
Reference-free deconvolution of DNA methylation data and mediation by cell 
composition effects – Supplementary Information 

E. Andres Houseman1, Molly Kile1, David C. Christiani2, Tan A. Ince3, Karl T. Kelsey4, Carmen 
J. Marsit5 

1. School of Biological and Population Health Sciences, College of Public Health and Human 
Sciences, Oregon State University; Corvallis, OR, USA.  Email: 
andres.houseman@oregonstate.edu 

2.  Department of Environmental Health, Harvard T. H. Chan School of Public Health; Boston, 
MA, USA. 

3. Department of Pathology, University of Miami, Miller School of Medicine; Miami, FL, USA. 

4.  Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown 
University  

5.  Department of Community and Family Medicine, Dartmouth Medical School; Hanover, NH, 
USA. 

 

Section S1 – Convex Deconvolution of DNA Methylation Data 

We assume an nm   matrix Y  representing methylation data collected for n  subjects or 
specimens, each measured on an array of m CpG loci, and that the measured values are 

constrained to the unit interval ]1,0[ . We explicitly write Y  in terms of its row vectors 
T

},...,1{
T)( )( mj

r
j  yY  and its column vectors },...,1{

)( )( ni
c

i  yY .  We also assume the following 

decomposition: TMΩY  , where },...,1{},,...,1{
T

},...,1{
T )()( Kkmjjkmjj   μM  is a unknown Km   

matrix representing m  CpG-specific methylation states for each of K  cell types (with row 

vectors representing profiles each individual CpG) and },...,1{},,...,1{
T

},...,1{
T )()( Kkniiknii   ωΩ  is an 

unknown Kn   matrix representing subject-specific cell-type distributions (each row 

representing the cell-type proportions for a given subject, i.e. the entries of Ω  lie within ]1,0[  

and the rows of Ω  sum to values less than one).   For a fixed number K  of assumed cell types, 
we estimate M  and Ω  as follows: 

0. Start with an initial estimate of M . 

1. Fixing M , construct a new T
},...,1{

T )( nii  ωΩ : for each },...,1{ ni  , minimize 
2)(

i
c

i Mωy   

subject to the constraints 10  ik  and 1
1

 

K

k ik . 

2. Fixing Ω , construct a new T
},...,1{

T )( mjj  μM : for each },...,1{ mj  , minimize 

2)(
j

r
j Ωμy   subject to the constraints 10  jk . 



3. Repeat steps (1)-(2) a specific number of times. 

The constrained optimizations in steps (1) and (2) can easily be achieved using a quadratic 
programming algorithm1 implemented in the R library quadprog.  We note that if M  is chosen 
reasonably well, a relatively few number of iterations will be necessary to achieve near-
convergence.  For the present analysis, 25 iterations were used; Figure S2.1 displays box-and-
whisker plots for the distribution of absolute differences (absolute values of the entries of 

TMΩY  ) between the last two iterations of the 2K  fit, while Figure S2.2 displays the 

corresponding plot for )ˆ,2max(* KKK  , where K̂  was the estimated number of classes as 

described below in Section S3.  As suggested by the figures, the error was typically less than 
0.01, and often about 0.001 or less.   

For the present analysis, we have initialized M  step (0) as follows:  we used hierarchical 
clustering to cluster the columns ofY  (i.e. using a Manhattan metric and Ward’s method of 
clustering), formed K  classes from the resulting dendrogram, and initialized M  as the K  mean 
methylation vectors corresponding to each class.  In this way, M  was initialized in a manner 
consistent with the RPMM algorithm2, widely used in DNA methylation analysis.   

A substantial portion of the variation between cell-type specific methylomes will be driven only 
by the most evidently variable CpG loci, with the remaining loci contributing only noise; 

consequently, for the present analysis we have selected the 5000m  most variable CpGs 

(within each data set) for the 27K data sets, and the 000,10m  most variable CpGs (within 

each data set) for the 450K data sets.  However, subsequent to step (3) in the algorithm, with 
the value of Ω  estimated, we constructed a new M  for the full array, as in step (2). 

 

Figure S1.1 – Convergence Error, K=2 Figure S1.1 – Convergence Error, K=K* 
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Section S2 – Bootstrap Method for Determining the Number of Classes K 

Because conventional model-fitting statistics such as AIC and BIC fail in high-dimensional 
problems, where the number of model parameters greatly exceeds the sample size, we used a 

bootstrap technique to estimate the optimal number of classes, K̂ .  For each data set, we 
sampled the specimens with replacement R=1000 times; for each bootstrap sample r  and for 

max2 KK   we fit the model described above in Section S2 to obtain estimates )( rM  and 
)(rΩ (note that we used only the most variable CpG loci, as described in Section S2).  Due to 

the large number of resampling iterations, we iterated the algorithm of Section S2 only 10 times 
instead of 25.  Each bootstrap sample omits approximately 36.8% of the data, so with each 

remaining “out-of-bag” data set 
},...,1{},,...,1{

)()(
)()(

mjNi

r
ji

r
ry




Y , of sample size nN r 368.0)( 
, 

we constructed deviance statistics as follows.  For 1K  (no mixture), the bootstrap deviance 
was calculated as 

   







m

j

N

i

r
j

r
ji

r
j

r
j

r
jr

r
r

yn
N

D
1 1

2)()(1)(2
,1

)(2
,1

)(
)(

)(
1

)(

)(][]2log[
1  ,  

where )(r
j  and )(2 r

j  were, respectively, the mean and variance calculated for CpG locus j  

from the bootstrap sample, and )()( rr
j Nn    was the out-of-bag sample size available for that 

locus (i.e. excluding missing values); note that the variance  was calculated using the maximum 

likelihood approach, 
 

)(

1

2)()(1)()(2
,1 )(][

r
jn

i

r
j

r
ji

r
j

r
j yn   (with )(r

jn denoting CpG-specific bootstrap 

sample size and )(r
jiy  a bootstrapped value), rather than the more common restricted maximum 

likelihood method with denominator 1)( r
jn .  For 2K , the out-of-bag data )( rY  and the 

bootstrap estimate T
},...,1{

T)()( )( mj
r
j

r
 μM   were used to obtain an out-of-bag estimate of cell 

mixture proportions T

},...,1{

T)()(
)()( rNi

r
i

r


  ωΩ , as in step (1) of the algorithm described in Section 

S2.  The bootstrap deviance for 2K  was then calculated as 

   







m

j

N

i

r
i

r
j

r
ji

r
jK

r
jK

r
jr

r
K

r

yn
N

D
1 1

2)(T)()(1)(2
,

)(2
,

)(
)(

)(
)(

)(][]2log[
1

ωμ , 

where 
 

)(

1

2)(T)()(1)()(2
, )(][

r
jn

i

r
i

r
j

r
ji

r
j

r
jK yn ωμ was calculated from the bootstrap sample, in a 

manner similar to )(2
,1

r
j . 

For max1 KK  , we summarized the deviance statistics },...,{ )1000()1(
KK DD  by mean, median, 

and trimmed mean (trimming the upper and lower quartiles).   We chose K̂  as the value of K  
that minimized the trimmed mean bootstrap deviance.   



  

Section S3 – Descriptive Overview of Data Sets 

Figure S1.1 shows the clustering of the 23 data sets used in this analysis, based on Ward’s 
method of clustering (specifically, the Ward.D implementation of R version 3.2.2) applied to 
Manhattan distances computed on mean methylation profiles on 26,476 CpG sites common to 
all 23 data sets.  Figure S1.2 depicts the number of CpG sites used in subsequent analysis for 
each data set, with the proportion of observed data for each CpG indicated by color (note that 
for each data set, the majority of CpGs analyzed were observed for 100% of specimens in the 
data set). 

We remark on the conventions we used for constructing short codes used to identify each data 
set:  initial letters are lower-case for 27K data sets, upper-case for 450K data sets; for datasets 
consisting of mixed normal and pathological tissues and broken into subsets, the brackets 
indicate whether the data set contains normal [n], tumor [t], or other non-tumor pathological data 
[p]. 

 

 

Figure S1.1 – Clustering of Infinium 27K and 
450K Data Sets 

Figure S1.2 – Summary of Number of CpGs 
and Observed Data 
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Section S4 – Permutation Test for Determining Associations with Metadata across 
Classes 

The row-vectors },...,1{},,...,1{
T

},...,1{
T )()( Kkniiknii   ω  (as defined above in Section S2) are 

approximately Dirichlet distributed, but a less computationally method of modeling their 

associations with phenotypic metadata is to use quasi-likelihood.  Specifically, for an dn  

covariate matrix T
},...,1{

T )( nii  xX , we propose the following approximate model: 

)(logit)E( T1
ikikik xγ , )1()var( ikikik   , 

where kγ  is a 1d  vector of parameters for cell type k .  This model can easily be fit using the 

R function glm with family set to quasibinomial.  For each },...,1{ Kk  , glm will supply a vector 

of nominal p-values ),...,( 1 kdkk ppp  corresponding to the coefficient estimates kγ̂ .   If 

},...,1{ dC   corresponds to a specific set of coefficients to be tested, then 

}},...,1{,:min{)( KkClpp kl
C

K   measures the strength of evidence for an association of iω  

with the phenotype represented by C .  Correspondingly, }},...,2{:min{ max
)()( KKpp C

K
C   

represents the strength of evidence for the association of the phenotype with cell-type under 
any assumed number of classes, and is thus agnostic in the choice of K .  The null distribution 

of 
)(C

Kp  or 
)(Cp  can easily be generated by permuation as follows.  For one permutation iteration 

},...,1{ Rr , permute the rows of the submatrix of X  corresponding to the members of  C , fit 

the model above, and generate the minimum p-value test statistics 
))(( rC

Kp  and 
))(( rCp ; the 

model-specific p-value for an assumed number of classes K  is then 

  
 

R

r

C
K

rC
K

C
K ppRp

1

)())((1*)( 1 , and the omnibus p-value over all assumed values of K  is 

   


 
R

r

CrCC ppRp
1

)())((1*)( 1 .  Table 2 of the main text provides the omnibus p-values 
*)(Cp  

for each set of covariates considered for each data set we analyzed ( 1000R  permutations). 
Supplementary file Houseman-DNAm-deconvoluton-Supplement-S4-plots.pptx illustrates the 

progression of p-values *)(C
kp  as K  varies across different values; the file also provides 

clustering heatmaps illustrating the relationships between each covariate and iω , for 

)ˆ,2max(* KKK  . 

 

  



Section S5 – Analysis of CpG-Specific Associations via Limma 

In order to assess the impact of the data reduction implied by the decomposition TMΩY   on 
CpG-specific associations, we used the limma procedure3 in the R/Bioconductor library limma to 

model CpG specific associations XβΩαy ]~E[ )(r
j , where },...,1{

)( )][logit(~
niji

r
j y y  denotes the 

row-vector of logit-transformed beta values (i.e. the M-values often used for CpG-specific 

analysis), α  is a 1K  vector of covariates on Ω  (for a presumed value of K ), and β  is a 1d  

vector of covariates on X .  For each coviariate represented by a single regression coefficient, 
we captured the nominal CpG-specific p-values reported by the procedure; for covariates 
represented by multiple coefficients (e.g. categorical covariates) we formed the appropriate F-
statistic using the relevant data elements returned by the procedure, subsequently calculating 
the corresponding CpG-specific p-values.  Using the R/Bioconductor library qvalue, we 

transformed each resulting set of p-values to q-values, specifically estimating the proportion 0  

of null associations.  For demographic variables (age, sex, race), Figure S5.1 provides a 

comparison of 0  from the 1K  model (i.e. omitting the Ωα  term) with 0  from the 

)ˆ,2max(* KK  .  Figure 4 of the main text provides the same comparison for other variables.  

Additionally, the supplementary compressed folder Supplement-S5-histograms.zip contains 
illustrations of p-value histograms, while the supplementary compressed folder Supplement-S5-

p-value-plots.zip contains illustrations of the trajectory of 0  as K  varies across different 

values.  Tables S5.1 and S5.2 below tabulate the 0  values shown in Figures 4 and S5.2.  For 

each phenotype, we also used a paired Wilcoxon test to compared log-q-values computed with 

1K  to those computed with *KK  ;  all p-values were < 10-16, except for histology in br-3[t] 
(p=2.1 x 10-16). 

 

   



Figure S5.1 – Estimates of 0  for Ω  with 

)ˆ,2max(* KK 

Figure S5.2 – Comparison of Estimated 0  for 

Demographic Variables 

 

 

Table S5.1 – Null probabilities 0  for Age, 

Sex, and Race coefficients 
 

 
 
All paired Wilcoxon p-values < 10-16  

Table S5.2 – Null probabilities 0  for Disease 

and Exposure Phenotypes 
 

 
All paired Wilcoxon p-values were < 10-16, except for 
histology in br-3[t] (p=2.1 x 10-16) 
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BR-tcga[n]

BR-tcga[t]

bl-hn

br-2[t]

br-3[t]

bl-ov
br-1[t]
AR[np]

AR[np]

UV-as

PL-as

AR-as
BL-as

BR-
tcga[n]

BR-
tcga[t]

Age
Sex
Race

pheno dataset K=1 K=K* Ratio

BR‐tcga[n] 0.70 0.83 1.2

BR‐tcga[t] 0.46 0.51 1.1

bl‐hn 0.89 0.63 0.7

br‐2[t] 0.88 >0.99 1.1

br‐3[t] 0.87 0.97 1.1

bl‐ov >0.99 >0.99 1.0

br‐1[t] >0.99 >0.99 1.0

AR[np] >0.99 >0.99 1.0

AR[np] 0.72 0.63 0.9

UV‐as 0.90 0.89 1.0

PL‐as >0.99 0.95 1.0

AR‐as 0.96 0.83 0.9

BL‐as 0.78 0.82 1.1

BR‐‐tcga[n] 0.96 0.99 1.0

BR‐‐tcga[t] 0.40 0.44 1.1

age

sex

race

dataset pheno K=1 K=K* Ratio

BR‐tcga[t]‐(ER) ER 0.13 0.33 2.6

BR‐tcga[t]‐(HER2) HER2 0.09 0.15 1.7

BR‐tcga[t]‐(staging) stage 0.03 0.04 1.5

L[np] cirrh/norm 0.33 0.28 0.9

PL‐as water As 0.61 0.66 1.1

AR[np] ath/norm 0.07 0.38 5.1

AR‐as water As 0.54 0.57 1.1

UV‐as water As 0.80 >0.99 1.2

BV+LV bl/lymph 0.65 0.92 1.4

SP frac 0.58 0.62 1.1

BL‐as water As 0.59 0.66 1.1

BL‐ra Rh. Arthritis 0.20 0.74 3.7

bl‐hn case/ctrl 0.87 0.98 1.1

bl‐ov case/ctrl 0.51 0.79 1.5

br‐1[t] hist 0.10 0.16 1.6

br‐2[t] hist 0.01 0.02 1.8

br‐3[t]‐(BSC) bsc 0.52 0.56 1.1

br‐3[t]‐(ER) ER 0.51 0.93 1.8

br‐3[t]‐(Hist) hist 0.32 0.32 1.0

br‐1[t]‐(Size) size 0.88 >0.99 1.1

g[nt] tum/norm 0.18 0.52 2.9



Section S6 – Interpretation of Putative Cell Types Using Basic Annotation Data 

We examined the biological relevance of M  in several different ways.  First, for each data set, 

we computed row-variances 2
js  both for 2K  and for )ˆ,2max(* KK  .  For each of these two 

values of K , we classified each CpG },...,1{ mj  by whether its row-variance 2
js  lay above the 

75th percentile )( 2
75.0 sq  for the data set and choice of K . Next, we obtained a list of DMPs for 

differentiating distinct major types of leukocytes (Blood DMPs) from the Reinius reference set4.  
Specifically, we used the limma procedure3 to fit a linear model for DNA methylation (average 
betas obtained via BMIQ normalization5 of data obtained from GEO, Accession # GSE35069) 
with a 10-level categorical variable representing the 10 categories of cell types assayed in the 
data set (reference level = Whole Blood).  From the results, we constructed for each CpG an F-
statistic representing the ability of the CpG to distinguish leukocyte lineages, using the following 
6-degree-of-freedom contrast matrix (motivated by an interest in distinguishing successively fine 
lineages):   





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


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CpGs were sorted by the resulting F-statistics.  CpGs corresponding to the 1000 largest were 
used as DMPs for tests involving 27K array data, while CpGs corresponding to the10,000 
largest were used for tests involving the 450K array data.  

We also constructed another set of CpGs, those mapped to genes considered Polycomb Group 
proteins (PcG loci), compiled from four references6-9 as in our previous article10. 

We constructed another set of CpGs based on differentially methylated regions (DMRs) 
obtained from WGBS data collected by the Epigenomics Roadmap Project.  Data were 
downloaded September 29, 2015 from 
http://egg2.wustl.edu/roadmap/data/byDataType/dnamethylation. The Bilenky set 
(DMRs/mbilenky_DMRs.xlsx), based on breast tissue data, differentiates luminal from 
myoepithelial cells.  The REMC set (DMRs/REMC_DMRs_corrected.xlsx), based on embryonic 
stem cell data, provides DMRs for differentiating endodermal, mesodermal, and ectodermal 
tissues. While DMRs are provided separately for each tissue type, we are not able to make 
signed comparisons with our method, so we combined DMRs for the three types of embryonic 
cells and for the two types of breast tissues. Infinium-specific DMPs for each of these sets were 
determined by calculating the intersection of each DMR with CpGs available on the Infinium 
arrays.  Note that the 450K array positions as well as the WGBS positions are given in hg19 



coordinates, but the 27K array positions are given in hg18 coordinates; thus, for the CpGs on 
the 27K array but excluded from the 450K array, we used UCSC Genomes Browser to 
determine their hg19 coordinates. 

For each data set we computed the odds ratio for the association of high row-variance, 

)( 2
75.0

2 sqs j  , with DMP set membership (Blood DMPs, PcG loci, Bilenky DMPs, and REMC 

DMPs), using Fisher’s exact test to compute the corresponding p-values.  Odds ratios for Blood 
DMPs and PcG loci are depicted in Figure 5, with log10 p-values given in Table S6.1.  Odds 
ratios for Bilenky DMPs and REMC DMPs are depicted in Figures S6.1 and S6.2, with log10 p-
values given in Table S6.1.   

Note that the CpGs having high row-variance in Y  were not identical with those having high 
row-variance in M .  Table S6.x displays the log-odds ratios for the association of high row-
variance in Y  (i.e. whether the CpG was used for the initial decomposition as in Section S2) 

with high row-variance ( )( 2
75.0

2 sqs j  ) in M (fit with )ˆ,2max(* KKK  ), typically quite high as 

anticipated; however, Table S6.x also displays the percentage of CpGs with discordant status, 
typically 10-20%. 

 

 

Table S6.1 – P-values for Gene Set Analysis of Basic Annotation Data (Negative Base-10 
Logarithmic Scale) 

 

blood PcG REMC Bilenky blood PcG REMC Bilenky

g[n] 60.5 100.0 0.4 46.5 g[n] 100.0 100.0 0.2 97.8

g[nt] 2.8 100.0 0.2 21.1 g[nt] 47.8 100.0 0.2 59.0

g[t] 1.6 100.0 0.2 30.1 g[t] 73.8 100.0 0.2 55.6

br‐3[t] 50.1 100.0 0.4 100.0 br‐3[t] 65.0 100.0 0.0 100.0

br‐1[t] 87.8 100.0 0.4 94.7 br‐1[t] 74.6 100.0 0.4 91.8

br‐2[t] 70.0 100.0 0.4 100.0 br‐2[t] 96.1 100.0 0.4 100.0

bl‐ov 100.0 14.9 1.2 59.0 bl‐ov 100.0 6.5 0.4 51.2

bl‐hn 100.0 19.1 1.2 22.8 bl‐hn 100.0 1.2 0.4 19.9

BL‐ra 100.0 36.4 11.3 100.0 BL‐ra 100.0 19.4 11.0 100.0

BL‐as 100.0 59.6 13.2 100.0 BL‐as 100.0 41.7 15.7 100.0

SP 93.3 100.0 7.1 100.0 SP 93.3 100.0 7.1 100.0

BV 100.0 0.2 17.1 100.0 BV 100.0 0.2 17.1 100.0

BV+LV 100.0 8.7 36.6 100.0 BV+LV 100.0 8.7 36.6 100.0

LV 100.0 1.6 12.2 100.0 LV 100.0 1.6 12.2 100.0

UV‐as 47.2 100.0 33.1 100.0 UV‐as 47.2 100.0 33.1 100.0

AR‐as 35.1 77.1 19.4 100.0 AR‐as 35.1 77.1 19.4 100.0

AR[np] 100.0 22.0 46.5 100.0 AR[np] 100.0 24.2 60.6 100.0

AR[n] 100.0 6.0 39.8 100.0 AR[n] 100.0 6.0 39.8 100.0

PL‐as 14.2 45.1 11.6 100.0 PL‐as 14.2 45.1 11.6 100.0

L[np] 100.0 0.1 35.2 100.0 L[np] 100.0 11.4 44.2 100.0

L[n] 19.1 100.0 1.0 27.4 L[n] 19.1 100.0 1.0 27.4

BR‐tcga[n] 100.0 100.0 49.4 100.0 BR‐tcga[n] 100.0 99.2 43.5 100.0

BR‐tcga[t] 100.0 100.0 21.7 100.0 BR‐tcga[t] 83.8 100.0 22.9 100.0

K=2 K=K*



Table S6.2 – Association of High Row Variance Status between Y  and M  

 

 

Figure S6.1 – Odds Ratios for Bilenky DMPs Figure S6.2- Odds Ratios for REMC DMPs 

 

Section S7 – Interpretation of Putative Cell Types Using Roadmap Epigenomics WGBS 
Data  

We developed a novel gene-set approach based on WGBS data from the Roadmap 
Epigenomics Project for 24 primary tissues.  For each sample, we obtained the 470,909 CpGs 
overlapping with CpGs from either Infinium array (similar to the manner described in Section S6) 
and having fewer than 3 missing values.  We clustered the tissue samples based on the 15,000 
most variable of these CpGs (Manhattan distance metric with Ward’s method of clustering, 
specifically, the Ward.D implementation of R version 3.2.2).  The resulting dendrogram, shown 
in Figure S7.1, demonstrates substantial clustering along general tissue type.  We also applied 
our deconvolution algorithm (Section S2) to these 24 tissue samples ( 6K ), with results 
shown in Figure S7.2; note that the deconvolution of these tissues resulted in constituent cell 
types that roughly aligned with anticipated anatomical associations, e.g. tissues with substantial 
smooth or skeletal muscle map to one cell type, tissues with a substantial lymphoid/immune 
component mapped to another, and central nervous tissues mapped to yet another.  We 
reasoned that similar tissue types would differ principally in the proportion of underlying normal 

log‐OR Discordance log‐OR Discordance log‐OR Discordance log‐OR Discordance

g[n] 5.7 7.4% bl‐ov 3.2 14.2% BV+LV 5.6 22.5% PL‐as 3.0 23.2%

g[nt] 5.1 8.4% bl‐hn 2.8 16.3% LV 2.6 23.4% L[np] 3.9 22.7%

g[t] 5.2 8.2% BL‐ra 2.8 23.3% UV‐as 4.0 22.7% L[n] 1.8 24.2%

br‐3[t] 5.0 9.0% BL‐as 3.0 23.2% AR‐as 3.7 22.8% BR‐tcga[n] 4.9 22.6%

br‐1[t] 4.9 9.3% SP 4.5 22.6% AR[np] 7.2 22.5% BR‐tcga[t] 5.2 22.6%

br‐2[t] 4.5 10.1% BV 3.6 22.9% AR[n] 3.0 23.2%
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constituent cell types, and thus provide information on cell-type heterogeneity underlying other 
tissues of similar type.  Consequently, we selected the tissue pairs corresponding to the 25 
smallest Manhattan distances (as calculated for the clustering in Figure S7.1), with pairs 
illustrated as network edges in Figure S7.3.  Due to small numbers of DMPs (10 or fewer) we 
excluded two pairs (left vs. right ventricles of the heart and small intestine vs. sigmoid colon); for 
each of the remaining 23 pairs, we identified, among the 15,000 CpGs most variable across all 
24 tissue types, those CpGs that differed in methylation fraction by greater than 0.70 between 
the two samples; we considered these CpGs as Infinium-specific DMPs for tissue-specific 
heterogeneity.  Using these 23 sets of DMPs, we conducted a gene-set analysis as described in 
Section S6.  The clustering heatmap in Figure 4 presents the odds ratios for the 450K data with 

)ˆ,2max(* KK  ; the heatmap in Figure S6.4 presents the odds ratios for the 27K data with 

)ˆ,2max(* KK  , and the odds ratios for 2K are given in Figures S7.5 and S7.6.  

Corresponding p-values are given in Tables S7.1, S7.2, and  S7.3. Note that we excluded 
additional pairs from the 27K array analysis due to small DMP overlap with the 27K array. 

 

Table S7.1 – P-values for 450K WGBS-Based Gene-Set Analyses, K=2 (Negative Base-10 
Logarithmic Scale) 
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HRT.VNT.R : HRT.ATR.R 0.4 1.3 0.4 1.7 1.7 2.5 1.3 0.1 2.5 1.7 1.3 1.3 1.0 4.9 0.8

HRT.ATR.R : HRT.VENT.L 0.8 1.8 0.2 0.0 1.8 0.8 0.2 0.2 0.0 0.8 0.0 0.8 0.2 1.8 0.8

BRN.GANGEM : BRN.CRTX 13.8 20.9 1.9 13.5 26.1 18.3 20.2 21.3 28.6 27.3 24.1 12.3 0.3 37.0 40.1

HRT.ATR.R : MUS.PSOAS 1.0 5.7 0.9 4.3 11.7 7.9 1.2 0.9 26.4 19.4 8.2 8.7 0.2 40.2 11.7

GI.S.INT : LNG 0.5 1.5 2.1 0.8 1.5 2.5 1.5 4.0 0.6 2.1 0.5 0.5 0.0 0.0 0.0

HRT.VNT.R : MUS.PSOAS 3.0 8.3 1.2 8.4 26.4 13.2 0.5 1.5 45.6 38.6 16.9 16.0 0.1 60.9 15.6

GI.STMC.GAST : GI.ESO 2.7 2.7 1.0 2.2 1.8 0.7 1.8 2.0 6.2 8.7 1.4 17.9 1.1 7.8 7.8

THYM : BLD.MOB.CD34.PC.F 100.0 100.0 12.7 19.1 39.7 28.2 21.8 26.3 100.0 100.0 5.1 100.0 0.7 87.8 49.7

HRT.ATR.R : GI.ESO 9.7 4.1 1.0 3.5 8.6 5.2 3.5 1.5 22.3 21.4 1.2 8.6 2.9 17.5 5.7

MUS.PSOAS : VAS.AOR 37.1 31.0 15.1 66.0 100.0 49.0 74.6 100.0 100.0 100.0 17.1 100.0 4.9 100.0 45.6

HRT.ATR.R : VAS.AOR 12.8 10.6 4.8 23.7 44.6 27.0 52.7 89.3 100.0 100.0 8.1 63.9 5.1 100.0 34.6

PANC : GI.STMC.GAST 9.0 22.1 1.3 11.9 26.7 7.9 2.1 4.0 42.1 47.6 1.1 66.8 8.0 71.6 54.0

MUS.PSOAS : HRT.VENT.L 1.4 9.2 0.0 2.9 13.8 3.7 0.4 3.5 47.8 30.0 15.8 10.8 0.0 66.1 15.8

MUS.PSOAS : GI.ESO 0.4 2.8 1.9 5.3 24.4 13.0 3.2 3.7 35.6 35.1 4.6 22.4 1.6 47.6 4.9

SPLN : BLD.MOB.CD34.PC.F 45.6 66.6 3.6 10.3 17.8 12.5 5.9 5.9 30.3 28.0 1.8 31.9 1.7 20.7 8.5

HRT.VNT.R : GI.ESO 6.4 16.3 3.7 11.8 20.9 7.1 3.7 3.1 25.3 23.8 4.2 28.5 4.0 29.3 7.1

GI.CLN.SIG : LNG 1.5 3.3 0.5 0.8 1.5 1.0 0.0 0.5 2.1 2.5 0.5 2.5 0.3 3.3 2.1

HRT.ATR.R : GI.STMC.GAST 9.7 5.8 2.5 5.2 17.3 8.4 5.1 1.1 32.4 27.7 5.8 53.1 0.7 54.5 26.1

LNG : GI.ESO 1.7 4.9 0.9 3.5 5.3 3.8 1.3 1.7 1.7 15.3 0.1 4.4 0.4 7.6 3.5

SPLN : LNG 0.1 1.7 0.1 0.3 6.3 5.4 0.8 2.0 1.0 11.8 0.5 2.9 0.2 3.3 2.9

GI.S.INT : GI.ESO 0.1 0.2 2.1 0.7 2.1 2.4 1.2 2.1 1.0 9.4 0.2 2.1 0.7 2.4 0.2

GI.S.INT : HRT.VENT.L 2.0 1.5 0.2 2.0 4.3 1.1 1.5 2.0 6.6 5.0 1.5 5.0 0.1 5.0 0.5

GI.S.INT.FET : GI.L.INT.FET 16.4 20.9 4.8 15.9 29.9 19.5 11.7 5.3 26.1 21.5 8.3 32.9 2.3 23.8 7.7



Table S7.2 – P-values for 450K WGBS-Based Gene-Set Analyses, K=K* (Negative Base-10 
Logarithmic Scale) 

 

 

Table S7.3 – P-values for 27K WGBS-Based Gene-Set Analyses (Negative Base-10 
Logarithmic Scale) 
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HRT.VNT.R : HRT.ATR.R 0.8 1.3 0.4 1.7 1.7 2.5 1.3 0.1 4.0 1.7 1.3 3.2 1.0 4.9 2.5

HRT.ATR.R : HRT.VENT.L 0.8 0.8 0.2 0.0 1.8 0.8 0.2 0.2 0.8 0.8 0.0 0.8 0.2 0.8 0.0

BRN.GANGEM : BRN.CRTX 12.0 2.0 1.9 13.5 26.1 18.3 20.2 21.3 41.1 27.3 24.1 13.1 0.3 44.3 36.1

HRT.ATR.R : MUS.PSOAS 1.2 2.0 0.9 4.3 11.7 7.9 1.2 0.9 41.4 19.4 8.2 7.9 0.2 31.4 17.0

GI.S.INT : LNG 2.1 3.3 2.1 0.8 1.5 2.5 1.5 4.0 1.5 2.1 0.5 0.8 0.0 1.0 0.0

HRT.VNT.R : MUS.PSOAS 0.8 7.4 1.2 8.4 26.4 13.2 0.5 1.5 67.1 38.6 16.9 20.6 0.1 58.9 30.4

GI.STMC.GAST : GI.ESO 1.8 5.5 1.0 2.2 1.8 0.7 1.8 2.0 7.1 8.7 1.4 21.3 1.1 8.3 5.1

THYM : BLD.MOB.CD34.PC.F 100.0 100.0 12.7 19.1 39.7 28.2 21.8 26.3 100.0 100.0 5.1 100.0 0.7 93.6 15.6

HRT.ATR.R : GI.ESO 3.5 4.1 1.0 3.5 8.6 5.2 3.5 1.5 28.7 21.4 1.2 12.6 2.9 20.6 1.2

MUS.PSOAS : VAS.AOR 39.8 22.0 15.1 66.0 100.0 49.0 74.6 100.0 100.0 100.0 17.1 100.0 4.9 100.0 62.1

HRT.ATR.R : VAS.AOR 11.1 7.6 4.8 23.7 44.6 27.0 52.7 89.3 100.0 100.0 8.1 58.9 5.1 97.8 39.6

PANC : GI.STMC.GAST 2.5 2.1 1.3 11.9 26.7 7.9 2.1 4.0 54.5 47.6 1.1 84.7 8.0 82.4 41.5

MUS.PSOAS : HRT.VENT.L 0.1 3.1 0.0 2.9 13.8 3.7 0.4 3.5 66.8 30.0 15.8 14.1 0.0 54.1 19.3

MUS.PSOAS : GI.ESO 0.1 9.4 1.9 5.3 24.4 13.0 3.2 3.7 59.6 35.1 4.6 18.7 1.6 36.6 9.9
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GI.CLN.SIG : LNG 4.0 4.0 0.5 0.8 1.5 1.0 0.0 0.5 3.3 2.5 0.5 4.0 0.3 4.7 1.5
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GI.S.INT : GI.ESO 3.0 3.0 2.1 0.7 2.1 2.4 1.2 2.1 4.8 9.4 0.2 2.4 0.7 3.0 0.1

GI.S.INT : HRT.VENT.L 0.5 2.0 0.2 2.0 4.3 1.1 1.5 2.0 8.4 5.0 1.5 3.0 0.1 6.6 0.5

GI.S.INT.FET : GI.L.INT.FET 15.9 22.5 4.8 15.9 29.9 19.5 11.7 5.3 25.5 21.5 8.3 29.9 2.3 28.7 7.9
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Figure S7.1 – Clustering of Roadmap Epigenomics 
WGBS Specimens 

 
 

Figure S7.2 – Deconvolution of Selected WGBS Tissues Figure S7.3 – Network of WGBS Tissue Pairs 
Used for Gene Set Analysis 
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Figure S7.4 – WGBS-Based Gene-Set Odds Ratios for 27K Data, K=K* 

 

Figure S7.5 - WGBS-Based Gene-Set Odds Ratios for 450K Data, K=2 

 

  



Figure S7.6 - WGBS-Based Gene-Set Odds Ratios for 27K Data, K=2 

 

 

Section S8 – Blood Specific Analysis 

Since reference data sets exist for blood, estimation of associations between phenotypic 
metadata and major types of leukocytes would typically employ the reference-based estimation 
of Ω  rather than the essentially unsupervised approach we have proposed in Section S2.  
However, in comparing the reference-based and reference-free approaches, two avenues of 
investigation emerge:  (1) the extent to which the reference-based and reference-free 
approaches are consistent in their results; and (2) the extent to which the unsupervised 
approach may provide additional information on immune response and inflammation beyond 
associations with simply the major types of leukocytes, i.e. those existing in currently available 
reference sets.  To this end, we have further analyzed the two 450K blood data sets, BL-ra and 

BL-as, estimating for each data set two sets of cell-type proportion matrices ( 7K ):  0Ω  

(reference-based) and 1Ω  (reference-free).  We used a common set of DMPs for each 

estimation procedure:  using the ranked list of DMPs described in Section S6, we selected the 
top 5000 CpGs for differentiating major types of leukocytes in the Reinius data set, then 

complemented this set to 000,10m  with additional CpGs having highest variance across the 

samples within the dataset.  We reasoned that this approach would provide enough information 
to estimate the major types of leukocytes, but might also provide additional information on more 

subtle immune and inflammation processes.  With this set of CpGs, we fit T
00ΩMY   with 

essentially known 0M  estimated from the Reinius data set4 while for the reference-free 

approach, we estimated 1M  in the context of fitting 
T
11ΩMY  , as described in Section S2. 



We note that, in general, we do not anticipate 0Ω  and 1Ω  to be equal.  The reason is that the 

unsupervised, reference-free approach will find only the major axes of variation within a given 
data set, not necessarily all relevant distinctions of major cell types.  For example, if a data set 
consists of only two distinct immune profiles (with very little variation among the subjects 
sharing a profile), then the reference-free approach will typically find only two cell types, those 
corresponding to each profile.  See Section S10 below for simulations demonstrating this 

phenomenon.  However, 0M  and 1M  should be related to by a mixing matrix Ψ  that reassigns 

the “correct” cell types to the unsupervised decomposition, i.e. T
01 ΨMM  .  The matrix Ψ  can 

easily be obtained by constrained projection in the same manner that 0Ω  and 1Ω  are obtained, 

i.e. using essentially the procedure as step (2) in the algorithm of Section S2.  Figures S8.1 and 
S8.2 depict the mixing matrices Ψ  for BL-ra and BL-as, respectively, as clustering heatmaps.  
Table S8.1 provides the row sums of each Ψ  matrix, indicating the presumed proportion of 

each column 1M  of accounted for by 0M ; note that all values are close to one.  Since

T
00

T
11

T
1

T
0 ΩMYΩMΩΨM  , thus  ΨΩΩ 10  , it follows that phenotypic associations with 

0Ω should match those with ΨΩ1 .  Figures S8.3 and S8.4 demonstrate that the 

correspondence between 0Ω  and ΨΩ1  is high for BL-ra and BL-as. Figures S8.5 and S8.6 

compare regression coefficients for phenotypic associations with 0Ω  and ΨΩ1 ; specifically, 

they compare the results of linear regression, where cell proportion (expressed as percentage 
points) was regressed on rheumatoid arthritis case status (BL-ra) or log10-arsenic (BL-as, 
adjusted for sex); 95% confidence intervals are shown for all coefficients. Phenotypic 

associations with the “re-mixed” ΨΩ1  cell proportion estimates were remarkably similar to 

associations with the reference-based solution 0Ω , with only one notable reversal: in the BL-ra 

dataset, the relative magnitudes of CD4+ and CD8+ coefficients were reversed, but all were still 
significantly and negatively associated with rheumatoid arthritis status.   

If additional information on immune function is available in our putative methylome matrix 1M , 

then it should be evident in the residual matrix T
01 ΨMM  , which reflects residual epigenetic 

information suggestive of cell-type heterogeneity but unaccounted for by the reference 

methylome 0M .   Figures S8.7 and S8.8 show plots of the residual row-variances 2)(
js  of 

T
01 ΨMM   against the row-variances 2

js  of 1M . The plots reveal a cluster of CpGs with high 

2
js  (specifically, 975.0)( 2 jsF


) and low to moderate 2)(

js  (specifically, 95.0)( 2)()( 
jsF


), 

where F


 and )(F


 are the empirical distribution functions of 2
js   and 2)(

js  respectively. These 

are CpGs whose influence on variation within 1Ω  was accounted for by the reference 

methylome 0M . The plots also reveal another cluster of CpGs whose row-variances are both 

high ( 975.0)]()([ 2)()(2
2
1  

jj sFsF


) and relatively similar, representing CpGs whose influence 

on variation within 1Ω  was not accounted for by 1M .  To assess the functional relevance of this 



latter set, we applied the methodology of Section S7 to dichotomous variables defined by these 
conditions, with results depicted in Figures S8.9 and S8.10.  As anticipated, the residual 

methylomes T
01 ΨMM   displayed substantially diminished association with the DMPs based 

on Roadmap WGBS data, compared with the unadjusted methylomes 1M .  

To further understand the functional implications of our proposed method, we sought to 
compare our unsupervised method against reference-based deconvolution with respect to its 
ability to discern specific immune functions.  We also compared both of these methods to 
surrogate variable analysis (SVA11), a popular existing method used to adjust for cellular 

heterogeneity.  For all methods, we set 7K  for to account for potential differences in 

estimating K .  To interpret immune functional relevance, we used gene sets that identify 
processes involved in immune activation or regulation.  Table S8.2 lists 14 sets of genes 
associated with immune activation or regulation, as identified by Qiagen’s T-Cell & B-Cell 
Activation PCR Array and compiled from seven sources12-18; we mapped CpG loci to the genes 
in each of these sets.  Using the sets having at least 50 mapped CpGs, we tested the 
association of the resulting gene-set status with the dichotomous variables determined by 

)( 2
75.0

2 sqs j  , where (as in Section S6) 2
js  was the row variance of CpG j  in methylome 1M , 

or its analog in the SVA or reference-based analysis, and )( 2
75.0 sq  was its corresponding upper 

quartile.  Note that for the reference-based method we recomputed methylome 0M  from 0Ω  

and Y , as is done in the removal-of-unwanted-variability (RUV) method.  Figures S8.11 and 
S8.12 depict gene-set odds ratios for BL-ra and BL-as, respectively.  Figure S8.11 shows that 
for BL-ra, both our proposed method and the reference-based method highlighted many 
functions related to T-cell differentiation, activation, and polarization, in particular processes 
affecting helper T-cells.  In contrast, the SVA method highlighted fewer such functions (T-cell 
differentiation and T-cell polarization, with relatively weak significance and weak gene-set odds 
ratios).   Only the reference-based method highlighted B-cell functions, which, though important, 
are less prominent than T-cells in the pathogenesis of rheumatoid arthritis.  Figure S8.12 shows 
that for BL-as, only our proposed method highlighted any immune function.  In particular, 
Regulators of T-Cell Activators and T-Cell Polarization were prominent, consistent with 
previously observed arsenic-related dysregulation of T-cells in the same Bangladeshi 
population19.  In contrast with Figures S8.11 and S8.12, Figures S8.13 and S8.14 show gene-
set odds-ratios for the distribution of limma-based p-values (as in Section S5 above), i.e. CpG-
specific p-values for methylation associations with rheumatoid arthritis or arsenic exposure, 
adjusted for cell mixture; for each analysis we compared p-values in the lower-quartile with 
those of the other three quartiles. The results shown in these figures are generally consistent 
with results obtained from Kolmogorov-Smirnov tests (which require no p-value thresholds), 
although none of the Kolmogorov-Smirnov tests resulted in significant differences for our 
proposed method (in contrast to several for SVA and the reference-based method).  For BL-ra, 
all ten gene sets showed differential limma-based significance in the SVA analysis, with four of 
them having odds ratios greater than 2.0; in contrast, only five of the gene-sets showed at most 
moderately differential limma-based significance using our approach, and only two gene-sets 
showed at most moderately differential limma-based significance using the reference-based 



approach.  For BL-as, no gene sets showed strong differential limma-based significance using 
any of the methods.  Finally, for BL-ra and BL-as, Figures S8.15 and S8.16 show the values of 

0  resulting from the limma analysis, reflecting the significance of associations with rheumatoid 

arthritis (BL-ra, Figure S8.15) or arsenic exposure (BL-as, Figure S8.16) after adjusting for 
either Ω , its equivalent matrix obtained using SVA, or the reference-based equivalent. All three 
methods produced similar values for BL-as; however, for BL-ra, our method produced a 

substantially larger value of 0  than either SVA or the reference-based method.  Taken 

together, these analyses show that SVA accounted for immune function principally in the 
“residual” associations evident from the CpG-specific limma analysis, with no functional 
interpretation evident from analysis of the methylomes implied by SVA.  In contrast, many 
immune functions were evident from analysis of our proposed reference-free methylome matrix 
M  or its reference-based equivalent; this was particularly evident for the BL-as dataset.  Thus, 
compared with SVA, our method more accurately interpreted these immune functions as 
coordinated cellular processes rather than disparate, uncorrelated effects.  We remark that 

although both SVA and the reference-based method resulted in similarly low values of 0
(Figure S8.15), the limma analysis highlighted many more immune functions using SVA than 
those highlighted using either our proposed method or the reference-based method.  Note that 

when we increased K  to 33, the value properly estimated by SVA, 0 rose to 0.55 and the 

corresponding gene-set results that were more similar to those obtained from our method; this 
suggests that SVA produces results similar to those of our method, though using many more 
degrees-of-freedom to represent the cellular heterogeneity.  It is interesting to note that our 
analysis highlighted several immune processes that are supported by the arsenic exposure 
literature, but not evident from the SVA or reference-based analysis.  In summary, our method 
may produce results similar to those obtained from SVA, but using potentially fewer degrees of 
freedom, and reference-free deconvolution may highlight immune functionality not evident using 
reference-based deconvolution alone. 

 

Table S8.1 – Row Sums of Ψ   

 

 

1 2 3 4 5 6 7

BL‐ra 0.928 1.000 0.955 0.978 1.000 1.000 1.000

BL‐as 1.000 0.964 1.000 0.772 0.827 0.865 0.965



Table S8.2 – Immune Activation/Regulation Gene Sets 

 

Source: Qiagen Corp., http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-053Z.html 

 
Figure S8.1 – Mixing Matrix Ψ  for BL-ra 
Dataset 
 

 
Figure S8.2 – Mixing Matrix Ψ  for BL-as 
Dataset 
 

  

# CpGs

Gene Set Mapped Genes

Regulators of T‐Cell Activation 305

CD2, CD276, CD47, DPP4, CD3D, CD3E, CD3G, CD4, CD7, CD80, 

CD86, CD8A, CD8B, FOXP3, ICOSLG, IRF4, LAG3, LCK, 

MAP3K7/TAK1, MICB, NCK1, TNFSF14, VAV1

T‐Cell Proliferation 85
CD28, CD3E, ICOSLG, IL1B, IL10, IL12B, IL18, NCK1, RIPK2, 

TNFSF14

T‐Cell Differentiation 277
ADA, APC, BCL2, BLM, CD1D, CD2, CD27/TNFRSF7, CD4, 

CD80, CD86, EGR1, IL12B, IL15, IL2, IRF4, NOS2, PTPRC, SOCS1

T‐Cell Polarization 194

CCL3, CCR1, CCR2, CCR3, CCR4, CCR5, CD274, CD28, CD4, 

CD40LG/TNFSF5, CSF2, CXCR3, CXCR4, IFNG, IL12A, IL12RB1, 

IL12RB2, IL18R1, IL2, IL4, IL4R, IL5, TGFB1

Regulators of Th1 and Th2 Development 135
CD2, CD40/TNFRSF5, CD5, CD7, CSF2, IFNG, IL10, IL12A, IL13, 

IL3, IL4, IL5, TLR2, TLR4, TLR9

Th1 & Th2 Differentiation 138
CD28, CD40/TNFRSF5, CD40LG (TNFSF5), CD86, IFNG, IL12A, 

IL12B, IL12RB1, IL12RB2, IL18, IL18R1, IL2, IL2RA, IL4, IL4R, IL6

Antigen Dependent B‐cell Activation 73
CD28, CD4, CD40/TNFRSF5, CD40LG/TNFSF5, CD80, 

FAS/TNFRSF6, FASLG/TNFSF6, IL10, IL2, IL4

Other Genes involved in B‐Cell Activation 86 ADA, CXCR5, ICOSLG, IL6, IL7, MS4A1, TGFB1

B‐Cell Proliferation 154 BCL2, CD27/TNFRSF7, CD40/TNFRSF5, CD81, IL10, IL7, PTPRC

B‐Cell Differentiation 66 ADA, AICDA, BLNK, CD27/TNFRSF7, IL10, IL11, IL4, RAG1

Macrophage Activation 25 IL13, IL4, TLR1, TLR4, TLR6

Neutrophil Activation 0 IL8

Natural Killer Cell Activation 34 CD2, IL12A, IL12B, IL2

Leukocyte Activation 17 CX3CL1

5 3 1 7 4 2 6
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Figure S8.3 – Comparison of 0Ω  and ΨΩ1  for 

BL-ra Dataset 

 
 
Figure S8.4 – Comparison of 0Ω  and ΨΩ1  for 

BL-as Dataset 

 
 
 
Figure S8.5 – Comparison of 0Ω  and ΨΩ1  for 

Case/Control Association in BL-ra Dataset 

Note:  y-axis shows regression coefficients with 95% confidence 
intervals. 

 
 
 
Figure S8.6 – Comparison of 0Ω  and ΨΩ1  for 

Log-Arsenic Association in BL-ra Dataset 

Note:  y-axis shows regression coefficients with 95% confidence 
intervals.
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Figure S8.7 – Unadjusted Reference-Free 

Row-Variance 2
js  vs. Reference-Adjusted 

Row-Variance 2)(
js :  BR-ra  Dataset 

Figure S8.8 – Unadjusted Reference-Free 

Row-Variance 2
js  vs. Reference-Adjusted 

Row-Variance 2)(
js :  BR-as Dataset 

 
 
Figure S8.9 – WGBS-Based Gene-Set Odds 
Ratios:  High Unadjusted, Low Reference-
Adjusted

 
 
Figure S8.10 – WGBS-Based Gene-Set Odds 
Ratios:  High Unadjusted, High Reference-
Adjusted 
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Figure S8.11 – Gene Set Odds Ratios  
Comparing Methylome Variability Across Gene 
Sets: BR-ra  

Odds ratios represent enrichment of indicated gene set 

for Methylome rows having )( 2
75.0

2 sqs j  .
  

 Gene set 
enrichment significance assessed by Fisher’s Test: * 
p<0.05, ** p<0.01, *** p<0.001. 

Figure S8.12 – Gene Set Odds Ratios  
Comparing Methylome Variability Across Gene 
Sets: BR-as 

Odds ratios represent enrichment of indicated gene set 

for Methylome rows having )( 2
75.0

2 sqs j  .
  

 Gene set 
enrichment significance assessed by Fisher’s Test: * 
p<0.05, ** p<0.01, *** p<0.001. 

 
Figure S8.13 – Gene Set Odds Ratios  
Comparing Mixture-Adjusted Nominal CpG-
Specific P-Values Across Gene Sets: BR-ra  

Odds ratios represent enrichment of indicated gene set 
for CpGs whose rheumatoid arthritis p-values, adjusted 
for cell type heterogeneity, were in the lower quartile. 
Gene set enrichment significance assessed by Fisher’s 
Test: * p<0.05, ** p<0.01, *** p<0.001. 

 
Figure S8.14 – Gene Set Odds Ratios  
Comparing Mixture-Adjusted Nominal CpG-
Specific P-Values Across Gene Sets: BR-as 

Odds ratios represent enrichment of indicated gene set 
for CpGs whose arsenic exposure p-values, adjusted for 
cell type heterogeneity, were in the lower quartile. Gene 
set enrichment significance assessed by Fisher’s Test: * 
p<0.05, ** p<0.01, *** p<0.001. 
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Figure S8.15 – Estimated Proportion of Null 
Arthritis Associations in BL-ra After Adjusting 
for Cell Type Heterogeneity  

Figure S8.16 – Estimated Proportion of Null 
Arsenic Exposure Associations in BL-as After 
Adjusting for Cell Type Heterogeneity 

 

 

 

 

 

Section S9 – Analysis of Normal vs. Pathological Tissue 

Figure S7.2 above displays the cell-proportion matrix Ω  from the decomposition TMΩY   of 
Roadmap WGBS data; in the figure, the 6K  putative cell types are labeled according to 
reasonable anatomical interpretations of the resultant groupings. We projected Infinium data 
from each of the three datasets sets g[nt], AR[np], and L[np] onto the profile matrix M  obtained 
from the WGBS data (as in step (1) of Section S2), thus obtaining specimen-specific proportions 
Ω  for each of the cell types determined from the WGBS data.  Figures S9.1 through S9.3 
compare the average resulting cell proportion for normal tissue with the corresponding average 
for pathological tissues.  Note that separate averages were computed for atherosclerotic aorta 
and atherosclerotic carotid (AR[np]), and for alcohol-related cirrhotic liver and cirrhotic liver 
related to viral infection (L[np]). 
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Figure S9.1 – Comparison of Roadmap WGBS 
cell types: Normal vs. Tumor in g[nt] 

Average cell proportion for types based on Roadmap 
Epigenomics WGBS data (see Figure S7.2 for depiction of types 
indicated as text in this figure). 

Figure S9.2 – Comparison of Roadmap WGBS 
cell types: Normal vs. Tumor in AR[nt] 

Average cell proportion for types based on Roadmap 
Epigenomics WGBS data (see Figure S7.2 for depiction of types 
indicated as text in this figure).

 
 
 
Figure S9.3– Comparison of Roadmap WGBS 
cell types: Normal vs. Tumor in L[nt] 

Average cell proportion for types based on Roadmap 
Epigenomics WGBS data (see Figure S7.2 for depiction of types 
indicated as text in this figure). 
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Section S10 – Simulations 

We conducted simulations to compare the behavior of our proposed deconvolution method with 
other methods.  We first remark that the principal desirable property of any unsupervised 

deconvolution method TMΩY   is low residual error  


m

j j
r
jRMSE

1

2)( Ωμy  as well as 

high R2 values for each of the individual true cell types20.  However, in a context where the 
factors M  and Ω  are assumed to have a biological meaning, deconvolution estimates of both 
M  and Ω  should lie as close to their true data-generating values as possible.  In particular, the 

estimated number K̂  of cell types should approximate the true number K .  However, even 
when K  can be accurately estimated, solutions M  and Ω  will be unique only up to rotation, a 
limitation that is well known in the factor analysis literature21; thus constraints are often imposed 
so that the solution reflects prior assumptions about the data generation process.  This was one 
motivation for using independent components analysis as the basis of ICSA22.  Our proposed 

method imposes constraints 10  jk , 10  ik , and 1
1

 

K

k ik .  A popular and 

accessible alternative, non-negative matrix factorization (NNMF) imposes weaker constraints 

jk0  and ik0  only.  Other simple alternatives include factor analysis (FA) and its related 

method, principal components analysis (PCA), both which effectively impose no constraint on 
the solution other than orthogonality of the mixture coefficients (an unnatural assumption).  In 
this simulation we compare our proposed method “convex factorization” with NNMF and PCA, 
where the latter was conducted both on the standardized z-scores and the unstandardized data 
(for justification of the latter, see Houseman et al., 2014).  Note that the PCA solutions were 
obtained by singular value decomposition, taking the first K  singular right vectors (the totality of 
which form an nn   orthogonal matrix). 

We also remark that in an unsupervised setting, the solutions present no obvious labeling of the 
K  factors.  Thus, in a simulation study where solutions are compared to data-generating values 
having presumed biological interpretation, any solution must be aligned to its corresponding 

data generating value.  Similar to Section S8 above, an obvious way to align biological truth 0Ω  

with its corresponding estimate 1Ω  (assumed to have the correct number K  of columns) is to 

seek a matrix A  that minimizes |||| 01 AΩΩ  , i.e 1
T
0

1
0

T
0 )( ΩΩΩΩA  .  The ideal such matrix is 

a (potentially improper) rotation matrix, i.e. a matrix A  such that 1)det( A  (note that since 

A  is not symmetric, its determinant need not be positive).  Thus methods that tend to produce 
matrices A  with log-absolute-determinants close to zero are preferred, i.e. those that produce 

small values of the absolute-log-absolute-determinant, ||)det(|log| A .   

If a solution obeys biological constraints, at least approximately, then ideally A  should actually 
be a Markov matrix, i.e. a matrix P  whose values lie in the unit interval and whose rows sum to 
one.  Ideally P  should not spread one true cell type across many estimated cell types, although 
it may collapse several true types to one putative type if there is insufficient information to 
distinguish the types (as we demonstrate below). This can be assessed by examining the 



entropy of the rows l  of P , 
k lklkl ppH )log()(P , where the row-specific sum 

(corresponding to a particular true cell type) is taken over all of its (column) entries and )0log(0  

is assumed to be its asymptotic limit, zero.  When P  is the identity matix (the ideal), 0)( PlH  

for all columns.  At the other extreme, when the solution spreads a true cell type uniformly 

across all putative cell types, then )log()log()(
1

11 KH
K

k KKl   
P .  We define total entropy 

as   

K

l lH
1

)(P  and weighted entropy as   
K

l l

n

i il Hn
1 1

1 )()( P , where the latter quantity 

weights each cell-type-specific entropy by its mean value in the population, i.e. emphasizes cell 
types that are more prevalent in the population.  

 

Data Generation 

We sought to make our simulation study as realistic as possible, within computational 
constraints.  For the “true” proportions, we obtained reference-based cell proportions from the 
rheumatoid arthritis data set BL-ra, then used maximum likelihood to fit them to the following 
Dirichlet distribution model: 

)exp()(,
))((

))((
)( 108

1

8

1

8

1

)(

ikkik

k ik

k ikk

x
ik

i xx
x

x
f

ik

















ω ,   (S10.1) 

where we considered the seven types of leukocytes profiled in the Reinius reference data set 

along with a remainder term (so that the proportions sum to one), and  )( iki ω was the cell 

proportion vector for subject i  with arthritis status ix  (0 for control, 1 for case).   All simulations 

were based on the fitted coefficients.  For each simulation scenario, we generated cell 

proportions for 100n  subjects either by uniformly setting 0ix  (corresponding to healthy 

subjects only), or else generating equal numbers of cases and controls (as described in more 
detail below).  The corresponding methylation matrix Y  was generated by first calculating the 

“true” methylation values T
00 MΩY   , )( 00 jiyY , using 0M  obtained from the Reinius 

reference data set (where we used either the 500 or 5000 most discriminating CpGs), then 

generated “noisy” methylation values )( jiyY  (i.e. incorporating microarray measurement 

error) using a beta distribution with parameters jiy0  and )1( 0 jiy  [leading to mean jiy0  and 

variance 1
00 )1)(1(  jiji yy ].  As described below, we set 100  or 200 , which for 

methylation values = 0.5, corresponded to standard deviations of 0.050 and  0.035, respectively 
(i.e. about the level of error on the 450K array).  For each scenario, we simulated 500 data sets. 

Table S10.1 below describes the specific scenarios.  Most of them involved straightforward 
adaptations of the Dirichlet parameters described above, in order to assess the impact of 
different scales of variation or covariation.  However, Scenarios 8 and 9 were slightly more 



complex.  In order to assess the effect of cellular subtypes on estimation of K , we generated 
profiles for several distinct subtypes of neutrophils and CD4+ T cells.   For Scenario 8, we 
added 4 subtypes of neutrophils and 6 subtypes of CD4+ T-cells, each of these types 
characterized by 50 additional methylated loci (unmethylated for all other types and subtypes). 
Thus 500 artificial loci were added.  Cell proportions were generated by splitting the neutrophil 
and CD4+ T cell proportions, each via a separate Dirichlet variable.  For neutrophils, the 
Dirichlet parameters were 8 for the “naive” cell type and 1 for the other subtypes (corresponding 
to 0.667 probability of a neutrophil being in its naïve state), and for CD4+ T cells, the Dirichlet 
parameters were 9 for the “naïve” cell type and 1 for the other types (corresponding to a 0.60 
probability of a CD4+ T cell remaining in its “naïve” state).  Scenario 9 was similar to Scenario 8, 
with 10 added neutrophil subtypes and 20 added CD4+ T cell subtypes, each subtype 
corresponding to 25 methylated loci (adding 750 artificial loci to the simulation).     

For scenario 1, Figure S10.1 shows the distribution of cell-type specific standard deviations of 

)( iki ω  computed separately on each of 500 simulated data sets, while Figure S10.2 shows 

a scatter-plot of the two most common cell types, neutrophils and CD4+ T-cells.  Note the fact 
that neutrophils and CD4+ T-cells proportions are dependent,  i.e. they are non-orthogonal. 

 

Table S10.1 – Summary of Simulation Scenarios 

Scenario  # Loci 

Microarray 
Prec. 
   Model Description 

1  5000  100 
Cell proportions based only on BL-ra controls: 100n  
subjects simulated with  )ˆexp( 0kk   from equation (S10.1) 

above. 

2  5000  200 

3  500  100 

4  500  200 

5  500  200  Cell proportions based on BL-ra cases and controls but with 

greater precision: 50n  with )ˆexp(10 0k
c

k   , 50n  with 

)ˆˆexp(10 10 kk
c

k   ; 1c (Sc. 5) or 2c (Sc. 6). 6  500  200 

7  500  200  As in Sc. 4 but with )ˆexp(10 0kk   [greater precision]. 

8  500+500  200  As in Sc. 4, but with Neutrophil and CD4+ cell proportions 
distributed over subtypes;  Sc. 9 had more subtypes than Sc. 
8. 9  500+750  200 

 

  



Figure S10.2 – Cell-type standard deviations 
for Scenarios 1 and 2 
 

Figure S10.2 – Simulated CD4+T vs. 
Neutrophil proportions for Scenarios 1 and 2 
 

 

 

Evaluation of Methods 

As motivated above, for Scenarios 1 and 2, we calculated  


m

j j
r
jRMSE

1

2)( Ωμy  as well 

as R2 values for each of the individual true cell types.  In addition, we calculated 

||)det(|log| A  for each method, where for each simulated data set, A  was obtained by linear 

projection (i.e. linear regression).  Note that in calculating A  for the PCA methods, we permitted 
re-centering by intercept terms (i.e. estimated an affine transformation), since the principal 
component scores tended to center around zero and thus did not obey the biological constraints 

imposed upon iω .; for the convex and NNMF methods, we constrained the intercepts to be 

zero.  To measure the relative singularity of A , (another measure of the extent to A  which 
deviated from a rotation matrix)  we also calculated its condition number (maximum singular 
value divided by minimum singular value).  Finally, for each data set and each method, we 

obtained a Markov matrix P  by minimizing |||| 01 PΩΩ  , with appropriate Markov constraints, 

and subsequently computed total and weighted entropy (as defined above).   

We also sought to compare different methods of estimating K (Scenarios 3-9).  In addition to the 
proposed bootstrap-based method, we applied a method that applies random matrix theory 
(RMT) to the residual matrix to estimate the rank of its probabilistic support.  The basic method 
was originally proposed for ISVA22, and later adapted to the present problem10, 23.  We also 
applied an ad-hoc method that represents a common approach in factor analysis, where we fit 
an unstandardized factor analysis model to Y   and set K  equal to the minimum value that 
produced an insignificant goodness-of-fit p-value (p>0.05).   
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Results 

Figures S10.3 and S10.4 show the RMSE for scenarios 1 and 2, which were based on 
leukocyte proportions from the BL-ra data set assuming different levels of microarray precision 
(less precise 100 in Scenario 1 vs. more precise 200 in Scenario 2).  These figures show 

that PCA typically produced a better fit to the underlying observed data Y . This was expected, 
since PCA entails no constraints on the solution.  R2 values showed a very similar pattern 
(figures not shown), reinforcing the superiority of PCA-based methods in statistical terms.  
However, among the constrained solutions, the convex method tended to provide a better fit.  
Figure S10.5 and S10.6 show the absolute values of the log-absolute-determinant statistics  
for Scenarios 1 and 2, while Figures S10.7 and S10.8 show the corresponding condition 
numbers.  Typically the values of  were smaller for our proposed method, although the 
unstandardized PCA often produced values of  almost as small (paired Wilcoxon p<10-5 for all 
comparisons of convex vs. other methods, except for Scenario 1, PCA(2) vs. convex, where the 
median value of  was slightly smaller for PCA(2), and p=0.027).  As measured by condition 
number, standardized PCA tended to provide the least singular transformations between true 
coefficients and estimates (paired Wilcoxon p<10-7 for all comparisons of convex vs. other 
methods), but our proposed method typically produced condition numbers almost as small.  
Finally, as shown in Figures S10.9-12, our proposed convex method produced unequivocally 
smaller entropy statistics than the other methods (paired Wilcoxon p<10-16 for all comparisons of 
convex with other methods).  Taken together, Scenarios 1 and 2 show that our proposed 
method optimizes the tradeoff between fit and interpretability: while the unconstrained methods 
produce slightly better statistical fit to the data, the optimal fit comes at the expense of 
coefficients that are difficult to assign biological significance.  

Figure S10.3 – RMSE for Scenario 1 

 
 

Figure S10.3 – RMSE for Scenario 2 
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Figure S10.5 – Log-absolute-determinants for 
Scenario 1 

Figure S10.6 – Log-absolute-determinants for 
Scenario 2 

 

 

Figure S10.7 – Log-condition-numbers for 
Scenario 1 

Figure S10.8 – Log-condition-numbers for 
Scenario 2 
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Figure S10.9 – Total Entropy for Scenario 1 
 

Figure S10.10 – Total Entropy for Scenario 2 

 

 

Figure S10.11 – Weighted Entropy for 
Scenario 1 

Figure S10.12 – Weighted Entropy for 
Scenario 2 

 

Scenarios 3 and 4 were designed to provide an initial comparison of different methods of 
estimating K .  These scenarios differ from Scenarios 1 and 2 only in the number of CpGs used, 
with the lower number selected to decrease computation time.  Results are shown in Figures 
S10.13 and S1014.  Compared with RMT, our proposed bootstrap method tended to estimate 
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K closer to its true value of 7, although both methods always underestimated the truth.  The ad-
hoc factor analysis method tended to overestimate K , and additionally lacked specificity.   

Figure S10.13 – Estimation of K (Scenario 3) 

Mean K̂ : 7.7 (FA-sig), 3.9 (RMT), 4.6 (convex-boot). 
 

Figure S10.14 – Estimation of K (Scenario 4) 

 
Mean K̂ : 6.6 (FA-sig), 4.6 (RMT), 5.2 (convex-boot).     

Related to the problem of under-estimating K , our reviewers asked us to explain why our 
method does not reliably reproduce all constituent cell types.  To address their quite reasonable 
request, we added Scenarios 5-7, which represent hypothetical extreme situations and 
demonstrate the limiting behavior of reference-free deconvolution in general.  As shown in 
Figures S10.15 and S10.16, Scenarios 5 and 6 involved two very precise clusters of subjects.  
As shown in the corresponding Figures S10.17 and S10.18, our convex-bootstrap method 
tended to find only 2 or 3 classes, with 2K  occurring more frequently in Scenario 6, which 
had tighter clusters.  The factor analysis solution again lacked specificity, while the RMT method 
tended to find values of K  less than or equal to the value found by our proposed method.  We 
have argued previously that, in the context of reference-free estimation of cell proportions, RMT 
may estimate the number of axes of variation rather than the number of cell types10, and these 
simulations illustrate the point.  In particular, unsupervised methods can find only the axes of 
variation supported by the data set at hand, not the full range of biological variability across all 
human populations.  This is further demonstrated by Scenario 7, similar to Scenario 4, but with 
smaller population variance (Figure S10.19).  Our method almost always estimated 3K , 

while RMT estimated 2K  or 3, and the factor analysis method again lacked specificity 
(Figure S10.20). 

As a final remark, we note that when K  is estimated to be much lower than the true number of 
classes, due to lack of variability within the data set, we would not expect mixture coefficients 
that represent a simple rotation of the truth.  Rather, we would expect the true cell types to 
collapse somewhat.  However, we would still hope for relatively specific classes; in scenarios 5 
through 7, total and weighted entropy comparisons between our proposed method and NNMF 
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resulted in figures similar to Figure S10.9-12 above.  Figure S10.21 illustrates the differences in 
total entropy from our proposed method across Scenarios 4, 5, and 6; thus the figure represents 
a progression from indistinct groups to very tight clusters.  As evident from the figure, entropy 
increases with tighter clusters because the data distinguish the subpopulations (cases vs. 
controls) rather than biologically interpretable cell types. 

Figure S10.15 – Simulated CD4+T vs. 
Neutrophil proportions for Scenario 5

 
Note that the figure scale is identical with that of Figure 
S10.2. 

Figure S10.16 – Simulated CD4+T vs. 
Neutrophil proportions for Scenario 6

 
Note that the figure scale is identical with that of Figure 
S10.2.

 
Figure S10.17 – Estimation of K (Scenario 5) 
 

 
Mean K̂ : 6.8 (FA-sig), 2.3 (RMT), 3.0 (convex-boot).

 
Figure S10.18 – Estimation of K (Scenario 6) 
 

Mean K̂ : 4.8 (FA-sig), 1.0 (RMT), 2.0 (convex-boot).    
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Figure S10.19 – Simulated CD4+T vs. 
Neutrophil proportions for Scenario 7

Note that the figure scale is identical with that of Figure 
S10.2. 

Figure S10.20 – Estimation of K (Scenario 7) 
 

Mean K̂ : 6.5 (FA-sig), 2.6 (RMT), 3.0 (convex-boot). 

 

Figure S10.21 – Comparison of total entropy 
from convex algorithm across Scenarios 4, 5, 
and 6 
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Finally, Scenarios 8 and 9 demonstrate the impact of cellular subtypes on estimation of K .  As 
shown in Figures 10, all methods produced estimates that tended to be larger than those of 
previous simulations.  These results illustrate that heterogeneity in cellular subtypes can result 
in larger estimates of K . 

 

 

Figure S10.22 – Estimation of K (Scenario 8) 

 
Mean K̂ : 6.2 (FA-sig), 7.9 (RMT), 8.8 (convex-boot).

Figure S10.23 – Estimation of K (Scenario 9) 

Mean K̂ : 9.5 (FA-sig), 10.1 (RMT), 7.2 (convex-boot).
 

As a final remark, we note that a bootstrap procedure very similar to the one we have proposed 
for our convex deconvolution could be applied in the setting of ordinary NNMF.  However, we 
have observed that the NNMF procedure typically took over four times as long to run; thus our 
approach may be more computationally efficient.  
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