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A STRUCTURE THEORY OF MODULES
WITH A SPECIAL REFERENCE TO THOSE
DEFINED BY THE CAUCHY CONVERGENCE CRITERION

INTRODUCT ION

The familiar construction of the real numbers as
equivalence classes of Cauchy sequences of rational numbers
assumes a particularly elegant form when expressed in alge-
braic terms. A development of this type is given, for
instance, by Van der Waerden [5, p. 211-217]. Thus let R
be the rational number field, Ry the set of Cauchy se-
quences of elements of R, and N the set of null sequences
of elements of R, We define addition and multiplication of
elements in Ry by

{a } + {pn } = {a,+1 1,
s, }+{b} = {a by}

Then Ry is a commutative ring with identity and N is a max-
imal ideal in Ry. Hence the residue class ring Ry/MN is a
field, called the real number field., By defining "pesitive"
sequences of rational numbers, an ordering is introduced
into Ry/N, The principal results concerning Ry/N are:

(1) Ry/N is a field; (2) R is ring- and order-isomorphic to
a subfield R' of Ry/MN; (3) R' is dense in Ry/MN; (4) Ry is

complete, that is every Cauchy sequence of elements of RyN



converges; and (5) every bounded set of elements of Ry /N
has a least upper bound.

These results may be extended without any great diffi-
culty to the case wher: R is an arbitrary ordered field
(Archimedean or not) [5, p. 211-217]. The aim of the pre-
sent investigation is two-fold: first, to vary the above
construction by considering rings of secuences of rational
numbers other than Ry and kernels other than N and teo in-
vestigate the algebraic properties of the cuotient rings so
obtained; and, secondly, to generalize the construction and
the above~-mentioned results to other metric-algebraic vari-
eties, in such a way as to include some results which are
known, as well, possibly, as some which are not known,

In section 1 we state and prove some preliminary
results which are used in later sections. Section 2 is in-
tended as at least a partial solution of the second problem
posed above, while sections 3 and 4, algebraic in nature
and intent, treat some very special cases of the first
problem,

Throughout this paper free use is made of such well-
known results as the "fundamental theorem of homomorphism
for groups with operators" [2, p. 133] and its specializa-
tions to rings and to modules., In addition are used the
following set~-theoretic and algebraic symbols, with the
usual meaning: X, g, C, N, =, {xn} (denoting a sequence)
Finally, we adopt the abbreviation "iff" for "if and only if."



SECTION 1., DEFINITIONS AND PRELIMINARY RESULTS

We begin this section with some fundamental theorems
from the theory of rings and ideals,

Theorem 1. Let P and C be arbitrary rings such that
P< Q and let N be an ideal in Q. Then the intersection
NNP is an ideal in P.

Proof. NNP is not empty, for O ¢ NNP, If NNP =
(0), then NNP is an ideal in P. If x,y ¢ NNP and p e P,
then x - y &€ Pand x - y e N, so that x - y ¢ NAP, Also
x ¢ P, pe P implies xpe P, px ¢ P; and x ¢ N, p e P im-
plies p € Q, which implies xp € N, px € N. Thus xp ¢ NNP
and px ¢ NNP,

Corollary l.1. If N, P, Q are rings such that NP <
Q and N is an ideal in Q, then N is an ideal in P,

Theorem 2. If P and Q are rings such that P S Q and if
N is a prime ideal in Q, then NNP is prime in P,

Proof. Suppose x,y ¢ P and xy ¢ NNP, Then x,y € Q
and xy €¢ N, Since N is prime in Q, either x ¢ N or y & N,
Hence either x € NNP or y ¢ NNP, and NNP is prime in P,

If A and B are subsets of a group R, we denote by A + B
the set of all elements a + b of R, where a € A and b € B,
In general, A + B will not be a2 ring whenever A and B are.
However, we have the following theorem,

Theorem 3. If P and Q are rings such that P < Q and if
N is an ideal in Q, then P + N is a subring of Q. Moreover,

it is the smallest subring of Q containing P and N,
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Proof. P + N is certainly not empty. Suppose pis * ny,
ps * na are arbitrary elements of P + N with py,pe € P and
ny,ng € N. Then

(P:*nﬂ -(pa+na)°(P1'Pa)*(n;-ng)sf’+N
and

(py +ny)(pa +na) = (pypa) + (panz +nips *nyne).

Since N is an ideal in Q, pinz and niyps € N, so that ping
+ nyps + ning belongs to N. Since pips € P, this proves
that P + N is a ring, Now let R be a subring of Q contain~-
ing both P and N, If pe¢ P and n € N, then p,n ¢ R, Hence
p+neRand P+NcR, This completes the proof.

If N is an ideal in R, we write R/N for the residue~
class (quotient) ring of R module N. &ow in the above
theorem we have, by corecllary 1.1, that N is an ideal in
P + N, Moreover, if c €¢ P + N and we denote by E and 6.
respectively, the residue classes in Q and in P + N which
contain ¢, then cquite obviously o g;E. However, since any
element in @ may be written in the form ¢ + n where n € N,
we have ¢ = 0. Thus we arrive at the following inportant
isomorphism theorem.,

Theorem 4. If P and Q are rings such that P < Q and N
is an ideal in Q, then P/(PNN) = (P +N)N < QN,

Proof. For ecur. x ¢ Q, let x € Q/N be the residue
class containin; x and consider the mapping x =+ x of P into
(P+N)N, Clearly this mapping is a2 homomorphism., More-

over, it is onto, for any element of P + N may be written
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in the form p +nwith pe Pand ne N, and p + n = pe If
x €¢ Pand x = 0, then x € N and hence x ¢ PAN. Thus the
kernel of the mapping is PNAN and by the fundamental theo-
rem of homomorphism

P/(PAN) = (P +N) .,
We have already seen that (P +N)MN < QMN, and so the theo-
rem is proved.

Corollary 4.1, If P and Q are rings and N is an ideal
in Q, such that N € P € Q, then PN < QMN,

Corollary 4.2. If N is an ideal in the ring Q, and if
P is a subring of Q such that PAN = (0), then QN is an
extension of P, P = Q/N if and only if P intersects every
residue class of Q modulo N.

Next we introduce the concept of a module and give a
brief resumé of the elementary theory.

Definition 1. Let A be a rings. A set R is an A-mod-
ule iff R is a commutative group (operation +) and there
exists a function * on A X R to R such that for all a,b € A
and all x,y € R,

i) as(x+y) = aex + avy,
ii) (a +b)*x = a*x + bex,
ii1) (ab)*x = a+(be*x).
For the "product" a*x we shall write briefly ax.

Definition 2. Let R be an A-module. A subset N of R

is a2 gubmodule of R iff for all x,y € N and all a ¢ A,
i) x -y eN,



ii) ax & N,

Now let R be an A-module and N a submodule of R, We define
x ~y iff x =~y €¢ N¢ Then ~ is an ecuivalence relation and
partitions R into ecuivalence classes x. Furthermore, if
X~y anh u~v, we have x + u ~y + v and ax ~ ay for all
a e A, We are thus led to make the following definition.

Definition 3. Let R be an A-module and N a submodule
of R, The A-module consisting of the set of equivalence

classes defined by N and the compositions given by

i) x+y=x+y for all x,y € R,
ii) ax = ax for all x e R, a € A, where

% is the equivalence class containing x, is called the

guotient module of R modulo N, and is denoted by RN,
That R/N is indeed an A-module is seen by the follow-

ing equations:

a(x+y) = a(x ¥y) = a(x *y) = ax fay = ax +ay = ax *ay,

(a+b)x ={a +b)x = ax +bx = ax +bx = ax + bx,

(ab)x = Tab)x = a(bx) = a{bx) = al(bx).
Definition 4. Let P,C be A-modules. A single-valued

mapping x +y of P onto @ is called a homomorphism iff

i) x3 = yi, x2 = ys implies x3 + xg = y3 + ya,

ii) x = y implies ax = ay for all a € A,

Q is called the homomorphic image of P. The kernel of the
homomorphism is the set of all x € P such that x =+ 0, If
the mapping is 1l-1, it is called an jsomorphism and we
write P = Q,



A module is only a special case of the more general
concept of a group with operators (see Jacobson [2, p. 128-
186]). Thus the entire theory for the latter carries over
to the former., In particular, we have the

Fundamental Iheorem of Homomorphism. If P is an A-
module and Q is 2 submodule, then P is homomorphic to P/Qj;
and, conversely, if P is homomorphic to R and N is the ker-
nel of the homomorphism, then N is a submodule of P and
R=PMN, [2, p. 133],

Quite obviously if P € Q € R are A-modules and P is a
submodule of R, then P is a submodule of Qs We may now
state the analogue of theorem 4 for modules.

Theorem 5. Let Q be an A-module and let P and N be
submodules of G, Then PNAN and P + N are submodules of Q
and

P/(PNN) = (P+N)MN <€ QAN,

Proof. Suppose x,y € PAN and @ ¢ A, Then x - y €
PNAN, Also x €¢ P, x €¢ N implies ax € P, ax ¢ N and hence_
ax € PAN, Thus PNN is a Qubmcdule. Suppose x3 + y; and
xg *+ yg are arbitrary members of P + N with x;,xs € P and
Yi,y¥2 € N and let a ¢ A. Then

(xy +ys) = (x3 +ys) = (x3 =x2) *+ (yy -ya) ¢ P + N
and

a(xy +yy) = axy + ay; € P + N,

Thus P + N is a submodule.
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Again let x be the equivalence class of x € Q module N
and consider the mapping x =+ x of P onto P + N, This map=-
ping is a module homomorphism since ax - ax = ax for all
2 € A, The proof follows then exactly as for theorem 4,

Corollary 5.1. If N,P and Q are A-modules such that
N € P <Q, then PAN S O,

Corollary 5.2, If O is an A-module and if N and P are
submodules of Q such that NAP = (0), then QN is an exten~
sion of P. P = QAN iff P intersects every ecuivalence
class of Q modulo N,

Theorems 4 and 5 may both be deduced from the "second
1somorphish theorem" for groups with operators as stated
and provod'in Jacobson [2, p. 136]. In a similar way, the
following theorem is a special case of the "first isomor-
phism theorem" [2, p. 135],

Theorem 6. If M and N are ideals in the ring P, and
if M SN, then N/M is an ideal in P/M and

(PAR) /(M) = PN,

Proof. For each x ¢ P, let x € P/M and x ¢ PAN be the
ecuivalence classes modulo M and N respectively which con~-
tain x. Consider the mapping x - x of P/M onto PN, The
mapping is single-valued, for if x =y, then x = y € M and

hence x = y € N, Thus x = Y. Moreover,

Yy =x Y";+;o
y:

x +

X Xy =+ xy = xy,

so that the mapping is 2 homomorphism. Now



z=0 iff zeN iff 7z e NN,
so that N/M is the kernel of the homomorphism. By the
fundamental theorem of homomorphism then, N/M is an ideal
and (P/M)/(NMM) = PAN,

This theorem obviously remains valid if rings and
ideals are replaced throughout by modules and sub-modules.
However, we shall not make use of this fact in the sequel.

Theorem 7. Let Q be a commutative ring with identity,
and let MQ be the set of all elements of the form § m, 0,
where m; ¢ M SQ, ¢, € Q (1=1,2,44eor)s Then MQ iizthe
smallest ideal in Q which contains M,

Proof. 1If § miq; € MQ and § miqi e MQ, and if g € G

i=1 i=1
then
agag - Saje = Ch
Mm,Q, = m,o o= Em"q"eMQ
g=p 4L g g
and

P Enle,) = 2as
g Zmq, = m,{og,) = m,q, € MQ,
g=) 11 g 1 g

Thus MQ is an ideal in Q. 8ince Q has an identity e, MS
MQ, for m ¢ M implies me = m € MQ, Finally, if P is an
ideal in Q and M € P, then MQ € PQ = P,
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SECTION 2, COMFLETE NORMED MODULES

As before we cshall mean by 2 complete system or space
one in which every Cauchy secuence converges. It may be
shown that any metric space can be imbedded in a complete
metric space, whose elements are ecuivalence classes of
Cauchy sequences [4, p. 84-88]. The space which we shall
consider is in some ways less general, but it includes as
special cases two important applications of this construc~
tiont integral domains with valuation and normed linear
spaces. Moreover, the present theory has the advantage of
preserving the algebraic structure of these special cases.
Thus an integral domain will be imbedded in an integral do-
main and a linear space in a linear space. We begin this
section with some preliminary definitions.

Definition 5. A wvaluation for an integral domain A is
a function v on A such that for all a,b € A,

i) ¢la) € P, a complete ordered field,

ii) ola) > 0 for a # 0; o(0) =0,

iii1) eolab) = ¢(a)e(b),

iv) ola +b) < ¢(a) + o(b).
Since any ordered field may be completed in the manner indi-
cated in the introduction, it is no restriction to suppose
that P is complete. We note that, if A has an identity e,
then by ii) and iii) ¢(e) = g¢(-e) = 1. In any case 9(-a)
= o(a),
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Recalling the definition of an A-module from the pre-~
vious section we note that by i) and ii) of definition 1,
if oe A and O e R are the respective "zero" elements, then
ox = a0 = 0 and (~a)x = a(=x) = -ax for all a ¢ A and all
x € R, In case A has an identity e, we shall for the sake
of simplicity insist on the additional restriction
iv) ex = x for all x € R,
We are now justified in making the following definition.
Definition 6. Let A be an integral domain with valua-
tion ¢ to P an ordered field. Let R be an A-module satis~-
fyiﬁg the condition
o) ax =0 implies a = o or x = 0
for all a ¢ A, x ¢ R« A norm for R is a function p on R
such that for all x,y € R and all a € A,
i) ulx) ¢ P,
11) ulx) > 0 for x # 0: u(0) =0,
i11) wlex) = ola)pu(x),
iv) ulx+y) < ulx) + uly).
Since W(ax) = glea)u(=x) = gpla)u(=x), we have u(-x)
= u(x) by condition iii). A module with a norm defined is
called briefly a2 normed module, The ring A itself is a
normed module if R is taken to be the additive group of A,
multiplication is ring multiplication and u = 9, If A is
the real (complex) number field and ¢{a) = |a|, then R is a

real (complex) normed linear space, In any case, since
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wlex) = u(x), R s a metric space, with the metric ul(x,y)
= ulx - y).

We are now ready to define what is meant by & Cauchy
sequence in a2 normed module and thus to introduce the ques~
tion of completeness,

Definition 7. Let R be an A-module with norm i having
values in P and let {xn} be an infinite secuence of elements
of R, Then {x } is

i) convergent iff there exists an x ¢ R and for
each positive v € P an integer N such that
n >N dmplies ulx-x ) <
1i) Cauchy iff for each positive © ¢ P there exists
an integer N such that
nom > N implies u(x -x ) <=3 ond
iii) null iff for each positive v ¢ P there exists
an integer N such that
n >N implies u(xn) < 7.
In case 1) we call x the limit of {x,} and write x = lim x_
(or 1:- X, )

Let R be an arbitrary normed A-module (norm in P); let
N be the set of null secuences of elements of R; Rg the set
of convergent sequences of elements of R; and Ry the set of
Cauchy secuences of elements of R. If R is complete, Ro=
Rys Otherwise, we shall see that R may be imbedded in a
complete A-module. Let us define addition in Ry and
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multiplication of elements of Ry by elements of A by
a{x,} = {ax,}.
We shall show that N, Ry and Ry are A-modules and that N
R‘ Q Rlo
The associative and commutative laws of addition fol-

low inmdiatoly from the corresponding laws in R, Moreover,
(x,) + {0} = {x,},
{x,} + {=x } = {0},
where [0} is the secuence in which each element is 0, In

addition we have
(a+b)(xa} = {(a +b)xn} = {uxn*'hxn}

={ax,} + {bx,} = a{x} + b{x,},
al{x } + {y,}) = alx, +y,} = {ax +ay}
=(ax,} + {ay,} = alx,} + aly,},
(ab){x ) = {{ab)x ] = {albx )} = albx } = a(b{x }).
If A has zn identitiy, then
i} = {1x} = {x ]},
Now if {xn}.{yn} e Ry and a ¢ A, then since
wllx, =y,) = (x,=y,)) ¢ wlxy =x,) + wly, =y)e
we have

ulx, -x,) < /2, wly, =y,) < +/2
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implies
wl(x, =y )=xy = v ) ) <ws
and
wx, =x,) < (¢(a))"le
implies

u(axn-axm) = v(a)u(xn-xm) < 7

provided a ¥ 0. This shows that {xn} - {yn} ‘-R‘ and
a{xn} € Ry. Thus Ry is an Ae-module. Similarly, Rg and N
are A-modules,
Suppose {xn} € Rg. Then there exists x € R and for
each positive v ¢ P a positive integer N such that
n >N implies u(x-xn) < %/2.

Thus
myn > N implies mlx -x ) < wlx-x) + ulx-x) <=

and {xn} € Ry. Therefore, Rg is a submodule of Ry, If
{x,} € N, then lim x, = 0 and {xn} € Rg« Thus N is a sub~
module of Rg and hence of R;s. |

We have seen in section 1 that Rg/N and Ry/N are also
A-modules. They are related in the following manner,

Theorem 8. R = Rg/MN S Ry,

Proof. Let R be the A-module of sequences {xn} for
which x, = x for all n, Then R =R SRy, for x =+ {x} de-
fines a 1-1 mapping of R onto R under which, for all x,y &
R and all a € A,
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x+y = {x+ty} = {x} + {y},
ax =+ {ax} = a{x]}.
Since {x} converges to x, R SRy,
Now RNN = {0}, and for each {xn} € Ro there exists
x € R such that lim x = x, that is {x } = {x} ¢ N. By
corollary 5,2, we have R = Rg/N, By corollary 5.1, ReN
Ry/N. Thus R = Rg/MN C Ry,
Corollary 8.1, If R is complete, then Ry/N =R,
Next we show that Ry/N is complete.
Lemma 1. If {x } € Ry, then {u(x_ )} converges.
Proof. From the properties of 2 norm,
ulx,) € mlx, =x ) + ulx),
mix ) = wlx ) < mlx =x.).
Also

)e

wlxg) = mlx ) < wlxp =x ) = uwlx, -x

Thus
lu(xn) - ulx )] S wlxy =x )
Therefore, {u(xn)} is a Cauchy sequence of elements in P.

Since P is assumed to be complete, the lemma follows,

Let
w({x}) = 1im plx ),

where {?;} is the equivalence class modulo N which con-

tains {xn}.
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Lemma 2, u* is a norm for Ry/N and agrees with u on
the image Rg/NN of R.

Proof, First we show that Ry/N satisfies condition o)
of definition 6. Thus if a{;;} = 0, then {ax } ¢ N and
either a = 0 or {x } ¢ N. Therefore, either a = 0 or {Xx_}
= 0,

By definition and lemma 1, u*({;;}) e P, If {xn} -
{y,} & N, then

lim ul(x, -y,) = 0.
But
lulx,) = uly )| ¢ ulx, =y,)
for all n, so that
lim (u(x,) = wly,)) =0,

Um px ) = 1im puly ) = w({x})

and p* is single-valued. Moreover,
w({x}) =0 1ff {x ) en iff {x} =0,

p({x.}) 2 0 since wx,) 20 for all nj
and
we(a{x }) = w(@TxT) = we({ax})
= lim u(ax )
= gfa)lim u(x )

= gla)us({x}).
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Finally

wlx *tyg) & wlxy) + uly,)s (0 =1,2,...),

n
so that
e {x, v, 1)
() + (7D
This proves that p* is a norm.
Now if {;;} is the image of x ¢ R, then {xn} -« {x} eN

A

we({x 1) + uel{y, 1),

WD) + u (T,

A

and as above
lim (n{x,) = w(x)) = o,

lim p(x ) = M’({;;}) = ul(x).

This completes the proof of lemma 2,

Lemma 3., Ro/N is dense in Ry/N with respect to the
topology imposed by the metric H(x,y) = p*(x « y).

Proof, Let {x_} be any element of Ry/N and = any posi~
tive element of P, Then there exists a positive integer ng
such that

n > ne implies u(xn -xna) < %/2,

Thus if {y_ } is the constant secuence defined by y = Xno
for all n, then

n > ne dimplies ui{x_~-y.) < x/2,
n"Yn

or, passing to the limit
we({x, =v,}) ¢ /2 <,

w (BT = 7)) < =
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W) - G <
But {;;} € Ro/N, since {Yn} converges to x, . Thus every
teneighborhood of {;;} contains an element of Rg/M.

Lemms 4. Every element of Ry/N is the limit of a con~
vergent sequence of elements of Ro/N.

Proof., Let {Tn} be a monotone, null sequence of posi~-
tive elements of P. By lemma 3, there exists for each a ¢
Ry/N, a sequence {B } with B & Ro/N such that p*(a - B,)
<7, Thus, for each © > 0 in P, there exists a positive
integer ng such that

n > ne implies uﬂ(c'-ﬂn) <w, <7

and hence

a= 1im ﬁnq

Theorem 9. Ry is complete with respect to the norm
p*,

Proof. Let {7} be a null secuence of elements of P.
(In the Archimedean case we may take, for instance, 7, =
1/n.) Let {a } be a Cauchy secuence of elements of Ry/N
and let {p } be a sequence of elements of Ro/N such that

u*(a, - B,) < 7,0

Now for any positive v € P there exist positive integers ng
and nz such that

n,m > ng dimplies uﬁ(an-an) < %/3

and
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Tna < </3.,

Then for n,m > ng = max(ny, na), we have
ue(p ~B,) S w*(p,-a,) + u*(a ~a ) + u*(a -B )

$wy tutla -a)

<x/3 +x/3 +g/3 =<
and hence {B } is a Cauchy sequence, By theorem 8, Ro/N =
R. Let {xn} be 2 sequence of elements of R such that x, ™
B, under this isomorphism, By lemma 2, {xn} is a Cauchy
sequence., Let a € Ry/N be the equivalence class containing

{xn}. Then for each n
W a-a ) < p*la=p ) + u*(p -a)

< 1]%“ ﬂ(xk-xn) + 'Fna

Now there exists an integer ng such that
nsk > no dmplies u(x, -x ) < %/2

and
n > ne implies = < v/2.

Thus
n > ng implies lém wlx, =x ) < /2

implies uﬁ(c-an) < T

Thus {a } converges.
We have shown that any normed module can be imbedded
in a complete normed module. In particular, any real (com-

plex) normed linear space can be imbedded in a real
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(complex) Banach space. The remainder of this section will
be devoted to applying this result to integral domains.

Theorem 10. Any integral domain with valuation can be
imbedded in a complete integral domain with valuation.

Proof., Let R be an integral domain with valuation ¢
having values in P, Then we have seen that R is an R-module
with norm ¢. By the above construction we obtain the com-
plete normed Remodule Ry/N, Now, since R = Ro/N, we have,
in an obvious way, that Ry/N is an Ro/N-module, in the sense
of isomorphism. Moreover, ¢* = u* is a valuation for Ro/N
and ¢* is a norm for R;/N with respect to this valuation.
Let a,B be arbitrary elements of Ry/N, By lemma 4, there
exists a sequence {an} of elements of Ro/N such that

lim an = ds

The sequence {anB} is a Cauchy sequence, for, if B # 0, then
given any positive v € P, there exists an integer ne¢ such
that

myn > ng implies ¢*(a ~-a ) < <(o*(p))"L

implies 9*(an§ -amB) = v"'(an -cm)v"(b) < 7.
If B = 0, then {anﬁ} = {0} is a Cauchy sequence.
We define two compositions + and * in the set Ry/N in

the following way. + is the group addition in the module

Ry/MN. For any a,8 € Ry/NN
ag*f = lim anﬁ
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a = lim a a € Ro/MN.,

n'

[Note that if a ¢ Ro/N, then a*f = lim af = af,]
n

This composition is single-valued, for if {a;} also convere
ges to a, then {a -a'} and consecuently {u 8 - a's} is a
null sequence. Thus

1lim anp = lim Gaao

We shall show that Ry/N with these compositions is an inte-
gral domain, '

The theory of double sequences of real numbers [3, p.
247-292] is easily carried over to Ry/N, In particular, if
{an} and {5n} are convergent secuences, then

lim (o +B,) = lim a  + lim B

lim aan = lgm a. 1:- Bk = qf,
where a = lim an B = lim Bn* The first of these is a con-
secuence of
9*(a +B, -a=-B) < ¢*(a ~a) + o*(B, ~B).
To prove the other we note that for some M ¢ P and all n
9'(an) < M,
Thus
?‘(Gnﬁ ’“npn) - ?"(ﬁnh‘(ﬂ‘ﬂn) < M o*(p '5,,)

so that {anﬁ-anﬂn} is a null sequence. Thus

lim (“ns’“n%’ =0
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lim a B = lim ap = lém a, 1¢m Pre

Now let {an}, {8} be Cauchy secuences of elements of
Ro/MN converging respectively to the arbitrary elements a and
B of Ry/N, and let v be any other element of Ry/N, Then

a-(Bey) = l:m an(lém By Y)

ém an(BkY)

1? ).:m (an_Bk)Y

lim 1
n

lim ( )
. @.BalY

= (a*B)ey.
Also
as(B+y) = lim a (B+vy)
= lim (a8 +a v)
= lim anB + 1lim a y
= qs8 + qey
and

(a +8)ey = 1im (a +B )y
= lim (a v +B,Y)
= lim a y + lim B“Y

= ey + _B"Y-
Finally, suppose a*B = 0 and B # 0. Then lim aB =0

and for each positive v € P there exists an integer ng such
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that
n > ng implies ¢*(a B) <= e*(8).

Since 9*(8) # 0, this implies
orla ) = o*(a B)(e*(8))! < =

and hence

a = lim a = 0O,

Now Ry /N is automatically a commutative group with re-
spect to addition by the definition of +. Thus Ry/N is an
integral domain and theorem 10 is proved.

If R has an identity e, then Ro/N has an identity e and

eea = ea = a,

g*e = lim aA; = lim L = q,

so that e is an identity for Ry/MN. If R is commutative,
then
Bea = lim Bn“n = 1im “nan = q*B,

Thus Ry/N is also commutative.
Finally, if R is a division ring, then

(1im a;l)'a = lim a;la = 1im lim o~ 1

- 1
n k "

@ = lim a; a =

so that

a~l = 1im aal,

and we have proved the following corollary.
Corollary 10.1., Any field with valuation can be im-
bedded in a complete field with valuation; any division ring
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with valuation can be imbedded in a complete division ring
with valuation.
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SECTION 3, RINGS AND IDEALS OF BOUNDED SEQUENCES

We return now to the investigation of sequences of ra-
tional numbers. Let R be the rational number field, let N,
Ro, Ry have the same meanings as in the previous section,
and let Ra be the set of 2ll bounded sequences of rational
numbers. Thus N CRg CRy C Rg. We define addition and
multiplication in Rg just as we did for Ry in the introduc-
tion; thus,

{a} + (b} = {a +b]}
{a,}+(b ) = {a b}

Theorem 11. Rg is a commutative ring with identity.

Proof. The associative, commutative and distributive
laws follow directly from the corresponding laws for the ra-
tional number field. Let {an} be any element of Rg. Then

(s} + {0} = {a],
(] + (2] = (0},
{a}+{1} = {a,}.
Thus {0} is the additive identity, {-an} is the additive in-
verse or "negative" of {a }, and {1} is the ring identity.
Suppose now that {°n}' {bn} ¢ Rg. Then there exist rational

numbers A and B such that
|an| <A, Ibnl <B for all n.

Then
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|%+ngt%l+t%l<A+n.
Ianbnl = Ianllbnl < AB
for all n. Thus {an} + {bh}. {‘n}{bn} € Rg. This completes
the proof.
Theorem 12, N is an ideal in Rg.
Proof. Suppose {an} e Rgg {bn}, {cn} e N. Then there

- exists a rational number A such that
lln' <A for all n,

By the definition of a null sequence, there exists for each
Tt > 0 a positive integer ng such that
n>no implies |b | < /A

implies llﬁba| < 7,

Likewise, there exists 2 positive integer n; such that
n>ny dmplies |b | < /2, le,| < =/2

implies b ¢ | < Ip | + |e | <=
Thus {a }+{b }, {b,} = {e .} ¢ N, and N is an ideal in Rs.

Theorem 13, N is not prime in Rg.
Proof. Consider the sequences
a = {0,1,0,1,404}
b= {1,0,1,0,40.}
Now a,b € Rg = N and ab = {0} & N,
Corollary 13.1., Rg/ is not an integral domain,
Corollary 13,2, N is not maximal in Ra.
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We are thus led to the conclusion that there exists at
least one ring P such that

i) NcPCRg (N #P #Rs),

ii) P is an ideal in Rs.
Let I be the class of all rings P satisfying i) and ii).
By theorem 1, PNR; is an ideal in Ry for all P ¢ H. More~
over, N € PNR;, and since {1} & Ry and {1} ¥ P, we have
PNRy # Ry, Since N is maximal in Ry, this proves the fol-
lowing theorem,

Iheorem 14, PNRy =N for all P ¢ H,

Iheorem 15. Rsg/N is a proper extension of the real
number fleld Ry/NMN.

Proof. By corollary 4.1, Ry/N € Rg/MN. By corollary
13.1, Ry # R/,

Iheorem 16. For each P & II, Rg/P is an extension of
Ry /N,

Proof. By theorem 4 and theorem 14,

Ry /(PNR,;) = RyM = (Ry +P)/P S Rg/P.

Obviously, Rg/P will be a proper extension of Ry/N pro-
vided P is not maximal in Rg. However, we are interested in
the case where P is maximal in Rg, for then, and only then,
Rg/P is a field. First of all, we must determine whether
any P ¢ II is maximal in Rg. In order to do this we make use

of the
Maximum Principle. Let Q be a class of sets such that



28

the union of any linear subclass of Q is an element of 2,
Then Q has maximal elements,

By a linear subclass A of Q we mean 2 class A SQ such
that, if A,B ¢ A, then either A S B or B S A,

Theorem 17. I contains maximal ideals.

Proof, By the definition of II we have

Pell, QDP, Q¥ P implies Qe N,
Thusv we need only to show that there exist maximal elements
in 0., Let A be any linear subclass of II. Then
U(A) = UfAtAeA}

is an element of I, For suppose a,b &¢ U(A) and ¢ & Rgs.
Then a ¢ A, b ¢ B for some A, B ¢ A, Since A is linear,
either A S B or B S A, Suppose A S B, Then 2,b € B, and
hence a = b and a¢ belong to B, Thus a - b, a¢c & U(A) and
U(A) is an ideal in Rz, Since N €A for each A ¢ A, we have
also N S U(A), Moreover, U(A) # N, for if it were, we would
have A SU(A) = N contrary to the definition of H. Finally,
{1} # A for any A & A, so that {1} # U(A). Thus U(A) # Rg
and U(A) € I, By the maximum prineciple II contains maximal
elements.

Thus there exists an ideal P such that Rg/P is an ex~
tension field of Ry/MN, Moreover, by theorem 6, Rs/P is a
homomorphic image of Ra/N.
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SECTION 4. OTHER RINGS RELATED TO THE REAL NUMBER FIELD

One might ask whether something similar to what we have
done for Ry and Rg might not be done for other rings of se-
quences of rational numbers, This is indeed possible, Let
$ be the set of all sequences of rational numbers, We see
immediately that $ is a commutative ring with identity, for
the sum or product of two sequences (2s defined in the in-
troduction) is certainly a sequence. We shall be concerned,
in general, with subrings of 8, ideals in those‘suhrings and
the corresponding cquotient rings.

In order to make our results meaningful, we should like
to be able to compare the resulting quotient rings with the
real number field Ry/N. Thus the following theorem is not
without interest.

Theorem 18. Rg is the largest subring of $ in which N
is an ideal.

Proof, Let {a } be an unbounded sequence. Thus a, # 0
for an infinite number of subscripts n. Moreover, there
exists a monotone, unbounded subsequence {ank} of {'n}' with
*n, # 0. Let hnk = 1/:nk (k=1,2,3,...) and let b =0 for
n #n (k=1,2,3,...). Then {bn} is a null sequence, but
{'n}{hn} = {'nbn} has a subsequence converging to 1 and
hence is not null,

In addition, we may show that there is no proper ideal
in 5 which contains N, for, by theorem 7, NS is the smallest
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ideal with this property. But NS =S, for {1/n} ¢ N and
{n} € 8. Thus, if {a } is any element of S, then {a,} =
({1/n}{n}){a,} = {1/n}{na } ¢ NS,

On the other hand, $ is not simple, for if N is the set
of all sequentes having a finite number of non-zero terms,
then N is an ideal in 8. By a trivial application of the
maximum principle $ must contain maximal ideals, If M is a
maximal ideal in S, then S/ 1s a field and (by theorem 2)
MNRy is a prime ideal in Ry, Then S/M is an extension
field of the integral domain Ry3/(MNRy). The latter may or
may not be comparable to the real number field.

A ring which is in many ways more interesting is the
set Cil of all secuences {an} such that {(n + la, - “’n-l}

€ R’, « Now

do F .

so that, by a2 well-known theorem on the regularity of Cesaro
sums [1, p. 101], we have that CI1<: Ry. Moreover, we have
the fellowing theorem,

Theorem 19. cil is a commutative ring with identity.

Proof. First of all, {1} = {(n*l)«l « ne1} € Ry. Thus
{1} ¢ CIl. and we need only show that GIl is a subring of S.
Let {‘n} and {bn} be arbitrary elements of 6;1. Then
{(n+1)an - na ,} ¢ Ry and {(n*l)bn - nhn-l} € Ry, Thus

{(n*l)an - "'nol} - {(n+1)bn * “bn-l} -
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= {(n*1)(a = b ) = nla,_; = b, _,)}

belongs to Rj, and hence
{a,} = (b} ={a -1}
belongs to CIl. Also
x = {(ntl)a_ = nan_l}{bn} = {(n+1)anbn - "anolbn} e Ry

and

y = {an_l}{(n+l)bn - "bn-l} = {{n+l)a__,b = na _ib _,}

belongs to Ry« Thus

x +y = {(n+l)ab - nag by + 2, by}
= {(n+1)anbn - nan_lbn_l} + {'n-l}{bn} € Ry,

Finally, then
x tye- {an_l}{bn} = {(nﬂ)anbn e nan_lb _1} € Ry

and hence {anbn} = {an}{bn} e C;1. This completes the proof.

1 1

Now by theorem 2, NNCI* is a prime ideal in Ci~.

Again calling upon the regularity of Cesaro summability, we

see that {an} € Nf\CIl

if and eonly if {an} converges to O
and {(n+l)a = nln-l} converges, which in turn is possible

if and only if {(n*l)a = ne,_,} converges to 0. Thus
{s,} e NnCTh aff {(n+l)a, - na, 3} & N,

Theorem 20. Cil/(NNCil) is a field.

Proof. It is certainly a commutative ring with the
identity, e, which is the equivalence class containing {1}.
Let {an} € CIl, and let
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r. =1 ifa =0,

=0 otherwise.
If {an} # N, then r_ = O for n greater than some ng. Thus
{r.} e NncT,

Let

n

(b} = (o} - {x,}.
Then b, # 0 for any n and {bn} e Cit. Thus {bn}' {bn~l}‘
{l/bn}. {1/bn~1} and {(n+1)bh - “bncl} all belong to Ry,

Hence
{10, 3{1/p (b} + (b 1} = {(ntl)n, = nb _,}] =

= {(n*1)/5 = n/b_;} € Ry
and {l/bh} e cil. Now
{a 31w } = {1} - (=}

since

an(l/bn) =0 ifa =0

=1  otherwise.

Since {r_} ¢ nnert
By theorems 20 and 4, we have the following theorem.

Theorem 21. 6;1/(N/\C:1) is a subfield of the real

o this completes the proof,

number field.

Finally, we remark, that the set Cy of sequences sum~
mable by Cesaro means of the first order is not & subring.
It is, however, an R-module {28 is the summability field of
any "proper" method of summability). We might thus construct
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modules comparable to the real number field (conceived as a
module over the rational number field). However, in this
case, the theorem corresponding to our lemma 1 fails to
hold, so that we would be hard put to redefine the result

as a ring.
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