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Optimizing the superlens: Manipulating geometry to enhance the resolution
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We analyze the performance of a planar lens based on realistic negative index material in a
generalized geometry. We demonstrate that the conventional superlens design �where the lens is
centered between the object and the image� is not optimal from the resolution point of view, develop
an analytical expression for the resolution limit of a generalized lens, use it to find the optimum lens
configuration, and calculate the maximum absorption practical nearfield superlenses may have. We
demonstrate that in contrast to the conventional superlens picture, planar imaging is typically
accompanied by excitation of surface waves at both interfaces of the lens. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2139620�
Research on the properties of negative refractive index
materials �NIMs�1 is among the most rapidly developing top-
ics in modern science that may potentially lead to a number
of unique applications including high-performance imaging
and lithographic systems, new types of radars, and transmis-
sion lines.2–7 One of the most promising applications of
NIMs involves the use of a planar slab of negative refraction
material as an optically perfect imaging instrument,2 known
as a superlens. The physics behind the operation of a super-
lens and the laws governing the resolution limits of this
unique system have instigated considerable controversy.2,8–10

The recent analytical,11–15 numerical,16,17 and experi-
mental6,16,17 results demonstrate that while a NIM-based sys-
tem may outperform conventional �phase� lenses, its resolu-
tion logarithmically depends on material absorption, limiting
all practical applications of superlens to the near-field zone.15

However, existing analytical results describing the superlens
performance are limited to a single lens geometry, when a
slab of negative-n �or negative-�� material is centered be-
tween an object and its image2 and the effects of the super-
lens design on its resolution are yet to be understood.

Addressing this fundamental question is the primary
goal of the present letter. In contrast to previous analytical
work,12,15,16 here, we consider a “generalized” variant of an
imaging system �see Fig. 1�, where the slab of “negative”
material with dielectric permittivity �=−1+ i�� and magnetic
permeability �=−1+ i�� of thickness b is positioned at the
distance a away from the object. Note that in contrast to
diffraction theory presented in Ref. 18, here, we are prima-
rily interested in subwavelength resolution.

We derive an analytical result for resolution of a gener-
alized planar lens, and demonstrate that the resolution is
maximized when a=b �the configuration recently imple-
mented in Ref. 6�. We demonstrate that the superlens be-
comes impractical when ���0.3. Further, we analyze the
field distribution in the system and similar to what in the
quasistatic limit was proved analytically19 and indicated by
other near-field investigations,12,16 discover a new regime
when the electromagnetic �EM� field has its maxima at both
interfaces of NIM. We show that in contrast to most NIM-
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imaging descriptions,2,11,13–15 the field structure in generic
imaging system is strongly influenced by this new regime,
while the conventional “superlens” picture �with intensity
minimum at the front interface� is rarely realized. Finally, we
conclude that the optimal lens configuration suggested in this
letter minimizes the field intensity inside the lens and, corre-
spondingly, the total absorption in the imaging system.

To better illustrate the underlying physics and simplify
the analytical results presented in this letter, we restrict our-
selves to the case of imaging of a parallel slot of a thickness
d�� �with � being the free-space wavelength�, extended in
the y direction at the origin of a Cartesian system, emitting
radiation with transverse magnetic �TM� polarization �Fig.
1�. The straightforward generalization of results presented
here to the case of different shapes of object, lenses, and
polarizations will be presented elsewhere.20

The planar-lens imaging can be clearly illustrated in the
wave vector space.11,13,15 In this approach, the monochro-
matic radiation emitted by the source is represented as a
series of waves with the same frequency � but different
wave vectors k= �kx ,ky ,kz�. The EM field at an arbitrary
point in the system can be calculated as a series of individual
waves propagated to this point. Therefore, the problem of
imaging an arbitrary source can be reduced to the problem of
finding the transfer function ��x ,z ;kx ,��, of an individual
wave with fixed �kx ,�� from the source �origin� to the given
point in the system �x ,z�. For TM polarization considered
here, it is convenient to work with the y component of the
magnetic field:

FIG. 1. Schematic geometry of the generalized planar lens �a�, and of the
optimal planar lens configuration �b�. The image is positioned at z=2b; the

possible lens configurations span a�b.
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Hy�x,z;t� =� a�kx���x,z;�,kx�e−i�tdkx, �1�

where a�kx� represents the wave vector spectrum of the
source. The transfer function � is equal to �in inside the lens
and �out behind it.

According to the properties of Fourier series,21 the com-
ponent with wave vector kx carries the information about the
x structure of a source with a typical scale of 2	 /kx. There-
fore, the information about the fine structure of the object is
being carried in the waves with �kx�
� /c. Since kx and kz in
a plane wave are connected through the dispersion relation
kx

2+kz
2=�2 /c2, these spectral components, also known as

evanescent waves, have imaginary kz and exponentially de-
cay away from the source. The suppression of the evanescent
spectrum is in fact the mechanism behind the resolution limit
of an imaging system.

Thus, the performance limit of a NIM-based planar lens
can be related to its transfer function � for the evanescent
part of the spectrum ��kx�
� /c�.15 To calculate the transfer
function, we first divide the space into three regions: Before
the lens �z�a�, inside the lens �a�z�a+b�, and behind the
lens �z�a+b�. We then represent the field �of a component
with some fixed values of kx ,�� inside the first region as a
sum of incident and reflected waves, the field inside the sec-
ond region as a sum of transmitted and reflected waves, and
the field in the third region as a transmitted wave, and use the
boundary conditions to find all coefficients of transmission
and reflection. Using this field-matching technique, de-
scribed in detail in Ref. 15, in the limit of small absorption
���1,���1 for evanescent waves �kx��� /c, we arrive at:

�in�x,z;kx,�� 	
e
z�z−2a� + i�e
z�2b−z�

�1 + i���1 + �2e2
zb�
eikxx, �2�

�out�x,z;kx,�� 	
e
z�2b−z�

1 + �2e2
zb
eikxx, �3�

where 
z=
kx
2−�2 /c2, and the loss parameter

� =
1

2��� +
�� + ��

2�kx
2c2/�2 − 1�� � 1. �4�

The excellent agreement between the Eqs. �2� and �3� and the
exact solutions of Maxwell equations are shown in Fig. 2.

We now derive the resolution limit � of the generalized
planar lens. Using the properties of Fourier analysis, the spa-
tial size of a wave packet at the focal point �x=0, z=2b� �see
Fig. 1� can be related to its spectral width � through the

FIG. 2. �Color online� Transfer functions �in �a� and �out �b� obtained from
exact calculations �curves�, and from Eqs. �2� and �3� �symbols�; optimal
and symmetric lens configurations with various absorptions are shown:
Black �solid; squares�: a=b=0.35�, ��=10−3, ��=10−6; red �dashed; stars�
a=b=0.35�, ��=��=10−6; green �dashed-dotted; triangles�: a=b /2=0.35�,
��=10−3, ��=10−6; red �dash-dot-dot; polygons��: a=b /2=0.35�, ��=��
=10−6; horizontal lines in �a� correspond to Eq. �9�.
“uncertainty principle”
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� · � = 4	� , �5�

where constant �
0.6 depends primarily on the geometry of
a source.15,21 As seen from Eq. �3�, any nonzero absorption in
the lens material yields an exponential cutoff of the evanes-
cent spectrum at some critical value of �kx

0�=� /2, correspond-
ing to �out�0,2b ;kx

0 ,��=1/2. This last relation can be written
in the form of a transcendental equation for the resolution
limit of a generalized planar lens:

2	b

�
= −

ln
1

2
��� +

�� + ��

2�2 �
�

, �6�

where �=
kx
02

c2 /�2−1=
�2�2 /�2−1. To determine the op-
timal configuration of the planar lens, we further simplify
Eq. �6� assuming that the system has subwavelength resolu-
tion ���.22 In this case, �
�� /�, and Eq. �6� yields:

� 
 −
2	b

ln���/2�
. �7�

For the case of symmetric planar lens �b=2a�, Eqs. �6� and
�7� are identical to the ones previously derived in Refs. 11,
12, 15, and 16. We also note that Eq. �7� describes the reso-
lution of a near-field “poor-man” superlens, formed by a pla-
nar slab of material with �=−1+ i��, �=1.2,6

One of the main points of this work is to show that the
resolution of a planar superlens is determined not by the
distance from the source to the lens a, but rather by the total
distance from the source to the image 2b. Since the planar
superlens is possible only when a�b, the combination
a=b �see Fig. 1�b�� allows one to achieve the maximum
separation between the object and the lens for a given reso-
lution. Such a lens configuration is optimal for a number of
practical systems. Indeed, for a majority of superlens appli-
cations, ranging from near-field sensing, to imaging, to li-
thography, the distance between the object and the lens can-
not be reduced beyond some critical value �due to the
technology limitations, existence of some protective layer,
etc.�, and thus plays the role of the resolution-limiting factor,
introducing the minimum practical superlens thickness. In
these applications, the resolution is maximized in the a=b
configuration.23

Another strong advantage of this configuration is seen in
the fact that the local intensity in the a=b superlens has its
maximum exactly at the focal point �as opposed to the sym-
metric lens configuration, when the intensity maximum at the
back interface of NIM region is separated from the image
plane�.2 This fact makes it relatively easy to bring the a=b
optical system “in focus.”

A comparison of Eq. �7� and the resolution of “conven-
tional” near-field optics21 �NF	2a yields the upper limit for
the absorption �max� of practical near-field superlenses when
�=�NF:

�max� = 2e−	�b/a � 2e−	� 	 0.3. �8�

As clearly seen from this last relation, the practical applica-
tions of optical subdiffraction imaging and lithography is
limited to nonresonant Ag-based systems, while more ab-
sorbing Au-, or Al-based structures, or resonant systems24,25

will have a resolution below the one achievable via conven-
tional near-field imaging or almost-contact �a-separated�

lithography.
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Finally, we analyze the intensity pattern and absorption
in a planar lens. The field inside the lens region
�a�z�a+b� is given by Eqs. �1� and �2�. The intensity
pattern at the back interface of the lens reflects a well-known
effect of evanescent spectrum restoration:2,15 either constant,
or growing exponential �depending on the lens geometry� for
the “weakly evanescent” part of a spectrum � /c� �kx��kx

0,
followed by exponential decay for �kx��kx

0, where
kx

0	−ln��� /b, as defined by Eq. �6� �see Fig. 2�.
In contrast to a widely accepted point of view,2,11 but in

agreement with results in the quasistatic regime,19 the field at
the front interface �z=a�, may not have a sharp �exponential�
minimum even for the case of subdiffraction imaging. In-
deed, as it is clearly seen from Eq. �2�, there exists some
critical wave vector kx

cr	−ln��� / �2b�, such that the expo-
nential enhancement of the waves with kx

cr� �kx��kx
0 �Fig. 2�

at the front interface of a lens is possible �see Fig. 3�. The
maximum value of the field can be estimated using

�in
max = �in�0,a;kx

0,�� 	 ���/2�a/b−1/2, �9�

yielding 1/
2�� for symmetric lens configuration �b=2a�,
and 1/2 for the optimal planar lens b=a described above.
Absence of the additional strong field maximum and, corre-
spondingly, of the additional absorption associated with such
a maximum further illustrates optimality of the design pre-
sented here.

The relation of this phenomenon, which can be attrib-
uted to the excitation of coupled surface waves at both sides
of a lens �as opposed to an excitation of a surface wave-
“anti-surface wave” pair�15 to breakup the superimaging, and
the onset of the diffraction limit in the system will be de-

20

FIG. 3. �Color online� Intensity distributions in symmetric a=0.35�; b
=0.7� �blue, solid� and optimal a=b=0.35� �red, dashed� planar lenses with
the same absorption ��=��=10−6. �a� intensity distribution along the focal
line x=0; note the intensity peaks at the interface of both lenses �the rela-
tively small intensity peak at the front interface of optimal system �rect-
angle� is shown in the inset�; upward and downward pointing arrows show
the positions of the lens in the optimal and symmetric configurations, re-
spectively. �b� Intensity profiles at the focal planes z=2b of imaging sys-
tems; dotted black line represents the source; note that the resolution of
optimal system is twice better than that of a symmetric structure; resolution
of both systems is well-described by Eqs. �6� and �7�.
scribed in detail in our future work.
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In conclusion, we have developed an analytical approach
to the resolution of the generalized planar lens, used this
approach to find the optimal �from the resolution standpoint�
configuration of the lens system, and derived the maximum
acceptable loss in the “lens” material in order to achieve a
resolution gain over conventional near-field techniques. We
also developed an analytical technique to find the field dis-
tribution throughout the planar imaging system, and demon-
strated that there exists an area of resonant field excitation at
the front interface of a lens due to the emergence of a
coupled surface wave mode.

One of the authors �G.W.M.� is grateful for support from
the NSF through Grant No. DMS-0411035.
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