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Causes and Consequences of Uncertainty in the Application of a Biogeochemical
Model to a Large Geographic Region

Chapter 1: Introduction

Because of its potential influence on climate, the carbon cycle is under

increasing scrutiny at regional and global scales (Schimel 1998). Understanding

carbon's dynamics requires that a multi-faceted approach be used, including a suite

of measurements both in the lab and in the field (Falkowski et al. 2000). Lab work

helps to characterize the important physiological and physical processes that drive

the flows of carbon between the atmosphere and the Earth's surface. The net effects

of those processes over time lead to accumulation of carbon pools and development

of carbon fluxes, both of which can be measured directly in the field. To fully

characterize the carbon cycle, such direct measurements would need to be made for

every point on the globe. This task is impossible at not only at global but also

regional scales (on the order of 1 4 to 1 hectares). To extrapolate knowledge to

areas where no direct measurements can be made, regional-scale carbon cycling

studies require the use of mathematical models.

Biogeochemical models are a common family of mathematical models used

to quantify carbon dynamics for large areas (Schimel et al. 1997). These models

capture essential biological, hydrological, and edaphic processes that control the

flows of carbon, nutrients, and water through an ecosystem. Some important

processes that may be modeled at significant detail include photosynthesis, allocation

of photosynthate to various plant growth and reproduction tissues, transpiration of
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water from leaves, respiration by both plants and their consumers, uptake and release

of key nutrients, competition for resources, and both natural and anthropogenic

disturbance (Waring and Running 1998, Thornton et al. 2002). To describe these

processes, a biogeochemical model requires a large number of controlling

parameters. Once parameterized, the model is run under a set of input variables that

typically include climate data and soil characteristics. Applying a model over a large

area requires that parameters can be defined and input variables calculated.

When models are applied to large geographic areas, at least two important

problems emerge. First, computational demands for modeling may exceed available

capacity. The biogeochemical models that dominate carbon cycling are

computationally intensive. To characterize carbon dynamics over a large landscape, a

model must be run in thousands or millions of separate cells. Even with rapidly

improving computer technology, the length of time needed to achieve such a task

often precludes ready usage. As with any modeling exercise, simplification strategies

can be employed (Haefner 1996). Reducing the structural complexity of a model can

reduce computational burden, but may eliminate processes that are necessary for

robust estimation, especially when subtle climatic changes are to be explored.

Decreasing the time step at which the model makes calculations can reduce

computational burden, but may mask processes that occur at a finer time step.

Similarly, spatial aggregation of processes will reduce computational burden for a

given area, but would miss processes acting at fine spatial grains.
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A second challenge in regional modeling is building accurate maps of model

driving variables and parameters. Input drivers for common biogeochemical models

typically include climate and soil data, the spatial patterns of which are difficult to

accurately capture (Phillips and Marks 1996). Moreover, these models typically have

many parameters whose spatial patterns are poorly characterized, either because of

the inherent difficulties of making the necessary measurements, or because the

necessary measurements have simply not been measured at a sufficient number of

locations to understand spatial patterns.

Uncertainty in these spatial controls on model behavior can cause uncertainty

in outputs from the model. Typically, when models of carbon dynamics are run for

entire landscapes, the computational burden of modeling over large areas makes

efforts to characterize uncertainty rare (White Ct al. 1998, Williams et al. 2001). This

uncertainty may not be trivial: Because carbon dynamics represent the sensitive

balance between carbon uptake and release, slight uncertainties can cause a site to

move from predicted carbon source to sink. If models are to be useful for researchers,

policy-makers, and the public, their predictions must be placed in a context of

uncertainties and probabilities.

In the project described in this Dissertation, I used test cases to explore both

of the challenges to spatial modeling of carbon dynamics. I focused on BGC 4.1 .1

(hereafter "BGC"), a commonly-used model with many parameters, high demand for

spatial input variables, and a computationally-intensive design (Running and

Coughlan 1988, Thornton 1998). These characteristics made it an excellent test of
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methods to cope with computational complexity. To address issues of spatial

uncertainty, I limited my investigations to a suite of parameters related to leaves.

These parameters have been shown to have potentially strong influence on the

behavior of BGC (White et al. 2000). Because information on their geographic

distribution is often lacking, the spatial patterns of many model parameters are

typically treated simplistically in regional-scale modeling, leaving significant room

for uncertainty at any given point in space. Thus, leaf attributes serve as excellent test

for exploring questions of spatial uncertainty in model parameters. All of the work

was conducted in the forests of Oregon's Cascade Mountains, a region with a strong

research history and with a potentially important role to play in regional carbon

dynamics (Smithwick et al. 2002). The study was conducted as part of a larger

project on regional scaling with field measurements, remote sensing, and modeling

(Law et al. in press).

My work is reported in the three following chapters:

Chapter 2 describes a field study in which I investigated the actual spatial

variability of three readily-measured leaf parameters. My goal was to

better understand whether hypothesized controls on these parameters

would lead to regional-scale spatial patterns in their values. I took

advantage of a natural ecotone between Douglas fir and ponderosa pine

forests to better separate species-specific and climate-driven effects.

These leaf parameters represent attributes whose measurement is

relatively straightforward, but whose observation over large spatial areas
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has been lacking. The observed range of parameter values was then used

later in Chapter 4.

Chapter 3 reports on a method I developed to reduce the computational

burden in modeling over large areas. Rather than running the model at

every point in a large landscape, I ran the model only at a sample of

points. The points were determined by examining the multidimensional

climate space that varies across the landscape, followed by sampling at

regular intervals from that space. After sampled points were modeled, the

remaining points were estimated by interpolation in the climate space

between nearby modeled points. The goal of this chapter was

development and testing of a methodology that would facilitate

computationally expensive uncertainty analyses that followed in Chapter

4.

Chapter 4 brings together components of the preceding two chapters to

develop spatially-explicit, region-wide estimates of uncertainty in model

outputs. In addition to the three leaf parameters that were easily measured

in Chapter 2, the modeling analysis included three additional leaf

parameters whose measurement in the field is difficult. Together, the six

parameters represented the range of uncertainties in parameters typical of

most biogeochemical model parameter sets. Model uncertainty analysis

occurred in sequential steps. A parameter set specific to the region of

interest was identified using both measurements from Chapter 2 and the
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literature. A traditional factorial uncertainty analysis identified keystone

parameters, which were then examined further. At a small number of

points on the landscape, frequency distributions of total variation in

carbon metrics was quantified using a dense sampling of parameter space.

Then a coarser sampling of parameter space was applied to a large

number of points in the landscape sampled using the methods of Chapter

3, and uncertainty frequencies distributed across the landscape. This

approach provided a spatially-explicit estimate not only of carbon

dynamics, but also of uncertainty in carbon dynamics

Taken together, the three chapters serve as an investigation into the issues

involved when biogeochemical models are applied to large geographic areas. My

goal was to identify not only causes and consequences of uncertainties that arise in

such an endeavor, but also to establish foundations that might be used to focus

further spatial modeling efforts.



Chapter 2: Regional patterns of variation in leaf mass per area, leaf nitrogen.
and leaf longevity

Introduction

Because it is the entry point of most carbon into the terrestrial biosphere from

the atmosphere, leaf carbon assimilation is a key component of the global carbon

cycle. Characterization of the carbon cycle both now and under future climates

requires that controls on leaf carbon assimilation be understood over both space and

time. In experimental and observational research, three leaf traits have been shown to

have high control over carbon assimilation: leaf mass per area (LMA), leaf nitrogen

concentration (LN, on mass basis), and leaf longevity (LL) (Field and Mooney 1986,

Poorter 1989, Reich et al. 1992, Oren et al. 2001).

Physiologically-based models of carbon dynamics for ecosystems often

incorporate one or more of these leaf traits as model parameters (011inger et al. 1998,

White et al. 2000). By treating the process of leaf carbon assimilation in a

physiologically realistic manner, these models have the potential to track changes in

carbon assimilation brought about by changes in climate and carbon dioxide levels

over time. When such carbon models are applied over large geographic areas,

however, spatial variation in those leaf traits may be significant and should be

accounted for.

Different species tend towards inherently different combinations of leaf traits

(Poorter and Evans 1998). Therefore, given species maps, carbon models can be

parameterized with species-specific sets of leaf traits, providing a first-approximation

7
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of the spatial patterns in carbon dynamics However, this approach ignores potential

genetic and phenological variation in these leaf traits within the geographic range of a

single species.

Evidence for partial environmental control over these traits is abundant. At a

global scale, cross-study comparisons have shown that LMA, LN, and LL are

intimately linked through ecological and genetic tradeoffs and cost-benefit strategies

(Reich et al. 1997). LMA is thought to respond to average growth irradiance (Rosati

et al. 2000, Evans and Poorter 2001, Grassi and Bagnaresi 2001), moisture stress

(Mooney et al. 1978, Abrams et al. 1994, Cunningham et al. 1999), and nutrient

limitation (Wright et al. 2002). LN has been shown to be related to temperature (Yin

1993) and soil nutrient condition (van den Driessche 1974, Turner and Olson 1976,

Wright et al. 2001). LL varies by species or functional group, and it appears to be

related to a wide variety of stressors, ranging from temperature to nutrients (Reich et

al. 1995), and may be a sensitive integrator of long-term, plant-level production and

respiration costs (Walters and Reich 1999).

The abundance of research on these leaf traits poses a problem for

understanding their spatial patterns at the regional scale: with so many potential

influences and interrelationships identified, it is difficult to predict which set of

factors will be important at the regional scale for any given system (on the order of

1
6 to 1 9 ha). This is exacerbated in forested systems by the difficulty of

experimental manipulation at appropriate scales and by the long life span of the

vegetation.
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The conifer forests of Oregon provide a useful natural laboratory that may

help in understanding regional patterns in these leaf traits. West of the Cascade

Mountains, Pseudotsuga menziesii (hereafter PSME) trees dominate forests that

experience cool, moist winters and warm, dry summers. East of the Cascades, Pinus

ponderosa (hereafter PIPO) trees dominate in a climate with similar seasonality but

much lower overall precipitation (Franklin and Dymess 1988). The two species

intergrade in an ecotonal region of mixed-conifer forest around the southern portion

of the Range (Figure 2.1). By identifying mixed stands where trees of the two species

experience essentially identical environmental conditions, and comparing those stands

with pure stands of each species in the core zone of its range, greater inference of

ecological drivers may be possible.

Here, we describe results from a field study that takes advantage of the

geographic convergence of PSME and PIPO to better characterize regional patterns in

LMA, LN, and LL. We use our findings to develop a simple conceptual model

describing the ecological variation in these leaf traits for the study region, and then

discuss how this conceptual model may be applied to carbon modeling.
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Figure 2.1 a) Study sites (black + symbols) overlaid on a general ecozone
mapping showing approximate distributions the western Cascades (light
grey), the mixed conifer zone (diagonal hash lines), and the eastern Cascades
(d2rk grey). The white zone in the center of the study area represents crest of
the Cascades. b) Precipitation for the region acquired from DAYMET. Note
the gradual transition from high precipitation in the northern Douglas-fir zone
to low precipitation in the southern Douglas-fir zone, eventually to very low
precipitation east of the Cascade crest.
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Methods

Overview

Using a variety of spatial datasets and in-field reconnaissance, a set of 15

sample stands were identified that spanned a climatically-driven ecotone between two

dominant forest species. Within the core geographic range of each species, five stands

were located for leaf sampling. The five remaining stands were located in the

transitional zone between the ranges of the two species. After field sampling, needles

were processed to obtain LL, LMA, and LN. Statistical investigations sought to

characterize relationships between leaf traits and stand attributes and climate, as well

as between the traits.

Climate data

Five variables derived from 1km-grain DAYMET data (Thornton et al. 1997,

Thornton et al. 2000) were used to characterize the climate of the region, and are listed

in Table 2.1. Precipitation and temperature variables were taken directly from

aggregated DAYMET data. Vapor pressure deficit (VPD) was derived from minimum

and daily temperatures (Thornton et al. 2000). Saturation vapor pressure for

calculation of VPD was calculated as 610.79 * (exp(17.269 * T 1(237.3 + T)), where

T is daily minimum temperature in degrees C (Glassy and Running 1994).

11



Table 2.1. Definitions of variables used in this study

NJ

Variable Description Units Type Method
YrPrcp Average annual precipitation between 1980

and 1997
cm Climate From DAYMET

SprPrcp Average precipitation for 15-May to 14- cm Climate From DAYMET
July, 1980 to 1997

MaxSprTemp Average maximum temperature for 15-May
to 14-July, 1980 to 1997

°C Climate From DAYMET

Temp Average annual temperature for 1980 to °C Climate From DAYMET
1997

SumrVPD Calculated vapor pressure deficit for 15- Pa Climate See "Climate data" in
April to 13-August 1980 to 1997 Methods Section

DBH Average diameter at breast height (1 .37m)
for 12 sampled trees

cm Stand Direct tape
measurement

BA Average basal area m2 / ha Stand Prism sweeps

Ht Average height of the top of 3 to 4 trees in
stand

m Stand Analog clinometer +
laser rangefinder

CmDpth Depth (m) of foliated crown of trees on
which Ht was measured

m Stand Analog clinometer +
laser rangefinder



Table 2.1. (continued) Defmitions of variables used in this study

Variable Description Units Type Method
GapFraction Proportion of sky visible through canopy in

stand
Proportion Stand Hemispherical

digital photo + cite
software

Ht/DBH Average ratio of Ht to DBH for 3-4 trees in
stand

m / m Stand Mean of tree ratios

Ht/BA Average ratio of Ht to BA m I m2 Stand Mean of tree ratios

CrnDpth/Ht Average ratio of CrnDpth to Ht m / m Stand Mean of tree ratios

Branchlnc Average length of yearly growth of needles
on shoot

mm Branch Direct measurement
in lab

FolBranchLngth Average length of foliated portion of branch
(cm) for all sampled trees

mm Branch Direct measurement
in lab

LMA Average leaf mass per area (g / cm2) for
target species in stand

kg / m2 Leaf See "Leaf
Processing" in

Methods Section

LN Average leaf nitrogen (mg N / mg leaf) for mg N I mg Leaf See "Leaf
target species in stand leaf Processing" in

Methods Section
LL Leaf longevity (yrs) for target species in

stand
years Leaf Direct counting of

bud scars
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Locating sample stands

Digital spatial data sources were used extensively in layout of potential sample

plots. These were used to identif' a large number of candidate regions for sample

stands. Candidate areas were visited in field reconnaissance, and only stands that met

certain criteria were chosen for sampling.

A digitized Level IV ecoregion map of Oregon (Thorson et al. 2003) was used

to delineate a PSME zone, a MIXED zone, and a PIPO zone. All research was limited

to U.S. Government lands: the Willamette and Umpqua National Forests, administered

by the US Department of Agriculture's Forest Service, in the PSME zone; the

Medford District of the U.S. Department of Interior's Bureau of Land Management

(BLM) in the MIXED zone; and the Winema, Fremont, and Deschutes National

Forests in the PIPO zone. The goal was to distribute 15 plots along an environmental

gradient through these three zones, with 5 plots per zone. SumrVPD (see Table 2.1)

was used as a stratifying variable in the PSME zone. Within the PSME zone, potential

sites were limited to regions within similar soil parent materials, as recorded by a

digital parent material map (Walker and MacLeod 1991). Because the PIPO zone

occupies a fundamentally younger geologic type, PIPO stands were necessarily

located at sites with different soil parent materials.

Because this study focused on regional-scale patterns, site-level sources of

variation were to be avoided. First, only stands on relatively level ground, or, if

sloping, east-exposure ground, were chosen, to avoid the microsite climatic effects

caused by north, south, or southwest exposures. U.S. Geological Survey 30m-digitial
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elevation models (DEM) was used to identify such areas. Natural stands were chosen

to avoid potential confusion caused by replanting of different genetic stock, placing a

lower age limit on stands at approximately 80 years (before large-scale replanting

practices were widespread). Very old stands were also avoided, because of potential

leaf-level effects of age-related changes in foliar morphology (Apple et al. 2002). In

the PSME zone, an age-map derived from satellite remote sensing (Law et al. In Press)

was used to identify areas between 75 and 125 years. In the MIXED zone, the stand-

level Forest Operations Inventory (FOl) digital geographic information system (GIS)

coverage from the U.S. Department of Interior Bureau of Land Management (BLM,

date unknown) was used to identify stands older than 70 years. No appropriate digital

age layer was available for the PIPO zone, requiring a lengthy in-field site selection

process.

In the field, single-layer canopies were preferred because they avoid

competition between canopy layers for light and nutrients. Stands with significant

basal area of non-target species (i.e. not PSME or PIPO) were also avoided to

minimize competitive effects.

In mixed PSME/PIPO stands, an ideal condition was one where the trees of the

two species had experienced essentially identical climates for their entire lifetimes;

hence, stands were chosen where both species occupied the dominant canopy layer,

where visual traits (bole size, branch condition, size of canopy) suggested similar

developmental stages, and where individuals of the two species were interspersed

within the stand. To identify stands that might meet this criterion, stands were
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considered candidates only where the two species occupied the same size classes in

the BLM's FOl coverage. For candidate stands in all three zones, final assessments of

canopy complexity and of relative species dominance in the canopy were made in the

field during reconnaissance visits; candidate sites not meeting the criteria were

eliminated from consideration.

Fifteen stands were chosen, five CORE stands for each of the two species

(stands dominated by one species or the other, in that species' core zone), and five

MIXED stands where the two species co-occurred (Table 2.2). Total precipitation

varied by a factor of five across sites (from 50 to 250 cm per year). Temperature

ranges were less variable, although when grouped by ecozone, stands in the PIPO zone

were cooler than stands in either the MIXED or PSME zones, in part because of their

much higher elevation (Table 2.3). Precipitation in the PSME zone was more than

twice that of either the MIXED or PIPO zones.



Table 2.2: Site characteristics of sam. led stands
SITE

a Locations in
Abbreviations

Species Longitude a Latitude a Elevation SumrVPD(m) YrPrcp SprPrcp MaxSprTemp Temp

decimal degrees, using datum NAD83
and units for all variables are listed in

and spheroid GRS 1980
Table 2.1

Fawn PSME -122.38 44.85 575 214.0 27.0 19.9 9.1 1791.1

Quartz PSME -122.46 42.27 875 251.7 31.9 17.4 6.7 1639.2
Creek

Oak Ridge PSME -122.58 43.78 812 168.3 22.3 20.2 8.5 1767.1

Steamboat PSME -122.74 43.29 1017 158.0 19.6 20.4 8.4 1448.0

Tiller PSME -122.87 43.02 832 133.0 15.5 22.5 9.9 1036.7

Elk Creek MIXED -122.90 42.69 675 91.7 10.5 24.6 10.9 1394.7

Butte MIXED -122.52 42.53 859 90.1 11.4 24.7 10.1 1801.2

Lake Creek MIXED -122.66 42.36 978 89.3 11.4 23.4 9.4 1643.0

Howard MIXED -122.45 44.59 1399 103.0 13.0 20.9 7.3 1145.3

Jenny MIXED -122.34 42.06 1072 68.6 9.0 24.0 9.2 903.4

Crawford PIPO -121.72 42.63 1405 68.3 8.4 22.2 7.2 1304.0

Wildhorse PIPO -121.62 42.91 1420 63.2 7.3 22.0 7.0 1192.1

Tar PIPO -121.23 43.37 1477 53.0 8.0 21.7 6.5 1630.0

Fall River PIPO -121.65 43.79 1356 81.8 9.3 20.6 6.4 1428.7

Sisters PIPO -121.64 44.23 1249 120.3 13.7 20.3 6.6 1662.4



Table 2.3: Mean site characteristics of sampled stands grouped by zone, with five stands per zone.
Standard deviations are shown in parentheses.

apsME: Pseudotsuga menziesii; PIPO: Pinusponderosa; MIXED: Mixtures of PSME and PIPO.
Abbreviations and units for site characteristics are listed in Table 2.1

Zone ELEVATION (m) YrPrcp SprPrcp MaxSprTemp Temp SumrVPD
psMEa 822.4 (159.8) 185.0 (47.5) 23.2 (6.4) 20.1 (1.8) 8.5 (1.2) 1536.4 (310.7)
MIXEDa 996.7 (269.3) 88.6 (12.5) 11.1 (1.5) 23.5 (1.5) 9.4 (1.3) 1377.5 (363.6)

plpoa 1381.6 (85.9) 77.3 (26.2) 9.3 (2.6) 21.4 (0.9) 6.7 (0.4) 1443.4 (203.4)
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Site sampling

Sampling on the 15 stands occurred during the summer of 2002, chiefly during

the one-month period near mid-summer (July) to minimize the effects of within-

season variation in leaf traits (Matson et al. 1994).

Based on variability of leaf measurements acquired in a small pilot study

conducted in 2001, we estimated the number of branch samples that would be needed

per stand to distinguish two stands separated by 10 percent in LMA, with varying

alpha and beta levels (Marshall and Jahraus 1987). Depending on significance and

power levels, anywhere from 6 to 72 samples would have been needed. To capture

conditions across a large region, however, as many stands as possible would need to

be sampled, which required fewer samples per stand on a fixed budget. Therefore, 12

trees per stand were sampled in the ten CORE stands; 12 trees per species (for a total

of 24) were sampled in the five MIXED stands. A single branch from the middle

canopy (vertically) of each tree was shot down with a 12-Gauge shotgun using 00-

Buckshot (Matson et al. 1994, Smith and Martin 2001); an average of four to five

shells were required before a branch separated and fell clear to the ground. Only

branches on the east or west side of the tree were chosen, and only those branches that

appeared to represent average light environment (i.e. light gaps in dense canopies were

avoided). For the tree from which each branch came, approximate canopy vertical

position of the separated branch was noted (based on visual division of vertical canopy

into 5 equal-sized quintiles), as well as tree diameter at breast height (DBH; including

bark). Across all stands, branches primarily came from the 2nd and 3rd vertical quintiles
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of the canopy (data not shown; quintile I represents the top 20% of the canopy). For 3

to 4 trees in the stand, height to top of tree and bottom of canopy was estimated using

an analog clinometer and laser range finder. At 5 to 7 points in the stand, estimates of

canopy basal area were acquired using a BAF 10 fi2/acre prism, and an upward-

looking hemispherical digital photo of the canopy was taken using a Nikon 990

camera (2 megapixel) with a hemispherical lens (Frazer et al. 2001).

Leaf processing

Branches were placed in sealed plastic bags in ice-cooled coolers immediately

upon exiting the forest stand. Upon return to the laboratory, branches were stored in 4-

5 degree Celsius refrigerators until needle processing.

Needles were stratified by needle age class, as identified by bud scars on the

branches. Because sampling occurred during the middle of the growing season when

current-year needles are expanding, current-year needles were not used. Needles were

plucked from the branches beginning at the prior year, considered year 1, followed by

separate plucking for year 2, and grouped plucking of all prior years. Length (in mm)

of branch growth for each year grouping was recorded, as well as the total number of

years of retained needles on the branch (the leaf longevity, LL).

For PSME needles, a subset of 20 to 40 needles for each age class was

separated and used to estimate LMA. Projected leaf area was estimated optically using

a Panasonic WV-CD2O Digital Camera and the Aglmage digital imaging software

(Decagon Instruments, Inc.) on 30 to 45 needles per sample. Projected leaf area was

converted to half of all-sided leaf area by assuming that the needles were ellipses; a
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handheld micrometer was used on a 1/3 subset of all first-year branch needles to

determine an average width and thickness for calculation of the ellipse major and

minor axes. In this study, the ratio of half-all-sided leaf area to projected leaf area for

PSME needles was calculated to be 1.15.

For 15 PIPO needles per branch, handheld micrometer measurements of needle

width (near the center of the needle) and needle length were multiplied to produce a

projected area, and that value multiplied by shape correction factor of 1.18 to estimate

half of all-sided area.

All needles were placed in envelopes in a drying oven at 70 degrees C for 48 to

72 hours. For needles where leaf area had been calculated, total dry needle mass was

recorded using a Denver Instrument Company A-250 balance, with precision to

0.0001 g. LMA was calculated using the dry mass and half of all-sided leaf area.

Chemical analysis was conducted on all year 1 needles, as well as every third

tree's year 2 and years 3+ (all remaining years) needles. Analysis was conducted at

Oregon State University's Central Analytical Lab for chemical analysis. A Leco CNS-

2000 Macro Analyzer instrument was used to measure the percent (by mass) C and N

of ground samples. For branches where chemistry for needle years 2 and 3+ was not

measured directly, it was estimated based on the species-specific relationship between

year 2 or years 3+ needles and year 1 needles of trees where all three sets were

analyzed, using the reduced-major-axis form of regression (because of equal errors in

both X and Y variables in the regression; Cohen et al. [2003]). Branch-level LMA and

leaf N were both estimated using an average of year 1, 2 and 3+ needles, weighted by
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relative contribution of each years' branch growth to the total branch growth. Stand-

average values for leaf traits were calculated by simple averaging of all 12 branch-

level estimates.

Canopy gap fraction estimations

Canopy gap fraction was estimated from the several digital hemispherical

photos acquired in each stand. The Gap Light Analyzer (GLA) software (Frazer and

Canham, Simon Fraser University; http://www.ecostudies.org/glal), was used to

develop gap fraction estimates. Each photo was individually processed, with separate

thresholding values, to account for variation in sky conditions.

Statistical analyses

Statistical tests were used to compare groups and to examine trends.

All PSME trees in PSME stands were considered one group, all PSME trees in

MIXED stands a second group, with two parallel groups for PIPO trees. Each of the

four groups had 60 individuals. The Kolmogorov-Smirnoff one-sample test for equal

distributions suggested that leaf traits across trees in each of the four groups were not

normally distributed. Therefore, the non-parametric Kolmogorov-Smirnoff two-

sample distribution-matching test was used to compare groups.

Trends in leaf traits across stands were examined using simple regression. For

all regressions, the unit of sampling was a single stand-species combination, resulting

in 5 samples in the PSME CORE zone, 10 samples in the MIXED zone (5 stands with

two species each), and 5 samples in the PIPO CORE zone. Regressions were
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conducted with stand-average leaf traits as dependent variables and three groups of

variables as independent variables (Table 2.1): climate estimates from DAYMET,

stand attributes from field measurement, and the leaf traits themselves.

With only 20 stand-species combinations to use in regression models, only first

order linear, exponential, and logarithmic regression models were initially examined.

Then, within each variable group (Climate, Stand, and Leaf), the single best predictor

of a given leaf trait was identified and Akaike's information criterion was used to

evaluate whether a second variable from within the same variable group would

significantly improve the model (using the STEP function in SPlus [Insightful

Corporation [2002fl.

Results

Stand-level traits for all sampled plots are shown in Table 2.4. Tree-specific

traits in MIXED zone stands are separated by species. All stand-level traits showed

variation among sites, although the relative ranges of variation differed. Gap fraction

varied by a factor of eight across species, while DBH varied only by a factor of two.

PSME stands were generally taller and had greater basal area than PIPO stands.



Table 2.4. Mean stand attributes for all sampled stands, with trees in MIXED stands separated by
pecies within a stand.

SITE
SPE-
CIES

SITE
TYPE

- -

-

0 0

-

-

-

0

-

0

.

Fawn PSME CORE 5.3 41.3 89.8 59.2 21.3 0.35 74.3 3.3 69.5 362.8
(20.3) (14.0) (9.8) (0.09) (9.8) (0.3) (15.5) (90.3)

Quartz PSME CORE 6.6 65.0 69.1 51.5 21.2 0.41 73.9 1.8 59.0 423.2
Creek (11.5) (2.4) (6.0) (0.11) (6.0) (0.0) (19.1) (110.9)

Oak PSME CORE 7.4 45.5 79.7 53.5 15.9 0.29 74.8 2.7 57.3 397.5
Ridge (15.6) (2.5) (6.7) (0.12) (6.7) (0.1) (16.0) (130.8)

Steam- PSME CORE 9.6 49.7 87.8 44.5 12.6 0.29 54.1 2.1 54.1 341.3
boat (13.1) (6.4) (2.9) (0.08) (2.9) (0.1) (10.0) (53.4)

Tiller PSME CORE 7.9 52.8 69.5 45.0 14.4 0.32 65.3 2.0 74.2 364.0
(11.0) (3.2) (4.1) (0.11) (4.1) (0.1) (23.6) (87.7)

Elk PSME MIXED 11.6 39.7 70.0 38.0 18.0 0.47 61.3 2.2 43.5 294.8
Creek (11.4) (2.9) (5.0) (0.11) (5.0) (0.1) (9.7) (105.3)

Butte PSME MIXED 13.2 31.8 78.6 49.0 26.6 0.55 61.1 3.5 67.5 412.4
(13.5) (6.0) (8.3) (0.18) (8.3) (0.2) (19.1) (92.9)

Lake PSME MIXED 11.5 30.5 71.6 39.7 18.2 0.47 59.2 3.0 52.2 314.2
Creek (12.4) (13.7) (5.2) (0.10) (5.2) (0.5) (10.0) (79.9)



Table 2.4. (continued) Mean stand attributes for all sampled stands, with trees in MIXED stands
se arated b s . ecies within a stand.

C.)

;- -
Z

C)

C.)

- C.)

C)

SPE- SITE Co -
SITE CIES TYPE C.)

Howard PSME MIXED 16.6 33.3 70.1 35.4 22.7 0.64 48.4 2.4 75.4 427.9
(11.3) (4.8) (2.5) (0.02) (2.5) (0.1) (14.7) (78.8)

Jenny PSME MIXED 17.5 27.5 44.0 25.5 16.6 0.65 54.3 2.1 49.9 299.7
(6.3) (2.2) (3.0) (0.12) (3.0) (0.1) (15.2) (95.8)

Elk PIPO MIXED 11.6 39.7 78.3 56.1 17.3 0.30 68.6 3.2 29.6 71.1
Creek (9.8) (6.0) (9.7) (0.14) (9.7) (0.2) (9.9) (37.8)

Butte PIPO MIXED 13.2 31.8 75.6 48.6 19.8 0.41 65.6 3.5 37.7 112.8
(9.3) (2.4) (1.6) (0.04) (1.6) (0.1) (8.8) (45.4)

Lake PIPO MIXED 11.5 30.5 82.2 39.7 18.0 0.45 49.1 3.0 41.1 114.9
Creek (14.4) (5.9) (3.0) (0.02) (3.0) (0.2) (16.4) (74.5)

Howard PIPO MIXED 16.6 33.3 73.0 39.4 13.3 0.34 56.6 2.7 32.3 125.9
(14.6) (3.2) (3.0) (0.08) (3.0) (0.1) (14.0) (77.6)

Jenny PIPO MIXED 17.5 27.5 47.4 26.3 11.9 0.45 57.3 2.2 45.3 191.3
(9.9) (3.2) (1.8) (0.07) (1.8) (0.1) (16.4) (88.8)



Table 2.4. (continued) Mean stand attributes for all sampled stands, with trees in MIXED stands
se sarated b s . ecies within a stand.

a Numbers represent stand-level estimates
b Numbers are means of 3 to 5 measurements per stand, with standard deviations in parentheses
C Numbers are means of 12 measurements, one for each tree/species combination, in the stand, with standard
deviations in parentheses
Units for each measurement variable listed in Table 2.1

I
-

-E

z .

-o

Q

C)

SPE- SITE .0

SITE CIES TYPE Z U U

Craw- PIPO CORE 30.2 18.4 76.3 35.4 260 0.74 50.8 4.4 31.8 151.3
ford (10.5) (8.4) (6.1) (0.05) (6.1) (0.5) (6.5) (51.4)

Wild- PIPO CORE 32.6 25.3 67.8 30.6 19.1 0.62 46.8 2.8 29.7 129.6
horse (10.4) (3.1) (2.9) (0.07) (2.9) (0.1) (11.3) (64.0)

Tar PIPO CORE 39.4 23.0 62.0 26.1 18.8 0.72 43.6 2.6 20.7 103.7
(6.1) (2.7) (4.2) (0.12) (4.2) (0.1) (4.9) (30.2)

Fall PIPO CORE 28.7 36.7 60.7 34.9 15.8 0.46 58.1 2.2 24.3 134.0
River (9.4) (3.9) (4.8) (0.17) (4.8) (0.1) (7.8) (44.5)

Sisters PIPO CORE 24.9 41.3 67.5 30.9 15.9 0.52 46.4 1.7 264 124.2
(11.9) (4.4) (3.5) (0.12) (3.5) (0.1) (11.6) (55.5)
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Variation in some stand level traits was statistically related to climate. Table

2.5 shows best one-factor linear regression predictors of all stand variables, both for

each species separately and across species. Gap fraction, total basal area, and height

were all strongly related to climate. Yearly total precipitation (YrPrcp) was a

consistent predictor of variation in many traits, both within and across species,

although average temperature (Temp) was associated with variation in some PIPO

traits.

Trees in MIXED stands differed from trees in CORE stands for most leaf

traits. At the tree level, PSME trees in MIXED stands had higher LMA and leaf N

values than did PSME trees in CORE stands (Figure 2a, Kolmogorov-Smirnov [K-SI

value for comparing two distributions 0.63 and 0.28, respectively). Only LL did not

differ (K-S value 0.18). PIPO trees differed significantly between CORE and MIXED

stands for all three leaf traits (Figure 2b; K-S values of 0.37, 0.47, and 0.57 for LMA,

LN, and LL respectively).

In their CORE zones, PSME trees and PIPO trees also differed in values of

LMA and LL (Figure 3a; K-S values of 0.87 and 0.48, respectively). LN did not differ,

however (K-S 0.13). When the two species co-existed in the same stands, LL

continued to differ (Figure 3b; K-S 0.78), but LMA no longer differed (K-S 0.21).

Distributions of LN values were distinct in MIXED stands at the pO.l but not p0.05

levels (K-S of 0.22), but this represents more differentiation of LN than observed

between PSME and PIPO trees in their respective CORE zones.



Table 25. Summary of regression models that best relate measured stand
attributes to climate variables.

Pseudotsuga menziesii stands
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Stand variable Best Predictor (X) Equation r2 p n
DBH log(YrPrcp) -12.9+17.8X 0.35 0.071 10

GapFraction log(YrPrcp) 51 .5-8.43X 0.75 0.001 10
Ht/BA 1.10 0.17 0.239 10

BA log(YrPrcp) -69.2+22.9X 0.69 0.003 10
Ht/DBH SprPrcp 47.4+O.891X 0.55 0.014 10

CmDpthlHt log(YrPrcp) 1 .56-O.230X 0.52 0.018 10
CrnDpth 17.60 0.14 0.285 10

Ht log(YrPrcp) -46.9+ 1 8.8X 0.67 0.004 10
Branchlnc exp(Temp) 63 .9-0.0003X 0.15 0.270 10

FolBranchLngth log(Temp) 831-21 4X 0.39 0.052 10

Pinus ponderosa stands
Stand variable Best Predictor (X) Equation p n

DBH log(YrPrcp) -2.99+ 1 6.4X 0.15 0.262 10
GapFraction log(Temp) 108-41 .02X 0.70 0.003 10

Ht/BA 1.30 0.26 0.130 10
BA log(YrPrcp) -76.0+24.3X 0.66 0.004 10

Ht/DBH 49.10 0.63 0.006 10
CrnDpthlHt log(YrPrcp) 2.33-0.4 1 6X 0.47 0.028 10

CrnDpth log(SprPrcp) 33.7-7.01 X 0.14 0.278 10
Ht exp(Temp) 31 .8+0.001X 0.71 0.002 10

Branchlnc log(Temp) -21.1+25.6X 0.46 0.03 1 10
FolBranchLngth exp(Temp) 13 70X 0.32 0.086 10

All stands
Stand variable Best Predictor (X) Equation p n

DBH log(YrPrcp) 3.01 + 1 4.7X 0.28 0.018 20
GapFraction log(YrPrcp) 95.6-17.1OX 0.53 <0.001 20

Ht/BA log(MaxSprTemp) -2.49+1.18X 0.14 0.106 20
BA log(YrPrcp) -73.3+23 .7X 0.76 <0.001 20

Ht/DBH log(YrPrcp) -15.4+16.OX 0.46 0.001 20
CmDpthlHt log(YrPrcp) 1.53-0.23 OX 0.44 0.001 20

CrnDpth 17.60 0.04 0.420 20
Ht log(YrPrcp) -43.0+18.1X 0.53 <0.001 20

Branchlnc log(SprPrcp) -17.7+25.2X 0.35 0.006 20
FolBranchLngth log(SprPrcp) -263+201X 0.40 0.003 20
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Figure 2.2. Comparisons of leaf traits for all trees in each species. Box plots
show first and third quartiles of the distribution of 60 trees, whiskers are
placed at 1.5 times interquartile length, and isolated trees outside of
whiskers are shown as black lines and solid circles. P-values from
Ko]mogorov-Smimov 2-sample tests, with low values suggesting that the
distributions of values for the two groups are not the same. a) PSME trees
in CORE vs. MIXED stands. b) As in a), but for PIPO trees.
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Figure 2.3. Comparisons of leaf traits across species for trees in CORE
and MIXED stands. P-values as in Figure 2.2. Box plots symbols as in
Figure 2.2. a) PSME vs. PIPO trees in CORE stands and b) in MIXED
stands.
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When grouped at the stand level, leaf traits varied across stands (Table 2.6).

For PSME trees grouped by site across the CORE and MIXED zones, LMA and LN

varied by more than 30% of the species-level mean stand values, while LL varied by

approximately 15% of the mean. PIPO trees showed similar levels of variation in

LMA and leaf nitrogen (between 25 and 30% of means), but much greater variation in

LL (more than 80% of the mean).

Variation in climate could explain some of the variation in leaf traits across

stands (Table 2.7). For PSME only, LMA was related significantly to climate, but LN

and LL were not. For PIPO, on the other hand, climate variation was strongly related

to variation in all three traits. Across species, the strongest climate relation was that of

LMA, where nearly 70% of observed variation could be explained with a single

climate predictor (log(YrPrcp)).

Variation in leaf traits could also be explained by variation in stand- or branch-

level attributes (Table 2.8). Across species, approximately 80% of variation in LMA

was explained by variation in stand light environment (GapFraction). For PSMES,

LN and LL again were not related to stand attributes, but for PIPO, all three leaf traits

could be explained by stand attributes.

Examining leaf trait interrelationships, LN and LL were consistently linked,

both within and across species (Table 2.9). For both PSME and across species,

variation in LMA was not related to the other two leaf traits, but was strongly related

to LL for PIPO alone.



Table 2.6. Mean (and standard deviation) of measured
leaf traits for all trees in a stand, with trees in MIXED
stands se . arated b s 'ecies within a stand.
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SITE SPECIES
SITE

TYPE
LMA

a,b LN a,b LL a

Fawn PSME CORE 0.18 1.17 5.3
(0.027) (0.12) (0.94)

Quartz PSME CORE 0.22 0.84 7.3
Creek (0.025) (0.09) (0.89)

Oak PSME CORE 0.19 0.89 6.9
Ridge (0.029) (0.11) (0.91)

Steamboat PSME CORE 0.20 0.86 6.4
(0.020) (0.11) (1.10)

Tiller PSME CORE 0.20 0.98 5.2
(0.021) (0.07) (1.34)

Elk Creek PSME MIXED 0.23 0.98 6.7
(0.024) (0.14) (1.37)

Butte PSME MIXED 0.23 0.97 6.3
(0.032) (0.07) (1.14)

Lake PSME MIXED 0.25 1.06 6.0
Creek (0.024) (0.11) (0.93)

Howard PSME MIXED 0.26 1.07 5.7
(0.019) (0.10) (0.45)

Jenny PSME MIXED 0.25 0.90 6.0
(0.015) (0.13) (0.39)



Table 2.6. (continued) Mean (and standard deviation) of
measured leaf traits for all trees in a stand, with trees in
MIXED stands se s arated b $ ecies within a stand.

a Numbers are means of 12 measurements, one for each
tree/species combination, in the stand, with standard
deviations in parentheses

b For LMA and LN, each branch's value is the mean of the
trait from three different age classes of needle, weighted by
the proportion of each age class on the branch.

Units for each measurement variable listed in Table 2.1.
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SITE SPECIES
SITE

TYPE
LMA

a,b LN a,b LLa
Elk Creek PIPO MIXED 0.23 1.07 2.3

(0.026) (0.08) (0.69)

Butte PIPO MIXED 0.25 1.05 3.0
(0.009) (0.12) (0.72)

Lake PIPO MIXED 0.25 1.12 2.7
Creek (0.025) (0.06) (0.96)

Howard PIPO MIXED 0.26 0.98 3.8
(0.025) (0.13) (1.39)

Jenny PIPO MIXED 0.27 1.00 4.4
(0.015) (0.11) (1.35)

Crawford PIPO CORE 0.27 0.98 4.7
(0.020) (0.10) (1.10)

Wildhorse PIPO CORE 0.26 1.00 4.3
(0.016) (0.12) (0.72)

Tar PIPO CORE 0.29 0.89 5.0
(0.022) (0.10) (1.03)

Fall River PIPO CORE 0.27 0.94 5.5
(0.022) (0.08) (0.95)

Sisters PIPO CORE 0.26 0.85 4.8
(0.016) (0.07) (1.10)



Table 2.7. Summary of regression models that best relate each leaf attribute to either one or two
climate variables, for each s . ecies se s aratel and across s s ecies.

Pseudotsuga menziesii stands
Stand Best Predictor

variable (X)
LMA log(YrPrcp)
LN
LL

Equation r2 p
O.45-0.047X 0.56 0.013
0.99 0.20 0.194
6.0 0.34 0.075

Pinus ponderosa stands

aM added independent variable is listed only if it improves the regression, as suggested by Akaike' s
information criterion statistic.
Abbreviations for independent and dependent variables are shown in Table 2.1

Stand Best Predictor
variable (X) Equation p Added variable p n
LMA 0.27 0.66 0.005 10
LN log(Temp) O.28+O.34X 0.69 0.003 exp(YrPrcp) 0.82 0.003 10
LL log(Temp) 1 4-4.7X 0.78 <0.001 exp(SumrVPD) 0.85 0.001 10

All stands
Stand Best Predictor

variable (X) Equation r2 p Added variable r2 n
LMA log(YrPrcp) 0.51 -0.06X 0.66 <0.001 log(Temp) 0.85 <0.001 20
LN log(Temp) 0.46+0.24X 0.23 0.032 20
LL log(SumrVPD) 6.4-3 .2X 0.21 0.041 20

Added variable' ,,2 n
log(Temp) 0.85 0.001 10

10
10



Table 2.8. Summary of regression models that best relate each leaf attribute to either one or two measured
stand variables, for each species separately and across s . ecies.

Pseudotsuga menziesii stands

Stand
variable Best Predictor (X)
LMA log(GapFraction)
LN log(Ht/BA)
LL log(FolBranchLngth)
aM added independent variable
criterion statistic.

All stands

Equation r2 p
0.12+0.05X 0.80 <0.001
0.77+0.22X 0.36 0.005
-5.4+2.OX 0.68 <0.001

Abbreviations for independent and dependent variables are shown in Table 2.1

Added variable r2 p n
exp(Ht/DBH) 0.83 <0.001 20
exp(CrnDpth) 0.50 0.003 20
log(Branchlnc) 0.98 <0.001 20

is listed oniy if it improves the regression, as suggested by Akaike' s information

Stand
variable Best Predictor (X) Equation r2 p Added variable' r2 p n
LMA log(CmDepth!Ht) 0.29+0.08X 0.83 <0.001 exp(Ht) 0.93 <0.001 10
LN 0.95 0.43 0.040 10
LL 6.0 0.34 0.076 10

Pinus ponderosa stands
Stand

variable Best Predictor (X) Equation r2 p Added variable r2
LMA Ht 0.31-0.001X 0.74 0.002 cx (GapFraction) 0.84 0.001 10
LN log(GapFraction) 1.4-0.14X 0.58 0.011 exp(BA) 0.80 0.004 10
LL log(GapFraction) -2.3+2.1X 0.78 <0.001 DBH 0.87 <0.001 10



Table 2.9. Summary of regression models that best relate each leaf attribute to either one or two
of the complementary leaf attributes, for each species separately and across species.

Pseudotsuga menziesii stands

a added independent variable is listed only if it improves the regression, as suggested by Akaike's
information criterion statistic.
Abbreviations for independent and dependent variables are shown in Table 2.1

Stand
variable

Best Predictor Equation
(X)

r' p Added
variable

r2 p n

LMA log(LL) 0.18+0.023X 0.01 0.790 10
LN LL 1.7-0.11X 0.53 0.016 --- 10
LL log(N) 6.0-4.8X 0.54 0.015 --- 10

Pinus ponderosa stands
Stand
variable

Best Predictor Equation
(X)

r2 p Added variable r' p

LMA log(LL) O.20+O.047X 0.72 0.002 10
LN LL 1.3-0.065X 0.71 0.002 10
LL exp(N) 15-4.1X 0.73 0.002 log(LMA) 0.87 <0.001 10

All stands
Stand
variable

Best Predictor Equation
(X)

r2 p Added variable r2 p

LMA 0.25 0.20 0.049 --- 20
LN LL 1.2-0.035X 0.29 0.015 log(LMA) 0.37 0.020 20
LL log(N) 4.9-8.1X 0.29 0.014 log(LMA) 0.44 0.008 20
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Discussion

Variation in leaf traits has been examined extensively at the stand level and at

the global level, but for the purposes of running carbon models, it is important to

understand causes of variation in these leaf traits at intermediate regional scales. Here,

we used a zone of co-occurrence between two dominant tree species to leverage

ecological interpretation of regional variation in key leaf traits.

In general, values for the leaf traits we observed were within the range of

values reported for these species in other studies (Zinke and Stangenberger 1979,

Smith et al. 1981, Gower et al. 1987, Cregg 1994, Pierce and Running 1994, Law et al.

2001b, Apple et al. 2002). If LMA and LL values for PSME and PIPO are compared

in their CORE zones, they generally differ (Figure 3a). This is not unexpected, as the

two conifers come from different genera and tend to occupy different ecological

niches (Bums and Honkala 1990). In the same comparison, the mean values of LN did

not differ, however. This is generally consistent with the observation that average leaf

nitrogen in evergreens in often stable across species (Kömer 1989), but is not

consistent with other reports specific to PSME and PIPO that report that PIPO may

have slightly lower LN than PSME (Zinke and Stangenberger 1979, Bums and

Honkala 1990).

The apparent similarity of mean LN values obscured large variation in LN

values within each species (Figure 2.3 and Table 2.6). LMA and LL also showed

substantial variation among sites within species. Thus, these three leaf traits cannot be
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considered homogeneous across the ranges of the two dominant conifers of the

Cascades Mountains in Oregon.

Some of the variation in leaf traits was associated with ecozone. Within each

species, trees in the CORE zones were different than those in the MIXED zone in at

least two of the three leaf traits (Figure 2.2). Because these leaf traits exert control

over carbon accumulation, variation in leaf traits should be considered in efforts to

characterize carbon dynamics for the forests of Oregon. This observation, combined

with the fact that the two species in their core zones differed from each other in LMA

and LL, argues for treating them as separate physiological types in regional carbon

modeling efforts.

In MIXED stands, the two species appeared to diverge in LL even more so

than in CORE stands, but they converged in LMA (Figure 2.3b). While different

species can be considered to have different "inherent" LMAs (Poorter and Evans

1998), convergence of LMA for two conifers from different genera in common stands

is notable. While the convergence of LMA values in our study could be coincidental,

the smooth progression of LMA values from each CORE zone through the MIXED

zone strongly suggests that these two conifers were responding with similar strategies

to a common environmental cue.

That cue appears to be related in part to moisture. Higher LMA species are

often found in dry sites (Mooney et al. 1978, Cunningham et al. 1999, Wright et al.

2002). Mooney et al. (1978) suggest that the generally thicker mesophyll layers of

high LMA leaves may be favored in dry environments because they allow for more
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photosynthetic machinery per leaf transpirational area, and hence would confer higher

water use efficiency. However, higher LMA is also known to be a response to high

light levels (Poorter and Evans 1998, Le Roux Ct al. 1999), and dry environments tend

to favor open stands with higher light levels. Therefore, moisture may control LMA

directly or indirectly.

Our results suggest that the control may be indirect. The relationship between

LMA and precipitation was strong (Figure 2.4a), but several sites had LMA values

a) b)

0.30 0.30

<0.25 0.25
-J-J

0.20 0.20

0.15 0.15
100 200 300 0 20 40
YrPrcp GapFraction

Figure 2.4. a) LMA is related to yearly average
precipitation (YrPrcp) across both PSME and
PIPO, but the relationship is weaker than between
b) LMA and GapFraction. Equations in Table 2.7
and 2.8.

PIPO:CORE
* PIPO:MIXED

PSME:MIXED
PSME:CORE

higher than would be expected from the YrPrcp alone. The YrPrcp variable could be

inaccurately modeled by the DAYMET algorithm, or LMA may have been responding

more directly to other effects. When LMA was related to GapFraction, the relationship
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was strong across all sites, and was consistent across species (Figure 2.4b). Local light

environment may take precedence over moisture in controlling LMA for the species

sampled here. The linkage of LMA to light environment is well-established at the

stand-level (Del Rio and Berg 1979, Evans and Poorter 2001, Grassi and Bagnaresi

2001), and precedence of light over moisture stress in controlling LMA has been

experimentally shown in at least one case (Frak et al. 2002). The precedence of light

over climate in controlling LMA is also supported by forest thinning studies. Both

PSME and Tsuga heterophylla (western hemlock) stands in Oregon have been shown

to have higher LMA after canopy light environment is increased through thinning,

even though precipitation regime does not change (Tucker and Emmingham 1977,

Smith et al. 1981). Regardless of the proximal cause, these results suggest that LMA

was highly plastic at the regional level, an observation supported by the relatively low

genetic control over LMA in Douglas-fir in Oregon (St. Clair 1994). More

importantly, these results suggest that LMA at the regional scale had a predictable

relationship with moisture, whether direct or indirect, across these two species.

Regional patterns of LN and LL, on the other hand, were not common for both

species. PIPO showed patterns consistent with prior hypotheses about controls on LN

and LL relative both to climate and to LMA. LN was positively related to temperature

(Table 2.7), a finding similar to that of (Yin 1993, Castro-Diez et al. 2000). LL was

higher for PIPO in CORE stands than in MIXED stands, consistent with the

proposition that longer retention of needles is a means of amortizing leaf construction

costs in poorer environments (Walters and Reich 1999). The same amortization
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argument links higher LMA with longer leaf retention (higher LL) (Kikuzawa 1991,

Wright et al. 2002), and this has been observed in other temperate forests (Gower et al.

1993) and across species globally (Reich et al. 1997).

PSME did not appear to follow these expectations. Despite substantial

variation among stands, neither PSME LN nor LL were strongly linked to climatic

variables (Table 2.7), and neither trait was linked to LMA (Table 2.9; Figure 2.5a

illustrates the contrast for PIPO and PSME for LL and LMA). However, LL and LN

LMA N

Figure 2.5. a) LL is not related to LMA in PSME,
but is in PIPO (Eqn: LL=l 4.2 [log(LMA)]+23.2).
b) For both species, LL and LN are related (Eqns
in Table 2.9)

PIPO:CORE
PIPO:MIXED
PSME:MIXED
PSME:CORE

were strongly linked to each other for PSME, as they were for PIPO (Figure 2.5b).

These apparently disparate results may be explained if two key propositions are true.

The first proposition is that LMA at the stand level is indeed controlled by canopy

a)
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light levels, with higher LMA in more open stands, as discussed above. The second

proposition is that LN is related to soil nutrient availability. Although this may not be

true for tropical systems (Williams et al. 2002), the potential for a link between foliar

nutrient levels and availability of nutrients from the soil has long been observed (van

den Driessche 1974, Reich et al. 1992). LN increases when trees are fertilized (Powers

and Reynolds 1999, Rosati et al. 2000, Turner et al. 2000), and when underburning

temporarily increases nutrient availability (Reich et al. 1990). If LN is related to

nutrient availability in the soil, then lower LN in the PIPO zone than MIXED zone

(Figure 2.2b) would suggest lower soil fertility for the sites in the PIPO zone.

Although soil analyses were not part of our study design, published soil

surveys of the PIPO and MIXED zones tended to support this conclusion. Soils in the

PIPO zone are derived from relatively recent volcanic parent materials, which are of

low fertility (Larsen 1976). The open, single-layer canopies chosen for this study are

typically associated with lower fertility sites within the PIPO zone (Dyrness and

Youngberg 1966). Plots in the MIXED zone are found on older soils derived from

metamorphic or sedimentary parent materials (Johnson 1993) that are expected to be

of higher fertility. While only suggestive, this observation is not inconsistent with a

linkage between LN and soil nutrition.

Patterns of LN in the MIXED and PSME zones also support this linkage. For

the PSME and MIXED zones, sites were restricted to soils derived from similar parent

materials (see Methods), and thus there is little reason to suspect zone-wide

differences in soil nitrogen availability. Although LN values of PSME trees in the
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MIXED zone were slightly higher than in the PSME zone (Figure 2.2a), there was

considerable overlap in leaf N between the MIXED and PSME zones at the site level,

with both the highest and lowest nitrogen sites found in the PSME zone alone (Figure

2.5b). This is similar to the findings of Bauer et al. (1997) for Picea abies in Europe,

where local scale variability in LN appeared related to substrate and nitrogen

deposition, not to climate.

If these two propositions are true for the forests under study, then a conceptual

model of leaf traits for Douglas-fir and ponderosa forests may be envisioned that is

consistent both with prior theory and with the observed results:

1. Any factor that improves overall canopy growth will lead to lower light

levels within the canopies, which will lower canopy-average LMA.

Because moisture variation is the dominant climatic control across the sites

studied, its relationship with LMA across species is strong (Figure 2.4a). However, if

nitrogen limits growth of the sampled PIPO stands in their CORE zone, and MIXED

stands have higher soil fertility than PIPO CORE stands, then some of the control in

canopy light environment for PIPO would be related to nitrogen. For PSME, on the

other hand, soil variation was likely minimal and local, and the dominant control on

canopy openness in the stands sampled is moisture. Nitrogen would likely show little

connection with LMA. Figure 2.6 supports these predictions: as LN increases in PIPO,

GapFraction decreases, but PSME show no relationship (Figure 2.6a). Consequently,

LMA diminishes as LN increases in PIPO, but shows no relationship for PSME

(Figure 2.6b).
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Figure 2.6. a) GapFraction is not related to LN in
PSME, but is in PIPO (Eqn: GapFraction= -31.8 PIPO:CORE
[exp(LN)] +108.3) b) Similarly, LMA is not related PIPO:MIXED
to LN in PSME but is in PIPO (Eqn: LMA = - PSME:MIXED
0.047[exp(LN)]+0.39). PSME:CORE
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The lack of a relationship between LN and LMA in PSME need not be

inconsistent with the general global leaf trait model of Reich et al. (1997), which

suggests that such a relationship should exist. Our results apply for a relatively small

range of LN and LMA values within a limited physiognomic type (evergreen

conifers), and may represent noise in an overall global relationship that strongly links

LMA and LN. Given that most of the samples of (Reich et al. 1997) lie at LMA values

much greater than those observed here, and that the asymptotic relationship between

GapFraction and LMA plateaus in our study as GapFraction increases (Figure 2.4b), it

is likely that the light-limitation constraint on LMA no longer matters after a critical

LMA threshold is surpassed.
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2. LL is a species-specific tuning mechanism used by leaves in these forest

canopies to adjust to changes in soil nutrient availability.

Leaf longevity is frequently viewed as a means by which costs of investment

and maintenance in a leaf are balanced with photosynthetic return of the leaf

(Kikuzawa 1991, Walters and Reich 1999). Such carbon-gain optimization theory

suggests that greater nitrogen availability will lead to faster growth of the canopy,

which in turn will lead to faster turnover of leaves to maximize carbon return (Reich et

al. 1992). Indeed, our results link higher LN with faster turnover times (Figure 2.5b),

consistent with the amortization argument of Kikuzawa (1991).

When PSME and PIPO experience the same climatic and edaphic conditions in

MIXED stands, it is LL that diverges the most of the three traits. Thus, although LMA

convergence may suggest that the two species are following similar strategies, LL

reveals that their overall strategies for managing leaf resources are, in fact, different.

In our model, the link between LN and climate would be indirect, through the

long-term effects of climate on soil nitrogen availability. Yin (1993) found that LN in

conifers was related to mean January temperature across a continental gradient of

many studies. For PIPO in our study, temperature did explain significant variation in

LN (Table 2.7), but it is difficult to assess whether this is causal or coincidental. PIPO

sites are nearly 400 meters higher than MIXED sites (Table 2.3), and hence are much

colder, but they also occupy soils that are younger, and likely less fertile, not because

of temperature but because of recent geologic history. To the extent that temperature
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at a continental scale is generally related to soil nutrient capacity, our model is

consistent with the model of Yin (1993).

These findings have implications for regional modeling of spatial patterns in

carbon dynamics. The proposed relationship between stand openness and LMA is

encouraging, and supports the suggested use of remote sensing to estimate LMA at

regional scales (Pierce and Running 1994, Lymburner et al. 2000). The proposal that

LL responds chiefly to LN is also encouraging for regional-scale modeling as it

suggests that LL could be derived from LN, once the LL / LN relationship is fully

characterized for a species. The problem, then, lies in characterizing the spatial

patterns of LN. Reliable soil maps at small grain sizes are difficult to obtain; it may be

more feasible to continue efforts to characterize spatial patterns of leaf nitrogen

through the use hyperspectral imagery (Martin and Aber 1997, 011inger et al. 1998).

Conclusions

Our field study of two dominant forest conifers suggests that regional scale

patterns in LMA are likely related to factors that control stand-level light environment.

Linkage between LMA and LN for these forests may only be indirect through the

parallel influence of increased soil fertility on LN and canopy light environment. LL

appears to be negatively correlated with LN, and LN itself may be controlled primarily

by soil fertility. Taken together, these patterns provide both opportunities and

challenges for regional-scale modeling of carbon.
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Chapter 3: A method for efficient spatial modeling of biogeocheinical models

Introduction

A key challenge to carbon cycle science is characterizing current and future

carbon dynamics over large spatial domains. Biogeochemical models offer one means

of spatially-explicit carbon modeling, and have been applied for this purpose at

regional to continental scales (Aber and Federer 1992, Members 1995, Thornton

1998).

In a standard approach to spatial modeling, the biogeochemical model is run

separately at a large number of contiguous grid cells on the landscape. Each cell

contains the necessary driving variables (climate, soils, etc.) to run the model. For

complex biogeochemical models, computational burden at each cell can be great, even

with current computer technology. This reduces the number of model runs feasible

over large areas, which diminished the ability to explore fine grain effects,

characterize model sensitivity, or investigate alternative climate change scenarios. A

more efficient approach to spatial modeling is desirable for some applications.

The core of a more efficient approach lies in an understanding of the controls

on model behavior in the spatial realm. Although the derivation of maps of driving

variables often must take into account spatial cell-to-cell adjacency effects,

biogeochemical models themselves typically do not (Aber and Federer 1992, Running

and Hunt 1993, Members 1995, 011inger et al. 1998, Thornton 1998, Coops and

Waring 2001). The model is only affected by the input variables, not by their position,

and thus the spatial variation in modeled outputs is constrained only by spatial



48

variation in input variables. Variation in model outputs over geographic space simply

reflects the underlying variability in the multidimensional space of the input variables.

With this understanding, an alternative approach to spatial modeling is

possible. Rather than running the model in every cell on the landscape (Figure 3.1,

black arrow), we propose that the model be run in the multidimensional space of the

model driver variables (Figure 3.1, open arrows). Cells in geographic space are

projected into input-variable space, and the model is run only at a sample of points in

that space. Because variation in modeled output is solely a function of variation in

input-variables, remaining cells can be estimated by interpolation in input-variable

space, and then projected back into geographic space to provide a spatially-explicit

estimate of model outputs. Below, we describe a detailed implementation of this

approach for a common biogeochemical model over an area of mountainous terrain in

western Oregon.
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Gridded spatial input
variables (climate, soil, etc.) Spatially-distributed

modeled oulput

Project celis from Interpolate in input-
geographic space to variable space and
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"Wall-to-wall" spatial modeling
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Figure 3.1. Schematic flow of two approaches for spatial modeling with
ecosystem models that do not have cell to cell interactions. In "wall-to-wall"
modeling (dark arrow), the model is run separately for every cell in the
geographic study area. This approach is relatively inefficient, since many cells
may have similar driving variables (climate, soils, etc.). The proposed alternative
approach moves modeling out of geographic space into the space of the driver
variables (the "input space'. Modeling is done only at a sample of grid cells,
with the rest of the points being estimated by interpolation in input-space and re-
projection into geographic space.
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Methods

As a test of the conceptual approach, we compared results from the standard

and the alternative approaches to spatial modeling described above and in Figure

3.1. We refer to the standard path as "wall-to-wall" modeling and to the alternative

path as "input-space interpolation" modeling.

Wall-to-wall modeling

Ecosystem model

We tested our conceptual approach using the biogeochemical model BGC

4.1.1. (Thornton 1998, Thornton et al. 2002). BGC incorporates many of the

general controls on carbon, nitrogen, and water cycling in terrestrial ecosystems.

Modeling is conducted for an idealized two-layer canopy of sunlit and shaded

leaves. Nitrogen and carbon cycling are linked through photosynthesis in the leaves

and decomposition in the soil. Photosynthesis is affected directly or indirectly by

incident solar radiation, nitrogen levels in the leaves, air temperature, ambient

carbon dioxide concentration, and available moisture for transpiration. Autotrophic

respiration is considered primarily a function of temperature and nitrogen levels,

while heterotrophic respiration is controlled by temperature, moisture, and character

of substrate. Evapotranspiration is calculated by means of the Penman-Monteith

equation, which explicitly takes stomatal conductance into account. Low moisture

reduces stomatal conductance, which reduces stomatal conductance and limits
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transpiration. Soil processes occur in a single vertical layer, with three carbon poois

of increasing recalcitrance to decomposition.

Biome-BGC uses an equilibrium-based spin-up approach to develop soil and

vegetation pools. The model is run for several thousand years until several carbon

and nitrogen pools reach approximate steady state. The model is run for idealized

vegetation physiological types, defined by a suite of parameters that describe

ecosystem-, canopy-, organism-, and leaf-level attributes for that vegetation type.

In this study, the model was run with a parameter set applicable to Douglas-fir

(Pseudotsuga menziesii) forests, as detailed in Table 3.1.

Meteorological drivers

BGC requires daily meteorological data on temperature, moisture, and

incident radiation. These data were acquired from DAYMET, a model that uses

empirical and mechanistic equations to interpolate weather station data from U.S.

weather stations (Thornton et al. 1997, Thornton et al. 2000).

DAYMET data are at a grain size of 1km, which defines the grain size for

BGC modeling. Each 1km cell has 18 years of daily minimum and maximum

temperature, daily total precipitation, and daily incoming radiation estimates. Vapor

pressure deficit (VPD) was derived from minimum and daily temperatures

(Thornton et al. 2000). Saturation vapor pressure for calculation of VPD was

calculated as 610.79 * (exp(17.269 * T / (237.3 + T)), where T is daily minimum

temperature in degrees C (Glassy and Running 1994). The 18 year record of daily
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meteorological data is cycled through in sequence repeatedly in the same sequence

for each model run.

Each 1 2 model cell is also assigned site constants, which describe the

physical properties of the site in terms of elevation and soil type. Soil depth and

type were from a dataset described in Kern et al. (1997).

Application to study area

Using meteorological and site constant data described above, the model was

run using the Douglas-fir parameter set for a 100km by 260km study area in

western Oregon (U.S.A.). Modeling was limited to 1km cells where Douglas-fir

was present, as determined by a finer-grained Landsat Thematic Mapper-based

landcover map of the area (Law et al. In Press). Study area grid cells are shown in

Figure 3.2, along with key meteorological and site constant maps. The model was

run in 18395 1 km2 cells.



Table 3.1. Parameters used in BGC model for Douglas-fir (Pseudotsuga
men ziesil).
Parameter

value
0.20

0.70

0.005

0.005

1.3

2.2

0.07 1

0.375

0.5

51.0

93.0

75.0

50.0

729.0

0.32

0.44

0.24

0.30

0.45

0.25

0.71

0.29

0.041

0.5

2.6

10.0
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Units Parameter description
1/yr annual leaf and fine root turnover fraction

1/yr annual live wood turnover fraction

1 / yr annual whole-plant mortality fraction

1 / yr annual fire mortality fraction

Ratio new fine root C : new leaf C

Ratio new stem C : new leaf C

Ratio new live wood C : new total wood C

Ratio new croot C : new stem C

Proportion current growth proportion

kgC/kgN C:Nofleaves

kg C / kg N C :N of leaf litter after retranslocation

kgC/kgN C:Noffineroots
kgC /kgN C:N of live wood

kgC/kgN C:Nofdeadwood
Proportion leaf litter labile proportion

Proportion leaf litter cellulose proportion

Proportion leaf litter lignin proportion

Proportion fine root labile proportion

Proportion fine root cellulose proportion

Proportion fine root lignin proportion

Proportion dead wood cellulose proportion

Proportion dead wood lignin proportion

1 / LAI / d canopy water interception coefficient

Dimensionless canopy light extinction coefficient

Ratio all-sided to projected leaf area ratio

m2 / kg C canopy average specific leaf area (projected
area)



Table 3.1. (continued) Parameters used in BGC model for Douglas-fir
(Pseudotsus a menziesiz).
Parameter

value
2.0

0.0525

.0025

.000025

0.09

Units
Ratio

Proportion

Parameter description
ratio of shaded SLA:sunlit SLA

fraction of leaf N in Rubisco

m / s maximum stomata! conductance (projected area)

m / s cuticular conductance (projected area)

m / s boundary layer conductance (projected area)

-0.50 MPa leaf water potential: start of conductance
reduction

-2.25 MPa leaf water potential: complete conductance
reduction

600.0 Pa vapor pressure deficit: start of conductance
reduction

2250.0 Pa vapor pressure deficit: complete conductance
reduction
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c) d)

b)

Figure 3.2. The study area, (a) defined as all of the cells within a 100km by
260km area of western Oregon's Cascade Mountains that are likely to
support Douglas-fir forests. Shown are (b) average yearly precipitation (cm),
(c) temperature (degrees C), and (d) vapor pressure deficit (Pa), as well as (e)
estimated soil depth (cm). See Table 3.2 for sources of spatial data.
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After spinup equilibrium was reached in each 1 km2 cell, the forest was "cut" (removal

of all live vegetation), leaving 30% of the pre-cut biomass as dead biomass available

for decomposition. The model was allowed to regain biomass for 90 years, a second

cut was made with the same residual biomass proportion, and finally the model was

allowed to run for 200 years. The sequence of spinup and cuts followed the methods

of Law et al. (In Press).

The two variables tracked for this study were net primary production (NPP)

and net ecosystem production (NEP), both recorded in units of kg C / m2 yr. NPP is

defined as total autotrophic carbon fixation, minus respiration losses due to

maintenance and growth within the plant. NEP is the total system balance of carbon,

here defined as NPP minus heterotrophic respiration. Both NPP and NEP were tracked

for each of the final 200 years of the model runs. The model was run on four 1999 to

2001-era Sun Ultra computers, in a parallel mode made possible using a software

structure developed in-house (Dr. Michael Guzy, personal communication) built on

the Parallel Virtual Machine (PVM) technology (Version 3.4; Geist et al. 1994). The

wall-to-wall run took approximately 12 computer-days.

Because of the cyclic repetition of the DAYMET data, all temporal patterns in

output follow a repeated 18-year cycle. Therefore, all resulting NPP and NEP data

were aggregated into non-overlapping 18-year bins using simple averaging across all

6570 days in each 18-year cycle. This resulted in 11 temporal slices starting at year 1

and ending at year 198. Each 18-year bin is referred to as an age-class of modeling.
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For comparison with the input-space interpolation method described below, the

spatial model outputs from the wall-to-wall modeling represent the "truth" set. While

the model itself does not capture the truth of the system, the wall-to-wall modeling is a

lossless representation of the behavior of the model in every 1 km cell across the study

area. The goal of the input-space interpolation modeling approach is to efficiently

match the behavior of the model over space.

Input-space interpolation modeling

Compression of the spatially-varying inputs

Because the model was run separately for each cell in the wall-to-wall

approach, and because there was no stochastic element to the model, any spatial

variation in the NEP and NPP truth sets would be caused solely by spatial variation in

meteorological and site-constant data (Figure 3.2). The meteorological data have 18

years * 365 days/year, or 6570 data layers per meteorological input variable.

Fortunately, the hyperdimensionality of these temporal inputs is not necessarily

important for predicting spatial patterns of the model outputs. Rather, it is the spatial

variation of the temporal meteorological data that causes variation in the modeled

outputs over space. Therefore, the spatial variation in the meteorological variables that

drive the model may be described with many fewer dimensions.

Compression of spatial input data occurred in several sequential steps,

beginning with temporal aggregation. For the meteorological indices listed in Table

3.2, the yearly mean or yearly total (as appropriate for each variable) for each of the
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18 years of record was calculated. Thus, for each meteorological index in each cell,

6570 observations of climate data were compressed to 18 observations. The dominant

seasonal pattern in the Douglas-fir region is one of spring moisture and summer

drought (Waring and Franklin 1979). Therefore, in addition to total precipitation for

the year, total precipitation levels for spring and summer were calculated for each of

the 18 years. Average values across all 18 years for each of these metrics in the study

area are shown in Table 3.2.



Table 3.2. Summaries of spatially-distributed input variables for the study
area shown in Fi ure 3.2.

59

1997
a Minimum, maximum, and median values are for the population of grid cells in the
study area; see Figure 3.2.
b DAYMET citations: (Thornton and Running 1999, Thornton et al. 2000)
C Description of VPD calculation in Methods section of text, under "Wall-to-Wall"
modeling

Var-
iable Description Units

Min-
imum

a
Max- Median

imum a a Source
Pr Average total

precipitation (Jan. 1
to Dec. 31)

cm 108.9 302.1 175.5 DAYMET b

PrSp Average spring
precipitation (April 1

to June 30)

cm 19.2 60.1 34.8 DAYMET

PrSu Average summer
precipitation (July 1

to Sep. 30)

cm 6.4 22.2 11.6 DAYMET b

T Average daily
temperature

C 3.7 12.1 8.8 DAYMET b

Tmn Average daily
minimum

temperature

C -1.8 6.6 3.0 DAYMETb

Sw Average daily short-
wave radiation flux

W/m2 244.8 330.7 289.0 DAYMET b

VPD Average daily vapor-
pressure deficit

Pa 417.0 1045.6 730.1 DAYMETb
+ additional
calculation C

SDpth Soil depth cm 111.0 192.0 163.0 Kemetal.
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The next step was temporal compression using principal-component analysis

(PCA). All meteorological data were approximately normally distributed across the

cells in the study area. Before PCA was applied, each 18-year stack of spatial

meteorological data was standardized to its global (across all cells and all 1 8-years)

mean and standard deviation. This step preserved inter-year variation within each

index, but allowed equal weighting across indices with different units. After principal

component analysis, each cell was assigned the PCA scores associated with each of

the first several PCA axes. Thus, for each cell, 18 years of aggregated climate data

were further reduced to several PCA scores. The result was a stack of several layers

(called meteorological "P C" images) representing the spatial variation of each

principal component for a given meteorological index. Because the first principal

component in a PCA captures the dominant vector through a multi-dimensional space,

meteorological PC image #1 represented the dominant spatial pattern of the

meteorological index from which it was derived. PC images #2, #3, etc. represented

diminishing sources of spatial variation. These meteorological PC images will be

referred to as "spatial input variables." In addition to meteorological PC images,

normalized soil depth was also calculated and used as a spatial input variable.

In the final step of input-variable compression, spatial input variable images

from different meteorological indices were combined and a second PCA calculated on

the combined set to derive the final multidimensional input-variable space. This PCA

captured dominant patterns of climate across the combination of spatial input
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variables. A variety of different combinations was tested. For each spatial input

variable used in a given combination, the first PC image (the dominant spatial pattern)

was always included. Additionally, a second test was run using both the first and

second PC image from each spatial input variable. Soil depth was an exception: as a

single layer, no PC images existed, and therefore only the normalized soil depth itself

was used. Regardless of the number or type of input PC images in a given test, three

output PC images were used, referred to as PCi, PC2, and PC3. Twelve different

combinations of spatial input variables were tested, each with one and two layers used

in compression, resulting in a total of 24 three-dimensional characterizations of the

input space. An effort was made to limit combinations of input variables to those that

would be illustrative of controls on the model, not to exhaustively test all possible

combinations. Details of spatial input variables and resultant PC images are given in

Table 3.3.



Table 3.3. Summary of sets of input variables and principal component analysis weights used to create 24
different three-dimensional PC s 'aces for in ut-s 'ace inter 'olation.

Input Variablesa J

C.)

PCi Coeff.c PC2 Coeff.c PC3 Coeff.c
(n

l.

Pr+Sw+T 1 0.95, -0.21, -0.87 57 0.16, -0.96, 0.41 37 -0.28, -0.16, -0.27 6 100

Pr+T+Tmn 1 -0.79, 0.98, 0.93 82 -0.61, -0.15, -0.36 18 0.03,0.10,-0.09 1 100

Pr+T+VPD 1 -0.92, 0.90, 0.97 86 0.36, 0.43, -0.05 11 0.16, -0.11, 0.25 3 100

SDpth+Pr+T 1 0.68, -0.84, 0.90 66 -0.73, -0.42, 0.16 24 -0.11, 0.34, 0.40 10 100

Pr+Sw+T 2 -0.83, 0.81, 0.68,
-0.81, 0.44, 0.41

47 -0.42, -0.26, -
0.57, -0.28, 0.84,

-0.82

34 -0.11, -0.47, 0.00,
-0.41, -0.22, 0.12

8 88

Pr+T+Tmn 2 -0.52, -0.09, 0.90,
-0.79, 0.94, 0.66

51 -0.74, 0.85, 0.37,
0.57, 0.13, -0.47

33 -0.04, 0.42, -0.16,
-0.04, -0.26, 0.56

10 93

Pr+T+VPD 2 -0.87, 0.80, 0.61,
0.28, 0.92, 0.57

50 -0.27, -0.38, 0.75,
-0.92, 0.35, -0.80

40 -0.35, -0.44, -
0.04, 0.19, -0.02,

0.06

6 96

SDpth+Pr+T 2 -0.64, 0.83, -0.38,
-0.92, 0.31

44 0.21, 0.34, -0.83,
0.20, -0.87

33 0.74, 0.20, -0.04,
-0.23, 0.25

14 91

PrSu+PrSp+Sw+T 1 -0.96, -0.98, 0.45,
0.69

64 -0.14, 0.07, 0.85,
-0.65

29 0.20, 0.15, 0.26,
0.32

6 99

PrSu+PrSp+T+Tmn 1 -0.80, -0.90, 0.92,
0.80

73 -0.59, -0.40, -
0.39, -0.60

25 0.12, -0.15, -0.08,
0.03

1 100



Table 3.3. (Continued) Summary of sets of input variables and principal component analysis weights used to
create 24 different three-dimensional PC spaces for input-space interpolation.

Input Variab1es'
L)

PCi Coeff.' PC2 Coeff.c PC3 Coeff.c L)

PrSu+PrSp+T+VPD 1 -0.91, -0.96, 0.81,
0.97

83 -0.39, -0.21, -
0.58, -0.09

14 -0.03, 0.19, -0.08,
0.22

SDpth+PrSu+PrSp+T 1 0.50, -0.88, -0.95,
0.82

65 -0.81, -0.40, -
0.27, -0.24

24 -0.29, 0.23, 0.09,
0.52

10 99

PrSu+PrSp+Sw+T 2 -0.91, -0.40, -
0.80, 0.77, 0.75, -

0.74, 0.31, 0.51

46 -0.31, 0.36, -0.53,
-0.51, -0.47, -

0.39, 0.86, -0.74

30 -0.17, 0.83, -0.14,
0.06, 0.00, -0.02,

-0.30, 0.19

11 87

PrSu+PrSp+T+Tmn 2 -0.16, 0.36, -0.39,
-0.58, 0.82, -0.86,

0.90, 0.73

43 -0.94, -0.40, -
0.87, 0.69, 0.48,
0.41, 0.24, -0.28

35 -0.26, 0.76, -0.23,
0.17, -0.25, 0.09,

-0.31, 0.36

13 91

PrSu+PrSp+T+VPD 2 -0.93, -0.40, -
0.82, 0.77, 0.40,
0.48, 0.81, 0.72

48 -0.25, 0.36, -0.48,
-0.53, 0.85, -0.81,

0.54, -0.65

35 -0.21, 0.83, -0.18,
0.06, -0.26, 0.18,

-0.07, 0.01

11 94

SDpth+PrSu+PrSp+T 2 0.30, -0.97, -0.30,
-0.92, 0.62, 0.57,

0.28

39 0.54, -0.01, 0.43,
-0.25, -0.72, 0.73,

-0.85

33 -0.41, -0.23, 0.79,
-0.22, 0.03, -0.16,

0.04

13 86

SDpth+PrSu+PrSp+Sw+T 1 0.44, -0.93, -0.97,
0.35, 0.75

53 -0.64, -0.29, -
0.10, 0.83, -0.50

29 -0.63, -0.07, -
0.13, -0.36, 0.28

13 95



Table 3.3. (Continued) Sunimary of sets of input variables and principal component analysis weights used to
create 24 different three-dimensional PC s s aces for in 'ut-s s ace inter s olation.

Input Variablesa
C.)

PCi Coeff.c PC2 Coeff.' PC3 Coeff.c
n

C.)

V

SDpth+PrSu+PrSp+T+Tmn 1 0.55, -0.75, -0.87, 63 -0.51, -0.63, - 23 -0.67, 0.14, 0.07, 13 99
0.93, 0.82 0.46, -0.25, -0.45 0.27, 0.34

SDpth+PrSu+PrSp+T+VPD 1 0.45, -0.89, -0.94,
0.83, 0.96

70 0.84, 0.35, 0.22,
0.26, -0.08

19 -0.29, 0.28, 0.15,
0.48, 0.13

9 98

SDpth+Pr+T+Tmn+VPD 1 0.55, -0.83, 0.96,
0.87, 0.90

69 0.74, 0.38, 0.03,
0.19, -0.32

17 0.37, -0.35, -0.27,
-0.45, 0.17

11 97

SDpth+PrSu+PrSp+Sw+T 2 0.13, -0.92, -0.39,
-0.82, 0.75, 0.72,
-0.75, 0.35, 0.48

41 0.58, -0.25, 0.34,
-0.48, -0.54, -

0.50, -0.34, 0.84,
-0.74

30 -0.44, -0.20, 0.78,
-0.19, 0.01, -0.02,
-0.09, -0.18, 0.05

10 81

SDpth+PrSu+PrSp+T+Tmn 2 0.51, -0.26, 0.29,
-0.48, -0.51, 0.87,
-0.79, 0.93, 0.66

40 0.19, -0.91, -0.44,
-0.81, 0.75, 0.38,
0.52, 0.13, -0.38

32 -0.41, -0.30, 0.67,
-0.27, 0.19, -0.18,
0.01, -0.24, 0.43

12 84



Table 3.3. (Continued) Summary of sets of input variables and principal component analysis weights used to
create 24 different three-dimensional PC s s aces for in 'ut-s . ace inter s olation.

ayariables defined in Table 3.2
umber of PCA layers used from each meteorological input variable

CEigenvector coefficients used to make compressed PCA image layer. When two layers from meteorological input
variables are used, the coefficient for the second layer is listed immediately after the coefficient for the first layer.

dpercent of variance captured in this compressed PCA image layer

eTotal variance captured by the three compressed PCA image layers. Note that whenmore than three input variables
are used, more than three compressed PCA image layers exist, and therefore the total for the three layers used does not
equal 100.

Input Variablesa
C..)

Coeff.e PC2 COeff.c PC3 Coeff.c
n

V.
1-4

SDpth+PrSu+PrSp+T+VPD

SDpth+Pr+T+Tmn+VPD

2

2

0.21, -0.94, -0.37,
-0.85, 0.72, 0.47,
0.41, 0.85, 0.67

-0.51, 0.58, 0.01,
-0.93, 0.72, -0.94,
-0.61, -0.69, 0.49

43

44

0.52, -0.16, 0.37,
-0.40, -0.60, 0.82,
-0.83, 0.47, -0.69

-0.14, 0.68, -0.85,
-0.27, -0.65, -

0.01, 0.51, -0.68,
-0.85

33

35

0.45, 0.24, -0.76,
0.22, -0.06, 0.17,
-0.06, -0.01, 0.05

-0.78, -0.10, 0.21,
-0.01, -0.10, -

0.07, 0.38, 0.17,
0.00

9 88
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Sampling of input variable space

The next step in the method is sampling of the three-dimensional input variable

space. A three-dimensional lattice was constructed through the space, with equal

spacing between lattice intersections. All cells in the actual landscape were then

positioned in that three dimensional space based on their scores in the PC images. The

cells closest (using Euclidean distance) to lattice intersections were used as sample

points; lattice intersections greater than one cubic hypotenuse length from an actual

cell were dropped. At each sampled cell, the model value from the wall-to-wall

approach was extracted. In an actual implementation, no such wall-to-wall output

would be available, and the model would be run anew in each sample cell.

Interpolation

Cells where the model was not run were estimated by interpolation in input

variable space. For each cell to be interpolated, the NEP or NPP value was estimated

by weighted averaging of the nearest 8 sampled lattice-intersection cells (in three-

dimensional input variable space). Weights were assigned to the 8 nearby points using

a linear inverse-distance rule. Once NEP or NPP values were assigned in input-

variable space, the cells were mapped back into geographic space to produce a spatial

map of estimated model outputs.

Multiple regression

Multiple regression was investigated as a possible alternative to interpolation.

Sampling of the input variable space was identical to that used for interpolation. A
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multiple linear regression of NEP or NPP values from all sampled points on the three

axes of the input space was conducted. The resultant model was then applied to the

non-sampled points to produce estimates of NEP or NPP in the input-variable space.

As with interpolation, those estimated values were then projected into geographic

space to produce a spatial map of modeled outputs.

Variation of sampling density

If the lattice of sample points is sparse, interpolation distance is large and the

smoothing properties of interpolation exacerbated. Variation in model output at a scale

less than the interpolation distance will be lost. As lattice density increases, the

interpolation distance will decrease, and the interpolated surface should conform more

and more closely to the actual contours of modeled output.

To investigate this effect, tests were repeated at a range of sample grid

densities for NEP outputs only. For each NEP image estimated through interpolation

or regression, five target densities ranged from approximately 1% to 15% of the total

number of cells in the study area were tested. Actual proportions varied around those

targets depending on the character of the 3-d input variable space being tested.

Comparing wall-to-wall with input-space interpolation

Modeled outputs from the input-space interpolation approach were compared

on a cell-by-cell basis with all cells in the truth datasets derived using the wall-to-wall

approach. Two metrics of comparison were calculated across all cells: a simple

correlation and the square root of mean-square error (RMSE). These metrics were
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calculated for each of the 11 NEP age-classes, for all lattice-point densities and for all

characterizations of the input-variable space.

Developing validation metrics

If the input-space interpolation method is to be useful, its accuracy must be

obtainable without the need to run the model in the wall-to-wall approach. An

investigation into the use of an independent validation set was conducted.

A small proportion of cells on the landscape were sampled at random, and the

model run at these cells. The modeled outputs at these cells were compared to the

interpolated estimates for those cells, and the RMSE and correlation metrics

calculated. These RMSE and correlation metrics were then compared with the RMSE

and correlation metrics calculated for all cells in the study area. Proportions of

validation cells at seven levels ranging from 0.5% to 10% were tested.

Results

Figure 3.3 shows a comparison of interpolated and wall-to-wall NEP maps for

one age-class at two lattice-point sampling densities. It provides a visual reference for

the results presented subsequently.

As expected, the interpolation method works better when more points are

sampled for the interpolation. When only 0.4% of the cells are sampled in the input-

variable space, the interpolation approach produces a map that captures only the

approximate patterns of the wall-to-wall map (Figure 3.3a). The image to image

histogram plot shows scatter about the 1:1 line (Figure 3 .3b). When the input-space
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lattice samples 12% of the cells, the maps match well visually (Figure 3.3c), and the

image-to-image histogram plot shows strong attraction to the 1:1 line with relatively

little scatter.

The two summary metrics capture these visual patterns. The correlation

between the maps provides a quantitative measure of the fit, and is independent from

the units of NEP or NPP being estimated. As expected, the poorly-matched map

(Figure 3 .3a) had a lower correlation than a well-fitted map (Figure 3 .3b). The RMSE

provides a measure of the potential error in units of NEP or NPP, useful for

interpreting the magnitude of the error directly.
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Count
274.

I
206.

137.

69.0
0.00
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to-wall polated b)
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Interpolation: 0.004

Correlation: 0.83, RMSE: 0.015

Count
0.34 278.

209.
0.30 139.
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70.0
0.00
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Figure 3.3. Comparing wall-to-wall NEP maps with input-space interpolation NEP
maps, at two densities of sampling for interpolation. Each image pair shows the
wall-to-wall map on the left and the input-space interpolation map on the right, for
the simulation period 73 to 90 years, for sampling proportions of(a) 0.004 and (b)
0.12. NEP units are kg C / m2yr, with positive values representing uptake by the
terrestrial system. Spatial input variables for were soil depth, yearly precipitation,
average temperature, average minimum temperature, and average vapor pressure
deficit. Plots (c) and (d) show two-dimensional histograms of the interpolated map
against the wall-to-wall map, and report the correlation and RMSE of the piots.
Higher sampling intensity for interpolation resulted in a better match.

0.22

70
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As the sampling lattice density increased, the proportion of cells sampled

increased, and the correlation of interpolated maps also increased. Figure 3 .4a shows

the trajectory of correlation as the proportion of cells increased for the same age-class

and input-variable space test as in Figure 3.3. When the NEP map was estimated using

a multiple linear regression fit to all sample points, the resultant maps had lower

correlations with the wall-to-wall map at all sampling densities. Across all NEP tests

conducted for this study, the interpolated maps outperformed their regression-derived

counterparts in all but a handful of cases (Figure 3 .4b). From here forward, results

will be limited to maps built using interpolation.

The correlation of maps reached an asymptotic value as the proportion of cells

increased. The level of this asymptote varied depending on the spatial input-variables

used to build the input-variable space. Also, the relative ranking of different

combinations shifted for different age-classes (examples shown in Figure 3.5). For any

given age class, the spatial input-variable combination that provided high correlations

tended to reach that asymptote relatively quickly, often before 5% of the cells had

been sampled. Spatial input variable combinations that performed poorly approached

their asymptotic values more slowly than their better-performing counterparts.

Across age classes, different input variable combinations showed different

trajectories of maximum correlation of NEP maps with age-class (Figure 3.6). The 24

input-variable space characterizations could be placed into three broad groups. Group

1 (Figure 3 .6a) were those that performed very well for older age-classes, and
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moderately well for the younger age-classes. The inclusion of soil-depth as a spatial

input-variable was a notable commonality in this group. Group 2 (Figure 3.6b) were

those that performed better than Group 1 at young ages, but more poorly at older age

classes. Group 3 (Figure 3 .6c) performed best at the youngest ages and consistently

more poorly as age increased. Absence of soil depth from this group is notable.

Selected details of the runs shown in Figure 3.6 are given in Table 3.4. In

addition to correlations, RMSE values for three representative age-classes are

reported. The runs are ranked according to the average correlation for young and old

age classes.

NPP results were similar to NEP results. For brevity, only one example test

from each of the Groups identified in Figure 3.6 is shown in Figure 3.7. The maximum

correlations for NPP in Group 1 were slightly lower than for the NEP maps, but were

more consistent across age-classes. Groups 2 and 3 were also more stable than for

NEP maps, and generally had higher correlations than for NEP.

Looking across all NEP tests, correlations of interpolated and wall-to-wall

maps were well-characterized using a sample of validation points. Even at relatively

low sampling density (3% of cells), the correlation as estimated by validation points

strongly tracked the true correlation (Figure 3 .8a). As the proportion of cells used for

validation points increased beyond 3%, the match improved slightly (Figure 3.8b). A

regression line anchored at zero had a slope near 1 (ideal) for all validation

proportions greater than 3%.



Table 3.4. Summary of input-space interpolation results for Douglas-fir NEP for all
combinations of in s ut-s a ace indices for selected a' e classes.

Correlation, RMSE e for ages:
U

Input Variables a

C-)

19 to 36
yr

73to90
yr

163to180
yr

SDpth+Pr+T+Tmn+VPD 2245 0.12 1 0.87, 0.012 0.95,
0.007

0.98,
0.001

SDpth+PrSu+PrSp+T+VPD 2774 0.15 2 0.89, 0.011 0.86,
0.012

0.85,
0.003

SDpth+PrSu+PrSp+T+VPD 1999 0.11 1 0.85, 0.013 0.95,
0.007

0.98,
0.001

SDpth+PrSu+PrSp+T+Tmn 3240 0.18 2 0.92, 0.010 0.85,
0.013

0.83,
0.003

SDpth+Pr+T+Tmn+VPD 2484 0.14 2 0.84, 0.013 0.93,
0.009

0.96,
0.002

SDpth+PrSu+PrSp+T 2167 0.12 1 0.86, 0.012 0.95,
0.008

0.98,
0.001

PrSu+PrSp+T+Tmn 3156 0.17 2 0.91, 0.010 0.78,
0.015

0.64,
0.004

SDpth+PrSu+PrSp+T 3001 0.16 2 0.89, 0.011 0.84,
0.013

0.85,
0.003

SDpth+PrSu+PrSp+T+Tmn 2494 0.14 1 0.87, 0.012 0.95,
0.008

0.98,
0.001

SDpth+PrSu+PrSp+Sw+T 3464 0.19 2 0.87, 0.012 0.85,
0.013

0.85,
0.003



Table 3.4. (Continued) Summary of input-space interpolation results for Douglas-fir
NEP for all combinations of in 'ut-s s ace indices for selected a' e classes.

Correlation, RMSE e for ages:

Input Variables a
19to36

yr
73to90

yr
163to 180

yr
PrSu+PrSp+T+VPD 2797 0.15 2 0.89, 0.011 0.77,

0.015
0.63,
0.004

SDpth+Pr+T 2297 0.12 1 0.83, 0.014 0.95,
0.008

0.98,
0.00 1

PrSu+PrSp+Sw+T 3389 0.18 2 0.87, 0.012 0.79,
0.015

0.65,
0.004

SDpth+Pr+T 2121 0.12 2 0.77, 0.015 0.94,
0.008

0.98,
0.00 1

Pr+T+Tmn 2039 0.11 2 0.88, 0.012 0.77,
0.016

0.60,
0.004

SDpth+PrSu+PrSp+Sw+T 2408 0.13 1 0.72, 0.017 0.93,
0.009

0.97,
0.001

Pr+T+VPD 1695 0.09 1 0.88, 0.012 0.74,
0.016

0.57,
0.005

PrSu+PrSp+T+VPD 1498 0.08 1 0.86, 0.0 12 0.72,
0.017

0.54,
0.005

PrSu+PrSp+Sw+T 2559 0.14 1 0.86, 0.012 0.71,
0.017

0.56,
0.005



Table 3.4. (Continued) Summary of input-space interpolation results for Douglas-fir
NEP for all combinations of in 'ut-s 'ace indices for selected a'e classes.

Correlation, RMSE e for ages:

a Combinations of input variables used to define input variable space; see Methods section
for details on compression of input variables. Input variables are defined in Table 3.2.
Combinations are listed in ranked order, from best to worst, based on combined rank for
average correlation score for Ages 1 to 72 and 73 to 198 years. The best runs had high
ranks in both young and old age classes.
b Number of points in lattice used for interpolation
C Pts / total number of cells in wall-to-wall run
d Number of PCA layers used from each meteorological input variable

Correlation and RMSE are for pixel-by-pixel comparison of interpolated maps and wall-
to-wall maps

Input Variables a

CID

0cL)
19to36 73to90 163to180

Pr+Sw+T 2522 0.14 1 0.80, 0.015 0.70,
0.017

0.53,
0.005

Pr+T+VPD 1629 0.09 2 0.71, 0.017 0.72,
0.017

0.54,
0.005

PrSu+PrSp+T+Tmn 1083 0.06 1 0.83, 0.014 0.68,
0.018

0.53,
0.005

Pr+Sw+T 1960 0.11 2 0.69, 0.018 0.70,
0.017

0.55,
0.005

Pr+T+Tmn 762 0.04 1 0.78, 0.0 16 0.64,
0.019

0.47,
0.005
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Figure 3.4. Correlation between wall-to-wall and estimated maps. a) Correlation
of wall-to-wall NEP map for ages 73 to 90 years with interpolated and regressed
maps for the same age. Input variables used to define the input space ar the
same as in Figure 3.3. As the proportion of cells used for interpolation increases,
both estimation procedures improve their match with the wall-to-wall model
output, but interpolation attains a better overall match. b) Plots of the correlations
for regressed maps against correlations for interpolated maps for 1144 NEP maps
spanning a range of input variable combinations and sampling proportions. Maps
derived from interpolation of the input space nearly always have a higher
correlation than maps derived from regression in the input space.
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Figure 3.5. Examples of the correlation between wall-to-wall and interpolated
maps of NEP for modeled stands at (a) 19 to 36 years, (b) 73 to 90 years, and (c)
163 to 180 years, for four different combinations of input-space drivers for
interpolation. Definitions of input-space drivers are given in Table 3.2. In all
cases, the correlation of the interpolated map with the wall-to-wall map begin to
reach asymptotic values, the value of which depends on the input variables used
to build the input-variable space. The relative performance of different input
variable combinations varies for different modeled age classes.
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Figure 3.6. Correlation between interpolated maps and wall-to-wall maps of NEP for
different ages of simulation and different combinations of input variables. All
correlations are at the highest sampling density for each combination of input
variables; definitions of variables are given in Table 3.2. Numbers in parentheses are
the number of PC layers from each meteorological variable used to build the input-
variable space. a) Group 1: Input variables that result in better fits at older ages than
younger ages. b) Group 2: Input variables that result in better fits at young ages and
moderate fits at old ages. c) Group 3: Input variables that fit well at young ages but
very poorly at older ages.
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Figure 3.7. As in Figure 3.6, but for NPP rather than NEP maps, and for only one
representative combination of input variables from each of the three groups
shown in Figure 3.6. Axes are scaled to match Figure 3.6. For NPP, Group 1
performs well across all age classes. Groups 2 and 3 follow similar trajectories
with age as they do for NEP, but with generally better correlations at older ages.
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Figure 3.8. Examining whether validation points can be used to estimate the true
correlation of interpolated images. True correlation estimates were calculated for
all cells in 1144 separate interpolated vs. wall-to-wall NEP maps (including all
NEP results presented previously). For each map, random subsets of validation
points at varying proportions of the total population were sampled and
correlation estimates calculated for the subsets. a) Plot of validation point vs. true
correlation for validation point proportion of 0.03, together with equation and fit
for simple linear regression. Each point represents one map comparison. b) Slope
and r2 of linear regressions of the type shown in a), for a range of validation point
proportions. Reasonable estimates of correlation are achieved with only 3 to 5%
of plots used as validation points.
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Discussion

When a model lacks cell-to-cell interactions, its behavior across geographic

space depends entirely on the spatial patterns of the variables that drive it. Insofar as

the driver variables exhibit redundancies across space, wall-to-wall modeling of each

cell is inefficient. Here, we described and tested an approach to sample the spatial

variation of the input variables, and to infer model results for non-sampled points by

interpolation in the space of the input-variables.

Other studies have capitalized on the spatial control of model behavior by

input variables. Typically, the input variables are stratified into homogeneous units in

geographic space. Using FOREST-BGC, a precursor to the version of BGC tested

here, Band et al. (1991) found that such stratification was an efficient means of more

efficiently modeling large areas. Franklin (2001), also using an earlier version of

BGC, developed a lookup-table approach to modeling, where model runs were

conducted only for a sample of levels of landcover type and leaf area index, key

drivers in the earlier model. Burke et al. (1991) describe an approach to spatial

modeling that identifies key drivers of the CENTURY model (Parton et al. 1987), and

then develops a multi-dimensional classification of those drivers. The model is then

run only for each unique combination of driver classes. In all of these cases, the input

variable space is essentially treated as a categorical rather than a continuous variable.

Treatment of the input-space as a continuous variable has been applied to

spatial prediction of forest stand characteristics. Ohmann and Gregory (2002)

developed a multivariate statistical approach to characterizing spatial variation in
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climate, soils, remote sensing data, and applied it to an extensive field survey of forest

stand inventories. Grid cells on the landscape that were not surveyed were assigned

inventory attributes of the inventory site closest in input-variable space. In that case,

the input variables were considered continuous variables, but the model output was

essentially discrete: the nearest inventory plot was assigned in its entirety, with no

quantitative modification of attribute values based on characteristics of other nearby

plots. In the case of input-space interpolation, the value assigned to a cell is affected

by all of its nearest neighbors in input-variable space.

In essence, the input-space interpolation approach develops a site- and input-

variable-specific spatial metamodel of the underlying biogeochemical model. A

similar approach was tested for a model of NPP (Alexandrov et al. 2002) and for a

forest gap model (Acevedo et al. 2001). The metamodel provides a layer of abstraction

that captures only the salient variation in a more complex or detailed model (Friedman

1996). Here, the two key abstractions (or simplifications) of the underlying BGC

model behavior are 1) compression of the input variable space and 2) interpolation

through input variable space. Interpolation appears to be an important part of the

methodology, as indicated by its superior performance relative to a multiple regression

approach (Figure 3.4b). The multiple regression approach used here was a global

model fit to the dataset, and as such cannot capture local variations as well as the

interpolation approach. An alternative method would be to use a localized multiple

regression, although the simplicity of the interpolation approach is attractive.
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As a simplified metamodel of BGC, the input-space interpolation method

appears to work well. By sampling only 10 to 15% of the cells in our study area, the

approach captured the bulk of the patterns of NEP and NPP produced by the model

(Figures 3.3 and 3.4, Table 3.4). More importantly, the error of prediction of model

output is generally quite small. Figure 3.9 shows mean RMSE by age-class of NEP

predictions for all of the runs in Groups 1 and 2 (of Figure 3.6). Except for the

youngest age class, mean error was only 3%. Considering the many uncertainties in

model structure and in representation of spatial input variables over space, such low

levels of error mean that the method has utility for applications requiring assessment

of carbon flux over large areas. The overall success of the approach is notable,

especially given that the model used more than 6000 layers of meteorological

information, while the interpolated approach compressed those data into three layers.
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true NEP, for all runs in Groups 1 and 2 of Figure 3.6 averaged by age class,
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It is this compression of the input-variable space that appears to the set the

upper bounds on the accuracy of the interpolated maps. Asymptotic levels of

correlation were reached at fairly low sampling intensities (Figures 3.4 and 3.5),

suggesting that further increases in sampling density would do little to improve

correlation. Rather, correlation was only improved when the correct set of spatial input

variables was used to describe the input variable space (Figures 3.6 and 3.7).

Interpreting relative importance of different spatial input variables sheds light

on model behavior. When BGC was used to model Douglas-fir dynamics in our study

area, soil depth appeared to be a consistently important control on modeled carbon

dynamics (both NEP and NPP), especially at older age-classes. All of the input

variables in Groups 1 and 2 (the better-fitting Groups) included soil depth as an input

variable, and the only difference between some Group 1 and Group 2 combinations

was the relative weight given to soil depth in the data compression steps (see

coefficients of PC layers in Table 3.3). As modeled by BGC, soil depth controls both

the total water content that can be stored in the system and the levels of available

nutrients in the soil. Apparently, these controls have high leverage in model behavior,

especially over long periods. As a site constant, soil depth was not considered in

extensive sensitivity analysis of BGC (White et al. 2000), which makes judging its

relative importance difficult. However, it is clear that a better understanding of the

effects of soil depth on the behavior of the BGC model will be useful when the model

is applied over regional or continental scales.
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Although it may aid in understanding model behavior, the input-space

interpolation approach is primarily designed to improve computational efficiency. A

reasonable approximation of spatial behavior of the BGC model can be achieved using

only a fraction of the points on the landscape. Indeed, although the highest-density

runs were highlighted in Figures 3.6 and 3.7, the asymptotic behavior seen in Figures

3.4 and 3.5 is typical of the approach, and suggests that only 5 to 10% of cells can be

used to capture the bulk of the spatial behavior of the model. The time needed for the

interpolation approach itself is minimal on a 2003-era PC computer, using the

software package IDL (Research Systems Inc., Boulder CO), the input-space

interpolation approach took anywhere from 5 to 50 minutes, depending on the number

of points sampled, while the wall-to-wall run took nearly 12 computer days (using

slightly older technology). The order-of-magnitude savings in modeling effort can

translate into greater exploration of model behavior and testing, easier development of

spatial sensitivity analyses, broader testing of climate change scenarios, or modeling at

finer grain sizes. The structure described here could be applied to other common

biogeochemical models, including CENTURY (Parton et al. 1987), PnET (Aber and

Federer 1992), and others (VEMAP Members 1995). Indeed, any ecological model

that does not consider cell-to-cell interactions could use this approach to apply results

over space.

The chief drawback of this approach is its sensitivity to the choice of spatial

input-variables. Had only input-variable combinations from Group 3 been tested, the

results would have been poor. Thus, a certain degree of testing of different variables is
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necessary, using an independent set of validation points, for establishing error rates.

Too much testing counters the computational efficiency of modeling. An

understanding of the mechanistic controls within the model should lead to judicious

choice of input variables for interpolation.

It is also important to note that the method is designed to function only within

categorical modeling units. Many biogeochemical models apply parameter sets

according to a categorical land cover type designation within a cell. In these cases,

each land cover type would require a separate input-space interpolation process. While

this would not appreciably add to the total number of cells sampled on the landscape,

it would require additional effort to develop appropriate input-variable combinations.

Conclusions

We have described an approach to spatial modeling that has the potential to

improve computational efficiency of modeling by nearly an order of magnitude, while

retaining most of the spatial variation in model output. The approach is built on the

recognition that variation in many biogeochemical models is solely a function of

spatial variation in input drivers, and that modeling in input-variable space is more

efficient than in geographic space. By reducing computational burden in spatial

modeling, the approach can allow more time for greater exploration of model behavior

under different scenarios or conditions.



Chapter 4: Spatially-explicit estimates of uncertainty indicate the potential for
significant error in modeled carbon cycle metrics

Introduction

To quantify the net flux of carbon between the terrestrial system and the

atmosphere, component fluxes across large spatial regions must be characterized.

Because measurement of those component fluxes is costly, direct observations are

generally scarce, both regionally and globally. For areas where direct measurements

are not available, a suite of indirect methods must be used to estimate carbon cycle

dynamics Process-based models are one powerful indirect method for such estimation

of carbon fluxes, and provide a means of predicting carbon dynamics under past,

current, and future climates.

A large group of process-based biogeochemical models has been used to model

carbon dynamics at regional scales (on the order of 106 to 1 ha; Parton et al. 1987,

Aber and Federer 1992, Cohen et al. 1996, Foley et al. 1996, Friend et al. 1997,

Thornton 1998, Coops and Waring 2001). These models vary in temporal and spatial

grain and extent, but typically are driven by climate data and are parameter-rich.

Because parameter values control the behavior of a model, accurate estimates of

parameters are critical for model success. However, there can be significant

uncertainty in model parameter values. Some parameters are difficult to measure

accurately, even at well characterized sites. Others are relatively easy to measure at

research-intensive sites, but have simply not been measured across the geographical

extents needed to pararneterize a model over a large area.
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In either case, the value of a given parameter at a given point in space may be

uncertain. When propagated through the model, such uncertainty in parameters results

in uncertainty in modeled estimates of carbon dynamics. Although many models of

carbon dynamics have been published, few studies have attempted to quantify the

potential error in those estimates caused by uncertainty in model parameters (for

examples, see White et al. 2000 and Williams Ct al. 2001). Because net carbon

exchange is the small difference between large fluxes of uptake and release, inclusion

of error bounds may have important implications for modeled carbon values.

Characterizing the sensitivity of a model to parameter uncertainty has long

been recognized as a critical component of model building and evaluation (Haether

1996). Analyses typically aim to determine the parameters to which the model is

particularly sensitive. Parameters are perturbed from an idealized (or base) value by

some percentage of the mean or of an estimate of variance (Haefner 1996, White et al.

2000), and a sensitivity metric is calculated that relates magnitude of change in output

to magnitude of perturbation in parameters. Parameters whose sensitivity metric is

high are said to have high leverage in the model.

When modeling carbon dynamics in a particular study area, the actual impact

of uncertainty in a given parameter is not just a function of its leverage in the model.

Rather, it also depends on the range of variation that is likely to be encountered in the

domain of modeling. A parameter with high leverage may be stable within a given

study area, while a lower-leverage parameter may vary considerably. In terms of
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actual impact on model outputs for that study area, the lower-leverage parameter may

be more important.

Spatial variation in the climate data that drive the biogeochemical model may

complicate the uncertainty analysis. Because parameter values control the model's

response to the climate driver variables, modeled outputs reflect a sometimes complex

set of interactions between parameters and climate. Variation in parameter values

therefore interacts with variation in climate, suggesting that parameter uncertainty may

have greater impact in some climatic regimes than in others. To the extent that

climatic drivers vary over a landscape, the uncertainty caused by variation in

parameters may also vary. The total uncertainty in carbon fluxes across the landscape

will the thus be the areal integration of spatially-variable uncertainties. Thus, any

summary of landscape-wide modeled carbon fluxes will necessarily require spatially-

explicit estimates of uncertainties.

Here, we report on a study designed to investigate the potential impact on

modeled carbon dynamics of uncertainty in model parameters, and to determine

whether spatial patterns in uncertainty are relevant to overall regional estimates of

carbon dynamics We use the biogeochemical model BGC 4.1.1 (Thornton 1998,

Thornton et al. 2002), and build on a sensitivity analysis for BGC reported by (White

et al. 2000). In that study, a thorough literature search was used to build parameter sets

for testing across all major biomes of the globe.

The sensitivity analysis conducted by White et al. (2000) was an important first

step, but was limited in two key respects. First, the sensitivity analysis was conducted
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only for modeled net primary productivity. Because the model tracks a suite of

controls on carbon, this focus on autotrophic inputs of carbon may provide an

incomplete view of the model's behavior. By tracking other key model outputs, a

greater understanding of the potential impacts of parameter uncertainty may be

possible. A second limitation of the sensitivity analysis conducted by White et al.

(2000) resulted from its ambitious scope: Because it tracked model sensitivity for the

entire globe, the study only examined model sensitivity for ten points in each biome.

Regional-scale spatial variation in uncertainty would necessarily be overlooked.

We hypothesized that these two limitations may be important factors in

regional scale carbon modeling. Therefore, we designed a set of modeling studies

designed to determine if: 1) tracking uncertainties in multiple model outputs allowed

better interpretation of model behavior, and 2) model uncertainties varied spatially

over a regional landscape. For simplicity of application, we confined our analyses to

six parameters associated with the model's handling of leaf physiology and allocation,

several of which were found by White et al. (2000) to have relatively large influence

on modeled NPP.

Methods

Study area

The study area was an approximately 21,000 km2 region of the western

Cascade Mountains of Oregon, U.S.A., where Douglas-fir (Pseudotsuga menziesii)

dominates or codominates (Figure 4.la). Spatial delineation of the study area was
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based on Level IV ecoregion maps (Thorson et al. 2003). Ecoregions included the

western Cascades lowlands, valleys, and montane highlands, as well as the Umpqua

Cascades, southern Cascades, southern Cascade slope, and two small sections of the

Siskiyou foothills and Klamath River ridges ecoregions.
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Figure 4.1. a) The study area in Oregon, defined as those Level IV ecoregions
near the Cascade Mountains where Douglas-fir dominates or exists as co-
dominant in mixed forests. Climate data shown for the study area are (b)
average yearly precipitation (cm), (c) temperature (degrees C), and (d) vapor
pressure deficit (Pa). See Table 4.1 for sources of climate data.
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Climate, especially precipitation, is quite variable across the region (Figure

4. lb-d). Table 4.1 lists climate summaries for the area as estimated by DAYMET, a

climate generator that extrapolates daily climate information from observations at

distributed weather stations (Thornton et al. 1997, Thornton and Running 1999,

Thornton et al. 2000). DAYMET data are at a grain size of 1km, with each cell having

18 years of daily temperature, moisture, and incoming radiation estimates. Vapor

pressure deficit (VPD) was derived from minimum and daily temperatures (Thornton

et al. 2000). Saturation vapor pressure for calculation of VPD was calculated as

610.79 * (exp(17.269 * TI (237.3 + T)), where T is daily minimum temperature in

degrees C (Glassy and Running 1994).



Table 4.1. Summary of climate data the study area shown in Figure 4.1.

a Minimum, maximum, and median values are for the population of grid cells in the
study area; see Figure 4.1.
b DAYMET citations: Thornton et al. 1997, 1999

Description of VPD calculation in Methods section of text

96

Description Source
Pr Average total

precipitation (Jan. 1
to Dec. 31)

cm 55.2 362.6 170.0 DAYMETb

PrSp Average spring
precipitation (April 1

to June 30)

cm 10.5 67.3 33.6 DAYMET b

PrSu Average summer
precipitation (July 1

to Sep. 30)

cm 4.1 26.7 11.1 DAYMETb

T Average daily
temperature (Jan. 1 to

°C 4.9 11.8 8.5 DAYMETb

Dec. 31)
TnmSp Average daily

minimum temperature
°C -0.3 7.1 3.5 DAYMETb

(April 1 to June 30)

Sw Average daily short-
wave radiation flux

W/m2 246.6 352.1 295.7 DAYMET b

(Jan. ito Dec. 31)
VSu Average daily vapor-

pressure deficit (July
i to Sep. 30)

Pa 832.7 2456.8 1386.0 DAYMET b

+ additional
calculation C
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Biogeochemical Modeling

The biogeochemical model BGC 4.1.1 (Thornton 1998, Thornton et al. 2002).

incorporates many of the general controls on carbon, nitrogen, and water cycling in

terrestrial ecosystems. Modeling is conducted for an idealized two-layer canopy of

sunlit and shaded leaves. Nitrogen and carbon cycling are linked through

photosynthesis in the leaves and decomposition in the soil. Photosynthesis is affected

directly or indirectly by incident solar radiation, nitrogen levels in the leaves, air

temperature, ambient carbon dioxide concentration, and available moisture for

transpiration. Autotrophic respiration is considered primarily a function of temperature

and nitrogen levels, while heterotrophic respiration is controlled by temperature,

moisture, and character of substrate. Evapotranspiration is calculated by means of the

Penman-Monteith equation, which takes stomatal conductance explicitly into account.

Low moisture reduces stomatal conductance, which reduces stomatal conductance and

limits transpiration. Soil processes occur in a single vertical layer, with three carbon

pools of increasing recalcitrance to decomposition.

Biome-BGC uses an equilibrium-based spin-up approach to develop soil and

vegetation poois. DAYMET daily meteorological data (Thornton et al. 1997) are used

to drive the model. The model is run for several thousand years until several carbon

and nitrogen pools reach approximate steady state.

For the study reported here, the forest was "cut" (removal of all live

vegetation) after spinup-equilibrium was reached, leaving 30% of the pre-cut biomass

as dead biomass available for decomposition. The model was allowed to regain



bioijiass for 90 years, a second cut was made with the same residual biomass

proportion, and finally the model was allowed to run for 400 years. All runs were

conducted at a soil depth of 130cm, a value representative of the region (Kern et al.

1997).

To facilitate sensitivity analysis, we developed a parallel-computer modeling

structure (Law et al. in press) based on the Parallel Virtual Machine (PVM)

technology (Version 3.4; Geist et al. 1994). Between 12 and 18 Pentium III computers

were used for the different model runs reported here.

A parameter set for Douglas-fir (Pseudotsuga menziesii) was used for all

modeling, and is detailed in Table 4.2. Values generally followed those used by

(Thornton et al. 2002) for Douglas-fir in the region. Leaf parameters examined for the

uncertainty analysis are shown separately in Table 4.3. For three parameters, the range

of values tested had been measured directly at 10 forested stands in the study area

(Kennedy et al., Chapter 2). For the two allocation parameters (Root:Leaf and

Stem:Leaf; See Abbreviations in Table 4.3), the range of values was assigned as plus

or minus 30% of the median value reported for Douglas-fir in White Ct al. (2000).

White et al. (2000) reported relatively few measurements for FracNRubisco, and here

a conservative range near the low end of reported values was chosen.
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Table 4.2. Parameter values used in this study to represent Douglas-fir
(Pseudotsua menziesii) in the bio'eochemical model BGC.
Value a

Variable

0.7

0.005

0.0025

Variable

Variable

0.07

0.3

0.5

Variable

92

79

50

600

0.4

0.4

0.2

0.76

0.24

0.01

0.5

2.3

Units

1/yr

1/yr

1/yr

1/yr

Ratio

Ratio

Ratio

Ratio

Proportion

kg C / kg N

kg C / kg N

kg C / kg N

kg C / kg N

kg C / kg N

Proportion

Proportion

Proportion

Proportion

Proportion

1 / LAI / d

Dimensionless

Ratio

Parameter description

annual leaf and fine root turnover fraction

annual live wood turnover fraction

annual whole-plant mortality fraction

annual fire mortality fraction

new fine root C : new leaf C

new stem C : new leaf C

new live wood C : new total wood C

new croot C : new stem C

current growth proportion

C:N of leaves

C :N of leaf litter after retranslocation

C:N of fine roots

C:N of live wood

C:N of dead wood

leaf litter / fine root labile proportion

leaf litter / fine root cellulose proportion

leaf litter / fine root lignin proportion

dead wood cellulose proportion

dead wood lignin proportion

canopy water interception coefficient

canopy light extinction coefficient

all-sided to projected leaf area ratio

99



a Parameter values listed as "Variable't were used in uncertainty tests and are
detailed further in Table 4.3

100

Table 4.2. (Continued) Parameter values used in this study to represent
Dou ' las-fir (Pseudotsua menziesi,) in the bio'eochemical model BGC.

Value a Units Parameter description

Variable m2 / kg C canopy average specific leaf area (projected
area)

2 Ratio ratio of shaded SLA:sunlit SLA

Variable Proportion fraction of leaf N in Rubisco

0.003 m / s maximum stomatal conductance (projected
area)

0.00003 m I s cuticular conductance (projected area)

0.1 m / s boundary layer conductance (projected area)

-0.6 MPa leaf water potential: start of conductance
reduction

-2.25 MPa leaf water potential: complete conductance
reduction

610 Pa vapor pressure deficit: start of conductance
reduction

3100 Pa vapor pressure deficit: complete conductance
reduction



Table 4.3. Leaf parameters used for uncertainty tests.

Parameter Description ' Abbreviation Range2 Source
annual leaf and fine root LflTrnovr 0.136 to 0.20 This Study,

turnover fraction Chapter 2

new fine root C : new Root:Leaf 0.98 to 1.83 White et al.
leaf C (2O0O)

new stem C : new leaf C Stem:Leaf 1.2 to 2.2 White et al.
(2000)

C:N of leaves C:N 45 to 62 This Study,
Chapter 2

canopy average specific SLA 7.5 to 9.5 This Study,
leaf area (projected Chapter 2

area)
fraction of leaf N in FracNRubisco 0.04 to 0.10 White et al.

R.ubisco (2000)
1 For units, see Table 4.2
2 Inclusive range of values tested in this study

+1- 30% of median of reported values for Pseudotsuga menziesii
' With few values reported, the range chosen here spans measurements from non-
herbaceous vegetation
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Carbon metrics

Variation in leaf parameters could affect any of the hundreds of pools and

fluxes tracked by BGC. Here, six carbon-related model outputs or derived variables

were examined for uncertainty analysis. Descriptions of and abbreviations for the

variables are given in Table 4.4. OLD_LAI, ACC_NEE, and POS_NEE_YR were

chosen to provide linkage with studies in the region that reported these values (Gholz

et al. 1976, Smithwick et al. 2002, Campbell et al. In review). Note that

POS_NEE_YR does not take into account the fate of carbon harvested from the stand;

because significant carbon is lost to the atmosphere after removal from a site, total

carbon accounting would increase the POS_NEE_YR variable, often substantially

(Harmon et al. 1996, Harmon 2001). OLD_NPP and OLD_HETR_RESP were

included to track net uptake and release by the system near carbon equilibrium, and

OLD_DAILY_TRANS was included as a water variable that should be tightly linked

to carbon uptake. As a group, these six variables will be referred to as "carbon

metrics."



Table 4.4. Definitions of six carbon metrics derived from model runs of BGC
for the stud area shown in Fi' ure 4.1.

OLD_LAI m projected
leaf area / m2

ground

Average leaf area index for 18-year
period starting at age 370 years

The year at which accumulated NEE
after disturbance switches from

negative (net flux to atmosphere) to
positive (net uptake by terrestrial

system). Note that this number only
considers carbon balance after

disturbance, and does not consider the
fate of carbon removed at harvest. See
Harmon (2001) for a discussion of this

issue.
Average net primary productivity for
the 18-year period starting at age 370

years.

Average daily transpirational losses of
water from vegetation

Average yearly carbon lost to
heterotrophic respiration.
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Metric name Units Description

ACC_NEE kg C I m2 Accumulated net ecosystem exchange
(NEE) at the end of 400 years after

simulated harvest

NEE_ZERO_YR yr

OLD_NPP kgC /
myr

OLD_DAILY_TRANS mm / day

OLD_HETR_RESP kg C / m2



Uncertainty analyses

Overview

Uncertainty analysis proceeded in three phases (Table 4.5). Phase 1 was used

to determine which parameters had the largest overall leverage in the model. To keep

model run repetitions low, only parameter values at the minimum, maximum, and

middle levels of the parameter range (Table 4.3) were modeled. Twelve points across

the study area were modeled. The same points were modeled in Phase 2, which

focused on the three dominant parameters determined in Phase 1. Here, the goal was

to quantify percentile-based distributions of carbon metrics resulting from variation in

parameters. This required a dense sampling of the parameter space, with 15 levels

tested for each parameter. Finally, Phase 3 brought the uncertainty analysis into the

spatial realm, again focusing on the three highest-leverage parameters. The model was

run at seven levels per parameter for over 400 points distributed across the study area.

Carbon metric maps of the entire study area were built using an interpolation approach

developed by Kennedy et al. (Chapter 3), and percentile-based distributions of carbon

metric uncertainty across the entire study area produced.

Phase 1

Determining points for modeling

The goal of Phase 1 was general characterization of model uncertainty within

the conditions found in the study area. A sparse sample of points in the study area's
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climate space was used for modeling. The climate of the study area was characterized

using a technique described in detail by Kennedy et al. (Chapter 3). Briefly, daily

records of a single climate variable (precipitation, temperature, etc.) were aggregated

to yearly averages, which were then compressed, normalized, and joined with other

aggregated climate variables in a two-step principal component analysis. The resultant

principal component axes described the spatial variation in climate within the study

area. Eigenvector coefficients for the final principal component analysis are given in

Table 4.6. Increasing values of principal component 1 corresponded with increasing

radiation and lower precipitation; increasing values of principal component 2

corresponded with cooler temperatures, higher insolation, and lower vapor pressure

deficit.

Points were selected by sampling the climate space along two principal

component axes (Figure 4.2a). Twelve points were identified; Figure 4.2b shows their

positions in the study area. Details of DAYMET-derived climate for each of the 12

points are shown in Table 4.7.

Evaluating model sensitivity

In Phase 1, 729 combinations of parameter values were modeled for each of

the twelve points. For any given focal parameter, there were 243 unique combinations

of the other five parameters. For each of those 243 combinations, three output values

existed: one for each level of the focal parameter. Variation among those three output

values was caused solely by variation in the focal parameter. The maximum absolute

difference in the three output values was used as a metric of the effect of that
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parameter on the output value, given the single combination of the other five

parameters. The median of this metric across all 243 combinations of other parameters

represented the first-order effect of the focal parameter on the carbon metric. This

process was repeated for all parameters, points, and carbon metrics. In Phase 1, no

effort was made to quantify interactions between parameters.



Table 4.5. Summary of the phases of uncertainty analysis used in this study.
Number

NumberNumber of Number of
Simu-of of

Levels / lations /
Purpose

Param-
Points

eters
Param- Point
eter

1 12 6 3 729

Compare relative impact of
uncertainty in leaf parameters
at a small number of points
throughout climate space

High-density factorial
2 12 3 15 3375 exploration of parameter space

for dominant parameters

462 3 7 343

3

High-density sample of climate
space to build interpolated

maps of uncertainty in
dominant parameters

118 3 7 343 Validate interpolated maps
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Table 4.6. Eigenvector coefficients for two principal component axes of
climate used to locate oints for Phases 1 and 2.

Climate Variable a

Percent of
PC Axis PrSu PrSp Sw TmnSp VSu Variance

Explained

a Climate variables are defined in Table 4.1
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#1 -0.98 -0.98 0.87 0.03 0.93 71%

#2 -0.02 0.07 0.39 -0.99 -0.28 24%



Table 4.7. DAYMET-estimated climate values for points used in Phases 1
and 2.

a Climate variables are defined in Table 4.1
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POINT

Climate Variable a

Pr PrSp PrSu T TMnSp Sw VSu

1 238 41 15 8.6 4.7 269 1253

2 153 31 11 10.4 5.4 287 1486

3 286 55 22 8.6 4.6 276 1105

4 208 41 14 9.1 4.7 289 1170

5 162 32 11 8.6 3.4 299 1456

6 98 17 6 10.6 4.8 318 2089

7 50 10 4 10.0 4.2 345 2321

8 247 49 18 7.1 3.3 270 982

9 201 41 14 8.3 3.5 287 1265

10 143 28 10 8.3 3.0 310 1403

11 111 21 6 7.3 1.8 330 1660

12 180 33 11 5.3 0.1 322 1155



a) b)

1:

-4

.9

12

.11

110

-10 -5 0 5 10 .7

Principal Component Axis #1

Figure 4.2. Points used for modeling in Phases 1 and 2. A) Points in
transformed climate space. Climate space was compressed using principal
component analysis of multiple climate data layers (see Table 4.2 for
cigenvectors of the Principal Component Axes #1 and #2). High values on
Axis #1 correspond to higher moisture stress, while high values on Axis #2
correspond to cool spring temperatures (See Table 4.6). Labeled point
numbers are used throughout this study. B) Points positioned in the study
area (See Figure 4.1).
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The median of absolute difference values was scaled to the median value of the

original carbon metrics modeled at each point, producing an estimate of the

proportional uncertainty for each carbon metric at each point. This allowed

comparison of effects between carbon metrics with different units and among points

with different median values of carbon metrics. The median of proportional

uncertainty across all 12 points was used as an overall estimate of the variation in each

carbon metric caused by the variation in each parameter value. Using this approach,

the three parameters with the greatest overall leverage were identified and used for

Phases 2 and 3. These parameters will be referred to as "keystone" parameters.

Phase 2

Quan4fying total uncertainly

In Phase 2, the full impact of uncertainty in parameters was quantified. At each

of the twelve points used in Phase 1, the model was run at 15 levels for each of the

three keystone parameters, resulting in 3375 separate model runs for each point. A

histogram of the carbon metrics across all of those runs provided an estimate of the

frequency distribution of carbon metrics resulting from variation in leaf parameters.

The result was an estimate of the frequency distribution of carbon metrics resulting

from the tested variation in leaf parameters. Uncertainty could then be stated as the

bounds within which a given metric varied a given percentage of the time. By
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producing a full distribution of values, this approach would also show whether

uncertainty was symmetrical about the mean or skewed toward higher or lower values.

This approach assumed that each of the 15 levels of the parameters would have

an equal chance of occurring - i.e. that the frequency of parameter values in the study

area followed a uniform distribution. Depending on the form of the relationship

between the parameters and the carbon metrics, a different frequency distribution of

parameter values could lead to a different distribution of carbon metrics, and hence to

a different estimate of uncertainty. To test this, a second histogram of carbon metrics

was constructed, this time weighting each of the fifteen parameters according to a

normal distribution. Normal weights were distributed such that 5% of the total weight

fell on each of the two extreme parameter values.

Phase 3

Determination of modeling points for Phase 3

The goal of Phase 3 was development of maps of carbon metrics and

uncertainty in those carbon metrics. Maps were produced using an interpolation

method detailed in Kennedy et al. (Chapter 3). Kennedy et al. (Chapter 3) showed that

interpolated maps could provide reliable spatial estimates of BGCs modeled outputs

when only 10 to 15% the climate space was sampled. To characterize the climate

space for Phase 3, yearly averages of DAYMET climate data were aggregated into 3

by 3 km2 cells using spatial averaging, and the two-step principal-component process

described for Phase 1 was applied to the aggregated images. In this case, however,



climate variables included in the principal-component analysis were spring and

summer precipitation, spring shortwave-radiation insolation, minimum daily spring

temperature, and spring and summer vapor pressure deficits. Climate space was

defined using the first three principal component axes of climate variables. Sampling

of the climate space followed a regular 3-dimensional lattice, as described by Kennedy

et al. (Chapter 3). Using this process, 462 points were located (Figure 4.3a),

representing a sample of 19.5% of the study area cells.

Kennedy et al. (Chapter 3) also showed that estimates of error in interpolated

maps could be calculated by comparing interpolated values to independently-modeled

values at a population of randomly-distributed validation points. Here, 118 validation

points were identified and modeled (Figure 4.3b), representing 5% of the study area

cells.

Application to the spatial realm

For each of the modeling points for Phase 3, the model was run at seven levels

for each of the three keystone parameters, resulting in 343 separate sets of carbon

metrics. The input-space interpolation approach of Kennedy et al. (Chapter 3) was

used to interpolate carbon metrics for each parameter combination to the remaining 3

km by 3 km grid cells in the study area. This resulted in 343 separate images of each

carbon metric for the entire study area. The interpolated value at the 118 validation

points was compared against the modeled value; the square root of the mean square

error (RMSE) across all 118 validation points was calculated for each of the 343

images for each metric.
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Frequency distributions of carbon metrics were then developed for each cell

using the parameter weighting and histogram approach described for Phase 2. In this

case, only a normal weighting of parameter values was used. The result was a

spatially-explicit map of the variability in carbon metrics caused by uncertainties in

leaf parameters.
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Figure 4.3. Points modeled to develop and test interpolated images of the
entire study area. A) 462 points used in Model Run #3 (See Table 4.7),
overlaid on an image of the study area. Points were distributed throughout
climate space using a method described in detail in Chapter 2. B) 118 points
used in Model Run #4. Point positions were chosen using a random-number
generator.
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Results

Phase 1

Estimates of carbon metrics varied across the 12 points modeled for Phase 1

(Table 4.8), reflecting variation in climate across the study area (Figure 4.1). Point 7

was the driest site modeled (Figure 4.2, Table 4.7) and had the lowest value for all

carbon metrics except NEEZERO_YR, for which it had the highest value. The most

productive site was Point 12, which occupied a cool, moderately moist position in the

climate space (Figure 4.2). All other points had carbon metrics intermediate in value

between these two points.

Variation in leaf parameters had variable effects on carbon metrics. Table 4.9

shows the median of maximum differences for all six parameters for two selected

points. Reported values can be interpreted in units of the carbon metric. For example,

ACC_NEE for Point 7 in Table 4.9 had a median value 23 kg C I m2 yr. Variation in

the parameter LfTrnovr from 0.136 to 0.20 (See Table 4.3 for definitions and

parameter ranges) caused a median variation in ACC_NEE of 2.98 kg C / m2 yr.

Within a given row of the Table 4.9, the effects of variation in each parameter can be

compared directly based on reported values, with larger values indicating a greater

effect.
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Table 4.8. Median values a of carbon metrics derived from
model runs of BGC for the 12 soints in Phase 1.

Carbon metric b

a Values are medians from all 729 model runs of Phase 1 (See
Table 4.7)
b Carbon metrics are defined in Table 4.4
C Points are shown in Figure 4.2
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Point.COLD ACC
LAI - NEE

NEE-
ZERO_
YR

OLD
NPP

OLD-
DÁIL Y_
TRANS

OLD-HETR
RESP

1 7.5 37.7 22 0.71 1.7 0.66

2 7.5 37.8 22 0.71 1.7 0.66

3 8.1 40.5 23 0.77 1.9 0.72

4 8.0 41.0 22 0.76 1.8 0.71

5 7.4 37.5 22 0.71 1.7 0.66

6 7.1 34.9 22 0.67 1.5 0.63

7 4.8 23.5 26 0.46 1.0 0.42

8 8.2 41.7 23 0.79 1.9 0.74

9 7.9 40.3 22 0.76 1.8 0.71

10 7.7 38.7 22 0.74 1.7 0.69

11 6.9 34.4 22 0.67 1.5 0.62

12 8.4 42.9 24 0.81 2.1 0.76



zo

a In Phase 1, each parameter was varied in the range indicated in Table 4.3,
holding all other parameters constant, and the maximum difference in
resulting carbon metrics noted. This was repeated across all possible
combinations of other parameter values tested. The median of the maximum
differences is reported. Units are the same as for the median value reported
for each metric.
b Carbon metrics are defined in Table 4.4

The median value of the carbon metric across all 729 combinations of
parameter values in Phase 1. Units for metrics are described in Table 4.4.
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Table 4.9. The median effect on carbon metrics of varying model
parameters in Phase 1 for points 7 and 10 in Figure 4.2.

Median of maximum dfference a caused by
variation in parameter:

Metric b CIDc': () 1)
' rID

7

OLD_LAI

ACC_NEE

NEE_ZERO_
YR

OLD_NPP

OLD_DAILY_
TRANS
OLD_HETR_
RESP

4.8

23

26

0.46

1.0

0.42

1.07

2.98

4.00

0.067

0.02

0.07

1.77

8.49

3.00

0.079

0.03

0.07

0.79

10.04

2.00

0.052

0.01

0.05

0.32

1.52

2.00

0.032

0.01

0.03

0.97

0.75

2.00

0.016

0.02

0.02

1.99

9.66

10.00

0.19

0.05

0.18

10

OLD_LAI

ACC_NEE

NEE_ZERO_
YR

OLD_NPP

OLD_DAILY_
TRANS
OLD_HETR_
RESP

7.7

39

22

0.74

1.7

0.69

1.82

4.90

4.00

0.099

0.07

0.10

2.16

10.76

2.00

0.057

0.08

0.05

1.78

14.67

4.00

0.040

0.06

0.03

0.31

1.44

3.00

0.029

0.01

0.03

1.60

1.21

1.00

0.026

0.06

0.03

2.30

11.83

9.00

0.22

0.11

0.21
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When pooled across all 12 points, variation among metrics and parameters was

more evident (Table 4.10). LfTrnovr and FracNRubisco had relatively large effects on

all metrics except OLD_DAILY_TRANS, which appeared relatively insensitive to

variability in the leaf parameters tested. C:N and SLA had relatively low impacts on

most carbon metrics. The two allocation metrics (Root:Leaf and Stem:Leaf) had minor

impacts on OLD_NPP, OLD_DAILY_TRANS, and OLD_HETR_RESP, but large

impacts on OLD_LAI and ACC_NEE. FracNRubisco, Stem:Leaf, and LfTrnovr all

had a median effect of more than 10%. These three parameters were considered

keystone parameters, and used for further analysis in Phases 2 and 3.

Phase 2

The response of carbon metrics to variation in pairs of parameters generally

described a smooth surface, but often showed discontinuities ranging from abrupt

(Figure 4a) to relatively subtle (Figure4b). The surfaces shown in Figure 4.4 are for

one of 15 values of Stem:Leaf. As Stem:Leaf was changed, the median value of

ACC_NEE changed, but the general shape of the response surfaces (including

discontinuities) evolved only slowly (surfaces not shown). The surfaces in Figure 4.4

also show the effect of parameter interactions. Although increases in LfTrnovr and

FracNRubisco each resulted in increased ACC_NEE, regardless of the other

parameter's value, the highest ACC_NEE values occurred when both parameters were

high.
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The total uncertainty in most carbon metrics for each point in Phase 2 was

relatively large (Figure 4.5). For example, the range of 80% of OLD_LAI values

spanned more than 2 units of LAI across most points, representing as much as 30% of

the median LAI for some points. Similarly large uncertainties were observed for all

other carbon metrics except OLD_DAILY_TRANS, which had relatively low leaf-

parameter-related uncertainties for most points. Figure 4.5 also illustrates similarity

across points in patterns of median values of OLD_LAI, ACC_NEE, OLD_NPP, and

OLD_HETR_RESP carbon metrics.

Phase 3

Carbon metrics were successfully interpolated across the entire study area for

all 343 parameter combinations. Table 4.11 lists summary statistics for all 343 images

for each carbon metric. Error from interpolation was minor relative to the values of the

metrics being interpolated.

Spatial patterns of carbon metrics varied as parameter combinations varied.

Figure 4.6 shows four examples of interpolated carbon metric surfaces. In the case of

NEE_ZERO_YR, spatial patterns of high and low values varied considerably for the

two parameter value combinations shown (Figure 4.6a), even though the ranges of

values across the study area were nearly identical. For OLD_LAI, general spatial

patterns of high and low values were similar for the two parameter combinations

shown, but the range of values was quite different (Figure 4.6b). The values of LAI for

the right-hand image of Figure 4.6b are also notable for being very low relative to

those expected for the Douglas-fir forests of the region (Gholz et al. 1976).
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Uncertainty in carbon metrics showed distinct spatial patterns for the study

area (Figure 4.7). The range of values between the lO" and 90th percentiles ("80%

Uncertainty Range" images) varied across the landscape by a factor of two or more for

all metrics (See image scale bars of 80% Uncertainty Range images). Spatial patterns

of proportional uncertainty were similar for ACC_NEE, OLD_NPP, and

OLD_HETR_RESP (Figure 4.7b,d, and f), with relatively high uncertainty in the

drier, southern portions of the study area. Uncertainty in NEE_ZERO_YR and

OLD_DAILY_TRANS (Figure 4.7c) appeared to be greatest near the eastern edges of

the southern half of the study area, areas characterized by cooler temperatures and

relatively low precipitation (Figure 4. lb and c). Proportional uncertainties in

OLD_LAI and OLD_DAILY_TRANS also appeared to correspond with areas of

lower temperatures (Figure 4.1 c).

Proportional uncertainties varied considerably across the carbon metrics

(Figure 4.7, right-most columns). Greatest uncertainties were calculated for

ACC_NEE, where uncertainty was greater than 25% for the entire study area, reaching

40% in the south (Figure 4.7b). Proportional uncertainty was lowest for

OLD_DAILY_TRANS (Figure 4.7e), consistent with results observed in Phase 2. The

remaining four metrics showed uncertainties from 10 to 34% of the median values.



Table 4.10. Median proportional effects' on six carbon-cycle indicator metrics
of varying model parameters across all 12 points in Phase 1 of the
uncertain anal sis.

METRIC C

Parameter varied

Q-
zo

ciDc' ci)

Median
effect by
Metric

a Absolute median differences for each point (as in Table 4.9) were scaled to the
median value for that point; the median of that proportional effect across all 12
points is reported here. A proportional effect of 0.10 indicates that varying the
parameter in the range indicated in Table 4.3 caused the carbon metric to vary by
10% of its median value.
b See Tables 4.2 and 4.3 for definitions of parameters and range of values tested
for each parameter.
C See Table 4.4 for definitions of carbon metrics.
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0.24 0.26 0.23 0.03 0.21 0.25 0.23

0.13 0.26 0.36 0.03 0.03 0.26 0.19

0.14 0.09 0.18 0.09 0.05 0.32 0.11

0.14 0.07 0.06 0.03 0.03 0.25 0.06

0.04 0.05 0.04 0.01 0.04 0.05 0.04

0.14 0.06 0.05 0.03 0.03 0.25 0.06

0.14 0.08 0.12 0.03 0.03 0.25

OLD_LAI

ACC_NEE

NEE_ZERO_
YR

OLD_NPP

OLD_DAILY_
TRANS

OLD_HETR_
RESP

Median effect
by Parameter



Table 4.11. Average values and estimates of error in
inter a olated ima' es of modeled carbon metrics.

1 Carbon metric definitions are given in Table 4.4
2 Reported values are mean (minimum, maximum) across all 343
images resulting from Phase 3 (See Table 4.7 for definitions of
Phases);

RMSE is square root of mean square error across all grid cells
in a given interpolated image, estimated using validation points
from Phase 3 (shown in Figure 4.3). Values reported here are
summaries (mean, minimum, and maximum) of RMSE values
across 343 images in Phase 3.
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Carbon metric1 Metric value2 Mean RMSE3

OLD_LAI 7.7 (5.0, 10.3) 0.19 (0.12, 0.31)

ACC_NEE 39 (24, 52) 1.00 (0.84, 1.2)

NEE_ZERQ
YR 22 (14, 29) 0.56 (0.26, 1.5)

OLD_NPP 0.72 (0.54, 0.85) 0.018 (0.015, 0.021)

OLD_DAILY_
TRANS 1.7(1.5, 1.8) 0.063 (0.03 5, 0.089)

OLD_HETR_
RESP

0.67 (0.50, 0.80) 0.017 (0.014, 0.020)



Figure 4.4. Typical examples from Model Run #2 showing how carbon metrics
a) ACC NEE and b) OLD_DAILY_TRANS varied as FracNRubisco and
LfTmovr parameters changed. Shown are surfaces for Point #4 (See Figure 4.2
and Table 4.6 for more information) at the Stem:Leaf parameter value of 1.41.
These are two of 90 such surfaces for each of the 12 points one for each of 15
levels of Stem :Leaf for all six carbon metrics. Most surfaces showed subtle
disconthrnities as seen here, although generally not as abrupt as that seen at the
upper ranges of part a).
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Figure 4.5. Uncertainty in a) OLD_LAI, b) ACC_NEE, c)
NEEZEROYR, d) OLD NPP e) OLD DAILY TRANS, and f)
OLD_HETRRESP for the 12 points of Model Run #2. For each point, a
pair of box plots is shown. Carbon metric distiibutions resulting from a
normal distribution weighting (left-hand, non-shaded box in each point's
box-pair) and a uniform distribution weighting (right-hand, shaded box) of
the three input parameters LtTmovr, Stem:Leaf, and FracNRubisco are
shown. Boxed area spans the 25th to 75th percentiles, with the median value
noted with a black dot. Outer whiskers indicate the O and 90th
percentiles.
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Figure 4.6. Spatial patterns of a) NEE_ZERO_YR, and b) OLD_LAI for two
combinations of the LfTrnovr, Stem:Leaf, and FracNRubisco parameters. Parameter
values are given under each image; parameter definitions are given in Tables 4.2 and
4.3. Jmages on the left and right are, respectively, most and least like the mean spatial
pattern for each metric across all 343 different parameter combinations. Each image
was created by interpolation through climate space of 462 points in Phase 3 (See
Methods).
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LfTrnovr 0.168 Lflrnovr 0.2

Stem:Leaf 2.03 Stem:Leaf 2.2

FracNRubisco 0.06 FracNRubisco 0.1

Lflrnovr 0.16 Lflrnovr 0.2

Stem:Leaf 1.7 Stem:Leaf 2.2

FracNRubisco 0.06 FracNRubisco 0.04

a)

28.9 28.0

25.7 25.0

24.4 4.0

23.2 23.0

22,0
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Median
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0
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80% Uncertainty Proportional
Range Uncertainty

8.99 2.67 .34

8.14 2.34 .31

7.28 2.02 .27

643 1.70 .24

5.57 1.38 .21

47.3 0.40

z 42.4 0.36

00 37.5 032

32.6 0.28

27.6 0.24

.15.8 7.19 0.33

& 24.4 6.14 0.28

23.1 5.09 0.23

21.7 4.04 0.18

20.3 2.99 0.13

Figure 4.7. Median value and uncertainty surfaces for carbon metrics a) OLD_LA!,
b) ACC_NEE, c) NEE_ZERO_YR, d) OLD_NPP, e) OLD_DAILY_TRAN, and f)
OLD_HETR_RESP. Percentile values for each of the 2360 grid cells in the study
area were calculated as in Figure 4.5, except here they were for Phase 3, and used
only a normal distribution for weighting parameter values. Maps of 80% uncertainty
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Median Proportional
Value Uncertainty

0.26

0.21

0,16

0.12

Figure 4.7. (Continued) represent the range of carbon metric values between the 10th
and 90th percentiles. Proportional uncertainty maps are calculated as the range of
80% uncertainty divided by the median value. Because the range of parameter values
tested was the same for each cell in the study area, any spatial variation in
uncertainty arises from the interaction of the parameter uncertainty with climate.

80% Uncertainty
Range

0.86 0.18 0.29

0.78 0.16 0.25

0.69 G1. 0.20

0.61 0.11 0.16

0.52 0.09 0.11
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Discussion

If biogeochemical models are to be used to provide regional scale estimates of

carbon dynamics, uncertainties in model outputs caused by variation in model

parameters must be quantified. Using the popular model BGC (Thornton 1998), we

explored two key issues in uncertainty analysis at the regional scale. First, we

examined whether it was important to track model uncertainty in a suite of model

outputs rather than a single output. Second, we examined whether the interactions

between climate and parameter variability would lead to meaningful spatial variation

in model uncertainty.

By tracking multiple modeled carbon metrics, it was possible to assess whether

model behavior followed expectations on several fronts. Generally, spatial patterns in

all carbon metrics estimated with the biogeochemical model BGC followed

expectations at a regional scale (Figure 4.7, Median Values). Long-term site

productivity (OLD_NPP, ACC_NEE) increased from south to north (Figure 4.7b and

d), mirroring regional-scale patterns in moisture (Figure 4. ib). Total carbon

accumulations were on the lower end of the range of potential carbon stores estimated

for the region by Smithwick et al. (2002), and LAI values were slightly lower than

have been reported from direct measurements (Waring et al. 1978). Because leaf area

index controls the amount of photosynthetic surface available for primary production,

the similar spatial patterns of OLD LAI and OLD_NPP follow expectations for the

model. Transpirational losses of water were within the range of values expected for
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forests in the region (Waring and Running 1998). Spatial patterns in heterotrophic

respiration closely match patterns in productivity (comparing Figures 4.7f with 4.Th

and 4.7d). Over the short term, heterotrophic respiration and photosynthesis are not

necessarily coupled. In BGC, photosynthesis is affected primarily by radiation levels,

transpirational constraints, and the availability of nitrogen in the leaves, while

heterotrophic respiration is directly affected by temperature and moisture in the soil.

The observed similarity in spatial patterns between respiration and productivity

suggests that the long-term control on heterotrophic respiration is availability of

vegetative inputs into decomposition pools, which is controlled by vegetative

productivity. Similarly, vegetative productivity is partially controlled by availability of

nitrogen in the soil, which is controlled by the rate of decomposition by heterotrophs.

Over the long term, these two processes become coupled. This observation

underscores the need to track multiple carbon metrics when examining model behavior

at the regional scale.

One aspect of observed spatial patterns did not appear to match expectations.

For all carbon metrics except NEE_ZERO_YR, modeled estimates suggest that the

greatest productivity sites were found along the eastern border of the midsection of the

study area (Figures 4.7a,b,d-f). This spatial pattern is not likely an artifact of the

interpolation approach, since RMSE values for interpolation were small relative to the

range of carbon metric values in question (comparing RMSE values in Table 4.11 with

spatial patterns in Figure 4.7). Moreover, modeled estimates of carbon metrics for

individual points in Phase 2 corroborate this pattern in the modeled carbon metrics.
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The point lying in the apparent high-productivity region (Point 12) had the highest

carbon metric values (Figure 4.5).

The region of apparent high-productivity corresponds to higher elevation areas

(elevation maps not shown), where actual productivity is likely to be constrained by

lower temperatures and shortened growing seasons. This should result in lower -- not

higher -- productivity than in mid-elevation forests to the north and west. The apparent

discrepancy may be caused by a structural error in the model, whereby temperature

constraints are not adequately characterized, or by errors in the climate drivers,

whereby spatial patterns of temperature or moisture are simply incorrect. Another

possible source of the error was the use of uniform soil characteristics for the entire

study area. Soil characteristics reflect long-term interactions between soil parent

material and climate, and cool, moist, high-elevation sites in the study area would be

expected to have poorer soil conditions for growth than mid-elevation sites

(Schlesinger 1991). By running the model under uniform soil conditions, the potential

for such variation was removed.

The choice to use uniform soil characteristics was deliberate. In the course of

developing this and a separate study (Kennedy, Chapter 3), soil depth was implicated

as a potentially dominant control on the carbon dynamics modeled by BGC for this

study area. Initial investigations (data not shown) suggest that soil depth's control on

carbon dynamics in the model may be far greater than expected in theory; a separate

study of the influence of site factors on carbon dynamics has thus been initiated.

However, until soil depth's role in modeled outputs is validated, the conservative
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approach dictated that its influence be held constant for the current study. When

spatial variation in soil depth is eventually incorporated, the difficulty in obtaining

reliable, spatially-explicit maps of soil depth at a fine grain size (3 by 3 km2) will

mean that uncertainties in model outputs are likely to increase relative to those

reported here.

Even without soil depth varying, uncertainties in leaf parameters caused

significant variability in carbon metrics (Figures 4.5 and 4.7). This variability would

have significant implications for carbon-based management of forests, especially if

biogeochemical models were used to predict forest carbon dynamics under future

climates. Modeled estimates of total accumulated carbon (ACC_NEE) typically varied

by nearly one third of the median value, while estimates of the recovery of carbon

dynamics after disturbance (NEE_ZERO_YR) varied by one fifth of the median value.

By focusing on only six parameters, the uncertainties examined here represent

only a small portion of the total uncertainty that is encountered when biogeochemical

modeling is conducted over large spatial extents. Uncertainties in climate drivers, in

site characteristics (including soil conditions), and in the other model parameters may

add to composite uncertainty estimates of carbon dynamics. Estimates of total

uncertainty could follow the general approach described here, but could be expanded

to include all sources of potential error.

Once uncertainties in carbon metrics are quantified, further modeling research

can focus on reducing the largest uncertainties. Parameters that cause large variation

within a given study area can be targeted for better direct measurement in the field. Of
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the parameters studied here, C:N, SLA, and LfTmovr are all straightforward to

measure in the field with single visits to a site. Given C:N and SLA, FracNRubisco

can be estimated if additional physiological measurements are taken (Law et al.

2001a), but this variable is relatively uncommonly reported (White et al. 2000).

Estimating allocation parameters (Root:Leaf and Stem:Leaf) typically requires more

extensive research at a site (White et al. 2000). Future research would need to balance

cost for acquisition of each parameter with its potential impact on modeled output.

Field studies can be aided by the development of spatially-explicit maps of

uncertainty. When designing sampling schemes for field study, greater weight can be

given to areas where the penalty for parameter uncertainty is larger. Better constraint

of the model in these locations provides a greater return on investment than if areas

were sampled where uncertainty is low.

A key step toward improving uncertainty is the characterization of the

covariance structure of model parameters. In this study, lack of information on

covariance between keystone parameters required that parameters be uncorrelated. In

nature, however, certain combinations of traits are unlikely to occur. Without a means

of eliminating unlikely parameter combinations, some modeled outputs may be highly

unlikely, as evidenced by the anomalously low LAI values in Figure 4.6b. If estimates

of the likely distributions of carbon metrics can be created, however, Bayesian

approaches may provide a means of reducing uncertainty in likely parameter

combinations (Gelman et al. 1995, Raftery Ct al. 1995). Although Bayesian approaches

may hold significant promise for improving uncertainty bounds, their potential utility
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depends on defining carbon metrics that lends themselves to estimation of frequency

distributions, with, at the least, estimates of the minimum and maximum likely values.

Regardless of the potential for future narrowing of uncertainty bounds, the

results shown here suggest that the spatial pattern of uncertainty is indeed important

(Figure 4.7). Uncertainty in carbon metrics varied over space, and that variation was

itself variable among metrics. A single estimate of uncertainty for any given carbon

metric would be insufficient for describing the actual uncertainty likely to be

encountered across the entire study area. Thus, we would propose that regional scale

modeling should include some effort to examine spatial variability in the uncertainties

of modeled carbon dynamics.

Derivation of spatially-explicit maps of uncertainty was facilitated by the

input-space interpolation approach (Kennedy et al. Chapter 3). By reducing the

computational burden by a factor of four, parameter space could be explored more

thoroughly, which allowed better characterization of uncertainties in modeled outputs.

The importance of thorough sampling of the parameter space is underscored by the

observation of discontinuities in the response surfaces of carbon metrics to variation in

parameters (Figure 4.4). Without the adequate sampling of the parameter space

facilitated by the methodology developed by Kennedy et al. (Chapter 3), such model

behavior would be lost.

Spatially-explicit mapping of model uncertainties is possible for many of the

biogeo chemical models used to characterize the carbon cycle (Aber and Federer 1992,

Members 1995, McGuire et al. 1997, 011inger et al. 1998, Thornton et al. 2002).
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Comparing spatial patterns in uncertainties among models may provide greater insight

into the relative strengths and weaknesses of different approaches to biogeochemical

modeling, and may lead to faster improvement in biogeochemical modeling of the

carbon cycle.

Conclusions

Using a conmion biogeochemical model, we showed that uncertainties in

several key leaf parameters could lead to substantial variability in a suite of carbon

metrics. This uncertainty varied spatially at the regional scale, suggesting that the

interaction between spatially-varying climate drivers and uncertainty in model

parameters could have important consequences.. Moreover, we showed that patterns of

uncertainty varied for carbon metrics representing different underlying physiological

processes. This suggests no single carbon metric can represent all of the behavior of a

model at the regional scale, and that multiple processes should be tracked if model

robustness is to be assessed. Taken together, these results suggest that regional

modeling of carbon dynamics will be incomplete without spatially-explicit estimates

of uncertainty of a suite of model outputs. Because uncertainties may be large, true

reporting of uncertainties may diminish the ability to firmly quantify carbon fluxes.

However, it is through focused research on the reducing uncertainties that we feel the

greatest improvements in carbon modeling are possible.
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Chapter 5: Conclusion

The work reported in this Dissertation explored the potential spatial variability

in key parameters of a biogeochemical model, and how variability might affect

modeled estimates of key carbon cycle metrics.

In Chapter 2, I measured leaf mass per area (LMA), leaf nitrogen (LN), and

leaf longevity (LL) for Pseudotsuga menziesii (PSME) and Pinus ponderosa (PIPO)

trees, growing both in their core geographic ranges (CORE stands) and in the ecotonal

region at the margins of their ranges where the two species co-occur (MIXED stands).

The three traits have been shown to be important controls on carbon uptake (Field and

Mooney 1986, Poorter 1989, Oren et al. 2001), and have been shown to be linked

ecologically (Reich et al. 1992).

My results provided evidence that stand-level light environment largely

controlled LMA, consistent with lab experiments and some observational field studies.

However, my results further indicated that this relationship followed the same

mathematical form across the two species, suggesting a high degree of plasticity in the

trait. Moreover, because stand light environment is largely controlled by canopy leaf

area, the upper limit of which is related to available moisture, LMA was strongly

related to overall moisture patterns.

Across species LL and LN were not strongly related to climatic drivers.

Rather, I proposed that LN was more tightly linked to levels of nitrogen in the soil,

which likely varied in the study area more as a function of geologic parent material

rather than climate. Additionally, I suggested LL served as a species-specific,
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physiological tuning mechanism that compensated for the controls on the other two

traits.

Regardless of mechanisms controlling variation, my results showed substantial

variation (15 to 30% of the mean values) in leaf traits both within and across the two

species at the regional scale. Because variation in LMA may have been related to

moisture, there is the potential that climate data be used to estimate spatial patterns in

LMA. LN and LL could likely not be predicted from spatial climate data alone. A

linkage between LN and soil nitrogen would offer some opportunity to predict spatial

patterns if reliable maps of soil nitrogen were available. However, the

inteirelationships between the three leaf parameters would likely complicate the task

and require significant additional study, especially if spatial patterns of LL were

desired.

Within the context of the larger Dissertation, a key conclusion of the Chapter 2

is that much of the variation in leaf traits is difficult to predict spatially.

Before attempting to quantify the effect of that variation on BGC-derived

estimates of spatial patterns in carbon dynamics, I developed an approach to more

efficiently bring modeled estimates into the spatial realm. The traditional approach to

modeling across a landscape is to partition the landscape into a regular grid, establish

climate drivers for each cell in the grid, and run the model for each and every grid cell.

Such wall-to-wall modeling can be inefficient if the soil and climate drivers are similar

for nearby cells. Indeed, absent cell-to-cell interactions, any spatial variation in

modeled outputs is strictly a function of spatial variation in the drivers of the model.
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This latter observation allowed development of an approach to subsample the

cells at which the model would be run. Climate drivers were compressed using a two-

step principal-component analysis process into a simplified three-dimensional climate

space. This space was sampled using a regular lattice, and modeled values between

sampled points estimated by simple interpolation. I called the approach input-space

interpolation. I tested its ability to capture spatial patterns of BGC-derived estimates

of net primary productivity (NPP) and net ecosystem productivity (NEP) for a 100 by

260km area in the Douglas-fir zone of my study area.

I found that the method was robust, allowing reasonable prediction of spatial

patterns in model output with as few as five to ten percent of the total model runs. The

choice of climate data used in the data compression step was important, with some

combinations of meteorological data allowing much better approximation of spatial

patterns than others. The choice of best predictor variables itself varied with the age at

which modeled estimates were desired, reflecting the changing controls on NPP and

NEP over time within the model. By using a set of independent validation points, I

could provide good estimates of the error introduced by the input-space interpolation

approach.

I then applied the input-space interpolation approach to the goal of developing

spatially-explicit uncertainty estimates. In addition to the three model parameters

measured in Chapter 2, I included estimated uncertainty ranges for three addition leaf

parameters: the allocation ratio of new fine root to new leaf carbon (Root:Leaf), the

allocation ratio of new stem to new leaf carbon (Stem: Leaf), and the fraction of leaf N
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in Rubisco (FracNRubisco). The study area was expanded to include all areas of

Oregon's Western Cascades where Douglas-fir was an expected dominant or co-

dominant species.

Even though uncertainty analysis was limited to six model parameters,

variation in those parameters led to substantial variability in key carbon metrics. For

example, total accumulated carbon varied by as much as 40% for some portions of the

study area.

Uncertainty in all parameter values was considered to have no spatial

component, meaning that uncertainty ranges for parameter values were common

across the entire study area. A key question was whether this spatially-uniform

uncertainty in parameter values would interact with spatially-varying climate variables

to produce variability in spatial uncertainty of carbon metrics. My results suggest that

this indeed did occur, and that the variation in uncertainty could be substantial.

Taken together, the results reported here suggest several general conclusions.

First, ecological variability in plant attributes may cause substantial variability in the

parameters used to describe and constrain a biogeochemical model. Because a long-

term goal of biogeochemical modeling is the characterization of controls on carbon

fluxes, this variation over space is potentially important not only for modeling, but for

fundamental understanding of the ecology of the systems being modeled.

This leads to a second conclusion that is likely applicable to a large class of

biogeochemical models: if model parameters are subject to spatial variation, then

modeled predictions of carbon cycle dynamics will require a better quantification of
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the potential uncertainties arising out of this variation. Chapter 4 shows that this

uncertainty is not only important, but that non-spatial estimates of uncertainty could be

misleading. Through the interaction with spatially-varying climate data, uncertainties

in model parameters may vary spatially, and region-wide estimates of carbon flux

would necessarily need to include such variation in estimates.

None of the spatial estimates of uncertainty would have been as feasible were

it not for the third major conclusion of this project: for biogeochemical models without

cell-to-cell interactions, spatial variation in modeled outputs is solely a function of

variation spatially-varying input data (climate, etc.). This observation allowed the

development of an efficient approach to developing spatially-explicit model outputs.

The final conclusion summarizes essentially all of the work in this

Dissertation: the process of applying a biogeochemical model to a large spatial area

carries with it significant challenges that must be addressed before the carbon cycle

can adequately be characterized at regional scales. These challenges are not trivial,

and the uncertainty introduced by them may rival some of the better-recognized

challenges to understanding the carbon cycle at fixed points.

Despite the significant uncertainties that can arise when modeling in the spatial

realm, I believe that the issues raised here also provide opportunities. By beginning to

recognize and characterize spatial uncertainties, my work provides a means of

focusing additional efforts on how to quantifiably reduce them. Research can be

focused on understanding covariance relationships among model parameters, both in

the lab and in the field. Field sampling may be designed to focus on areas where the



142

penalty for ignorance is high. Together, these steps could lead to an iterative

measuring and modeling structure that would allow faster learning and, potentially,

better characterization of carbon fluxes.
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