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A STRtLTURE THEORY OF MODULES 

WITH A SPECIAL REFERENCE TO THOSE 

DEFINED BY THE CAIXHY CONVERGENCE CRITERION 

INTROD(XT ION 

The familiar construction of the re?1 numbers as 

ecuiva1ence classes of Cauchy sec'uences of rational numbers 

assumes a particularly elegant form when expressed In alge- 

braic terms. A development of this type is given, for 

instance, by Van der v:aerden [5, p. 211-2171. Thus let R 

be the rational number field, R1 the set of Cauchy se- 

ouences of elements of R, and N the set of null secuences 

of elements of R. We define addition and multiplication of 

elements in R1 by 

[a} + b} [a 4 

= 

Then R1 is a commutative ring with identity and N is a max- 

1mal ideal in R1. Hence the residue class ring R1/N is a 

field, called the real number field. By defining "positive" 

sec'uences of rational numbers, an ordering is introduced 

into R1/1. The principal results concerning R1,44 are: 

(i) R1/N is a field; (2) R is ring- and order-isomorphic to 

o subfield R' of Rj/; (3) R' is dense in R14'; (4) R114 is 

complete, that is every Cauchy secuence of elements of R1,4 



converges; and (5) every bounded set of elements of Rj/ 

has a least upper bound. 

These results may be extended without any groat diffi- 

Culty to the case wher R is an arbitrary ordered field 

(Archjmedean or not) [5, p. 211-2171. The aim of the pre- 

sent investigation is two-fold: first, to vary the above 

construction by considering rings of seruences of rational 

numbers other than R3 and kernels other than N and to in- 
vestigate the algebraic properties of the ouotient rings so 

obtained; and, secondly, to generalize the construction and 

the above-mentioned results to other metric-algebraic vari- 
eties, in such a way as to include some results which are 

known, as well, possibly, as some which are not known. 

In section 1 we state and prove some preliminary 

results which are used in later sections. Section 2 Is in- 
tended as at least a partial solution of the second problem 

posed above, while sections 3 and 4, algebraic in nature 

and intent, treat some very special cases of the first 
problem. 

Throughout this paper free use is made of such well- 

known results as the "fundamental theorem of homomorphism 

for groups with operators" [2, p. 133 and its specialize- 

tions to rings and to modules. In addition are used the 

following set-theoretic and algebraic symbols, with the 

usual meaning: X, c, , (L , jx,) (denoting a se6uence. 

Finally, we adopt the abbreviation "1ff" for "if ard on' if." 
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SECTIJ 1. DEFINITIC*S AND PRELIMINARY RESULTS 

We begin this section with some fundamental theorems 

from the thory of rings and ideals. 
Theorem 1. Let P and ( be arbitrary rings such that 

P C and let N be an ideal in Q. Then the intersection 
N(\P is an ideal in P. 

Proof. NP is not empty, for C NfP. If N/P 

(o), then NIP is an ideal in P. If x,y c N('tP and p e P, 

then x - y P and x - y t N, so that x - y t Nfl?. Also 

X P, p L P implies xp P, px P; and x N, p P im- 

plies p e O, which implies xp c N, px N. Thus xp NCIP 

and px N(tP. 

Corollary 1.1. If N, P, Q are rings such that N P 

Q and N is an ideal in Q, then N is an ideal in P. 

Theorem 2. If P and C? are rings such that P Q and if 
N is a prime ideal in then N(\P is prime in P. 

Proof. Suppose x,y t P and xy e Nt'P. Then x,y L Q 

and xy e N. Since N is prime in O, either x e N or y e N. 

Hence either x e N/P or y e N,IP, and NR? is prime in P. 

If A and B are subsets of a group R, we denote by A + B 

the set of all elements a + b of R, where a e A and b e B. 

In general, A + B will not be a ring whenever A and B are. 

However, we have the following theorem. 

Iheor 3. If P and Q are rings such that P C and if 
N is an ideal in Q, then P + N is a subring of C. Moreover, 

it is the smallest subring of O containing P and N. 
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Proof. P + N is certainty not empty. Supr.ose p3. + n1, 

P2 + n2 are arbitrary elements of P + N with P1,P2 P and 

N. Then 

(Pi 1) - (p2 = (p - p2) + (n1 fl2) E P + N 

and 

(pj nj)(p = (p1P2) + (pin2 +fljp2 tfljfl2). 

Since N is an idoal 

+ fltP2 + fljfl2 belongs 

that + N is a ring. 
Ing both P end N. If 

p + n c R and P -f N C 

If N is an ideal 

Q, Pifl2 and fliP2 L N, so that P1fl2 

to N. Since pjp2 L P, this proves 

Now let R be a subring of Q contain- 

p L P and n s N, then p,n E R. Hence 

R. This corrpletes the proof. 

in R, we write R/N for the residue- 

class (ouotient) ring of R modulo N. Now In the above 

theorem we have, by corollary 1.1, that N is an ideal in 

p + N . Moreover, if o s P + N and we denote by and , 

respectIvely, the residue classes in Q and in P + N which 

contain o, then ouite obviously . However, since any 

element in may be written in the form 4- n where n s N, 

we have . Thus ve arrive at the following inportant 

isomorphism theorem. 

heorern 4. If P and O are rings such that P Q and N 

is an ideal in C, then P,'(PiN) (P +N),k Q/. 
Proof. For ec X let s QA be the residue 

class containing x and consider the mapning x -e- ' of P into 

(P+N),ì. Clearly this mapping is a homomorphism. More- 

over, it is onto, for any element of P + N may be titten 
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in the form p + n with p e P and n N, and p + n = . If 

x e P and , then x e N and hence x e P\N. Thus the 
kernel of the mapping is PCN and by the fundaienta1 theo- 
rem of homomorphism 

P/(PrN) (p +N),4. 

We have already seen that (P +N)A Q/N, and so the theo- 
rem is proved. 

QLol1ary 4.1. If P and Q are rings and N is an ideal 
in , such that N P Q, then P,4 Q/. 

Corollary 4.2. If N is an ideal in the ring , and if 

P is subring of O such th3t P/IN (0), then O4 is an 

extension of . P Q/ if and only if P intersects every 

residue class of C) modulo N. 

Next we introduce the concept of a module and give a 

brief re'sum of the elementary theory. 

Definition 1. Let A be a ring. A set is an A-mod- 

.LkQ 1ff R is a commutative group (operation +) and there 
exists a function on A X R to R such that for all a,b L A 

and all x,y e R, 

1) a(x +y) = a.x + a'y. 

ii) (a +b).x = ax f bx, 

iii) (ab)x a'(b'x). 
For the "productt' ax we shall write briefly ax. 

Definition 2. Let R be an A-module. A subset N of R 

is a submodule of R iff for all x,y e N and all. a e A, 

i) 



ifl axN. 
Nw let R be an A-module and N a submodule of R. e define 

x y iff x - y e N. Then ' is an ecuivalence relation and 

partitions R into eruivalence classes . Furthermore, if 
x y and u y, we have x + u y + y and ax ay for all 
a A. We are thus led to make the fo1lowin definition. 

DefInition 3. Let R he an A-module and N a submodule 

of R. The A-module consisting of the set of ecmivalence 

classes defined by N and the compositions given by i)+x+ forallx,yER, 
ii) ax = for all x e R, a e i, where 

; the eriulvalence class containing x, is called the 

Qtient moduLe of R modulo N, and is denoted by R/. 
That R/ is indeed an A-module is seen by the follow- 

ing eouations: 

a( f) = 3(T) a(x+y) 

(a+b) (TTT axbx 
(ab) c;i;T; = atbx) a() a(b). 

Definition 4. Let i-,C be A-modules. A single-valued 

mapping x y of P onto C is called a homomorphism 1ff 

Xj 'j, X2 Y2 implies Xj + X2 + 

ii) x - y implies ax -+ ay for all a e A. 

C is called the homomorphic image of P. The kernel of the 

homomorphism is the set of all x e P such that x-0. If 
the mapping is l-1, lt is called an isomprphi and we 

write P Q. 
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A odu1e is only a sreciei cese of the more Qeneral 

concept of a group with operators (seo Jacobson [2, p. 128- 

186]). Thus the entire theory for the latter carries over 

to the former. In particular, we hve the 

fjindarnenta1 florern Homomorphism. If P is an I.- 

module and G is a submodu1e then is homomorphic to P/a; 

and, conversely, if F is homomorphic to R and N is the ker- 

nel of the homornor}hisn, then I Is a submodule of P nd 

R P4\i. L2, p. 

(uite obviously if P c Q c R ¿are A-modules and P is a 

submodule of R, then is a submodule of L. We may now 

state the analogue of theorem 4 for modules. 

Theore 5. Let Ç be an A-nodil.e and let I and N be 

suhrnodules of Ci. Thon P(N and P + N are submodules of L 

and 

P/(PiIN) (p+i)/! 
Proof. Supìose x,y e PN and a e A. Then x - y e 

P(\N. Also x e x N implies ax e P, ax N and hence 

ax e Pt\N. Thus PIN is a submodule. Suppose Xj + y and 

+ Y2 are arbitrary members of + N with x,x2 e arid 

Y1.Y2 e N arid let a A. Then 

(xi +yi) - (x2 y2) (xj -X2) + (yj y2) e P + N 

and 

a(xj +yl) = ax1 ay1 e P + N. 

Thus P - N is a submodule. 
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Again let be the e.uiva1enc. class of x e Q modulo N 

and consider the mapping x - of P onto P + N. This map- 

ping is a module homomorphism since ax -+ = a for all 

a £ A. The proof follows then exactly as for theorem 4. 

Corollary 5.1. If N,? arid Q are A-modules such that 

N Ç P Ç p, then P4': Ç Q/1'. 

Corollary 5.2. If Q is an A-module and if N and P are 

submodules of C such that NiP (o), then ÇA' is an exten- 

sion of P. P Ç4 iff P intersects every eruivalence 

class of C modulo N. 

Theorems 4 and 5 may both be deduced from the "second 

isomorphism theorem" for groups with operators as stated 

and proved in Jacobson L2, p. 136]. In a similar way, the 

following theorem is a special case of the "first isomor- 

phism theorem" [2, p. 135]. 

Theorem 6. If i! and N are ideals in the ring P, and 

if M Ç N, then N/M is an ideal in P,41 and 

(P4)/(N4) p/. 

Proof. For each x e P, let L P4QI and L P/ be the 

ecuivalence classes modulo M and N respectively which con- 

tain x. Consider the ma.ing x X of P4 onto P/Ì'J. The 

maping is single-valued, for if Ç, then x - y arid 

hence x - y e N. Thus ' . Moreover, 

; = X +y -+ +, 
x.y xy -xyxy, 

so that the map::ing is a homomorphism. Now 
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so that N,' is the kernel of the homomorphism. By the 

fundamental theorem of homomorphism then, N4 is en ideal 

and (P/M)/(NA1) P/N. 

This theorem obviously remains velid if rings and 

ideals are replaced throughout by modules end sub-modules. 

However, we shall riot make use of this fact in the secuel. 

Theorem 7. Let Q be a commutative ring with identity, 
r 

and let MO be the set of all elements of the form E m.o. 
i=1 ' 

where m1 M O, nj e O (11,2,...,r). Then MO is the 

smallest ideal in Q which contains M. 
r s 

Proof. If Z m11 e MC and E mId e MC, and 1f 
1=1 1=1 

t h en 

r s r+s 
in o. E m!c rn"o'.' * 

1=1 1 1 1=1 

and 
r r r 

o E E E m.o e MO. 
i=l i L 1=1 1 L 

Thus MO is an ideal In O, Since Q has an identity e, M 

MO, for in e M Implies me in e MC. Finally, if P is an 

ideal in C and M P, then Mfl PC = P. 
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SkCTION 2. COMPLETE NORMED ODTJLES 

As before w' hi me&r by a complete system or space 

one in which every Cuchy secuence converges. It my be 

shown that any metric spece can be imbedded In a complete 

Metric SpaCe, whose eiements re eouiv1ence classes of 

Cauchy seuences [4, p. 84-881. The space which we shBll 

Consider is fl sorne ways 1es genri, but it includes as 

speciel czses two im:ortant applicatlons of this construc- 

tion integral domains with valuation and norrned linear 

spaces. toreover, the present theory has the adventage of 

preserving the algebraic structure of these special cases. 

Thus an integral domain will be imbedded in an integr'l do- 

main and a linear space in a linear space. We begin this 

section wits some preliminary definitions. 
Definition 5. A valuation for an integral domain A is 

a function ç on A such that for all a,h A, 

i) p(a) : P, a completo ordered field, 
ii) ç(a) > o for a O; (o) = o, 

iii) p(ab) 

iv) c(a +b) < tp(a) + 

Since any ordered field may be com1.eted in the manner indi- 

cated in the introduction, it is no restriction to suppose 

that P is complete. We note that, if A has an identity e, 

then by li) and iii) cp(e) p(-e) = 1. In any case 

= 
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Recalling the definition of an A-module from the pre- 

vious section we note that by i) and ii) of definition 1, 

1f o E A and O C R are the respective "zero" elements, then 

ox = aO = O and (-a)x a(-x) -ax for all a IA and all 
x R. In case A has an identity e, we shall for the sake 

of simplicity insist on the additional restriction 
iv) ex = x for ali x c R. 

We are now justified in making the folloing definition. 
Definition 6. Let A be an integral domain with valua- 

tion p to P an ordered field. Let R be an A-module satis- 

fying the condition 

o) ax = O implies a o or x O 

for all a E A, x E R. A for R is a function i on R 

such that for all x,y R and ìl a A, 

i) (x) P, 

ii) i(x) > O for x O: ii(o) O, 

iii) .t(ax) 

iv) (x+y) < i.t(x) + 

Since t(3x) = q-a)p(-x) cp(a)i(-x), we hcve (-x) 

= i(x) by condition iii). A module with a norm defined is 

ciled briefly a normed module. The ring A itself is a 

normed module if R is taken to be the additive group of A, 

multiplication !s ring multIplication and .i = p. If A is 
the real (complex) number field and (a) a1, then R is a 

real (complex) normed linear space. In any case, since 
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t(x), R is a metric space, with the metric (x,y; 

* y). 

We are now ready to define what is meant by a Cauchy 

se'uertca in a norrned modulo and thus to introduce the nues- 

tion of completeness. 

flnitiçm 7. Let R he an Amodule with norm having 

values in and let [x} be an infinite senuence of elements 

of R, Then is 

i) convergent 1ff there exists an x E R and for 

each positive ¶ P an integer N such that 

n > N implies .L(x - < 

ii) Cauchy 1ff for each positive 'r P there exists 

an integer N such that 

n.m > N irplios (xx) < 'r; and 

iii) null 1ff for each positive 'r e P there exists 

an integer 1.1 such that 

n > N implies (x) < 'g. 

In case i) we call x the Limtt of {x} tt. x 11* 

(or 11m xe). 
n 

Let R be an arbitrary norred A-module (norm in ?); let 

N be the set of null senuence of elements of R; R0 the set 

of convergent senuences of elements of R; and R the set of 

Cauchy se'uences of elements of R. If R is complete, R 

R1. Otherwise, we shall see that R may be imbedded in a 

complete A-module, Let us defino addition in R and 
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multiplication of eiecrents of R1 by elements of A by 

+ [yI = {x 

a[x) = Íax). 

We shalt show that N, R0 and R1 are Amoduies and that N 

R0 R1. 

The associative and commutative laws of addition fol- 

low immediately from the corresponding laws in R. oreover, 

[x} + [01 [xh 

[X1 + [-X fol, 

where [01 is the secuence in which each element is 0. in 

addition we have 

(a+b)(x) [(a+b)x) [ax+bx} 

'4ax3 + (t,xI = atx1 + 

aUx} + Eye)) a(x+y} = [ax+ay) 

z[ax) + (aya) = a[x) + 

(ab)h) f(ab)x} r [a(bx)} a[bx 

If A has identity, then 

l'[xfl} [i.X) m 

Now if (x),[y) t Rl and a c A, then since 

Ux - 
- (xm 

A(x - Xm) + (y - 

we have 

L( x - xm) < 'r/2, ( y y1) < i/2 



inì pl le s 

and 

Implies 

((x-y )(x ymfl<; n m 

(xnxm) < 

(axnaxm) p(a)(x_x) < 't:, 

provided a O. This shows that - [y} R1 and 

a[x} R1. Thus R1 is an A-module. Similarly, R0 and N 

are A-modules, 

Suppose [x} E R0. Then there exists x E R and for 

each positive -r P a positive Integer N such that 

Thus 

n > N implies i(x-x) < -/2. 

m,n > N implies i(x - xm) < (x - + 4x - xm) < 'r 

14 

and [X) R1. Therefore, R0 is a submodule of R3. If 

{ x} t N, then 11m = O and Ext) t R0. Thus N is a sub- 

module of R0 and hence of R,, 

We have seen in section 1 that R014 and R1/14 are also 

A-modules. They are related in the fo11o;;ing manner. 

ThtcL 8 R R oA' a/N. 

Proof. Let be the A-module of secuences [xfl} for 

which x = X for all n, Then R ? Ro, for x - [x de- 

fines a l-1 mapping of R onto under which, for all x,y t 
R and all a e A, 
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+y [x y) [x} + [y), 

ax - [ax) 

Since [x} converges to x, R0. 

Now(ÌN [o), and for each L R0 there exists 

X E R such that 11m x = x, that Is (xe) [x} e N. By 

corollary 5.2, we have By corollary 5.1, R/ 

R1,43. Thus R R0/t4 Ç 

Also 

Thus 

Qr.pi1ary 8.1. If R Is complete, then R14 ' R. 

Next we show that R114 is complete. 

Lemma 1, If {xr,) e R1, then [R(x)) converges. 

Proof. From the properties of a norm, 

< i(x xm) + 

.t(X) < i(x..x). 

t(xm) - < L(X-X) (x Xm) 

- (x)I A(xn_Xm)i 

Therefore, [.(x)) is a Cauchy secuence of elements in P. 

Since P is assumed to be complete, the lemma follows. 

Let 

*([)) = 11m 

where [;;) is the ecuivalence class modulo N which con- 

tains [x}. 
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Lemma 2. is a norm for R/ and agrees with ii on 

the image R0,M of R. 

Proof, First we show that R1/N satisfies condition o) 

of definition 6. Thus if a[) O, then (ax,) s N and 

either a O or {x) e N. Therefore, either a O or 

= O. 

But 

By definition and lemma 1, t*({1) s P. If (xe) 

a N, then 

um M(x-y) O. 

for all n, so that 

lia (L(x) ii(y)) o, 

lia it(x) lia (y) a 

and 1.L* is singlevalued, Moreover, 

((r}) a O iff [c) s N iff t;;i o, 

*((1) O since (x) O for ill n; 

end 

j*(ax 
J) a 

lia L(ax) 

a (a)lim L(x) 

a 



Finally 
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t(x y) < i(x) + (y). (n 1,2,...), 

*([x +y}) *([}) + 

+ t;}) ; 

L*([) + 

This proves that is a norm, 

Now if (1 is the image of x t R, then {x) - e N 

and as above 

litri (i(x) - (x)) O, 

um (x) *U'}) 

This completes the proof of lemma 2. 

Lemma 3. Ro,4 is dense in R4' with respect to the 

topology imposed by the metric T«x,y) y). 

Proof, Let [} be any element of R1,4 and 't any posi- 

tive element of P, Then there exists a positive integer o 

such that 

n > no implies i(x -x ) < r/2. 
n o 

Thus 1f [yl is the constant seruence defined by y 

for all n, then 

ri > o implies (x-y) < c/2, 

or, passing to the limit 

*((x_;)) ¶72 < 1, 

*([} .. ty}) < 'V, 



p'.] 

-[}) < r. 

But ;i : R044, since h} converges to x0. Thus every 

'p-neighborhood of [} contains an element of R0ft. 

Lemma 4. Every eierrent of R14< is the limit of a con- 

vergent seouence of elements of R0/N. 

Proof. Let h;} be a monotone, null seouence of posi- 

tive elements of P. By lemma 3, there exists for each a t 

R1,4, a seouence with RoAI such that P*(a _ r) 
< ¶ Thus, for each ' > O in P, there exists a positive 

integer rio such that 

and hence 

n > no implies .L*(aj3) < < ¶, 

u = 11m 

Theorem 9. a114i is complote with respect to the norm 

Proof. Let be a null se-uence of elements of P. 

( In the Archimedean case we may take, for instance, 
' 

1/n.) Let be a Cauchy secuence of elements of R1/N 

and let be a secuence of elements of Ro/N such that 
j*( - < 

Now for any positive ¶ t P there exist positive integers n1 

and fl2 such that 
n,rn > t implies i*(a_a) < /3 

and 
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T 

Then for n,in > n0 max(nj, na), we have 

.*(p . ) < *(_u) + + 1L*(am_3m) n m 

+ - + 

+ ¶13 + ¶/3 T 

and hence is a Cauchy soouence. By theorem 8, R0A1 ' 

R. Let {} be a sectaence of e1ments of R such that 

under this isomorph.sr. By lemma 2, xJ is a Cauchy 

eouonce. Let R1,4 be the eouivalence class containing 

[xL Then for each n 

ji*(a,) p.*(c_,) + L*(_a) 
hin 1(Xk -x) 

+ 
k 

Now there exists an integer fo such that 

r,k > r. irpies (xk -x) < i/2 

and 

Thus 

fl > no implies T1. < ¶/2. 

n > no implies 11m L(Xk -xe) 
k 

implies *(a_a) <T. 

Thus i:al converges. 

We have shown that any normed module can be imbedded 

in a complete normed module. In particular, any real (corn- 

pi.x) normed linear space can be imbedded in a real 
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(complex) Banach space. The remainder of this section will 
be devoted to applying this result to integr1 domains. 

Theore 10. Any integral domain with valuation can he 

imbedded in a complete integral domain with valuation. 
Proof. Let R be an integral domain with valuation 

having values in P, Then we have seen that R is an R-module 

with norm p. By the above construction we obtain the corn- 

plete normed R-module R1A. Now since R R04, we have, 

in an obvious way, that R1/ is an RoA-moduie, in the sense 

of isomorphism. Moreover, p* * is a valuation for R0,41 

and p* j$ a norm for RjA'4 with respect to this valuation. 
Let OE,B he arbitrary elements of R1/. By lemma 4, there 
exists a seruence of elements of R0/N such that 

11m a 

The secuence ta} is a Cauchy senuence, for, if f 0, then 

given any positivo r L P, there exists an Integer such 

tha t 
rn,n > o implies _arn) < 

implies ç*(an_aîn1) nm)P*3) < 

If ß = O, then [01 is a Cauchy se-uence. 

We define two compositions + and in the set R1AT in 

the following way. + is the group addition in the module 

R1,4. For any a, e R1,4\T 

a2 = 11m 

wh er e 
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1ima. aRo/. 
[Note that if a t R0/4, then a!3 11m a$ afl.] 

n 

This composition Is single-valued, for if [a} also conver- 

ges to a, then (a -a} and conse'uently [a - is a 

null senuence. Thus 

um aB 11m a3. 
We shall show that R1/W with these compositions is an into- 
gral domain. 

The theory of double seruences of real numbers E3, p. 

247-292] is easily carried over to R1/N. In particular, if 
1%) end are convergent seruonces, then 

11m +) = 11m a + 11m 

um a 11m a 11m Bk nfl n n k 

where a 11m OEA. B = 11m 

seruonce of 

The first of these is a con- 

To prove the other wo note that for some M C P and all n 

Q*(a) < M. 

Thus 

= ,*(a),*(.) < M 

so that (u -aB} is a nul]. seouence. Thus 

11m (a3_aP) = O 
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11m um = 11m a0 11m 

Now let 1a, {} be Cauchy secuences of elements of 

R04 converging respectively to the arbitrary elements x and 

of R1/, and let y he any other element of R111. Then 

= 11m a0(iim 

Also 

and 

= 11m 11m 
n k 

= 11m 11m flkh' 
n k 

= ),Im 

-(u')'y. 

+ y) = lin! cx( + y) 

= 11m (cL +ay) 

11m + 11m 

= '3 + 

= 11m (-e)y 

= 11m (!1y+By) 

11m y + um 

= a.y + B'y. 

Fina11y suppose a'B O and O. Then 11m iÇ3 O 

and for each positive 'r P there exists an integer fl such 



tha t 

n > no implies *() < 'r 

Since *() O, this implies 
= 

arid hence 

a um = O. 

23 

Now R14 is automatically a commutative group with re- 

spect to addition by the definition of +. Thus R1/Ï is an 

integral domain and theorem 10 is proved. 

If R has an identity e, then RoA has an identity and 

= = 

jim ae = um a, 

so that is an identity for R1/I. If R is commutative, 

t h en 

= um um a3. 

Thus R1/ is also commutative. 

Finally, if R is a division ring, then 

(11m ¿1),a = 11m Çc um 11m a1k um tÇ1a 

80 that 
a_l = um 

and w have proved the foitowing corollary. 

Cpro1lar 10.1. Any field with valuation can be im- 

bedded in a complete field with valuation; any division ring 
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with valuation can be imbedded in a complete division ring 

with valuation. 
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SECTION 3, RINGS AND IDEALS OF BOUNDED SECUENCES 

W return now to the investigation of sequences of ra- 

tional numbers. Let R be the rational number field, let N, 

R0, R1 have the same meanings as in the revious section, 

and let R2 be the set of all bounded seouences of rational 

numbers. Thus N CR0 CR1 CR2. We define addition and 

multiplication in R2 just as we did for R1 in the introduc- 

tion; thus, 
[a} + [b} {a + b} 

[a)'[b} [ab}. 

Theorem 11. R2 is a commutative ring with identity. 

Proof. The associative, commutative and distributive 

laws follow directly from the corresponding laws for the ra- 

tional number field. Let [a} be any element of R2. Then 

{a} + [o) 

[aa) + [.m.a} = [O), 

[a)'[i} 
Thus (o) is the additive identity, [-a} is the additive in- 

verse or "negative" of [a}. and [i) is the ring identity. 

Suppose now that [ar), [b} e R2. Then there exist rational 

numbers A and B such that 
IaI < A, fbJ < B for all n. 

Then 
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Ia +bI < Ia1.I + JbI < A + L3 

IabI IaItbI <AB 

for all n, Thus [a} + [b}. a}(b} R2. This completes 

the proof. 

Theo;em 12. N is an ideal in R2. 

Proof, Suppose [ar' c R2; {b}, [c} t N. Then there 

exists a rational number A such that 

Ial < A for all n. 

By the definition of a null secuence, there exists for each 

'r > O a positive integer such that 

n > no implies lbI < 'v/A 

implies IabI < 'r. 

Likewise, there exists a positive integer n1 such that 

n > n1 implies IbI < t/2, ¡cRI < 'r/2 

implies Ib-cI Ib I + Ic I < 'r. 
n n 

Thus 1a}'[b fb} {c1} t N, nd N is an ideal in R9. 
n' 

Theorem 13. N is not prime in R9. 

Proof. Consider the secuences 

a (o,i,o,i,...} 

b 

Now a,b R2 - N and ab [o) N, 

Corollary 13.1. R9/ is not an integral domain. 

Ço1lar.y 13.2. N is not maximal in R9, 
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We are thus led to the conclusion that there exists at 

least one ring P such that 

i) NCPCR 
ii) P is an ideal in R2. 

Let JI be the class of all rings P satisfying i) and ii). 

By theorem 1, PuR1 is an ideal in R1 for all P E II. More- 

over, N PuR1, and since {i} £ R1 and [11 ' P, we have 

Pr\R1 p R1. Since N is maximal in R1, this proves the fol- 

lowing theorem. 

Theorem 14. PIR1 N for all P 

Theorem 15. R24' is a proper extension of the real 

number field R1/M. 

Proof. By corolliry 4.1, R114! R2,4. By corollary 

13.1, R1/N R2/N. 

Theorem 16. For each P £ U, R2/P is an extension of 

i /. 
Proof. By theorem 4 and theorem 14, 

R1/(PuR1) = R1,44 (R1 P)/P Ç R2/P. 

Obviously, R2/P will be a proper extension of R1/1 pro- 

vidsd P is not maximal in R2. However, we are interested in 

ths ces. where P is maximal in R2, for then, and only then, 

R2/P is a field. First of all, we must determine whether 

any P £ 11 is maximal in R2. In order to do this we make use 

of the 

Maximum rjncip],e. Let be a class of sets such that 



the union of any linear subclass of Q is an element of . 

Then Q h maximal elements. 

By a linear subclass A of we mean a cless A such 

that, if A,B A, then either A B or B A. 

The9rj 17. II contains maximal ideals. 

Proof. By the definition of II we have 

p L IT, Q :: p, p implies O II. 

Thus we need only to show that there exist maximal elements 

in TI. Let A be any linear subclass of il. Then 

U(A) L1[AZAEA) 

is an element of H. For suppose ,b e U(A) and c Ra. 

Then a e A, b e B for some A, B A. Since A is linear, 

either A B or E A. Suppose A B. Then a,b B, and 

hence a - b and ac belong to B. Thus a - b, ac U(A) and 

U(A) is an ideal in R2. Since N A for each A A, we have 

also N cU(A). Moreover, U(A) N, for if it were, we would 

have A su(A) = N contrary to the definition of II. Finally, 

I} p' A for any A A, so that [i) % U(A). Thus U(A) R2 

and U(A) II. By the maximum principle II contains maximal 

elements. 

Thus there exists an ideal such that R2/ is an ex- 

tension field of R1/. Moreover, by theorem 6, R2/ is a 

homomorphic image of R24\i, 
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SECTION 4 OTHER RINGS RELATED TO THE REAL NUMBER FIELD 

One might ask whether something similar to what we have 

done for R1 and R2 might riot be done for other rings of se- 

ouences of rational numbers, This is indeed possible. Let 

S be the set of all secuences of rational numbers. We see 

immediately that S is a commutative ring with identity, for 

the sum or product of two secuences (as defined in the in- 

troduction) is certainly a seouence. We shall be concerned, 

in general, with subrings of S, ideals in these subrings and 

the corresponding nuotint rings. 

In order to make our results meaningful, we should like 

to be able to compare the resulting quotient rings with the 

real number field R/L Thus the following theorem is not 

without interest. 

Theorem 18. R is t)e largest suing of S in which N 

is an ideal. 

Proof, Let a} be an unbounded secuence. Thus 
a 

O 

for an infinite number of subscripts n. Moreover, there 

exists a monotone, unbounded subsequence [a } of [a}. with 
k 

O. Let b = 1/a (k1,2,3,...) and let b = O for 
k 'k 

n 

n 
k 
(kl,2,3,...). Then (be) is a null sequence, but 

= [ab1 has a subsequence converging to i and 

hence is not null. 

In addition, we may show that there is no proper ideal 

in S which contains N, for, by theorem 7, NS is the smallest 



ideal with this property. But NS S, for (l/n} N and 

[ni t S. Thus, if fa,.} is any element of S, then [ari = 

[i/n}[na1 e NS. 

On the other hand, S is not simple, for if R is the set 

of all seouences having a finite number of non-zero terms, 

then R is ari ideal in S. By a trivial application of the 

maximum principle S must contain maximal ideals. If M is a 

maximal ideal in S then S4 is a field and (by theorem 2) 

M(\R1 is a prime ideal in R1. Then S/M is an extension 

field of the integral domain R1/(MfR1). The latter may or 

may not be comparable to the real number field. 
A ring which is in many ways more interesting is the 

set of all seouences [as) such that [(n + l)a -na_1} 
e R1, Now 

I 

E [(k+l)ak -kaki] = a n+l n 
k O 

so that, by a well-known theorem on the regularity of Cesaro 

sums [i. p. 101], we have that CC R1. Moreover, we have 

the following theorem, 

Iheorem 19. is a commutative ring with identity. 
Proof. Firs 

[i} e C, and we 

Let [agi and [bei 

[(n+1)a - nan_li 

t: of all, [i} [(n+l).l - n.1} t R1. Thu! 

need only show that C1 is a subring of S. 

be arbitrary elements of Cr1. Then 

e R1 and ((n+i)b -nb.1} e R1. Thus 

[(n+i)a - na } - [(n+l)b - nb 
1 = n-1 n n- 
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b) n(a1 b1 
belongs to R1, and hence 

1aI [b} [a, - 

belongs to C. Also 

X [(n+1)a _ na1}[b} {(n+1)anbrì na_1b} R1 

and 

y = [a_1)[(n+l)b - nb_1} = {(n+1)a1b na_1b_1} 

belongs to R1. Thus 

X + y = [(n+1)ab na1b1 + 

* ((n+1)sb nanibni} + [a1}[b} t R1, 

Finally, thai 
X + y [an_i}[bn} [(n+1)ab - n_ibn'-i} R1 

and hence [abÌ [a)[b1 C. This completes the proof. 

Now by theorem 2, N1\C1 is a prime ideal In 

Again calling upon the regularity of Cesaro surnmability, we 

see that [a} N(C1 if and only if [a,.) converges to o 

and [(n+i)a na_1) converges, which in turn is possible 

if and oniy if [(n+l)ar nani1 converges to O. Thus 

[a1 e Nr%C 1ff [(ri+i)a - n-l1 
t N. 

Theorem 20. is a field. 
Proof. It is certainly a commutative ring with the 

identity, e, which is the eouivalenco class containing [i). 
Lt [a) e C, and let 
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1. if a = O, 

= O otherwise. 

If (a.j N, then r O for n greater than sorno Thus 

«1 
(rn) £ N(\C1, 

Let 

(b - tan) - 

Then b O for any n and s C. Thus 1b) [bflØ1), 

(l/b). (l/b1 and [(n+l)b -nb) all belong to R1. 
Hence 

[i/b)[l/b1)C[b} + [b11 [(n+i)b nb1}J 

and (l/b} t CZ1. Now 

since 

= [(n+l)/b n/b1} £ R1 

= [11 - 

a(1/b) O if 
a 

O 

i otherwise, 

Since fr} c N(\C1, this completes the proof. 

13y theorems 20 and 4, we have the following theorem. 

Theorem 21. CZ1/(NCCZ1) is a subfield of the real 

number field. 

Finally, we remark, thzt the set of sequences sum- 

mable by Cosaro means of the first order is not a subring. 

It is, however, an R-module (as is th summability field of 

any "proper" method of summability). We might thus construct 
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modules comparable to the real number field (conceived as a 

module over the rational number field). However, in this 

case, the theorem corresponding to our lemma i fails to 

hold, so that we would be hard put to redefine the result 

as a ring. 
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