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With the advent of LSI, iterative forms of realization

of digital systems are becoming increasingly popular with

system designers. Many problems occurring in digital com-

puter design render themselves suitable for iterative

realization. These include adders, arithmetic logic units,

coding and decoding circuits and so on. Fault-free func-

tioning of such systems is very important, and this dis-

sertation develops multiple-fault detection tests for the

above class of arrays: namely, one and two dimensional

iterative arrays. The difference from previous work is

that each cell is modeled in terms of its state graph

behavior as opposed to more conventional techniques, which

emphasize the sensitization of paths representing the

electronics of the realization.

Using the transition matrix representation of the flow

table of an arbitrary cell in the array, the fault detection

test is generated by an algorithm that involves the compar-



ison of the rows in the matrix corresponding to the normal

and faulty state-behavior of the cell. The tests generated

are such that they test simultaneously more than one cell

in the array for the given fault. A graph-theoretic con-

dition is imposed on the state graph of the cell, for the

existence of such tests. The case of two-dimensional

array is viewed as equivalent to a one-dimensional array

by compression, either horizontally or vertically. This

enables the extension of the fault-detection test algorithm

for the one-dimensional array to the two-dimensional array

without further modification.



Multiple-Fault Detection in
Iterative Arrays

by

Chandramouli Ramamurti

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed May 5, 1978

Commencement June 1979



APPROVED:

Redacted for Privacy
Professor of Electrical and Computer Engineering

in charge of major

Redacted for Privacy
Head of Department of Electrical and Computer Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented May 5, 1978

Typed by Lora Wixom for Chandramouli Ramamurti



ACKNOWLEDGMENT

I would like to express my sincere appreciation to

Dr. R. A. Short, a dedicated educator, for his patience,

guidance and suggestions throughout my graduate career,

and above all, for having inculcated in me the tenacity

to persevere. Further gratitude is expressed to all the

members in my doctoral committee, and special appreciation

goes to Dr. W. R. Adrion who helped me with various,

valuable suggestions for my thesis. Sincere thanks are due

to Dr. R. R. Mohler for having provided me with financial

assistance throughout my stay at O.S.U.

Furthermore, I offer my sincere gratitude to Kalpa

and Sri who were a constant source of moral support during

my stay in Oregon.

Last, but not least, I owe everything to my father,

mother, brothers and sister, without whose constant support

I could not have achieved these goals.



TABLE OF CONTENTS

I. INTRODUCTION 1

II. REVIEW OF PREVIOUS ITERATIVE ARRAY RESULTS 17

III. MULTIPLE FAULT DETECTION IN A ONE-DIMENSIONAL
ITERATIVE ARRAY 37

3.1 Introduction 37
3.2 Assumptions 41
3.3 Fault Model 44
3.4 Some Useful Graph-Theoretic Tools 54
3.5 Analysis of Concurrent Testing

Procedure 59
3.6 Generation of C-Tests 66
3.7 Bounds on the Total Number and the 85

Length of Tests
3.8 Algorithm for the Generation of C-Tests 86
3.9 Examples 94
3.10 Fault Detection in Specialized Arrays 109
3.11 Conclusion 113

IV. MULTIPLE FAULT DETECTION IN A TWO-DIMENSIONAL
ITERATIVE ARRAY 120

4.1 Introduction 120
4.2 Model for Two-Dimensional Array 123
4.3 Fault Propagation in Two-Dimensional

Array 124
4.4 Test Derivation Procedure 127
4.5 Fault Location in Two-Dimensional

Array 129
4.6 Example 133

V. SUMMARY AND CONCLUSIONS 138

VI. BIBLIOGRAPHY 141



LIST OF FIGURES

Figure No. Page

1 An example of a combinational circuit
with a single fault 11

2 Redundant circuit 11

3 Derivation of tessellation set 20

4 Application of the input combination
(2,1), (4,2) to a two-dimensional
array 22

5 Determination of ultimate distinguish-
ability 24

6 Testing graph 25

7 Testing graph 26

8 Diagonal tessellation of two-cell blocks 28

9

10

11

12

An example of prime tessellation

One-dimensional array

Two-dimensional array

One-dimensional iterative array

13 One-dimensional array partitioned into
faulty and non-faulty modules

32

39

40

45

45

14 Iterative array with k faulty calls 47

15 Model for multiple fault cell array 47

16 Application of tq
p

to the one -

dimensional array 49

17 Application of t
ab

to the one-

dimensional array 52

18 State transitions when q
Z-1

is
applied to S. and S. 62



19 State transitions from S. and Sil

when S.3 = S in Figure 18 63

20 State transitions from S. and Sil

when Si5 = Sil in Figure 18 64

21 State transitions when 0001 is applied
to the NFP (AB) 65

22 Application of 001 to the NFP (CB) 66

23 Application of eji to Si and Si, 68

24 State transitions from (S.S. ) when
3 1,

Si2 # I1 E(Si) 69

25 Application of q9"
-1 = (al,a2,...,az_1)

to the NFP(S.S. ) 74
j 1,

26 State transitions from (S
1
S ) when

Z<n.

n r
27 Application of (q

1
-1

q
2
I
2

) to the

NFP (SiSi,)

77

78

28 Application of (qn-1q 1 I
d

) for the

NFP (S
j
Sk ). 93

29 Maitra cascade 109

30 Cut-point cellular array 111

31 Cut-point cellular array realizing
f(xl, x2, x3).

32 Diagonal construction of tessellation 122

33 Horizontal compression of a two-
dimensional array into a one-dimensional
array 123

34 Vertical compression 124



35 A column in a 2-dimensional array and
its equivalent cell in a 1-dim array 125

36 Two-dimensional array with a fault
in the ijth cell 130

37 Two-dimensional array with a faulty
cell (33) 132

38 Application of (B4O0) and (C,00) to
a 2x2 array 135

39 Application of (B,1), (C,01), (A,10)
and (D,01) to a 2x2 array 136



MULTIPLE-FAULT DETECTION IN
ITERATIVE ARRAYS

CHAPTER I

INTRODUCTION

Section 1.1

The current upsurge in the use of computing machinery

in all walks of life has made more crucially important the

error free operation of such machines. Von Neumann makes

an analogy to nature wherein he says, "...the basic princ-

iple of dealing with malfunction in nature is to make the

effect as unimportant as possible and to apply corrections

if they are necessary at all, at leisure,... ." In the

case of computers one cannot usually afford leisure, but

diagnosis should be immediate in the event of malfunction,

as otherwise it would lead to chaos in extreme environments

such as on-board computers in space vehicles.

As a result, considerable research has been directed

towards the area of fault-tolerant computing over the past

decade. The work can be broadly divided into two sub-

areas; namely, fault diagnosis and fault-tolerant redundancy

techniques. The former is most important in the day-to-day

maintenance of computing equipment while the latter is of

utmost importance in places where human interaction with

the machine is not possible, such as space vehicles.

Of course the most important factor in the design of
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reliable aerospace computers is to manufacture each

component, each part and each subassembly, so that they

are highly reliable. Because of increased performance

requirements and longer mission duration, it is still

necessary, however, to devise systems that tolerate fail-

ures. For example, the Saturn-V booster of the Apollo

moon mission used a computer with two-out-of-three voting

redundancy, implemented at the logic gate level, through-

out the machine. This approach results in a three-fold

increase in the component count, but significantly enhances

the reliability. Similarly the lunar excursion module

(LEM) was equipped with a backup guidance system, which

provided for LEM vehicle control in the event of failure

of the primary system.

However, it is evident that one need not usually

resort to such costly techniques in the case of systems

where direct human intervention is possible at all times.

It is in such systems that fault diagnostic techniques

play a key role in the day-to-day running as well as in the

manufacturing of these systems. After detecting the

presence of a fault in a circuit, location of that fault

up to a cell or component within the circuit involves

further testing. This results in increased testing time

and cost. Due to mass production at the chip level, a

mere detection of the presence of fault will be sufficient

and the faulty chip can be replaced with a good chip. We
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thus avoid further testing of the faulty chip in order to

locate the fault within that chip. Hence we see that fault

detection plays a key role in most diagnostic procedures.

The literature abounds with various fault-diagnostic

techniques for both combinational and sequential circuits.

However such techniques are not efficient when applied to

iterative circuits, which are highly structured circuits,

frequently used by engineers in the design of digital

systems. This is due to the fact that iterative circuits

have a regular geometry as compared to general combinational

and sequential circuits which are not regular in geometry.

In this dissertation we shall address ourselves to the

problem of fault detection in iterative combinational

circuits. Since iterative circuits can be packaged within

a single chip, the fault diagnostic procedure can be

limited to just fault detection. The following section

will consider the nature of this problem. Then we shall

review briefly the salient contributions that have been

made in the field of fault tolerant computing. We shall

stress the relevance to the complex digital systems of

today and tomorrow and also attempt to put our particular

problem into perspective.

Section 1.2

Rapid progress in LSI electronics suggests that cir-

cuits possessing a high degree of regularity will become
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increasingly attractive because of their relative ease of

fabrication. This has motivated considerable research

into the design of regular arrays of logical devices to

perform such functions as coding and decoding (Levitt and

Kautz [22]), data switching (Kautz [19]),and more general

logic operations (Kautz [18], Minnick [30], [31]). A

large number of duplicate integrated circuits can be fabri-

cated on single silicon wafer using the LSI technology.

There are two ways one could obtain the desired func-

tions with such wafers. In one way, the duplicate circuits

can be separated, packaged in separate chips and inter-

connected to form the desired functional circuit. The

interconnections need not necessarily be uniform. On the

other hand, each of these duplicate circuits can be uni-

formly interconnected with its neighboring cells on the

same wafer according to some regular pattern. The duplicate

circuits are called cells, and the entire set of uniformly-

connected, duplicate circuits are called a cellular or

iterative array. From the latter type of interconnection,

considerable reductions can be made in circuit wiring and

the number of package leads, thereby leading to higher

reliability and lower cost.

However the techniques for fault diagnosis differ con-

siderably from those for non-iterative forms of circuits.

This is due to the fact that the effect of a fault in an

arbitrary cell within the array is visible only at the
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boundaries of the array, and testing of the array for this

fault involves exercising the corresponding cell deep

inside the array - possibly through all possible input

combinations.

Kautz [17] was the earliest to investigate this problem

under a generalized fault assumption - the faults due to

malfunction of components within the cell may cause an

arbitrary change in one or more outputs of the cell

(external outputs or outputs to adjacent cells - although

he assumed the occurrence of Single faults only).

Kautz's work was followed by Friedman [12] who analyzed

the iterative array - both one and two dimensional - under

a restricted fault assumption, i.e; that only one output

variable can change at a time, and only a single faults

occur. In either of these approaches the notion has been

to classify special types of cells; e.g., cells with flow

tables that have permutation columns (each state appears

only once in a column in the flow table and all the states

appear in a column) for which tests can be generated

easily.

Prasad [35], too, has proposed similar ideas in his

paper, and he proves that the existence of the permutation

column in the flow table leads to an easier testing process;

in fact, methods of deriving test sets for such flow tables

require trivial computations. Recently, Dias [9], using

the concept of a distinguishing sequence (Hennie [15]),
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has described a test generation procedure, wherein each

test is capable of detecting faults simultaneously in more

than one cell of the one dimensional array. The tests,

called loop tests, can be used only with one-dimensional

iterative arrays with each cell having external outputs.

The author has shown that the problem of testing a one-

dimensional array for multiple faults is equivalent to

verifying the correctness of the truth table of the entire

array. It is further proved that the test set generated is

sufficient to verify the correctness of the truth table of

the array.

Turning to fault detection procedures for two-

dimensional iterative arrays, work done so far (Kautz [17],

Friedman [12], Landgraff [21], Chia [7], Prasad [35],

Dias [9]) has concentrated on determining a set of tessella-

tions (a set of inputs that can be applied to a cell in the

two-dimensional array) such that the tessellation set

contains all possible inputs that can be applied to a cell

input. It has been found that such a set doesn't exist for

all arrays. All have assumed single faults in their analy-

sis, except for Prasad and Dias.

Thus, multiple-fault detection in iterative arrays

has not been given much attention except by Dias [9] and

Prasad [35]. Test sequences that are cyclic in nature;

i.e., that test more than one cell at a time in the given

array, can be exploited in order to reduce the number of
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tests. There hasn't been any work in the generation of

such cyclic tests except for Dias, whose arrays need

external outputs from each cell in order to achieve such

tests.

It is the intent of this author to delve further

into multiple fault analysis of both one and two-dimensional

arrays and to investigate the nature of cyclic test

sequences for arrays without external outputs from each

cell. We shall examine the existence of such tests using

a graph theoretic condition. The nature of faults assumed

in our case will be similar to that of Kautz, in that the

cell output will be allowed to change into any of the (n-1)

faulty states (for an n state flow table which describes

the cell), an assumption that potentially covers a much

wider class of faults than usually assumed.

In the case of a two-dimensional array, a completely

new approach has been taken: the two-dimensional array is

considered as a one-dimensional array where each cell

(modified) performs the function of all cells in the

corresponding row (or column) in the two dimensional array.

This enables the extension of the one-dimensional-array

test algorithm to the two-dimensional array, with only

slight modifications.
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Section 1.3

Fault diagnosis emerged as an important problem in the

1950's when computers first appeared as fully developed

digital systems. Many of these systems relied on a combi-

nation of skilled maintenance and special hardware to

detect and locate faults. But as the complexity of the

logic circuitry increased, this approach tended to be

impractical because of its reliance on the skills of

technicians, and different approaches were necessary. An

early contributor was Eldred [10], one of the pioneers

who came up with a new idea of testing; namely, that of

testing the machine hardware rather than its functions.

This was the first time that anyone came up with a set of

tests for testing a combinational circuit. In his paper

he discussed methods to find input sequences to AND-OR

circuits which allow the detection of faults by observa-

tion of its outputs to specific test input sequences.

His work formed the basis for the path sensitization methods

to be proposed later by Armstrong [3] and Roth [36].

In order to proceed further it will be helpful if

certain terms are defined. Fault Detection is the process

of applying a set of tests to a circuit and deducing the

presence or absence of faults in the circuit by observing

the output of the system. Fault Location is a refinement

which enables the localization of the fault to a module or
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component. Finally, Fault Diagnosis includes either or

both of these processes. In general we are interested

only in faults that alter the logic function of a digital

circuit. These may be caused by such as an open circuit

on the network leads, a shorted diode or perhaps a short

circuit of the network leads. (Under such conditions the

logical value on those faulty leads are said to be equiv-

alent to either a logical '1' or logical '0'. In the

former the lead is said to be stuck-at-1 written as

's-a-1', and in the latter stuck-at-o written as 's-a-0'.

However with the increasing complexities of the

present IC chips, the identification of "stuck-at" faults

for a particular component or connection seems irrelevant.

This is because one is concerned only with whether the

entire chip is faulty or not, rather than with the parti-

cular nature of the fault inside the chip. Due to mass

production, it is less costly to replace a faulty chip

than to identify, locate and rectify the particular fault

inside the chip.

Faults may be either permanent or intermittent. Once

having occurred, the permanent fault will remain until the

faulty component is repaired or replaced. The intermittent

fault is of a transient nature, causing only momentary

changes in the circuit outputs. Recent studies (Mei [27])

have come up with a new type of fault known as a 'bridging

fault' (permanent), which is a fault caused by unwanted
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conducting paths, such as a spurious path between two leads

in a finished IC chip. Such faults are said to cover a

wider area of malfunction especially in the IC chips of

present day.

Let us illustrate how faults can affect a given logic

circuit. Consider the Circuit in Figure 1. Let us assume

the wire 'a' be s-a-1; i.e., the variable X3 is s-a-1.

Due to this fault the output function f will not be

the function acutally realized. The corresponding AND gate

(whose inputs are X2 and X3) will have an output X2 as

long as X3 is s-a-1 resulting in a faulty output function

f = (X2 (Xi + X3) + X1 X4. In order to detect the

presence of this fault we have to determine a suitbale

input combination, called a test sequence, which, when

applied to the circuit, will produce an output different

from the output of the circuit under fault-free conditions.

However this is not possible for all circuits. In redundant

circuits the presence of certain faults will not affect

the normal functioning of the circuit (Friedman [11]).

As an example, consider the redundant circuit in Figure 2.

Irrespective of the nature of fault on the lead a, corres-

ponding to the variable Z, the circuit will generate a

fault free function. Moreover a fault on a(S-a-o or

S-a-1) is not detectable.
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As mentioned earlier, the path sensitization method

was one of the earliest concepts in tackling the fault

detection problem. The basic idea is to choose a path

from the site of failure on to a circuit output and to

"sensitize" this path. Sensitizing a path means assign-

ing logical values to gates on this path such that the

output of the circuit depends solely on the fault that

has occurred. Sensitizing each path from failure site to

output becomes a cumbersome procedure for larger circuits,

and this led Roth [36] to generalize the method in such

a way that all possible paths from the site of failure to

the circuit output are sensitized simultaneously, and

concurrently a test derived to detect that fault. Roth

called this process the D-Algorithm, which happens to be

the first practical combinational circuit testing proced-

ure. It is also one of the widely used because of its

versatility.

While Roth's contribution tended to be more practical

and widely used, there were also a host of other investi-

gations in this area. Most of these are of pedagogic

interest only, although they did contribute to a better

understanding of the basic concepts in fault analysis.

Poage [34] was one of the first to derive tests using the

functional description of the circuit. The functional

description represents not only the relationship of the

output variable to the signals on the input and internal
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lines, but also the effect of fault on the output. This

is in contrast to the earlier methods where tests were

generated by assuming faults in each component within the

circuit and then propagating them to an external output

by using the path sensitizing concept.

Armstrong [3] followed Poage's concept, but altered

his method so that the functional descriptions involved

the identity of individual gates in the circuit. Yet

another approach was due to Sellers and Hsiao [37] who

used the Boolean difference of the circuit in order to

analyze the effects of a fault on the network output.

(The Boolean difference is the exclusive - OR sum of the

faulty and normal output of the circuit, hence its value

shows whether the circuit is fault-free or not).

The engineering cost question arises in these prob-

lems, and in this context cost reflects the number of

tests; i.e., a minimal test set has least cost. Using

mapping techniques and a tabular representation - akin to

the prime implicant table (McCluskey [26], Kohavi [20])

derived minimal test sets for combinational logic circuits.

Schertz and Metze [28] introduced the technique of "fault

collapsing" to reduce the number of faults to be considered,

thereby reducing the number of tests. (Faults which have

identical test sets form an equivalence class, and it is

sufficient to derive tests for just one member of that

class. For example given an AND gate a test to detect
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S-a-O on the input leads will be the same as the one for

S-a-o on the output lead. These S-a-o faults on the input

and output leads are thus indistinguishable and each fault

need not be tested individually. Such a technique is

known ad fault collapsing.)

Most of the techniques discussed above have been con-

cerned with the diagnosis of single faults. However such

an assumption may be quite improper for current LSI tech-

nologies where faults are very much dependent upon one

another. In such cases a multiple-fault assumption (more

than one fault occurring at the same time) is probably

necessary to produce reasonable detection results. Design-

ing multiple-fault detection tests for a combinational

circuit is computationally complex since the number of

multiple faults is larger than single faults even for

circuits with a small number of inputs. We have (3P-1)

multiple faults in a 'p' line network. Hence efforts have

been directed towards partitioning multiple fault into

equivalence classes which result in lesser number of tests

to be derived for fault detection purposes.

Several approaches to this multiple fault problem have

been proposed in the literature and we will enumerate only

the salient features of these studies. Test sets derived

under the single-fault assumption have been proven to be

capable of detecting multiple faults too (Metze and Cha

[28]). Many more authors have looked into the problem,
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notable among them being Yau and Tang [46], Bossen and

Hong [5], Schertz and Metze [29]. The methods suggested

by these authors involve a generalization of the fault

collapsing technique; i.e., the utilization of equivalence

classes of faults, as mentioned earlier.

We have thus far discussed the usual approach of

detection involving constant human interaction for the

fault-free operation of the system. However this has

proved to be inefficient in many cases, because of unaccept-

able delays involved in real time programs, due to manual

repair action, inaccessability of some systems for repair,

and the high cost of maintenance. An alternate approach

which alleviates much of these shortcomings is provided

by fault tolerant redundancy techniques. These use the

design of the network itself to act as self-checking or

self-correcting, thereby avoiding human intervention. A

system is fault tolerant if it functions properly (or

executes its program correctly) despite the occurrence of

logic faults. Fault tolerance is introduced into a system

so that the reliability and availability of the system is

increased.

Redundancy techniques have found extensive application

in spaceborne computers and in intensive health care instru-

mentation. An extensive and exhaustive summary on research

in this area can be found in Short [40] and Avizienis [4].

A more detailed review of pertinent work done in the
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area of fault diagnosis of iterative combinational array

appears in Chapter II, followed by a brief discussion of

the essential goals of this dissertation. Chapter III

deals with fault detection in the one-dimensional array

(combinational), while Chapter IV deals with two-dimensional

iterative (combinational) arrays. A fault model has been

developed in Chapter III, followed by an algorithm for

test generation, and finally some examples are given to

illustrate the techniques. The same algorithm is extended

to the two-dimensional iterative array in Chapter IV, and

an example is presented to illustrate the algorithm.

Finally, Chapter V brings out the main conclusions and

consequences of the dissertation in the form of a summary,

with suggestions for future work.
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CHAPTER II

REVIEW OF PREVIOUS ITERATIVE ARRAY RESULTS

Designing switching functions with iterative cells

offers considerable flexibility and practical physical

layout advantages compared with general combinational

designs that realize the same switching function

(McCluskey [25], Hennie [15]). Iterative arrays were

considered formally by Hennie [15] in 1961 and have since

attracted many researchers into the area of iterative

array design.

Many problems occurring in digital system design

render themselves suitable for iterative realization such

as adders, arithmetic logic circuits and so on. Minnick

[30], Maitra [23], Mukopadhyay [32] have considered the

realization of arbitrary switching functions in iterative

form, while Nicoud [33] and Cappa [6] have used iterative

realizations for arithmetic manipulations such as radix

conversion and binary division. Such regular arrays pro-

vide the advantage of large gate to-pin ratio and of ease

of fabrication, (due to the advent of LSI technology) as

has been said earlier. In view of this design concept,

error-free maintenance of such circuits requires a careful

study of its fault diagnostic aspects.

One of the earliest to examine fault-diagnostic tech-

niques for iterative arrays was Kautz [17]. He analyzed
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both one and two dimensional iterative arrays under a

single cell fault assumption. However he assumed the cell

output to change arbitrarily in the event of a fault in

that cell. By this he meant that faults in the cell output

could be due to either multiple or single faults within

the cell. The signals in the array were assumed to flow

from left to right in case of a one dimensional array and

from top to bottom, as well, in the case of a two-dimensional

array. Such signal flow is defined as a unilateral flow

of signals. Kautz's method of analysis is based on two

conditions; namely, (1) it should be possible to apply all

possible inputs to any cell in the array in order to test

the array; (2) for each fault in a cell there should be a

sensitized path which transmits the effect of a fault to

an observable output. He proves that a one-dimensional

array can be tested with a minimal number of tests (mn)

(m is the number of columns and n the number of rows in

the flow table) if each state appears an equal number of

times in the table and no column has two like entries;

i.e., if all columns are permutation columns. As an

example, a parity checker represented by the following

flow table can be tested with m x n = 2 x 2 = 4 tests

irrespective of the number of cells in the arrays. Fault

location is possible only if each cell has an external

output. In order to locate the fault within a pair of
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x Z 0 1

A A B

B B B

Flow table for parity checker.

adjacent cells it is necessary that no two rows be alike

in the external output entries in the flow table.

In case of two-dimensional arrays, Kautz restates his

earlier conditions to suit the structure of the two-

dimensional array. The existence of a set of tessellations

covering all possible input combinations is a necessary

condition for the array to be testable. (A tessellation

of the array is defined as a complete set of cell input

states which are configured in the same rectangular pattern

of the array and are compatible with one another along

the cell interface. By compatible we mean that, each

cell output state is the same as the input state to its

right and each cell vertical output is the same as the

vertical input to the cell below.) Figure 3 will help us

understand the concept of tessellation.

The set of states corresponding to the loop ((2, 1),

(4, 2)) can be applied to all cells in a two-dimensional

array; i.e., the set of inputs can be tessellated in both

dimensions (horizontal, and vertical) in a two-dimensional

array such that there won't be any incompatibility at cell



Z` 1 2 3 4

1 (2,3) (4,1) (1,4) (3,2)

2 (4,2) (3,3) (2,1) (1,3)

3 (3,4) (4,3) (2,2) (1,1)

4 (4,1) (2,1) (1,2) (2,4)

(a) Flow Table

y

(b) Basic Cell

20

Note: The entries
in the flow table are
of the form (ic,j7) where

is the horizontal
output and y is the
vertical output of the
iterative array cell.
(x,y) are the horizon-
tal and vertical input
to the cell.

(c) Successor Graph

Figure 3. Derivation of tessellation set.
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interfaces as Figure 4 shows. Hence a tessallation input

can be also defined as a set of input states corresponding

to a loop in the successor graph of the flow table because

of its capability of being tessellated in a two-dimensional

array.' If the input states corresponding to such loops

in a successor graph cover all possible (cell) input combi-

nations, the input states in each of these loops can be

applied to all cells in a two-dimensional array. The

fault in a given cell will propagate to an external output

either in the horizontal direction, or the vertical direc-

tion, or both, if no two rows or two columns of the flow

table are alike.

The tessellation problem is the same as the domino

problem, where a domino is a square tile with different

colors on each of its four edges.
*

Tammaru [42] has extended

Wang's undecidability condition to the tessallation problem

in two dimensional iterative arrays and in essence states

that existence of a set of tessallations covering all the

input combinations cannot be proved a priori; i.e., prior

to the test generation procedure.

The four edges correspond to the two inputs and two
outputs of a typical cell. Each such color pattern on a
domino is a' domino type. Wang [45] has proved that there
doesn't exist a general algorithm which will decide whether
an infinite plane can be covered with a finite set of dom-
ino types such that any two adjoining edges have the same
color.
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Figure 4. Application of the input combination (2,1),(4,2)
to a two-dimensional array.



23

In contrast to Kautz, Friedman and Menon [12] made a

restricted fault assumption; i.e., only one horizontal or

vertical output lead can be faulty at a time. Friedman

proposes that specific set of inputs less than the set of

all possible inputs will be sufficient to test the iterative

array because of this restricted fault assumption. Using

the principles of ultimate distinguishability, necessary

and sufficient conditions have been derived for the test-

ing of the one-dimensional array. Two states 'si,' and

's,' are said to be ultimately distinguishable if there

exists an external input combination to the one dimensional

iterative array such that the observable output is different

when s.
1

and sj are applied to the first cell of the

array. In order that there be a test for every fault, the

normal and faulty outputs or output states (of the faulty

cell) corresponding to that test should be ultimately dis-

tinguishable.

States that are ultimately distinguishable can be

obtained from a pair graph. A pair graph is one where

each node is a pair of input states (si, sj; i,j) and

contains nodes corresponding to the total number of

state pairs in an 'n' state flow table. A directed edge

exists between two nodes in the pair graph if there is a

transition between the two according to the flow table.

The nodes in a closed loop or nodes in a path leading to
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a closed loop represent a pair of ultimately distinguishable

states.

)6%.k,,, 0 1

0 0 2

1 0 3

2 0 3

3 2 1

(b) Pair Graph

(a) Flow Table

Figure 5. Determination of ultimate distinguishability

All the pairs in Figure 5 are ultimately distinguishable

except the state pair (1, 2). This criteria ensures the

propagation of the effect of a fault to an observable

output.

Another condition for testability is that it should

be possible to apply all necessary inputs to any cell in

the array (one-dimensional). Since Friedman has made a

restricted fault assumption, the set of applicable inputs

to an arbitrary cell need not contain all possible input

states. Test derivation procedures involve, first, reali-

zation of the cell in a circuit form (according to the

flow table), then the derivation of tests for faults

(s-a-1, s-a-0) in each wire of the circuit, and finally

the setting up of a table of faulty and normal outputs for

each fault. Later a testing graph is constructed using

the table of tests, for faulty and normal outputs as in
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Figure 6. Testing Graph
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If (x
j,

y ) (y
z

xjis the y input and is the input state)

is the test for a fault a(ae(s-a-o, s -a -1 }) in the faulty

cell then we draw an edge labelled yt (a) to (xi, xk)

Where X:i is the output corresponding to a normal transition

from :x. on the input y , and x
k

is the faulty output

(fault due to a). If there is another node (xj, xt) which

has an edge leading into (x. x
k
) and labelled yV then we

append (a) to this label. This is so because the change

xJ , ->x can be propagated using the input y
Z,

and is equiva-

lent to the fault 'a'.

After completing the graph an efficient fault detection

test set is obtained by finding loops in the testing graph

such that the edge labels in the loops cover the largest

number of faults in the circuit. The external input label
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corresponding to the edges in the loop form a test sequence

(Figure 7).

Y1(a)

371(a)x. x
1' j

Figure 7. Testing graph

From the above partial testing graph we have two tests

corresponding to the loop; i.e.,

(1) xiy2y1y2...

(2) xkyly2y1...

These two tests will test for the faults 'a' and tat in a

one-dimensional iterative array.

In order to locate the faulty cells in an array, use

is made of masking inputs. A masking input (xm, ym)

corresponding to a test t (t
i
= (xi, y

i
)) for a fault

is one such that the output of the normal and faulty

cells with the masking input applied is the same as the

output of the normal cell with 'ti' applied to it; i.e.,

f
(x

m'
ym ) = R(x , y ) = R(x., y.).

m m I. 1
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Essentially the masking input masks the effect of the

fault. A set of masking inputs is derived for all faults

and if a particular test indicates a fault in the array,

the corresponding masking input is applied to the first

cell in the array. A correct external output indicates a

fault in the first cell (since the masking input masks the

fault in the first cell). If the external output were to

be incorrect as before, the first cell will be fault free.

We now apply the same masking input to the second cell

as before and determine whether the second cell is faulty.

In a similar manner we apply the masking inputs to all the

cells in the array to locate the faulty cell. However

masking inputs may not exist for all faults in a cell,

hence the author extends the concept of masking input to

blocks of cells (each block of two or more cells) resulting

in location up to p-cell blocks (p>2).

Turning to two-dimensional arrays, Friedman makes use

of a diagonal tessellation where the cells along the diag-

onal of the array are all in the same state. This is called

a +45° diagonal tessellation. As mentioned earlier, a

successor graph is drawn and the states in a loop in that

graph can be applied to all cells in the two-dimensional

array.. This is done by applying each input state in the

loop to the leftmost corner cell in the array and the

succeeding states in the loop to the successive diagonals

in the array until the entire array is covered. However it
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is not always possible to generate diagonal tessellations

that cover all possible input combinations to a given array.

But some inputs that were not applicable earlier may be

applicable if we consider the tessellation of cell blocks

containing more than one cell (Figure 8).

Figure 8. Diagonal tessellation of two-cell blocks.

A successor graph corresponding to Figure 8, where each

node is of the form (xl, y1, y2), is drawn and the input

states ((x1, y1), (x2, y2)) contained in a loop in the

graph can be applied to all cells in the array. If there

are some more input states that cannot be applied at this

stage, a successor graph for three cell-blocks is drawn

to determine whether these states can be applied to the

array. The procedure gets cumbersome as the size of the

cell block increases. Moreover this procedure may not
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yield the complete set of applicable cell inputs and we

have no method of determining when to terminate the pro-

cedure.

In essence the notion behind the use of tessellations

is to generate a set of external inputs to the two-

dimensional array such that all input combinations can be

applied to all the cells in the array. Since each tessell-

ation set corresponds to a loop in the successor graph, any

faulty transition would result in an exit from the loop,

indicating the presence of fault.

While Friedman uses a set of masking inputs to locate

faulty cells within the array, Thurber [43] has evolved a

test set for fault location in Maitra cascades (single

faults) using a restricted fault set. Every cell in a

Maitra cascade is a two-input, one-output cell. His

approach involves the generation of a set of allowable

errors for each cell type in the cascade and the use of a

binary decision tree to locate the faulty cell.

Returning to fault detection in the two-dimensional

array, Chia and Coates [7] have introduced a procedure

which enables one to tackle the problem of the existence

of a tessellation. The set of tessellations is partitioned

into composite and prime tessellations where the former

corresponds to the set of input states contained in a loop

in the successor graph and the latter is one which is not

a composite tessellation. Chia defines each input-output
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relation of a cell as the status of a cell.

For the above cell (x, y, R, g) is called the status of

the cell. If R = x + 7 and g = K + y, the possible

statuses are a = (0, 0, 1, 1), b = (0, 1, 1, 1),

c = (1, 0, 1, 0), and d = (1, 1, 0, 1).

By assigning the status 'c' to a cell we can obtain

a composite tessellation; i.e., an input combination

corresponding to the status 'c' can be applied to all the

cells in a two dimensional array. Similarly by assigning

the status 'b' and the status 'd' to a 1 x 2 cell array

we can achieve a composite tessellation.

0-) 'b'

1

1

1

'd'

1

0

We will need two tests to apply 'b' and 'd' to all the

cells in the array, and one test to apply the status 'c'.

However the status 'a' cannot be applied to all cells in an
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array as mentioned above and hence is a prime tessellation.

Thus an heuristic procedure is used to apply the status

'a' to all cells in the array and the number of tests

required in the case depends on the dimension of the array.

Figure 9 shows a portion of the prime tessellation in which

the status is applied to the array. In order to apply 'a'

to all cells in the array of size m x n we need (m + n-1)

tests.

Since certain arrays are not easily testable, certain

design modifications have been proposed so that the modi-

fied array can be tested easily. Seth [38] in his paper

on the fault detection problem in two dimensional arrays

has developed a set of desirable and undesirable function

pairs - in terms of easier testability - where the latter

should be avoided in the design of iterative arrays. The

undesirable functions are those in which at least one

input combination corresponding to a function cannot be

applied to all cells in a two-dimensional array. For

example, one input combination corresponding to the function

pair (xy, x) cannot be applied to all the cells in a two-

dimensional array. At least one of the functions in an

undesirable function pair is a nodal function; i.e., a

nodal function is one which contains either a single 0

or a single 1 in the truth table representation of the

function. If f is a nodal function, there is only one

input combination which is mapped to the constant value
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c(0 or 1) and all other combinations are mapped to C.

under f.

Later, Landgraff and Yau [21] proposed more conditions

in addition to those proposed by Kautz [17] in connection

with the testability of one and two dimensional arrays.

The additional conditions were needed for flow tables that

did not satisfy Kautz' conditions. A suitable procedure is

stated for the modification of the flow tables that do not

satisfy the conditions for testability, thereby making

them easily testable. Basically this procedure identifies

certain types of transitions in the flow graph of the

cell, say, for example, self loops, and discusses their

correlation to easier diagnosability of the array.

Yet another design modification was suggested by

Prasad and Gray [35]. Under an assumption of multiple,

unrestricted faults they have developed tests for flow

tables that have one permutation column. If the input

corresponding to the permutation column in the flow table

is applied to the external input of all the cells in the

array; i.e., cells to the right of the faulty cell, the

effect of any fault is guaranteed to propagate to the end

of the array. The same results are extended to two-

dimensional arrays also.

Recently Dias [9] developed another procedure to

determine a test set for fault detection in a one-

dimensional array. Using the concept of distinguishing
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sequence (an input sequence whose application to a flow

table produces different output sequences for each choice

of the initial state) he derives tests for checking each

state transition in the given flow table. The test sequence

derived is cyclical in nature and hence checks simultan-

eously more than one cell for the corresponding state

transition. The test set thus derived is sufficient to

verify the truth tables of the normal and the faulty

array, thereby enabling multiple-fault detection in the

array.

The discussion thus far gives some idea of the differ-

ent approaches taken in the past for generating test sets

capable of detecting faults in one and two-dimensional

arrays. Insofar as multiple-cell failures are concerned,

only Prasad and Dias have developed techniques to detect

them, the latter only in case of one-dimensional array.

Prasad has concerned himself with a specific flow table and

the easier test generation procedure with respect to such

flow tables. The number of tests in his case depends on

the number of cells in the array.

Hence we will turn our attention in this dissertation

to the development of an algorithm for generating test

sets that are capable of detecting multiple-cell faults.

This will be independent of the nature of individual cell

design as well as the number of cells in the array.

Multiple-cell faults are more prevalent in LSI technology
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than single cell failures. While Kautz [17] has addressed

himself to the problem of fault detection in flow tables

with permutation columns, he has not extended his tech-

niques to an arbitrary flow table that possesses no

permutation columns.

The algorithm derived in this dissertation will gen-

erate tests for flow tables that obeys a graph theoretic

condition which is less restrictive than earlier methods.

The tests derived are generally such that each will simul-

taneously test more than one cell in the array for the

given fault. In the case of Dias [9] the loop tests

require an external output corresponding to each cell in

the array. Tests generated by our algorithm do not re-

quire any external outputs and the presence of such output

in each cell will in no way affect the generation of the

test set.

In case of two-dimensional arrays, earlier work has

mostly been confined to the determination of tessellation

sets that cover all possible input combinations to the

array. The approach we have taken differs considerably

from the above approach in that the two-dimensional array

is viewed as an equivalent one-dimensional array. This

is achieved by compressing the two-dimensional array either

horizontally or vertically. Such an approach facilitates

the extension of the results derived for the one-dimensional

case to the two-dimensional case too. As in the one-
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dimensional case, tests cyclical in nature do not exist

for all faults in a two-dimensional array. Hence it is

seen from the above that our approach is new compared to

the earlier work and that it addresses itself to the

problem of multiple-cell-failures, which is a more

realistic assumption in the context of contemporary

technology.



37

CHAPTER III

MULTIPLE FAULT DETECTION IN THE ONE-DIMENSIONAL
ITERATIVE ARRAY

3.1: Introduction

Over the past decade developments in integrated cir-

cuits have turned the attention of designers toward the

structural simplicity and design of systems using a stand-

ard set of subcircuits. Such structural simplicity is

found in a class of circuits known as iterative circuits,

that can be either combinational or sequential in nature.

Identical cells are connected in a one or two-dimensional

pattern, the connections being mere conductive paths with-

out any logic. Configurations such as these result in a

higher packing density, low cost, high functional perfor-

mance and simplified fault diagnosis, (Minnick [31],

Kautz [18, 19], Jump [16]). There are also arrays that

have been designed with different types of interconnections,

(Short [41], Giovene [14], Akers [2], Maruoka [24]).

However the testing of large arrays, in spite of their

structural elegance, is still a complex task.

In this dissertation, a combinational iterative array

is an array of identical combinational cells connected at

intercell edges either in a one or two-dimensional rectan-

gular pattern. The signals are assumed to flow from left

to right in the former case and top to bottom as well in
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the latter. These are known as unilateral intercell

connections, Hennie [15]. Figures 10 and 11 show a one-

and two-dimensional iterative combinational array respec-

tively. Each cell in Figures 10 and 11 is identical.

The internal logic is assumed to be combinational in nature.

X. is the horizontal input and is a vector, i.e.,

1
={xxa.'

1
...x11}.Similarlylf.1 is the vertical input

and is a vector, i.e., Yi = { 1 2
yi, yi,...yi}. Xi and Y.

are the corresponding outputs. An analogy can be made

between iterative and synchronous sequential circuits,

(McCluskey [25], Hennie [15]) thus enabling us to view the

X.'s and R.'s as input and output states and the

Y
i'

Y.'s as external inputs and outputs. This view

allows us to represent the terminal behavior of a cell

by a flow table of dimension (n x m) where 'n' is the

number of rows in the flow table and 'm' is the number of

columns. The entries in the flow table represent the out-

put state and the external output corresponding to that

row and colunn. The behavior of the array is determined

bythemappingX.x
i

. (i=1 in the case of

one-dimensional array.)



Y
1

I's

Y
2

Y.
1

Y.
1

Y

Figure 10. One-Dimensional Array

n
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x. > i1 -->-- i2

T

Y
1

Y
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Y.

Y.

Figure 11. Two-dimensional array.
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Example: If each cell in a one-dimensional array is

a realization of an Ex-OR function the corresponding flow

table for a cell in the array is as follows.

Flow Table:

2._ 0 1

0

1

0

1

1

0

3.2: Assumptions

Cell Realization:

Before proceeding further let us state the basic

assumptions on the nature of faults in which we are inter-

ested. The assumptions are:

1. All faults occurring in the array are permanent;

the fault remains until it is corrected.

2. The individual cell should be tested for all

possible faults by applying all possible

inputs to the cell.

3. Due to the second assumption each state should

appear at least once in the flow table and the

corresponding state graph should be strongly

connected and reduced.
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0 1

A B D

B C B

C B A

D C D
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The above state graph corresponding to the flow table is

strongly connected in that any state can be reached from

any other state and each state has appeared at least once

in the flow table.

4. Faults may occur within each cell as well as on

the intercell leads.

Fault analysis in digital circuits has generally been

directed toward s-a-0 and s-a-1 faults, [2]. In our case

we will be interested in a broader class of faults known

as state faults, [17]. An individual cell may have

single or multiple faults within the cell but each of

these faults results in a faulty transformation to a

state other than the correct one. Each such faulty trans-

formation will result in a new flow table, one different

from the normal flow table. Such faults are defined as

State Faults. In effect, any other component failure that

does not cause a state fault is not recognized as a fault,

and is acutally masked by the circuit design itself. In
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order to test for all possible state faults it is necessary

that we should be able to apply all possible input combina-

tions to each cell in the array.

At this point we will define propagation of faults.

Assigning suitable inputs to an iterative array such that

the array output state (external array output) is differ-

ent under faulty and normal conditions is defined as

propagating the effect of the corresponding fault.

Propagation of state faults requires that there exists

a sequence of external inputs capable of transmitting the

effect of such faults to an external output where it is

observable. The following lemma will help us prove the

existence of such a sequence for a reduced flow table.

LEMMA 3.1: An input sequence that distinguishes

between any two states in a flow table exists if the flow

table is reduced.

Proof: Let S1,...,Sn be the states in the flow

table, and Y1, Y
2'

...Ym represent the external inputs.

Let Si and S. be the two states that are to be distin-

guished.

Since the flow table is reduced there always exists

an input Ykl(ki = 1,...,m) that distinguishes Si and S.,

S

S

(Si # Sj but Si can be equal to Si and

S. can be equal to S.)
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SimilarlySiandS.can be distinguished by another

input Yk2. Proceeding in this fashion we can arrive

at a sequence of inputs Yk1Yk2Ykm (m<n-1) that distin-

guishes Si and S.. Hence all faulty state transforma-

tions can be propagated to an external output and so

are testable.

3.3.: Fault Model

In order to analyze the one dimensional iterative array

for its fault behavior consider an array modelled as in

Figures 12 and 13. The iterative array can be viewed as

partitioned into three modules. Initially we assume a

singly faulty cell and later will extend to the case of

multiple cell fault condition. In the above model the

faulty cell is isolated as an individual module, the fault

cell (FC). Cells that precede it are grouped together as

the fault free array (FFA), and the group of cells that

succeed it as the fault propagation array (FPA). Since

we have assumed unilateral signal flow, the FFA module is

independent of the FC and the FPA module in the iterative

array. The output function of the FFA can be written as
A

fFFIliwherefFFA=f(X,Y.;j=1, . ..,i-1) and recursively

the output of the

output of the FPA

faulty cell is fF-
u "FFA'= Yi). The

A "

is fFPA f(fFC' Yk ; k="4-1)"



_

X --> FFA

Y2 Yi-1
17Y21
I

4 ,-1

Y.

i2 i+1

/2 'i-1
Yi

1+1

Y.

Yn

1

1

n

Figure 12. One-dimensional iterative array with a faulty cell.

FC

Y.
1

FPA

k

Figure 13. One-dimensional array partitioned into faulty and non-faulty modules.
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The f's are functional equivalents to the output states of

each module. The external outputs are considered as

additional appendages and in our analysis they are not

taken into consideration (according to our initial assump-

tion). A test for a detectable fault in a faulty cell

(FC) would correspond to a sequence 't' where 't' is a

function of X and Y, i.e., t=(X, Y1, Y2,...,Yi_1,

Y Y
1,

i+1,,Yn), X, Ye(0,1).

Turning our attention to multiple cell faults, we now

prove that tests derived under a single fault assumption

will also be able to detect multiple cell faults.

THEOREM 3.1: Multicell faults (multiple-faults) in a

one-dimensional iterative combinational array can be

detected_using the same tests derived under the single

fault assumption.

Proof: The model corresponding to single cell fault

given in Figure 14 is modified in Figure 15 to represent

a multiple cell fault condition. If we assume an arbitrary

number of cells to be faulty, say the i, i+kl, i+k2,...i+ki

cells to be faulty, then Figure 14 can be redrawn as in

Figure 15. Let two cells i and i+r be faulty in the

given one-dimensional iterative array. Then in Figure 15

= i, (i+1),...,(i+r). Assume the fault on ith cell

to be a faulty state transformation Sm Sq instead



X-->-- FFA -->--

Y.

1

Y i+1

1 -->--

Y
i+k

(m = (i+r+2),...,n)

Figure 14. Iterative array with k faulty cells.

X-->-- FFA > MFC

(j .1,2,...(i -1);2,..i.,...jic.;m=i+k.+1
'

...n)
J 3

Figure 15. Model for multiple fault cell array.

Y

ilin

FPA
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Iz
of Sm----.9-SA

which is the fault-free transformation.

I
cSimilarly let the fault in the (i+r) th cell be S

a
---0-Sd

IC
where S

a
------4-S

b
is the fault-free transformation. Let the

tests derived for the ith and (i+r)th cell faults under

the single fault assumption be tq and tdmp al)*

I .., ;x EX, yimEYi)i.e., tq =(x , y,m,...Y(i...1)m, 1,' Ynm mmp m -J-

t
d =(x y ...y . I ... y .x EX y. EY.)ab a' la' (i+r-l)a' c" na' a ' la i

Let us now assume both the i and (i+r) th cells to

be faulty at the same time (multicell fault), and the

faults are as mentioned above.

Case 1. In Figure 16 let S
(i+r)

y(i+r)m
S
(i+r)

be

the input-output state transition of the (i+r th cell) on

an external input v (i+r)m(Y(i+r)m etmpq ). Let S
nm

(N) be

the output state of the nth cell when both i and (i+r)th

cell are fault free and S
nm

(F) be the output state when

^

only the ith cell is faulty. Snm(N) and Snm(F) are re-

sponses to the test sequence tq
p

under the two conditions

described above, (Snm(N) t Snm(F)). The propagation of the

th,
fault in the 1 cell under the presence of a fault in the

(i+r) th cell depends on the nature of S
(i+r).



Ylm'""Y(i -1)m

i
xmi-->-- 1,2,...,i -1

ii
i

Y (i+r)m Ynm

S.
.,

Figure 16. Application of tqp to the one-dimensional array.m
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(a). S
(i+r) a

In this case the fault in the (i+r) th
cell, i.e.,

I

S
a

c
d'

will not affect the propagation of the ith cell

fault. Hence application of tq
p
will detect the presencem

of the i
th

cell fault in the array.

(b). S(i+r)=Sa and y(i+r)m=In

Because of the above relation we now have the

following.

y(i+r)m
=s

(i+r)
)S
(i+r)

Y(i+r+l)m'""Ynm
S
d

)S
e

Corresponding to S
e

we have two possibilities, (S
e

is the output state of the nth cell).

1. S
e
= Snm(N)

'

i.e., if the output S
e

is the same

as the one under normal condition, the effect of

the (i+r) th cell fault has cancelled out the

effect of the ith cell fault. In essence these

two faults have masked each other. Hence the

fault will not affect the normal functioning of

the array.
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2. S
e
=Snm(F). Here the output S

e
is the same as

the one under faulty condition and hence the ith cell

fault is detected under the presence of the (i+r)th cell

fault.

Case 2. In Figure 17 let Si
Yla----+S be the

ith

input-

output state transition of the 1 cell on an external

input yia(yiaEtab). Sna(N) and Sna(F) are the n th cell

outputs (response to tab) on normal (both i th and (i+r) th
a

cell fault free) and faulty ((i+r) th cell faulty) condi-

tion, (Sna(N) Sna(F)).

The question whether the input state Sa can be applied

to the (i+r) th cell under the presence of the fault in the

i
th

cell depends on the nature of S
i

.

(a). SitSrn

ith
.In this case the fault in the 1 cell will not

affect the value of S. and S. will be equal to S
a

.

i+r

Hence the test tab will detect the fault in the (i+r) th

cell under the presence of fault in the ith cell.

(b). S.=S and y. =I
1 m la 1

The above relation leads to the following

transitions.



Yla"Y(i-l)a

1, 2,...,i -1

Y-ia

i

Figure 17. Application of tab
b

to the one-dimensional array.
a
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Si
Y ia

. =

S 3r(i+l)a'.."Yna
q 4D

Corresponding to So we have two possibilities as

before.

1. S
o
=S

na
(N). i.e., the output S

o
is the same as

the one under normal condition. Hence the effect

of ith cell fault is to cancel out the effect

of (i+r)th cell fault. The two faults have

masked each other.

2. S
o
=S

na
(F). Here the output S

o
is the same as

the one under faulty condition, hence the (i+r)th

cell fault is detected under the presence of ith

cell fault.

We conclude from both case (1) and (2) that the faults

in both cells (multiple cell faults) can be detected by

tq and t
ab'

each generated under single-fault assumption.
mp

The above result can be easily extended for k-cell faults,

k>2. In the above theorem we haven't mentioned multiple

faults within the same cell. This is due to the fact that

both single as well as multiple faults within the cell

result in erroneous state transitions in most cases. Such

erroneous state transitions are already included in our

state fault assumptions.
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3.4: Some Useful Graph Theoretic Tools

In our analysis of fault detection in iterative arrays

we shall make use of certain basic techniques from graph

theory. Let us agree on certain basic definitions [8]

before proceeding with the actual test generating procedure.

Each cell in an iterative array is identical except

in the case of certain special arrays such as Minnick's

cut-point cellular array where each cell realizes a

different function. A cell in an iterative array is repre-

sented by a state graph or a flow table. The state graph

is known as a digraph. A digraph (directed graph) G

consists of a set of vertices V = (v1,v2,...,vn) and a

set of edges E = (e1,e2,... ). Every edge is associated

with an ordered pair of vertices (vi, vj). A labelled

digraph can be interpreted as a state graph, where the

vertices correspond to the set of states in the flow

table and the edges to transitions corresponding to the

external inputs.

A walk in a digraph is defined as a finite, alternat-

ing sequence of vertices and edges such that each vertex

preceeding an edge is incident on the vertices succeeding

the edge, but no edge appears more than once. A closed

walk is one that starts and ends at the same vertex. A

path is an open walk (a walk that is not closed) in which

no vertex appears more than once. In a digraph such a path
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is known as a directed path. A digraph is said to be

strongly connected if there is at least one directed path

from every vertex to every other vertex. A closed walk in

which no vertex (except initial and final vertex) appears

more than once is called a circuit or cycle.

In order to manipulate graph structures, matrices

can be used as a way of representation and are often

found to be easy and convenient to operate upon. A state

graph can be represented as a transition matrix [39] T

where the rows and columns correspond to initial and final

states. Each entry e1 in the matrix corresponds to the

label Qk on the edge connecting state Si and S. i.e.,

Si
k the event of parallel edges (more than one

edge connecting the same ordered pair of states) the entry

e. . can be written as (2,
kl

+
k2

+ ) where 2.
kl' k213

are labels on the edges connecting Si and S and '+'

correspond to the OR function, denoting the fact that

transitions from Si can take place either on 2,

k1'
or

St,

k2'
etc. If there is no edge corresponding to a pair of

states, then, such an entry is marked as 0. The number of

non - p entries in the ith row of the matrix corresponds

to the out-degree of the vertex S
i

. In essence the T

matrix represents the state transitions of a typical cell

in the iterative array.
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T-Matrix Multiplication:

Definition: Ti is a matrix of power i., i.e.,

Ti = TxTxTx...T. (i times)

Definition: (e.. )k represents an entry in the Tk

matrix and is a sequence of length k

that transforms S. into
1

Sj

Ti x T3 is commutative, i.e., T1xT3 = T3xT1

T-Matrix multiplication follows the same rule as any other

matrix except for the following:

Rule 1: If two entries (a
ij

)
r

and (b
jk

)
s

, correspond-

ing to Tr and Ts, are multiplied, the result-

ing entry (c
ik

)
r+s in Tr+s will be (a

ij
)
r

(b
jk

)
s

. In other words (b
jk

)
s

is just appended

,

to (a
ij

)
r

. (c
ik

r+s
is s a sequence of

length (r+s) in the Tr-1-s matrix that trans-

forms S
i

into S
k'

Rule 2: If (a..)r = 0 then (a (bjk)s1J ij) k)
\s (clk)r+s=0

From the above two rules we see that entries in a Tk

matrix correspond to sequences of length landtliat,
ij

an entry in the T
k matrix, represents the sequence of

inputs (yi,yi4.1...yk) that will transform the state Si
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in the first cell (in a one-dimensional iterative array)

to S. at the output of the kth cell. The following

examples illustrate the representation of a flow table

by means of a transition matrix and multiplication of

such matrices.

Example 1: To illustrate Rule 1:

Flow Table:

\&7,,. 0 1

A A B

B B A

T-Matrix Representation:

A B

A
T =

B

T-Matrix

0 1

1 0

Multiplication:

where eAA =O, eAB=1, eBA=1, eBB =O

0 1 0 1

TxT = T2 = X
1 0 1 0

(0)(0)+(1)(1) (0)(1)+(1)(0)

(1)(0)+(0)(1) (1)(1)+(0)(0)

A

A 00+11 01+10

B 10+01 11+00

where (eAB)
2

={(eAA)(eAB)'(eAB)(eBB)1

In T
2

, (e
AB

)
2

= {01, 10 }
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i.e., 00 and 11 are the external y inputs that would

take state A back to itself.

Example 2: To illustrate Rule 2:

Flow Table:

7:. 0 1

A A A

B B A

T-Matrix Representation:

A

A B

0+1
T =

B 1

T
2

=
0+1 0 0+1 p

1 0 1 0

(0+1)(0+1)+(p)(1) (0+1)(p)+(p)(0)

(1)(0+1)+(0)(1) (1)(0)+(0)(0)

00+01+10+11 p

10+11+01 00

For simplicity the '+' signs in the T2 matrix can be

omitted and instead ',' is substituted. Hence,

T
2

00,01,10,11 p

10,11,01 00

In the above T
2 matrix since (e

1

AB
)
2 is a p entry,

there is no sequence of length two that will transform

state A to state B. It should be noted here that the
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thentries in the i row of the Tk matrix represent all

possible external y input sequences of length 'k'. Since

we have assumed a strongly connected graph, each column

of a given Tk matrix should have at least one non-0 entry.

If all the entries in a column of the Tk matrix are 0

entries then the state graph is not strongly connected

with respect to the state in that column.

3.5: Analysis of Concurrent Testing Procedure

Let us assume there are 'n' states in a flow table

representation of a cell in the iterative array. Corres-

ponding to every fault-free state transition there can be

(n-1) faulty transitions. Hence the number of faults to

be detected are (mn(n-1)), where 'm' is the number of

external inputs in the flow table. i.e., the number of

columns in the flow table. In order to be able to detect

all the faults in a p-cell one-dimensional iterative array

we should be able to apply all possible input combinations

to all cells in the array. Such a process, without any

simplification, would involve the application of (mn(n -i)p)

tests in order to completely test the array. The number of

tests required will be far less if a test derived for a

particular faulty transition can test simultaneously every

th
cell, (.9.<p), where 'Z' is the length of the test. How-

ever such test sequences do not necessarily exist for all
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faulty transitions corresponding to a flow table. Later

in this section a condition for the existence of such

test sequences is stated as a theorem.

It is the intent of this dissertation to develop an

algorithm that will generate test sequences of the above

nature using the transition matrix. Such a test will

be called Concurrent Test and denoted as a C-Test. As

stated earlier a fault in a cell is taken to be a faulty

d
I

statetransition.IfS.--,S . is the fault-free transi-

tion according to the given flow table, where Id is the

Id
external y input, then Si (V k # j), is a faulty

transition corresponding to the transition of S
i
on an

input of Id.

thLet the i cell be faulty in the given one-dimensional

array and the faulty transition in that cell be

I
d

. In order to detect the presence of the above

fault, (y
i+1'

. .

'

y
p i
)Et

j'
when applied to the FPA part of

the array, should propagate the effect of the fault to the

p
th cell output where it is observable. That is, the out-

put state at the p th cell due to (y
i+1'

...,y
p
) should be

different for the faulty array as opposed to the fault-

free array.
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Thus,

S1. d >S

j

s
k

Yi+1"..5713 ,s
t

(Sr t St)

where (yi+1,...,yp) is of length (p-(i+1)). From lemma

3.1 we know that such a sequence exists for any given pair

of states in the flow table. The upper bound on the length

of the sequence will be established later in this chapter.

Testing the entire array for the above state fault would

presumably require p tests, one for each cell. However

we will reduce the number of tests by using C-Tests that

are also capable of detecting all detectable multicell

faults.
I

Given the flow table of n states, let
1

I
1bethefault-freetransitionandS.--Si1 be the faulty

transition. Assume the ith cell to be faulty. Let us

analyze the nature of a C-Test with the help of the

following figure, Figure 18.

In Figure 18 each marked rectangle (S., S. ) repre-

sents a fault-free state (at the top of the rectangle)

and faulty state (at the bottom of the rectangle) transi-

tionfrmS.on I1. Such a pair will henceforth be called

as normal-and-faulty-state-pair (NFP). From Figure 18 we



Q -1) k-1) 9 -1)

S

imc(1,2,...,n) ; imtjVmcorresponding to the pair

im i V m corresponding to the pair

S .

S .

im

S .

1

S .

im

R -1)

Si(m-1

Figure 18. State transitions when c1.16-1 is applied to Si and Sit
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define (I
1

q
Z-1

) as a C-Test that will detect the presence

of the faulty transitions from S
i
on an input I

1
if (ir=ik)

for r=3,5,...,m; k=1,3,5,...,m, i.e., if the state pairs

in the enclosed rectangle (NFP) repeat. The C-Test will

apply to every Zth cell ('Z' is the length of the C-Test

(I
1 q, in the array, the input combination (S I

1
),

and will be able to detect the faulty transition to Sim

in these cells. The number of tests needed to test for a

particular fault depends on 'ir' and 'ik'. i.e., if r=3

and k=1 in Figure 18, then S
i3

=S
il'

The following figure,

Figure 19 illustrates this transition.

I
1

Z-1
Fault tree S. ----+

1transition

Faulty
transition

S.

Sit

Figure 19. State transitions from S. and S. when

S
i3

= S
il

in Figure 18.

According to Figure 19 the C-Test will be (I
1
q9"

-1
) of

length 'Z' and we will need 1.9.' tests to test the entire

I

array for the faulty transition S
1

----+S
il'

On the other

hand if r=5 and k=1, Si5=Sil in Figure 18. Once again we

will use another figure, Figure 20 to show this transition.



I

S.

Sil

Z-1 I

S .

Z-1
) S

i2

S.

Si3

q
Z-1

1g.
1

Z-1
q )S

I
1

i4---+

Figure 20. State transitions from S, and S
il

when

S
i5

=S
il

in Figure 18.
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S.

Si5

In the above figure (I
1

q
Z-1 ) will be the C-Test and we

will need (22) tests to test the entire array for the

I
1

faulty transitions Si -mil
I
1

and Si
i3"

Similarly for r=m and k=1 we will need mZ tests to

test the entire array for the faulty transitions

1
I I

S.
I1

.,Si
1

S.
1 13'" i(m...2). Later in the

chapter we discuss two cases when Z<p and Z>p where 'p'

is the number of cells in the array.

At this point we will illustrate the generation of a

C-Test with an example.

Example: Consider the following flow table representing

a typical cell in the array.

0 1

A B A

B C D

C D B

D C A
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Let us assume the faulty transition to be A---L-0-B as

opposed to the fault-free transition A---1-0A. In order to

detect this fault the following transition similar to

Figure 18 will give us the C-Test. (A method to generate

such a test

here that the

A 1 )

is

C-Test

=1,

the topic of next section.

has already been

1IM,
0001 1

A

Hence we assume

generated.)

0001
A

1A

B

A

D

A

D
0001 1 0001 1

Figure 21. State transitions when

11.=

0001 is applied to

MM11.

the
NFP (AB)

Corresponding to Figure 18, I, = 1, Si = A, Sj = A, Sil = B,

in the above transition (Figure 21). Each of the state

pairs enclosed in the rectangle corresponds to a NFP

pair and the sequence (0001) corresponds to q2'-1. (A,10001)

is the C-Test of length 5 and we will need only five tests

to test the entire array for the faulty transitions

lok--1-43 and Assume another faulty transition

0 0
where the fault-free transition is B )C.

The transition in Figure 22 corresponds to that of

Figure 19. The concurrent test (C-Test) is (B, 0001) and

is of length 4. Hence only four tests are needed to test

the entire array for this fault in any cell.



001

001}.

Figure 22. Application of

0
C

B

001

0 001

001 to the (CB)

.11111

NFP
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2-1The sequence q is such that starting from the pair

(S., S. ) the succeeding pairs of states (in response to

-1
qZ ) are non-equivalent states. i.e., there is no con-

vergence to the same state. Hence the following lemma.

LEMMA 3.2: A truncated C-Test where 2>p ('Z' is the

length of the C-Test and 'p' is the number of cells in the

array) will still detect the presence of the fault.

If the length of the C-Test is smaller than 'p' then

the total number of tests needed to test the array depends

only on the length of the C-Test sequence. However when

>p the same test in truncated form will still detect

the faulty transition (from lemma 3.2). But the number of

tests needed to test the entire array will be dependent

on p, the number of cells in the array.

3.6: Generation of C-Tests

At this juncture we will turn our attention to devis-

ing a procedure for the generation of C-Tests for all poss-

ible state faults in the flow table. We will be using the

transition matrix extensively during the test-generation
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procedure. Our objective is to derive a C-Test for a given

state fault that behaves as shown earlier. The test gener-

ation procedure will be divided into two steps, one

corresponding to Z<n, and the other 2 >n, where Z is

the length of the C-Test and n is the number of states

in the flow table.

Definition: eikw(eij.. GI ) corresponds to the weight of

theexclusiv.e-ORsumoftheentriese..and eik and is
ij

defined as the number of its in the exclusive-OR sum.

w(P) = 0, that is weight of a null entry is equal to O.

Step 1: 2 <n

Let us first consider Figure 23. Here we have to find

a sequence q2
-1 suchthatittransformsS.into Si

and Sil into Si2, where Si2 Si. Since the length

of the sequence q 2 -1 cannot be determined a priori, we

start with the transition matrix of power one (T) and check

whether there is an entry (e..) that differs from the entry
ji

eil,i ; i.e., whether there is an entry that satisfies the

following weight relation (R1).

w(eji 9 eili) > 1 (R1)

If there is one then,
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1 e..
1

Si S ---21-4-S.
i 1

Nti . S -111-+Si2
il,

Figuren.pipplicationofeJI to S. and Sil

At this stage we will define an Ii(i=1,2,...,m)

equivalent state (Ii is the external vertical input) with

respect to the state S
i

. If k states on the application

of external input I
i

goes into the same state as S
i

would on I1., then all the k states are called I.
1

-

equivalent states with respect to Si and are donted as

IiE(Si).

eg.,

Xx 0 1

A B C

B B D

C A A

D D C

In the above flow table both A and B goes to B on an

input 0 and hence we define A as a 0-equivalent state

with respect to state B. This is denoted as 0E(B) and

similarly B is 0E(A), A is 1E(D) and D is 1E(A).
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Continuing our analysis we see from Figure 23, if

Si2happenstobeI1 E(S1) then I
1

q
t-1 cannot be used as

a C-Test. On the other hand if Si2 is not a I1 E(Si)

we will have the following transition where qZ 1=e.
ij

S.
(q

1
Si

sil, S--- Sil

Figure 24. State transitions from (S. S,) when S
I
1

E(Si)
1 i2

Because of the transition behavior in Figure 24, I
1
q
t-1

is a C-Test of length 2 and two tests will be sufficient to

test the entire array. We now introduce an example that

will serve to illustrate the generation of concurrent

tests. The same flow table will be used throughout this

section.

Example:

,Flow Table: (F1)

\\I,c 0 1

A B A

B C B

C D D

D C A

(n=4)
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The T matrix corresponding to the above flow table is

as follows

A1000
A B C D

B O 1 0

T =
C 0 0 (0,1)

Dl 2 0

B is equivalent to D on a 0 transition, hence is

0E(D), and similarly D is 0E(B), A is 1E(D) and finally

D is 1E(A). Assume the faulty transition to be B__1_,C

and the corresponding fault-free transition is B___
1

_0B

In order to detect this fault, a C-Test (1 q9"
-1

) = le--BB (Z>1)

should satisfy, first, the weight relation R1 and later

the transition property of Figure 24. In the above

T-Matrix we see that w(eBB eCB) = 1. i.e., eBB. = 1 and

eCB = 0. Hence the following transition:

B
.111*

B

C

eBB
B

1

eBB 1

B

A

Since D is not a 1E(B) we proceed to find whether

eBB = 1 would satisfy relation (R1) with respect to

eAB. For eBB=1 and eAB =O we have w(eBB 9 eAB) = 1. Hence

we have the following transition.
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B

A

e
BB 1

)B

BB 1
)A r A

Therefore the C-Test is (B, 1 eBB) =(B, 1 q) = (B, 1 1).

The length of this test is 2 and it detects the faulty

transitions B 1± 1C, B )A. The total number of tests

needed to test an entire array for these two faults is

just two.

However we may not be able to generate all the C-Tests

corresponding to all state faults using the T-Matrix of

power one. Some of the faults may have test sequences of

length 2 >2. We then generate higher powers of the T-Matrix

(up to the (n-1) th power), and proceed to devise tests as

explained earlier. C-Test sequences generated up to this

point have a maximum length 5/ = n. Another example is

presented here that involves the use of higher powers of

T-Matrix.

Example:

Consider a faulty transition as opposed to the fault-

free transition 0 in the flow table (F1). From the

T-Matrix we find an e
CD

that satisfies the relation Rl.

i.e., for e
CD

= 0,1 and e
AD

= 0

w(.eCD 9 e
AD

) = 1
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Hence, for eCD = 0,

D
0

C

A
=1111..

0 0
) D

0 0
B

C

C

The above transition shows that (D, 0 eCD) = (D, 0 0)

cannot be a C-Test because of the convergence. It can be

shown similarly, that, using eCD = 1 will also result

in convergence. Hence we have to find the T2 matrix to

determine whether there is a C-Test for the given fault

with 2 = 3.

T2

11 10,01 00 93

0 11 10 00,01

01,11 0 00,10 9)

11 10 0 00,01

[Note: We will henceforth drop the superscript k corres-

ponding in Tk for sake of

simplicity]

We find both e
CD and e

AD
are 0. i.e., no sequence of

length two that will transform the states A and C to

D. Proceeding further we determine T3.



T
3

7

1,3

3,7

1,3,7

3,5,6

7

2,6

5,6
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[Note: Entries in the T 3 matrix are decimal equivalents
of the corresponding binary sequences of length 3]

We note that e
CD

's that satisfy the condition

w(e
CD

e eAD )>1 in T
3 are 4(100) and 5(101). We then

check whether (D, 0 eCD) for eCD = 4 can be a C-Test.

The following transition shows that (D, 0100) is indeed a

C-Test of length four and will detect the faults

D -2-0-A and D 2 D.

D
0

INI.1

C

A

100

100
C )

100

100 0

C

D
.111

After generating the C-Test we determine all the state

pairs between the NFP's corresponding to the sequence

qQ -1. Since these pairs of states are responses to the

sequence that is cyclic in nature, each such pair will

appear at a periodicity of 'Z'. If (q
Z-1

) = (a1,a2,

at_1), aie(0,1) then we see from the following

transition (Figure 25) that each of the pairs (Si3Si2),

(S
i4'

S
i5

),...are non-equivalent states and hence can be



S
J.

Sit

a a
2

a
3

a
k -1

I
11_, s. s

e Si13 i4 Si(k -2) 1

a a
2 0

a
3

a
k -1

I
1--A, s. ) 1,3 S

i(k -1)12 i5

S.

S11

Figure 25. Application of q
k-1

= (a1, a
2'

...a
k-1

) to the NFP (S.J S. )

11
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construed as NFPs. In essence the C-Test besides testing

the faulty transition Si -+S also tests for the

,faulty transformations Sj
a
1

-4-0.
2'

S
i3

a
2

i5'"'1

Si(Q-2)

a
Sil where the fault-free responses to

Sj, Si3,...,Sio...2) are Si3, Si4,...,Si respectively. As

an example, consider the flow table Fl and let

C
1
--)43 be the faulty transition, where C

1
D. is the

fault-free

fault is (C,

-11IMP

C 1)

transition. The C-Test

110110) where I
i

= 1

1 A 0 n,

corresponding

and qZ
-1

=

0 r, 1

(10110).

to the

D

B
.111

D

N 1
-'-B

1 1

,B

1 --1-

From the transition diagram we see that the C-Test

(C,110110) will also detect the faulty transitions

D-1-443, B 1 )A, B 0 'B as opposed

to the fault-free transitions D 1 0
'A, A

1B -43,

B
0

'C in the (i+1),(i+2),(i+3), and (i+4)th cells in

the one-dimensional array.

As said earlier, there may still be some faults for

which test sequences will have a length greater than 'n'.

In order to generate C-Tests for these faults we proceed

to Step 2.



Step 2: Z>n

In this step we address ourselves to the problem of

finding a set of C-Tests for the remaining faults (Z>n).

Figure 26, an extension of Figure 18, represents the

general case for (2,>n) and will help us understand the

nature of test design in this case.

Referring to Figure 26, let Si

76

I2
s
1

be a fault-

I
2free transition and Si. -S be the faulty transition.

n-1
)

.

(q is a sequence of length (n-1) enabling the transition
1

from S
1

to S
i2

. The subscript 't' corresponding to q n-1

denotes the order in which these q
n-1

are determined.

In practical cases it may not be necessary to go through

so many state perambulations as in Figure 26. An upper

bound on the subscript 't' will be later established as

equal to 'n'.

To facilitate the derivation of tests, Figure 26 is

broken down as indicated in Figure 27. With reference to

n
Figure 27, we first determine q

1

-1 from the Tn-1 matrix

such that S.
12 # 1

S.
3'

where S
i2

is arbitrary. We then

use a Tr matrix (r<(n-2)) to determine a 'q 2, satisfying

the transition requirement in Figure 27. The q's thus

obtained obey the weight relation R1 given in Step 1.



n-1 n-1 n-1
I

a
s s qt 2

.

1
2

)0=-4-i( -1) 1

n-1 n-1
q q

t
1

S. siT---, sir

n-1 ,11-1

'it 0 2
oi

n-1
ql

n-1
q. = sequence of length (n-1)
1

t<n

qljti -1 f2
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Si

Sil

n-1
c11 q2

S.
i2 1

n-1
q1

r = 1,2,...,(n-2)

Si S , S S.
iq 1 Sik

S
i3

r
c12

S .---2-.
iq

Si

S.

n-1 r
Figure 27. Application of (q

1
q
2
I
2

) to the NFP (S

If S
ik

= Sil in the above Figure 27, we don't need to
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)

proceed further, and (S I
2 q1-1 q

2
) of length (1+(n-1)+r)

will be the C-Test corresponding to the faulty transition

Si
I
2

. )S We now illustrate this using the following

example.

Example:

Assume D
1 1

)C and D---+A to be the faulty and fault-free

transitions in the

of length (9,<4) exists

n = 4. Let us use

A

T
3

=
B

C

C

flow table Fl. Also assume no C-Test

for the above fault. In our

T
3 matrix to find q

1

3 as in Figure

A

--
7 3,5,6 2,4 1,0!

1,3 7 0,2,6 4,5

3,7 2,6 (0,1,4,5)

1,3,7 5,6 0,2,4

case

27.

e
AD

-(2?CD
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In the T
3

matrix there is no e
AD that satisfies the

condition

w(e
AD

e
CD

) > 1

Hence A is driven to some state other than D and from

there back to D so that the above weight condition is

satisfied. As we scan rows 1

states A and C) in the T
3

cannot be driven to A and then

Checking the next column we see

the weight condition w(eAB

qi = eAB = 3 = 011.

i.e.,

1

and

matrix

eCB)

3 (corresponding to

we find that A

to D since e
AA = e

CA
=

that eAB = 3 satisfies

> 1. Hence

011
B

..MNIMINM

A

C

D

Now we have to drive B to

than D using the same q2
2

an eBD that satisfies w(eB

(The T2 matrix is given in page

following transition.

011

and

eAD)

72.)

A

>

to some state other

From T2 we find

21, to be eBD=01=q.

Hence we have the

D

9

7.
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A

C

011B

011A

01 1,
A

B

011B 01

01 1. 011A 01

3 2
q1 q1

, 1.

,

A

B

The C-Test (S1, I. q
1

q
2
) = (D, 101101) will detect the

faults D
1

'C and D
1 Only seven tests will be

required to test the one-dimensional array.

In Figure 27 if S
ik

S
il

we apply the same sequence

(q1-1 q
2

I
2

) to the NFP (S
1
S
ik

) and note the response. If

the response is the same as either one of the earlier two

NFPs, i.e., (S,Sil) or (SiSik), then we are done with the

procedure. Otherwise we continue applying the sequence

(qi
-1q2I2) until one of the NFPs repeat. Whenever there is

a convergence to the same state in the above procedure,

q
n-1 r

(I q2) cannot be used as a C-Test. At this stage
2 1

we go back to Figure 26 and determine q 2
-1

, a sequence of

length (n-1) from the Tn-1 matrix such that S
i4 # S i5.

We

then find a sequence q3 from the Tr matrix (r<(n-2)) as

before and check whether (I2q1
-1

q2
-1

q3) can be a C-Test

satisfying the aforesaid conditions. Similarly we proceed

in the sense of Figure 26 until a test satisfying the C-Test
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conditions is obtained.

This procedure as described will enable us to generate

all the C-Tests whenever they exist. However such tests

may not exist for all state faults. The following theorem

states a necessary and sufficient condition for the exist-

ence of C-Tests.

THEORE113.2:1,et{C.}, (k=1,2,...,r), r >1, be a set

of closed walks with respect to the state S. in the stage

graph. The length of any C1.1 is greater than or equal to

one. A C-Test exists for every NFP (S.J S
m
),(Vm, mtj), iff

k
1. there is a c.k c{C.} corresponding to every NFP

suchthattheclosedwalkfromS.and a path

from Sm (with the same label corresponding to

c.) do not intersect at the same vertex, and

those cg's that satisfy the above property should

contain all the edges entering the vertex Si and

2. whenever a new NFP (SjSt), (t m,j) is generated

from (S.J S
m j
) due to c

k

,

such a c, should satisfy

condition 1 with respect to (S.J S
m
).

Proof: Assume there is a C-Test for every NFP corresponding

to S.. Then we have the following transition
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S.
1

S.

S
1

S.

S2

eliI1
S.

Sp

If p = 1 in the above transition, c. = e.3.I
1' e..I1 31 1

will test the NFPs (S.j S
1 j

) and (S.S
2
). Since in each

case the NFPs are non equivalent states the closed walk

c, from Si and the paths from S
1

and S
2
have not inter-

sected at the same vertex. In addition ck contains the

edge entering S., i.e., c
j

= e..I where the edge with
J' ji 1

the label I
1

enters S.. From the assumption, there

will be a C-Test for each NFP, and in each case we can

prove, as above, the non intersection of edges at the same

vertex.

The sufficiency proof is obvious and hence omitted.

Q.E.D.

Although theorem 3.2 establishes the condition for

the existence of a set of C-Tests capable of detecting all

the faults, it should be noted that the existence of the

graph-theoretic condition cannot be established a priori.

If the condition of theorem 3.2 is not met, then there will

not be a C-Test corresponding to that NFP. This is shown

in the following example.
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Example:

Let the faulty and fault-free transitions be

A---2--4-D and A--2-0-B, in the flow table Fl. The corres-

ponding NFP is (B D). A c
k starting with 0 cannot be a

C-Test because B
0 0

)C and D )C. Similarly a c
B

starting with 11 cannot be a C-Test. However there is a

c
B

(found from the transition matrix) that satisfies condi-

tion (1) of Theorem 3.2,

i.e.,

A new NFP (B C)

to see whether 10010

3.2 with respect to (B

and this

10010

corresponds to 10010.

to 10010. Checking

(1) of Theorem

Convergence

MININIMM,

B

D

B

C
10010

generated

satisfy

we find

10010

OIMEMIIMMI

is

will

D)

due

condition

B

C

B

B
10010 .

intersection at the same vertex (B) and hence 10010 cannot

be a C-Test. For the given fault we have found that there

is no other c
k that will satisfy the conditions in

Theorem 3.2. Hence no C-Test exists for the above fault.

While only certain flow tables have a complete set of

C-Tests there are others which do not possess such tests for

all faults. Although non-existence of tests cannot be
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determined a priori, the corresponding flow tables can be

modified in order that the flow table has tests for all

faults. We now point out how such modification might be

successfully accomplished.

As we saw earlier, non-existence of C-Tests is due to

the intersection of a closed walk and a path at a single

vertex. In terms of state transition, this would mean the

convergence of the paths from the fault-free and faulty

state into a single state corresponding to any input

sequence. Such a flow table can be modified by adding an

input column to the flow table so that no two states are

the same in the new column, i.e., by adding a permutation

column. This is illustrated in the following example.

Example:

Referring to the flow table of example (2) we see

that the fault k--2-00 doesn't have a C-Test. Let us

introduce the modification and generate a C-Test for the

above fault.

Original Flow Table: Modified Flow Table:

1.,..,_ 0 1

A

B

C

D

B

C

D

C

D

A

A

.: 0 1 ja

ABDB
BCAC
CDAD
DCBA

4---ADDED
COLUMN

Using the modified flow table we can arrive at the following

transition.



ia ,a-a. 0
--4- ---4-

ia
a

i
a-4- A

i

4- B ---4- C 0
-4-

,MIOMP

B

D
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C -214- D -.14- A...

-4= A -A4- B -a, c...

And hence (A, Oi
aiaia) will detect the fault A------+D.

3.7: Bounds on the Length and Total Number of Tests

Let S.
1

I
d

)S. be a fault-free transition and

I
d Z-1Si -S

k
be a faulty transition. If (I

d
q ) is a

Z-1 Z-1
C-Test then S. q )S. and S

k
q )S where S

p

is not a IdE(Si).

Since the given flow table is reduced and strongly

connected there is an input '571' that distinguishes

Sj and Sk. If the response to yl is not (SiSp) we

continue applying inputs y2, y3,...,yr until we have a

(SiSp) as the response to (SjSk). We know that there are

only n(n-1) state pairs corresponding to an n-state flow

table. Hence the length of such a sequence of yi inputs

need not exceed (n(n-1)-1). So q
Z-

1<(n(n-1)-1) and the

length of the C-Test Z< 1 + (n(n-1)-1) = n(n-1).

For an n-state flow table we have n(n-1) faulty

state transitions. If there is a C-Test for each fault

then the upper bound on the number of tests needed to test

for a fault in the one dimensional array is Z = (n(n-1)).
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Hence the total number of tests - assuming 2.<p for all

C-Tests - needed to test the array for all state faults

will not exceed (mn(n-1) n (n-1)). The complexity on the

upper bound is 0(mn
4
) which is not dependent on 'p', the

number of cells in the array. However if, say, 'r' state

faults have C-Tests of length t>p, then the upper bound on

the total number of tests will be {{mn(n-1) - r} {n(n-1)}

+ rp} indicating the dependence on the number of cells

in the array when z>p for some C-Tests.

3.8: Algorithm for the Generation of C-Tests

The algorithm is divided into two parts, one for 2,<n

and the other for 2>n. Following is an explanation of

the notations in the flow chart for Part(1) of the algorithm.

Notations:

Id - -- List of NFPs corresponding to the
ij' Id

fault-free transition S1 WSJ

(d=1,2,...,m), (i =1,.. ,n).

Id
S.S fG. 1, (k J)j k

j

{I
d
} --- External input 'y'

{T..d} C-Test set for the NFPs' in {
13

Gij
d

}

{Lr} --- A set of NFPs (r=1,...,Q) that, on

application of q
r

(a binary sequence
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of length k, k<(n-1)) produces the same

response S.S , i p. I.e., y S.S1 p j k r

k k
q r qr

Si and S
k p

{Lr} Set of NFPs that are responses to S.S
p

on an input Id i.e.,

qr Id

Table 1 --- Obtained from T
n-1

matrix. It has

2
n-1

rows and (
n
2

) columns. Rows

represent binary input sequences of

length (n-1). Columns represent input

state pairs (S.S.j ). The entries in the

table represent the mapping

S.S.
j
x Y -4-S.S.

j
(output state pairs).

Y corresponds to the binary input seq-

uence in the rows.

Table 2 --- Obtained from T,T2 ,...,T
n-1

matrices.

Has ( 2) rows and n(n-1) columns.

Rows represent input state pairs (SiSj).

Columns are Output state pairs (S.S.j ).

Entries in the table are binary sequences

of varying length 'k'



(A final note
on the entries
in Tables
1 and 2 ---
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(k=1,2,...,(n-1)) that satisfy the
I% A

mapping (S.S3 .) x )
1 1 j

The blank entries in Table 1 correspond

to convergence to the same states and

is analogous to satisfying the weight

relation Rl. Similarly the mapping

relation in Table 2 satisfies R1.)



FLOW CHART FOR PART (t) OF C-TEST GENERATION ALGORITMS!

I

From Table 2 obtain the entries corresponding to the rows SjSk iSjSkcIG,j 1)

and columns SiS4 (p 14E(S,)). Rased on these entries, assign each SjSk

to a group I. such that all the members of a group have identical entry

k
qrk . (rm1.2 Q) eg.: gr

1d

SjSk----.. ISp J .
s ___s s

,--..--, .--,,--, s---4--'
L Lek L
r

'Step 2



(FLOW CHART EXPLANATION):

Step 2: Instead of checking the weight relation R1

(Section 3.5) for every faulty transition,

corresponding to a fault-free transition, we

use Table (2) which contains all the entries

Step 3:
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from the T
k matrices (k=1,...,n-1). In other

words, Table 2 contains entries that satisfy

the weight relation Rl. Find q
r'

an entry

from Table 2 such that V S.j S
k

E{L
r
} the

S
j
S
k

have the same qk .

r

ak I,
i.e., {S.S } -=.11-- (S.S ) --=--{S.S }

j k i. p j m
v---/ L,---1

L
r

"---..--'

L q
k

r r r

k
q

If S.S
M p'
E{L } then SjSm

r
and we will

have (Sj,Id qr ) as the C-Test for all the NFPs

in L
r

. Hence we check the covering relation

C {Lr} in this step

Step 4: Check whether we have C-Tests for all the NFPs

I

ij
d

in {G .}

Step 5: If the covering relation in step 3 is not satis-

fied, or if we haven't generated tests for all

the NFPs, the next qr is checked for the covering



Step 6:

relation of step 3 until we have exhausted all

q
k
's

I

If we don't have tests for all NFPs in {G.. },
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we remove from this list those NFPs which have

a C-Test and proceed to Part (2) of the algorithm

to generate C-Tests for the remaining NFPs.

If each one of these has a C-Test, then the

length of each will be greater than 'n'.

Algorithm: Part (2) (Z>n)

la.)

lb.)

t = 1
Id

}.Let there be R (R <n -1) NFP pairs in

For each of these NFP obtain {Mill} from Table (1).

n-1 1 1 1
(q1 , SrmSim)e{MR}

n-1
1 1SjSk ql

YS
rm

S
lm

{G {M1} ----d
ij

2. This step is performed for (t>1)

t ± -1 1 1{MR} = {MR} - {MR for t = 1, {MR} = {MR}

The above set-subtraction is performed for the

following reason: If there is no sequence of
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length 2,<n-1 that would take the states

t-1 t-1
R
-1

a.

(S
rm Szial ) c{Mt 1 to S.S

p'
then these state

pairs can be deleted if they are present in

{MR }.

3.) Check whether {MR} = p. If so go to 0 in

Part (1) of the flow chart. If not, for each

state pair in {Mitt} and if R obtain the entries

r
q2 from Table (2). Figure 28 illustrates this

procedure, and the process is similar to step

(2) in the flow chart for Part (1).

I

4.) yr determine S1 .S
d

±I,
1

L
2

.. L
s

'p r' r' '' r

s(s<n-1). Verify for V r whether L ( LP
r r'

p<s-1. This is the same as step (3) in the

flow chart of Part (1).

5.) NFPs corresponding to EL
r
P for 'p' satisfying

P

the covering condition in (4) will have a C-Test

(Si, I
d
q
n-1

q
r
), where q

n-1
is of length (n-1)

2

and q0 is of length less than (n-1).

Iri

6.) If {ELI) = {G ). then go to in Part (1){ELI)}

of the flow chart. This means that we have found



S .S
k

nql-1 1 1 qo

rmSQM ;Si Sp
d SAS

n-1 r,
ql q2'd

S .S
n

14-Lr-)-1

S S
P

14-1,74-1

n-1 1Figure 28. Application of (q. q Id) for the NFP (S.S
2 k
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tests for all the NFPs we started with in this part.

If not, then set t = t + 1. Since the length of the test

sequence is bounded by n(n-1) and the length of each 'q'

is not greater than (n-1), 't' is also bounded. I.e.,

(n-1
t

n
(n-)

)
n. Hence check if t>n. If so, go to 0

in Part (1) of the flow chart. Otherwise go to Step (2)

and follow the transition given below:

n-1 ,4-1 n-1
q1 2 ,2 qt t t

SjSk S
1

S
1

M
0 0 -----.+...

rm
Skmrm Q rm QM

H-
MR M2

3.9: Examples

mRt

The algorithm for Part (1) is illustrated in the

section with a complete example.

Example 1:

Design a one-dimensional, combinational, iterative

array that will output a 1 whenever it recognizes the

following regular expression,

((011)* + (11) *) ((010 + 10 + 00) ((010)* + (1010)

+ (100)
*

)

*
). Generate C-Tests for all state faults when-

ever they exist.



Flow Table:

*'.(_ 0 1

A B C

B D C

C D A

D B A

Flow Graph:

0

Part (1):

Step (1): i = 4, d = 2 (2 input (y) values),

I
1

= 0, 12 = 1

I

List of G.13

G
0
AB G

0
BD G

0
CD

G
0

DB

BA, BC, BD DA, DB, DC DA, DB, DC BA, BC, BD

G
1
AD

G
1
BC G

1

CA G
1
DA

CA, CB, CD CA, CB, CD AB, AC, AD AB, AC, AD

List of IdE(Si):

0E(A) 0E(D) 0E(B) 0E(C)

D A C B

95

1(EA) 1(EB) 1(E(C) 1E(D)

B A D C
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Generation of Transition Matrices for the given Flow Table:

p o 1 p 3 P 1 0,2

T =
p p 1 o

T
2

=
1,3 0 P 2

1 0 p o 1 0,2 3 co

1 o p 9) P 2 1,3 0

1,3,5 0,4,6 7 2

5 2,4,6 1,3,7 0
T
3 =

7 2 1,3,5 0,4,6

1,3,7 0 5 2,4,6

Note: The entries in the matrices are decimal equivalents

of binary sequences of length 'k', where 'k' is the

power of the matrix.

TABLE (1): OBTAINED FROM T3 MATRIX

AB AC AD BC BD CD

INPUTE
STATE
PAIRS

0 BD BD - - DB DB

1 AC AC - - CA CA

2 DB DB - - BD BD

3 AC AC - - CA CA

4 - BD BD BD BD -

5 - AC AC AC AC -

6 - BD BD BD BD -

7 - CA CA CA CA -
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TABLE (2): OBTAINED FROM T,T2 ,T
3 MATRICES

AC BD CA DB
OUTPUT STATE

PAIRS

AB 001,011 0,000 01 00,10
010

AC 11,001 0,000 1,01 00
011,101 100,110 111

AD 11,101 100,110 1,111 10

BC 11,101 100,110 1,111 10

BD 01,11 00,010 1,001 0,10
101 100,110 011,111 000

CD 01 00,010 001,011 0,000

Note: Since transitions from the state pairs in the rows

to AB, AD, BA, BC, CB, CD, DA and DC do not exist,

corresponding columns are omitted from the above table,

Table (2). Entries with respect to transitions from

BA, CA, CB, DA, DB, DC can be found as follows. If, for

example, entries with respect to the transition from BA

to (say) DB are needed, we look for entries in the row AB

and column BD since AB----4-BD is same as BA DB.

Step 2: Start with i = 1, d = 1, i.e., Id = 0

A

fault-free transition

fG
BA

1= (BA, BC, BD)

Using the entries in Table (2), the groups Lr are

formed as follows. The L
r

correspond to rows in the table.



B

D

..o..=

L
r

Lrqr
,

L
r

r = 1 BA

BD
01 AC BD

r = 2 BC

BD
11 AC BD

r = 3 BA

BD
101 AC BD

Step (3):

/1 --'17jL1 L
1
q
1

L
1

L
1

= (BA, BD) ; L
1

= (BD)

L
1
C L

1

Hence the C-Test for the NFPs in

L
1

is (A, I
1

q
1
) which is (A, 001)

Check:

Fault-free transition=>A--1)-

0
Faulty transition ===> I

Step (4):

Step (5):

B

A

D

B

D

Check whether EL
r

=
{GAB}AB

0
L1 GAB

Hence r = r + 1 = 2

t 3

01 0

01 ,

01

98



Step (3):

Step (4):

Step (2):
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L2 = (BC, BD) ; L2 = (BD)

L
2

C L
2

Hence C-Test for L
2

is (A, Il q2) = (A,011)

EL
r
= L

1
+ L

2
= (BA, BC, BD) =

(GAB}
r

C-Test set for {GAB} = (TAB } = f(A,001),(A,011)}
A

d = 2, Id = 12 = 1

1A-0-C fault-free transition

{GAC
}
= (CA, CB, CD)

from Table (2):

L
r qr

L q
r r

L
r

r = 1 CA

CB
1 AC CA

r = 2 CA

CD
01 AC CA

r = 3 CA

CB
111 AC CA
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Step (3):

C Li ; L2 C. L2 ; C-Test for L1 is (A,I2q1)=(A,11)

C-Test for L2 is (A,I2q2)=(A,101)

Step (4):

1
Lr = Ll + L2 = {G

AC }

r
IT
AC

1 = {(A,11),(A,101)1

Step (1):

i = 2, d = 1, I1 =. 0

.q fault-free transition

{GBD } = (DA, DB, DC)

Step (2):

From Table (2):

L
r qr

Lrq r Lr

r = 1 DB

DC
0 BD DB

r = 2 DA

DB
10 BD DB

r = 3 DB

DC
000 BD DB
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Step (3):

L1 C L1
;

L2 C L2 ; C-Test for L1 (B,I1q1)=(B4O0)

C-Test for L
2

(B
'

I
1
q
2
)=(B4O10)

Step (4):

Lr = L1 + L2 = {GBD } {TBD} = {(B4O0),(B4O10)1
'

In a similar manner we can generate C-Tests for all the

I

{G }'s whenever they exist. For this example we have
ij

C-Tests for all the NFPs. Following is the list of C-Tests

generated using Part (1) of the algorithm.

TAB
C

= {(A,001),(A,011)1 T
o
D = {(C,011),(C,001)}

Ti
AC C

= {(A,11), (A,101)1 TI
D

= {(C,11),(C,101)1

T
o
BD = {(B4O0),(B,110)} GDB = {(D,00),(D,010)1

T1
BC = {(B,110),(B,100)1 TDA = {(D,100),(D,110)1

Since each test is cyclic in nature, the number of tests

necessary for testing a one-dimensional array will be equal

to the length of the test sequence. For the given example

the number of tests needed to test all the cells in the

one-dimensional array is 22, well below the upper bound

stated earlier.
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The algorithm for Part (2) is illustrated in this

example.

Example (2):

Construct a one-dimensional, iterative array that

recognizes the following regular expression,

((01)* + (001)*)((000+1)((111)* + (100)* + (011)*
* *

+ (00) ) ). Generate C-Tests for the array whenever they

exist.

Flow Table:

x y 0 1

A B D

B C A

C D A

D C B

Part (1):

Step (1):

p 0 1 1 3 0,2 ,p

1 0 0 1 2 0 0,3
T = T

2

1 0 0 6 2,1 0 3

0 1 0 1,2 p 2 0



T
3

=

1,5,7 2 6 0,3,4

5 1,2,7 0,4,6 3

1,3,5 7 2,4,6 0

5 1,2,6 0 3,4,7

Table (1): Obtained from T3 matrix

103

AB AC AD BC BD CD

0 DC - DC CD - DC

1 AB - AB BA - AB

2 - BC - BC - CB

3 - DA - DA - AD

4 DC DC - - CD CD

5 - - - - - -

6 - - CB - CB CB

7 AB AB AD - BD BD
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AB AD BA BC BD CB CD DA DB DC

AB 001 0 11 10 00 1 000
111 100

AC 01 010 0,11 10 1 100
111 011

AD 001 111 11 0 110 00 1 000

BC 01 001 010 0 00
000 011

BD 1 10 111 110 100 11

CD 1 011 01 10 111 010 100 11 0
001 110 00 000

Step (2):

i = 1, d = 1, I1 = 0

0
B

{Go
AB

} = (BA, BC, BD)

From Table (2):

Lr qr L qr r Lr

r = 1 BA
1

AD
BC

BD AB

r = 2 BC 01 AB BC



Step (3):

Step (4):

Step (6):

L1 L1. Hence r = r + 1 = 2.

L2 C L2

Hence the test for L2 is (A, I
1
q 2) = (A,001)

Check whether EL
r

= {GAB}
A

L
2
t (BC) = {GAB}

A

{GAB} = {GAB} - {L2} = (BA, BD)
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Go to step (la) of Part (2)

Step (lb): Part (2)

R = 2 since there are two NFP pairs (BA, BD) that do

not have .0 -Tests at this stage

From Table (1):

M1 :

q1
BA

0 CD

1 BA

4 CD

7 BA

3

c12
BD

4 CD

6 CB

7 BD
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Step (3):

From Table (2):

L
r

3
q
1

M1
1

M1
2

r
q
q2

L qrr2 LlrrL2
r = 1 BA 000 CD -

1 AB BC

BC

BA 100 CD - BB

BD 100 - CD BB

r = 2 BA 000 CD -
001 AB BC

BC

BD 110 - CB BB

00010000._ 1
0 BCBA )AB BC

L 3 M1 1
L

1
L
1

1 2
1 1 1 q

2
1
q
2

L
1

Step (4):

In the block L1 we have one transition that satisfies

the covering relation L
1

C L
1'

i.e.,

000
CD 1

1111111,

BA

L
1

q
1

M1
1

ql
2

0 FE1 00010AB )F1

L
1
ql
2

1
L
2

Ll
1

Step (5):

Corresponding NFP is (BA), and the C-Test is

(A, I, q 1
q
2

) = (A, 00001). Incidentally this also tests

for the NFP (BC).
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Step (6):

2With respect to the NFP(BD), L, Li are (BB) indi-

eating convergence, and no test exists at this stage for

the NFP (BD).t = t + 1 = 2

Go to step (2)

Step (2):

1
M2

q
3

1
BA

4 CD

6 CB

7 BD

M
2
2

Obtained from Table (1)

q2
3

CD

0 DC

1 AB

2 CB

3 AD

4 CD

6 CB

7 BD

q
3

2
CB

0 DC

AB

2 CB

3 AD

q2 BD

4 CD

6 CB

7 AD

Delete from {M2} all the elements contained in {M2} since

we found earlier that BD cannot be driven through the states

in {M2} in order to generate a C-Test.

Hence {M
2

2
} {M22 } {M2}
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{M2 } :

q
3

2
CD

0 DC

1 AB

3 AD

Step (3):

q2 CB

0 DC

1 AB

3 AD

100 000 01 0 100000010r=1: BD )CD -.DC -.AB )BC )BB

v--)--,--' '---v--/ L,,..._, L---/

3 1 1L1 q
3

q 2 q 3
L
1

L
2

1 1 1

We do not have a test at this point because of the conver-

gence seen above (L 2 = BB). For all values of 'r' it has

been found that there is convergence. Proceeding further

we find that all the members of {M2} are contained in

{4}. After performing step (2) we have {M} = p. We

return to (A) in Part (1).

However C-Tests do exist for all other NFPs and they

are (generated using Part (1) and (2) of the algorithm)

as follows:

C-Test Set: (A,001);(A,111);(B4O01);(B,111);(C,00);

(C,010)(C,100);(C,11000);(D,00);(D,00100);(D,111);(D,100).

In order to test the NFP (BD) we will need 'p' tests where

'p' is the number of cells in the array. The total number

of tests needed is thus (38 + p).
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3.10: Fault Detection in Specialized Arrays

Until now we have discussed test generation procedures

for iterative arrays (cellular) where all the cells in a

given array realize the same function. However, there

are also one-dimensional arrays called Maitra cascades

[23] and Cut-Point Cellular arrays [30], where each cell

realizes a different function. Essentially, the cells in

both cases realize a two variable function. In case of a

Maitra cascade, each cell is flexible, in that the logical

elements in the cell can be set up to produce any one of

the sixteen functions of its inputs. Maitra has shown that,

even though each cell is a general-function cell, it is

not possible to produce an arbitrary function of n varia-

bles at the output of the end cell n if n>2. Figure 29

is an example of a simple Maitra cascade where each cell

has two inputs and a single input.

Y1

1

y 2

x
2

2

Figure 29. Maitra Cascade

In order to test the Maitra cascade for multiple

faults, the algorithm for one-dimensional test generation

cannot be applied directly. This is due to the fact that
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each cell in the Maitra cascade realizes a different

function. Instead we will adopt the following strategy.

1. Generate a T matrix for each cell individually

and let's call them T1, T2,...,Tn.

2. Perform the following matrix multiplication.

T
n+1

= Ti x T2 x...x Tn

(Tn+1 is a transition matrix where each entry (y1y2 yn)

is of length n. Since there are only two states corres-

ponding to any cell realization, an entry say, ell in the

T
n+1

matrix represents a sequence of y inputs that will

transform S
1

applied at the first cell into S
1

at the

output of the last cell (nth cell)).

3. Any multiple-state fault inside the cascade will

produce either a faulty or normal output at the output of

the end cell (n). In the latter case the faults are said

to be masked and cannot be detected (Theorem 3.1). This

permits us to omit the testing of every individual cell

(every Ti) in the cascade. Hence it will be sufficient to

test for all state faults (as before) in the Tn+1 matrix,

thus guaranteeing multiple-fault-detection in the Maitra

cascade.

Since all switching functions cannot be produced by

a Maitra cascade, Minnick [30] proposed a generalization

of the Maitra cascade that was functionally complete -
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that is, can generate all n-variable functions. His

realization, called the cut-point cellular array, was a two-

dimensional arrangement of cells, each cell realizing a

restricted set of two variable function (y, x+y, xy, x+y

xy xey) as shown in Figure 30. The horizontal input to

each cell is taken from a bus bar. The required function

f(x1,x2,...,xn) is realized as f
1
(x

l'
x
2

x
n

) +"
f2(xl,x2,...,xn) + + f

m
(x x

2'
...,x

n
)

'

where each

fi is realized by the corresponding ith column. In order

to get the arbitrary f, each of the terms f. is ORed,

using m rotated cells, each of which realizes the OR

function.

x
n

0)--

fl

V

f(xl,x2,...xn)

f
2

fm

Figure 30. Cut-point cellular array.
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Testing cut-point cellular arrays for multiple faults

is similar to that of testing the Maitra cascade. Each

column in the cut-point array is similar to a Maitra

cascade and is tested as described earlier. If the columns

are fault-free, we then have to test the collector row

(bottom row). Consider the cut-point array in Figure 31

that is capable of generating all three variable functions.

An arbitrary three variable function can be represented

as follows.

f(xl,x2,x3) = x2(xl, x2) + 3i311 (xl,x2)

1 or 0 or 0

Figure 31. Cut-point cellular array realizing
x ).

2' 3

The output of each cell in the third row in Figure 31 is

a product term of three variables. If there is an input
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combination (x
1'

x2'"" x
n
)e{0,1}n for which all

fi(xl,x2,...,xn) = 0., then the input (xl,x2,...,xn) can

be applied to the array in order to test the bottom row,

that is, we will make all vertical inputs to the bottom

row equal to 0 and if we set its left most input to

0, the entire row can be tested for all multiple faults,

[35].

3.11: Conclusion

In the preceeding section we have developed an algor-

ithm for the generation of tests that will detect multiple-

faults in a one-dimensional iterative array. The nature

of the test is such that generally more than one cell will

be tested concurrently. This results in the reduction in

the total number of necessary tests. However it has been

shown by means of a counterexample that such tests do not

exist for all flow tables. In our analysis of the nature

of faults we have been able to define a larger class of

faults, (i.e. larger than the "stuck-at" fault class),

namely state faults that cover all single and multiple

faults within the cell. Tests derived under this assump-

tion also detect faults in the inter-cell leads.

It should be noted that no mention of external outputs

is made throughout the test generation procedure. The

reason is that they serve no purpose while generating the

tests. The presence of external outputs would enhance the
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location of faulty cells. However, in the current inte-

grated chip technology, fault location at the cell level -

inside a chip - is not of much importance, since entire

chips would be replaced anyway.

Finally the bound on the total number of tests is

shown to be 0(n4 ) and doesn't depend on the numbei of

cells in the array except in cases where the length of the

C-Test is greater than the length of the array. In both

examples that were considered, the total number of C-Tests

were much below the bound, suggesting that further analysis

might tighten the bound considerably.

One way in which the bound can be further tightened

is by using the concept of fault equivalence. We know

that faults which have identical tests form an equivalence

class[13].Lettherebeicij (i = 1,2,...,mn;j<n-1;

m=number of external inputs in the flow table; n=number of

states in the flow table) fault equivalence classes corres-

ponding to each (n-1) state faults with respect to a

fault-free statetransition.Ifilk13 _11 denotes the number

of elements (state faults) in each j for a given i, then

1<llkijlIgn-1)-

Since all the elements in kir (rej) have the same

C-Test, our earlier bound on the number of tests needed to

test a one-dimensional array (section 3.7) can be modified

by taking the above fact into consideration. If there are
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k1 .. fault equivalence classes corresponding to every

fault-free tansition then the total number of state faults

to be considered for purposes of test generation is

mn
E Ek.4. As a result of this the total number of tests
i=1 j 1J

needed (assuming a C-Test exists for every equivalence

class k. ) will be equal to (E E k..)(n(n-1)). Forir lj
i j

j<(n-1),(E E k..)(n(n-1)) < mn(n-1)(n-1)n, the bound
1.3

calculated in section 3.7.

An useful tool in the analysis of algorithms is the

measure of complexity of the algorithm [1]. The measure of

complexity can be broadly defined as the number of steps

needed to arrive at the solution for a given algorithm.

If the complexity is taken as the maximum complexity, then

it is called the worst-case complexity. On the other hand

if it is the average complexity, then it is called the

expected complexity. Since it is difficult to make

assumptions about the nature of the problem prior to its

solution, the expected complexity will be more difficult

to compute than the worst-case complexity. In order to

study the complexity of the algorithm developed in section

3.8, we will use the worst-case complexity as a measure

of the algorithm's complexity.

The worst-case complexity can be expressed as the

maximum number of steps inovlved in arriving at the final
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solution, and, in our case it is the C-Test set. The

following is a list of the number of steps involved in

generating the C-Test set using the algorithm in section

3.8.

Step 1. Transition Matrix multiplication: Let T

be a n x n matrix (n is the number of states in the flow

table). To compute one row in T2 the complexity is 0(n2 )

and hence for n rows in T2 it is 0(n3). Since the

algorithm requires the generation of T matrices up to

(n_i)th
power, the number of steps needed is (n-2)n3

and hence the worst-case complexity for the step is 0(n
4
).

Step 2. Table Look7up for each NFP group: Corres-

ponding to each NFP group we get the entries from all (n-1)

columns in Table 2. Since there are (n-1) NFP pairs in

each NFP group the total number of look-ups needed is

mn(n-1)(n-1) and hence the complexity is 0(n 3
).

Step 3. Sorting for each NFP group: Corresponding to

each NFP group, each member in the NFP is sorted into a

group Lr (refer to algorithm for notation) such that all the

members in L
r

have identical entries. The number of

steps involved here is mn(n-1) and the complexity is 0(n 2
).

Step 4. Determination of transitions: Corresponding

to step 2 of the algorithm we have to determine the trans-

ition Lqk Id
r

. Since r<(n-1), the complexity for this

step is 0(n
2
).

Step 5. This corresponds to step 3 of the algorithm.
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It involves mn(n-1) comparisons at best, and the complexity

will be 0(n2 ).

Step 6. If k>n, we should proceed to part (2) of the

algorithm. If k NFPs corresponding to each fault-free

transition do not have C-Tests of length 2.<n, then we have

to make use of part (2) of the algorithm to generate

C-Tests for (mnk) NFPs. For each k the total number of

table look-ups needed in part (2) is (n-1)(n-l)n. Hence

for (mnk) NFPs the complexity at this step is 0(n4).

Step 7. As in step 3, the complexity of (mnk)

sortings (as in Figure 28) is 0(n2
).

Step 8. The determination of transitions (as in

Figure 28) requires (n-1) steps and the complexity is

0(n2 ).

Step 9. Finally the comparisons (step 4, algorithm

part (2)) has a complexity of 0(n2).

From the above, the total worst-case complexity of the

algorithm is C = 0(n4 ) + 0(n
3

) + 0(n
2
). It can be seen

that C increases exponentially with n but not as rapidly

if C = 0(f(2n)). The complexity increases when 2 >n for

some NFPs and the worst-case corresponds to when Z>n for

all NFPs. The following example illustrates the case when

five NFPs have C-Tests of length Z>n.

Example:

Design a C-Test set for the following flow table
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implemented in a one-dimensional iterative array.

Flow Table:

0 1

A B A

B C B

C D D

D C A

Using the algorithm in section 3.8 the following C-Test

set was generated for all the NFPs.

C -Test Set:

(A,0001),(A,011001),(A,11),(A,1011011)

(B4O010), (B11)

(C,00),(C,0100),(C,1000),(C,110110)

(D,00),(D,0100),(D,1000),(D,101101).

In the above test set, the tests (A,1011011),(C,110110),

(A,011001),(D,101101) have Z>n, i.e., the length of the

C-Test in each case is greater than four. The tests

(A,0001),(A,1011011),(B,11),(B4O010),(C,00),(C,1000),

(D,00),(D,1000) are capable of testing for more than one

faulty transition. This results in lesser number of tests

(due to fault equivalence). Using the theoretical bound

calculated earlier the total number of C-Tests required

is (EEk..)(n(n-1)) =(2+2+1+1+2+2+2+2)(4)(3) = 168. For
ij

the above flow table the number of C-Tests obtained in
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practice is 58. This is closer to 168 than 288, the bound

calculated without taking into account the concept of

fault equivalence. For the examples given in section 3.9

the total number of tests required were 22 and 38 which

are far less than 288.

Finally it should be mentioned that fault equivalence

(based on C-Tests) cannot be determined a priori, as

existence of C-Tests cannot be determined a priori,

(Theorem 3.2).



CHAPTER IV

TWO-DIMENSIONAL ARRAYS

4.1: Introduction

120

Over the past decade researchers (Unger [44], Minnick

[31], Nicoud [33],Cappa[6]), have utilized two-dimensional

iterative array realizations for the solution of specific

problems such as multiplication, radix conversions, etc.

Maintaining such arrays fault-free becomes imperative,

and many like Kautz [17], Friedman [12], Prasad [35],

Seth [38] and Landgraff [21] have considered the problem

of fault diagnosis in such arrays. All of them with the

exception of Prasad were concerned with single cell fault

occurrences only. In this chapter we will investigate

both single as well as multiple-cell fault occurrences in

two-dimensional iterative arrays.

In a two-dimensional array an input to an arbitrary

cell deep inside the array is not generated by a single

cascade of cells to the left of the cell under considera-

tion, but by an entire sub-array of cells which provides

both the X and Y states to the arbitrary cell. Hence

we cannot determine a priori whether a particular input

state can be applied to a cell deep inside the array. In

order to facilitate the discussion of conditions necessary

for the existence of such a set of inputs to all the cells

in the array, we should briefly comment on the tessellation
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problem.

A tessellation is defined as a complete set of cell

input states which are compatible with one another along

cell inter-faces, along the entire array, (Kautz [17]).

In other words tessellation corresponds to a cycle in a

pair graph where each vertex is a state pair. In order

that an arbitrary cell can be cycled through all possible

input combinations it is necessary that one or more

tessallations exist such that they cover all the input

combinations applicable to a cell. As said earlier,

existence of such a set of tessellations cannot be deter-

mined a priori. We discussed in Chapter II some of the

methods utilized to arrive at a set of tessellations.

Kautz [17] states that if no two entries in a column

in the flow table of a cell corresponding to a two-

dimensional array are the same, then the cell can be

tested with a minimum number of tests 'mn' where 'm' is

the number of columns and 'n' is the number of rows in the

flow table. The tessellation set is built as follows.

An arbitrary input state is applied to all the cells in the

diagonal file of an array. The outputs from the file will

be the inputs to the adjoining file and all the inputs are

the same. Since the number of input states is finite,

the input state at the diagonal file D, will repeat at a

finite diagonal file Dk and finally the set of 'k'

diagonal files is iterated over the entire two-dimensional
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plane. We see now, that all the inputs in the diagonal

file can be applied to all the cells in a two-dimensional

array. Cell states that are not applied in this stage

can be used in successive tessellation sets (if they can

be) using the same technique suggested above. Figure 32

illustrates this technique.

D
1 Y1 Y

2\ \

N)2N____ N.

N", '2x=
......

\ 2.2.-

IN
\Y2 Y1 xl

x
1

\
\

1)N2
N 7. -1

3

IY2 I 311

I

I IY 1 N

Figure 32. Diagonal construction of tessellation.

The tessellation set for the above figure, Figure 32 is

(x1,Y1),(x2,Y2),-..,(xk'Yk).

We shall, however, approach the problem of test

generation in two-dimensional arrays from a different view

point. The two-dimensional array is visualized as a one-

dimensional array where each cell is viewed as a column or

row of cells in a two-dimensional array combined into a
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single cell. I.e., either vertically or horizontally

combined into a single cell. We will call the former

vertical compression and the latter horizontal compression.

Each cell in the equivalent one-dimensional array has

'n' horizontal inputs and one vertical input with respect

to the horizontal compression, and one horizontal input and

'n' vertical input with respect to the vertical compression.

4.2: Model for a Two-Dimensional Array

Thus we visualize the two-dimensional array given in

Figure 10 as an equivalent one-dimensional array compressed

either horizontally or vertically. Figure 33 represents

a two-dimensional array compressed horizontally. Each

module in the figure contains 'n' cells corresponding to

that column which contains the module. Similarly we can

get a one-dimensional array that is equivalent to a two-

dimensional array compressed vertically as in Figure 34.

x
1

x
2

x
n

Al
x
2

X
n

Figure 33. Horizontal compression of a two-dimensional
array into a one-dimensional array.
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Figure 34. Vertical compression.

4.3: Fault Propagation in Two-Dimensional Arrays

We assume that the nature of faults in a two-dimensional

array will be the same as in one-dimensional case, i.e.,

State Faults. The faulty behavior of the 'ij'th cell

in the two-dimensional array can be studied under two

conditions.

Case (a) : x output is faulty

Case (b) : y output is faulty



(a)

xlj

x2j

x
nj

xij
x
2j

x. .

x
nj

(b)

^

^lj
^2j

,ij
x
nj

125

x
n

. Figure 35. A column in a 2-dim
array and its equivalent cell in
a 1-dim array.

Let the x output x. of the ijth cell in the two-
13

dimensional array (Figure 35(a)) be faulty. In the

corresponding one-dimensional model (Figure 35(b)) the

same fault corresponds to a fault in the output state

(x..x
2j

....x..x
nj
.) of the jth cell module. If the

ij lj
...

flow table corresponding to the equivalent one-dimensional

array is reduced we know from the previous chapter that a

state fault can be easily propagated to an external output.

I.e., there always exists a set of inputs that will propa-

gate the effect of fault to an external output from the

site of fault (Lemma 3.1). Hence in the above case the

x fault can be propagated in the horizontal direction.

Case (b):

In order to propagate the faulty y output of the ijth

cell in the horizontal direction, it is necessary that

the following condition is satisfied. For the Y.- tolj



126

cause a change in the x output of the ((i+l)j) th
cell,

it is necessary that no two columns are alike in at least

one of the rows of the flow table corresponding to the

x output (Kautz [17]). Under such condition a fault

3713
.. will be propagated to x (i+l . The propagation

)j

condition now reduces to case (a) and yij fault can be

propagated in the horizontal direction if the aforesaid

conditions are satisfied.

Example: x = x y

Y = x y

Flow Table:

X:
.1/4N*7x 0 1

0

1

0

1

1

0

Y:
.Y 0 1

0

1

1

0

0

1

In a two-dimensional array realizing the above x and y

functions, any fault in the y output will cause the change

in the x output of the cell below the faulty cell. This

is due to the fact that both the columns in the x flow

table are different for both the rows, and any change in

y will cause a change in the x output.

Finallywheribothx..andy..3.3 are faulty, the fault
1.3

can still be propagated in the horizontal direction, pro-

vided the equivalent one-dimensional-array-flow-table is
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is reduced and the x flow table has no two columns alike.

Inthiswaythe_fault will cause a change in the

x(i+l)j output and the overall effect will be equivalent

to a fault in the x leads.

Propagation is also possible in the vertical direction

in all the above cases provided the flow table condition

in case (b) is changed such that no two rows are alike in

at least one of the clumns of the y flow table. It is

now evident that the multiple-fault Theorem 3.1 in Chapter

III will be readily applicable to the two-dimensional

array also.

4.4: Test Derivation Procedure

In order to generate tests for the equivalent one-

dimensional array we have to develop the flow table corres-

ponding to a typical cell in the equivalent one-dimensional

array. A typical cell in the two-dimensional array is

represented by two flow tables, one for the x output and

the other for the y output. The size of the new flow

table representing a cell in the equivalent one-dimensional

array will depend on the physical dimension of the two-

dimensional array. Fora n x m two dimensional array

the equivalent one-dimensional array cell will have a flow

table of size 2n x 2, the 2n corresponding to the rows

and 2 to the columns. This new flow table can be obtained

using the algebraic expressions for x and y.
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Once we have the flow table, the rest of the procedure

is the same as that of one-dimensional case. The method

involves the generation of T-matrices from the flow table,

and later, using Part (1) and (2) of the algorithm in

section 3.8 to generate the necessary C-Tests.

However there are certain variations as compared to

the one-dimensional array case. In the one-dimensional

array it was assumed that the flow table is strongly

connected. But in a two-dimensional case such an assump-

tion is not always necessary. This can be explained as

follows. In a two-dimensional array it is our wish to apply

all possible input combinations to all cells in the array,

but this is not always possible. As an example consider

the following cell realized in a two-dimensional array.

x

"

xy
X :

Xx 0 1

0 0 0

1 0 1

.2\ 0 1

0 (0,0) (0,1)

1 (0,0) (1,0)

: X. 0 1

0 0 1

1 0 0

The (x,y) flow table is not strongly connected and the

input combination (1,1) cannot be applied to an arbitrary

cell inside the array. For example it cannot be applied to

the lower right cell in a 2 x 2 array. However if the
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states corresponding to the strongly-connected subgraphs of

a weakly-connected state graph (of the equivalent one-

dimensional array) cover all the input combinations

applicable to a cell in the two-dimensional array, we can

then test the two-dimensional array for all faults.

The criterion for the existence of a C-Test in the two-

dimensional case is the same as in the one-dimensional case.

If, in addition to the above covering condition, conditions

stated in Theorem 3.2 are satisfied there will be a C-Test

for all the state faults in the two-dimensional array.

Whenever the length of the test is greater than the length

of the equivalent one-dimensional array, the test can still

be used, but in a truncated form. This will result in the

number of tests being dependent on the dimension of the

array.

To this point we have been discussing two-dimensional

arrays compressed horizontally into an equivalent one-

dimensional array. The same techniques can be used for

arrays compressed vertically too.

4.5: Fault Location in Two-Dimensional Arrays

Whenever there is a single cell in a two-dimensional

array, fault location is possible provided the conditions

in case (a) and (b) of section 4.3 are satisfied.

If cell ij is faulty in Figure 36, a test applied to

"f ^f
detect this fault will produce an output (x1x2...xi...xn)



X.i

x
n

..thFigure 36. Two-dimensional array with a fault in the ij cell.
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as opposed to the output under normal condition

(X,X2...Ri...Rn). Since the flow table condition in case

(b) of section 4.3 is satisfied, there will be a change in

x
r

for r>i and no change in xk, k<i. Hence

A Af
X
k

= Xk, V k<i and x
r

xr, r>i. This will partition

the array horizontally into P1 and P2. In addition

to the condition in case (b), if no two rows are alike in

at least one column of the flow table (of the y output),

there will be a change in the yr, r>(j + 1) and no change

in yk, k<(j+1) . The array is once again partitioned

into Ql and Q2. The intersection of these two partitions

determine the location of the faulty cell at most to the

adjacent column and row.

Example:

This example illustrates fault location in two-

dimensional array. Consider the two dimensional array

realizing the cell functions shown in Figure 37. Assume

cell '33' to be faulty and let the faulty transition be

1 x 0 0 (x x y x) as opposed to 1 x 0 1.

Using the external inputs as shown we can apply the input

combination to the faulty cell (33). Under normal condi-
A A A

tions, the external outputs of the array (xix2... x5) will

be (11111). Because of the fault in x33, this is propagated

horizontally to the external output x3 (since the flow



X =x03 y, y= xEy

X. 2,
0 1

0

1

0

1

1

0

y:

Figure 37. Two-dimensional array with a faulty cell (33)

r)c 0 1

0 1 0

1 0 1
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table for x satisfies the condition in case (b)).

Hence the horizontal external outputs of the array will

change due to the presence of the faulty cell '33' as

shown in Figure 37 by circled entries. The external output

due to the fault is (11010). This partitions the array

horizontally into two groups. I.e., (row 1, row 2);(row 3,

row 4, row 5). Similarly the y flow table satisfies the

condition in case (b) and the fault is propagated to the

4
th

and 5th column of the array, resulting in a change in

the external vertical outputs of column 4 and 5, i.e.,

(00011). Once again the array is partitioned into two

groups (columns 1, 2 and 3), (columns 4 and 5). Finally

we find the intersection of these two partitions deter-

mines the location of the faulty cell as cell '33'.

4.6: Example for Two-Dimensional Array C-Test Generation

The algorithm discussed in Chapter III will be illus-

trated here with an example for a two-dimensional array:

Realize a two-dimensional array that realizes the following

cell functions and generate C-Tests whenever they exist.

X :

y = xy

X
0 1

1 1

1 0 1

X. 0 1

0 0 1

1 0 0
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Construction of a flow table for a cell in the one-

dimensional array equivalent to a (2xm) two-dimensional

array:

y __LY2 _LY3

T -17,
yl Y2 y3

State
Assignment X1 x2

0 0 A

0 1 B

1 0 C

1 1 D

Flow
Table

x
1

x, _
Tr 7: -II

Yi Y2 y3

37) 0 1

A D D

B C D

C B D

D A B

T
0

0,1

0 1

1
T
2

0,1 p 2,3

2 0 3

2 p 0,3

0

1

0 1 2 p 0,1,3

p 2,6 p 0,1,3
4,5,7

2 0 0,3 1,4,5,7
T3

2 0,6 3 1,4,5,7

0.,1,6 p 2,3,4,7 5

Using part (1) and (2) of the algorithm in Chapter III the

C-Tests were generated for 2 x 2 array
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(A,00);(B4O0);(C,00);(D,00);(C,11)

C-Tests do not exist for faulty transitions from A, B and

D on an input 1.

Check: The test sets (B4O0), (C,00) will be sufficient

to apply the input combinations (0,0) and (1,0) to every

shows how the above

2 array.

cell in

test sets

a 2 x

can

2

be

array. Figure 38

applied to a 2 x

1 0 0 11
1 1

1 I

1 0
L
B C

Figure 38. Application of (B4O0)

1

1

and (C,00) to a 2x2 array.

However the input combinations (0,1) and (1,0) are not

covered by any of the C-Tests. It can be seen from the

equivalent flow table that the transitions

A B C1 covers the above two input

combinations.



136

Using (C,11) the transition C can be applied

to all the cells in a 2 x m array and hence a 2 x 2

array. Since we do not have C-Tests for A 1 * and B 1

the number of tests needed to apply these input combina-

tions to all the cells in the two dimensional array will

depend on the dimension of the array. We need (B,11), and

(C,01) to apply B1 to each cell in the equivalent

one-dimensional array (all the cells in a two-dimensional

array of size 2 x 2). Similarly we need (A,10), (D,01)

to apply Al to the 2 x 2 array.

(C,01):

r17
1 I

I0
L_J
C

(D,01):

Figure 39. Application of (B,1), (C,01), (A,10) and
(D,01) to a 2 x 2 array.

Hence the number of tests needed to completely test

the 2x2 array is seven tests. We have another example

where there are C-Tests for all the faulty transitions.

A two-dimensional array realizing the functions x = x y

and y = xEy can be tested for all faults using the
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following C-Tests. It can be verified using the algorithm

part (1) that the C-Test corresponds to (A,00), (B4O0),

(C,00), (D,00), (A,1111), (B,1111), (C,1111), (D,1111).

The test set is for a 2 x m array.

Although analyzing the two-dimensional array (for

fault detection) in terms of its equivalent one-dimensional

array poses certain computational problems, it can be seen

that general procedures derived for a regular one-

dimensional array can be directly extended to the two-

dimensional iterative array.
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CHAPTER V

SUMMARY AND CONCLUSION

In this dissertation we have developed an algorithm

capable of generating a set of concurrent tests called

C-Tests that can detect all faults in combinational

iterative arrays. The fault class has been assumed to

be state faults. These encompass a wider class of faults

compared with the familiar "stuck-at" type faults that are

highly dependent on the hardware realization of the circuit.

The tests have been derived under the assumption that both

single or multiple cells can be faulty in the array.

Using a transition matrix of the flow table, we

generate matrices up to the (n-l)thpower. By comparing

rows in the T
k

matrix, corresponding to the faulty and

fault-free transition, we arrive at test sequences called

C-Tests. Such tests are capable of detecting faults in

more than one cell simultaneously. It has been shown that

such tests do not exist for all state faults and a graph-

theoretic condition has been imposed on the flow graph

for the existence of such tests. We have also suggested

a modification to the cell such that the modified cell

can be tested completely using only C-Tests.

Earlier work (Kautz [17], Prasad [35], Landgraff

(21]) has mainly concentrated on the derivation of tests

for a particular class of flow tables, such as ones that
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have permutation columns. In our case we have treated

arbitrary flow tables that possess no such special property.

In the case of two-dimensional iterative arrays, it

has been converted into an equivalent ane-dimensional

array. This is done by compressing each row or column of

the two-dimensional array into a single cell in the

equivalent one-dimensional array. It is found that results

derived for one-dimensional array are equally applicable

to the two-dimensional array. This concept makes it easier

to analyze the two-dimensional array for faults and the

test generation algorithm for the one-dimensional array

is directly applied to the equivalent one-dimensional

array. Although this method is computationally complex,

it shows how a two-dimensional array can be viewed'as an

equivalent one-dimensional iterative array. This is in

contrast to the past work which concerned itself mainly

with the tessellation problem. We have also shown that

fault location is possible in two-dimensional iterative

arrays when certain flow table conditions are satisfied.

In conclusion, the method proposed in this work is

original in nature, in that it treats the general case of

iterative array fault detection. However we cannot avoid

the necessary fact that the computational complexity of

test derivation procedure increases exponentially with

the magnitude of 'n'. Future work should aim at classify-
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ing flow tables that satisfy the graph theoretic condi-

tion. This may lead to design modifications to the cell

prior to the test generation procedure, thereby making

the cells easier to test with a lesser number of tests.
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