
An Expert Path Through a Thermo Maze
Mary Bridget Kustusch, David Roundy, Tevian Dray and Corinne Manogue

Department of Physics, Oregon State University, Corvallis, OR 97331, USA

Abstract. Several studies in recent years have demonstrated that upper-division students struggle with partial derivatives
and the complicated chain rules ubiquitous in thermodynamics. We asked several experts (primarily faculty who teach
thermodynamics) to solve a challenging and novel thermodynamics problem in order to understand how they navigate through
this maze. What we found was a tremendous variety in solution strategies and sense-making tools, both within and between
individuals. This case study focuses on one particular expert: his solution paths, use of sense-making tools, and comparison
of different approaches.
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INTRODUCTION

Several studies in recent years have demonstrated that
students struggle to connect the mathematics and physics
in thermodynamics (e.g. [1, 2]). One particular area of
difficulty is the sea of partial derivatives and complicated
chain rules ubiquitous in thermodynamics. [3, 4, 5]

This paper represents the first piece of a larger study
designed to better understand why students struggle so
much with the mathematics of thermodynamics, how
practicing physicists deal with the mathematics of ther-
modynamics, and ultimately how to facilitate an appro-
priate transition from student to professional in this area.
Towards this end, we interviewed several faculty mem-
bers who teach thermodynamics and asked them to solve
a challenging problem. We also presented the same prob-
lem to junior physics majors who had just completed the
Paradigms in Physics: Energy and Entropy course. [6]

A startling aspect of this set of data is that each inter-
viewee introduced at least one new approach or problem-
solving tool. While there was some overlap, no two peo-
ple took the same path through the problem or used
the same set of physical and mathematical sense-making
tools. However, we have begun to identify some key
branch points that appear to distinguish between possible
paths. This descriptive case study focuses on one partic-
ular expert, J, a senior faculty member who has taught
thermodynamics multiple times. His interview explicitly
highlights a few of these branch points.

The next section presents J’s initial path to a solution,
including various instances of sense-making, detours,
and dead ends. The following section outlines two other
approaches that J discussed and his reflections on how
they compared to his initial approach. The final section
situates this case within the larger study. The poster
accompanying this paper provides a visual representation
of this maze and J’s journey through it. [7]

NAVIGATING THE MAZE

On a whiteboard, J was given the equations of state for a
van der Waals gas,

p =
NkT

V −N b
− aN2

V 2 (1)

S = Nk

{
ln

[
(V −N b)T 3/2

NΦ

]
+

5
2

}
(2)

U =
3
2

NkT − aN2

V
, (3)

and asked to find (
∂U
∂ p

)
S
.

We suggest that the reader take a few moments to con-
sider how they might approach the problem.

J began by assuming that N was fixed and subse-
quently included N in the subscripts for every partial
derivative. He then did some sense-making about the
type of question being asked:

“When I think about these kind of relations...
it’s like a response function. You simply say,
alright, I’m changing one variable, keeping
two other variables constant. We have a sys-
tem here with three independent variables... so,
we have a choice here [points to p, S, and N]
and then measure the change in something else
[points to U].”

He identified T and V as the variables changing in Eq. 3.
However, instead of using this equation of state, he chose
to start from the thermodynamic identity (1st Law):

dU = T dS− pdV +µ dN. (4)



To obtain the partial derivative he wanted, J divided the
whole equation by d p and set dS = 0 and dN = 0 since
S and N were to be held constant:(
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)
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=−p
(
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)
S,N

. (5)

J pointed out that constant entropy was “always a nasty
one to deal with” and that he would prefer to “have S as
a changing variable, as a dependent variable [rather] then
as an independent variable.” Thus, he began to look for
partial derivatives that could be directly obtained from
the equation of state (Eqs. 1–3) as they were given, which
would eliminate the need to consider constant entropy.

His first attempt was to use the cyclic chain rule on the
left side of Eq. 5:(
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)
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Noticing that this shifted U to be the variable held con-
stant in

(
∂S
∂ p

)
U,N

, J decided that this was a dead end and

that he actually wanted to shift the dependent variable to
be T , since the equations of state were given in terms of
changing T and V .

Before pursuing this avenue, J briefly contemplated
the physics of Eq. 5—identifying

(
∂V
∂ p

)
S,N

as the adia-

batic compressibility.
He then reconsidered whether using the energy equa-

tion of state would have been easier. However, seeing that
that route would involve two derivatives instead of one,
he decided to move forward with his original plan.

His second attempt involved using the cyclic chain
rule on the right side of Eq. 5:(
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After inverting the first term,(
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he realized that temperature was still not present and
decided to “save this step [cyclic chain rule] for later.”

Returning to the right side of Eq. 5, J chose to do a
simple change of variables to introduce T as a variable:(
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Satisfied that he was on the right track, J looked for what
he called “nice sets.” When asked what he meant by a
“nice set,” he responded that since all of the equations of

state (Eqs. 1–3) were given in terms of the independent
variables V , T , and N, a “nice set” would be a partial
derivative with respect to one of these variables, with the
other two held constant.

To express
(
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)
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in terms of “nice sets,” he re-

turned to his earlier detour, the cyclic chain rule he had
“saved for later” (Eq. 7):(
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Each of these partial derivatives was now a “nice set” and
thus, Eq. 5 became(
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and only
(
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)
S,N

remained to be expressed in terms of

“nice sets.”
In order to deal with this final factor, J used the cyclic

chain rule again “to bring the S inside”(
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but recognized that he really wanted to replace p by V in
order to get another “nice set.” This realization prompted
him to do a second change of variables:(

∂T
∂ p

)
S,N

=

(
∂T
∂V

)
S,N

(
∂V
∂ p

)
S,N

. (13)

At this point, he noticed that when he plugged this
result into Eq. 11, he would get
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and laughingly responded, “we’re going in circles.”
J then cataloged the tools he had already used:

• change of variables (e.g. Eqs. 9, 13) and
• cyclic chain rule (e.g. Eqs. 6, 7, 10, 12).

He identified a third tool, a variant of the 2-dimensional
chain rule, which he called “another kind of change of
variables.” Here one splits the derivative into two terms:
one with volume explicitly held constant and one where
volume could be changing. He inverted the final factor in
Eq. 11 and then incorrectly wrote the change of variables,(
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After inverting
(
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)
T,N

, he saw that all of the partial

derivatives could be calculated directly from Eqs. 1–3
and he moved on to reflect on other approaches.

However, as just mentioned, his final change of vari-
ables (Eq. 15) was written incorrectly, reversing S and T
in the last partial derivative. A correct change of variables(
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would require another application of Eq. 10 (cyclic chain
rule) to produce a final expression in terms of “nice sets:”
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(17)
Applied specifically to the van der Waals equations of
state, this would yield a final answer of(

∂U
∂ p

)
S,N

=
3(V −Nb)V

(
aN(V −Nb)− kTV 2

)
−5kTV 3 +6aN(V −Nb)2 .

(18)

COMPARING OTHER ROUTES

Once J had a result in terms of partial derivatives he could
find directly from the given equations of state (Eqs. 1–3),
he reflected on two other paths through the problem.

Energy equation of state

During his initial solution using the thermodynamic
identity, J occasionally returned to the idea of using the
energy equation of state (Eq. 3) and wondered if that
would have been easier. After finishing the problem, he
outlined this alternate path.

J began by writing:(
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)
S,N
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3
2

Nk
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and noted that he really wanted the inverse of both partial
derivatives on the right-hand side, since p was one of the
state functions. For him, the relevant differences between
this and his earlier approach were that there were now
two terms instead of one and that the same tools (chain
rule and change of variables) would be needed to shift S
from an independent variable to a dependent variable.

At this point, J stated that Eq. 19 and Eq. 5 should
be equivalent. After looking at both, he recognized that
each included a

(
∂V
∂ p

)
S,N

term. He then reasoned that one

should be able to use this fact and the p equation of state
(Eq. 1) to actually derive the entropy (though he didn’t
remember off-hand how to do so) and “it [had] better be
consistent with this equation [Eq. 2].”

Differentials

Since the Energy and Entropy course also uses differ-
entials, the interviewers asked J to rework the problem
using differentials, as well as to reflect on the potential
utility of differentials in teaching undergraduates.

J rewrote the equations of state (Eqs. 1–3) in differen-
tial form, using blanks for some of the derivatives:

dU =
3
2

Nk dT +
aN2

V 2 dV (20)

dS = Nk
(

NΦ

V −Nb

)
(_____dT +_____dV ) (21)

d p = _____dT +_____dV. (22)

He then outlined the steps that he would use to solve this
system of equations for dU in terms of d p:

1. set dS = 0 in Eq. 21
2. solve Eq. 21 for dV in terms of dT
3. substitute dV into Eq. 20
4. substitute dV into Eq. 22
5. solve Eq. 22 for dT in terms of d p
6. substitute dT into Eq. 20
7. divide Eq. 20 by d p.

In his description, J did not mention Step 3 (in bold). If
this step were not included, the expression would have
a
(

∂V
∂ p

)
S,N

factor. If Step 3 were included, one would

obtain Eq. 18, as expected.
Comparing this method to his previous approaches, J

stated he had “...never learned it this way, never thought
about it this way and was never shown it,” but pointed
out that “the advantage of doing it this way is that you
get a system of equations, which... people know what to
do with” and “this is probably more intuitive for students
because... they know how to solve systems of equations.”

J also pointed out that the two formalisms (differen-
tials and partial derivatives) were simply “a different en-
coding of the same information.” The primary difference
he highlighted was that partial derivatives involve ratios
of variables and dependent changes, where one has to be
sure to choose the right ratios. In contrast, differentials
involve variables and independent changes that connect
to create whichever ratio is needed. Thus, depending on
whether one wants to emphasize the response function,
one formalism may be more appropriate than the other.
He also noted that there is no other area in physics where



students encounter partial derivatives and chain rules the
way that one does in thermodynamics.

THE BIRD’S EYE VIEW

The interview presented here was only one of several in-
terviews conducted with faculty and students as they at-
tempted to solve this problem. As of this paper, we have
conducted 10 interviews with experts from several insti-
tutions and we anticipate an additional 3–5 interviews. In
addition to these expert interviews, we also have 6 inter-
views with students and classroom data for the last sev-
eral years, including activities where groups of students
were working on similar problems. As mentioned earlier,
each interviewee introduced new approaches and tools.

The dead ends (e.g. Eq. 6), detours (e.g. Eq. 7), and
circling (e.g. Eq. 14) in J’s initial solution, as well as the
variety in solution paths and sense-making tools used by
other interviewees, point to the complexity of the prob-
lem solving skills required in thermodynamics. Given
this complexity, it is perhaps not surprising that students
struggle so much with thermodynamics.

We are currently exploring possible theoretical and
representational frameworks to model this complexity—
e.g. cognitive task analysis [8], epistemic framing [9],
cognitive blending [10], or expert/novice problem-
solving [11, 12]. It is our hope that a better understand-
ing of this complexity will allow us to better teach our
students how to navigate these mazes.

Although this case study is primarily descriptive, it
was chosen as a way to begin looking towards modeling
the complexity of thermodynamic problem-solving. In
particular, this interview highlights three branch points
(briefly presented below) that appear to typify the many
different paths taken in the majority of the interviews.

Which energy equation is used. J indicated that the
primary difference between using the thermodynamic
identity (Eq. 4) and the equation of state (Eq. 3) was in
the set-up, but that both approaches must be equivalent.

Which mathematical formalism is used. One of the
most notable differences involves the choice of mathe-
matical formalism, specifically the use of partial deriva-
tives or differentials. J summarized this difference as
dealing with ratios of variables and dependent changes
versus using single variables and independent changes.

How one deals with constant entropy. J demonstrated
two different ways of dealing mathematically with the
challenge of constant entropy:

• using chain rules to get S as a changing variable
instead of a constant variable (e.g. Eq. 12), and

• setting dS = 0 in Eq. 21.

A third method used by other interviewees involved

• setting S equal to a constant in the equation of state,
allowing one to relate T and V .

Almost all interviewees used one or more of these
three approaches, although when they chose to use them
differed. In addition, interviewees were asked to describe
an experiment to measure

(
∂U
∂ p

)
S

and there were several
ways of thinking about how one could experimentally
hold the entropy constant.

In conclusion, J summarized a great deal of what we
are seeing when he said:

“All of these approaches will get you there
eventually, and so... what is the way that kind
of makes it easier for me to organize my
thoughts, in terms of finding equations?”

The different branch points, as well as J’s mistakes,
suggest that it would be beneficial to better understand
the affordances and constraints of various paths.
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