desired input and output for our system: Our system is fed
an input frame from a video, and produces a segmentation for that frame
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networks. Using more complex architectures e.g., RNNs, and temporal modeling of ob-

jects dynamics, would be too expensive. Therefore, we just use appearance modeling for

efficiency.

Deep learning methods have led to substantial improvements in solving many types

of problems in various types of fields. Particular to the field of computer vision, Convo-

lutional Neural Networks (CNNs) have allowed for researchers to create models that are

able to perform many tasks. CNNs have performed very well in object segmentation,

despite the numerous challenges associated with the task. Because of this, we use CNNs

to implement our approach.

Our key idea is to use a complimentary background segmentation network to im-

prove foreground separation. Explicit background segmentation is an unexplored in

tracking. Typically, prior work considers space-time context around the target, but only

for the purposes of foreground segmentation. By explicitly segmenting background, we

effectively track foreground, which can refine our segmentation result. Our goal is to

determine the viability of background segmentation, rather than outperforming SOTA

methods. To ensure our results can clearly show the advantages and disadvantages of

background segmentation, we forego any complex post-processing, which accounts for

why our results do not match SOTA performance. We hypothesize that our approach

that segments the background surrounding an object in addition to foreground segmen-

tation would lead to more robust foreground/background separation without the need

for additional training data.

1.1 Our Background Segmentation

Current deep networks for object segmentation require large training datasets. Typically

in training, we do not have access to large numbers of annotated frames. Therefore,

SOTA performs various types of data augmentation to allow networks to sufficiently

learn object deformations, including: rotation, scaling, and mirroring. We follow existing

work, and augment our training set using the same type of image transformations. Given

this augmented set of frames, we create complimentary background frames for training

a background segmentation network.
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(a) bmx-trees frame 45 (b) bmx-trees frame 52

(c) bmx-trees frame 45 segmentation result (d) bmx-trees frame 52 segmentation result

(e) bmx-trees frame 45 ground-truth (f) bmx-trees frame 52 segmentation result

Figure 1.2: Segmentation fails (d) only 5 frames after the first frame (c) due to motion
blur and occlusion on the bmx-trees sequence from DAVIS 2016 [10]
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1.2 Related Work

SOTA methods in video object segmentation focus on object appearance to achieve

highly accurate tracking. Most work uses a mask refinement method to create motion

modeling. For example, [1] learns to refine detected masks frame by frame by using the

mask prediction for the previous frame. Figure 1.2 shows an example of [1] segmenting

a frame using its previous prediction. [6] expands on this method by generating several

mask proposals for a given frame based on the previous frame, and merging these propos-

als. Mask propagation style methods also use optical flow to assist in motion modeling

[5, 6, 12]. However, optical flow is computationally expensive, and significantly hinders

speed.

Despite segmenting objects well, mask propagation methods that use optical flow

sacrifice run time for accuracy. Other SOTA methods like One-Shot Video Object Seg-

mentation (OSVOS)[3] do not make use of motion modeling. This is typically done in

order to reduce error propagation and run time. Despite not using mask propagation,

OSVOS and other similar methods still achieve competitive results. Figure 1.3 shows

the system components and dataflow for OSVOS. [8] adds to OSVOS by combining an

initial segmentation with semantic instance information and a conditional classifier. [12]

expands on OSVOS by updating its network online using training examples selected

based on the confidence of the network.

There has been a wide variety of exploration in object tracking methods, particularly

with adding post processing to extract further information from images. However, little

work has been done in determining whether using background segmentation can improve

foreground object segmentation in any situations.

Several approaches for object segmentation are able to achieve accurate results on

popular datasets [1, 12, 6, 8, 2]. It is not suitable to use these methods for our pur-

poses because they require large amounts of memory and time [9]. Instead, we focus on

efficiently segmenting objects, while maintaining a comparable level of accuracy.

1.3 Motivation

We would like to segment an object in a new video, where the only piece of information

available is the foreground/background segmentation in one frame. Previous work has
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Figure 1.3: Masktrack [1] dataflow diagram. The network takes an input frame t, and
a previous frame prediction t-1, and refines the mask for t-1 to produce a prediction for
frame t.

shown that appearance modeling is the most critical element in successfully segmenting

an object. Given a Fully Convolutional Neural Network (FCN)[3] trained for this task, we

would like to determine whether segmenting its surrounding background and combining

it with the foreground segmentation can create a more accurate model.

1.4 Approach

To create a segmentation system that is complimented by background segmentation, we

begin with a network that is able to segment foreground objects. Because we focus on

appearance based modeling, we use the publicly available OSVOS architecture. This

network is a VGG16 based architecture, consisting of convolution plus Rectified Linear

Unit (ReLU) layers grouped into five stages, separated by max pooling layers. OSVOS

makes two specific changes to this VGG architecture. First, the fully connected layers

are removed. Second, skip paths from the end of each stage before pooling are made with

appropriate upscaling. Feature maps from these paths are then concatenated to create

an output that contains varying levels of detail, which are then combined using a final

convolution layer to create a prediction. Architecturally, the foreground and background

segmentation networks are identical.

To create a new background segmentation network, we first construct complimentary

background data by inverting the segmentation mask in a box surrounding the object of
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Figure 1.4: Dataflow diagram for One Shot Video Object Segmentation (OSVOS) [3].
Our approach replaces the contour detection branch with our background segmentation
branch, and replaces the post processing steps with a shallow integration network.

interest in the original ground-truth data, shown in Figure 1.5. We then train a second

network using the same training procedure, but with our new background annotations.

Because we need to combine the outputs of these two networks and the OSVOS

architecture concatenates deep features in a final integration layer, we do not use the

output of these output layers. Instead we then create a separate network consisting

of a single convolution layer that takes the features of the foreground and background

networks, and the original image to create our final segmentation mask. We keep the

outputs of the foreground and background branches unmodified to allow the integration

network to learn how to combine the predictions into a sharper mask. An overview of

our system dataflow is shown in Figure 1.4.



7

Figure 1.5: Our Segmentation system dataflow diagram: frames are passed to our fore-
ground and background networks, and these outputs are then passed to the integration
network along with the original image to make a final mask

1.4.1 Implementation Details

To train our foreground network, we follow the procedure for training OSVOS [3], starting

with weights pretrained on ImageNet [4]. Using these weights, we train the network on

DAVIS so it can learn what objects are, and how to segment them. For this offline

training, we use stochastic gradient descent (SGD), with the learning rate set to 10−8,

a weight decay of 2 × 10−4, and a momentum of 0.9, for 240 epochs. We then perform

online training at testing time on the first frame of the sequence to adapt the network
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Figure 1.6: Example of how we construct a background ground truth mask from a given
foreground ground truth mask

to a specific object using the same settings, but for 10,000 epochs.

To train our background network, we first construct complimentary background data

by inverting the segmentation mask in a box surrounding the object of interest in the

original ground-truth data, shown in Figure 1.5. We then train a second network using

the same training procedure as the foreground network, but with our new background

annotations.

After performing online training for both these networks on a specific sequence,

we then finally perform the same online training using the adapted foreground and

background weights. While this means that online training time is doubled our results

show that this trade-off leads to a substantial increase in segmentation quality. This

quality increase primarily manifests in the elimination of artifacts, and sharper edges in

the final segmentation mask.

1.5 Evaluation

We run our model on DAVIS 2016 [10] and compare our results and compare them to

SOTA methods. We use DAVIS 2016 because it is a popular single object segmenta-

tion dataset. We do not use DAVIS 2017 or 2018 because they are for multiple object

tracking. We also compare our method to the performance of the base network with-

out background segmentation, as well as various training methods for our background

segmentation network. We train the network using various background sizes, creating

0 pixel, 2 pixel, and 4 pixel borders around the objects in each sequence, and compare
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how they perform.

In our evaluation, we measure mean intersect over union (mIoU), IoU over time, as

well as processing time time per frame.

Our model slightly larger than twice the size of the base network; the background

branch doubles the size, and the integration network adds one additional layer. We

justify this complexity increase because being able to run the foreground and back-

ground network in parallel leads to a relatively small increase in time per frame from 4.7

ms/frame to 8.9 ms/frame, and an increase of accuracy from an IoU of 60.70 to 70.60.
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Chapter 2: Results

2.1 Datasets

We run various versions of our model over the DAVIS 2016 to get a broad understanding

of how the background segmentation network performs for different types of objects and

video conditions. We do not use DAVIS 2017 or 2018 because they are designed for

multiple object tracking. DAVIS 2016 contains a total of 50 sequences, 3455 annotated

frames, all captured at 24 frames per second at a full HD 1080p resolution [10]. However,

like many other SOTA segmentation systems, we use the 480p versions of the images.

2.2 Metrics

To measure the performance of our network we use mean intersect over union (mIoU),

which measures the ratio of the overlap between pixels in the ground-truth and the

prediction. We perform semi-supervised training by only performing online training on

the first frame of sequences. We also plot the mIoU as a function of time to determine

how our model performs for appearances that vary from the first frame. We also mea-

sure the percentage of frames over various IoU levels to measure the consistency of our

segmentation.

2.3 Quantitative Results

Our best results were achieved by training our background network on foreground ground-

truth data offline, and performing online training on background ground-truth data.

Similar to the OSVOS training approach, this model learns what foreground objects

look like. However, in online training it treats a provided background as an object. An

example of how well this model performs is shown in Figure 2.1. Table 2.1 shows our

results on DAVIS 2016 across various versions of our model, including the base network

which does not use any background segmentation. Each column of Table 2.1 shows: the

base network without using background segmentation (BN), foreground offline training
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(a) ground-truth segmentation (b) Base Network segmentation

(c) FGO-2px segmentation

Figure 2.1: Example frame of our FGO model outperforming the base network (0.76 IoU
vs. 0.96 IoU) on the cows sequence from DAVIS [10]: Our model eliminates artifacts at
the edge of the frame and has a much sharper result than the base network.

for the background network with 2 pixel borders (FGO-2px), and background trained

normally with 0 pixel (0px), 2 pixel (2px), and 4 pixel (4px) borders.

Although the our network does not compete with the top results in terms of accuracy,

our best model achieves an mIoU of 70.61%, with a remarkably fast speed of 8.9 ms/frame

or 112 frames per second. This speed is a result of not having any complex pre-processing

or post-processing, common to many SOTA methods. Our method is able to achieve a

frame rate more than 10 times higher than top SOTA models, while sacrificing under 11%

IoU when compared to [9]. Additionally, with further fine tuning of training parameters,

our IoU could improve further.

Comparing the performance of our models, training the background network on fore-

ground data offline and treating the background like an object in online training is the

most effective way to use background features. However, based on our 0px, 2px, and 4px

models, it seems the size of the background segmentation area does not have a major
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Sequence BN FGO-2px 0px 2px 4px

Blackswan 76.6 93.88 93.58 92.32 93.18

Bmx-Trees 16.98 29.83 24.01 26.09 22.67

Breakdance 69.3 68.66 68.64 68.89 69.19

Camel 74.2 85.87 85.98 86.11 86.29

Car-Roundabout 77.44 86.2 84.79 82.44 84.99

Car-Shadow 80.94 88.7 88.34 88.45 88.36

Cows 80.29 94.73 93.94 94.12 94.83

Dance-Twirl 67.07 66.00 71.22 71.65 73.55

Dog 61.48 82.17 82.77 82.34 82.95

Drift-Chicane 53.26 64.5 64.38 64.66 67.09

Drift-Straight 64.7 63.62 64.45 63.08 65.38

Goat 71.73 80.79 77.28 77.38 81.72

Horsejump-High 58.87 74.3 72.57 74.33 60.51

Kite-Surf 22.02 36.46 31.21 31.58 29.38

Libby 52.76 68.25 74.47 75.3 74.53

Motocross-Jump 56.58 59.65 57.32 57.86 58.77

Paragliding-Launch 33.33 46.96 42.76 43.2 38.61

Parkour 55.22 75.41 71.29 71.12 72.26

Scooter-Black 65.76 65.07 60.93 59.41 62.93

Soapbox 75.56 81.08 77.21 77.69 77.93

Total 60.70 70.61 69.36 69.40 69.26

Table 2.1: Our IoU performance for various network configurations on DAVIS 2016 [10].

influence in foreground segmentation results.

Table 2.2 and Figure 2.2 demonstrate the consistency of our FGO-2px model across

the dataset. The model is able to keep an IoU over 70% with nearly two-thirds of the

frames. Several sequences have poor results due to large amounts of shape deformations

and occlusion. However, Section 2.4.1 discusses adding additional annotated frames to

improve accuracy in these cases.
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Figure 2.2: Percentage of frames (y axis) above various IoU levels (x axis) across DAVIS
[10] using our FGO-2px model: We are able to achieve over 60% IoU in over 75% of the
frames from the entire dataset.
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Sequence >50% >60% >70% >80% >90%

Blackswan 100 100 100 100 100

Bmx-Trees 17.72 16.46 0 0 0

Breakdance 87.95 81.93 53.01 18.07 2.41

Camel 100 100 100 74.16 34.83

Car-Roundabout 100 100 94.59 86.49 25.68

Car-Shadow 100 100 87.18 76.92 64.10

Cows 100 100 100 100 100

Dance-Twirl 95.51 64.04 34.83 9 0

Dog 100 98.31 84.75 66.10 16.95

Drift-Chicane 78.43 70.59 37.25 0 0

Drift-Straight 67.34 63.27 57.14 28.57 6.12

Goat 100 100 100 65.17 0

Horsejump-High 100 97.96 69.39 34.69 0

Kite-Surf 2.04 0 0 0 0

Libby 89.58 75 54.17 4.17 0

Motocross-Jump 74.36 48.72 25.64 15.38 0

Paragliding-Launch 34.18 0 0 0 0

Parkour 98.98 92.92 77.78 32.32 1.01

Scooter-Black 69.05 57.14 47.62 28.57 2.38

Soapbox 100 100 97.96 56.12 0

Total 82.67 75.44 64.09 42.04 17.99

Table 2.2: Percentage of frames above various IoU numbers on DAVIS 2016 [10] using
our FGO-2px model

Finally we compare our model to SOTA methods by examining their accuracy relative

to their processing time. Table 2.3 shows this comparison. Although our system does

not achieve the same degree of accuracy as top performing models, we make up this

difference by being able to process frames magnitudes faster. RGMP is the closest in

speed to our model, but still runs at under 10 frames-per-second (FPS), while ours runs

at over 100 FPS.
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Method mIoU Seconds per frame

OSVOS-S [8] 85.6 4.5

OSVOS [3] 79.8 9

OnAVOS [12] 86.1 13

RGMP [9] 81.5 0.13

PLM [11] 70.0 0.3

BVS [7] 60.0 0.37

Ours 70.61 0.0089

Table 2.3: Quantitative evaluation of our method against SOTA on DAVIS-2016. Our
model makes up for its accuracy by processing frames significantly faster than other
methods.

2.4 Qualitative Results

To analyze how background segmentation influences foreground segmentation, we see

cases where our model performs significantly better, as well as worse than the base

network. Additionally, we examine cases where the network performs poorly in general.

The addition of the background network significantly improves results in the majority

of cases. However, we see that in the breakdance, dance-twirl, drift-straight, and scooter-

black sequences from DAVIS, the base network performs just as well or better than our

models. Unlike many of the sequences where background tracking significantly improves

our results, these sequences have many frames where the object appearance vastly differs

from the initial frame that our model is trained on. In these cases, background segmen-

tation has an adverse effect on our accuracy. Figures 2.3 and 2.4 demonstrates this; our

model outperforms the base network until frame 17 on drift-straight, and does slightly

worse than the base network for the rest of the sequence.



16

Figure 2.3: Example of Base Network and FGO-2px network performance on drift-
straight sequence from DAVIS [10]: Our network outperforms the base network until
frame 17, and performs worse on every frame after.

(a) ground-truth of frame 17 (b) ground-truth of frame 32

(c) Prediction of frame 17 (d) Prediction of frame 32

Figure 2.4: ground-truth (a) and (b) and predictions by FGO-2px model (c) and (d) for
close to initial frame and far in drift-straight sequence from DAVIS [10].
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(a) Training on frame 0 (b) Training on frames 0 and 87

Figure 2.5: Segmentation of frame 84 of the camel sequence from DAVIS [10]. Adding
frame 87 to online training significantly improves segmentation towards the end of the
sequence

2.4.1 Upper Bound Performance

Because our network does not require previous frames as input, we can easily incorporate

more supervision in the form of additional annotated frames. As an example, we take

our results on the camel sequence, where our worst performance is on frame 87, and

perform online training using frames 0 and 87. We can continue to add more frames

until the accuracy meets a minimum standard. Table 2.3 and Figure 2.5 demonstrate

our results adding additional frames to online training. Using 2 annotated frames for the

camel sequence provides the best results. However, adding additional frames afterwards

significantly reduces the accuracy. This drop in accuracy occurs in the beginning of the

video. This is due to the selection of annotated frames: because frames are 0, 87, and 89

are chosen, the network becomes biased towards the poses towards the end of the video.

Annotated frames 1 2 3 4

IoU 85.87 92.69 85.47 86.36

Table 2.4: Accuracy with respect to frames used in online training on camel sequence.
Annotated frames are 0, 87, 89, and 29.

From these results, we can conclude that increasing accuracy by adding additional

annotations is dependent on the diversity an object’s appearance. For example: a basket-

ball is unlikely to benefit from additional annotated frames due to being a rigid uniform

object, while a breakdancer has many different poses that a network may need to learn
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from. In the case of the sequence we tested on, there were only two poses distinct enough

for the network to learn from: the camel facing the right at the beginning, and facing

away at the end.
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Chapter 3: Conclusion

Through this research, we explored how segmenting backgrounds in videos can help im-

prove foreground object segmentation. Based on a network pre-trained on generic data

from ImageNet [4], we propose an approach of segmenting the foreground and back-

ground of videos in parallel, and subsequently integrating these features to create a

refined segmentation mask. We observe that the introduction of background segmenta-

tion consistently improves foreground segmentation, primarily by eliminating artifacts

and sharpening the foreground mask. Our method also makes introducing additional

training data simple, allowing an operator to easily add annotated frames.

While we achieve a comparable accuracy with SOTA, we are able to gain a significant

performance increase over our baseline using background segmentation. Additionally, we

offer a lightweight method without any post-processing that can run at over 100 frames

per second, over ten times faster than top performing models.

The use of background segmentation in tracking is unexplored, so we selected a model

and kept our hyper-parameters fixed to analyze the differences between settings within

background segmentation. Further fine tuning of these values could increase our accu-

racy. We also selected a lightweight network architecture for this project, which may

be limiting the contribution background tracking could have. We believe background

segmentation could hold promising results in a more refined pipeline. Our method also

does not make use of advanced data augmentation methods, such as Lucid Data Dream-

ing [5], which can diversify online training and reduce the need for additional annotated

frames. Finally, our model lacks complex post-processing that could inflate our accuracy

further to match leading segmentation methods. Because our model is able to achieve

a 10% IoU increase over the baseline, we believe adding pre and post-processing steps

could improve our accuracy to reaching more competitive results.
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