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INTRODUCTION 

In 2005, U.S. manufacturing establishments spent over $109 billion on machinery 

and equipment (U.S. Census Bureau, 2006). Some of this was due to new growth, but 

much of it was replacement of equipment that was either too costly to retain or 

superseded by new technology. The area of replacement analysis is concerned with 

optimizing such equipment replacement decisions. Replacement decisions are not limited 

to the realm of manufacturing, but are often important to government and other 

organizations as well. 

Fleets of motor vehicles provide a common opportunity for application of 

replacement analysis methodologies. The Oregon Department of Transportation (ODOT) 

Fleet Services group operates such a fleet for road and highway maintenance purposes 

within the state. In 2008, the fleet consisted of approximately 5,000 pieces of equipment 

representing an investment of over $340 million. An interesting characteristic of fleet 

operations is that usage and repair costs of assets in the ODOT fleet generally decrease 

with age. For example, mileage versus age data for one class of vehicles – heavy diesel 

trucks – is presented in Figure 1. Many replacement models traditionally assume that 

operating and maintenance (O&M) costs, such as repair costs, increase with age – the 

opposite of what occurs in the ODOT fleet.  
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Figure 1: Average annual mileage vs. age for ODOT heavy diesel trucks 

This pattern of decreasing usage with age is also reported independently in several 

contributions to the literature (e.g., Dietz & Katz 2001, Buddhakulsomsiri & Parthanadee 

2006). However, such an observation raises serious issues for many other parallel 

replacement methodologies that do not explicitly address asset usage and the impact of 

asset usage on costs and economic life. Without increasing O&M costs, there may not be 

a finite economic life nor optimal replacement age. 

Furthermore, much of the literature that does address this issue assumes that 

decreasing usage values are independent of other factors, such as replacement decisions. 

One possible explanation for the decreasing usage pattern could be a preference among 

fleet operators for using the newest available asset when given a choice. Conversations 
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with ODOT work crews confirm that such usage decisions do occur frequently in 

practice. 

This research investigates the logical implications of employing such a “newest 

first” usage practice. The following section discusses relevant elements of the 

replacement analysis literature. The general assumptions behind the fleet model used for 

analysis are then discussed, and details of the newest first usage practice and the baseline 

usage practice to which it is compared are outlined. The impact of the newest first 

practice on several categories of costs is analyzed (primarily annual-usage-dependent and 

cumulative-usage-dependent costs). Finally, several methods are considered for setting 

age standards to make replacement decisions in the context of a newest first usage 

practice, and conclusions are summarized. 
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LITERATURE REVIEW 

Replacement problems can be split into two major categories: serial and parallel 

replacement problems. A serial replacement problem considers a scenario where assets 

are purchased, used to provide service, and are retired – one at a time, in series – over the 

course of a specified time period (the planning horizon). For the case of an infinite 

horizon with known economic parameters, a standard approach utilizing economic life 

calculations is commonly covered in textbooks on engineering economics such as Park 

(2006). Terborgh (1949) provides good explanations of many of the basic elements of 

equipment replacement analysis. The optimal replacement decision depends upon 

balancing O&M costs (that are typically assumed to increase over time) with one-time 

capital costs. Other approaches include geometric programming (Cheng, 1992), graphical 

sensitivity analysis (Walker, 1994), statistical simulation using Markov chain matrices 

(Kobbacy & Nicol, 1994), modeling with fuzzy arithmetic (Chang, 2005), and use of 

integral equations (Yatsenko & Hritonenko, 2005). Some of these use a finite horizon 

while others use an infinite horizon. Hartman & Murphy (2006) use a dynamic 

programming formulation to compare optimal decisions under finite and infinite 

horizons. 

Serial replacement decisions may also be made on the basis of technological 

change. If newer assets are assumed to have lower O&M costs due to technological 

improvement, at some point the increased savings make purchasing a replacement 

worthwhile. However, technological change can be difficult to predict. One way around 

this is to find the optimal first-period decision and reevaluate in future periods. Sethi & 
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Chand (1979) use a forward algorithm based on a dynamic programming approach to 

find the optimal first-period decision, while Karsak & Tolga (1998) describe a stochastic 

dynamic programming approach to technological change with several additional features: 

overhaul capacity and differential interest rates. Yatsenko & Hritonenko (2008) analyze 

integral equations to reveal several qualitative properties related to technological change. 

Marsh & Nam (2003) show that technological change can also drive replacement 

decisions by increasing the levels of quality and precision demanded by customers. 

Although serial replacement problems can provide much insight, in many 

practical situations multiple assets are used to meet demand. For example, the Oregon 

Department of Transportation (ODOT) uses a fleet of hundreds of vehicles to maintain 

state transportation infrastructure. Optimizing replacement decisions for this fleet is an 

example of a parallel replacement problem. If replacement decisions for multiple assets 

are independent, then the parallel replacement problem can simply be split into several 

serial replacement problems. In this case, the significant complexity introduced by the 

parallel replacement problem may be avoided by applying serial replacement analysis to 

an “average” asset (Waddell, 1983). Realistically, independence is commonly violated by 

concerns such as economies of scale in purchase of replacements, budget constraints, or 

asset utilization levels. 

Several authors have noted similarities between parallel replacement problems 

and capacity expansion problems. Capacity expansion problems often consider 

economies of scale, but do not necessarily factor in the replacement of equipment. On the 

other hand, replacement problems do not necessarily consider changes in demand. 
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Rajagopalan (1998) unifies the two types of problems using an integer programming 

formulation over a finite horizon. A more efficient dual-based solution approach is also 

described, based on an alternate disaggregate formulation of the problem. Several ways in 

which the model can be easily extended to incorporate alternative technologies and 

suppliers, multiple demand types, and quantity discounts are also described. Chand et al. 

(2000) describe a similar model that incorporates the ability for assets to remain idle (a 

possible result of economy-of-scale purchases). A heuristic algorithm that can be used to 

solve the integer programming problem more efficiently is also defined. Another 

variation, introduced by de Matta & Hsu (2006), measures capacity continuously with 

solution procedures that use Lagrangian relaxation and tabu search. In replacement 

problems, capacity is typically measured discretely since it is assumed that assets cannot 

be split and are commonly identical. 

Other authors have more directly extended serial replacement analysis to the 

parallel case, while incorporating economies of scale in asset purchase. Through a 

dynamic programming formulation solved as a linear programming problem, Jones et al. 

(1991) propose a model that can be used with time-varying economics over a finite 

horizon or time-invariant economics over an infinite horizon. They also prove several 

useful rules based on the model that allow for a significant reduction in state space (and 

hence, improved solution efficiency). The first rule is the no-splitting rule, or NSR, which 

states that all assets of equal age in a given period will either be kept together or replaced 

together. The second rule is the older-cluster replacement rule, or OCRR, which is based 

upon some additional assumptions. The OCRR states that older clusters of assets with 
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equal age in a given period are replaced before younger clusters. Using a weaker set of 

assumptions, Tang & Tang (1993) proved an even stronger rule than OCRR: the all-or-

none rule, or AONR. Although weaker, the assumptions of Tang & Tang may not hold 

for assets where salvage cost decreases quickly. Hopp et al. (1993) give an additional 

proof of the OCRR, based on even weaker assumptions. Using a forward-time dynamic 

programming algorithm, McClurg & Chand (2002) take advantage of a dominance 

property to reduce the number of checked nodes and further improve solution efficiency. 

Chen (1998) takes a different approach by formulating the problem as a shortest path 

integer programming problem and applying Bender’s decomposition to solve. Finally, 

Jones & Zydiak (1993) discuss optimal fleet designs that are stable over the long term for 

cases with purchasing economies of scale and maintenance dis-economies of scale. 

Incorporating economies of scale in asset purchase is one way dependence is 

introduced to decisions in a parallel machine problem, but dependence may also result 

from capital rationing constraints. This is a common practical limitation, since many 

organizations must work within the context of a budget. A simple, though not necessarily 

optimal, approach is to assign a replacement score to each machine in service (Dietz & 

Katz, 2001). Karabakal et al. (1994) find optimal solutions by solving an integer 

programming model with capital rationing constraints. Solving such formulations can be 

extremely difficult due to the large number of integer decision variables, however, and 

much of the paper is spent discussing efficient solution methods based on Lagrangian 

relaxation. Hartman (2000) formulates an integer programming problem with fixed 

replacement costs in addition to capital constraints and shows that relaxation of the 
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integer programming formulation has integer extreme points for a specific class of sub-

problems. This reduces the state space and improves solution efficiency. Keles & 

Hartman (2004) conduct a case study on bus fleet replacement where they further 

develop the model to include multiple challengers (i.e., multiple vehicle options from 

several suppliers). 

Another difficulty presented by many practical parallel replacement problems is 

interdependence of asset utilization – which can, in turn, affect replacement decisions. 

Bethuyne (1998) creates a calculus-based serial replacement model that includes asset 

utilization in each time period. Using this model, it is demonstrated that the economic life 

of an asset can be extended by reducing the level of utilization over its lifetime. Hartman 

(1999) uses an integer programming formulation of a parallel replacement problem with a 

three-dimensional network structure to create a model that includes discrete utilization by 

period and multiple types of challengers. Capital constraints may be imposed as well. 

However, finding solutions can quickly become very time-consuming – the number of 

nodes in the problem is the approximate product of the maximum utilization, maximum 

age, and decision horizon (each in integer units). Hartman (2001) introduces a modified 

model, where utilization in each period depends probabilistically on utilization in the 

previous period. Under certain assumptions, the state space in this model can be limited 

by using an “economic life frontier.” In yet another model, Hartman (2004) introduces 

stochastic demand, and utilization returns to being treated as a decision variable. Several 

methods of reducing state space are discussed. 



9 

Redmer (2005) presents a simple engineering economics model for replacement 

decisions where utilization is specified as a parameter dependent upon age. Although this 

model does not incorporate the interdependence of assets in the parallel replacement 

problem, it does offer the ability to include a trend of decreasing utilization with age. 

Similarly, Buddhakulsomsiri & Parthanadee (2006) adapt the model of Hartman (1999) 

to include decreasing usage as an age-based parameter instead of as a decision variable. 
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FLEET AND USAGE PRACTICE DEFINITIONS 

The analysis completed is based upon a generic sub-class of the fleet of vehicles 

managed by ODOT Fleet Services. Assets in the model are replaced using an age 

standard; that is, assets are replaced when they reach the fixed age of L and not before or 

after. Assets are acquired to provide a minimum level of service, such that the fleet can 

meet its obligations. 

A survey of DOTs for states across the U.S. showed that the most common policy 

for vehicle replacement decisions was to use standards based on criteria such as age or 

cumulative usage (Kriett, 2009). None of the DOTs surveyed employed more complex 

approaches involving dynamic programming, integer programming, etc. One advantage 

of age/usage standards is that they make it easy for fleet managers to justify their 

decisions to non-specialists (i.e., equipment operators). Furthermore, finding an optimal 

solution using some of the approaches described in the Literature Review section may 

require excessive computing resources when applied to a very large fleet. Although an 

age-standard policy may not be the optimal policy for fleet management, the approach 

has been shown to have significant practical value (as evidenced by its common use). 

The fleet model consists of N assets which all have the same cost function. This 

function may be dependent upon several variables, such as age or usage. Capital 

limitations and technological improvement are not considered within the scope of this 

research, so that all assets requiring replacement are replaced, and are replaced with a 

technologically identical asset 
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Requests for service (i.e., customers) arrive to the system with interarrival times 

according to some probability distribution. The need for a piece of equipment is often 

time-sensitive, so the system does not include a queue, nor are requests rescheduled. If all 

assets (also referred to as servers) in the system are busy, the request is rejected. 

Two usage practices are evaluated: the random usage practice and the newest first 

usage practice. The names of these usage practices are based upon the mechanism of 

selecting among available assets upon customer arrival. 

Under the newest first practice, the request for service is assigned to the newest 

available asset by age. Assets may also be thought of as having a priority ranking, with 

the newest assets having the highest priority. This differs from queuing systems that may 

prioritize jobs; it is assets which are being prioritized here. If multiple assets of equal age 

are available, the request is assigned to one of them randomly with equal probability. 

Under the random practice, the prioritization portion of the procedure is skipped, 

and the request is randomly assigned among all available assets with equal probability. 

Once a request is assigned to an asset, the asset remains busy with the request for 

a service time length generated from another general stochastic process. All service times 

are assumed to come from the same distribution regardless of which asset is performing 

the job. After the request is completed, the asset returns to idle status and is ready to 

accept a new request. 

Due to the stochastic nature of this system, usage (and any costs dependent upon 

usage) will display some amount of variability even under identical circumstances. 

Expected values of these variables are used for purposes of analysis. Hence, the results of 
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the analysis are applicable to long-run operation, and results may differ significantly from 

the analysis for a system that is only operated over a short period of time. 
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EXPECTED USAGE UNDER THE NEWEST FIRST PRACTICE 

Assets in a fleet under the newest first practice experience different usage levels 

dependent upon their relative age within the fleet. Prior to analyzing the impact of this on 

fleet-wide costs, it is helpful to establish that expected long-run usage under the newest 

first practice is non-increasing with respect to age. A procedure for calculating expected 

usage values under certain distributional assumptions is also described. 

Analysis Using Little’s Law 

The relationship between long-run asset utilizations for different asset priority 

classes can be established using Little’s Law (Hillier & Lieberman, 2006). Priority 

classes are numbered from low to high (i.e., i=1 indicates the highest priority asset). The 

utilization of an asset in priority class i can be found using the application of Little’s Law 

in equation (1) with the following variable definitions.  

λi Long-run arrival rate to a single asset in the i
th

 priority class 

Wi Long-run average time waiting and being served by a single asset in the i
th

 

priority class 

Li Long-run average number of customers in the system 

 𝐿𝑖 = 𝜆𝑖𝑊𝑖  (1)  

Since arrivals to the system are rejected if no assets are available (i.e., no queue 

forms), and each asset serves a single customer at a time, Li equals the long-run 

utilization of a single asset in priority class i, and Wi is the average service time for a 
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customer. The average service time for a customer is the same for all priority classes (Wi 

= W, for all i), so assets with greater long-run arrival rates will have greater utilization. 

Figure 2 illustrates an example of a system with two priority classes over time. In 

the illustration, priority class i contains two assets and priority class i+1 contains one 

asset. Arrivals are marked by vertical lines indicating arrival time. If there is an idle asset 

in priority level i  (white background in the “Priority level i assets busy” row) when a 

customer arrives, the asset will begin working on the arrival. However, if all assets in 

priority level i are busy (shaded background in the “Priority level i assets busy” row), the 

arrival will be sent to the next lowest priority level (i+1). This is illustrated by continuing 

the arrival line, as a dotted line, to the next row. If all assets in the last priority level are 

busy, the arrival will be rejected. 

 

Figure 2: Illustration of a system with two priority levels 

Requests arrive to a lower priority asset if and only if all higher priority vehicles 

are already in use.  Therefore, the effective arrival rate to a lower-priority asset is less 

than or equal to the rate for a higher-priority asset, and the long-run utilization of a lower-
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priority asset is less than or equal to the utilization of a higher-priority asset according to 

Little’s Law. 

 

𝜆𝑖 ≥ 𝜆𝑖+1 

𝜆𝑖𝑊 ≥ 𝜆𝑖+1𝑊 

𝐿 𝑖 ≥ 𝐿𝑖+1 (2)  

Since older assets have lower priority under the newest first usage practice, 

expected usage of older assets will always be less than or equal to expected usage of 

newer assets under the newest first usage practice. 

Calculating Utilizations with Exponential Interarrival and Service Times 

It is useful to have a method for calculating numerical usage values under the 

newest first practice to provide realistic examples and illustrations, etc. Numerical usage 

values can be found using Little’s Law and by assuming exponentially distributed 

interarrival and service times. 

Since the fleet has no queue, the arrival rate must be corrected to exclude rejected 

arrivals – that is, arrivals when all servers are busy. If the interarrival times are 

exponential (i.e., a Poisson arrival process), the probability that all assets in an i-asset 

system are busy (Pb,i) is equal to the fraction of arrivals that are rejected – so the effective 

arrival rate to an i-asset system is λ(1-Pb,i). This follows from the “PASTA” property 

(Poisson arrivals see time averages). If service times are also exponentially distributed 

with rate μ, the system can be represented as an M/M/s/s queue where s is the number of 

assets in the system. For example, a one-asset system is an M/M/1/1 queue and a two-
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asset system is an M/M/2/2 queue. A formula exists (Hillier & Lieberman, 2006) for 

finding Pb,i for a M/M/s/s queue: 

 

𝑃𝑏,𝑠 =  
𝜆

𝜇
 
𝑠 𝑃0,𝑠

𝑠!
, where 𝑃0,𝑠 =

1

  𝜆
𝜇
 
𝑖

𝑖! 𝑠
𝑖=0

 

(3)  

Consider a system with one asset in each of two priority levels. The system as a 

whole can be analyzed using Little’s Law with an adjusted arrival rate, as can the sub-

system consisting of only the higher-priority asset (with a different adjusted arrival rate). 

Since the average number of assets busy in both the one-asset and two-asset systems can 

be determined, it is easy to find the utilization of the second asset by taking the difference 

in the average number of assets busy. This can be expressed generally for systems of any 

size where there is one asset per priority level, and can be adapted for systems with 

multiple assets of equal priority by averaging over all assets in a priority level. Let the 

long-run utilization of the i
th

 asset be denoted as ui. This results in the following equation. 

 
𝑢𝑖 = 𝐿𝑖 − 𝐿𝑖−1 =

𝜆 𝑃𝑏,𝑖−1 − 𝑃𝑏,𝑖 

𝜇
 for 𝑖 = 1,2, … 

(4)  
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MANAGING USAGE TO MINIMIZE COSTS 

This section discusses the impact of the two usage practices (random and newest 

first) on several categories of O&M costs. O&M costs are assumed to be evaluated 

annually – i.e., an O&M cost value is calculated at the end of each year in an asset’s life. 

Costs that depend only upon age, or that are constant from year to year, do not 

depend upon usage. Under an age standard, these types of costs will be equal under either 

usage practice; no usage practice is preferred over the other. Costs that depend upon 

usage are split into two subcategories and discussed below in detail. 

Usage-Dependent O&M Costs 

Many types of assets can be used at varying levels over time. For example, a 

vehicle might be driven 10,000 miles in one year and 7,500 miles in the following year. 

Machine utilizations – often expressed on a scale from zero to one, representing the 

fraction of time in use – may likewise vary from period to period. 

Two subcategories of usage-dependent costs are considered: annual-usage-

dependent costs and cumulative-usage-dependent costs. Annual-usage-dependent costs 

depend upon the usage level in only the year for which costs are being calculated. For 

example, a vehicle driven 5,000 miles in one year might have a different cost in that year 

than a similar vehicle driven 10,000 miles in that same year. 

On the other hand, cumulative-usage-dependent costs depend upon the total usage 

of the asset over its entire life up to the end of the year for which costs are being 

calculated. For example, two vehicles might be driven 5,000 miles in the same year, but 
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their cumulative-usage-dependent costs could differ based on their previous usage 

history. Table 1 shows such an example. Two vehicles are each three years old, but 

vehicle A has been driven 5,000 miles per year for each of its first two years of life and 

vehicle B has been driven 10,000 miles per year for each of its first two years of life. 

Their cumulative usages at the end of the third year of their lives are 15,000 miles and 

25,000 miles respectively. 

Table 1: Example of cumulative usage for two similar vehicles 

Year 

Vehicle A Vehicle B 

Age 

Annual 

Usage 

Cumulative 

Usage Age 

Annual 

Usage 

Cumulative 

Usage 

2005 1 5,000 5,000 1 10,000 10,000 

2006 2 5,000 10,000 2 10,000 20,000 

2007 3 5,000 15,000 3 5,000 25,000 

Annual-Usage-Dependent O&M Costs 

Hartman (2004) considered several types of non-decreasing annual-usage-

dependent cost curves (convex, concave, and linear, as shown in Figure 3) and discussed 

optimal asset utilization levels for a two-asset fleet in general terms. 

 

Figure 3: Cost as a function of annual usage (based on Hartman 2004); from left to 

right: convex, concave, and linear cost functions 

Maximum per-asset utilization in a period was defined to be ū (not necessarily on 

a scale from zero to one) and total demand for the period was defined as dt. A convex 

cost curve demanded that each asset be used at the minimum level possible – both assets 
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were used at the level dt/2. In the concave case, costs were minimized by using one asset 

at full capacity (ū) and the second asset only enough to meet demand (dt – ū). For the 

linear case, costs could be minimized through any linear combination of asset utilization 

levels summing to dt.  

These observations are extended to the comparison of random and newest first 

usage practices, and specifically proven for a fleet of N assets, using the following 

notation: 

Ct(u) Annual-usage-dependent O&M cost in period t as a function of usage u 

uit Expected usage of asset i in period t under the newest first practice for 

i = 1, 2, …, N 

qt Expected usage of any asset in period t under the random practice 

In order to compare usage practices fairly, the total fleet-wide usage in any period 

t should be equal for both practices. That is, 

 
𝑁 ∙ 𝑞𝑡 =  𝑢𝑖𝑡

𝑁

𝑖=1

⇔ 𝑞𝑡 =
1

𝑁
 𝑢𝑖𝑡

𝑁

𝑖=1

 
(5)  

Convex Ct(u) Case 

Let Ct(u) be convex over the interval containing all feasible usage levels, as is the 

case of (c) in Figure 3. The summation form of Jensen’s inequality (Wolff, 1989), 

 
𝑓  

1

𝑁
 𝑥𝑖 ≤

1

𝑁
 𝑓(𝑥𝑖)  

(6)  

may be used to show that, the random usage practice results in a total fleet-wide O&M 

cost that is less than or equal to that for the newest first practice: 
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𝑁 ∙ 𝐶𝑡 𝑞𝑡 = 𝑁 ∙ 𝐶𝑡  

1

𝑁
 𝑢𝑖𝑡

𝑁

𝑖=1

 ≤ 𝐶𝑡 𝑢𝑖𝑡 

𝑁

𝑖=1

  
(7)  

Graphically, this may be interpreted as utilizing all assets equally at the lowest 

level possible (while meeting fleet-wide demand) to avoid higher marginal costs, as in 

Figure 4. 

 

Figure 4: Using all assets equally to meet demand (as under the random practice) 

minimizes annual-usage-dependent costs for a convex cost function by avoiding higher 

marginal costs 

Concave Ct(u) Case 

If Ct(u) is concave, then Jensen’s inequality is again applicable with the opposite 

result as for a convex Ct(u) in equation (7): 

 
𝑁 ∙ 𝐶𝑡 𝑞𝑡 ≥ 𝐶𝑡 𝑢𝑖𝑡 

𝑁

𝑖=1

  
(8)  

 

The newest first utilization practice results in a fleet-wide total O&M cost less 

than or equal to that for the random utilization practice. Graphically, some assets are 
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utilized at a high level to take advantage of marginally decreasing costs, while the 

remaining assets are utilized at lower levels (Figure 5). 

 

Figure 5: Using some assets a lot and others less (as under the newest first practice) 

results in lower annual-usage-dependent costs than using all assets equally for a concave 

cost function 

Linear Ct(u) Case 

If Ct(u) is linear, then Ct(u) is both convex and concave and the total fleet-wide 

O&M cost is equal under either of the two usage practices. Neither practice is preferred 

over the other. Combining equations (7) and (8) gives the following result: 

 
𝑁 ∙ 𝐶𝑡 𝑞𝑡 =  𝐶𝑡 𝑢𝑖𝑡 

𝑁

𝑖=1

  
(9)  

Cumulative-Usage-Dependent O&M Costs 

For analysis of cumulative-usage-dependent costs, several further assumptions are 

made: 

1. Costs are time-invariant 
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2. Usage practices are compared on the basis of a cycle L years in length 

3. Total fleet-wide usage is the same in all periods 

The first assumption (time-invariant costs) means that two assets with equal 

cumulative usage will have the same cost, even if that cumulative usage is reached in 

different years. For example, in Table 2 vehicle A is purchased in 2005 and accumulates 

15,000 total miles by the end of 2007. Vehicle B is purchased in 2007 and accumulates 

15,000 total miles by the end of 2009. The O&M cost for vehicle A in 2007 is equal to 

the O&M cost for vehicle B in 2009 (prior to discounting). This assumption also means 

that effects such as inflation or technological improvement are not included in the model. 

Table 2: The assumption of time-invariant costs means that the 2007 cost for Vehicle A 

and the 2009 cost for Vehicle B are equal (before discounting) 

Year 

Vehicle A Vehicle B 

Age 

Annual 

Usage 

Cumulative 

Usage Age 

Annual 

Usage 

Cumulative 

Usage 

2005 1 5,000 5,000    

2006 2 5,000 10,000    

2007 3 5,000 15,000 1 5,000 5,000 

2008 4 5,000 20,000 2 5,000 10,000 

2009 5 5,000 25,000 3 5,000 15,000 

 

The second assumption is required to eliminate the effects of “starting” 

cumulative usage in an initial fleet. Assets in an initial fleet may start out with cumulative 

usage values that are consistent with neither the newest first nor the random usage 

practice. Since the goal is to compare usage practices, this effect must be controlled. By 

comparing the two practices under long-term operation, cumulative usage will always be 

consistent with the appropriate practice. Assets are replaced when they reach the age 
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standard of L years, so usage patterns will repeat over a cycle L years in length. By 

analyzing cycles L years in length, a fair comparison can be made. 

The third assumption can be rewritten as an extension of equation (5): 

 

𝐿 ∙ 𝑁 ∙ 𝑞 =   𝑢𝑖𝑗

𝐿

𝑗=1

𝑁

𝑖=1

 

(10)  

Total fleet-wide usage is the same in all periods, so there is no need to distinguish 

q from one period to another – q is equal in all periods and the subscript t has been 

dropped. Since total fleet-wide usage is still equal for both practices in any period, and 

total fleet-wide usage is the same in all periods, the total fleet-wide usage over an entire 

L-year-long cycle must also be equal for both practices. The right-hand side of equation 

(10) includes the usage of each asset at each age j (from 1 to L) under the newest first 

practice. This captures all of the usage that occurs over one L-year-long cycle. It does not 

make a difference whether an asset is a particular age at the beginning or end of a 

particular L-year-long cycle – its usage at that age will always be the same since the 

usage pattern in each cycle is the same. One of the subscripts on u has also been changed, 

from t in the previous section to j (representing age) in this section. Since analysis is over 

an L-year-long cycle, it is important to keep track of usage with respect to age to ensure a 

full cycle is covered. 

Notation and AEC/V Criterion 

Since the usage practices are compared over an L-year-long cycle, discounting 

must also be taken into account. First, some notation is defined. 
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D(U) Cumulative-usage-dependent O&M cost for an asset as a function of cumulative 

usage U. D(U) is assumed to be a non-decreasing function. 

Uij Expected cumulative usage of asset i of age j under the newest first practice, i.e.: 

 

𝑈𝑖𝑗 =  𝑢𝑖𝑗

𝑗

𝑗=1

 for 𝑗 = 0,1, … , 𝐿 

(11)  

Qj Expected cumulative usage of any asset of age j under the random practice, i.e.:  

 𝑄𝑗 = 𝑗 ∙ 𝑞 for 𝑗 = 0,1, … , 𝐿 (12)  

mkj O&M cost of a j-period old asset in asset age group k in the notation of Jones & 

Zydiak (1993) 

nj Number of j-period old assets at the end of a specific period. Using the notation 

of Jones & Zydiak (1993), the asset age group distribution in a period may be 

written in the form {n1, n2, …, nL} 

p Purchase cost of a new asset 

sj Salvage value of a j-period old asset 

r Effective interest rate per period 

In each period both usage practices result in equal fleet-wide output, so 

minimizing annual equivalent cost (AEC) may appear to be a reasonable criterion for 

comparison. However, different AEC values may be found for L-year-long cycles 

depending upon which starting period is used to evaluate a cycle, as shown by Jones & 

Zydiak (1993). Their criterion of annual equivalent cost per vehicle (AEC/V) does not 

depend upon the initial ages of assets, although it does depend upon the ages of assets 

relative to each other (relative age distribution). Assets are considered by age group k (up 
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to the maximum age L), with nk assets in each age group. Several factors outside of the 

scope of this paper (economies of scale in replacement and dis-economies of scale in 

maintenance) have been removed from the AEC/V formula, resulting in the following: 

 

𝐴𝐸𝐶 𝑉 𝑛1, 𝑛1, … , 𝑛𝐿 , 𝐿  

=
1

𝑁
  𝑝𝑛𝑘 −  

1

1+𝑟
 
𝐿

𝑠𝐿𝑛𝑘

𝐿

𝑘=1

+   
1

1+𝑟
 
𝑗

𝑛𝑘𝑚𝑘𝑗

𝐿

𝑗=1

  
𝑟

1 −  1
1+𝑟

 
𝐿 

=  𝑝 −  
1

1+𝑟
 
𝐿

𝑠𝐿

+
1

𝑁
  𝑛𝑘   

1

1+𝑟
 
𝑗

𝑚𝑘𝑗

𝐿

𝑗=1

 

𝐿

𝑘=1

  
𝑟

1 −  1
1+𝑟

 
𝐿  

(13)  

Several further modifications are made to make this more consistent with the 

notation described above. There is more than one way to ensure all assets are considered. 

Instead of considering each asset age group k and the nk assets within it, each asset i from 

1 to N is considered individually. In addition, D(U) replaces mkj as the O&M cost for the 

cumulative-usage-dependent case. This results in the following AEC/V formula: 

 

𝐴𝐸𝐶 𝑉 =  𝑝 −  
1

1+𝑟
 
𝐿

𝑠𝐿 +
1

𝑁
  

1

1+𝑟
 
𝑗

 𝐷(𝑈)

𝑁

𝑖=1

𝐿

𝑗=1

  
𝑟

1 −  1
1+𝑟

 
𝐿  

(14)  

Note that the order of the summations has also been reversed so that the 

discounting term could be pulled out from the inner summation. From equation (14) it is 
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easy to see that if the total fleet-wide cost for one practice is greater than the other at each 

age (from 1 to L), then the AEC/V for that practice is greater than the AEC/V for the other. 

Asset Age Distributions under the Newest First Practice 

While the relative distribution of asset ages does not impact AEC/V under the 

random practice, it can have a significant impact on AEC/V under the newest first 

practice since an asset’s usage depends upon the number of newer assets in the fleet. For 

this reason, both a special “even-distribution” case and the overall general case are 

analyzed separately. The even-distribution case occurs when all non-empty asset age 

groups contain an equal number of assets, and each pair of adjacent non-empty asset age 

groups have an equal number of empty groups in between them. The “general case” 

covers all age group distributions, including the even-distribution case. 

In the special even-distribution case, all assets have a single usage level at a given 

age under the newest first practice. In the general case, one asset may have a different 

usage level from another asset at a given age under the newest first practice. Simple two-

asset examples of an even-distribution case (Table 3) and a general, non-even-distribution 

case (Table 4) are included below. Age distribution notation differs slightly from that of 

Jones & Zydiak (1993) in that specific assets are identified using capital letters instead of 

using counts. Cumulative usage versus age is also graphed for each asset in each example 

in Figure 6, clearly illustrating that assets in the general case may have different usages at 

the same age. 
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Table 3: Example of an even-distribution case 

Period Age at End of Period Annual Usage 

 

Age Cumulative Usage 

t 

 

i=1 i=2 u1t u2t qt 

 

j U1j U2j Qj 

1 {A,0,B,0} 1 3 7 3 5 

 

0 0 0 0 

2 {0,A,0,B} 2 4 7 3 5 

 

1 7 7 5 

3 {B,0,A,0} 3 1 3 7 5 

 

2 14 14 10 

4 {0,B,0,A} 4 2 3 7 5 

 

3 17 17 15 

        

4 20 20 20 

 

Table 4: Example of a non-even distribution (general) case 

Period Age at End of Period Annual Usage 

 

Age Cumulative Usage 

t 

 

i=1 i=2 u1t u2t qt 

 

j U1j U2j Qj 

1 {A,B,0,0} 1 2 7 3 5 

 

0 0 0 0 

2 {0,A,B,0} 2 3 7 3 5 

 

1 7 7 5 

3 {0,0,A,B} 3 4 7 3 5 

 

2 14 10 10 

4 {B,0,0,A} 4 1 3 7 5 

 

3 21 13 15 

        

4 24 16 20 

 

 

Figure 6: Graphs of cumulative usage versus age for examples of an even distribution 

case and a non-even distribution (general) case 
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Even-Distribution Case 

In the even-distribution case, cumulative-usage-dependent O&M costs will have a 

greater or equal AEC/V under the newest first practice than under the random practice if 

costs are non-decreasing with respect to cumulative usage. The reasoning used to come to 

this conclusion follows. 

Equation (10), along with equations (11) and (12), can be used to prove that QL 

will be the average of all UiL in the general case (including the even-distribution case): 

 
𝑄𝐿 =

1

𝑁
 𝑈𝑖𝐿

𝑁

𝑖=1

 
(15)  

Since all assets have a single usage level at a given age for the even-distribution 

case, equation (15) implies that UiL = QL for all i=1, 2, …, N. The graph of Qj over j is a 

straight line connecting two points on the graph of Uij, at j=0 and j=L. 

According to equation (2), usage is non-increasing with respect to age under the 

newest first practice, and therefore cumulative utilization Uij is a concave function of age 

j over the interval from 0 to L. The graph of Uij will remain above or on the graph of Qj 

for this interval, so 

 𝑈𝑖𝑗 ≥ 𝑄𝑗 ⇔ 𝐷(𝑈𝑖𝑗 ) ≥ 𝐷 𝑄𝑗   for 𝑗 = 0, 1, … , 𝐿 (16)  

since D(U) is non-decreasing. By summing both sides of the inequality over all assets, it 

becomes clear that a fleet in the even-distribution case with cumulative-utilization-

dependent O&M costs will have a greater or equal AEC/V under the newest first practice 

than under the random practice. 
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𝐷(𝑈𝑖𝑗 ) ≥ 𝐷 𝑄𝑗   

 𝑝 −  
1

1+𝑟
 
𝐿

𝑠𝐿 +
1

𝑁
  

1

1+𝑟
 
𝑗

 𝐷(𝑈𝑖𝑗 )

𝑁

𝑖=1

𝐿

𝑗=1

  
𝑟

1 −  1
1+𝑟

 
𝐿 

≥  𝑝 −  
1

1+𝑟
 
𝐿

𝑠𝐿

+
1

𝑁
  

1

1+𝑟
 
𝑗

 𝐷 𝑄𝑗  

𝑁

𝑖=1

𝐿

𝑗=1

  
𝑟

1 −  1
1+𝑟

 
𝐿  

𝐴𝐸𝐶/𝑉𝑛𝑒𝑤𝑒𝑠𝑡  𝑓𝑖𝑟𝑠𝑡 ≥ 𝐴𝐸𝐶/𝑉𝑟𝑎𝑛𝑑𝑜𝑚  
(17)  

Under such conditions, the random practice is preferred regardless of the shape of 

D(U), so long as D(U) is non-decreasing. 

General Case 

Observe that the graph of U1j remains above the graph of Qj for all j=0, 1, …, L in 

Figure 6. Hence, the asset-specific conclusions from analysis of the even-distribution 

case analysis apply to this asset also. However, the graph of U2j does not remain above 

the graph of Qj for all j=0, 1, …, L. Therefore, the conclusions from the even-distribution 

case apply to neither the second asset (i=2) nor the fleet as a whole. Nevertheless, it is 

possible to reach similar conclusions by using an intermediate scenario for comparison if 

D(U) is convex. 

Consider a third, intermediate usage practice where each asset has the same end-

of-life cumulative usage as under the newest first practice, but is used at a constant level 

from year to year instead of having a decreasing usage level. The expected cumulative 
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usage of asset i at age j is denoted Vij in this intermediate scenario. Vij for a given asset i 

and age j can be calculated according to equation (18). 

 𝑉𝑖𝑗 =
𝑗

𝐿
∙ 𝑈𝑖𝐿  for 𝑗 = 0,1, … , 𝐿 (18)  

Table 5 extends the non-even-distribution example from Table 4 to include 

cumulative usages for the intermediate scenario, and Figure 7 illustrates these values 

graphically. 

Table 5: Example of cumulative usage for a non-even distribution (general) case with 

addition of intermediate scenario 

Age Cumulative Utilization 

j U1j U2j V1j V2j Qj 

0 0 0 0 0 0 

1 7 7 6 4 5 

2 14 10 12 8 10 

3 21 13 18 12 15 

4 24 16 24 16 20 
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Figure 7: Graph of cumulative usage versus age for non-even distribution (general) case 

example with addition of intermediate scenario 

The first part of the analysis of the even distribution case may now be applied 

individually to each asset to show that for each asset i=1, 2, …, N at each age 

j=0, 1, …, L, the cost under the newest first practice is greater than or equal to the cost for 

the same asset at the same age in the intermediate scenario. When the fleet-wide cost is 

summed for a particular age j, this results in equation (19). 

 
 𝐷(𝑈𝑖𝑗 )

𝑁

𝑖=1

≥ 𝐷(𝑉𝑖𝑗 )

𝑁

𝑖=1

 for 𝑗 = 0,1, … , 𝐿 
(19)  

It remains to compare the intermediate scenario to the random practice. First, it is 

helpful to show that for any age j the cumulative usage under the random practice is equal 

to the average of the individual cumulative usages in the intermediate scenario as in (20). 
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Equation (20) can be shown to be true using the definitions of Qj and Vij – equations (12) 

and (18) – and equation (15), which states that QL is the average of all UiL. 

 
𝑄𝑗 = 𝑗 ∙ 𝑞 =

𝑗 ∙ 𝑄𝐿
𝐿

=
𝑗

𝐿 ∙ 𝑁
 𝑈𝑖𝑗

𝑁

𝑖=1

=
1

𝑁
 𝑉𝑖𝑗

𝑁

𝑖=1

 
(20)  

Then, since D(U) is assumed to be convex, Jensen’s inequality and equation (20) 

can be used to show the following: 

 

1

𝑁
 𝑉𝑖𝑗

𝑁

𝑖=1

= 𝑄𝑗  

𝑁 ∙ 𝐷  
1

𝑁
 𝑉𝑖𝑗

𝑁

𝑖=1

 = 𝑁 ∙ 𝐷 𝑄𝑗   

 𝐷 𝑉𝑖𝑗  

𝑁

𝑖=1

≥ 𝑁 ∙ 𝐷  
1

𝑁
 𝑉𝑖𝑗

𝑁

𝑖=1

  using Jensen's inequality 

 𝐷 𝑉𝑖𝑗  

𝑁

𝑖=1

≥ 𝑁 ∙ 𝐷 𝑄𝑗   
(21)  

Combining equations (19) and (21) gives the result, 

 
 𝐷 𝑈𝑖𝑗  

𝑁

𝑖=1

≥ 𝐷 𝑄𝑗  

𝑁

𝑖=1

 for 𝑗 = 0, 1, … , 𝐿 
(22)  

Therefore, if D(U) is convex (which includes the case where D(U) is linear), then 

a greater or equal AEC/V results for a fleet with cumulative-usage-dependent O&M costs 

under the newest first practice than under the random practice in the general case. 

If D(U) is concave, equation (21) is not necessarily true and the relationship 

between the random practice and the intermediate scenario is ambiguous. Cases where 
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D(U) was concave were investigated empirically, and in every case examined the random 

usage practice was at least as economical as the newest first practice (no counterexample 

was found). 
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HOW SHOULD AGE STANDARDS BE CALCULATED WHEN USAGE 

DECREASES WITH AGE? 

In the previous section, an age standard was assumed. Assets were replaced upon 

reaching this age and not before or after reaching it. Determining this age standard is an 

important step in keeping total fleet-wide costs low. The impact of different usage 

practices on setting age standards is explored through several examples below. 

Random Usage Practice Example Problem 

Finding the replacement age that minimizes total fleet-wide cost under the 

random usage practice is fairly straightforward. Expected long-run usage is constant – 

effectively independent of other assets in the fleet and any replacement decisions – so 

replacement decisions can be broken down into individual serial replacement problems 

for each asset. Because asset cost functions are identical, the optimal serial replacement 

approach for one asset also applies to all of the other assets in the fleet. A single 

replacement age is selected based on the average experience of a large number of similar 

assets to minimize future costs that include variability. This is a standard approach, as 

described by Terborgh (1949). 

Consider a fleet of 20 vehicles operating in a stable long-term pattern under the 

random usage practice. The maximum replacement age is 20 years and total fleet-wide 

usage (measured in miles) is the same in each period. The following additional parameter 

values have been selected for this example: 
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r = 10% Effective interest rate per period 

p = $10,000 Purchase cost of a new asset 

s = 0 Salvage value of a j-period old asset for all j = 1, 2, …, L 

𝑚 𝑢, 𝑈 = 0.005 ∙ 𝑢0.5 ∙ 𝑈0.7  O&M cost in a period for an asset with usage u during 

that period and cumulative usage U at the end of that 

period. This is an approximation of repair costs for 

ODOT sedans (based on historical data). 

𝑞 = 14487  Expected usage of one asset in a period, measured in 

miles 

Under the random usage practice, the expected usage in a period is the same at 

any asset age. The O&M costs for the example problem are shown in Table 6. 
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Table 6: Annual O&M cost by age for the example problem under the random usage 

practice 

Asset Age Annual Usage Cumulative Usage Annual O&M Cost ($) 

1 14,487 14,487 492 

2 14,487 28,974 800 

3 14,487 43,461 1,062 

4 14,487 57,948 1,299 

5 14,487 72,435 1,519 

6 14,487 86,922 1,725 

7 14,487 101,409 1,922 

8 14,487 115,896 2,110 

9 14,487 130,383 2,291 

10 14,487 144,870 2,467 

11 14,487 159,357 2,637 

12 14,487 173,844 2,803 

13 14,487 188,331 2,964 

14 14,487 202,818 3,122 

15 14,487 217,305 3,276 

16 14,487 231,792 3,428 

17 14,487 246,279 3,577 

18 14,487 260,766 3,723 

19 14,487 275,253 3,866 

20 14,487 289,740 4,007 

 

The cost impact of varying replacement age from 1 to 20 years can be compared 

using the AEC/V criterion in equation (14), with m(u,U) substituted for D(U): 
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1
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𝑟
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1+𝑟

 
𝐿  

(23)  
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Table 7 includes the AEC/V value calculated for each replacement age from 1 to 

20 years. Within this range, a replacement age of 13 years minimizes AEC/V, although 

the cost of a slightly shorter or longer cycle is not that much greater. 

Table 7: AEC/V by replacement age for the example problem under the random usage 

practice 

Asset Age AEC/V ($) 

1 11,492 

2 6,400 

3 4,788 

4 4,036 

5 3,624 

6 3,378 

7 3,224 

8 3,127 

9 3,065 

10 3,028 

11 3,007 

12 2,997 

13 2,996 

14 3,000 

15 3,009 

16 3,021 

17 3,034 

18 3,049 

19 3,065 

20 3,082 

Newest First Usage Practice Example Problem 

Consider the same example problem, but under the newest first usage practice 

instead of the random practice. To keep things simple, only two replacement ages are 

initially compared – 20 years and 10 years. Assume that asset age groups are distributed 

as evenly as possible, so that any asset of a given age has the same expected usage and 
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O&M cost. For the 20-year replacement age, there is always one asset of each age in the 

range from 1 to 20. In the 10-year case, there are two assets of each age in the range from 

1 to 10. 

Example expected annual usage values for each age under a 20-year replacement 

age, along with cumulative usages and annual O&M costs, are presented in Table 8. 

These values were generated using equation (4) under the assumption of exponentially 

distributed interarrival and service times. Utilizations were multiplied by a factor of 

approximately 20,000 miles per year such that the total fleet-wide usage in any period 

was equal to that for the random usage practice problem described above, resulting in an 

average annual usage of 14,487 miles. Due to the even age distribution assumption, the 

20-year cumulative usage for all assets is equal to 289,740 miles – the same as the 

random usage practice example. 
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Table 8: Annual O&M cost by age for the example problem under the newest first usage 

practice over a 20-year replacement cycle 

Asset Age Annual Usage Cumulative Usage Annual O&M Cost ($) 

1 18,769 18,769 672 

2 18,627 37,396 1,084 

3 18,463 55,859 1,429 

4 18,272 74,131 1,733 

5 18,049 92,180 2,007 

6 17,788 109,968 2,254 

7 17,481 127,449 2,477 

8 17,120 144,569 2,678 

9 16,695 161,264 2,855 

10 16,196 177,460 3,006 

11 15,609 193,070 3,131 

12 14,924 207,994 3,225 

13 14,129 222,123 3,286 

14 13,217 235,340 3,309 

15 12,183 247,523 3,291 

16 11,034 258,557 3,229 

17 9,786 268,343 3,121 

18 8,469 276,812 2,968 

19 7,124 283,936 2,771 

20 5,804 289,740 2,537 

 

AEC/V was calculated according to equation (23) for each replacement age from 1 

to 20 years using the data in Table 8 (results are shown in Table 9). This results in a 

correct value for a 20-year replacement age, but potentially incorrect values for 

replacement ages of length 1 through 19 because the total fleet-wide usage is not equal. 

For example, the usages in Table 8 result in a total fleet-wide usage of 354,922 in each 

period for a 10-year replacement age – nearly 22.5% greater than for the 20-year 

replacement age. 
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Table 9: AEC/V by replacement age for the example problem under the newest first usage 

practice, calculated using annual usages for a 20-year replacement age (resulting in 

incorrect AEC/V values for replacement ages of length 1 through 19) 

Asset Age AEC/V ($) 

1 11,672 

2 6,630 

3 5,059 

4 4,342 

5 3,960 

6 3,738 

7 3,606 

8 3,524 

9 3,475 

10 3,446 

11 3,429 

12 3,419 

13 3,414 

14 3,410 

15 3,406 

16 3,401 

17 3,394 

18 3,385 

19 3,373 

20 3,358 

 

This is not surprising, since usage of an asset under the newest first practice is 

greater towards the beginning of its life. Only the early usage of assets with the 20-year 

replacement age is used to calculate the incorrect 10-year AEC/V value. This results in a 

greater total fleet-wide usage than the random practice or an asset with a 20-year 

replacement age under the newest first practice, as illustrated by Figure 8. 
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Figure 8: Annual usage vs. age, 20-year cycle and incorrect 10-year cycle 

Since annual O&M costs in this example problem are usage-dependent, the 

difference in total fleet-wide usage cannot be ignored. Table 10 presents different usage 

values that correct this problem for a 10-year replacement age, resulting in an AEC/V of 

$3,160. These usage values were generated by calculating utilizations using equation (4) 

and multiplying the utilizations by 20,000 miles per year to get annual usage in miles. 

The corrected AEC/V value indicates that the 10-year replacement age is an improvement 

over the 20-year replacement age under the newest first practice, which is contrary to the 

conclusion one would draw from the incorrect value for the 10-year replacement age in 

Table 9. 
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Table 10: Annual O&M cost by age for the example problem under the newest first usage 

practice over a 10-year replacement cycle 

Asset Age Annual Usage Cumulative Usage Annual O&M Cost ($) 

1 18,698 18,698 669 

2 18,368 37,066 1,070 

3 17,918 54,984 1,392 

4 17,301 72,284 1,657 

5 16,446 88,730 1,865 

6 15,267 103,997 2,008 

7 13,673 117,670 2,072 

8 11,609 129,278 2,039 

9 9,127 138,406 1,896 

10 6,464 144,870 1,648 

 

A graphical representation of the corrected usage values for the 10-year 

replacement age is included in Figure 9. The corrected average annual usage for the 10-

year replacement age is equal to the average annual usage under the 20-year replacement 

age and the average annual usage under the random practice. 
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Figure 9: Annual usage vs. age for 20-year replacement age and correct 10-year 

replacement age 

The annual usage vs. age curves in Figure 9 for the 10-year replacement age and 

for the 20-year replacement age are substantially different. Replacement problems with 

this feature will be referred to as having a “dynamic” usage vs. age curve – that is, the 

usage vs. age curve changes as the replacement age changes. If this change in usage 

impacts cost, then a new version of the dynamic usage vs. age curve must be calculated 

for each replacement age in order to correctly evaluate AEC/V. If the usage vs. age 

curve does not change based upon the replacement age (e.g., as under the random usage 

practice), then this will be referred to as a “static” usage vs. age curve. 

Corrected annual usage schedules for each replacement age from 1 to 20 years 

were used to calculate the AEC/V values presented in Table 11. A replacement age of 11 
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years minimized AEC/V under the newest first practice for this example problem. Again, 

the difference in cost for a slightly shorter or longer replacement age is fairly small, but 

the more significant difference is between the two different usage practices. The AEC/V 

for the 11-year replacement age under the newest first practice was about 5% greater than 

the minimum AEC/V under the random practice (with a 13-year replacement age). 

Table 11: AEC/V by replacement age for the example problem under the newest first 

usage practice, calculated using correct annual usages for each replacement age 

Asset Age AEC/V ($) 

1 11,492 

2 6,426 

3 4,828 

4 4,089 

5 3,689 

6 3,456 

7 3,315 

8 3,231 

9 3,183 

10 3,160 

11 3,153 

12 3,157 

13 3,170 

14 3,189 

15 3,213 

16 3,239 

17 3,267 

18 3,297 

19 3,328 

20 3,358 
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Critique of Several Other Approaches to Decreasing Usage with Age 

Several other papers in the literature comment on the trend of decreasing asset 

usage with age, most commonly in vehicle fleets. Dietz & Katz (2001) and Redmer 

(2005) address this issue by comparing costs on a per-mile or per-kilometer basis. 

Buddhakulsomsiri & Parthanadee (2006) specifically hypothesize that a preference for 

newer assets may explain the trend of decreasing usage with age and adapt the model 

described by Hartman (1999). However, none of these approaches suitably address a case 

where assets are acquired for the purpose of meeting a minimum level of service and 

where the newest first usage practice results in a dynamic usage vs. age curve. 

Dietz & Katz (2001) recognize a trend of decreasing asset usage with age in US 

West service vehicles, but follow a different and flawed approach in setting a 

replacement policy. In their approach an optimal per-mile cost is calculated for each 

vehicle type as part of a replacement scoring system. Per-mile cost is calculated for each 

possible replacement age by dividing the net present value (NPV) of all costs incurred by 

an asset for a given replacement age, by the cumulative mileage (according to a fitted 

quadratic curve) over the life of the asset. The minimum cost-per-mile value as a function 

of replacement age is used as the optimal per-mile cost. The NPV includes operating 

costs, purchase price, salvage value, and depreciation and tax effects. 

The first problem  is the use of the NPV to compare replacement cycles of 

different lengths. For example, the NPV of operating an asset for 5 years will likely be 

less than the NPV of operating an asset for 20 years just due to the shorter operation time 

(before considering any other ways in which costs may differ). If a minimum service 
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level must be met over a 20-year period, a fairer comparison would be to repeat the 5-

year replacement cycle four times so that an asset is available for the full 20 years in both 

cases. Calculating the equivalent annuitized payment for each project (based on 5 years 

and 20 years, respectively) would give the same result. 

However, Dietz & Katz (2001) do not make either of these corrections. Instead, 

they compare NPVs of different length after dividing by cumulative mileage. For 

example, this approach can easily give two different per-mile costs for a 10-year 

replacement cycle based on whether costs are calculated over one cycle (10 years) or two 

cycles (20 years). An annuitized payment for a 10-year replacement cycle would not 

change regardless of how many cycles were used to calculate it, which makes for fairer 

comparisons between replacement cycles of different length. 

Redmer (2005) also observes decreasing utilization intensity in vehicles as a 

function of age and calculates a per-km cost for each replacement age by dividing the 

NPV by cumulative usage. However, the author compares NPV over time periods of 

equal length, involving multiple consecutive replacements, and so avoids the first 

problem of Dietz & Katz (2001). 

Both approaches are similar in that they essentially decompose a parallel 

replacement problem into independent serial replacement problems, as was solved above 

for the random usage practice. An effort is made to “correct” for unequal total usage at 

different replacement ages by dividing the NPV by cumulative usage to get a per-mile or 

per-km cost. In the case of the newest first usage practice, this is an attempt to deal with 

the increased total usage for shorter replacement ages (the problem illustrated by Figure 
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8). However, if the extra usage is not useful, using per-mile or per-km costs only 

obscures the problem – extra costs are being spread across capacity that may not actually 

be used. 

Buddhakulsomsiri & Parthanadee (2006) do not use per-mile or per-km costs, but 

instead adapt the integer programming formulation of Hartman (1999). This is done by 

transforming the utilization-related decision variables into parameters, specifying 

utilization as a function of age. By doing so, the authors fall into the same larger trap as 

Dietz & Katz (2001) and Redmer (2005). That is, none of these approaches factor in the 

impact of replacement decisions on utilization (i.e., a dynamic usage vs. age curve). 

Taking a dynamic usage vs. age curve into account requires more complex calculations 

than any of these three approaches. An example of such an approach was used to solve 

the newest first usage practice example problem described above. 

Approaches to Decreasing Usage with Age That Use Different Assumptions 

This section describes two approaches to parallel replacement problems where 

asset usage varies, but these approaches are based on different assumptions than those 

outlined above. The approach taken by Hartman (1999) does not have the problem of 

excess usage occurring for shorter replacement ages. However, the author’s formulation 

cannot easily be used to evaluate a specific usage practice (such as the newest first usage 

practice). Situations where additional usage may have economic value are also 

considered – i.e., situations where assets are not only acquired for the purpose of meeting 

a minimum level of service. 
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Hartman (1999) uses an integer programming formulation of a finite-horizon 

parallel replacement problem with individual asset usage levels treated as decision 

variables. There are several positive aspects to this approach. It allows more flexibility 

for the incorporation of capital constraints and multiple challengers. Usage levels are 

measured at evenly-spaced discrete intervals, which allows for complex formulas in 

determining costs at those specific points (taking other factors, such as inflation, into 

account). Although computational issues may exist, they are not related to fleet size. 

Since the structure is a three-dimensional network, the number of nodes – approximately 

equal to the product of the periods in the planning horizon, the maximum asset age, and 

the number of discrete values that cumulative usage can take – is proportional to the 

number of variables and constraints. 

On the other hand, this approach is unable to easily answer questions about 

specific usage practices that may already be in place. One advantage to simple usage 

practices is that they are potentially easier to implement and manage. Not all fleets have 

the capability to control usage at the detailed level of this model (e.g., at some level 

assets may be under local control). Furthermore, it is possible that enforcing such a policy 

may incur additional administrative costs that are not factored into the model. 

The number of discrete usage increments also has a significant impact on solution 

time. It may be difficult to find solutions in a reasonable amount of time for assets with 

relatively long lives, since this increases all three parameters that determine the number 

of nodes. Maximum age and cumulative usage must be increased for an asset with a 

longer life, and the planning horizon must also be increased to minimize end-of-study 
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effects. Alternately, it may be desirable to increase the resolution of utilization decisions 

by adding more discrete increments. Solutions to the vehicle-based example problems 

solved by Hartman (1999) were found relatively quickly, but the largest problem only 

included four usage levels per year (0; 10,000; 20,000; and 30,000 miles per year) with a 

maximum cumulative usage of 100,000 miles, a maximum asset age of 6 years, and a 

planning horizon of 20 years. A vehicle with a maximum life in the range of 30 years 

would result in a much larger mixed-integer problem with many more variables and 

constraints. Fleet records indicate that some vehicles, such as heavy diesel trucks, may 

have physical lives of this length. 

In some equipment fleets, such as a department of transportation fleet, assets are 

acquired to meet a minimum level of service. For the example problem outlined above, a 

greater total fleet-wide usage provides no additional value but does incur additional costs. 

However, additional output may be valuable in other situations (e.g., perhaps for a fleet 

of rental vehicles). In this case, it is possible to add a revenue term, R(u), to the AEC/V 

formula to reflect the value of any additional usage: 
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(24)  

This is similar to the common practice in engineering economics of evaluating net 

present value to compare projects with both income and expenses (Park, 2006). Allowing 

such variability in usage may also drastically increase the difficulty of finding an optimal 
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replacement policy, however, since the solution space includes both replacement ages 

and different usage schedules. 
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CONCLUSIONS 

Billions of dollars of equipment are replaced by manufacturing establishments 

every year in the U.S. – and that excludes equipment that is managed by government or 

other organizations. Optimizing replacement of such equipment can have a large financial 

impact. Replacement problems are commonly classified into serial and parallel 

replacement categories based on how many assets are operated at a time. Parallel 

problems may be broken into several serial problems if assets are independent of each 

other. However, economies of scale in asset purchase, budget constraints, and flexible 

usage policies are several factors that can introduce interdependence. 

Observations of vehicle fleets, such as ODOT’s, reveal that asset usage tends to 

decrease with age. Operator preference for newer assets is one possible explanation for 

this, and this paper investigated the implications of such a “newest first” usage practice. 

Long-run behavior of a fleet modeled on assets with identical cost functions under an age 

standard replacement mechanism was used for analysis. 

Analysis of the fleet model using Little’s Law resulted in a general procedure for 

calculating expected asset usage. It was shown that the newest first practice results in 

decreasing expected usage with age. A procedure for numerically calculating expected 

usage was also described under the assumption of exponentially-distributed interarrival 

and service times using an M/M/n/n queuing model. 

The impact of the newest first practice on several types of O&M costs was 

evaluated as compared to the “random” usage practice (where expected usage is constant 

with respect to age). Impact on two usage-dependent cost categories was evaluated: 
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annual-usage-dependent costs and cumulative-usage-dependent costs. Different usage 

practices have no impact on non-usage-dependent costs. The preferred practice for 

annual-usage-dependent costs depended upon cost curve shape. A convex curve resulted 

in a preference for the random practice, while a concave cost curve resulted in a 

preference for the newest first practice. A linear cost curve resulted in no preference 

between practices. If asset ages are distributed evenly, the preference in the cumulative-

usage-dependent cost case is for the random practice. This remains true even if asset ages 

are not evenly distributed if the cost curve is convex or linear, but was not proven for 

non-even age distributions where the cost curve is concave. A summary of the results is 

provided in Table 12. 

Table 12: Summary of preferred usage practices for analyzed cost categories 

 Economically Preferred Usage Practice 
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In general, it appears that operating a fleet using the newest first usage practice 

results in greater or equal costs than the random practice (with the exception of annual-

usage-dependent costs with a concave cost curve). This suggests that fleet operators may 

want to consider changing practices if the newest first usage practice is currently used. 

However, there is also room for further analysis by incorporating such concerns as 

technological advancement. 

The impact of the newest first usage practice on replacement decisions was also 

considered, specifically when using an age standard (which is a common practice among 

DOTs). AEC/V was calculated for each replacement age up to 20 years for an example 

fleet under each usage practice, using data generated under a 20-year replacement age. 

The age standard was selected as the replacement age that minimized AEC/V. This was 

equivalent to decomposing the parallel replacement problem into individual serial 

replacement problems for each asset. While this did not raise any issues for the random 

practice, it led to incorrect results for the newest first practice. Using the first several 

years of usage for a longer replacement age to calculate AEC/V for a shorter replacement 

age resulted in excess fleet-wide usage (it was assumed that the fleet was operated for the 

purpose of meeting a minimum level of service). Excess usage resulted in excess costs. 

Generating different newest first usage versus age curves for each replacement 

age – with total fleet-wide usage equal to that under the random practice – resulted in 

different AEC/V values and a different age standard for the fleet. The phenomenon was 

described as a “dynamic” usage versus age curve, since the usage versus age curve varied 

based on replacement decisions. A shorter age standard was selected under the newest 



54 

first practice than under the random practice for the example problem (11 years versus 13 

years), with the random practice resulting in a lower minimum AEC/V. 

This approach was then compared to several alternate approaches taken in the 

parallel replacement literature, specifically in cases where usage was observed to 

decrease with age. While Dietz & Katz (2001) and Redmer (2005) based their approaches 

on per-mile and per-kilometer costs to adjust for extra total usage under shorter 

replacement ages, their approach did not address whether the additional usage was useful. 

Buddhakulsomsiri & Parthanadee (2006) adapted the model of Hartman (1999) by 

replacing asset utilization as a decision variable by an age-based parameter. However, 

none of these three approaches considered the effects of a dynamic usage versus age 

curve, where usage patterns depend upon replacement decisions. 

Hartman (1999) described an approach that included individual asset utilization 

levels as discrete decision variables. While a useful approach allowing for fleet-wide 

optimization, general usage practices such as the newest first practice cannot be 

addressed. Such an approach is likely to only be useful in fleets where there is a very high 

degree of centralized control, and where maximum asset ages are relatively short to avoid 

computational issues. 

For fleets that do operate under something similar to a newest first usage practice, 

it appears that the most practical approach to replacement decisions is that taken by this 

paper. The fleet is simulated under each replacement option (i.e., various replacement 

ages) and resulting AEC/V values are compared. Further opportunities for study might 

include investigating other types of replacement standards (such as usage standards, or 
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standards that are based on a combination of age and usage) as applied to the newest first 

usage practice, or incorporating some of the other features that have been included in 

replacement models elsewhere, such as technological advancement, multiple challengers, 

or budget constraints. 
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