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ABSTRACT

A numerical model was developed which predicts the dynamic

response of a single mooring line and a buoy of forty feet diameter

to sinusoidal waves, wind and current in all deep waters. All forces

and reactions were considered to be in one plane.

The basic equations for the mooring line motion were obtained by

considering a small element of the line in terms of the conservation of

momentum and mass and the continuity of the line filament. The

resulting partial differential equations were numerically integrated by

first a transformation followed by application of the method of character-

istics. A non-linear stress-strain diagram was used. The boundary

conditions were that no motion occurred at the anchor except rotations

and the motion of the upper end of the line was the same as the motion

of the attachment point of the buoy.

The buoy was considered to be a rigid body and accelerations

were determined from Newton's second law of motion. Recurrence

formulas determined displacements and velocities.

A comparison with some prototype information was made. Transfer

functions between wave spectra and line tension spectra were available

for a mooring in 13, 000 feet of water near Bermuda. The same transfer

functions were developed with the numerical model and good agreement

was achieved.



Frequency response curves for the moored buoy in pitch and

heave were also obtained and the results show that one dimensional wave

spectra obtained by double integration of the vertical acceleration of the

buoy are valid.
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INTRODUCTION

In recent years oceanographers have attempted to measure

various physical parameters of the ocean from moored buoys. Hence,

the engineering design of buoys and buoy moorings has become increas-

ingly important. The types of buoys and moorings are considerably

varied, but the single large discus buoy with a single line mooring has

been used with a high degree of success in deep ocean moorings. This

report is about the dynamic response of such deep water single point

moorings to ocean waves.

Until recently, the design of deep water moorings was based on

a static analysis of the system, taking into account the forces of

steady wind, ocean currents and gravity. If waves were considered,

it was on a static basis dealing with a single large wave. However,

in order to execute an economical engineering design, one needs to

be able to predict buoy motion and mooring line motion and tensions as

a result of oscillating wave forces.

In the summers of 1967 and 1968, the author conducted a study

for the Convair Division of General Dynamics in San Diego, California,

in which it was attempted to devise a numerical model of the buoy-mooring

system which would predict system response to the dynamic forces of

nature. During the 1968-69 academic year the study was continued at

Oregon State University with the support of the Office of Naval Research

while the author was on sabbatical leave from Colorado State University.
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Literature Review

The mooring condition can be properly divided into two problems:

1) one of statics wherein one considers steady wind and current forces,

and 2) one of dynamics where one considers the oscillating forces from

the waves and the gusty wind. Throughout this report the first problem

will be treated lightly as it is well documented by Nath and Felix (9).

The foregoing reference shows how the static analysis is based on the

work of Morrow and Chang (7). The problem of mooring line statics

are also neatly reviewed by Berteaux (1).

Walton and Polachek (17) developed a digital computer solution

for the response of an inelastic line in water when the motion of the

ends are assumed. The buoy motion was assumed from knowledge of

the wave form and the anchor end was assumed to be motionless. The

continuous line was idealized to be a few concentrated masses and a

matrix representation of the resulting non-linear equations of motion

was formed. The line was assumed to be inelastic.

Paquette and Henderson (12) followed a procedure similar to that

of Walton and Polachek. They assumed the buoy moved in an elipse

which was four times higher than it was wide. The solution was

developed for the analog computer. They did consider the line to be

elastic, but they did not consider damping within the line. The solution

was obtained for both steel and nylon lines but only a few wave forms

were analyzed. They did not attempt to calculate frequency response
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functions and they used a drag coefficient on the line of 1. 8, which is

higher than ordinarily used, in order to account for the additional

drag due to line flutter. Some of their conclusions were that horizontal

motion of the buoy had very little affect on line tension. For small

scope, dynamic tension in the steel mooring cable was very serious.

The synthetic fibres were not as subject to high dynamic tensions as

steel fibres.

In some instances the response of a buoy system to steady state

current is calculated, then a factor of safety of five or more is applied

to account for dynamic conditions, fouling, fish bite, etc. Various other

grossly approximate methods to account for the dynamics of the problem

are utilized. One objective of this study is to determine the position

of all parts of the mooring line and buoy at all times. Therefore,

gross methods are not applicable.

A relatively new approach to the solution of problems dealing

with mooring line dynamics was proposed by Wilson and Garbaccio (19).

They studied the case of a large ocean vessel moored in deep water

and subjected to harmonic waves. Simplifying assumptions were made,

one of which was that the mooring line prevented the vessel from

drifting, but no other motion of the ship was influenced. It was assumed

that the vessel would be larger than 1000 tons. The numerical model

was based on the method of characteristics and the boundary conditions

were prescribed, or assumed, as follows: the line was assumed to be
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tangent to the ocean floor at the anchor and the motion of the upper end

of the line was assumed to follow a somewhat elliptical path as pre-

scribed by the ship motion. A pseudo-dynamic solution was also

developed wherein only the static solution was used in conjunction with

the change in the effective water depth due to the passing of a wave.

Fairly good agreement was obtained between both cases, but the

magnitude of the water depth was not mentioned and it is felt that

although the pseudo-dynamic solution may give reasonable results for

relatively small water depths, it will be quite inadequate for large water

depths.

An almost completely general approach was presented by

Langer (5) for predicting the motions of a catenary in space. The term

"catenary, " as used in the report, refers to any purely flexible line

that can resist tensile stresses only. The governing equations for a

line subjected to any forcing systems were developed. However, the

structural damping in the line was ignored and this omission was

continued by Wilson and Garbaccio.

A new publication on the topic is by Reid (14), where the basic

equations are reviewed in detail including important stress-strain

relations for the mooring line. A general, three-dimensional vector

approach is taken with specifics on the co-planar problem.
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Purpose of this Research

The purpose of this research was to develop a numerical model

of the dynamic action of a single point mooring of a large oceanographic

buoy. In the future it is planned to use this model to study the influence

on the system response from any of the important variables, such as

scope, water depth and wave length, line type, atmospheric conditions

and buoy size, shape and load. The initial goal has been accomplished

and, in addition, a small amount of useful data was obtained which

compares this work with prototype information.

Purpose and Scope of this Report

The purpose of this report is to document the development of the

work which pertains mostly to the dynamic model. That is, not much

space will be devoted to the static model. It is hoped that the procedures

presented herein will be useful for developing solutions to related problems.

The work used for illustration is limited to considering a forty-feet

diameter discus buoy moored with a single nylon line in 13, 000 feet of

water with an "in-place" scope of 1. 31. However, the program has been

tested favorably in nearly all water depths and for several scopes.

Two programs were developed--one was based on a non-linear stress-

strain diagram and did not include the damping factor due to the frictional

action within the line, while the other did include the damping, but was

based on a linear stress-strain diagram. Initial load stretch was
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considered. Transfer functions were developed for the undamped case

and compared with those determined from the Bermuda mooring of

Buoy Bravo of General Dynamics-Convair (15).



THEORETICAL DEVELOPMENT

The forces of nature were applied to the mooring system in one

plane. That is, it was assumed that wind, waves and current were all

from the same direction. Consequently, the reaction motion of the

mooring system was also in that vertical plane.

The static problem was solved first to determine the initial

condition for the boundary value problem in dynamics. A sinusoidal

wave was then applied to the system and at zero time the system was

released from the static position and allowed to respond to the

oscillatory forces. Thus the transitory condition was meaningless.

The system was allowed to vibrate until steady state motion existed,

when the program stopped. Thus the amplitudes of the steady state

system response were obtained and compared with the wave amplitudes

in order to determine transfer functions.

Motion of the Mooring Line

Problem in Statics

A set of integral equations were determined, as in Ref. 7, from

considering the line to be in static equilibrium. These equations are:

T=Tn exp
B

8

(1)
® P sing- G

d9P co 9 Fs

7
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s =TB

exp

C =TB
OB

exp
P sing - G
P cosO + F

P cosO + F

P sing - G
P cosO + F

P cosO + F

dO sing

0 ex f 0 P sing - G cosOp P cosa + F

TB OB P cosO + F

Wherein T is the line tension, B is a subscript denoting the

bottom or anchor end of the line, 0 is the angle the tangent of the line

makes with the horizontal, s is the distance along the line from the

anchor, is the vertical coordinate of a point on the line from the

ocean bottom, is the horizontal coordinate of a point on the line

from the anchor, P is the submerged weight of the line per foot, G is

the tangential force acting on the line per foot and F represents the

normal forces. Fig. (1) shows all the variables involved. The complete

development of Eqs. (1) through (4) and the numerical procedures for

their solution is given in Ref. 9. The computer program calculates the

unstressed length of the line and accommodates large concentrated loads

on the line.

(2)

(3)



The Equations of Dynamics

The equations of motion of the mooring line were developed with

the approach taken by Langer (5). and reviewed briefly in Nath and

Feli.x (8). In that development a few points were left unclear and some

of them will be discussed here.

Consider a small element of the mooring line as shown in Fig. 2.

The complete hydrodynamic forces acting on the line are designated as

F and they will be discussed in detail in later sections. Such forces

are considered to act only in a perpendicular direction because the

longitudinal component of the hydrodynamic forces has a negligible

influence on the action of the line. The other two forces acting on the

element are the line tension, T, and the .submerged weight, g (p -p)ds,

where .i is the mass per foot of line and p is the mass of displaced

water per foot of line. From Newton's second law of motion:

Forces = dt (mv

wherein m is the total mass of the element and v is the instantaneous

velocity vector of the motion of the element. The mass, m, is equal

to µps and will be assumed to be constant. The mass can increase or

decrease with time from biological growth or corrosion, but such

changes take place over a much longer time period than the periods of

concern for wave dynamics. Therefa-re,. Eq. (5) can be,-Written:

(5)
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E Forces = m d

It will be necessary to obtain the perpendicular and parallel

components of Eq. (6) and it is useful to note that, along the line:

d a a

at = at
+ va, as

Wherein vi, is often the speed of an elastic wave along the line. Thus,

Forces = m
Cat

+
V11

av

It will now be shown by dimensionless representation that the second

term within the parentheses is negligible with respect to the first

term. Let v,, be the celerity of an elastic wave on the line and S0
and

To be the corresponding wave length and period, and let v = vO, vt,

t = Tot', S = Sos' , where the prime denotes a dimensionless quantity.

Then the part in parentheses of Eq. (8) becomes,

vat

or,

(7

aV' Vi, av
asp

Vol
IV, aV,

T
o at' as'

(6)

(?)

(8)

(9)

(10)



11

but,

OsAt = o f
1

(11)

thus,

v
It

T
0

3v1 a v'
as' - + as' (12)

and since v11 >> 1 the second term in the parentheses can be neglected.

Thus the required two components of Eq. (8) can be written,

Z (Forces) I/

Z (Forces).,

m

m

.r/

Wherein the subscript // denotes the parallel, or tangential, direction

and ..Z. denotes the perpendicular, or radial, direction.

The vector components acting on the line can be obtained as

follows. Let V be any vector as shown in Fig. 3. Then the following

relationships exist:

(13)

(14)

V = V cos() + V sin& (15)x z

=
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V cosO - V sing

Since V is a vector, at is a vector; therefore,

av

(-2a

v
at t x

l
and

cost + av
at

il) = --3-V-IX cosS +
aVz sineat if at at

aV ayz
at 1 at

av
at

(16)

sine (17)

sine

cose - atx sine

Now, taking the derivative of Eqs. (10, 11),

(18)

(19)

(20)

eav, ayx cose + aVz sine + (V cose - Vx sine) 0 (21)
at = at at z at

avz °
a t

core - a tx sine - (Vx cose + VZ sine) (22)

=

=

at
cosg
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Then by substitution,

aVta

t = at + V_L
at (23)

av,. a v
at I at

Similar relations are obtained when the differentiation is performed

with respect to s. Thus, by rearrangement,

av
as

as L asa v) _ - +

as
VI as

VII
Do
as

Now, one can substitute any vector for V.

Let be a potential function such that its derivative along the

line represents the rate of change of the unbalanced external forces.

Then, substituting for m, the vector sum of Eqs. (13) and (14) can be

expressed as,

(24)

(25)

(26)

a +T As = As µ av (27)as at



14

Then for Eq. (13), reversing,

l

or,

at 1
(---L

" - V

av
at #

ae
at

l
aT
as

)II

aT Do The sum of the

(28)

T (291 +as external forces peras

foot in the parallel
direction

but T does not have a perpendicular component and the longitudinal

forces are assumed to be only those due to gravity. It has been seen

in past work that the perpendicular external forces are at least one

order of magnitude greater than the longitudinal forces. Then, by

rearrangement of Eq. (29),

3
1

- "1 at
-µ - - g (1 - s) sine

at
(30)

Eq. (30) is the equation of motion of the line in the parallel direction,

wherein s. g. is the saturated specific gravity of the line. Similarly,

the equation of motion in the perpendicular direction is:

at ae aTj aA
+

The sum of the
µ at + v" at as +

TI, as external forces per
foot in the perpen-
dicular direction

(31)
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or,

avl
D t + vj 1

ae

at µ

ae

as 11
S. g.

(32)

In Eq. (32), F1 represents the sum of all the external forces

acting on the line in the perpendicular direction, excluding those due

to gravity.

The conservation of mass concept supplies an independent equation.

Consider a control volume that intersects the line at right angles with

two planes a small distance apart, large enough in the transverse

dimension so that the flow of the line mass into and out of the control

volume takes place only through the two planes. Then the conservation

of mass relation can be stated as,

= v (s, t)

wherein v is the creation or destruction of mass, taken to be zero

here. Thus,

a1as+" as
+

at
=o

I,

cose

(33)

(34)
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By an order of magnitude analysis similar to that applied to Eq. (8), one

can show that the second term within the parantheses is negligible with

respect to the first term. Using this, plus Eq. (25), we have,

(35)

The last governing equation is obtained by considering the line to be

continuous, with a smooth curvature. From Eq. (16):

as ;
asz cosh -

asx
sing (36)

1

but, vz
at

and vx

and,

3v X az
as at as

az
as

ax
at

J

, s o that

cose -

sine,
as

cose, thus,

cos 26
a

e
+ singe

a

o

sine (37)

(38)

Then by simplifying Eq. (38) and expanding the lhs,

0

=
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L +
as

a e Do

as s at

Summarizing, we now have four equations and four dependent

variables, v1 , v,; , 6, T and two independent variables, s and t.

The line density, i, is a variable, but it is dependent on the strain,

E, and thence the tension, T, as will be shown next.

Referring to Fig. 4, the line density per foot, µ, at some time,

t, is related to the initial line density, µo, by,

µ =
µoL

L+ AL

or,

µ = µ o (
1+1

c )

wherein, c is the unit strain.

The part in parentheses can be expanded as a series. Saving the first

two and most significant terms,

µ =No (1-c)

and,

a1. DE:

at 1 O at

(39)

(40)

(41)

(42)

(43)
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As a mooring line expands and contracts, internal friction

from the rubbing of the fibers will dissipate energy so that internal

damping of dynamic action will exist. Very little is known about the

true mathematical form of such damping except that if the model is as

shown in either Fig. 5a or 5b, it is not correct according to Refs. (2)

and (16). However, these models are frequently used because of their

mathematical simplicity and the results give at least an approximate

idea of the influence of damping. For this work it would seem reasonable

to use a model similar to Fig. 5b since plastic lines continually deform

under a constant load. However, the resulting equations were not

convenient to introduce into the foregoing developments, so the model

for the firmo-viscous condition of Fig. 5a was adopted, using a

hysteretic damping coefficient, as will be explained. Thus the equation

for stress in the line becomes (16),

a () + q ae (44)s at

wherein o' is the dynamic tension divided by the original cross-

sectional area of the line and ca (E) is the statically loaded non-linear

stress-strain diagram, typical of braided or twisted lines, and q is

the viscous damping coefficient.
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This work was divided into two investigations--one dealing with

the internal damping where the problem was considerably simplified

by assuming a linear stress- strain diagram and one which ignores

the internal damping, but considers the non-linear stress-strain

diagram. These approaches are exemplified by Eqs. (45) and (46)

and the corresponding stress-strain diagrams are shown in Fig. 6.

Without damping:

With damping:

(45)

6= EC + q at (46)

wherein E is the modulus of elasticity.

Parallel developments will be presented for the damped and

the undamped cases.

Without damping, from the o-e diagram constructed of straight

line segments:

a = a. + E.e
1 1

(47)

wherein i denotes the segment into which E falls.
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Then

as
=

Ea t i a t

or,

ae 1

at = AE.
1

aT
at

(48)

(49)

where A is the original cross-sectional area of the line. With

damping, from the displaced cs-C diagram, see Fig. 6:

2
a6 = E

D F- + q zat at at

or,

DE 1 DT q a e
at AE at E at2

(50)

(51)

By substitution of Eqs. (51) and (49) into Eq. (43) and thence into Eq. (35),

and by assuming that the mass density does not greatly change, i. e.

one obtains for the conservation of mass equation (it should be

noted that up to this point . has been treated as a variable and now is

considered to be constant):

Without damping - conservation of mass

av" - v ae - 1 aT = 0 I (52)
as 1 as AEi at
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With damping - conservation of mass

2
av a9 1 aT q a c
as

vl as AE at F a

It will be convenient to consider the rhs of Eq. (53) as a forcing

function by obtaining an estimate of from past strains.

The forcing function, Fl (pounds per foot) in Eq. (32) now needs

to be determined. The external hydrodynamic force on the line is

determined from the Morison equation, which states that the total force

is the sum of a drag component and an inertia component. The drag

component is proportional to the square of the relative velocity between

the water and the line. The inertia component is due to the total effects

from the pressure field set up by the accelerating fluid and the effects

from the disturbance of the acceleration field set up by the presence of

the cylinder. The former is equal to the mass of the displaced fluid

times the fluid acceleration and the latter is proportional to the difference

in acceleration between the fluid and the cylinder. Thus,

CDDm
TD2

CITrD2
Fl

2 VrIVr1 + 4 mAw+ 4 mAr (54)

wherein CD is a drag coefficient, taken as 1. 4 for this work, which

includes a consideration for flutter, D is the line diameter, m is the

mass density of the water, V is the relative velocity, A
w

is ther
acceleration of the water, CI is an inertia coefficient which is

commonly taken as 1. 0 for a cylinder and A r is the relative acceleration.

(53)



22

But, p = TrD2m /4 and Dm = 4p /TrD.

Thus Eq. (54) becomes:

2 CD p Vr Vr1

Fl = TrD + pAw
+ Cl PAr

Also,

V = V cosO - V s in8 - v1r z x

where V and V are the vertical and horizontal water velocities as
z x

functions of x and z, and,

-/ a NA=Azcos9-Axsin9 l at
v1

Recall that,

a°l
at I H

(55)

(56)

(57)

(24)

Now by combining Eqs. (24), (57), (55) and (32), it is seen that,



a

1 DO
2CDp

(µ+CIP) at + vll at T as 'rrD

+ (p+C1p) (AZ cose-AXsin®) - µg (1 -
S.

) cose
g.

Letting µ + CI p = M, Eq. (58) becomes,

Conservation of momentum, perpendicular direction:

V

ay
a® T ae CD 2

at
+ v'r

at
-

M a s lTD (CI + s. g. VrIVrl+

+ s.+C+C
(AZ cose - AX sine) g cose

g 1 (s. g.+11

Repeating other governing equations for convenience of reference:

Conservation of momentum, __parallel direction:

`y a 0
at- vl

µ

Continuity of line filament:

aT
as

= g 1 ) sine
S. g.

ae a e = 0vu
as as - at

23

(58)

(59)

(60)

(61)

+

)
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Conservation of mass without damping:

aH
v

ae 1 aT 0 (52)
D s 1 a s A E.

1
at

Conservation of mass with damping:

aii
aA 1 aT

2
q c (53)v -

as
1 AE at E

at2

Perhaps the reader should be reminded that at this point µ is con-

sidered to be constant.

Solution by the Method of Characteristics

Wilson and Garbaccio (19) show that the above set of hyperbolic

partial differential equations are quasi-linear because the derivative

terms never appear as products. They can be solved, therefore, by

the method of characteristics.

There are at least two methods to transform the equations to

total differentials for solution, but perhaps that shown by Lister (6)

is as easy to follow as any. Since the equations are quasi-linear,

useful linear combinations of them can be formed as follows.

Multiply Eq. (52) by +C11 and add to Eq. (30). The result is,



D v

C
a i - v 39 - C v 3 9 Cu aT

aT + it as .L
at n L a s - AEi a t

1 aT 1-)sing-µ
as

= -g(1 -
-S.

g.

Now, if C11 µ = AE. /Cji , then equation (60) can be written,

D v,,
DA 1 DT 1

Dt v-1 Dt C11 µ Dt - g (1-s ) s inA

Where,

D a a

7t = at + C" as

Cu

1/2

Eq. (63) is the celerity of a longitudinal elastic wave along the line.

Eq. (61) is a total differential equation expressing the activity of the

four dependent variables, vl , vet 0 and T, with respect to time

along the characteristic curve,
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(60)

(61)

(62)

(63)
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ds
dt

1/2

A similar total differential equation can be generated by multiplying

Eq. (52) by -Ce, and adding to Eq. (30). The result is:

D v
DA 1 DT

(1 sin()
Dt -

v l Dt +
;; 7 Dt -g -s )

where,

Dt

and

a a

at

C11

ds
at

1/2

(64)

(65)

(66)

(63)

The only changes to the above, by considering Eq. (53) instead of (52)

would be in Eqs. (61) and (65), such as,

g,

AEi



D,,
DO

-B -t
- vj

-1 5T -

and,

1

L ,g

DT
Dt = -g (1 -

1

s. g.

q
s in0 - CE t

D ii DO 1 DT 1 C q a e
2

Dt VI Dt + µC11 Dt - g (1 -
s

) s in0 +
E

Now, two additional total differential equations can be formed by

multiplying Eq. (39) by +Cj and -C1 and adding to Eq. (59),

respectively, to obtain,

Dtl + (VII - C1) De = rhs 59

where,

D
Dt at + C1

C1=CMS
1/2

as

and it should be noted that Cl is the celerity of a transverse wave

moving along the line. The solution is executed. on the characteristic,

dsdt
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(68)

(69)

(70)

(71)

(72)

(73)

)

=

T
1/2
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Also,

Dt + (v,, + C. D9

where

D a

= rhs 59

1 /2

(74)

(75)
Dt at

CL

ds T
1/2

dt -(M)

Fig. 7 shows the s-t plane with which one can visualize the mode

of solution, using the fixed time interval procedure with the method of

characteristics. The procedure for this work was as follows. Assume

that all the unknowns are determined at the s intersection points at

some time, t. Then the four slopes of the four characteristic curves,

Eqs. (64, 67, 72 and 76) were determined at each grid point and applied

at the t + At grid points. Take point (s, t) for example. The four

total differential equations, (61, 65, 70 and 74) are then presented as

difference equations and the values of the four dependent variables,

vl , vie , 0 and T, are determined at the grid intersection point,

(s, t + At).

(72)

(76)
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In the above procedure it is assumed that the characteristic curves

can be approximated as straight lines over the interval, z t. A second

order correction can be made to this assumption, but it was found not

necessary to do so if A t was kept sufficiently small.

It should be kept in mind that point s on the line at time t does

not represent the same tagged point at t + A t. That is, if one were

to imagine a painted point on the physical line near point s, then the

painted spot will shift with respect to point s on the s-t grid as the

line length extends and contract. In this respect the s-t grid is

analagous to the Eulerian coordinate system in fluid mechanics. The

s-t grid is fixed in space and time and the line moves with respect to

the grid. Referring to Fig. 7, grid point (NR, 0) represents the upper

end of the line at time 0 and grid point (1, 0) represents the'anchor

end of the line. The heavy dots near grid NR represent the upper end

of the line when the line is shorter than at time 0 and the circles

represent the upper end when the line is longer. The computer program

that was assembled to accomplish the above calculations took into account

the change in line length. The addition or deletion of grid, points at the

upper end of the line was accomplished.

The boundary and initial conditions were established such that

vr1 and vl were always zero at the anchor and were zero at all points

on the line at t=0. At the anchor the four equations reduce to two, so
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that we have a system of two equations and two unknowns. At the top

of the line it is specified that the coordinates and velocities must be equal

to those of the attachement point of the buoy.

The tension at the top of the line was determined by taking the

computed coordinates of point NP and the known coordinates of the

attachment point, (from the buoy subroutine) and calculating the

residual strain in the end piece. Then the tension was calculated with

the aid of either Eq. (46) or (47).

Final Equations for Numerical Solution

The finite differences form of the equations will be shown for the

condition without internal damping in the line.

Using Eq. (61) as the example:

AvO,

vl µ At - g (1 -
g.

)sing (77)
eA t At CIO

Using the superscript (1) to denote conditions at the present time

and the superscript (2) to denote conditions at the end of the next time

increment:

VII (2) - vol (1)

At - VL
(1) 9(2) - 9(1) 1 T(2)-T(1)

At CIA µ At
(78)

-g (1 - 1 ) sin9(1)
S. g,
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In the second term of the lhs of Eq. (77) vl appears and could

be considered as the average value during the time increment. However,

non-linearities then appear in the products with the angle, 0. It was

felt that if At were kept sufficiently small that the value of vl for

the present time, or (1) conditions, would give good results. Therefore,

matters were simplified in all the total differential equations by using

the (1) value of all variables except where they appear in the derivatives.

Thus, Eq. (78) becomes:

vil (2) - vj(1) A(2) - 1 T(2) _ At g(1 - 1
) sinA(l) +Cuµ s. g.

(79)

+ v
(1)

v
(1)

0(1)It Cuµ T(1)

The (1) conditions were interpolated from the grid intersection in the

s-t plane. Similar operations were performed on Eqs. (65), (70) and

(74). Thus four equations with four unknowns (vU v1(2), ®(2)

T(2)) result.

A matrix representation of the equations was made.

1

(2)
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1

1 0 -vL( ) 1

C,1 µ

(1) 1-1 0 - vy +
Cil µ

0 1 (vu (1)-C1) 0

0 1 (v1 (1)+C1) 0

(2)
VII

v (2)1

T(2)

fl

f
2

f
3

f
4

Note that the value of vj.(1) in the first row is different from the value

of vl (1) in the second row because they are interpolated to different
1 /2

positions in the s-t plane. That is, one starts from + (AE/µ)

1 /2 f,and the other starts from - (A E/µ) The forcing equations,

will be listed below.

fl = - Otg (1 -

=-Otg(1 -f 2

CD
f = At .TD3

1 ) sin@(1) + v" (1) - v1 (1) e(1) - 1 T(1)
S. g. Cu l'

1
) sine(1) + v;, (I) - VI (1) 6(I) + I Z,(1)

S. g. Cii N-

2
I)

(1)
+CI

AZ cos0( - Ax sin8
C + s . g. VriVrj+ s .

1

+9'I

(80)

(81)

(82)

(83)

s g. -1 os9(1) + vl (1) + (v (1) - Cl(1)) 8(1)(s. g. +1 ) g
cos II

6(2)

)
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f = At
CD 2

V V
1+CI

A cos9(1) - A sin9(1) -(z x4 C S. g. rI r s g +C
I 1

5-- ilg cose(l) + v (1) + (v (1) + CL(I)) e(1)

Special consideration was given at the boundaries in accordance with

information presented in earlier parts of this report.

(84)

Coefficients for the Line

The drag coefficient, CD, was assumed to have a value of 1. 4,

which was the value used by Wilson (18). This seems to be a reasonable

value, accounting for low Reynolds number and possibly some additional

drag due to line strumming. The drag forces acting longitudinally on

the line were assumed to be negligible, as was determined with experi-

mentation on the steady current part of the numerical model.

The inertia coefficient, C12 was taken as 1. 0 since the pressure

distribution that exists due to the acceleration of the fluid had already

been considered.

The saturated mass density of a 1-1/211 diameter dacron or nylon

line was estimated to be 0. 03 slugs per foot. Thus the saturated specific

gravity was 1. 23.
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Motion of the Buoy

The Equations of Dynamics

The buoy was treated as a rigid body. At a given time, all the

forces acting on the buoy were determined. Thence from applying

Newton's second law of motion, the translation and rotational accelera-

tions were determined. After having obtained the accelerations, the

displacements and velocities at the next time increment were determined

from recurrence formulae.

It is not possible at present to predict the pressure distribution

on a floating object subjected to waves. It was felt that an approximate

approach to representing the forces acting on the buoy would suffice

providing the qualifying coefficients involved were evaluated with real

information from either a laboratory study or a prototype study. Thus,

the forces acting on the buoy were considered to be those from wave

pressure (considering hydrostatics and water particle acceleration due

to wave motion), viscous drag, added mass effects (water acceleration

due to the presence of the buoy), wind drag, gravity and mooring line

tension.

It was found necessary to consider three coordinate systems

while working with the forces acting on the buoy. The primary coordi-

nate system has been illustrated in Fig. 1. The secondary coordinate

system is oriented to the buoy and moves with the buoy. The tertiary

coordinate system is one of cylindrical coordinates and describes all

points on the buoy in three-dimensional space. All coordinate systems

are illustrated in Fig. 8.
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Consider Fig. 9 which shows the buoy as a free body diagram with

the above forces acting on it. Fig. 10. shows the important dimensions

of the buoy. In order to approximate the force distributions as they

occur in nature, it was necessary to develop a strip theory technique.

For this study, it was decided to divide the buoy into several pie-shaped

pieces as shown in Fig. 11. Since it was not known how the hydro-

dynamic forces were distributed on the surfaces of the buoy, the drag

and inertia forces in the z2 direction were assumed to act at the lower

chine as shown in Fig. 9. The drag and inertia forces in the x2 direction

were assumed to act at a point one-half way from the attachment point

to where the water surface intersects the buoy center line. The pressure

forces were evaluated by using the Airy wave theory except right near

the surface of the water as explained later.

The forces were first computed for the x3, z3 coordinate system

and then converted to the secondary system. The forces in Fig. 9 will

now be developed in more detail.

In the x2 direction the total drag force was assumed to be primarily

dependent on the buoy surface area and was:

F = C ar(40)2 VDxZ DRAD - P T x

wherein p is the mass density of the water per cubic foot CT

(85)

isDRAD

the drag coefficient of the buoy in the radial direction and Vx2 is the

relative velocity between the water and the buoy, evaluated at the mid-

point between the attachment point and the intersection of the water

surface with the buoy center line. The water velocity is due to wave

action and water current. Also,
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FIx2 - CIRADPT -V TAx2 (86)

where CIRAD is the inertia coefficient of the buoy in the radial direction

(which should not include an accomodation for the pressure gradient in

the fluid), VT is the total submerged volume of the buoy and Ax2 is

the relative acceleration between the water and the buoy, evaluated at

the same point as the above relative velocity.

The wind force was calculated as,

P aVWI V WI
FWIND 2

(87)

where CDW is the wind drag coefficient and has dimensions of ft. 2,

pa is the mass density of the air and VWI is the wind velocity. As a

simplification, the velocity of the buoy, or the relative velocity, was

ignored.

In the z2 direction, as previously stated, the drag and inertia

forces were assumed to act at the lower chine. The drag and inertia

forces were calculated for each pie piece and later summed. In order

to make the dynamic action of the numerical model match that of an

early hydraulic model, it was necessary to adjust not only the drag and

inertia coefficients but the basic form of the drag expression itself.

It was desired to create a pitch decay curve that had considerably more

damping for small magnitudes of pitch than for large magnitudes of

pitch. The final expression for drag was thus,

F = C n(40)2 1

PT

Dz2 DAXL - --Z Vz2
I
vz2

6
(88)
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where CDAXL is the drag force in the z2 direction and Vz2 is the

relative velocity between the water and the buoy evaluated at the lower

chine. Likewise,

Iz2 CIAXL P T Az2F - (89)

where CIAXL is the inertia coefficient in the axial direction, -V- is

the submerged volume of the individual pie piece and Az2 is the

relative acceleration evaluated at the lower chine. Thus, the equations

of motion become:

In the x2 direction:

E Forces = Mass Acceleration

Wt. sin8 + W Forces)2 + E(PresT = Wt+ F + F x (90)x2 .x x2 Dx2 Ix2 g
2

and,

FIx2 = CIRAD P T T FAwx - (x2 + Z21. E), I (91)

where A is the acceleration of the water at the point a distance z21wx
from the center of gravity. Thus, Eq. 90 becomes:

Wt. sine + Wx2 - TX2 + E(Pres. Forces)X2 + FDx2 + CIRAD
PTV-

TAwx

= ( gt + CIRAD P T T) x2 + CIRAD P T Tz21 (92)

For the numerical program as developed, the last term was inadvertently

ignored, but should have small influence.
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In the z2 direction:

Z Forces = Mass Acceleration

Wt. cos 6 - Wz2 - Tz2 +Z(Pres. Forces)Z2 + `FDz2 + EFIz2

Wtg 2
and

(93)

_
FIz2 CIAXL P TV [Awz - (z2 - xCH ) (94)

Thus Eq. (93) becomes,

Wt cos8 - Wz2 - Tz2 + Z(Pres. Forces)Z2 + EFDz2 + C I A X L P T AW Z

( gt + CIAXLP T) z2 - CIAXL P TxCH-* (95)

For the numerical program as developed, the last term was inadvertently

ignored, but once again, it should have small influence.

For the Summation of Moments:

Z Moments abut the c. g. = I 6

Wx2 z22 - (FD+FI)x2 z21 + Tx2 z23 +E(Pres. Forces) Mom.A rms

Z(FD+FI)z2 xCH =r @ (96)
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or,

Wx2 z22 - FDx2 ' z21 + Tx2 z23 + Z(Pres. Forces) Mom. Arm

FDz2 xCH - CIRAD PTV T [Awx - (x2 + z2l 8d . z21 - CIAXLP T

Z3- [Awz - (z2 - xCH e) xCH = T B (97)

or,

Wx2 ' z22 FDx2 z2l + Tx2 z23 +E (Pres. Forces) ' Mom. Arm

FDx2 xCH - CIRAD P TV T Awx * Z21 - CIAxL P ,LAY A
Wz

x xCH

2 2)_ (I + CIRADP TN, T Z21 + CIAXLP TZ-V xCH 8

+ CIRAD PT-V T * z21 x2 - CIAXL PT (Z XCH)z2--------------------------------------------- (98)

In Eq. (98) the solidly underlined term was inadvertently deleted

from the numerical model. The terms that are underlined with dashed

lines were evaluated with the previous values of acceleration from the

time increment in question. The three Eqs. (92), (95) and (98) should be

solved simultaneously. All the foregoing errors were realized during

the writing of this report and will be rectified in the future. However,

of utmost importance for any numerical model is how well it matches

experimental results. The RESULTS section of this report shows that

the match was very good.

Integration of the Equations by Recurrence

The accelerations were obtained in the secondary coordinate system

and converted to the primary system. Then the displacements and

velocities of the buoy in the primary system were determined for the

next time increment by the use of recurrence formulae.
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It is necessary to get started properly and for this work it was

considered that the acceleration was constant during the first time inter-

val. Thus the displacements, rotations, and velocities for the first time

interval. were obtained from the basic equations:

Att=o,
x =

2
XO (Ot) 2 i.. +x

0
(99)

(100)

For time greater than zero, it was assumed for each time increment

that the velocity, and acceleration was constant during the interval and

equal to the average values. Thus

xs+
1 = 2 xs - xS-1 +X

S
(A t)

I Atxs+l = xs +- (3 xs - xs-1)

(101)

(102)

wherein the subscript s+ 1 represents the value at the next time increment,

s is the present time increment, etc. and x represents any displacement

or rotation.

During the time increment, At, the water surface changes position

as well as the buoy so that a new set of forces act on the buoy. With

the new forces, new accelerations are obtained and the work proceeds

from one time increment to the next.
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Coefficients for the Buoy

The drag coefficient, CDRAD' was given a value of 0. 036 for

simplicity. This was a value obtained from drag tests on a model buoy

in a wave-towing basin. It is realized, however, that the drag on the

buoy is due to viscous skin friction drag and bow wave drag and is thus

dependent on Reynolds number and Froude number. Therefore, the

assumed constant coefficient represents an average value for the likely

ranges of relative surface current velocity. A more exact, and variable,

value of CDRAD can be easily inserted into the program.

The drag coefficient, CDAXL' was taken to be 9. 64 (ft. /sec. ) as

explained further in RESULTS. This is a dimensional drag coefficient

because of the unconventional form of the drag expression. It is realized

that this is an extremely crude and empirical approach and needs refine-

ment. However, the results show good agreement between the hydraulic

model and the numerical model.

The inertia coefficient, CIRAD' was taken to be 0. 4. The value

was assumed from best judgement. No information exists on experi-

mental determination of this coefficient. There is information on other

floating shapes, such as Lewis forms, a cylinder, sphere, etc. , but it

is known that this coefficient depends a great deal on the shape of the

object. Ref. 3 , gives some information on two-dimensional forms.

Laboratory experimentation is sorely needed to determine the inertia,

or added mass, coefficients for floating buoys.

The inertial coefficient, CIAXL' was taken to be 1. 4 and was

adjusted to help force the pitch drag curve of the numerical model to
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agree with the hydraulic model. It is shown in Ref. 10, how this inertia

coefficient can greatly influence the natural period of the buoy in pitch.

This was experienced when experimenting with the value of CIAXL.

It is not generally known, however, that the inertia coefficient has a

small influence on relative damping. This is also reviewed in Ref. 10.

As pointed out in Refs. 11, and 13, it is most important to adjust any

model, whether it be a numerical model or a hydraulic model, so that

the natural or resonant frequency of model motion falls into the same

position on the modeled wave spectrum as does the prototype condition.

The wind drag coefficient, CDW, was taken to be 100 ft2, and it

was assumed that the center of application of the wind force was 28. 2'

above the center of gravity, as shown on Fig.9 . This coefficient

also needs verification by laboratory experimentation.

Wave Equations

The equations which define the wave activity will now be sum-

marized.

The pressures acting on the buoy were evaluated by using the Airy

wave theory except near the surface of the water.

The classically derived expression for the water pressure is,

cosh kz ((
P =Y L n cosh + (h - z)'

with q = H/2 sin (kx - wt)

(103)

(104)

where y is the unit weight of sea water, k is the wave number, 21T /X

with A the wave length.
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Eq. (103) gives erroneous values for pressure for points on the

buoy hull near the water surface because as z approaches p , Eq. (103)

does not approach zero. Therefore, the pressure was determined

arbitrarily from the following equations.

p= Y(h+rl-z) (}i>o, z> h)

r cosh kzP Y r> cosh + (h - z) (rl

cosh kz 1

cosh kh + (h - zl 1 - p(h+rl -z)

(105)

(p< o) (107)

A Stokes finite amplitude wave of third or fifth order could have

been used but it was felt that the small increase in accuracy, if any,

was not worth the effort. A trochoidal wave was considered but not

used because the water particles orbit in directions opposite to those

which are observed.

The remaining equations are for the horizontal and vertical water

particle velocities and the horizontal and vertical water particle temporal

accelerations. It was assumed that effects from convective acceleration

could be ignored. The equations, in the above order, are,

> o, z < h) (106)

= H w sin (kx- w t) cosh kzu
2 sinh kh

Hw
2

cos (kx wt) sinh kz
sinh kh

H
2-T w cos (kx - w t) Sow

(108)

(109)

110)

w 2 w 2 sin (kx - wt) ss
li h kh (l 11)
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RESULTS

Line Motion

Directly after the Conclusions of this report is a sample output

from the computer program for the simulated Bermuda mooring dis-

cussed later in this section. It was included in order to illustrate the

different output formats for the steady state current case and the dynamic

wave case. At time 9. 83 seconds one can detect an elastic, or longi-

tudinal wave forming in the line as well as a transverse wave.

A listing of the entire program was not included as it is felt that

such lengthy listings in publications are of value only to the authors.

Instead, fairly detailed flow charts are included which explain the

dynamic portion of this work. It was intended to use only a few symbols

in the flow charts so that one need not be familiar with notation to be

able to follow them.

In Ref. 15 are displayed the results of measurements of mooring

line tension and vertical buoy acceleration for a single point mooring

of the forty foot diameter ONR buoy in 13, 000 feet of water near Bermuda.

The vertical accelerations were converted to water surface elevations

by double integration and spectra were calculated for the accelerations,

the water surface, and the mooring line tension fluctuations.

One case was selected for study and an attempt was made to com-

pare results from the numerical model with the actual measurements,

with good results. The November 5, 1966, information was used

because a distinct spectrum existed for the line tension' at 590 feet and

3590 feet down the line. Experimental transfer functions were determined
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for this study by dividing the ordinates of the tension spectra (after the

noise level was subtracted out) by the ordinates of the wave spectrum

and taking the square root of the result. Fig. 25 shows the result.

Unfortunately, the wind and surface current was not recorded for

the selected day, but on October 26 a wind speed of 6. 1 kt. and a surface

current of 0. 7 kt. were recorded. The condition used for input to this

program were a wind of 11. 8 kt. , or 20 fps and a surface current of

2. 9 kt. or 5 fps, with a distribution according to depth as shown in the

Sample Output.

Transfer functions were obtained from the numerical model by

subjecting the mooring to a number of wave trains, each of a particular

frequency. It was intended to continue each wave until steady state

dynamic response was achieved. Then, assuming that the range in line

tension is linearly related to wave height, the transfer function for the

given particular frequency can be obtained by dividing the range in line

tension by the wave height.

Figs. 12 through 23 show the results by plotting the water surface

at the buoy and the line tensions with respect to time. It can be seen

that in most of the cases, steady state response was not truly achieved.

The cases were not continued, however, because of lack of funds. The

figures also show that more than one frequency existed in the response.

The source of this other frequency or frequencies has not as yet been

determined. One possible source would be the time required for an

elastic wave to traverse the line to the anchor and back. Possible other

sources would be the pitch or heave frequencies of the buoy.
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The degree of linearity was checked for at least.one case that

for a wave length of 260 feet and heights of 2, 5, 10, and 20 feet. The

sparse results as shown in Fig. 24 indicate that linearity in line tension

is strongest at the deeper position on the line. This possibility. is also

indicated in Ref. 15 where the probability density distributions of line

tension are more normally distributed with depth.

The comparisons between the prototype spectra and the spectra

obtained with the numerical model is shown in Fig. 25. It is felt that

the results show good agreement, considering that the prototype system

was actually loaded in a three dimensional manner while all the forces

in the numerical model are co-planar. Other differences were in the

steady state current loading and the fact that the prototype was excited

by a truly random wave while the numerical model was excited by a

number of discrete wave frequencies, which only works when linearity

exists. Besides, the numerical model had not reached truly steady

state and it was thus difficult to select the proper tension range. It

was felt that a peak tension followed by a minimum was more represent-

ative of what the steady state range would be than vice-versa.

Fig. 26 shows a plot of line tension contours on the s -t plane for

the same mooring as shown in Fig. 14.

--
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Buoy Motion

Some hydraulic model information exists at General Dynamics -

Convair on the decay curves, among other things, of a 1:53. 5 scale

ratio model. Coefficients and drag expressions were adjusted in the

numerical model so that the results matched as shown in Fig. 27. It

should be noted that the drag coefficient in the axial direction is dimen-
sional since the drag force in that direction was taken proportional to

V/JVJ 6. Thus, in the prototype the drag coefficient needs to be 9. 64

when one considers Froude modeling.

Fig. 28 shows the decay curve in heave of the 1:53. 5 scale ratio

model. The decay curves in pitch and in heave were determined for the

buoy in the free floating, or unmoored condition.

Fig. 29 shows the response curve in pitch of the unmoored proto-

type buoy when a 150 kt. wind is suddenly applied to it. The steady

state motion of the buoy under such a circumstance is a constant speed,
which the program predicted, but was not shown here.

The remainder of the displayed results are for the buoy at tht-,

modeled Bermuda mooring. Fig. 30 shows the attitude of the buoy as

predicted by the program on the surface of a wave 200 feet long by 20

feet high. The motion appears to be quite realistic.

Frequency response curves for the prototype buoy at the Bermuda

mooring in pitch and heave were also constructed. Linearity of pitch

and heave with respect to wave height was seen to exist for the 260 feet
long wave. Fig. 3 1 shows that the frequency response curves are quite

flat and nearly equal to 1. 0 up to a frequency of 0. 28. The largest
value was 1. 05 to 1. 07. This indicates that the wave spectra as computed
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from the buoy vertical acceleration are probably quite good for wave

frequencies below 0.28. Another conclusion indicated by these curves

is that the buoy is nearly perfectly a surface follower (although some

lag, or phase shift, may exist) for waves longer than 65 feet, and is

stable, or motionless,,for waves shorter than about 35 feet.

The results obtained from including internal line damping, or

structural damping, were inconclusive and erratic. Therefore, they

are not included in this report. It is hoped that this topic will be pur-

sued vigorously in the future.
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CONCLUSIONS

From the results it can be concluded that the numerical model as

developed, without, internal line damping, doers 'reds nable job of

modeling the actions of a prototype mooring -'or Goth:the line, axed :the

buoy. However, only sparse data exists from prototype moorings or

model studies and it cannot be assumed that the numerical model is

good for all ranges of water depths, wave conditions, etc. Primarily,

more laboratory information is needed so that the large number of

coefficients used can be properly evaluated.

The transfer function generated had good agreement with proto-

type information.

The influence of internal line damping on the propagation of dis-

turbances down the line should be investigated in the future.

The numerical model is operational and fairly economical to run.

Now more sophisticated expressions for the forcing functions can be

introduced. However, since coefficients need to be evaluated by

experimental methods even with the more sophisticated expressions,

it is felt that the influence on the results from the program will be

small.



SAMPLE OUTPUT

The following pages are shown in order to illustrate the type

of output printed from the program



DACRON LINE 1.5 INCH DIAMETER SCOPE sc 1.33

GR PHO CDN CUT
32.20 1.990 1.400 .035

VELOCITY GRADE CHANGES

5.000
2.925
2.0RS
1.250
.4?n

0.000
0.000

STRESS GRADE CHANGES

0.0
408000,0

1(,30000,0
3060000.0
4900000,0

D DMU OP BD
.125 2.440 13100.000 40.000
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CD, wIF UTEN
9016 48.0 A0000,0

CORRESPONDING DEPTH CHANGES

0.000
.190

2.80
.330
p380

WI NS NP CRIT IN PLACE SCOPE
20.000 1 30 26,2 1.359

SEGMENT LENGTHS IN FEET ARE 17800,0

neon
200.00
400.00

80.00

1800.00
4000.00

40000.00

CORRESPONDING STRAINS

OEIGHTS9 STARTING FROM BOTTOM ARE 0 0
TOTAL DRAG ON BUOY = 1173.3 LB
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NO. OF ITERATIONS BOTTOM ANGLE SURFACE ANGLE 80TTOM TENSION SURFACE TENSION

25 .55875 1.32609 2528.2 4843,

SEGMENT NO, INCREMENT NO.

1

1

1

1

1

1

1

2
3
4

1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
1 25
1 ?6
1 27
1 28
1 29
1 30

SEGMENT NO.

1

TOTAL

S/STOTAL (IN PLACE) TrN/UTEN xI/DP 7ET1/DP

.0245 004284 .028009 ,018022

.0498 ,04359 .056496 .037400

.0761 004440 .085497 ,058?33

.1034 .04526 .115051 .080631

.1318 .04620 .145200 .104718

.1614 .04720 .175987 ,130635

.1923 ,04829 .2n7463 ,158537
.2247 .04945 .239680 ,188604
.2588 .05071 .272695 .221036

.2946 .05207 ,3n6574 .256064

.3324 .05354 .341384 .293949

.3725 .05513 .377203 ,334993

.4151 .05686 0414117 ,379543

.4604 05874 452219 .428001

.5089 .06078 .491616 ,480835

.5609 .0630? .532427 , 53Rr;93

.6169 ,06548 .574785 .601Q22

.6776 006818 .618863 .671588
,7426 .07112 .664184 .747491

08082 007413 .707985 ,825149
.8619 .07663 .742378 ,889601

.8960 .07822 .763163 .930970

.9153 .07911 0774348 .954715

.9269 07965 .780697 , 9691 89

.9347 .08001 .784718 .979026

.9401 .08025 .787287 .985P14
09439 .08042 .788994 .990894

.9466 ,08054 .790148 ,994?95
,9489 .08064 .701^0r- .997.27
.9508 ,08073 .79166f .999733

IN PLACE LENGTH ON SHORE LENGTH IN PLACE/ON SHORE

17800.0000 15408.0868 111552

16924.0172 15408,0868 1.1552

T(1. 31) 4.84296730E+03, TEN(1. 30) = 4.84371699E+03

SCOPE

1. , 17

TSHORES = 14895.347
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RADIUS TO UPPER,CHINE 20.000 RADIUS TO TOWER CHTNF = 13,070
HEIGHT TO UPPER CHINE = 4.000 HEIGHT TO L_OWEP CHINE _ n.000
TOTAL DEPTH OF t+UUY = 7.500 WEIGHT OF BUOY IN POUNDS = 184600.59
INERTIA COE_-F. OF Nt1OY, PAD _ .400 INERTIA CUFF. OF BUOY, AXL 1.400
DRAG COEF. OF BUOY, AXE, = 9.640 MOMENT OF INERTIA OF BUOY = 7.50F++0F+
DENSITY OF LINE, SLUGS/FT. _ 07992 INERTIA COFF. OF LINE, TRNS ?.Q00
UNIT WEIGHT OF wATE.i = 64.000 DENSITY OF WATER, SLUGS/FT. .n'439
WAVE LENGTH = 260,000 WAVE HEIGHT = 5.000
WAVE FREQUENCY ,887 WAVE NUMBER = .02417
PHASE SHIFT = 145.01632 WAVE PE.RIOo _ 7.1?277
DENSITY OF AIR, SLUGS/FT.3 _ .0024 DRAG COEF. OF WIND = 100.000
LINE LENGTH IN FEET = 16,924.02 WATER DEPTH IN FEET = 12972.06

OS IJELTAT CELL SG A14 A24
564.13 91927 938,963 1?26q 0.0r0n 0.n00n
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TIME = 0000

SEGMENT NO. 1

POINT COORDINATES ANGLE TENSION VELOCITIES
NO. X 7. RADIANS PARALLEL PERPENDICULAR

1 0.00 0.00 5.587E-01 2,528E+0'3 0. no

2 478.34 299,06 5,916E-01 2.583E+03 0. no

33 946,60 613.67 6.231E-01 2.640E+03 0, no

4 1404.72 942.87 6.533E-0.1 2.700E+03 0. 0.

5 1852.70 1285.75 6.1121E-01 2.762E+01 0. 0.
6 2290.59 1641.41 7.097E-01 2.826E+03 0. Of

7 271..52 2009.01 7,360E-01 2.893E+03 0. 0.

8 3136.62 2387.74 7,611E-01 2.961E+03 0. 0.

9 3545.09 2776.83 7.850E-01 3.031E+03 no no

10 3944.14 3175.59 8.078F-01 3.103E+03 0. no

11 4333.99 3583,35 H.296E-01 3.176E+01 0. 0.

12 4714.87 3999.50 8,504E-01 3.251E+03 0. no

13 5087.00 4423.4. 8,704E-01 3.327E+0.3 0. no
14 5450.61 4854,80 8.894V-01 3.404E+03 0. no

15 5805,93 1+292.97 9.074E-01 3.483E+03 0. no

1b b153.32 5737.46 9.247E-01 3,562E+01 0. U.

17 6492.94 6187.91 9.415E-01 3.b43F+03 0. no

1$ 6824.99 6643.97 9.5716_-01 3.724E+03 0. 0.

19 7149,86 7105.17 9.724E-01 3,807F+03 0. 0.

20 7467.67 7571.26 9.868E-01 3.890E+01 00 0.

21 7778.69 8041.91 1,001E+00 3,974E+03 0. no
22 8083.16 8516.83 1.014E+00 4.059E+01 09 0.

23 8381.25 8995,78 1.027E+00 4.144E+03 0. n.

24 8673.17 9478.51 1,039E+00 4,230E+01 Of no
25 8959.06 9964,83 1,052_F+00 4,317F"+03 no 0.

26 9238,90 10454.67 1.064E+00 4,404E+03 no 0.

27 9512.65 10947,93 1,078E+00 4.492E+01 0. 0 .
29 9779,62 11444.90 1.093E+00 4.581E+03 0.

/0

29 10039.05 11945,84 1.115E+00 4.664E+01 0. 0.

30 10287.36 12452.39 1.155E+00 4.757E+01 0. 0.

31A 10514.98 12968.56 1.155F+00 4.84,1E+0i 0. no

TOTAL LINE LENGTH = 16924.02



PITCH ANGULAR CG COORDINATES
ANGLE VELOCITY X Z

-6.042E-02 0. 0,00 0.00

ANGLE OF HUnY AP COORDINATES
VELOCITY VELOCITY X Z

0. 0, 10514,98 12968.56

Z3WATR2= 3,49513E+00
TOTAL DISPLACED VOLUME,

SLOPE. OF WATER SURF=

55

AP VELOCITY
x z

??80,9956
.0604 WATER SURFACED 1.S060E'01

ANGULAR CG ACCELERATION AP ACCELERATION
ACCELERATION X Z x

3.847E-02 -1.936E+00 -1.701E+6 -2.101E+00 1.710F+00

ENORMOR SUMRUN STPESSS DELSNP OS ENDSTR ESTRAIN R

5.642E+02 1.692E+04 0. 39437E+00 5.641E+02 8.998E+01 0. 1.011F-01
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TIME 2 ,19

SEGMENT NO, 1

POINT COORDINATES ANGLE TENSION VELOCITIES
NO. X 2 RADIANS PARALLEL PERPENDICR -A^

1 0.00 o,oo 5.587E-01 2,528E*03 0, 0.
2 47806 299.03 5915E-01 2.583E+03 -3.045E-n4 -2.237E- 3
3 946,63 613,62 6.231E-01 2.640E+03 -1.513E-03 -19364E-^3
4 1404,77 942,80 6,532E-01 2.7Q;E'C l -2,15 , E-3 F-
5 1852.76 1285,65 6,b2lE-01 ?,762- -01 .?, 3(,5E- o -6,905E-'

6 2290,67 1641,30 7,097E-01 2082, +0-A -2,250E-n3 -8.090E-l
7 2718,61 2008.88 7,360E-01 2.883E+03 -1.951E-03 -1.127E-^3
8 3136,73 2387.59 7,611E-01 2,Q61E+01 .1 614E-03 -1,5?9F'-»,

Ii

9 3545,22 2776,67 7,850E-01 3.031E+03 -1.352E-r 3 -1,965E
10 3944,29 3175.41 8,078F-01 3,103E+03 ..1,340E-n3 -i.9S7E-r3
11 4334.15 3583.15 8.296E-01 3,176E+03 -1.711E-n3 -1.595E-n3
12 4715,04 3999,28 8.504E-01 3.251E+03 -2,612E- 3 -5.395E-n4
13 5087,19 4423,26 8,703E-01 3.327E+03 -3.285E-n3 2.940E-n4
14 5450.81 4854,56 8,894E-01 3,404E+03 -1.7F0E-n3 -1.818E-o3
15 5806,16 5292,72 9,074E-01 3.483E+03 1.283E-03 -2.555E-n3
16 6153,55 5737.20 9,247E-01 3.562E+0*4 3.629E-n3 7.601E-n4

17 6493,19 6187.63 9,414E-01 3.643E+03 .2,224E-n3 -1 .4 3 3E' 0 3
18 6825,26 6643,68 9.571E-01 3,724E+03 -1.672E-n3 -2.340E-n3
19 7150,14 7104,87 9.723E-01 3.807E+03 -2,840E-03 -5.877E-n4
20 7467,96 7570,96 9.868E-01 3,890E+03 .2,090E-n3 -1.902E-n3
21 7779,00 8041,60 1.001E+00 3.974E+03 -2.83nE-03 -7.346E-n4
22 8083,47 8516,52 1,014E+00 4.059E+03 -2.575E-n3 -1.658E-n5
23 8381,57 899546 1,027E+00 4.144E+03 .2.656E-3 2,097E-n3
24 8673,50 9478.18 1,039E+00 4,230E+01 .3.035E-03 6.n73E-n3
25 8959,39 9964.51 1,052E+00 4.317E+03 .2.998E-n3 5.605E-n3
26 9239,23 10454.34 1.064E+00 4.404E+03 .4.0cOE-n3 1.650En2
27 9512,96 10947,62 1,078E+00 4,492E+03 .5.711E-03 3,957E-n2
28 9779.89 11444,60 1,093E+00 4,581E+03 -1.003E-02 4, 065E-A2
29 10039,20 11945,61 1.116E+00 4,669E+03 -2.272E-02 7.711E-n2
30 10287,11 12452,35 1.153E+00 4,757E+03 -a,4R5E-o2 1.557E-n1
31A 10514.94 12968.53 1,153E+00 5.255E*03 .4,656E-01 2.362E-n l

TOTAL LINE LENGTH = 169224.11
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PITCH ANGULAR CG COORDINATES
ANGLE VELOCITY X Z

-5,970E-02 7.414E.-03 10514,69 12972.82

ANGLE OF BUOY AP COORDINATES AP VELOCITY
VELOCITY VELOCITY X z x 7

3.H25E+00 5.221E-01 10514.94 12968.53 -4.049E-01 -3.296F-01

Z3WATR2= 3.10251E+00
TOTAL DISPLACED VOLUME= 2460,4551

SLOPE. OF WATER SURF= .0595 WATER SURFACE= -4,2376E-01

ANGULAR CG ACCELERATION
ACCELERATION

AR ACCELERATION
x z

2,885E-02 -1.288E+00 -3.868E+06 -1.412E+0f? "3.R74F+00

ENORMUR SUMRUN STRESSS DELSNP DS ENDSTR ESTRAIP4 R

5.642E+02 1.692E+04 0. 3.438E+0Q 5.641E+02 H,941E+01 0. 1.011E-01
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TIME = 9.83

SEGMENT NO. 1

POINT COORDINATES ANGLE TENSION VELOCITIFS
NO. x z RADIANS PARALLEL, PERPFNDICIILA

1 0.00 0.00 5,560E-01 2.532E+0'3 00 00
2 479.17 297.73 5.890E-01 2.587E+03 , 1 .573E-n2 »9.129E-n3
3 948,24 611,13 6.206E-01 2.644E+03 -2 9 b?6E-02 -1.460E-n2
4 1407.18 939.19 6.509E-01 ?.704E+03 ..3.926E-n2 -1.962E-n2
5 1855,98 1280.99 6,798E-01 2.766E+03 -4,748E-02 -2.292E-n2
6 2294.72 1635.61 7.074E-01 2.830E+03 -5.096E-n2 -2.4(,lE-n2
7 2723.50 2002.21 7.337E-01 ?,897E+0i -4.699E-n2 -?.503E-n?_

8 3142.47 2379.98 7.589E-01 2.966E+03 -3.256E-02 -2.452E-n2
9 3551.80 2768.18 7.829E-01 3,037E+0i ..5.268E-13 -2.329F-n2

10 3951.68 3166.09 8.059F-01 3.110E+01 3.555E-n2 -2.154E-n2
11 4342,34 3573,08 8.278E-01 3,185E+03 8.828E-n2 -1.933E-n2
12 4723,99 3988.522 8.487E-01 3.261E+03 1.503E-nl -1.647E-02
13 5096.88 4411.84 8,686E-01 3,340E`03 ?.214E-nl -1.277E-n2
14 5461,25 4842.51 8.1177E-01 3.419E+03 '3.085E-n1 -89749E-n3
15 5817.35 5280,05 9,059E-01 3.501E+03 4.276E-n1 -2.968E-n3
16 6165.42 5724.00 9.233E-01 3,586'+03 5.999E-n1 4.527E-n3
17 6505,70 6173,95 9.400E-01 3.673E+03 A.4n3E-01 1,649E-n2
18 6838.44 6629.51 9,559E-01 30763E+0'3 1.14?E+00 3.398E-n2
19 7163.86 7090,32 9,712E-01 3.854E+03 1.464E+00 5.550E-n2
20 7482.19 7556,06 9.859E-01 3.945E+03 1.735E+n0 7.8?8E-n2

21 7793,65 8026.42 1.000E+00 4.033E+03 1. .8h?E+00 1.n0SE-nl

22 8098.45 8501.13 1,014E'00 4,115E+03 1.768E+00 1.222E-n1
23 839E .78 8979.92 1.027E+00 4.190E+0'3 1.414E+nO 1.432E-n1
24 8688.82 9462.59 1.040E+00 4.26OF+03 8.327E-n1 1.229E-n1
25 8974.62 9948,96 1,052E+00 4.327E+03 1.317E-01 8.278E-n2

26 9254,15 10438,97 1,065E+00 4.396E+0'3 -5.177E-n1 -2.182E-n3
27 9527,45 10932,49 1.1177E+00 4,473E+03 -9, 170F:*-n l -1.951E-n1
28 9794,92 11429.18 1,')87F400 4,562E+03 -8,9?fE-nl -79106F..-01
29 10057.39 119213. 1.095E+00 A.666E,0°a -3.478E-n1 -1.469E+n0
30 10316.01 12429.90 1,087E+00 40785: 03 6.999E-n1 4.342E-r1

31A 10509.14 12967,02 1,087E+00 40948F+03 8029? "ni 337E+00

TOTAL ONE LENGTH = 16930,6'?
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PITCH ANGULAR CG COORDINATES
ANGLE VELOCITY X Z

4,490E-02 3.806E-02 10509.34 12971.37

ANGLE OF BUOY AP COORDINATES AP VELOCITY
VELOCITY VELOCITY X Z x Z

2.317E+00 2.480E+00 10509.14 12967.02 -1.684E+00 1.821E+00

Z3wATR2= 3.59126E+00
TOTAL DISPLACED VOLUME= 3053.1992

SLOPE OF WATER SURF *= -.0493 WATER SURFACE= -1,4423E+0n

ANGULAR CG ACCELERATION AP ACCELERATION
ACCELERATION X Z x z

-3.508E-02 1.150E+00 1.221E+0r 1.300E+00 1.217E+00

ENORMUR SUMRUN STRESSS DELSNP DS ENDSTR ESTRAIN R

5.713E+02 1.693E+04 0. 3.451E+00 5.641E+02 R.918 :+01 0. 1.002E-01
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FLOW CHARTS

The flow charts that appear on the following pages were con-

structed almost completely with phrases instead of symbols. The

purpose was to present the form of the computer program as clearly

as possible.
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DRIVING PROGRAM

START

STEADY C
Compute the position of line and buoy due to
wind, current, gravity

SINITAL
Establish the initial conditions for the line
and buoy. Set the number of increments of
the line.

DYNAINP
Input force coefficients, wave height,_ length,
etc. Set t = 0. Establish At.

Define functions, such as wave water particle I
velocity, pressure, etc. Certain functions for j

method of characteristics.

SPRINTO
Print coordinates, angle, tension and
velocities of each of the given number of
points on the line.
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DRIVING PROGRAM - CONT.

BPRINT 1
Print the coordinates and velocities of the
center of gravity and attachment point of
the buoy. Print pitch angle and angular
velocity.

BMOTION
Compute the forces, thence the accelera-
tions of the buoy, then the coordinates and
velocities after the given At for the center
of gravity and the attachment point.

BPRINT2
Print the angular and translation accelera-
tions of the buoy.

BOUNDRY
Compute the angle and tension of the line
at the anchor (velocities and coordinates
= 0).
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DRIVING PROGRAM - CONT.

T
SINTRNL
Compute the velocities, angles and
tensions for each of the given points
on the line except the top two.

T
SBUOYTP
Test to see if the next to last point should
be dropped from the array or if one more
should be added, then compute the velo-
cities, angle and tension. Determine all
coordinates. Compute the total elonga-
tion in the line and the strain in the last
segment, thence the tension and angle
at the attachment point.
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DYNAINP

I ENTER

Read buoy dimensions, weight, moment of
inertia, inertia and drag coefficients; line
and water density per foot of line, inertia
coefficient of line, wave length and height.

Calculate buoy dimensions and inertial qual-
ities in accordance with the scale ratio.

Initialize all velocities = 0

Compute the wave frequency and phase.
Establish At and the initial pitch angle
of the buoy.

T
Print all input quantities

RETURN
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FUNCTIONS

Several functions are now established:

Water surface elevation from still water surface

Slope of the water surface,

Horizontal wave water particle velocity

Vertical wave water particle velocity

Horizontal wave water particle acceleration

Vertical wave water particle acceleration

Wave pressure

Current velocity at a point - from the velocity
profile

Other functions pertaining to the method of
characteristics solution for line motion.
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SPRINTO

LENTER]

Print time

Print:
Line increment number
coordinates
angle with horizontal
tension
parallel velocity
perpendicular velocity
All the above for each of the
given points on the line

Print the current total line
length

If wave height is being built up
gradually, it is done here

RETURN
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BMOTION

ENTER

Divide buoy into ,4N number of pie-shaped
pieces, (initially N=3). Establish the co-
ordinates for the intersection points of the
center-line plane of each pie piece with the
chines and gunwale.

CALL STRIPFC
Determine pressure, drag and inertia forces
acting on each pie-piece..

CALL SECCART
Convert all forces to the secondary coordinate
system. Compute-the total submerged volume
of the buoy. Complete the computation of gross
forces.

CALL SUMMOM
Compute the summation of moments about the
center of gravity of the buoy due to ALL FORCES.
Determine the angular acceleration.
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BMOTION - CONT.

CALL SUMFORC
Sum all forces in the secondary
coordinate system and obtain the
corresponding accelerations from
Newton's second law of motion.
Convert the accelerations to the
primary coordinate system.

With new accelerations, use re-
currence formulas to obtain new
values of pitch, angle and angular
velocity. Determine the coordinates
and velocities of the center of gravity
and the attachment point.

IRETURN



STRIPFC

Compute the pressure at each
angle point on the piece. Clas-
sify situation into one of four
possibilities.

Compute the magnitude, posi-
tion and direction of each buoy-
ancy force in tertiary coordinate
system.

Calculate submerged volume.

I
Calculate the relative motion
(velocity and acceleration) in
the Z2 direction at the lower
chine.

69

Calculate the forces in the ZZ direction due to drag and inertia
and assume they act at the lower chine.
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BOUNDRY

ENTER

Determine the celerity of longitudinal and transverse waves in
the line. Establish interpolation distance on the line therefrom.

Interpolate values of co-
ordinates velocity, angle
and tension for use in the
method of characteristics.

With the equations from the
method of characteristics solve
for the angle and line tension at
the anchor.

IRETURN
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SINTRNL

ENTER

Determine the celerity of longitudinal and
transverse waves in the line. Establish
interpolation distances on the line therefrom.

Yes Print this
condition

STOP

Interpolate values of coordinates, velocity, angle
and tension for use in the method of characteristics.

With the appropriate equations from the method
of characteristics, solve for the velocities,
angle and tension at the point in question.

Are the
computations complete
for all but the last two

points on the liner

Go to the next
increment point
up the line. No

Yes
RETURN
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SBUOYTP

ENTER

I
Determine the celerity of longitudinal and
transverse waves in the line. Establish
interpolation distances on the line therefrom.

Is the
interpolation

distance greater than the lines
increment

9

Is the

the attachment point to the
wave less than the distance from

tance of the longitudinal
interpolation dis-

next increment point

Print this
condition
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SBUOYTP - CON'S'.

Delete one increment
point from the array

Calculate the coordinates of all the remaining increment
points and the distance from the attachment point to the
next increment point down.

Calculate the angle at the surface from the geometry o
the last increment length.

Calculate the parallel and perpendicular velocities at
the attachment point from the buoy velocity.

Calculate the perpendicular velocity of the increment
point below the buoy as the average between that at the
attachment point and two increment points below the
buoy.
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SBUOYTP - CONT.

Compute the average strain from the tensions
in each increment up to but not including the
one next to the buoy and the total strain from
geometry. The difference is the strain in the
increment next to the buoy.

Determine the average tension in the end in-
crement from the stress-strain diagram or
the appropriate constitutive equation including
internal damping concepts.

Calculate the tension at the attachment point
from the average tensions and the tension at
the first increment point down.

RETURN
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SBUOYTP - CONT.

By the method of characteristics procedures
including interpolation, calculate the parallel
velocity, angle and tension at the increment
point below the buoy.

Is the
interpolation distance

of the longitudinal wave less
than (the distance from the attachment

point to the next increment point minus o
standard increment length)

9

Yes

LI
Add one increment point to the array

Use linear interpolation between the attachment
point and the last determined increment point to
obtain the velocities, angle and tension at the new
increment point.

No
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Wind

FIG. 1. DEFINITION SKETCH OF THE STATIC PROBLEM



-7
/

Positive perpendicular
,,,direction

U_ / Positive
parallel direction

FIG. 2. FREE-BODY DIAGRAM OF A SMALL ELEMENT OF
THE MOORING LINE.

FIG. 3. THE VECTOR, V, AND THE MOORING LINE
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AL
2

®L
2

FIG. 4. CHANGE IN LINE DIAMETER

(a) (b)

Firmo-viscous materials Elastico-viscous materials

FIG. 5. SPRING AND DASHPOT MODELS OF LINE RESISTANCE
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NOTE: There is a great deal of scatter in laboratory results of
stress-strain diagrams for both Dacron and Nylon plaited
lines. The diagram used below is fairly representative
for either Dacron or Nylon.
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FIG. 7. THE s-t GRID
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FIG. 8. THE THREE COORDINATE SYSTEMS USED FOR THE
BUOY ANALYSIS
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FIG. 9. FREE-BODY DIAGRAM OF THE BUOY WITH ALL FORCES
SHOWN SCHEMATICALLY
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28' DIA.

Total Weight, including
ballast = 184,600 lbs.

0

Y

4O11 DIA.

FIG. 10. DIMENSIONS OF THE ONR BUOY USED IN THIS STUDY
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Note: The buoy was
divided into 12 pieces
for the initial work

Plan

b) Perspective of one segment

FIG. 11. DIVISION OF THE BUOY FOR CALCULATION OF FORCES.
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FIG. 12. MOORING LINE TENSIONS AT VARIOUS POSITIONS AND WATER SURFACE
ELEVATION AT THE BUOY VS. TIME. WAVE LENGTH = 2000 FEET.
WAVE HEIGHT = 20 FEET.
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FIG. 13. WAVE LENGTH = 500 FEET. WAVE HEIGHT = 5 FEET.

40

0



Q)

+5

(See FIG. 12)

7000

cz
6000

5000
-0 1--000

26 28 30 32 34 36 38 40
Time in seconds

FIG. 14. WAVE LENGTH = 350 FEET. WAVE HEIGHT = 5 FEET.
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FIG. 18. WAVE LENGTH = 260 FEET. WAVE HEIGHT = 2 FEET.
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FIG. 19. WAVE LENGTH = 200 FEET. WAVE HEIGHT = 5 FEET.
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FIG. 20. WAVE LENGTH = 160 FEET. WAVE HEIGHT = Z FEET.
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FIG. 21. WAVE LENGTH = 125 FEET. WAVE HEIGHT = 2 FEET.
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FIG. 22. WAVE LENGTH = 52 FEET. WAVE HEIGHT = 1 FOOT.



0 5000

J 4000 6 7

(See FIG. 12)

8 9
Time in seconds

10
I

FIG. 23. WAVE LENG'IIf t2 FEET. WAVE HEIGHT = 1 FOOT.

4-



97

Point 31A, the buoy attachment point
a Point 30, about 590 feet down the line
o Point 25, about 3590 feet down the line

Range of line tension fluctuations in pounds

FIG. 24. WAVE HEIGHT VS. LINE TENSION FLUCTUATIONS FOR
WAVE LENGTH OF 260 FEET, FREQUENCY OF 0. 14 CPS.
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FIG. 27. DECAY OF UNFORCED PITCH MOTION - HYDRAULIC
MODEL VS. NUMERICAL MODEL.
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FIG. 29. PITCH OF UNMOORED BUOY WITH 150 KNOT WIND.
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FIG. 30. SUCCESSIVE POSITIONS OF THE BUOY ON A WAVE WITH LENGTH
OF 200 FEET AND HEIGHT OF 20 FEET: AS DETERMINED FROM
THE NUMERICAL MODEL.

+10

0

200

a)
0



104

2.0

Buoy Heave 0
Wave Height

0,00 0.1 0.2 0.3 0.4
Wave frequency in cps

2.0

Max. Buoy Pitch
1.0

Max. Wave Slope

000

I

0.1 0.2 0.3
Wave frequency in cps

0.4

FIG. 31. FREQUENCY RESPONSE CURVES OF THE ONR BUOY
WHILE MOORED IN 13,000 FEET OF WATER. FROM
THE NUMERICAL MODEL.
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NOTATION

The following symbols are first defined where used.

An area; Acceleration

C A coefficient for drag or inertia

C'd The celerity of a longitudinal wave in the mooring line

C! The celerity of a transverse wave in the mooring line

D The line diameter

E Modulus of elasticity of the line

F The sum of the forces perpendicular to the line; Forces on the buoy

G The sum of the forces acting longitudinally on the line

H Wave height, trough to crest

I Inertia; Moment of inertia

L A length of the line

M Total effective mass of the line in the perpendicular direction,
= µ + C I P

Submerged weight of the line, per foot

So Length of an elastic wave on the line

T Line tension

T Period of an elastic wave on the line
0

V Any vector; Velocity

Volume
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NOTATION - Cont'd

Forcing equation

Acceleration of gravity

Water depth

Wave number

Mass of the line; mass density of water

Water pressure

Coefficient of viscous damping, internal to the line

s Distance on the line, measured from the anchor

s. g. Specific gravity

Time

Horizontal water particle velocity

Horizontal water particle acceleration

Velocity vector of the line at a point

Vertical water -particle velocity

Vertical water particle acceleration

Horizontal coordinate within the domain considered

Vertical coordinate within the domain considered

Unit weight of sea water

Unit strain

Vertical coordinate of a point on the mooring line

Water surface as measured from the still surface

f

h

k

m

p

q

t

u

v

w

x

z
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NOTATION - Cont' d

Angle the mooring line makes with the horizon; pitch angle

of the buoy

x Wave length

µ Mass density of the line per foot

v Creation or destruction of line mass; kinematic viscosity

of sea water

Horizontal coordinate of a point on the mooring line

Mass density of sea water per foot of mooring line; volumetric

mass density

Unit stress

Potential function.

W Radian frequency of a wave

The parallel, or tangential direction along the mooring line.

Usually used as a subscript

1 The perpendicular, or transverse direction along the mooring

line. Also usually a subscript.




