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Abstract 12 

In a coastal, fog-influenced forest on Santa Cruz Island in southern California, we 13 

observed mortality of Bishop pine (Pinus muricata D.Don) trees following a brief (2 year), yet 14 

intense, drought. While anecdotal evidence indicates that drought-induced Bishop pine mortality 15 

has occurred in the past in the stand we studied, this is the first attempt to capture the spatial 16 

distribution of mortality, and begin to understand the environmental drivers underlying these 17 

events. We used high spatial resolution remote sensing data to quantify the spatial extent of tree 18 

mortality using a 1 m true color aerial photograph and a 1 m lidar digital elevation model. We 19 

found the highest density of dead trees in the drier, more inland margins of the forest stand. We 20 

used the Random Forest decision tree algorithm to test which environmental variables (e.g., 21 

summertime cloud frequency, solar insolation, and geomorphic attributes) would best separate 22 

live and dead tree populations. We also included tree height as a variable in our analysis, which 23 
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we used as a proxy for overall tree size and potential rooting distribution. Based on the Random 24 

Forest analysis, we generated a map of the probability of survival. We found tree survivorship 25 

after drought was best explained by the frequency of summertime clouds, elevation, and tree 26 

height. Specifically, survivorship was greatest for larger trees (~8-10 m tall) in more foggy parts 27 

of the stand located at moderate elevation. We found that probability of survival was lowest at 28 

the inland extent of the stand where trees occur at the upper limit of their elevation range (~400 29 

m). The coexistence of these main factors with other landscape variables help identify areas of 30 

suitable habitat for Bishop pines across the stand, and extend our understanding of this species’ 31 

distribution.  32 

 33 

Keywords: Tree mortality; Coastal fog; Drought-stress; Remote Sensing; Random Forest 34 

 35 

1. Introduction  36 

Across the western United States, widespread increases in tree mortality rates have been 37 

observed in recent decades (van Mantgem et al., 2009). Many experimental, observational, and 38 

modeling studies attribute tree mortality to drought stress in response to regional warming 39 

(Anderegg, et al., 2012; Allen et al., 2010; Williams, et al., 2010; Adams et al., 2009; Breshears 40 

et al., 2005; Allen and Breshears, 1998). To date, the geographical scope of studies of tree 41 

mortality in the American West has been limited to continental, montane climates (Hanson and 42 

Weltzin, 2000). Much less is known about the extent and frequency of drought-induced mortality 43 

events in coastal forests.  44 

The maritime influence on weather and climate in coastal forests is assumed to buffer 45 

coastal ecosystems from extreme climate fluctuations, and therefore help maintain a stable 46 
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distribution of species over time. However, we observed extensive mortality of a coastal pine 47 

species, Bishop pine (Pinus muricata, D.Don), following a brief, yet intense, drought period at 48 

the southern extent of its range in California, where they are at the climatic margin that can 49 

support the species (Williams et al., 2008; Fischer et al., 2009).  50 

Throughout the Pliocene and Pleistocene, when the California climate was considered to 51 

be more mesic compared to today, with year-round precipitation, Bishop pine, and closely 52 

related Monterey pine (P.radiata), were more widely and evenly distributed along the California 53 

coast (Raven and Axelrod, 1978). Bishop pine populations are currently restricted to a small 54 

number of stands scattered along the fog-belt of coastal California and northern Baja California 55 

(Lanner, 1999). The reduction of suitable habitat for Bishop pine (and similar coastal forests) 56 

since the late Pleistocene is attributed to the onset of xeric Mediterranean climate conditions 57 

(warmer temperatures, and reduced seasonal precipitation, occurring predominantly during the 58 

winter). However, summer precipitation from fog drip, and potentially foliar uptake of fog water 59 

(Limm et al., 2009, 2010), is thought to enable Bishop Pines to persist along the coast and 60 

offshore islands (Raven and Axelrod, 1978).  61 

Fog water inputs to a forest, and its effects on the water relations of trees, are spatially 62 

heterogeneous because deposition of fog water and shading effects of fog are controlled by a 63 

variety of factors that range from the landscape to canopy scale. Fog is commonly defined as a 64 

low-stratus cloud that intercepts land. The mechanisms by which fog ameliorates the water stress 65 

of trees largely depend on their relative position to the fog layer. Shading effects, which reduce 66 

evapotranspiration, will benefit trees that are below the fog layer (Fischer et al., 2009). Plants 67 

immersed in the fog layer benefit from direct water inputs because fog droplets deposit on leaves 68 

and drip to the ground increasing shallow soil moisture (Carbone et al., 2012; Fischer  et al., 69 
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2009; Corbin et al., 2005; Dawson, 1998; Ingraham and Matthews, 1995; Harr, 1982; Azevedo 70 

and Morgan, 1974; Vogelmann, 1973). Moreover, vegetation type, and canopy structure of a 71 

forest, has been shown to strongly influence fog water deposition (Ponette-Gonzalez et al., 2010; 72 

Hutley et al., 1997). For instance, direct fog water inputs decrease from the windward edge of 73 

the forest to its interior (Weathers et al., 1995), negatively impacting the water status of trees that 74 

receive less fog-water inputs in the interior (Ewing et al., 2009). Such edge effects can also 75 

impact recruitment rate of trees, and ultimately forest structure (Barbosa et al., 2010; del-Val et 76 

al., 2006). In short, the effect of fog on the growth and persistence of tree species in fog-77 

influenced ecosystems is strongly mediated by the spatial heterogeneity of the landscape, namely 78 

topographic variation and forest structure (Uehara and Kume, 2012; Gutierrez et al., 2008; 79 

Cavelier et al., 1996; Vogelmann, 1973). Since the influence of summer cloud shading and fog 80 

drip/immersion on the moisture regime of forested ecosystems vary spatially, it is reasonable to 81 

hypothesize that the risk of drought-induced mortality in a fog-influenced forest would follow 82 

suit. 83 

The proportion of dead Bishop pines that followed the recent drought event increased 84 

from the coast inland, and mortality was more severe at the margins of the stand. These spatial 85 

patterns seemed to coincide with modeled water deficit, which included the influence of fog on 86 

the water budget of the ecosystem. Specifically, Fischer et al. (2009) found that the combined 87 

effects of fog drip and cloud shading can reduce summertime drought stress up to 56% in Bishop 88 

pine stands, and inland locations are particularly sensitive to reduced cloud shading and 89 

increased evapotranspiration compared to more coastal areas. While observations and water 90 

deficit models may infer that fog inundation and cloud shading are key climate variables 91 

explaining spatial patterns of tree mortality in this coastal forest, it is unlikely that a single 92 
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environmental variable, such as fog frequency, can entirely explain the spatial patterns of tree 93 

mortality.  94 

A suite of physical factors, such as landscape features (e.g., soil thickness and type, slope, 95 

aspect, elevation, topography, and drainage networks), can generate stress gradients across the 96 

landscape (Gitlin et al., 2006) and may explain the distribution of water stress in trees and tree 97 

mortality just as well as spatial patterns of climate (Koepke et al., 2010, Olge et al., 2000). In 98 

addition to landscape factors, biotic factors, such as tree size, may help predict mortality within a 99 

forest stand (Floyd et al., 2009). While trees at different life stages (for which size can be proxy) 100 

may make different physiological adjustments to avoid or tolerate water stress, in general, it has 101 

been argued that larger trees with an extensive rooting distribution should be more capable of 102 

accessing stable water resources even during dry periods compared to smaller trees, and 103 

therefore be less sensitive to drought conditions (Cavender-Bares and Bazzaz, 2000; Dawson, 104 

1996; Donovan and Ehleringer, 1994). In particular, water status of larger, adult Bishop pines is 105 

less affected by the summer dry period compared to smaller, sapling trees, which become water 106 

stressed by late-summer (S. Baguskas, unpublished data). Understanding how interacting 107 

environmental factors explain the spatial patterns of mortality will improve our ability to assess 108 

the vulnerability of coastal forests to drought-induced mortality in the future.  109 

Remote sensing is a powerful tool for quantifying the spatial extent of tree mortality, 110 

which is often the first step towards elucidating patterns and processes underlying a mortality 111 

event, such as drought stress (Allen et al., 2010; Williams et al., 2010; Macomber and 112 

Woodcock, 1994), bark beetle infestation (Edburg et al., 2012; Wulder et al., 2006), and the 113 

potential impacts on regional carbon budgets (Huang and Anderegg, 2012). While many studies 114 

have quantified the spatial extent of tree mortality at regional and landscape scales using 115 



6 

 

moderate-spatial (>30-m ground resolution) resolution remote sensing data (e.g., Meigs et al., 116 

2011; Anderson  et al.¸2010; Fraser and Latifovic, 2005), a growing number of studies have used 117 

high-spatial (< 5-m ground resolution) resolution remote sensing data to examine tree mortality 118 

at finer spatial scales in order to detect mortality of individual trees (or clusters) within a stand 119 

(e.g., Stone et al., 2012: Dennison et al., 2010; Hicke and Logan, 2009; Chambers et al., 2007; 120 

Guo et al., 2007; Coops  et al., 2006; Clark et al., 2004). Developing a way to possibly make 121 

large scale estimates and predictions of tree mortality based on remotely sensed data can help 122 

land managers, who are tasked with making decisions about species and land conservation in the 123 

future, respond to a future expected to become warmer and drier. 124 

Our research addresses the following questions: 1) What is the spatial distribution of tree 125 

mortality observed during the 2007-2009 drought period? 2) What is the correlative relationship 126 

between environmental variables, such as climate, landscape features, and tree size, and the 127 

spatial distribution of tree mortality? 3) Where is tree mortality likely to occur on the landscape 128 

during periods of drought stress? 129 

 130 

3. Methods 131 

3.1. Study Site  132 

This study was conducted in the westernmost and most extensive (3.6 km
2
) Bishop pine 133 

stand on Santa Cruz Island (SCI, 34
o 
N, 119

o
 45’ W), which is the largest of the northern islands 134 

in Channel Islands National Park (~250 km
2 

, 38 km E-W extension) located approximately 40 135 

km south of Santa Barbara, CA (Figure 1). The Mediterranean climate along the California coast 136 

and islands offshore is characterized by cool, rainy winters and warm, rain-free (yet foggy) 137 

summers. While rainfall is highly variable both inter- and intra-annually, on average about 80% 138 
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of rain falls on SCI between December and March (Fischer et al., 2009). We observed mortality 139 

of Bishop pines during water year 2006-07 and 2008-09, when fewer than 25 cm of rain fell 140 

(median rainfall is 43 cm) (Figure A1). In 2009, we observed peak mortality of Bishop pine trees 141 

in the field based on the high number of tree canopies with red foliage, and we found that no 142 

other plant species exhibited a mortality response like the Bishop pines did.  143 

The Bishop pine stand that we studied exists on complex and rugged terrain ranging from 144 

sea level to just over 400 m in elevation. Bishop pines are almost entirely restricted to the wetter, 145 

cooler north-facing slopes. There are only a few scattered clusters of trees that exist on the drier 146 

south-facing slopes, and those tend to occur in drainages. Steep ridges rise from the Santa Cruz 147 

Island fault that runs E-W through the central part of the island. There is a stark ecological and 148 

geographical difference between the northern and southern sections of the island. The northern 149 

half of the island is composed of Santa Cruz Island volcanics and is sparsely vegetated compared 150 

to the southern half, which is mostly metamorphic in origin and supports most of the vegetation 151 

(Junak et al., 1995). The habitat for woody vegetation is considered to be more suitable at the 152 

center of the largest Bishop pine stand where the canopies are continuous relative to the margins 153 

of the stand where pines are intermixed with more drought-tolerant coastal chaparral angiosperm 154 

plant species, such as Manzanita (Arctostaphylos insularis, A. tomentosa), Ceanothus (Ceanothus 155 

arboreus, C.megacarpus subsp. insularis), and Scrub Oak (Quercus pacifica, Q. dumosa).  156 

 157 

3.2. Datasets  158 

We used a variety of data sources to quantify the spatial variability and extent of tree 159 

mortality across the Bishop pine stand (Table A1). We included in our analysis Digital 160 

Orthophoto Quarter Quads (DOQQ), which are true color aerial photographs at 1-m spatial 161 

resolution, collected by the United States Geological Survey, from 2005 (pre-drought) and 2009 162 
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(post-drought).  In order for us to accurately identify dead and live trees on a pixel-by-pixel 163 

basis, source images first needed to be georeferenced (i.e., aligned), with one another. The 2005 164 

DOQQ was georeferenced to the 2009 DOQQ using 90 ground control points (GCPs) with root 165 

mean square error (RMSE) of 1.25 m. GCPs were selected from temporally invariant targets, 166 

such as road intersections. In conjunction with the DOQQ images, we used spectral information 167 

of different land cover types from an Airborne Visible Infrared Imaging Spectrometer (AVIRIS, 168 

224 bands, 2.3 m) image collected by the Jet Propulsion Lab prior to the mortality event (7 169 

August 2007). For the AVIRIS image, a geometric look-up table was applied to remove some of 170 

the geometric distortion for approximate georeferencing. We further improved the registration by 171 

georeferencing the AVIRIS image to the 2009 DOQQ using unambiguous reference points, such 172 

as road edges and distinct plant canopies (105 GCPs, 1.07 m RMSE). 173 

Environmental variables used to explain the spatial patterns of tree mortality were 174 

derived from remotely sensed data (Table 1). These layers were already georeferenced. To 175 

evaluate the strength of the relationship between summertime cloud shading/fog immersion and 176 

tree mortality, we compared mortality to average summertime cloudcover frequency (Figure 2a). 177 

Average summertime cloudcover frequency was calculated from composite MODIS (Moderate 178 

Resolution Imaging Spectroradiometer) images at 250 m collected daily at 10:30 am PST from 179 

July to September between 2000 to 2006 (Williams, 2009; Fischer et al., 2009). The 10:30 am 180 

PST overpass time of the Terra satellite captures the lingering fog from a heavy nighttime event, 181 

as the fog layer is often present until noon on SCI (Fischer et al., 2009; Carbone et al., 2012). 182 

For each MODIS pixel, a quality control classification was assigned for one of three conditions: 183 

clear sky, partial cloud cover, or total cloud cover. We determined the average fraction of days 184 

each month (i.e., frequency) when the pixels covering our study sites were classified as partially 185 
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or totally cloudy using these quality classifications (Williams, 2009). In the summer, low-level 186 

marine stratus clouds are the most common cloud types on the California coast (Iacobellis and 187 

Cayan, 2013). Cloud frequency should be closely related to fog frequency, though information 188 

on elevation is required to determine whether the clouds were overhead (shading effect) or at the 189 

ground (i.e., fog immersion).  190 

Four topographic layers (elevation, solar radiation, slope, and aspect) were included as 191 

explanatory variables. These variables exert control on the water budget of an ecosystem, such as 192 

the amount of solar radiation received by a surface (Dubayah, 1994). Topographic variables were 193 

derived from a digital elevation model (DEM) generated from a dense Light Detection and 194 

Ranging (LiDAR) point cloud collected by the USGS in January 2012. LiDAR return signals 195 

were classified into bare-earth and vegetation points and we created a regularly spaced grid at 1 196 

m spatial resolution. The resulting DEM (Figure 2b) has been verified in the field and found to 197 

be very robust (cf. Perroy et al., 2010; Perroy et al., 2012). Field-based validation points were 198 

similar in 2010 and 2012, though the density of return signals was greater in 2010. From the 199 

DEM, we calculated average daytime solar radiation at the surface (i.e., insolation) for the 200 

summertime months (1 June – 30 September) at 14-day intervals using standard GIS techniques 201 

(Hetrick, et al., 1993) (Figure 2c). The primary spatial variations in modeled cloud-free solar 202 

insolation for these calculations are driven by slope, aspect, and elevation. Slope and aspect 203 

(Figure 2e and 3f, respectively) were calculated from the DEM using standard algorithms. 204 

Aspect was rotated by 180 degrees to avoid discontinuity on north-facing slopes, where Bishop 205 

pines are most common (i.e. aspects of 1 degree and 359 degrees are not different ecologically 206 

but are very different numerically). Therefore, north-facing slopes are 180 degrees, south-facing 207 

slopes are 360 degrees, west-facing slopes are 90 degrees, and east-facing slopes are 270 208 
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degrees. We used the average value for solar insolation, elevation, slope, and aspect within a 3-m 209 

radius from each tree point.  210 

Attributes measuring the surface shape (i.e., the geomorphology of the landscape) can 211 

help characterize how topography controls and integrates hydrologic processes on a range of 212 

timescales (Monger and Bestelmeyer, 2006; Sorensen et al., 2006; Moore et al., 1991), and 213 

therefore strongly influences the spatial distribution of soil moisture and groundwater. We 214 

included a topographic wetness index (TWI), which describes the amount of water that 215 

potentially accumulates in every given pixel (Moore et al., 1991) (Figure 2g). This index was 216 

calculated as (ln(upslope catchment area/slope)). We calculated the maximum values within a 217 

4.5 m radius of each tree point to best represent the potential water accumulated at the rooting 218 

zone of the tree, which we estimated to expand at least 1 -2 meters beyond the tree canopy. We 219 

also included an estimate of the curvature (concavity and convexity) of the landscape, which 220 

affects the flow path of water (Gessler et al., 2000; Ali et al., 2010) (Figure 2h). Curvature is the 221 

second derivative of the DEM. We calculated the average value of curvature within a 3 m radius 222 

of each tree point.  223 

Lastly, we included a data layer of vegetation height, which we calculated from the 224 

classified lidar point cloud by analyzing the bare earth DEM and canopy-height DEM (Figure 225 

2d). Because the point of live and dead trees identified in the DOQQ may not necessarily capture 226 

the apex of the canopy in the lidar DEM, we calculated the maximum height for vegetation 227 

within the 3-m radius of each tree point to more accurately represent the height of each tree. 228 

 229 

3.3. Map of tree mortality 230 
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We identified dead trees manually in the 2009 DOQQ as areas of red pixels within the 231 

Bishop pine stand (Figure 3a). By combining this base image with the 2005 DOQQ (pre-232 

drought), we were able to identify trees that died due to the drought period by identifying trees 233 

with red canopies in 2009 and green canopies in 2005 (Figure 3b). We validated our remotely 234 

sensed map of mortality by measuring distances between dead tree canopies in the field and 235 

corresponding nearest dead tree canopies identified in the map. We collected location data of 236 

dead (n=80) trees in the field using a differential GPS unit (Trimble Geoexplorer 6000 rover) in 237 

July 2010 with accuracy of < 15 cm. We aimed to sample areas with low and high density of tree 238 

mortality.  239 

 240 

3.4 Random Forest analysis  241 

We used the Random Forest (RF) decision tree algorithm (Breiman, 2001) implemented 242 

in R (R Development Core Team 2010 version 2.12.2) to identify environmental variables that 243 

best explain the distribution of dead trees, relative to live trees, across the Bishop pine stand. The 244 

RF sample population was composed of 1740 trees, of which 869 were identified as live, and 871 245 

as dead, a priori. For each of these live and dead tree points, we extracted values from the 246 

environmental variable raster datasets (Table 1), and these values were used as input to the RF 247 

analysis.  248 

Decision trees and RF are used to uncover complex hierarchical relationships between 249 

response variables and diverse environmental variables in multivariate data sets (Michelson et 250 

al., 1994; Moore et al., 1991). Non-linear and non-additive relationships are learned from the 251 

data rather than explicitly modeling them (Michaelsen et al. 1994, Bi and Chung 2011). Further, 252 

they are non-parametric models, which means that variable normality and independence 253 
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assumptions need not be met (Michaelsen et al. 1994, Bi and Chung 2011). Decision trees use 254 

threshold values of predictor variables to separate the response variable into more and more 255 

homogeneous groups, in our case live and dead tree populations. The RF approach aggregates 256 

the results from hundreds of individual decision trees to provide more robust predictions. 257 

Specifically, different decision trees are generated for the same data set by 1) using a sub-sample 258 

of the predictor variables at any given node (or split, based on threshold value) in the tree, and 2) 259 

using sub-samples of the response variable for training and testing each decision tree. 260 

Furthermore, values of each predictor variable are varied by +/- 10 percent and the resulting 261 

effect on classification accuracy is used to quantify variable importance through the Mean 262 

Decrease in Accuracy (MDA) score (range of 0 to 1) (Breiman, 2001). The greater the MDA 263 

score, the more important the variable is in separating live and dead tree populations. While the 264 

RF analysis ranks the importance of variables, it does not indicate the nature of the relationships 265 

between explanatory variables and the dependent variable. In order to identify and illustrate the 266 

nature of these relationships, we compared the histograms of live and dead tree populations for 267 

each of these variables, and conducted a Mann-Whitney U test (R version 2.12.2) to test for 268 

significant differences between median values at the p<0.01 level.  269 

We acknowledge that some of the environmental variables used in our analysis are 270 

interdependent, e.g., slope correlates positively with solar insolation and elevation is correlated 271 

with cloudiness (Table A2). However, the use of correlated variables in RF analyses biases 272 

neither the classification output (because RF is non-parametric) nor the measure of variable 273 

importance (Bi and Chung 2011; Peterson et al., 2012). 274 

 275 

3.5. Predictive map of tree mortality 276 
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  We created a predictive map of tree mortality using the RF results and the maps of 277 

environmental variables. Specifically, we used the R function ‘yaimpute’ (R version 2.12.2), 278 

which takes the 500 decision trees generated by the RF and applies them to the environmental 279 

variables. The algorithm then averages the 500 resulting predictor maps to make one final 280 

map. Areas where trees are more likely to die following drought are indicated by values closer to 281 

one, whereas trees in areas closer to zero are more likely to live. To better understand what 282 

environmental conditions characterize areas of low and high mortality during drought, we 283 

compared and contrasted average values of environmental variables at five sites that fall along a 284 

coastal inland elevation gradient established by Fischer et al. (2007). We examined mortality risk 285 

at these sites for two reasons: 1) sites varied in their levels of probability of mortality, and 2) 286 

field data on fog-water inputs were available for these locations providing an opportunity for us 287 

to relate our remotely sensed data of environmental factors with field observations related to 288 

potential moisture availability.  289 

 290 

4. Results  291 

4.1.  Spatial pattern of tree mortality 292 

We were able to accurately identify mortality of nearly 900 Bishop pine trees at 1-m 293 

spatial resolution (Figure 3b and 3c). To more clearly represent the spatial distribution of dead 294 

tree clusters across the stand, we generated a map of dead tree density (Figure 3d). While there 295 

are many isolated patches of dead trees in various locations within the stand, we found the 296 

highest density of dead trees to be in the eastern, more inland margin. We assessed the accuracy 297 

of our remote sensing approach with field validation points, and found that 30% of the remotely 298 

sensed dead trees were within 10 m of the ground points (n=80), and 33% of the dead trees were 299 
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between 10 and 20 m (Figure A2). In addition, visual inspection of the proximity of remotely 300 

sensed dead trees to field-based points revealed good agreement between the two datasets.  301 

 302 

4.2.  Relationship between environmental variables and tree mortality 303 

The variables included in our RF analysis formed interacting, hierarchical relationships to 304 

distinguish dead (n=871) from live (n=869) tree populations within the stand. These variables, 305 

however, had different levels of importance (Table 3). Cloud frequency and elevation received a 306 

high rank by the RF analysis (Table 3, MDA: clouds = 0.84, elevation = 0.79), which suggests 307 

that the position of trees relative to the summertime stratus cloud layer is important for reducing 308 

the likelihood of mortality. Bishop pines on SCI grow along an elevation gradient that increases 309 

from the coast inland, and along this gradient, summertime cloud cover frequency decreases 310 

(Figure A3a). We found most of the dead trees were clustered at the upper limits of the elevation 311 

range within the stand (~360-400 m), where cloud frequency was lowest (Figure A3b), 312 

coinciding with where we observed the greatest tree mortality. Live trees spanned a broader 313 

range of elevation and cloud frequencies (Figure A3c).  In particular, most Bishop pines that died 314 

were located at or above 350 m elevation (Figure 4a, median = 351 m) and where cloud 315 

frequency was less than 27% (Figure 4b, median = 0.26) compared to live trees that were more 316 

frequently found below 300 m (Figure 4a, median = 279 m) in cloudier parts of the stand (Figure 317 

4b, median = 0.30).  318 

Vegetation height was found to be of roughly equal importance to cloud cover and 319 

elevation in separating live and dead trees (Table 3, MDA: veg. height = 0.81). Dead trees were 320 

significantly shorter than live trees (Figure 4c; median dead = 7.4 m, median live = 9.0 m, 321 

p<0.001). We did not find a correlation between tree height and any of the environmental factors 322 
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used in our analysis; however, the spatial distribution of vegetation height indicates that taller 323 

trees dominate ridges in the southwest portion of the stand where tree mortality was minimal 324 

(Figure 2d).  325 

The remaining topographic variables (solar insolation, slope, and aspect) contributed to 326 

distinguishing live and dead tree populations, yet were ranked lower than cloud frequency, 327 

elevation, and vegetation height (Table 3). Nonetheless, the degree of spread and skewness in the 328 

histograms revealed subtle, but interesting differences between groups. The absolute difference 329 

in median solar insolation values between live and dead tree populations was negligible; 330 

however, live trees were normally distributed over the entire range of solar insolation values, 331 

whereas dead trees occurred more often in areas of higher solar insolation (Figure 4d; median 332 

dead =19.5 MJ m
-2

, median live = 18.5 MJ m
-2

, p<0.001). Additionally, dead trees were found on 333 

more shallow slopes compared to live trees (Figure 4e; median dead = 25
o
, median live = 30

o
). 334 

Most Bishop pines (dead or live) grew on northeast-facing slopes, yet live trees were slightly 335 

more restricted to north-facing slopes compared to dead trees (Figure 4f; median dead= 194 336 

degrees, live = 203 degrees).  337 

Geomorphic variables that characterize the hydrologic environment (TWI and curvature) 338 

received the lowest MDA rank relative to other variables in the RF analysis (Table 3). Both live 339 

and dead trees tended to grow in partially channelized areas of the landscape as indicated by 340 

larger, positive values of TWI (Figure 4g). The negative curvature values for most of the trees 341 

indicate that they also grow in areas with convergent flow lines (Figure 4h). Certainly Bishop 342 

pines grow on ridges as well, but these results suggest growing in drainages where more water 343 

accumulates is important for tree growth, especially during dry years. 344 
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Of the three environmental variables with the highest importance (clouds, elevation, and 345 

vegetation height), clouds and vegetation height showed linear relationships with probability of 346 

mortality (correlations of 0.54 and 0.48 respectively). Elevation was not linearly correlated with 347 

mortality, though the high importance value of elevation suggests a non-linear or hierarchical 348 

relationship. 349 

 350 

4.3.  Accuracy Assessment for Random Forest analysis 351 

An accuracy assessment of the RF analysis allows us to evaluate how well the RF 352 

algorithm classified live and dead trees based on the reference map we generated from the 353 

DOQQ. The accuracy of RF analysis is evaluated using a confusion matrix from which the 354 

Producer’s, User’s, and overall accuracy are derived (Table 2). Producer’s accuracy refers to the 355 

probability that a certain land-cover category, e.g., dead trees, in the reference map was 356 

classified as such by the RF algorithm (Congalton, 1991). For example, the Producer’s accuracy 357 

of dead trees was 77% because 674 pixels were modeled as ‘dead’ by the RF algorithm out of the 358 

total 871 identified as dead in our reference map. On the other hand, the User’s accuracy refers 359 

to the probability that a pixel modeled as ‘dead’ is accurately modeled as dead by the RF 360 

algorithm (Congalton, 1991). For example, the User’s accuracy for dead trees is 78% because 361 

674 pixels were correctly modeled as dead out of the 863 total pixels modeled as such by the RF 362 

algorithm. The Producer’s and User’s accuracy results for live trees were similar to that of dead 363 

trees. Overall, the classification accuracy was high with a score of 78% (kappa 0.55). The kappa 364 

statistic incorporates misclassification information, so is a more robust measure of accuracy than 365 

overall classification accuracy (Congalton, 1991).  366 

 367 
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4.4.  Predictive map of tree mortality  368 

The predictive map identifies where trees were most vulnerable to drought-induced 369 

mortality across the Bishop pine stand given the RF results (Fig. 8). We present these results in 370 

terms of probability of mortality, where values closer to one indicate a greater probability of 371 

dying through a drought period. We found that the probability of mortality in the Bishop pine 372 

stand ranged from 30-75% and that trees growing in eastern and western margins of the stand 373 

were at greater risk of mortality (shades of red/brown) compared to the central and southwest 374 

portions of the stand (shades of blue) (Fig. 8).  375 

We compared the probability of mortality and environmental conditions at five sites that 376 

fell along a coastal-to-inland elevation gradient for which we also had fog-water input data 377 

collected in the field (Fischer et al., 2007) (Table 3). The sites represent the mid-to-high values 378 

of the mortality probability scale (54-70%), and for each area we present the average values of 379 

the environmental predictor variables (Table 3). Sites were generally characterized by steep (30-380 

34°), north-facing slopes with moderate solar insolation (17.6-18.9 MJ m
-2

). Sites tended to be 381 

located in drainages (~ -0.02 – 0.13 m m
-2

) and where water accumulates (TWI, 7.9-9.1).  There 382 

was greater variability in other environmental predictive variables across sites.  383 

Site 1 is located at the western margin of the forest stand relatively close to the coast. 384 

Mortality risk is highest at this site (Table 3; probability of mortality = 70%). Of the five sites, 385 

site 1 has the highest cloud frequency (32 %), yet the lowest average fog water input over the 386 

summer (597 ml). This is likely attributed to its position below the cloud layer (elevation 141 m). 387 

Trees are shorter (5.4 m tall) than at most other sites. Site 2 is slightly higher in elevation (201 388 

m). While less cloudy (28%) than site 1, it receives more fog-drip (938 ml) (Table 3). Trees are 389 

relatively tall (9.7 m) here and mortality risk low (56 %). Site 3 is at higher elevation (423 m), 390 
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with the highest solar insolation (18.9 MJ m
-2

) of all the sites. This site has moderate values of 391 

cloud cover frequency (26%), fog-drip (1300 ml), vegetation height (7.8 m), and risk of mortality 392 

(63%) relative to other sites. Site 4 is located at the far eastern margin of the Bishop pine stand, 393 

close in elevation to site 3 (390 m). Probability of mortality (64 %) is also similar to that at site 3. 394 

While cloud frequency is low (24 %), fog-drip (~1900 ml) exceeded that collected at most other 395 

sites. Like site 1, vegetation was relatively short (6 m). Site 5 is located in the southwest portion 396 

of the stand at moderate elevation (275 m) where cloud frequency is high (31 %) and receives 397 

the most fog-drip (3205 ml). Trees are tall (11 m) and grow on northwest facing slopes (131°).  398 

 399 

5. Discussion 400 

Spatial patterns of tree mortality 401 

We accurately identified approximately 900 dead Bishop pine tree clusters in the largest 402 

Bishop pine stand on SCI. While we are confident that the high-spatial resolution of the 2009 403 

DOQQ captured larger trees with red canopies when the photo was acquired (Figure 3b), we 404 

believe that we under-sampled smaller trees (saplings) that we know died during the 2007-2009 405 

drought period, based on field observations. For example, the DOQQ could not have captured 406 

smaller trees growing beneath the canopy of larger trees (Meentemeyer et al., 2008), or simply 407 

canopies too small to be detected at 1-m spatial resolution, e.g., sub-meter diameter or seedlings. 408 

Furthermore, we observe that there were smaller trees that died, or were very close to dead tree 409 

canopies, based on the vegetation height data derived from the LiDAR dataset (Figure 4c), which 410 

has much higher precision compared to an aerial photo.  411 

The discrepancy between field-validation points and the remotely sensed trees (Figure A2) 412 

was likely attributed to the temporal disconnect between when we identified dead trees remotely 413 
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(June 2009) and when we collected validation points (July 2010). Because many dead trees that 414 

expressed red needles in 2009 had lost their needles by July 2010, we could not identify in the 415 

field exactly which trees we identified in our remotely sensed map of mortality. Despite these 416 

shortcomings, the techniques used to identify dead trees were robust, and feel that we captured 417 

the majority of the trees that died in response to drought. 418 

 419 

Environmental controls on tree mortality 420 

Our study demonstrates that there is an inverse relationship between drought-induced 421 

mortality of Bishop pines and the occurrence of summertime clouds along a coastal inland 422 

elevation gradient on SCI. The spatial clustering of dead trees in the eastern, and more inland, 423 

margin of the stand is consistent with predictions from previous research. Fischer et al. (2009) 424 

characterized this area as marginal habitat for Bishop pine based on higher modeled soil water 425 

deficit, which incorporated the cloud frequency variables used in our analysis, as well as fog 426 

water volumes collected from the field. The occurrence of fog is spatially heterogeneous, thus 427 

the strength of its impact on reducing water stress and supporting tree growth depends on how it 428 

interacts with other landscape and forest elements, such as canopy height.  429 

The vegetation height dataset derived from the 1-m LiDAR DEM provided us with a 430 

unique opportunity to address how characteristics of vegetation interact with climatic and 431 

landscape variables. We found that larger trees (>8 m tall) that occurred in cloudier, and thus 432 

foggier, areas (~30% summertime cloud frequency, Figure 2a and 3d) had high survivorship 433 

following drought. This agrees with previous research that showed Bishop pines had higher 434 

summertime growth rates in the cloudier portion of the stand compared to trees that grow further 435 

inland and at higher elevation (Carbone et al, 2012). The positive relationship between fog 436 
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frequency, tree size, and survivability could be explained by the fact that larger trees having a 437 

greater capacity to intercept fog and generate fog drip to the soil, which can significantly offset 438 

the effects of drought stress and support growth even during low rainfall years (Fischer et al. 439 

2009; Carbone et al., 2012). Therefore, fogginess may confer a fitness advantage over trees that 440 

grow in the less foggy, and more xeric parts of the stand (del-Val et al.¸2006), which has 441 

important implications for the local distribution of trees that persist at the water-limited extent of 442 

the species range.  443 

 444 

Environmental heterogeneity and probability of mortality 445 

The occurrence of low-stratus clouds in the summertime is not the only factor important to 446 

the survival of Bishop pine trees during drought. Complex and subtle interactions between 447 

climate, topography, and vegetation can have large effects on plant-available water, and the 448 

suitability of habitat for growth and survival. We observed that the three main distinguishing 449 

factors between sites with the highest and lowest mortality risk (Table 3; site 1 and site 5, 450 

respectively) were elevation, volume of fog-drip, and vegetation height (Table 3). Because 451 

cloudiness was equally high at both sites (~31-32%), the large difference in fog water input is 452 

attributed to where the low-stratus clouds are intercepted by land. Based on a climatology of 453 

cloud base heights from the Santa Barbara airport, interception of low-stratus clouds is 40% 454 

more likely at sites between 240-280 m than at lower elevation (B. Rastogi, pers. comm). 455 

Therefore, topographic relief is necessary for cloudiness to translate to direct fog water inputs, 456 

which influences plant-available water (Fischer et al., 2007). In addition, trees were twice as tall 457 

at site 5 than site 1 (Table 3).  458 
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The probability of mortality was similarly low between sites 2 and 5. While these sites 459 

supported the tallest trees, they were dissimilar with respect to other environmental variables. 460 

Unlike site 5, site 2 is located at the mouth of a large drainage in the central valley on SCI, which 461 

supports cool, wet conditions compared to sites located in more exposed areas. Because ridges 462 

rise steeply from the valley floor, this site is also located on a steep, north-facing slope, which 463 

explains why solar insolation was low compared to other sites (Table 3).  464 

The similarity in probability of mortality at sites 3 and 4 (63 and 64 %, respectively) 465 

coincide with many of the environmental factors that characterize these sites. Located on ridges 466 

at the upper limit of the elevation range for Bishop pines on the island (~ 400 m) where cloud 467 

frequency was relatively low (24-26 %) suggests that the evaporative losses may dominate at 468 

these sites.  The distinguishing factor between these sites, other than measured fog-drip, is 469 

vegetation height. Trees are taller at site 3, therefore may have greater access to groundwater, 470 

which could compensate for lower fog-water inputs. Conversely, trees at site 4 are shorter, but 471 

grow on steeper slopes and are less exposed, thus buffered from drying effects.  472 

The results of our study indicate that microhabitat conditions in the Bishop pine stand on 473 

SCI are critical for determining the survival and persistence of trees during exceptionally warm, 474 

dry periods. However, just as environmental conditions can vary widely across a forested 475 

ecosystem, many studies have demonstrated that variation in physiological adjustments of trees 476 

to stressful conditions, and differential growth patterns, are strong predictors of spatial patterns 477 

of mortality in forests (McDowell et al., 2008; Suarez et al., 2004; Wycoff and Clark, 2002; 478 

Olge et al., 2000; Pederson, 1998; Cregg, 1994). While we did not explicitly test for variation in 479 

physiological responses or growth of Bishop pine trees in response to drought, we did find 480 

mortality risk varied among trees of different size classes. The probability of mortality was 481 
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greater for shorter trees, even if the height difference was only 1-2 m (Figure 4d). One possible 482 

explanation for this pattern could be that smaller trees have limited access to stable water 483 

reserves deeper in the soil, thus are at a disadvantage during drought periods compared to larger 484 

trees that have a greater root:shoot ratio (Suarez et al., 2004). Another interpretation of this 485 

pattern may be related to how drought has historically affected population dynamics (i.e., tree 486 

age and size structure) in the Bishop pine stand.  487 

The most recent drought period (2007-09) was not an isolated event. Periodic droughts 488 

have affected the local distribution of Bishop pine on SCI in the past (Walter and Taha, 2000). 489 

The last major drought occurred between years 1986 and 1991, and killed off large swaths of 490 

Bishop pines across the island, particularly at the margins of the Bishop pine stands (Walter and 491 

Taha, 2000; Lyndal Laughrin, pers. comm.). Our results support the idea that survivorship of 492 

Bishop pine trees is compromised at the stand margins during drought (Figure 3). However, 493 

regeneration of the pine population in these areas has not ceased (Fischer et al., 2009). The net 494 

effect of these drought cycles are even-aged cohorts dominating the stand margins. Therefore, 495 

the majority of trees we observed die after the most recent drought likely emerged following the 496 

previous drought that ended in 1991; thus, they were younger and had a shorter stature than the 497 

trees more resilient to drought stress that dominate the central and southwest parts of the stand.   498 

 499 

Implications for management  500 

Analyzing high-spatial resolution (1 m) aerial imagery and LiDAR remotely sensed data 501 

of tree mortality can provide more precise spatial information about the growing conditions of 502 

individual trees, or small tree clusters, and provide a more efficient approach to forest inventory 503 

(Maggi and Meentemeyer, 2002; Hicke et al., 2012). Specifically, the color infrared DOQQ used 504 
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in our study clearly showed red-attack trees allowing us to delineate dead tree canopies. DOQQ 505 

imagery is available at no cost and collected 2-3 times per decade for any given local in the 506 

United States; therefore, acquiring and analyzing imagery that bookends a mortality event is 507 

feasible, allowing for a cost-effective method of inventorying forest damage. In contrast, LiDAR 508 

data is expensive and not readily available but the utility of deriving vegetation height and 509 

landscape variables was clearly demonstrated in this project. 510 

We found RF to be a power statistical tool for analyzing a large multivariate dataset that 511 

ranked a suite of environmental variables used to predict tree mortality. This approach can be 512 

used in a variety of forest management applications that require analysis of large datasets where 513 

there may be correlation among the predictors and hierarchical and/or non-linear relationships 514 

between predictor and response variables.  515 

This study supports the idea that low-stratus summertime clouds are important to survival 516 

of Bishop pines during drought periods at the most southern and water-limited extent of its 517 

range. However, the distribution of this species is restricted to the narrow fog-belt of California, 518 

despite the fact that precipitation is much higher further north, so fog must play a role in the 519 

more northern parts of the range as well. There is a great amount of uncertainty surrounding how 520 

the spatial and temporal variability of fog may change in the future; however, evidence suggests 521 

that fog frequency may decline in parts of the California coastline (Johnstone and Dawson, 522 

2010), which would have negative effects on the distribution of Bishop pines and other fog-523 

dependent species. 524 

 525 

 526 



24 

 

Acknowledgements: This work was funded by a grant from Kearney Foundation of Soil 527 

Science. We would like to thank Carla D’Antonio, Jennifer King, and Doug Fischer for helpful 528 

comments and valuable suggestions; Ryan Perroy for assistance in the field; The Nature 529 

Conservancy and the University of California Natural Reserve System for access to southwestern 530 

Santa Cruz Island. 531 

 532 

Literature Cited 533 

 534 

Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J.C., Breshears, D.D., 535 

Zou, C.B., Troch, P. A, Huxman, T.E., 2009. Temperature sensitivity of drought-induced 536 

tree mortality portends increased regional die-off under global-change-type drought. 537 

Proceedings of the National Academy of Sciences 106, 7063–6. 538 

Ali, G. A., Roy, A.G., 2010. Shopping for hydrologically representative connectivity metrics in a 539 

humid temperate forested catchment. Water Resources Research 46, W12544. 540 

Allen, C.D., Breshears, D.D., 1998. Drought-induced shift of a forest-woodland ecotone: rapid 541 

landscape response to climate variation. Proceedings of the National Academy of Sciences 542 

95, 14839–42. 543 

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., 544 

Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted), Gonzalez, P., Fensham, R., 545 

Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerei, A., 546 

Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals 547 

emerging climate change risks for forests. Forest Ecology and Management 259, 660–684. 548 

Anderegg, W.R.L., Berry, J. A, Smith, D.D., Sperry, J.S., Anderegg, L.D.L., Field, C.B., 2012. 549 

The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. 550 

Proceedings of the National Academy of Sciences 109, 233–7. 551 

Anderson, L. O., Malhi, Y., Aragão, L. E., Ladle, R., Arai, E., Barbier, N., Phillips, O., 2010. 552 

Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist, 187, 553 

733-750. 554 

Azevedo, J., Morgan, D.L., 1974. Fog precipitation in coastal California forests. Ecology, 1135-555 

1141. 556 



25 

 

Barbosa, O., Marquet, P. A., Bacigalupe, L. D., Christie, D. A., Del‐Val, E., Gutierrez, A. G., 557 

Jones, C.G., Weathers, K.C., Armesto, J. J., 2010. Interactions among patch area, forest 558 

structure and water fluxes in a fog‐inundated forest ecosystem in semi‐arid Chile. 559 

Functional Ecology 24, 909-917. 560 

Bi, J., Chung, J., 2011. Identification of drivers of overall liking–determination of relative 561 

importances of regressor variables. Journal of Sensory Studies 26, 245-254. 562 

 563 

Breiman, L., 2001. Random forests. Machine learning 45, 5-32. 564 

Breshears, D.D., Cobb, N.S., Rich, P.M., Price, K.P., Allen, C.D., Balice, R.G., Romme, W.H., 565 

Kastens, J.H., Floyd, M.L., Belnap, J., Anderson, J.J., Myers, O.B., Meyer, C.W., 2005. 566 

Regional vegetation die-off in response to global-change-type drought. Proceedings of the 567 

National Academy of Sciences 102, 15144–8. 568 

Carbone, M.S., Williams, A.P., Ambrose, A.R., Boot, C.M., Bradley, E.S., Dawson, T.E., 569 

Schaeffer, S.M., Schimel, J.P., Still, C.J., 2012. Cloud shading and fog drip influence the 570 

metabolism of a coastal pine ecosystem. Global Change Biology 19, 484-497. 571 

Cavender-Bares, J., Bazzaz, F.A., 2000. Changes in drought response strategies with ontogeny in 572 

Quercus rubra: implications for scaling from seedings to mature trees. Oecologia 124, 8-18. 573 

Cavelier, J., Solis, D., Jaramillo, M. A., 1996. Fog interception in montane forests across the 574 

Central Cordillera of Panama. Journal of Tropical Ecology 12, 357-369. 575 

Chambers, J.Q., Asner, G.P., Morton, D.C., Anderson, L.O., Saatchi, S.S., Espírito-Santo, 576 

F.D.B., Palace, M., Souza, C., 2007. Regional ecosystem structure and function: ecological 577 

insights from remote sensing of tropical forests. Trends in Ecology & Evolution 22, 414–23. 578 

Clark, D.B., Castro, C.S., Alvarado, L.D.A., Read, J.M., 2004. Quantifying mortality of tropical 579 

rain forest trees using high-spatial-resolution satellite data. Ecology Letters 52–59. 580 

Congalton, R.G., 1991. A Review of Assessing the Accuracy of Classifications of Remotely 581 

Sensed Data. Remote Sensing of Environment 46, 35–46. 582 

Coops, N.C., Johnson, M., Wulder, M. A., White, J.C., 2006. Assessment of QuickBird high 583 

spatial resolution imagery to detect red attack damage due to mountain pine beetle 584 

infestation. Remote Sensing of Environment 103, 67–80. 585 

Corbin, J.D., Thomsen, M. A, Dawson, T.E., D’Antonio, C.M., 2005. Summer water use by 586 

California coastal prairie grasses: fog, drought, and community composition. Oecologia 587 

145, 511–21. 588 

Cregg, B.M. 1994. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa 589 

genotypes known to differ in growth and survival under imposed drought. Tree Physiology 590 

14, 883-898. 591 



26 

 

Dawson, T.E., 1996. Determining water use by trees and forests from isotopic, energy balance 592 

and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiology 16: 263-593 

272. 594 

Dawson, T.E., 1998. Fog in the California redwood forest: ecosystem inputs and use by plants. 595 

Oecologia 117, 476–485. 596 

Dennison, P.E., Brunelle, A.R., Carter, V. A., 2010. Assessing canopy mortality during a 597 

mountain pine beetle outbreak using GeoEye-1 high spatial resolution satellite data. Remote 598 

Sensing of Environment 114, 2431–2435. 599 

del-Val, E., Armesto, J. J., Barbosa, O., Christie, D. A., Gutiérrez, A. G., Jones, C. G., Marquet, 600 

P.A., Weathers, K. C., 2006. Rain forest islands in the Chilean semiarid region: fog-601 

dependency, ecosystem persistence and tree regeneration. Ecosystems 9, 598-608. 602 

Donovan, L.A., Ehleringer, J.R., 1994. Water stress and use of summer precipitation in a Great 603 

Basin shrub community. Functional Ecology 8, 289–297. 604 

Dubayah, R.C., 1994. Modeling a Solar Radiation Topoclimatology for the Rio Grande River 605 

Basin. Journal of Vegetation Science 5, 627–640. 606 

Edburg, S.L., Hicke, J.A., Brooks, P.D., Pendall, E.G., Ewers, B.E., Norton, U., Gochis, D., 607 

Gutmann, E.D., Meddens, A.J., 2012. Cascading impacts of bark beetle-caused tree 608 

mortality on coupled biogeophysical and biogeochemical processes. Frontiers in Ecology 609 

and the Environment 10, 416–424. 610 

Ewing, H. A., Weathers, K. C., Templer, P. H., Dawson, T. E., Firestone, M. K., Elliott, A. M., 611 

& Boukili, V. K. (2009). Fog water and ecosystem function: heterogeneity in a California 612 

redwood forest. Ecosystems 12, 417-433. 613 

Fischer, D.T., 2007. Ecological and biogeographic impacts of fog and stratus clouds on coastal 614 

vegetation, Santa Cruz Island, CA (Doctoral disserations). University of California, Santa 615 

Barbara, CA. 616 

Fischer, D.T., Still, C.J., Williams, A.P., 2009. Significance of summer fog and overcast for 617 

drought stress and ecological functioning of coastal California endemic plant species. 618 

Journal of Biogeography 36, 783–799. 619 

Floyd, M. L., Clifford, M., Cobb, N. S., Hanna, D., Delph, R., Ford, P., & Turner, D., 2009. 620 

Relationship of stand characteristics to drought-induced mortality in three Southwestern 621 

pinon-juniper woodlands. Ecological Applications 19, 1223-1230. 622 

Fraser, R. H., Latifovic, R., 2005. Mapping insect‐induced tree defoliation and mortality using 623 

coarse spatial resolution satellite imagery. International Journal of Remote Sensing 26, 193-624 

200. 625 



27 

 

Gessler, P.E., Chadwick, O.A., Chamran, F., Althouse, L., Holmes, K., 2000. Modeling Soil – 626 

Landscape and Ecosystem Properties Using Terrain Attributes. Soil Science Society of 627 

America 64, 2046–2056. 628 

Gitlin, A.R., Sthultz, C.M., Bowker, M.A., Stumpf, S., Paxton, K.L., Kennedy, K., Muñoz, A., 629 

Bailey, J.K., Whitham, T.G., 2006. Mortality gradients within and among dominant plant 630 

populations as barometers of ecosystem change during extreme drought. Conservation 631 

Biology 20, 1477–86. 632 

Guo, Q., Kelly, M., Gong, P., Liu, D., 2007. An Object-Based Classification Approach in 633 

Mapping Tree Mortality Using High Spatial Resolution Imagery. GIScience & Remote 634 

Sensing 44, 24–47. 635 

Gutierrez, A. G., Barbosa, O., Christie, D. A., del-Val, E. K., Ewing, H. A., Jones, C. G., 636 

Marquet, P.A., Weathers, K.C., Armesto, J. J., 2008. Regeneration patterns and persistence 637 

of the fog‐dependent Fray Jorge forest in semiarid Chile during the past two centuries. 638 

Global Change Biology 14, 161-176. 639 

Hanson, P.J., Weltzin, J.F., 2000. Drought disturbance from climate change: response of United 640 

States forests. The Science of the Total Environment 262, 205–20. 641 

Harr, R.D., 1982. Fog drip in the Bull Run municipal watershed, Oregon. Water Resources 642 

Bulletin 18, 785-789. 643 

Hetrick, W.A., Rich, M, P., Barnes, F.J., Weiss, S.B., 1993. GIS-based Solar Radiation Flux 644 

Models. American Society of Photogrammetry and Remote Sensing Technical Papers 3, 645 

132–143. 646 

Hicke, J. A., Johnson, M.C., Hayes, J.L., Preisler, H.K., 2012. Effects of bark beetle-caused tree 647 

mortality on wildfire. Forest Ecology and Management 271, 81–90. 648 

Hicke, J. A., Logan, J., 2009. Mapping whitebark pine mortality caused by a mountain pine 649 

beetle outbreak with high spatial resolution satellite imagery. International Journal of 650 

Remote Sensing 30, 4427–4441. 651 

Huang, C.-Y., Anderegg, W.R.L., 2012. Large drought-induced aboveground live biomass losses 652 

in southern Rocky Mountain aspen forests. Global Change Biology 18, 1016–1027. 653 

Hutley, L. B., Doley, D., Yates, D. J., and A. Boonsaner, 1997. Water balance of an Australian 654 

subtropical rainforest at altitude: the ecological and physiological significance of 655 

intercepted cloud and fog. Australian Journal of Botany 45, 311-329. 656 

Ingraham, N., Matthews, R., 1995. The importance of fog-drip water to vegetation: Point Reyes 657 

Peninsula, California. Journal of Hydrology 164, 269–285. 658 



28 

 

Iacobellis, S. F., Cayan, D.R., 2013. The variability of California summertime marine stratus: 659 

Impacts on surface air temperatures. Journal of Geophysical Research: Atmospheres 118, 1-660 

18. 661 

Johnstone, J. A., Dawson, T.E., 2010. Climatic context and ecological implications of summer 662 

fog decline in the coast redwood region. Proceedings of the National Academy of Sciences 663 

107, 4533-4538. 664 

Junak, S., Ayers, T., Scott, R., Wilken, D., Young, D.A., 1995. A flora of Santa Cruz Island. 665 

Santa Barbara, Calif.: Santa Barbara Botanical Garden. 666 

Kelly, A.E., Goulden, M.L., 2008. Rapid shifts in plant distribution with recent climate change. 667 

Proceedings of the National Academy of Sciences 105, 11823–6. 668 

Koepke, D.F., Kolb, T.E., Adams, H.D., 2010. Variation in woody plant mortality and dieback 669 

from severe drought among soils, plant groups, and species within a northern Arizona 670 

ecotone. Oecologia 163, 1079–90. 671 

Lanner, R.L., 1999. Conifers of California. Los Olivos, CA: Cachuma Press. 672 

Limm, E. B., Simonin, K. A., Bothman, A. G., & Dawson, T. E. (2009). Foliar water uptake: a 673 

common water acquisition strategy for plants of the redwood forest. Oecologia, 161(3), 674 

449-459. 675 

Limm, E. B., & Dawson, T. E. (2010). Polystichum munitum (Dryopteridaceae) varies 676 

geographically in its capacity to absorb fog water by foliar uptake within the redwood forest 677 

ecosystem. American Journal of Botany, 97(7), 1121-1128. 678 

McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., 679 

Sperry, J., West, A., Williams, D.G., Yepez, E.A., 2008. Mechanisms of plant survival and 680 

mortality during drought: why do some plants survive while others succumb to drought? 681 

New Phytologist 178, 719-733. 682 

Macomber, S.A., Woodcock, C.E., 1994. Mapping and Monitoring Conifer Mortality Using 683 

Remote Sensing in the Lake Tahoe Basin. Remote Sensing of Environment 266, 255–266. 684 

Maggi, K., Meentemeyer, R.K., 2002. Landscape dynamics of the spread of sudden oak death. 685 

Photogrammetric Engineering & Remote Sensing 68, 1001-1009. 686 

Meigs, G.W., Kennedy, R.E., Cohen, W.B., 2011. A Landsat time series approach to characterize 687 

bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. 688 

Remote Sensing of Environment 115, 3707–3718. 689 

Meentemeyer, R. K., Rank, N. E., Shoemaker, D. A., Oneal, C. B., Wickland, A. C., Frangioso, 690 

K. M., Rizzo, D. M., 2008. Impact of sudden oak death on tree mortality in the Big Sur 691 

ecoregion of California. Biological Invasions 10, 1243-1255. 692 



29 

 

Michaelsen, J., Schimel, D.S., Friedl, M.A., Davis, F.W., Dubayah, Ralph, C., 1994. Regression 693 

Tree Analysis of satellite and terrain data to guide vegetation sampling and surveys. Journal 694 

of Vegetation Science 5, 673–686. 695 

Monger, H., Bestelmeyer, B., 2006. The soil-geomorphic template and biotic change in arid and 696 

semi-arid ecosystems. Journal of Arid Environments 65, 207–218. 697 

Moore, D.M., Lees, B.G., Davey, S.M., 1991. A New Method for Predicting Vegetation 698 

Distributions using Decision Tree Analysis in a Geographic Information System. 699 

Environmental Management 15, 59–71. 700 

Ogle, K., Whitham, T.G., Cobb, N.S., 2000. Tree-Ring Variation in Pinyon Predicts Likelihood 701 

of Death following Severe Drought. Ecology 81, 3237–3243. 702 

Pederson, B.S. 1998. The role of stress in the mortality of Midwestern oaks as indicated by 703 

growth prior to death. Ecology 79, 79-93. 704 

Perroy, R.L., Bookhagen, B., Asner, G.A., Chadwick, O.A., 2010. Comparison of gully erosion 705 

estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. 706 

Geomorphology 118, 288-300. 707 

Perroy, R.L., Bookhagen, B., Chadwick, O.A., Howarth, J.T., 2012. Holocene and Anthropocene 708 

Landscape Change: Arroyo formation on Santa Cruz Island, California. Annals of the 709 

Association of American Geographers 102, 1229-1250. 710 

Peterson, S. H., Franklin, J., Roberts, D. A., van Wagtendonk, J. W., (2012). Mapping fuels in 711 

Yosemite National Park. Canadian Journal of Forest Research 43, 7-17. 712 

Ponette-Gonzalez, A.G., Weathers, K. C., Curran, L. M., 2010. Water inputs across a tropical 713 

montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog 714 

seasonality, and interannual precipitation variability. Global Change Biology 16, 946-963. 715 

Raven, P.H., Axelrod, D.I., 1978. Origin and relationships of the California flora. University of 716 

California Press: Berkeley, CA.  717 

Sørensen, R., Zinko, U., Seibert, J., 2006. On the calculation of the topographic wetness index: 718 

evaluation of different methods based on field observations. Hydrology and Earth System 719 

Sciences 10, 101–112. 720 

Stone, C., Penman, T., Turner, R., 2012. Managing drought-induced mortality in Pinus radiata 721 

plantations under climate change conditions: A local approach using digital camera data. 722 

Forest Ecology and Management 265, 94-101. 723 

Suarez, M.L., Ghermandi, L, Kitzberger, T. 2004. Factors predisposing episodic drought-induced 724 

mortality in Nothofagus- site, climatic sensitivity and growth trends. Journal of Ecology 92, 725 

954-966. 726 



30 

 

Uehara, Y.,  Kume, A., 2012. Canopy Rainfall Interception and Fog Capture by Pinus pumila 727 

Regal at Mt. Tateyama in the Northern Japan Alps, Japan. Arctic, Antarctic, and Alpine 728 

Research 44, 143-150. 729 

van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D., Franklin, J.F., Fulé, P.Z., 730 

Harmon, M.E., Larson, A.J., Smith, J.M., Taylor, A.H., Veblen, T.T., 2009. Widespread 731 

increase of tree mortality rates in the western United States. Science 323, 521–524. 732 

Vogelmann, H.W.,1973. Fog precipitation in the cloud forests of eastern Mexico. Bioscience 733 

23(2), 96-100. 734 

Walter, H.S., Taha, L.A. 2000. Regeneration of Bishop pine (Pinus muricata) in the absence and 735 

presence of fire: a case study from Santa Cruz Island, California. In: Browne, D.R., 736 

Mitchell, K.L, Chaney, H.W., Eds. Proceedings of the fifth California Islands symposium, 737 

1999 March 29 to April 1; Santa Barbara, California. San Diego, CA: U.S. Department of 738 

the Interior, Mineral Management Service (OCS Study MMS 99-0038): 172-181. 739 

Weathers, K. C., Lovett, G. M., Likens, G. E., 1995. Cloud deposition to a spruce forest edge. 740 

Atmospheric Environment 29, 665-672. 741 

Williams, A P., Still, C.J., Fischer, D.T., Leavitt, S.W., 2008. The influence of summertime fog 742 

and overcast clouds on the growth of a coastal Californian pine: a tree-ring study. Oecologia 743 

156, 601–11. 744 

Williams, A P., 2009. Teasing foggy memories out of Pines on the California Channel Islands 745 

using tree-ring width and Stable Isotope approaches (Doctoral disserations). University of 746 

California, Santa Barbara, CA. 747 

Williams, A., P., Allen, C.D., Millar, C.I., Swetnam, T.W., Michaelsen, J., Still, C.J., Leavitt, 748 

S.W., 2010. Forest responses to increasing aridity and warmth in the southwestern United 749 

States. Proceedings of the National Academy of Sciences 107, 21289–21294. 750 

Wulder, M. A., Dymond, C.C., White, J.C., Leckie, D.G., Carroll, A.L., 2006. Surveying 751 

mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest 752 

Ecology and Management 221, 27–41. 753 

Wycoff, P.H., Clark, J.S. 2002. The relationship between growth and mortality for seven co-754 

occurring tree species in the southern Appalachian Mountains. Journal of Ecology 90, 604-755 

615. 756 

 757 

 758 



Figure 1. (a) Study area is located on Santa Cruz Island (SCI, 34o N, 119o 45’ W), about 40 km off the 

coast of Santa Barbara in south-central California, and it supports the southernmost extent of Bishop 

pine trees in the United States. Other populations in California indicated by red marks along the 

coastline (Lanner, 1999); (b) SCI (shaded in gray) is the largest of the islands in Channel Islands 

National Park; (c) Bishop pine stands on SCI are delineated with a red outline. Our study area is the 

westernmost and largest stand of trees. 
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Figure 2. Environmental layers used in the Random Forest analyses. The 

Bishop pine stand perimeter is delineated in each layer with a white or black 

line. Layers include: a) summertime cloud frequency, b) elevation (m), c) solar 

insolation (MJ m-2), d) vegetation height (m), e) slope (degrees), f) aspect 

(degrees), g) topographic wetness index (TWI), and h) curvature (m m-2). 
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Figure 3. (a) Photograph of a single dead Bishop pine in the field and associated red tree canopies observed in the 

2009 true color aerial photo (Digital Ortho Quarter Quad from the U.S.G.S); (b) zoomed in an area highlighted by 

yellow box in (c) of high tree mortality in the 2009 DOQQ showing individual dead canopies delineated by cyan 

colored polygons; (c) showing the entire extent of westernmost Bishop pine stand where dead tree canopies (n=871) 

are indicated by cyan polygons; (d) density map of dead tree canopies where white circles represent average 

number of dead tree canopy pixels within a 30 m radius of each dead tree. There are only circles where there is a 

value for tree density. Higher densities of dead trees are represented by the brighter circles. The highest density of 

dead tree pixels is 10%, which represents about 5-10 dead tree canopies depending on the canopy size. Stand 

boundaries are given by the polygons (white lines). 
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Figure 4. Histogram of variables for dead (above dashed line) and live (below dashed line) tree populations. Differences between 
median values for live and dead tree populations differed significantly at the p<0.01 level, and values are reported in text. To 
interpret aspect, north-facing =180°, south-facing=360°, west-facing= 90°, and east-facing =270°.  
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Figure 5. Predictive map of tree mortality following drought for our study area (see 

Figure 1c for reference). Bishop pine stand is delineated with a black line, and other land 
surface types are masked out. Red-colored areas represent areas where probability of 

mortality following drought is high (closer to one) compared to blue-colored areas (closer 

to 0). Numbered areas (1-5) are described in the text with respect to how probability of 
mortality relates to environmental conditions and tree height, and are included in Table 5.  
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Table 1. Potential explanatory variables used in the Random Forest analyses. The Mean 

Decrease in Accuracy (MDA) value ranks the variables based on how well they separate live 

and dead tree populations in the RF analysis. The larger the MDA value, the higher ranked the 

variable, i.e., the greater explanatory power.  

 

Type Variable abbreviation 

Data 

sourc

e 

Spatial 

scale 
Units MDA 

Climatic 

Summertime (June-

Sept.) cloud cover 

frequency 

clouds 
MODI

S 
250 m percent 0.84 

Elevation elevation 
LiDAR 

DEM 
1 m m 0.79 

 Topographic 

 

Daily integrated 

summertime (June-

Sept.) solar insolation 

solar 

insolation 
MJ m-2 0.72 

  Slope slope degrees 0.70 

Aspect aspect degrees 0.63 

Geomorphic 
Topographic Wetness 

Index  

twi 

  
-- 0.36 

  Topographic Curvature curvature m/m-2 0.28 

Biotic Vegetation Height veg. height m 0.81 

Table1



Table 2. Average accuracy assessment of 500 decision classification trees in 

Random Forest analysis.  

Reference 

Dead Live Total User’s 

M
o

d
e

le
d

 

Dead 674 189 863 0.78 

Live 197 680 877 0.78 

Total 871 869 1740   

Producer’s 0.77 0.78     

Overall accuracy 0.78       

Kappa 0.55       

Table2



Site 
  Probability 
of mortality 

(%)  

Avg. 
summer 
fog-drip 

(ml)* 

Cloud cover 
frequency 

Elevation 
(m) 

Vegetation  
height (m) 

Solar 
insolation 
(MJ m-2) 

Aspect** 
(degrees) 

Slope 
(degrees) 

Curvature 
(m m-2) 

TWI 

1 70 597 0.32 141 5.4 17.8 208 32 0.041 8.1 

2 56 938 0.28 201 9.7 17.6 186 31 -0.033 8.7 

3 63 1300 0.26 423 7.8 18.9 115 30 0.076 9.2 

4 64 1889 0.24 390 6.0 18.0 176 34 0.128 9.1 

5 54 3205 0.31 275 11.1 18.3 131 33 -0.021 7.9 

Table 3. Average probability of tree mortality and environmental variables for the ten sites indicated in Figure 8. Sample locations 

were determined based on field sites for which we had data on fog-water inputs. The area of each site was approximately  20 m2. 

*Fog-drip (ml) data was collected in the field at weather stations (Fischer et al., 2007) from May-September in 2004. We 

calculated average volume of fog-water inputs over these summer months. 

**Aspect: north-facing =180°, south-facing=360°, west-facing= 90°, and east-facing =270°.  
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