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ABSTRACT

A numerical model was developed which predicts the dynamic
response of a single mooring line and a buoy of forty feet diameter
to sinusoidal waves, wind and current in all deep waters. All forces
and reactions were considered to be in one plane.

The basic equations for the mooring line motion were obtained by
cdnsidering a small element of the line in terms of the conservation of
momentum and mass and the continuity of the line filament. The
resulting partial differential equations were numerically integrated by
first a transformation followed by application of the method of character-
istics. A non-linear stress-strain diagram was used. The boundary
conditions were that no motion occurred at the anchor except rotations
and the motion of the upper end of the line was the ;same as the motion
of the attachment point of the buoy.

The buoy was considered to be a rigid body and accelerations
were determined from Newton's second law of motion. Recurrence
formulas determined displacements and velocities.

A comparison with some prototype information was made. Transfer
functions between wave spectra and line tension spectra were available
for a mooring in 13, 000 feet of water near Bermuda. The same transfer
functions were developed with the numerical model and good agreement

was achieved.




Frequency response curves for the moored buoy in pitch and
heave were also obtained and the results show that one dimensional wave

spectra obtained by double integration of the vertical acceleration of the

buoy are valid.
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INTRODUCTION

In recent years oceanographers have attempted to measure
various phjrsicél parameters of the ocean from moored buoys. Hence,
the engineering design/c.)f buoys and buoy moorings has become increas-
ingly important. The types of buoys and moorings are considerably
varied, but the single large discus buoy with a single line mooring has
been used with a high degree of success in deep ocean moorings. This
report is about the dynamic response of such deep water single point
moorings to ocean waves.

Until recently, the design of deep water moorings was based on
a static analysis of the system, taking into account the forces of
steady wind, ocean currents and gravity. If waves were considered,
it was on a static basis dealing with a single large wave. However,
in order to execute an economical engineering design, one needs to
be able to predict buoy motion and mooring line motion and tensions as
a result of oscillating wave forces.

In the summers of 1967 and 1968, the author conducted a study
for the Convair Division of General Dynamics in San Diego, California,
in which it was attempted to devise a numerical model of the buoy-mooring
system which would predict system response to the dynamic forces of
nature. During the 1968-69 academic year the study was continued at

Oregon State University with the support of the Office of Naval Research

while the author was on sabbatical leave from Colorado State University.




Literature Review

The mooring condition can be properly divided into two problems:
1) one of statics wherein one considers steady wind and current forces,
and 2) one of dynamics where one considers the oscillating forces from
the waves and the gusty wind. Throughout this report the first problem
will be treated lightly as it is well documented by Nath and Felix (9).
The foregoing reference shows how the static analysis is based on the
work of Morrow and Chang (7). The problem of mooring line statics
are also neatly reviewed by Berteaux (1).

Walton and Polachek (17) developed a digital computer solution
for the response of an inelastic line in water when the motion of the
ends are assumed. The buoy motion was assumed from knowledge of
the wave form and the anchor end was assumed to be motionless. The
continuous line was idealized to be a few concentrated masses and a
matrix representation of the resulting non-linear equations of motion
was formed. The line was assumed to be inelastic.

Paquette and Henderson (12) followed a procedure similar to that
of Walton and Polachek. They assumed the buoy moved in an elipse
which was four times higher than it was wide. The solution was
developed for the analog computer. They did consider the line to be
elastic, but they did not consider damping within the line. The solution
was obtained for both steel and nylon lines but only a few wave forms

were analyzed. They did not attempt to calculate frequency response




functions and they used a drag coefficient on the line of 1. 8, which is
higher than ordinarily used, in order to account for the additional

drag due to line flutter. Some of their conclusions were that horizontal
motion of the buoy had very little affect on line tension. For small
scope, dynamic tension in the steel mooring cable was very serious.
The synthetic fibres were not as subject to high dynamic tensions as
steel fibres.

In some instances the response of a buoy system to steady state
current is calculated, then a factor of safety of five or more is applied
to account for dynamic conditions, fouling, fish bite, etc. Various other
grossly approximate methods to account for the dynamics of the problem
are utilized. One objective of this study is to determine the position
of all parts of the mooring line and buoy at all times. Therefore,
gross methods are not applicable.

A relatively new approach to the solution of problems dealing
with mooring line dynamics was proposed by Wilson and Garbaccio (19).
They studied the case of a large ocean vessel moored in deep water
and subjected to harmonic waves. Simplifying assumptions were made,
one of which was that the mooring line prevented the vessel from
drifting, but no other motion of the ship was influenced. It was assumed
that the vessel would be larger than 1000 tons. The numerical model
was based on the method of characteristics and the boundary conditions

were prescribed, or assumed, as follows: the line was assumed to be




tangent to the ocean floor at the anchor and the motion of the upper end
of the line was assumed to follow a somewhat elliptical path as pre-
scribed by the ship motion. A pseudo-dynamic solution was also
developed wherein only the static solution was used in conjunction with
the change in the effective water depth due to the passing of a wave.
Fairly good agreement was obtained between both cases, but the
magnitude of the water depth was not mentioned and it is felt that
although the pseudo-dynamic solution may give reasonable results for
relatively small water depths, it will be quite inadequate for large water
depths. |

An almost completely general approach was presented by
Langer (5) for predicting the motions of a catenary in space. The term
'catenary, ''as used in the report, refers to any purely flexible line
that can resist tensile stresses only. The governing equations for-a
line subjected to any forcing systems were developed. However, the
structural damping in the line was ignored and this omission was
continued by Wilson and Garbaccio.

A new publication on the topic is by Reid (14), where the basic
equatiohs are reviewed in detail including important stress-strain

relations for the mooring line. A general, three-dimensional vector

approach is taken with specifics on the co-planar problem.




Purpose of this Research

The purpose of this research was to develop a numerical model
of the dynamic action of a single point mooring of a large oceanographic
buoy. In the future it is planned to use this model to study the influence
on the system response from any of the important variables, such as
scope, water depth and wave length, line type, atmospheric conditions
and buoy size, shape and load. The initial goal has been accomplished
and, in addition, a small amount of useful data was obtained which

compares this work with prototype information.

Purpose and Scope of this Report

The purpose of this report is to document the development of the
work which pertains mostly to the dynamic model. That is, not much
space will be devoted to the static model. It is hoped that the procedures
presented herein will be useful for developing solutions to related problems.
The work used for illustration is limited to considering a forty-feet
diameter discus buoy moored with a single nylon line in 13, 000 feet of
water with an '"in-place' scope of 1.31. However, the program has been
tested favorably in nearly all water depths and for several scopes.
Two programs were developed--one was based on a non-linear stress-
strain diagram and did not include the damping factor due to the frictional

action within the line, while the other did include the damping, but was

based on a linear stress-strain diagram. Initial load stretch was -




| considered. Transfer functions were developed for the undamped case

and compared with those determined from the Bermuda mooring of

Buoy Bravo of General Dynamics-Convair (1 5).




THEORETICAL DEVELOPMENT

The forces of nature were applied to the mooring system in one
plane. That is, it was assumed that wind, waves and current were all
from the same direction. Consequently, the reaction motion of the
mooring system was also in that vertical plane.ﬂ

The static problem was solved first to determine the initial
condition for the boundary value problem in dynamics. A sinusoidal
wave was then applied to the system and at zero time the system was
released from the static position and allowed to re§pond to the
osciilatory forces. Thus the transitory condition was meaningless.
Thelsystem was ’allowed‘ to vibrate unfcil steady state motion existed,
\:vhen the program stopped. Thus the amplitudes of the steady state

system response were obtained and compared with the wave amplitudés

in order to determine transfer functions.

Motion of the Mooring Line

Problem in Statics

A set of integral equations were determined, as in Ref. 7, from
considering the line to be in static equilibrium. These equations are:
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Wherein T is the line tension, B is a subscript denoting the
bottom or anchor end of the line, 0 is the angle the tangent of the line
makes with the horizontal, s 1is the distance along the line from the
anchor, ¢ is the vertical coordinate of a point on the line from the
ocean bottom, £ is the horizontal coordinate of a point on the line
from the anchor, P is the submerged weight of the line per foot, G is
the tangential force acting on the line per foot and F represents the
normal forces. Fig. (1) shows all the variables involved. The complete
development of Fgs. (1) through (4) and the numerical procedures for
their solution is given in Ref. 9. The computer program calculates the

unstressed length of the line and accommodates large concentrated loads

on the line.




The Equations of Dynamics

The equations of motion of the ﬁldoring line were developed with
the approach taken by Langer (5) and reviewed briefly in Nath and
Felix (8). = In that development a few points were left unclear and some
of them will be discussed here.

Consider a small element of the mooring line as sho{vn in Fig. 2.
The complete hydrodynamic forces acting on the line are designated as
F and they will b’e discussed in detail in later sections‘. ~ Such forcesr
are considered to act only in a perpend‘icular direction because the
longitudinal component of the hyd)rodynamic forces has a negligible
influence on the action of the line. The other two forces acting on the
element are the line tension, T, and the submerged weight, g (u-p)ds,
where p is the mass per foot of line and .p is the mass of displaced

water per foot of line. From Newton's second law of motion:

. q »
ZF = =
orces I (mv)

wherein m is the total mass of the element and v is the instantaneous
velocity vector of the motion of the'él'erflent. The mass, m, is equal
to wAs and will be assumed to be constant. The mass can increase or
decrease with time from biological growth or corrosion, but such

changes take place over a much longer time period than the periods of

concern for wave dynamics. Theréf.d.rie,, Eq. (5) can be written:

(5)
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dv
= =~ 6
Z Forces m = (6)

It will be necessary to obtain the perpendicular and parallel

components of Eq. (6) and it is useful to note that, along the line:

a 9 9
at - 3t T V% 5s (7

Wherein v, 1is often the speed of an elastic wave along the line. Thus,

_ oV v
2 Forces = m (Bt + A7 Bs) (8)

It will now be shown by dimensionless representation that the second
term within the parentheses is negligible with respect to the first

term. Let v, be the celerity of an elastic wave on the line and S and
T, be the corresponding wave length and period, and let v =v, v',

t = Tot', s = Sys', where the prime denotes a dimensionless quant‘ity.

Then the part in parentheses of Eq. (8) becomes,

y av' V“ avl
Vo (To YIRS as.) (9)

or,

MT ( v’ N av' (10)
T
o ot' as'




11

but,
At = of AL (11)
Vi

thus,

(12)

and since v, >>1 the second term in the parentheses can be neglected.

Thus the required two components of Eq; ('8) can be written,

p (Forces)ur = m (-%-Z—) (13)
’ I(

Z(Forces)J_ = m (—g—%’-) (14)
L

Wherein the subscript // denotes the parallel, or tang'ential, direction
and .l denotes the perpendicular, or radiall,’ direction.

The vector components acting on the line can be obtainéd as
follows. Let V be any vector as shown in Fig. 3. Then the following

relationships exist:

V., = V_cos® + V_sin® g (15)
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vy o= V cos® -V sinB
z x

Since V is a vector, is a vector; therefore,

ot

av _ [V o 4 V) g
3t ] | 8t cos 3t n
] X z

B\Y, AV ALY
P = — Z 3
t )" 1 cos® + t siné&

and

——QY' = __?_\_fz cos® - CAES sin®
ot Jy ot

Now, taking the derivative of Egs. (10, 11),

oVu  _ Vx oVz . . 26
vl ot cosO + 5t sin® + (V, cos® - Vy sinb) 5t
M. Vs ge8 - —2YX ging - (V4 cos® + V, sin8) 29
ot ot dt x z at

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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Then by substitution,

2 V; oV 36
— = [ — ; 23
ot ( 3t) Lo ot (23)
i
VL oV pri
-4 _ [f oY - — 24
ot ( ot )4 Vi X (24)

Similar relations are obtained when the differentiation is performed

with respect to s. Thus, by rearrangement,

oV 3 Vi 96
L 25
( as)u 98 T (22)
2VY) . %, v, 20 26)
9s /i s 9s

Now, one can substitute any vector for V.

Let ¢ i)e a potential function such that its derivative along the
line represents the rate of change of the unbalanced external forces.
Then, substituting for m, the vector sum of Egs. (13) and (14) can be

expressed as,

9 (d+T B oV )
e As = Asp ot | ‘ (27)
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~Then for Eq. (13), reversing,

"3V A 3
(), () (B), -

or,
OV 36 9T 38  The sum of the
H( ot 4 Bt) 3s TJ— 3s * external forces per (29)
foot in the parallel
direction

but T does not have a perpendicular component and the longitudinal
forces are assumed to be only those due to gravity. It has been seen
in past work that the perpendicular external forces are at least one
order of magnitude greater than the longitudinal forces. Then, by

rearrangement of Eq. (29),

QM _ ® 1 _ oL . SR
Y v, 3t " - -g (1 s.g.)51n6 (30)

Eq. (30) is the equation of motion of the line in the parallel direction,
wherein s.g. is the saturated specific gravity of the line. Similarly,

the equation of motion in the perpendicular direction is:

Vi 38 T 30 The sum of the
- LR —— 31
( ot Va 81:) 3 T Tu os T external forces per (31)
foot in the perpen-
dicular direction
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or,
d Vj 08 T 96 Fr _ 1
S - — = = - 1- — 32
ot B ot v 9s v g s.g.) cos® (32)

In Eq. (32), F¥; represents the sum of all the external forces
acting on the line in the perpéndicular direction, excluding those due
to gravity.

The conservation of mass concept supplies an independent equation.
Consider a control volume that intersects the line at right angles with
two planes a small distance apart, large enough in the transverse
dimension so that the flow of the line mass into and out of the control
volume takes place only through the two planes. Theﬁ the conservation

of mass relation can be stated as,

Apv = (s, ~ (33)
1 o '

7/
wherein v 1is the creation or destruction of mass, taken to be zero

here. Thus,

(u a‘s’+v—3ﬂ- g2 -0 (34)

i
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By an order of magnitude analysis similar to that applied to Eq. (8), one
can show that the second term within the parantheses is negligible with

respect to the first term. Using this, plus Eq. (25), we have,

Lt - (35)

The last governing equation is obtained by considering the line to be

continuous, with a smooth curvature. From Eq. (16):

(_..8_‘.'_> - V2 osp . —RYX ging (36)
98 ds 3s .
dZz 3x
b = =
ut, v, Nt and Vi ot , so that

3v ) . |2 [z =\ |
( as)l = [81: (85)] cos8 - [Bt( Bs) sin® (37)

and, 2z = siné, 9x = cos®, thus,
ds ds
" av 2 36 .2 30
(85)_‘_ cos 6 oy + sin“® 3T (38)

Then by simplifying Eq. (38) and expanding the lhs,
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oV, 30 o0
—o% - , = 3
9s Ty 3s at 0 (39)

Summarizing, we now have four equations and four dependent
variables, v, , v, , 8, T and two independent variables, s and t.
The line density, w, is a variable, but it is dependent on the strain,
E, and thence the tension, T, as will be shown next.

Referring to Fig. 4, the line density per foot, p, at some time,

t, is related to the initial line density, u_, by,

. pel
b= ThaL (40)
or,
= . (41)
b=, ( 357) | |

wherein, € is the unit strain.

The part in parentheses can be expanded as a series. Saving the first

two and most significant terms,

B=p, (1-€) : (42)

and,

Op _ Je o , 4
5t Mo 5% R , : (3)
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As a mooring line expands and contracts, internal friction
from the rubbing of the fibers will dissipate energy so that internal
damping of dynamic action will exist. Very little is known about the
true mathematical form of such damping except that if the model is as
shown in either Fig. 5a or 5b, it is not correct according to Refs. (2)
and (16). However, these models are frequently used because of their
mathematical simplicity and the results give at least an approximate
idea of the influence of damping. For this work it would seem reasonable
to use a model similar to Fig. 5b since plastic lines continually deform
under a constant load. However, the resulting equations were not
convenient to introduce into the foregoing developments, so the model
for the firmo-viscous condition of Fig. 5a was adopted, using a
hysteretic damping coefficient, as will be explained. Thus the equation

for stress in the line becomes (16),

o (g) +4 (44)

Q
H

Jt

wherein ¢ is the dynamic tension divided by the original cross-
sectional area of the line and o(e) is the statically loaded non-linear

stress-strain diagram, typical of braided or twisted lines, and g is

the viscous damping coefficient.




This work was divided into two investigations--one dealing with
the internal damping where the prbblem was considerably simplified
by assuming a linear stress- strain diagram and one which ignores
the internal damping, but considers the non-linear stress-strain
diagram. These approaches are exemplified by Egs. (45) and (46)
and the corresponding stress-strain diagrams are shown in Fig. 6.

Without damping:

g = o (g)

With damping:

= E
o €+ q 5t
wherein E is the modulus of elasticity.
Parallel developments will be presented for the damped and

the undamped cases.

19

(45)

(46)

Without damping, from the ¢-¢ diagram constructed of straight

line segments:

= 0. + E.¢€
1 1

wherein i denotes the segment into which E falls.

(47)
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Then
30 _ o€
ot - Ei ot
or,
Je 1 o T
ot AE. ot

where A is the original cross-sectional area of the line. With

damping, from the displaced g¢-¢ diagram, see Fig. 6:

2
30 _ il 3 €
3t - T Tar T 9l
or,
2
oe 1 T _9 J_€E
3t = AE & E 5t

(48)

(49)

(50)

(51)

By substitution of Egs. (51) and (49) into Eq. (43) and thence into Eq. (35),

and by assuming that the mass density does not greatly change, i.e.

B =p,, one obtains for the conservation of mass equation (it should be

noted that up to this point u has been treated as a variable and now is

considered to be constant):

Without damping - conservation of mass

Ny v 06 -1 3T
38 L 38 AE; oot

(52)
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With damping - conservation of mass

2
8“1 - v 89 _ ]. 3T - i 8 £ (53)
ds L ds AE ot FE ot

It will be convenient to consider the rhs of Eq. (53) as a forcing
function by obtaining an estimate of 32 e /ot 2 from past strains.

The forcing function, F; (pounds per foot) in Eq. (32) now needs
to be determined. The external hydrodynamic force on the line is
determined from the Morison equation, which states that the total force
is the sum of a drag component and an inertia component. The drag
component is proportional to the square of the relative velocity between
fhe water and the line. The inertia component is due to the total effects
from the pressure field set up by the accelerating fluid and the effects
from the disturbance of the acceleration field set up by the presence of
the cylinder. The former is equal to the mass of the displaced fluid

times the fluid acceleration and the latter is proportional to the difference

in acceleration between the fluid and the cylinder. Thus,

: ~ 2
C_Dm
4L 7 2 r r + m w+ 4 mr (54)

4

wherein CD is a drag coefficient, taken as 1.4 for this work, which
includes a consideration for flutter, D is the line diameter, m 1is the

mass density of the water, Vr is the relative velocity, A is the
A%

‘acceleration of the water, CI is. an inertia coefficient which is

commonly taken as 1.0 for a cylinder and A_ is the relative acceleration.
r
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But, p = WDZm/4 and Dm = 4p /wD.
Thus Eq. (54) becomes:
2 CD p Vrlvrl

= A 55
¥ D + opA_+ CopA (55)

Also,

V =V cosB -V sin@ - vy (56)
z x

r

where V. and V are the vertical and horizontal water velocities as
z x A

functions of x and 2z, and,

A =A cos® -A sind -( 2 V) (57)
r Z b4 ot 1
Recall that,
ov
2]
ot 1 ot at

Now by combining Eqgs. (24), (57), (55) and (32), it is seen that,
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3V 2C_p
L) 08
Cree) St T T T wp VeVl !
1 (58)
-A si - o ——
+ (p+CIp) (AZ cosB Xsm@) Hg (1 g ) cosB
Letting p + CI p =M, FEq. (58) becomes,
Conservation of momentum, perpendicular direction:
v C :
i 2
+ v, 89 LT _98 _ D \% |V '+
ot ! ot M 9 s D CI+ s. g. rl r
5
1+CI 2 ] (59)
H{=——=—=](A cosb - A sinB) - (2B~} o cosb
s.g.+CI z x s.g.+1
Repeating other governing equations for convenience of reference:
Conservation of momentum, parallel direction:
v
" - 98 _l_ oT 1 1 10 6
ot L ot T Y T - 8 (L) sin (60)
Continuity of line filament:
vV,
+ 08 98
3 s + Vi 5 - ot =0 (61)
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Conservation of mass without damping:

v
(. 3 _1 3T _ (52)

Conservation of mass with damping:

2
BV" oy 30 _ 1 9T :g 3d_€ (53)
3s 1 3s AE ot E 2

Perhaps the reader should be reminded that at this point p is con-

sidered to be constant.

Solution by the Method of Characteristics

Wilson and Garbaccio (19) show that the above set of hyperbolic
partial differential equations are quasi-linear because the derivative
terms never appear as products. They can be solved, therefore, by

the method of characteristics.

There are at least two methods to transform the equations to
total differentials for solution, but perhaps that shown by Lister (6)
is as easy to follow as any. Since the equations are quasi-linear,
useful linear combinations of them can be formed as follows.

Multiply Eq. (52) by +Cy, and add to Eq. (30). The result is,




) | s

‘ i 97, B | 30 Cu 3T
i ot S 3s 4 Y (1 s _AEi 3t
(60)
1 oT
- = = - I - sin®
’ . as g ( )
|
Now, if Cj u = AEi/C“ , then equation (60) can be written,
1 ,
|
3 Dv
‘. it D6 1 - DT 1 .
- - = - 1~ 2] 61
Dt Vi Dt C" N Dt g ( s.g ) Sin ( )
Where,
D 0 o
= 62
Dt 5t T O T (62)
AEi 1/2 o
Cy = |— (63)
M

| Eq. (63) is the celerity of a longitudinal elastic wave along the line.
Fq. (6l) is a total differential equation expressing the activity of the

four dependent variables, Vi s Yy, O and T, with respect to time

along the characteristic curve,
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A similar total differential equation can be generated by multiplying

Eq. (52) by -C,;, and adding to Eq. (30). The result is:

Dv
Moy, 28, L DT =) sine
Dt L Dt T uc, bt 8V
where,
D 3 9
Dt Jt Cu s
(AE.)UZ
i
C = | ———
1 W
and

The only changes to the above, by considering Eq. (53) instead of (52)

would be in Egs. (61) and (65), such as,

(64)

(65)

(66)

(63)

(67)
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Dv, C g .2
" Do 1 DT 1 [ 9 €
—_— S L —— == = g (] - in@ - —— —o- 68
Dt ~ 2 Dt ~ pc, bt - sl -gg)sme - oy (68)
and,
. 2
! v DS + L DT _ (1 ) sin8 + T ? 0 ¢ (69)
Dt 1 Dt " uc, Dt VTG E  9F
Now, two additional total differential equations can be formed by
multiplying Eq. (39) by +C;, and -C; and adding to Eq. (59),
respectively, to obtain,
Dv
1 D86
Dt + (v, - Cy) Dt rhs 59 (70)
where,
D 0 d
_ - 2 71
1/2
T
= — . 72
Cy (M) | (72)

and it should be noted that C; is the celerity of a transverse wave

moving along the line. The solution is executed on the characteristic,

_g_f_ - 4 (;TM_)I/Z o o (73)
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Also,
Dv
1 D6
ot + (V“‘-l-c“) Dt =rhs 59
where

D 3 3
Dt - 3t T A 3
. _‘T 1/2

< R V]
1/2

Fig. 7 shows the s-t plane with which one can visualize the mode
of solution, using the fixed time interval procedure with the method of
characteristics. The procedure for this work was as follows. Assume
that all the unknowns are determined at the s intersection points at
some time, t. Then the four slopes of the four characteristic curves,
Egs. (64, 67, 72 and 76) were determined at each grid point and applied
at the t+ At grid points. Take point (s,t) for example. The four
total differential equations, (61, 65, 70 and 74) aﬁre then presented as
difference equatiohs and the values of the four dependent variables,

Vi VY, 8 and T, are determined at the grid intersection point,

(s, t+ At).

(74)

(75)

(72)

(76)
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In the above p;OCedure it is assumed that the characteristic curves
can be app;oximated as stréight lines over the inte/rval, Aht.’ A second
order correction can be made to this assumption,” but if Wa; fqund not
necessary to do so if At was kept sufficiently small.

It should be kept in mind that point s on the liqe at time t does
not represent the same tagged point at t + A t. That isk, if one Wé\re
to imagine a painted point on the physical line near point s, then the
painted spot will shift with respect to point s on the s-t grid as the
line length extends and contract. In this respect the s-t grid ié
analagous to the Fulerian coordinate system in fluid mechanics: The
s-t grid is fixed in space and time and the line moves with respect to
the grid. Referring to Fig. 7, grid point (NR, 0) represents the upper
end of the line at time 0 and grid point (1, 0) represents the anchor
end of the line. The heavy dots near grid NR represent the upper end
of the line when the line is sho;‘ter than at time 0 and ti;le circles
represent the upper end when the line is longer. The computer program
that was assembled to accomplish the above calculations took into account
the change in line length. The addition or deletion of grid points at the
upper end of the line was accomplished.

The boundary and initial conditions were established such that

vy and v; were always zero at the anchor and were zero at all points

on the line at t=0. At the anchor the four equations reduce to two, so
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that we have a system of two equé.tions and two unknowns. At the top
of the line it is specified that the coordinates and velocities must be equal
to those of the attachement point of the buoy.

The tension at the top of the line was determined by taking the
computed coordinates of point NP and the known coordinates of the
attachment point, (from the bﬁoy subroutine) and calculating the
residual strain in the end piece. Then the tension was calculated with

the aid of either Eq. (46) or (47).

Final Fquations for Numerical Solution

The finite differences form of the equations will be shown for the
condition without internal damping in the line.

Using Eq. (61) as the example:

no A8 1 AT _ - L
At -+ at T Cp at 0 F 5g

) sind® (77)

Using the superscript (1) to denote conditions at the present time
and the superscript (2) to denote conditions at the end of the next time

increment:

2
Vu( ). Vi ) (1) 6(2) - 9(1) 1 T(Z)‘T(l)

- v - =
At L At Cy B At

(78)

(1)
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In the second term of the lhs of Eq. (77) v, appears and could
be considered as the average value during the time increment. However,
non-linearities then appear in the products with the angle, 6. It was
felt that if At were kept sufficiently small that the value of v, for
the present time; or (1) conditions, would give good results. Therefore,
matters were simplified in all the total differential equations by using
the (1) value of all variables except where they appear in the derivatives.

Thus, Eq. (78) becomes:

(1)

) sin®

The (1) conditions were interpolated from the grid intersection in the

s-t plane. Similar operations were performed on Egs. (65), (70) and

(2) (2)

(74). Thus four equations with four unknowns (v ,ovy o, 8,

T(Z)) result.

A matrix representation of the equations was made.
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! On 3
cds
pdt

- - ~ 1/2¢
(1) 1 @7 ¢ A !

! 0 e ) Cap Y 1 :( P) ’
' 1/2

(1) 1 (2) ¢ : (AE :

e s "Con e 2 :(u ) Z
- Co1y2.

0o 1 vy (1)-cl) 0 o) £, (—1\TZ) :
? 1/2 .

1 2 . [T X

LO 1 (v,,( )+cl) 0 ] ~T< ) ] _f4‘ —(ﬁ) ;

1
Note that the value of VL( ) in the first row is different from the value

1
of vj_( ) in the second row because they are interpolated to different

, 1/2
positions in the s-t plane. That is, one starts from + (AE/p) /

1/2

and the other starts from - (AE/p) The forcing equations, f,

will be listed below.
A IR ¢S N (IR CO NS SR ¢

f.=- Atg (1 - i - -
) Atg ( s ) sin® + v, A Co

(1) (1) (1) g1 1 (D

) sin® + vy - vy

s
1
i
D
(ol
03¢
—
—
1

s
1l

C 1+C
D 2 1 (1) . (1)
3 At[ﬁD (CI+S. g.) Vrlvr‘+ {s. g. +CI) (Az cos® - Ax sin®

(80)

(81)

(82)

(83)
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1+C
V A cose(l) - A sine(l) -
l | s. g. +C Z x

_(s. g. -1)g Cosa(l)}r VL(I) . (1) N c,_(”) of1)

(84)

Special consideration was given at the boundaries in accordance with

information presented in earlier parts of this report.

Coefficients for the Line

The drag coefficient, CD, was assumed to have a value of 1. 4,
which was the value used by Wilson (18). This seems to bea reasonable
value, accounting for low Reynolds number and possibly some additional
drag due to line strumming. The drag forées acting longitudinally on
the line were assumed to be negligible, as was determined with experi-
mentation on the steady current part of the numerical model).»

The inertia coefficient, CI’ was taken as 1.0 since the pressure
distribution that exists due to the acceleration of the fluid had already
been considered.

The saturated mass density of a 1-1/2" diameter dacron or nylon
line was estimaﬁed to be 0.03 slugs per foot. Thus the saturated specific

gravity was 1. 23.
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Motion of the Buoy

The Equations of Dynamics

The buoy was treated as a rigid body. At a given timer, all the
forces acting on the buoy were determined. Thence from applying
Newton's second law of motion, the translation and rotational accelera-
tions were determined. After having obtained the accelerations, the
displacements and velocities at the next time increment were determined
from recurrence formulae.

It is not possible at present to predict the pressure distribution
on a floating object subjected to waves. It was felt that an approximate
approach to representing the forces acting on the buoy would suffice
providing the qualifying coefficients involved were evaluated with real
information from either a laboratory study or a prototype study. Thus,
the forces acting on the buoy were considered to be those fromwave
pressure (considering hydrostatics and water particle acceleration due
to wave motion), viscous drag, added mass effects (water acceleration
due to the presence of the buoy), wind drag, gravity and mooring line
tension.

It was found necessary to consider three coordinate systems
while working with the forces acting on the buoy. The primary coordi-
nate system has been illustrated in Fig. 1. The secondary coordinate
system is oriented to the buoy and moves with the buoy. The tertiary
coordinate system is one of cylindrical coordinates and describes all

points on the buoy in three -dimensional space. All coordinate systems

are illustrated in Fig. 8.
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Consider Fig. 9 which shows the buoy as a free body diagram with
the above forces acting on it, Fig. 10 shows the important dimensions
of the buoy. In order to approximate the force distributions as they
occur in nature, it was necessary to develop a strip theory technique.
For this study, it was decided to divide the buoy into several pie-shaped
pieces as shown in Fig. ll. Since it was not known how the hydro-
dynamic forces were distributed on the surfaces of the buoy, the drag
and inertia forces in the z2 direction were assumed to act at the lower
chine as shown in Fig. 9. The drag and inertia forces in the x2 direction
were assumed to act at a point one-~half way from the attachment point
to where the water surface intersects the buoy center line. The pressure
forces were evaluated by using the Airy wave theory except right ne‘e‘ar
the surface of the water as explained later.

The forces were first computed for the x3,y z3 coordinate éystem
and then converted to the secondary system. The forces in Fig. 9 will
now be developed in more detail.

In the x2 direction the total drag force was assumed to be primarily

dependent on the buoy surface area and was:

2
- m (40)
Fpxz " “prap — 7 P 1 V2 !Vx2{ (85)

wherein p T is the mass density of the water per cubic foot, CDRAD is

the drag coefficient of the buoy in the radial direction and VX is the

2
relative velocity between the water and the buoy, evaluated at the mid-
point between the attachment point and the intersection of the water

surface with the buoy center line. The water velocity is due to wave

action and water current, Also,
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Fre2 = Ctrap?T ¥18%2 (86)

where CIRAD is the inertia coefficient of the buoy in the radial direction

(which should not include an accomodation for the pressure gradient in

the fluid), # is the total submerged volume of the buoy and AxZ is

T

the relative acceleration between the water and the buoy, evaluated at
the same point as the above relative velocity.
The wind force was calculated as,

PV lvl
C a WI| WI

Fwinp = “pw 72

(87)

where CD is the wind drag coefficient and has dimensions of ft. 2,

w
Pa is the mass density of the air and VWI is the wind velocity. As a
simplification, the velocity of the buoy, or the relative velocity, was
ignored.

In the z2 direction, as previously stated, the drag and inertia
forces were assumed to act at the lower chine. The drag and inertia
forces were calculated for each pie piece and later summed. In order
to make the dynamic action of the numerical model match that of an
early hydraulic model, it was necessary to adjust not only the drag and
inertia coefficients but the basic form of the drag expression itself.

It was desired to create a pitch decay curve that had considerably more

damping for small magnitudes of pitch than for large magnitudes of

pitch. The final expression for drag was thus,

F_. _=C wa9? 1 1
Dz2 = CpAXL 4 T2 T2 =2

.6
VZZI. (88)
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where CDAXL is the drag force in the z2 direction and VzZ is the
relative velocity between the water and the buoy evaluated at the lower

chine. Likewise,

Fiz2 = CiaxpPr ¥ 45 (89)

where CIAXL is the inertia coefficient in the axial direction, % is

the submerged volume of the individual pie piece and AZ is the

2
relative acceleration evaluated at the lower chine. Thus, the equations

of motion become:

In the x2 direction:

2 Forces = Mass - Acceleration

Wt.sin8 + W_,, - T_, + Z(Pres. Forces) ., + F + F =
x2 x2 : x2

Wt on
pxz t Fix2 T 5 %2 (90)

and,
Fr = Clrap®T ¥ [AWX-(x2+221-e)J (91)

where AWX is the acceleration of the water at the point a distance z21

from the center of gravity. Thus, Eq. 90 becomes:

ing - - ¥

Wt. sin® + W = T, + Z(Pres. Forces)_, + Fpxz t CIRADPT TAwx
=Mt ¢ P¥ )% +C b ¥ _z21. 6 (92)
“ g T MIRaD T T 2 T YiRADP TV T :

For the numerical program as developed, the last term was inadvertently

ignored, but should have small influence.
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In the z2 direction:

S Forces = Mass - Acceleration

- - = P
Wt.cos 6 - W Tz2 +Z(Pres. Forces)z2 + ZF + ZF

z2 Dz2 1z2
Wt
- —g" ZZ (93)
and
- - e - . e'
Frz2 = CaxL P 1 l,sz (%, - xCH )] | (94)

Thus Eq. (93) becomes,

Wt cos6 - W o - T _ + Z(Pres. Forces)zz + ZFDzz + CIAXLPTWA

z2 w2z

Z¥) %, - C P xCHOZ¥ (95)

Wt
=5 +C IAXL U T

IAXLp T

For the numerical progra‘m as developed, the last term was inadvertently

ignored, but once again, it should have small influence.

For the Summation of Moments:

= Moments abut the c.g. = 1 ©

W . 223 +Z(Pres. Forces) * Mom.Arms

x2

. 222 -
z (FD+F 2

I)XZ ©oz2l Tx

- I(FtF xCH =T 6 - (96)

I)z2 )
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or,
W_, - 222 - F - z21 + Tx2 - 223 + Z(Pres. Forces) - Mom. Arm
x2 Dx?2
i} ) ) ' i el - } »
ZFL,p " XCH - Crpap Pr¥r [AL L - (x, + 221 &) - =21 Craxrl T
= [Awz - (Z, - xCH - éﬂ xCH=T © (97)
or,
WXZ - z22 -~ FDXZ - z2l + T, z23 +% (Pres. Forces) * Mom. Arm
B} X B} . 3 >
Fpxz © XCH - CipapPr¥y Ay~ 221 - Cppp P o2V A xCH
- : 2 2 .
= (T + CipgapP ¥ r 221 + Cy o P 1 T¥ xCHY) &
FCmrapPr¥ T " 2210 X, - Coax,Pr (B¥%cen)Z2 (98)

In Eq. (98) the solidly underlined term was inadvertently deleted
from the numerical model. The terms that are underlined with dashed
lines were evaluated with the previous values of acceleration from the
time increment in question. The three Eqgs. (92), (95) and (98) should be
sdved simultaneously. All the foregoing errors were realized during
the writing of this report and will be rectified in the future. However,
of utmost importance for any numerical model is how well it matches
experimental results. The RESULTS section of this report shows that

the match was very good.

Integration of the Equations by Recurrence

The accelerations were obtained in the secondary coordinate system
and converted to the primary system. Then the displacements and

velocities of the buoy in the primary system were determined for the

next time increment by the use of recurrence formulae.
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It is necessary to get started properly and for this work it was
considered that the acceleration was constant during the first time inter-
val. Thus the displacements, rotations, and velocities for the first time

interval were obtained from the basic equations:

At t = o,
1 .. 2 '
X, = 5 X, (at)” + X, (99)
; ]
x1 = xO At (100)

For time greater than zero, it was assumed for each time increment
that the velocity and acceleration was constant during the interval and

equal to the average values. Thus

2
) T2, TR Xy (AN (101)
x o =x + AL 3% _x_ ) (102)
s+1 s 2 s -1

wherein the subscript s+1 represents the value at the next time increment,
s is the present time increment, etc., and x represents any displacement
or rotation.

During the time increment, At, the water surface changes position
as well as the buoy so that a new set of forces act on the buoy. With
the new forces, new accelerations are obtained and the work proceeds

from one time increment to the next.
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Coefficients for the Buoy

The drag coefficient, C D’ was given a value of 0. 036 for

DRA
simplicity. This was a value obtained from drag tests on a model buoy
in a wave-towing basin. It is realiéed, however, that the drag on the
buoy is due to viscous skin friction drag and bow wave drag and is thus
dependentron Reynolds number and Froude number. Therefore, the
assumed constant coefficient represents an average value for the likely
ranges of relative surface current velocity. A more exact, and variable,
value of CDRAD éan be easily inserted into the program.

The drag coefficient,v C , was taken to be 9. 64 (ft. /sec.) as

DAXL
explained further in RESULTS. This is a dimensional drag coefficient
because :of the unconventional form of the drag expression. It is realized
that this is an extremely crude and empirical approach and needs refine-
ment. However, the results show good agreement between the hydraulic
model and the numerical model,

The inertia coefficient, C was taken to be 0.4. The value

k IRAD’
was assumed from best judgement. No information exists on experi-
mental determination of this coefficient, There is information on other
floating shapes, such as Lewis forms, a cylinder, sphere, etc., but it
is known that this coefficient depends a great deal on the shape of the
object. Ref. 3, gives some information on two-dimensional forms.

Laboratory experimentation is sorely needed to determine the inertia,

or added mass, coefficients for floating buoys.

he i . .
The inertial coefficient, CTIAXL’ was taken to be 1.4 and was

adjusted to help force the pitch drag curve of the numerical model to
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agree with the hydraulic model. It is shown in Ref.10, how this inertia
coefficient can greatly influence the natural period of the buoy in pitch.
This was experienced when experimenting with the value of CIAXL'
It is not generally known, however, that the inertia coefficient has a
small influence on relative damping. This is also reviewed in Ref.10.
As pointed out in Refs.11l, and 13, it is most important to adjust any
model, whether it be a numerical model or a hydraulic model, so that
the natural or resonant frequency of model motion falls into the same
position on the modeled wave spectrum as does the prototype condition,
The Wiﬂd drag coefficient, CDW’ was taken to be 100 ftz, and it
was assumed that the center of application of the wind force was 28.2'

above the center of gravity, as shown on Fig.9 . This coefficient

also needs verification by laboratory experimentation.

Wave Equations

The equations which define the wave activity will now be sum-
marized,

The pressures acting on the buoy were evaluated by using the Airy
wave theory except near the surface of the water.

The classically derived expression for the water pressure is,

o =y [_gg_;ﬁ_‘gguh-z)] (103)
with n=H/2 sin (kx - wt) (104)

where Y is the unit weight of sea water, k is the wave number, 27 /A

with X the wave length.
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Eq. (103) gives erroneous values for pressure for points on the
buoy hull near the water surface because as z approaches n , Eq. (103)
does not approach zero. Therefore, the pressure was determined

arbitrarily from the following equations.

A Stokes finite amplitude wave of third or fifth order could have

been used but it was felt that the small increase in accuracy, if any,

p=yten-n  (nze exh (105)
" cosh kz
p :‘YI;n cosh kn T (B - Z)] (n > o, z <h) (106)
1
! p =Y[T1 __(:C;’;}}ll;hz +(h - zﬂ [1 " ) _Z)] < o) (107)
} :
i

was not worth the effort. A trochoidal wave was considered but not
used because the water particles orbit in directions opposite to those -
which are observed,

The remaining equations are for the horizontal and vertical water
particle velocities and the horizontal and vertical water particle temporal
accelerations. It was assumed that effects from convective acceleration

could be ignored. The equations, in the above order, are,

_H . cosh kz
U= >S-w sin (kx- wt) —nh Kh (108)
L H sinh kz
W= - — w cos (kx - wt) Sinh kh (109)

. 2 4 cosh kz

H
H 2 . sinh kz ‘
T w ‘ snn\(kx —'U)t) m (lll)

W o= -
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RESULTS

Line Motion

Directly after the Conclusions of this report is a sample output
from the computer program for the simulated Bermuda mooring dis -
cussed léter in this section. It was included in order to illustrate the
different output formats for the steady state current case and the dynamic
wave case. At time 9. 83 seconds one can detect an elastic, or longi-
tudinal wave forming in the line as well as a transverse wave,

A listing of the entire program was not included as it is felt that
such lengthy listings in publications are of value only to the authors.
Instead, fairly detailed flow charts are included which explain the
dynamic portion of this work. It was intended to use only a few symbols
in the flow charts so that one need not be familiar with notation to be
able to follow them.

In Ref. 15 are displayed the results of measurements of mooring
line tension and vertical buoy acceleration for a single point mooring
of the forty foot diameter ONR buoy in 13, 000 feet of water near Bermuda,
The vertical accelerations were converted to water surface elevations
by double integration and spectra were calculated for the accelerations,
the water surface, and the mooring line tension fluctuations.

One case was selected for study and an attempt was made to com-
pare results from the numerical model with the actual measurements,
with good results. Thé November 5, 1966, information was used

because a distinct spectrum existed for the line tension at 590 feet and

3590 feet down the line. Experimental transfer functions were determined
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for this study by dividing the ordinates of the tension spectra (after the
noise level was subtracted out) by the ord>inates of the wave spectrum
and taking the square root of the result. Fig. 25 shows the result.

Unfortunately, the wind and surface current was not recorded for
the selected day, but on October 26 a wind speed of 6. 1 kt. and a surface
current of 0, 7 kt, were recorded. The condition used for input to this
program were a wind of 11, 8 kt., or 20 fps and a surface current of
2.9 kt. or 5 fps, with a distribution according to depth as shown in the
Sample Output.

Transfer functions were obtained from the numerical model by
subjecting the mooring to’a number of wave trains, each of a particular
frequency. It was intended to continue each wave until steady state
dynamic response was achieved. Then, assuming that the range in line
tension is linearly related to wave height, the transfer function for the
given particular frequency can be obtained by dividing the range in line
tension by the wave height, |

Figs. 12 through 23 show the results by plotting the water surface
at the buoy and the line tensions Withi respect to time. It can be séeﬁ
that in most of the cases, steady state response was not truly achieved,
The cases were not continued, however, because of lack of funds. The
figures also show that more than one frequency existed in the response.
The source of this other frequency or frequencies has not as yet been
determined. One possible source would be the time required for an

elastic wave to traverse the line to the anchor and back. Possible other

sources would be the pitch or heave frequencies of the buoy.
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The degree of linearity was checked for at 1eastk,one case -- that
for a wave 1ength of 260 feet and heights of 2, 5, 10, and 20 feet. The
sparse results as shown in Fig. 24 indicate that linearity in line tension
is strongest at the deeper position on the line, This possibility.is also
indicated in Ref. 15 where the probability density distributions of line
tension aré more normally distributed with depth.

The comparisons between the prototype spectra and the spectra
obtained with the numerical model is shown in Fig. 25. It is felt that
the results show good agreement, considering that the prototype system
was actually loaded in a three dimensional manner while all the forces
in the numerical model are co-planar. Other differences were in the
steady state current loading and the fact that the prototype was excited
by a truly rvandor’n wave while the numerical model was excited by a
number of discrete wave frequencies, which only works when linearity
exists. Besides, the numerical model had not reached truly steady
state and it was thus difficult to select the proper tension range. It

was felt that a peak tension followed by a minimum was more represent-

ative of what the steady state range would be than vice-versa.

Fig. 26 shows a plot of line tension contours on the s-t plane for

the same mooring as shown in Fig. 14,
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Buoy Motion

Some hydraulic model information exists at Ceneral Dynamics-
Convair on the decay curves, among other things, of a i1:53. 5 scale
ratio model. Coefficients and drag expressions Wefe adjuéted in the
numerical model so that the results matc‘hed as shown ih f‘ig. 27. It
should be noted that the drag coefficient in thek ‘axialy direétion kis dimen-
sional since thé drag force in that diréction was taken‘proportiAonal toA
v/ |V| _6 Thus, in the profotype the drag ﬁoefficieﬁt needé to be 9. 64
when one considers Froude modeling, | o

Fig. 28 shows the decay curve in heave of the 1:53. 5 scale ratio
model. The decay curves in pitch and in heave were determined for the
buoy in the free floating, or unmoored condition.

Fig. 29 shows the response curve in pitch of the unmoored proto-
type buoy when a 150 kt. wind is suddenly applied to it. The steady
state motion of the buoy under such a cir(cumstance is a constant speed,
which the program predicted, but was not shown here.

The remainder of the displayed results are for the buoy at thc
modeled Bermuda mooring. Fig. 30. shows the attitude of the buoy as
predicted by the program on the surface of a wave 200 feet long by 20
feet high, The motion af)pears to bé quite realistic.

Frequency response curves for the prototype buoy at the Bermuda
mooring in pitch and heave were also constructed. Linearity of pitch
and heave with respect to wave height was seen to exist for the 260 feet
long wave. Fig, 31 sh.ows that the frequency response curves are quite

flat and nearly equal to 1.0 up to a frequency of 0.28. The largest

value was 1.05 to 1, 07. This indicates that the wave spectra as computed
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from the buoy vertical acceleration are probably quite good for wave
frequencies below 0, 28. Another conclusion indicated by these curves
is that the buoy is nearly perfectly a surface follower (although some
lag, or phase shift, may exist) for waves longer than 65 feet, and is
stable, or motionless, for waves shorter than about 35 feet.

The results obtained from including internal line damping, or
structural damping, were inconclusive and erratic. Therefore, they

are not included in this report., It is hoped that this topic will be pur-

sued vigorously in the future.
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CONCLUSIONS

From the results it can be"c(!(vm)nc'lu(“ited’ fhat the numerical model as
developed, without internal line damping, ;does @,;gg@s@nable job.of
modeling the actions of a prototype mooring for both:the line and the
buoy. However, only sparse data exists from prototype moorings or
model studies and it cannot be assumed that the numerical model is
good for all ranges of water depths, wave conditions, etc. Primarily,
more laboratory information is needed so that the large number of
coefficients used can be properly evaluated.

The transfer function generated had good agreement with proto-
type information.

The influence of internal line damping on the propagation of dis-
turbances down the line should be investigated in the future.

The numerical model is operational and fairly economical to run.
Now more sophisticated expressions for the forcing functions can be
introduced. However, since coefficients need to be evaluated by
experimental methods even with the more sophisticated expressions,

it is felt that the influence on the results from the program will be

small.




so .
s

SAMPLE OUTPUT

The following pages are shown in order to illustrate the type

of output printed from the program.
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DACRON LINE 145 INCH DIAMETER SCOPE = 1,33

GR RHO CON coT cDe . WIF UTEN
32020 1.990 1400 0035 0016 ' “anﬂ 60000.0
VELOCITY GRADE CHANGES CORRESPONDING DEPTH CHANGES
54000 | o 0,00 |
24925 200,00
2085 . 400,00
1250 800,00 -
2420 1800.00
0000 4000,00
0000 40000400
STRESS GRADF CHaNGES CORREGPONDING STRAINS
0.0 . 0'000
408000,0 , ,190
1630000,0 . 280
3060000,0 . 330
4900000,0 , . 380
D DMU DP BD Wl NS NP CRIT 1IN PLACE SCOPE
0125 20440 131004000 40,000 20,000 1 30 2662 1.359
SEGMENT LENGTHS IN FEET ARF 17800,0
WEIGHTSs STARTING FROM BOTTOM ARE ) 0

"TOTAL DRAG ON BUOY = 1173.3 LB
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NO. OF ITERATIONS BOTTOM ANGLE

SURFACF ANGLE BOTTOM TENSION

SURFACE TENSION

25 «55875 132609 2528,2 48463,

SEGMENT NO, INCREMENT NOes S/STOTAL (IN PLACE) TeN/UTEN x1/D0P ZETA/DP
1 1 00245 .064284 028009 W018N22
1 2 +069R ,04359 . 0564964 .037400
1 3 «0761 ,06640 « 085497 » 058233
1 4 «1034 .04525 0115051 0080’531
1 5 1318 064620 145200 .104718
1 6 1614 .04720 175987 «130,35
1 7 »1923 ,04829 2n7463 + 158837
1 8 22247 .04945 .23968” 2188604
1 9 2588 ,05071 0272695 221036
1 10 022946 . 05207 2306574 e 256064
1 11 «3324 , 05354 0341384 0293949
1 12 3725 05513 2377203 » 334993
1 13 4151 05686 414117 0379543
1 14 4604 ,05B74 1452219 « 428001
1 1% «50R9 ,06078 491616 480135
l 16 5609 .06302 .532427 «538593
1 17 6169 06548 .574785 .601922
1 18 6776 .06818 .6188613 671588
1 19 .7426 L07112 C684186 .747491
1 20 + 8082 07413 s INT98Y% 825149
1 21 8619 .07663 . T6237R «889401
1 22 8960 .07822 763163 930970
1 23 $9153 L07911 «T774368 «954715
1 264 9269 07965 «TR0697 2969189
1 25 9347 L0800l «TR4GTIR 979026
1 26 T +9401 .08025 .7TR7287 2985814
1 27 9439 08042 .788994 990,94
1 28 09466 ,08054 . 790148 « 994295
1 29 9489 .08064 JTRYNNR 397,27
1 30 9508 ,08073 791661 .999733

SEGMENT NO, IN PLACF LENGTH ON SHORE LENGTH IN PLACE/ON SHORE SrOPF|
1 17800,0000 15408,0868 1,1852

TOTAL 16924.0172 15408,0868 1,15652 1.17
 T(ly 31) = 4,84296730E+03s TEN(1y 30) =  4.84371699E403
TSHORES = 14895347




RADIUS TO UPPER.CHINE
HEIGHT TO UPPER CHINE
TOTAL DEPTH OF RUOY =
INERTIA COEF, OF HUOYs RAD
DRAG COEF, OF BUOYs AX| =
DENSITY OF LINEs SLUGS/FT,
UNIT WEIGHT OF wATFR =
WAVE LENGTH =

WAVE FREQUENCY =

PHASE SHIFT =

DENSITY OF AIRy SLUGS/FT.3
LINE LENOGTH IN FEET =

DS
564,13

DELTAT
01927

20,000
4,000
7,500

2400
9.640

« 02992
64,000
260,000
882
145,01632
e 00264
16924,02

CEL
938,953
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RADIUS TO | OWER CHINF = 13,070
HE JTGHT TO | OWER CHINE = 0,000
WEIGHT OF RUOY IN POUNNS = 184609459
INERTIA COFFe OF BUOYs AXL = 1.400
MOMENT OF INERTIA OF BUOY = 7.50F+08%
INERTIA COfFFe OF LINEs TRNS = 2.000
DENSITY OF WATERe SLUGS/FT. = e 02439
WAVE HEIGHT = 5,000
WAVE NUMBER = WNPGYT7
WAVE PERION = Te12277
DRAG COEF. OF WIND = 100,000
WATER DEPTW IN FEET = 12972.06
SG Ala ARG
1,2269 06,0000 0,0000
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SEGMENT NO, 1

POINT
NO.

O T NN SN~

29
30
314

TOTAL LINE LENGTH

COORDINATES

X Z
000 0.00
478.34 299,06
946460 613,67
1404,72 942,87
1852,70 1285,75
2290 ,59 1641 ,41
2718,.,52 2009,01
3136,62 2387 ,74
3545,09 eT76,.,83
3%944,14 3175,59
4333,99 a583,35%
4T14,87 3999,50
50x7,00 4623 ,48
585,93 h292.97
6153,32 “737,46
6492,94 6187,91
6824 ,99 66463,97
7149,86 710%.,17
T4aeT.67 771,26
7778,69 H041,91
8083,16 516,83
83R1.25 #995,78
8673.17 9478,51
8959,06 Y964 ,R3
9238,90 10454 ,67
9512,65 10947 ,93
9779,.62 11444 ,90
10039,05 11945, 44
10287,36 172452,39
10514,.98 12968 ,5%6

ANGLE
RADIANS

5,587E=01
50916E-01
6,231E~01
6.,821E=~01
T,097E~01
T.360E=01
Te61l1lE=01
7.850E=01
8,078F=01
Bo,296FE=01
8.,504E=0]
8,704F~-01
H,894F=01
Q.U74E=01
992a7E’01
F.415E=01
9'5715-01
9,724E=01
9.868E=01
1,001E+00
1.014F+00
1,027E+00
1,039F+00
1,0526+00
1,064E400
1.078E+00
1,093E+00
1.115E+00
1,155E+00
1,155F+00

= 16924 ,02

TENSION

Z2«528E+012
2.583E+013
2+640E+012
2+T00E+0q
2.7T62E+017
2.826E¢07
2+893E+012
2.961E+07
3.031E+07
3.,103FE+017
3,176E+09
3.25]1E+07
3,327E+07
3,404FE+0n
3,483E+01%
3+562E+01
3,643F+0
3,724E+013
3.807F+013
3.890E+03
3»97aE‘03
40059E‘01
4o,144E+07
4,230F+0"
44,317FK+02
4,404F+07
44492E+07
4,581E+01
4,H69F+(
4,T5TE+0"
4,843E+01%

VELOCITIES

PARALLEL

Qo O
e Oe
(119 0o
Qo Do
Do De
(VY O
0O O
0, Qe
0e O
O 0,
0O Qe
()o 00
e Do
O 0)
Oo Do
0o De
Ne Do
0D e
Do O
Ny (U
Ne O
0. 00
O NDe
O Oo
0o (1Y
Do O
Qe O
O 0.
0o Do
0. Oe
O Oe

PERPENDICIILAR
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PITCH ANGUL AR CG COORDINATES
ANGLE VELOCITY X yi
6o 062E=02 0. 0.00 0+0p
ANGLE OF BUOY AP COORDINATES AP VELOCITY
~ VELOCITY VELOCITY X Z X y4
|

0 0. 10514,98 12968054 Ne 0

Z3IWATRZ2=z  3,495]13E+00
TOTAL DISPLACED VOLUME= 2880,9956

SLOPE OF WATER SURF,= .0604 WATER SURFACE= 1,5060F=01
‘ ANGUL AR CG ACCELERATION | AP ACCELERATION
g ACCELERATION X Z X =
3.B4TE=02 ~1.936E¢00 =1+701E+07 “20101E+00 =1.T710E+00
ENDRMDR  SUMRUN STRESSS  DELSNP DS ENDSTR  ESTRAIN R

5.¢642E+402 1,692E404 0. 3e437TE+00 5.641E+02 R,998E+01 0. 1.011F=01]




TIME =

56
19

SEGMENT NO, 1

POINT
NO.

=
O UO~NIPAREWN -

Pt et et Pt gt P et et
LO~NTRARSWN

NN N
W~ O

VIR VIRV M
~No s

28
29
30
31A

COORDIN
X

0,00
478,36
946.63

1604.77
1852,76
2290.67
2718.61
3136,73
3545,.22
3944,29
4334,15
4715,04
5087.19
5450,81
5806,.,16
6153,55
6493,19
6825,26
7150414
T467.96
T779.00
8083,47
838]1,57
8673.50
8959,39
9239,23
9512.96
9779,89
10039,20
10287.11
10514,94

TOTAL LINE LENGTH =

ATES
4

0,00
299,03
613,62
942,80

128%,65
1641,30
2008,88
2387,5%9
2776,67
3175,41
3583,15
3999,28
4423,26
4854 ,56
§292,72
%737.20
6187,63
6643,68
7104,.,87
7570,96
8041,60
R816,52
8995,46
9478,18
9964 ,51
106454,34
10967 ,62
11444 ,60
11945,6)
12452,35
12968,5%23

ANGLE

- RADIANS

5.587E=01
S,915E~01
6.2315'01
6,532E=-01
608215.01
T.097€~01
7T.360E~=01
T.611E=01
7.8505'01
8,078BE=0]
8,296E=01
8,504E-01
B.703E'01
8,894E«0]
9,074E~01
9,247E=0]
9,414E=~01
9.571E=01
9,723E~01
9.868E=01
IQOOIE*OO
1,014E+00
1.027€E+00
1,039€E+00
1,052E+00
1Q064E¢00
1.,078E+00
1,093€+00
1,116E+00
1,153E+00
1,153E+00

16924,11

TENSION

2.52R8E+01
24583F¢03
2e64DE+0A
2.T0OE*C
27627 ~0n
2.82*i003
2.893F+03
2.961E+07
3.,031E+019
3.,103E+0n
3,176E+09
3.,251E+03
3,327E+013
3.404E+017
3.483E+073
3.562E+01
3.6435003
3.,724E+03
3,807€+07
3,890E+03
3,974E+01
4.059E+03
4,144E+03
4,230E+01
4,317E+012
4,404F+013
44,492E+07
4,581E+01
4,669E+073
4,T5TE*03
5.255E£+4013

VELOCITIFS
PARALLEL PERPENDICL. A¢
0o Qo

«3,046E=04  «24237E=n3
«1,513E=03 wle364F=n3
~Pelh1F=n3 wl KT £~

w?2e30REen] mha0HE~ 4
2o 2850E=n3 wRe 090w
«1:951E=03 vlel127E=n3
=]e604E=03 =] e RA29F ~~ ¥
-] e352E=03 «]sBESE~""?
vl oe340E=n3 1 e Q8TE=~c3
wle711E~03 =] e595€E=n3
w2e612E=n3 »54395Ewn4
=3 ,2R5E=0n3 2¢940E=06
«]1eT6O0E=N3  =1e818E~03
m]le2R3E~NI w2 555E=n3
w3,629€=n3 TehO1lE=nNG
w2e224E~n3 »1¢433E=n3
-] ¢e6HT2E=03 *2e340Ewn3
‘2.840E‘Q3 w5 e87TE=né
=24000E=03 =] s902E~n3
»2.830E=03 wTe346E=né
w2eSTSEwNI »]1e658E=nS
w2 6R6E=N3 2.097E~03
»3,035E~03 6e¢0NT3E=nN3
2,998FE=03 5.805E=n3
wb o 0GO0E~03 1e6A0E=n2
050711E'O3 30?57E.ﬂ2
~1+003E=n2 4e0ASEwnZ
w2.272E=p2 7¢711E=n2
«5,485E=02 1e567E=01
wh o 68HE=~0] 2e362E=nl
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PITCH ANGULAR CG COORDINATES

ANGLE VELOCITY X p4
-5,9T0E~02 Te4l4E~03 10514.69 12972482
ANGLE OF BUOY AP COORDINATES AP VELOCITY
VELOCITY VELOCITY X Z X Z
3.825€+00 5.,221E=01 10514,94 12968453 ~4+049E=01 *3,296F=01

Z3WATR2= 3,10251E+00
TOTAL DISPLACED VOLUME= 2460,455]

SLOPE OF WATER SURFe= «0595 WATER SURFACE= «4,2374F=0}
ANGULAR C6 ACCELERATION Ap ACCELERATION
ACCELERATION X YA X Z
2.RB5E=02 =1, 2B88E+00 =3,868E+00 =~1:412E+00 =3,874F+00
ENDRMDR SUMRUN STRESSS DELSNP DS ENDSTR ESTRAIN R

SebH42E«02 1,692E+04 0, 3¢43BE+00 5,641E+02 R,941E+0) 0o 1.011F=01




TIME =
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9.H3

SEGMENT NO,. 1

POINT
NO+

O B~NU & W

29
30
314

COORDINATES

X Z
0600 0,00
479,17 297,73
948,24 611,13
16407,18 939,19
1855,98  1280,99
2294,72 1635,61
2723,50 2002.21
3142,47  2379,98
3551,80 2768,18
3951,68  3166,09
4342,34  13573,08
4723,99  13988,52
5096.88  4411,84
5461.,25  4842,51
5817.35 5280,05
6165.42 57264,00
6505,70 6173,95
683B,44 6629,5]
7163.86  7090,32
T482,19  7556,06
7793,65 8026,42
B09B,45 8501,13
B8396,78  B979,92
B6BB,B2  9462,59
B9T4.62 9948,96
9254,15 10638,97
9527,45 10932,49
9794,92 11429,18
10057,39 11928,54
10316,01 12429.90
10509,14 12967,02

TOTAL LINE LENGTH

ANGLE
RADIANS

5:9260E=01
5.890E=01
6,206E=01
6:509E=01
6,798E=01
T.,074E=01
Te3376=01
7589 =01
T.8B29F=01
B, 059E=01
8,278E=01
B.,487E=01
8,686E=01
B,BTTE=01
9,059F =01
9;2338’01
9.,400E=01
QQSSQE-OI
9,712E=01
90859E°01
1,000E+00
1,014FE<00
190275#00
1,040F«00
1,052E200
1,065E«00
1,077E+00
1.087F+00
1,09%E00
1,087E+00
1,087E+00

= 16930,67

TENSION

2.532F¢0n
ZeBBTE+0N
2e644E+0n
2.706E*»0n
2o 766E+07
2.830E+013
208975901
2:966F+019
3,037F+012
3:.110F+0n
I, 185E¢07
3.261E+07
3.340F+03
3.,419E¢03
3,501E¢C3
3.586E¢0n
3.,673E+02
3,763F+0Nn
3.854E+07
3.945F+0%
6,033F201
40115013
@91905‘01
64,260F*0
4o32TE*09
4.396FE¢01
4.%T3E¢Q
4,562F+07
@pééﬁE*O?
4, TB%E+013
4o 948BFE 0

VELOCITIFES

PARALLEL

De
'1.573E“ﬂ2
'2.8?6E’02
=3.926E=02
w4y T4RE=02
=54 09AE=n2
wh s 6QIE=N2
=3,256E=n2
'SQZ&SE'GB

3.555Eﬂ02

B .BPRE=N2

1e503E=n]

?,21AE~01

1. 0RSE=n1

4¢2THE=0n]

5e999E=n1

R.GDBE—OI

1e146PE+00

1ak64E*n0
1+ 735E¢00
1e86PE¢N0

1. T68E+n0

Le416E+00

Be327E=n1

1e317E=01
~5.177E'Q1
«9,170E=n01
-HQQ?OE*QI
3ot TBE=N]

6£o999F =01

RodQ28wn}

PERPENDICIHILA

0o
“Bo\?gﬁvﬂ3
-1.460Ew02
-IQQﬁZE-ﬂa
w2e?292Een?
wPabblE=n2
=2e503E=n?2
=2e4R2Ewn2
»2e379Emn2
“2,4154E=n2
=],933E=n2
w]s64T7E=n2
H1.277E’ﬂ2
w8 e PR9F =3
»2e968E=n3

4s52TE=n3

16669Emn2
30398E'02

BeS550Fwn2

7eRP8Ewn?2

1:N05FE=mn]
19222E«nl
1e432E=n1l
14226E=0n1]

BePT7BE=n2
~2s182E=n3
=] e951E=nl
»TelNGE=N]
=] e 469400

44342E-01

Ce33VEen0
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PITCH ANGULAR CG COORDINATES

ANGLE VELOCITY X z
6,490E=02 ' 3,806E~02 10509,34 12971432
ANGLE OF BUOY AP COORDINATES AP VELOCITY
VELOCITY VELOCITY X Z X | 7
2,317E400 2.480E+00 10509.14 12967072 “1,6B4E+00  1,821F+00

Z3WATR2=  3,59126E+00
TOTAL DISPLACED VOLUME= 3053,1992

SLOPE OF WATER SURF,.= », 04693 WATER SURFACE= =1,4423F+00n
ANGUL AR CG ACCELERATION AP ACCELERATION
ACCELERATION X 2 X Z
~3,508E=02 1¢150€E+00 14221FE+0p 1.300FE+00 1.217F4+00
ENDRMDR SUMRUN STRESSS DELSNP DS ENDSTR ESTRAIN R

5¢713E+02 1.693E+04 0, 3,451E+00 5.641E+02 R.91BE+01 0o 1.002F=01
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FLOW CHARTS

The flow charts that appear on the following pages were con-
structed almost completely with phrases instead of symbols. The

purpose was to present the form of the computer program as clearly

as possible.




DRIVING PROGRAM

START
STEADY C

Compute the position of line and buoy due to
wind, current, gravity

SINITAL
Establish the initial conditions for the line

and buoy. Set the number of increments of
the line. ‘

l

DYNAINP

etc. Sett =0. Establish At.

Input force coefficients, wave height, length,

o b

IDefine functions,  such as wave water particle’
|veloci’cy, pressure, etc. Certain functions for
method of characteristics,

L

SPRINTO

Print coordinates, angle, tension and
velocities of each of the given number of
points on the line,

61
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DRIVING PROGRAM - CONT,

BPRINT

Print the coordinates and velocities of the .
center of gravity and attachment point of
the buoy. Print pitch angle and angular
velocity.

BMOTION

Compute the forces, thence the accelera-
tions of the buoy, then the coordinates and
velocities after the given At for the center
of gravity and the attachment point.

BPRINT2
Print the angular and translation accelera-
tions of the buoy.

End
of
Computations

Yes

BOUNDRY

Compute the angle and tension of the line
at the anchor (velocities and coordinates
= 0).
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DRIVING PROGRAM - CONT,

| SINTRNL

| Compute the velocities, angles and
| tensions for each of the given points
| on the line except the top two.

SBUOYTP

Test to see if the next to last point should
be dropped from the array or if one more
! should be added, then compute the velo-

| cities, angle and tension. Determine all
| coordinates. Compute the total elonga-

| tion in the line and the strain in the last
segment, thence the tension and angle

at the attachment point.

t=t+At




064

DYNAINP

Read buoy dimensions, weight, moment of
inertia, inertia and drag coefficients; line
and water density per foot of line, inertia
coefficient of line, wave length and height.

Calculate buoy dimensions and inertial qual-
ities in accordance with the scale ratio.

!

Initialize all velocities = 0

A

Compute the wave frequency and phase.
Establish At and the initial pitch angle
of the buoy.

Print all input quantities

RETURN
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FUNCTIONS

Several functions are now established:

Water surface elévation from still water surface
Slope of the water sqrface_

Horizontal wave water Apayrtvicle velocity

Vertical wave water particie velocity

Horizontal wave water particle acceleration
Vertical wave water particle‘acceler;ation

Wave pressure

Current velocity at a point - from the velocity
profile '

Other functions pertaining to the method of
characteristics solution for line motion.
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SPRINTO

ENTER

Print time

Print:
Line increment number
coordinates
angle with horizontal
tension
parallel velocity
perpendicular velocity
All the above for each of the
given points on the line

Print the current total line

length

If wave height is being built up
gradually, it is done here

RETURN
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BMOTION

Divide buoy into 4N number of pie-shaped
pieces, (initially N=3), Establish the co-"
ordinates for the intersection points of the
center-line plane of each pie piece with the
chines and gunwale.

CALL STRIPFC
Determine pressure, drag and inertia forces
acting on each pie-piece..

CALL SECCART

Convert all forces to the secondary coordinate
system. Compute the total submerged volume
of the buoy. Complete the computation of gross
forces. '

CALL SUMMOM

Compute the summation of moments about the
center of gravity of the buoy due to ALL FORCES.,
Determine the angular acceleration.
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BMOTION - CONT,

CALL SUMFORC

Sum all forces in the secondary
coordinate system and obtain the
corresponding accelerations from
Newton's second law of motion.
Convert the accelerations to the
primary coordinate system.

With new accelerations, use re-
currence formulas to obtain new
values of pitch, angle and angular
velocity. Determine the coordinates
and velocities of the center of gravity
and the attachment point.

RETURN




ENTER

STRIPFC

69

Compute the water surface
intersection with the center
line of the pie-piece.

(@ ompute the pressure at each
angle point on the piece. Clas-

sify situation into one of four
possibilities.

Compute the magnitude, posi-

tion and direction of each buoy-
ancy force in tertiary coordinate

system.

Calculate submerged volume,

l

Calculate the relative motion
(velocity and acceleration) in
the Z2 direction at the lower

chine,

RETURN

Are
the computations
complete for all
ple-pieces ?

Calculate the forces in the Z2 direction due to drag and inertia

and assume they act at the lower chine.

A

Yes
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BOUNDRY

ENTER

Determine the celerity of longitudinal and transverse waves in
the line. Establish interpolation distance on the line therefrom.

Is the

Yes Print this
—> condition

interpolation distance
reater than the line

increment

STOP

Set the velocities at the
anchor equal to zero.

Interpolate values of co-
ordinates velocity, angle
and tension for use in the
method of characteristics.

With the equations from the
method of characteristics solve
for the angle and line tension at
the anchor.

RETURN
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SINTRNL

Determine the celerity of longitudinal and
transverse waves in the line. Establish
interpolation distances on the line therefrom.

Is the
interpolation distance
greater than the line
increment
b

Yes Print this
s condition

STOP

Interpolate values of coordinates, velocity, angle
and tension for use in the method of characteristics.

With the appropriate equations from the method
of characteristics, solve for the velocities,
angle and tension at the point in question.

Yes

computations complete
for all but the last two
points on the line 2

RETURN

Go to the next
increment point
up the line.

No
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SBUOYTP

Determine the celerity of longitudinal and
transverse waves in the line. Establish
interpolation distances on the line therefrom.

Is the
interpolation Yes Print this
distance greater than the ling >4 condition
increment

interpolation dis-
tance of the longitudinal
wave less than the distance from
the attachment point to the
next increment point

Yes
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SBUOYTP - CON'T.

Delete .one increment
point from the array

Calculate the coordinates of all the remaining increrent
points and the distance from the attachment point to the
next increment point down.

Calculate the angle at the surface from the geometry of
the last increment length,

‘ Calculate the parallel and perpendicular velocities at
} the attachment point from the buoy velocity.

Calculate the perpendicular velocity of the increment
point below the buoy as the average between that at the
attachment point and two increment points below the

; buoy.
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SBUOYTP - CON'T.

¢

Compute the average strain from the tensions
in each increment up to but not including the
one next to the buoy and the total strain from
geometry. The difference is the strain in the
increment next to the buoy.

Determine the average tension in the end in-
crement from the stress-strain diagram or
the appropriate constitutive equation including
internal damping concepts.

Calculate the tension at the attachment point'
from the average tensions and the tension at
the first increment point down,

RETURN
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SBUOYTP - CON'T.

By the method of characteristics procedures
including interpolation, calculate the parallel
velocity, angle and tension at the increment

point below the buoy.

interpolation distance
of the longitudinal wave less
than (the distance from the attachment

Add one increment point to the array

y

Use linear interpolation between the attachment
point and the last determined increment point to
obtain the velocities, angle and tension at the new
increment point.
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FIG. 1. DEFINITION SKETCH OF THE STATIC PROBLEM




Positive perpendicular
direction

’\/o’ 40 _~positive
® 2 paralle! direction

g(u-plas

FIG. 2. FREE-BODY DIAGRAM OF A SMALL ELEMENT OF
'THE MOORING LINE.

FIG. 3. THE VECTOR, V, AND THE MOORING LINE
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Firmo-viscous materials Elastico-viscous materials

FIG. 5. SPRING AND DASHPOT MODELS OF LINE RESISTANCE
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NOTE: There is a great deal of scatter in laboratory results of
stress-strain diagrams for both Dacron and Nylon plaited
lines. The diagram used below is fairly representative
for either Dacron or Nylon.
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FIG. 6. STRESS-STRAIN DIAGRAMS USED FOR THIS STUDY
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FIG. 8. THE THREE COORDINA TE SYSTEMS USED FOR THE
BUOY ANALYSIS - . : ,




82

Discone Antenna Wires

FIG. 9. FREE-BODY DIAGRAM OF THE BUOY WITH ALL FORCES
SHOWN SCHEMATICALLY
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FIG. 10. DIMENSIONS OF THE ONR BUOY USED IN THIS STUDY
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Note: The buoy was
divided into 12 pieces
for the initial work

a) Plan

b) Perspective of one segment

FIG. 11. DIVISION OF THE BUOY FOR CALCULATION OF FORCES.
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FIG. 24. WAVE HEIGHT VS. LINE TENSION FLUCTUATIONS FOR
WAVE LENGTH OF 260 FEET, FREQUENCY OF 0.14 CPS.
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FIG. 30, SUCCESSIVE POSITIONS OF THE BUOY ON A WAVE WITH LENGTH
OF 200 FEET AND HEIGHT OF 20 FEET: AS DETERMINED FROM

THE NUMERICAL MODEL.
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FIG. 31. FREQUENCY RESPONSE CURVES OF THE ONR BUOY
WHILE MOORED IN 13,000 FEET OF WATER. FROM
THE NUMERICAL MODEL.
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NOTATION

The following symbols are first defined where used.
An area; Acceleration

A coefficient for drag or inertia

The celerity of a longitudinal'wave in the mooring line
The celerity of a transverse wave in the mooring line
The line diameter

Modulus of elasticity of the line

The sum of the forces perpendicular to the line; Forces on the buoy
The sum of the forces acting longitudinally on the line
Wave height, trough to crest

Inertia; Moment of inertia

A length of the line

Total effective mass of the line in the perpendicular direction,
= B+ CIP

Submerged weight of the line, per foot
Length of an elastic wave on the line
Line tension

Period of an elastic wave on the line
Any vector; Velocity

Volume
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NOTATION - Cont'd

Forcing equation

Acceleration of gravity -

Water depth ,

Wave number

Mass of the line; mass density of water

Water pressure

Coefficient of viscous damping, internal to the line
Distance on the line, measured from the anchor
Specific gravity

Time

Horizontal water particle velocity

Horizontal water particlé acceleration

Velocity vector of the line at a point

Vertical water particle velocity

Vertical water particle acceleration

Horizoﬁtal co»ordinate»wi,thin the domain considered
Vertical coordinate within the domain éonsidered
Unit weight of sea water

Unit strain

Vertical coordinate of a point on the mooring line

Water surface as measured from the still surface
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NOTATION - Cont'd

1

Angle the mooring line makes with the horizon; pitch angle

of the buoy
Wave length
Mass density of the line per foot

Creation or destruction of line mass; kinematic viscosity

of sea water
Horizontal coordinate of a point on the mooring line

Mass density of sea water per foot of mooring line; volumetric

mass density

Unit stress

Potential function.

Radian frequency of a wave

The parallel, or tangential direction along the mooring line.

Usually used as a subscript

The perpendicular, or transverse direction along the mooring

line. Also usually a subscript.






