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In this paper we are concerned primarily with characterizing

the epimorphisms of a compact metrizable abelian group which have

zero entropy. Our main result is

Theorem 1. Let G be a compact metrizable abelian group

and ço be a continuous homomorphism of G onto G. Define

subsets P (T ) (n>O) and P(T ) of the additively written char-n cp

acter group -a of G by

P0 (T ) = {o},
cp

P (T ) = (Tk-I)n-1 (Tv)] (n>0)
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and I is the identity map in G. Then h(v) = 0 iff P(T) = G.

Theorem 1 provides the basis and motivation for several other

investigations. As a consequence of Theorem 1 we prove

Theorem 2. If G and cp are as in Theorem 1, then there

exists a unique closed subgroup EC G such that

i.) (pE = E

) cIE is ergodic,

) h(9E) = 0, where 9E is the epimorphism induced by

in G/E and

iv. ) h(9) = 11(91E)

Motivated by Theorem 2, we say that a continuous epimorphism

cp of a compact metrizable abelian group has E-Z decomposition pro-

perty if G is the direct sum of two closed subgroups
G1

and

2
such that cpGi = G. (i =1, 2) and cp G is ergodic while

IG2 has zero entropy. We prove

Theorem 3. Let G be a compact metrizable abelian group

and 9 be a continuous homomorphism of G onto G. Then cp

has the E-Z decomposition property iff there exists a subgroup

HC G such that T HC H and 0= P(T ) where P(T )
So

is as in Theorem 1.

We also investigate the possibility of extending Theorem 1 to

cover arbitrary measure-preserving transformations.
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ZERO-ENTROPY AUTOMORPHISMS OF A COMPACT
ABELIAN GROUP

I. INTRODUCTION

Let (S-2, E, 1.1.) be a measure space. Then by a p.-measure-

preserving transformation is understood a mapping g9 such

that for each AE E, (p 1 A E E and 11(v-1A) = If, in addition,

is bijective and for each A E 4 cpA E E, then co is said to be

an invertible 11-measure-preserving transformation. When there is

no possibility of confusion we shall usually omit the prefix iip,-".

The theory of topological groups furnishes us with the class of

measure-preserving transformations with which we shall be primari-

ly concerned. Specifically, if G is a compact metrizable abelian

group with normalized Haar measure m, then owing to the

uniqueness of m, it follows that every continuous homorphism of

G onto G is an m-measure-preserving transformation. We shall

denote this class of measure-preserving transformations by 5 .

The class E of epimorphisms of a compact metrizable abel-

ian group does not contain examples of every metric possibility for a

measure-preserving transformation. For example, this class con-

tains no ergodic transformation with discrete spectrum defined on a

nontrivial space. Indeed, every ergodic epimorphism of a nontrivial

compact metrizable abelian group has a denumerably multiple Lebesgue
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spectrum [5, p. 511. However, we point out that Foais has proven

[2] that if T is an invertible measure-preserving transformation of

a probability space (c2, Z, p,), then there exists a compact abelian

group G, a continuous automorphism cp of G and a Borel

probability measure X on G which is preserved by co such

that T and p are conjugate. For the meaning of the terminology

introduced in this paragraph, see for example [5].

1. Entropy

One of the principle aims of this paper is to characterize the

elements of a which have zero entropy. For the reader's conven-

ience we review briefly here the notion of entropy. For a detailed

discussion, see [1, p. 60].

Let (Q, ,j) be a probability space and S-2--.42 be a

measure-preserving transformation. For a finite subalgebra A C Z

set

1. 1) H(91 ) = - Z1.1.(A) log p. (A)
A

where the summation extends over the atoms of A By convention,

0 log 0 = 0.

Next, for any finite subalgebra A C set

n-1 -k(1. 2) H(71, = l 1imsup H( V (P )

k=0



(If (EA) are collections of subsets of S2, then V{g :Xe A}
k

denotes the a- alg ebra generated by {Cx :X A}. The variation of

this notation used above is self-explanatory. )

Finally, the entropy of co is defined to be

(1. 3) h(p) = sup {H(94, (,o) : 2( is a finite subalgebra of 2.1.

Thus the entropy of (I; is a nonnegative, extended realvalued num-

ber.

Now the quantity (1. 2) can be computed in another manner. De-

note by r the function defined in [0, 1] by

-t log t 0< t < 1
(t) =

0 t = 0

For a finite subalgebra E and a cr-subalgebra C E

set

(1.4) H(, = S{Erb(Al )1}4,
A

p, l )where the summation extends over the atoms of Here.

is the conditional expectation of A given

Then for any finite subalgebra 71 C E [1, p. 126]

-k
(1. 5) H(.71, (p) = 1-1(4 I V 0. )

3



We shall make use of the following observation: if for some

finite subalgebra 71 C E we have

oo

(1.6) C V CP-1 1
k=1

algebra of subsets of which generates Z, then [1, p. 89]

(1,7) h(co) = sup {H(A, co) : 4l is a finite subalgebra of crcrAd

Finally, if G is a compact metrizable group, co is a con-

tinuous homorphism of G onto G and H is a closed normal

subgroup of G such that coH = H, then [12]

(1.8) h(yo) = h(cp1F-I) + h(H)

is an

4

then HO , co) = 0. Indeed, if (1. 6) holds, then for A E 2/

P-(A I V go ) XA
k=1

a. e.

(XA
is the characteristic function of the set A). Thus

-krap.(A V )1 = 0 a. e.
k=1

and the assertion follows from (1.4) and (1.5).

We shall also need an approximation theorem. If
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where
H is the epimorphism induced in G/H by 49. Here the

entropy of go, c9 I H and
9H

is computed with respect to the nor-

malized Haar measure in G, H and G/H respectively.

2. Measure-Preserving Transformations with Zero Entropy

Let I denote the unit interval equipped with the usual Le-

besgue structures. Denote by a the group of invertible measure-

preserving transformations of I. If 0._ is given the weak topology

(the topology of "set-wise convergence") [5, p. 62], then Rohlin has

shown [6] that the elements of a with zero entropy form an every-

where dense
05 set. These transformations can be described in

the following manner:

Let (c2, E, be a nonatomic Lebesgue space (i. e., isomorph-

ic to I) and 2 be an invertible measure-preserving

transformation. Denote by Ot the collection of all finite subalge-

bras of E. For 4 E t1T. let

A- k
k<0

and set

(1. 9) {rPkA }

Then [11] h(yo) 0 iff = z.



Although this characterization has a number of technical appli-

cations (for example it guarantees the possibility of "separating off"

from q the "part" which has zero entroy [10]), it is usually very

difficult to appraise the o--algebra and consequently it is diffi-

cult to use this characterization to determine whether or not 9 has

zero entropy.

3. Summary of Main Results

For the class 5 we give a simpler, more constructive

characterization. Specifically, we shall prove

Theorem A. Let G be a compact metrizable abelian group

and p be a continuous homomorphism of G onto G. Define

subsets P (T ), (n> 0) and P(T ) of the additively written char-
n go

acter group a- of G by

and

6

P
0(T

) = {0}
ct,

P (T ) = j a -I -1 P (T )1n+1 go k>0

P(T ) = Pn(Tco) ,
n>0

(n> 0)

where T is the adjoint of go in G; i. e., T x = x o

and I is the identity map on Then h((p) = 0 iff P(T ) = G.
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In Chapter IV we shall prove that with the notation of Theorem

A, c9 is ergodic iff P(T ) = {0}. Thus it appears that for the

class E the properties of being ergodic (P(T ) = {O}) and hav-

ing zero entropy (P(T ) = G) are antithetical.

As an immediate consequence of these remarks, it follows that

Theorem A contains as a special case the following theorem due to

Rohlin [8]:

Theorem B. Every ergodic automorphism of a nontrivial com-

pact metrizable abelian group has positive entropy.

As a consequence of Theorem Awe also prove

Theorem C. Let G be a compact metrizable abelian group

and yo be a continuous homomorphism of G onto G. Then there

exists a unique closed subgroup E of G such that

i.) coE = E,

) (pi E is ergodic,

) h(9) = h(rp E)

iv. ) h(E) = 0 when is the epimorphism induced by

in G/E.

In Chapter V we will consider the possibility of improving the

decomposition indicated in Theorem C. Namely, we are interested in

determining the circumstances under which G is the direct sum of



two closed subgroups,
G1

and G2' each invariant under cp

(i. e., G. = G. (i=1, 2)) and such that cp 'GI is ergodic while

(pi G2 has zero entropy. When q admits such a decomposition we

shall say that 9 has the E - Z decomposition property. The prob-

lem of the existence of an E - Z decomposition for cp is seen to be

a group-theoretic version of an unsolved conjecture of Pinskerts [61.

We will prove

Theorem D. Let G be a compact metrizable abelian group

and ç be a continuous homomorphism of G onto G. Then 9

has the E - Z decomposition property iff there exists a subgroup

EC G such that T EC E and G = E P(T) where P(T )
9 9

is defined as in Theorem A.

In the first part of Chapter VII we list several open questions

and discuss the relationship between them. In the final section we

discuss the possibility of extending Theorem A to cover a wider class

of measure-preserving transformations than 5 .

4. Notation and Conventions

8

With the exception of Chapter VII, we shall write all groups

additively.

If we speak of a group r without indicating a topology, then

it always is to be understood that r is given the discrete topology.



The additive group of integers will be denoted by Z.

If G is a locally compact abelian group, then we shall denote

by G the character (= dual) group of G. We shall always sup-
"- ,-

pose that G is equipped with the compact-open topology. Thus G

is itself a locally compact abelian group (see for example [10, p.7]).

In particular then, if G is compact (discrete) then G is discrete

(compact). When G is compact G is countable iff G is met-

rizable [10, p. 38].

If G is a topological group, then we shall denote

by

Hom(G, G) the set of all continuous homornorphisms of G

into G,

by

Epi(G, G) the set of c E Hom(G, G) such that cG = G,

by

Mon(G, G) the set of all injective p e Hom(G, G),

and by

Aut(G, G) the set of all cp E Epi(G, G) Mon(G, G) such that

- 1
9 E Hom(G, G).

If G is a locally compact abelian group and c E Hom(G, G),

then we shall denote by T the adjoint of in G; i. e.,
9

T x = x. 9 (; E a). Notice that if c Epi(G, G), then

9



E Mon(G, 0).

From the theory of topological groups we shall need

Theorem E. Let G be a compact abelian group,

E Hom(G, G) and
G1

be a closed subgroup of G such that

cpG1C 01. Let G2 =l' (Pi = (PI G, and co2 be the homo-

morphism induced by cp in G2. Set H = E G:
x1G1

= 0}.

Define : G2 --- G by

(Lpa)(x)
'Ci,(x+G1)

(aEG2, xE G).

Define T: G/H G by
1

[T (X+H )J(g) = X(g1 ) a, gi e .

Then

1.) ip is a continuous monomorphism

) 4)(G ) = H (i. e., G/G1 H)

) T is a continuous isomorphism (i. e., z G)
1

) ivr =T
(P2

) TT = T T where T is the homomorphism induced
H (p Hi

by T in 0/11.

For the proofs of the first three assertions see for example

[10, p. 35]. The proofs of the last two assertions are straight for-

ward and will be omitted.

10
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Let GI and G2
be topological groups and cp E HOM(G.,G.

1 1 1

(i=1, 2). We shall write (G1'1) z (G2'2) to mean there exists a

continuous isomorphism T of Gi onto G2

Thus in Theorem E, conditions ii. ) and v. ) imply

(G/H, TH) Z (G1' T ) .

1

If G is a compact abelian group and cp E Epi(G, G), then the

entropy of cp, h(cp), will always be understood to be computed with

respect to the normalized Haar measure on G.

Finally, if f is a mapping of some set X into itself, we

shall say that AC X is invariant under f if f(A) = A.

such that T91 Soir



II. MOTIVATION

Before proceeding to the proof of Theorem A we include here a

few remarks intended to help clarify the statement of that theorem.

Let us see what happens when G is the n-dimensional torus.

In this case we may identify G with Zn. Thus if co E Aut(G, G),

then with respect to the euclidean basis of G, there is associated

with T a certain unirraodular matrix A. Now if XX ... Xl n' 2"
are the (not necessarily distinct) eigenvalues of A, then [4]

h(co) = log Ix.
IXii>1

Hence h(ç) = 0 iff I Xi I < 1 i = 1, 2, ..., n. Because the
X.ii

are algebraic numbers and X
X2

= det A = ± 1, we may con-
1 n

clude (see for example [8]) that h(co) = 0 iff all the X. are roots
i

of unity. Consequently, if h(co) = 0, there exists a polynomial of

the form

ki k2
(2.1) u(t) (t -1)(t -1). . (t n- 1 ) k. > 0, i = 1, 2, ..., n

such that u(T ) = 0 (recall that A, and hence T , satisfies its

characteristic polynomial).

Now the condition u(T ) = 0 makes sense for a homomorph-

12

ism of an arbitrary group. Denote by aa the set of all polynomials



of the form (2.1). Thus if r is an abelian group it would appear

from what we have just said that a characterization of the vanishing

of entropy would involve those T E MOn(r, r) for which u(T) = 0

for some u(t) EIU . It turns out, however, that this condition is too

strong. That is, there exists a compact metrizable abelian group

G and (p E Aut(G, G) such that u(T ) = 0 holds for no u(t) E

9

but h(co) = 0. Hence we weaken the condition by "localizing" it. In

other words, for every x E r we suppose there exists a polynomial

u(t) E (depending on x) such that u(T)x = 0. We can give this

last condition a more compact form. Namely, we are now asking that

(2.2) r = {ker u(T):u(t)EV} .

The relationship between the condition (2. 2) and that of Theorem

A is given as

Proposition 2, 1. Let r be an abelian group and

T E Hom(T, r). Define subsets Pn (n> 0) and P of r by

= 0,

P = (Tk-I)-1[P] (n> 0)
n+1 k> 0

and

P =-1 Pn .
n> 0

13



Then

P {ker u(T):u(t)Ellt } .

Proof:

Let k = -(ker u(T): u(t)E1ZO. Let us show first that PC k.

For this it is sufficient to show that PnC k (n> 0). Clearly

Suppose that and let x E P . Then there
n+1P o C k. PnC k

exists an integer k> 0 such that y = Tkx - x E Pn. By assun-ip-

tion there exists a polynomial

k k
u(t) = (t 1-1)(t -1)... (t n-1)

such that u(T)y (T 1-I)(T 2
(T n-I)[Tkx-x] = 0. Set

ki
v(t) = (t '-1)(t 2-1)... (t n-1)(tk-1). Then v(t) E . Moreover,

v(T)x = 0. Thus x E k.

To prove that ke P it is sufficient to prove that if

k1
(2. 3) (T 2-I)... (T n-I)x 0 k. > 0, i = 1, 2,...,n

for some x E r and n> 1, then x E Pn. This statement is

clearly true for n = 1. Suppose that every y E r satisfying (2. 3)

is an element of Pn and that

. . . (T n -I)(T n+1-I)x = 0 .

14



k
Then by assumption, y = (T n+ -MX) E P. Consequently

x E (Tkn+1-I)-1[PnlCPn+1

and the proposition is proved.

We proceed now to develop the machinery needed for the proof

of Theorem A.

15



III. QUASI-PERIODIC MAPPINGS

Let r be an abelian group and T e Hor(r, r). Define sub-

sets P(T) (n> 0) and P(T) by

(3. 1) Po(T) = {0}

(3. 2) Pn+1
(T) = (Tk-I)-1[Pn(T)] (n> 0)

k>0

and

(3.3) P(T) = P (T)
n>0 n

where I denotes the identity map on r.

Then let us agree to say that

(3.4) T is periodic if Pi (T) = r

(3.5) T is quasi-periodic if P(T) = r and

(3,6) T is aperiodic if P1 (T) = 101 .

Notice that P1(T) consists precisely of those x E r for

which there exists an integer k>0 such that Tkx = x. Thus the

terminology of (3. 4) and (3. 6) is clear. We will return to that of

(3. 5) a little later on.

Since P1 (T)C P(T), it follows that every periodic mapping is

quasi-periodic. It is not difficult to find examples of quasi-periodic,

16
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but not periodic, mappings. Consider

Example 3. 1. Let r =ZxZ and define T E Aut(r, r ) by

T(m, n) = (m+n, n) (m, n) E r

Then Tk(m, n) = (m+kn, n) (k> 0, (m, ri)E. r ). Thus

P1 (T) = {xE r Tkx = x for some k >0} = {(m, 0): ME Z} .

Thus T is not periodic. But since for every (m, n) E T we have

T (m, n) - (m, n) = (n, 0) E Pi (T)

or in other words, (T-I)-1[P1(T)] = r, it follows that

P2 (T) = (Tk-I)-1[P1 (T)] = r
k> 0

Thus T is quasi-periodic.

Now the notions of periodicity and aperiodicity are antithetical.

In view of the fact that the quasi-periodic mappings comprise a strict-

ly larger class than the periodic mappings, it is perhaps surprising

that the naturally defined notions of aquasi-periodicity coincides with

that of aperiodicity. Indeed, we have

Proposition 3. 1. Let r be an abelian group and



T E Hom(F, r). Then P(T) = {0} iff PI (T) = {0}.

Proof:

Observe first that if Pn(T) = 0 for some n> 0, then

Pn+1(T) =
k> 0

-1
-1[Pn(T)] = (Tk -I) ROA = P1(T) .

k> 0

18

Thus if P1(T) {0}, an easy induction argument shows that

P(T) {0} (n>0). In this case we then have P(T) = P (T)={0}.
n>0 n

Evidently if P(T) = {0}, then PI (T) = {0} .

For the class of monomorphisms the notion of aperiodicity can

be recast as

Proposition 3. 2. Let r be an abelia.n group and

T E Mon(F,F). Then T is aperiodic iff for each nonzero x E F,

the set {Tkx : k >0) is infinite.

Proof:

Suppose that T is not aperiodic. Then there exists a nonzero

X E r and j 0 such that Tjx = x. Clearly then, {Tkx : k>

is a finite set.

Suppose that for some nonzero x E r the set {Tkx : k>

is finite. Then, since T is a monomorphism, it follows that

Tjx = x for some j > 0. Thus T is not aperiodic.
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We now prove a rather technical result which justifies most of

the group-theoretic constructions that we shall need.

Theorem 3.1. Let r be an abelian group, T E HOM(r, r)

and H0 be a subgroup of I' invariant under T. Set

H = (Tk-I)-1[I-1 .
1 k>0 0

Then
H1

is a subgroup invariant under T. Moreover, HOC H1.

Proof:

Let us first observe that if for some integer j> 0 and

h EH
0 0

(3.7) Tjx = x + h0

then for any integer m > 0

m-1
mjTx = x(3. 8) T ho .

1=0

Indeed, if m=1, then (3.8) reduces to (3.7). Operating in both

sides of (3. 8) by Tj and applying (3.7) yields



Hence from 3. 8) it follows that

Tjk(x_y) Tjkx Ty

= x

0
and y = y + go .

k-1 -1

T1j - y - Tag
0

1=0

m-1

= x + h0 Tho
/=0

= x + T h0
1=0

and the assertion follows.

To prove that H1 is a subgroup, let x, y E H 1 . Then there

exists integers j, k> 0 and elements h E Ho
such that

k-1 j-1
= (x-y) + { T/jh0 - T.ekg } .

1=0 =

Since TH0 = H0 and H0
is a subgroup, it follows that the term

20



(3. 9)

Operating on both sides of (3. 9) by T we have

Ti(Tx) = Tx + Th
0

Since
TH0

=
H0

it follows that

Tx E (Tj-I)-1[1-10]C Hi

and we conclude that TH1 C H1.

To prove that TH1 D HI, suppose that x E r satisfies

(3. 9) (i. e., x H ). Then since TH = H there exists h ' E H
1 0 0 0 0

such that Thol = 110. Thus we may rewrite (3. 9) as

(3. 10)

and so

Tjx = x + h
0

Tjx = x + Th T
0

21

in brackets is an element of
Ho.

Thus

(x_y) crik_ii 1 [Ho] "I

Hence
HI

is a subgroup.

We show now that
THI

= H1. To prove that
THI

C
H1

let

H . Then there exists an integer j> 0 and h E H
1 0 0

such

that



x = T[Ti (x)-hot] .

Hence to show that x E
TH1

it is sufficient to show that

T(x) -
hO' E H1

We have, applying (3.10),

1 jTirri-1(x)-h0q = T T (x) -0'

T= '1
0

= T3-1x + Tjh - Tjh
0 0

(x)-h0') + h0' .

Thus

Ti-1(x) - ho' E (Tj-I)-1[H0]C H1

and so TH, D Hi.

Finally, let us show that HOC Hl. Let h0 E H0. Then

since H0
is a subgroup invariant under T we clearly have

Th0 - h E Ho

or in other words 110 E (T-I)-1[H0]C H1 .

The next theorem contains the basic facts concerning P(T)

and P(T).

22
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Theorem 3. 2. Let r be an abelian group and T e Hom(r, r).

Then the sets P(T) (n>0) form an increasing sequence of sub-

groups each invariant under T. Thus P(T) = P (T) in a sub-
n>0

group invariant under T. Moreover, the endomorphism T in-

duced by T in r/P(T) is aperiodic.

Proof:

The first assertion is proved by induction by noting that in

Theorem 3.1 if HO = Pn(T), then H1 = Pn+1(T).

Let us now show that T is aperiodic. Suppose that there

exists an integer j> 0 and x e r such that

T j(x+P(T)) = (Tjx+P(T)) = (x+P(T)) .

Then we must have

Ti(x) - x E P(T) .

But if Ti(x) - x E P(T), then x E Pn+1(T)C P(T ). Consequently

(x+P(T)) = 0. Thus P1 (T) = {0} ; i.e., T is aperiodic.

Let us remark here that in Theorem 3. 2, if T is a mono-

morphism, then since TP(T) = P(T) it follows that T is also a

monomorphism. In this case it follows from Proposition 3. 2 that for

each nonzero x E r/P(T),{Tkx : k>0} is an infinite set.
P

As we shall see in Chapter IV, the fact that T is aperiodic
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is the crucial bit of information needed to prove the necessity of the

condition introduced in Theorem A. We now prove that P(T) is the

smallest of the subgroups P such that TPC P and Tp is

aperiodic. ,V-e shall make use of this observation in Chapter V.

Proposition 3. 3. Let r be an abelian group and

T E ). If P is a subgroup of r such that TPC P and

P (Tp) = -DI, where T is the endomorphism induced in r /P

by T, then P(T)CP.

Proof:

Suppose that P satisfies the conditions of the proposition.

We prove by induction that Pn(T)C P (n>0). Clearly

PC(T) = {0} CP. Suppose that Pn(T)C P and let x E Pn+1 (T ).

Then there exists an integer k > 0 and pn
E P(T) such that

Tkx = x + pn

Consequently,

T (x+P) = (T x+P) (x+pn+P) (x+P ) .

But then (x+P) E
P1 (Tp) = {0}. Thus x E P.

Now

P(T) = P (T)C P
nn>0



and the proposition is proved.

The term Iquasi_periodicrr is suggested by

Proposition 3. 4. Let r be an abelian group and

T e Hom(r, r). Then for each integer n> 0, the homomorphism

Tn induced by T in P+1(T)/P(T) is periodic.

Proof:

Let n> 0 and x E P+1(T) be given. Then there exists an

integer k> 0 and pn E P(T) such that

Tkx = x + pn .

Thus

Tn (x+Pn(T)) = (Tkx+Pn(T)) = (x+Pn(T)) .

Hence Tn is periodic.

We conclude this chapter with two more technical results.

Proposition 3.5. Let be abelian groups, T. E H m(r., F.)
1 1

(i= 1, 2) and Li) : F1 F2 be a homomorphism such that

= T24. Then iljP(Ti)C P(T2). Consequently if 411-1 =r2
2

and P(Ti) = r 1, then P(T2) r 2

Proof:

We prove by induction that LpPn(Ti)C P(T2) (n>0). Since
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P0(T1) = {0}, the assertion holds trivially for n = 0. Suppose that

4JP
(T1

)C P (T2 ) and let x E P1 (T1). Then there exists an in-n n

teger k > 0 and pn E P(T1) such that

Tkx = x + pn .
1

Thus we have

T2 Nix) - ti)x = LIJ(Ti (x)-x) = p E P T ) .

It follows from the definition of Pn+1(T2) that Lpx e P (T ). In
n+1 2

other words, 4,13n+1(T1)C Pn+1(T2).
The proposition now follows

from

q-iP(T 1) = Pn(ri)) = IPPn(Ti)C P(T2) = P(T2) .

n>0 n>0 n>0

Proposition 3. 6. Let r be an abelian group and

T E Hom(r, r). If H is a subgroup of r such that THC H,

then P(T IH) = H (Th P(T).

Proof:

We show first that

(3.11) H r\ Pn(T)C Pn(T (n>0) .

Clearly (3.11) holds for n = 0. Suppose that (3. 11) holds and let



27

X E H (Th Pn+1(T). Then there exists an integer k> 0 and p E P (T)n n

such that

Tkx x + pn

Since H is a subgroup, THC H and x EH it follows that

pn e H. Thus pn E H Pn(T)C Pn(T IH) and we conclude that

X E H (Th
Pn+1

(T IH).

Since clearly H (Th Pn(T)DPn(T IH) it follows that

(3.12) H P (T) = Pn(T IH) (n>0) .

Thus

H P (T ) = H P (T) i Pn(TIH) = P(T IH)
n>0 n n>0

establishing the proposition.



IV. EPIMORPHISMS WITH ZERO ENTROPY

The principle concern of this chapter is the proof of Theorem

A. With its aid we prove a decomposition theorem which we will in-

vestigate in greater detail in Chapter V.

We prove first

Lemma 4.1. Let G be a compact abelian group and

E Epi(G, G). Then yo is ergodic iff P(T) ={0} P1 (T).

Proof:

It is known (see for example [3, p. 53]) that q is ergodic iff
A A

for every nonzero x E G

T x: k> 0}

is an infinite set. Thus according to Proposition 3.2, (19 is ergodic

iff P1(T) = {0}. The lemma follows then from Proposition 3.1.

We are now prepared to prove

Theorem 4.1. Let G be a compact metrizable abelian group

and yo e Epi(G, G). If P(T ) a-, then h()> 0.

Proof:

Suppose the conditions of the theorem are satisfied. Let E

be the annihilator of P(T ) in G. In other words
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E = (Th {ker() : XE P (Tc0)} .

It is clear that E is a closed and hence compact subgroup of G.

Since T P(T ) = P(T ) it follows that yoE = E. Let = 91E .q' q9 1

Then from formula (1.8) of Chapter I it follows that h(q) > h(coi).

Thus the theorem will follow if we show that h(epi)> 0.

We will show that the hypotheses of Theorem B of Chapter I

are satisfied. Since P(T ) G, it follows that E is not the triv-
cp

ial group. Now E is isomorphic to G/P(T ). If T. denotes the

monomorphism induced in G/P(T ) by T, then (Theorem 3. 2),
9 9

T is aperiodic. Thus T is aperiodic and so by Lemma 4.1,
91

is ergodic. Consequently h(col)> 0 follows from Theorem B.

The converse of Theorem 4.1 is proved in three steps. The

first is

Theorem 4. 2. Let r be a countable abelian group,

29

T E mon(r, r G = and q be the adjoint of T in G. If

P1 (T) = r, then h(p) = 0.

Proof:

Recall that

P1 (T) = (Tk-I)-1[{0}] .

k>0

Thus x E P1 (T)iff there exists an integer k > 0 such that



Tkx = x. It follows that if x , .. ,.

1
x

2, xf E P1 (T ), then there exists

an integer k> 0 such that Tkx. = x. (1 < j < f ). Indeed, if
k. J J -

T 3xj =
xj

( 1 < j < 12), then we may take

k k.
j=1 j

Now the topology on G = r is the Tichonov product topology

and r is countable. Thus it is easily verified that sets of the form

(4. 1) C (xi, x2, .. . , x ; = {g E G : (g (xi ), g , , g(xl ) E A}

where A is a Borel subset of the i-dimensional torus SI form

a field of subsets which generates the Borel subsets of G. Denote

by 0 the collection of all sets of the form (4.1).

Let;..4 be a finite subalgebra of Then (formula (1.5))

-k
H(At,) =1-1(4 \/ 71)

k=1

If C = fgE G (g(x1)' g(x , . , g(xd)E

is an element of 4 , then choose k> 0 such that

Tkx. =x. (1 < j< /).
3 3

Then
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00-kThus C E 71 C V co . Hence
j=1

H(A, co) = 0. Now (formula (1. 7))

h(9) = sup {MA/ , cp) : is a finite subalgebra of = 0

and the theorem is proved.

An application of the Pontrjagin Duality Theorem yields

Theorem 4. 2. Let G be a compact metrizable abelian group

and co e Epi(G, G). If P1 (T)= G, then h(p) = 0.

We now prove that Theorem 4. 2 remains valid if we replace

Pl(Tgo) by
Pn(T(o) (n 0).

Theorem 4. 3. Let G be a compact metrizable abelian group

and 92 E Epi(G, G). If P(T) = G for some integer n> 0, then

h(yo) = 0.

Proof:

The proof is by induction. If P0 (T ) = -a, then (since
cp

P0 (T ) = {0}) G = {0}. Evidently then, h(co) = 0. Suppose that
co

-kC = {g G : (g(Tkx1), g(Tkx2), ..., g(Tkx ) ) E A }

= fg E G : (g(x1), g(x2), g(x.e))e A}

=C.

and so
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Let us now recall the following proposition (see for example

32

h(cc) = 0 for all compact metrizable abelia.n groups G and all

ço E Epi(G, G) for which Pn(T9) G. Let G be a compact met-
/.

rizable abelian group and cp e Epi(G, G) be such that
+1

(T)= G.

Let

G = r'N {ker (;) : 2 e Pnco)}

Since T P (T ) = P (T ) we have
cpG1 = G1.

Let G2 = G/G
(p fl n

1
= G, and 2 be the epimorphism induced in G2 by 9

Then from formula (1. 8)

h((p) = h (p ) h((P2)

We will show in turn that h(91) and h((p2) are zero. Now

n(T9) = Pn+1(T (p)/Pn(Tcp)1

and according to Proposition 3. 4, the transformation Tn induced

in Pn+1(Tn(T9) by T is periodic; i. e. , P1(T) = G/Pn(T9).9

It follows that
T91

is periodic and so by Theorem 4. 2, h((pi) = 0.

On the other hand, a2 is isomorphic to P(T) if
1

T = T IP (T ), then (Proposition 3. 6) Pn(T1) = Pn(T9). Con-n

sequently Pn(T92) = and by our induction hypothesis h(p2) = 0.

The theorem is thus proved.



[1, p. 64]).

Proposition 4. 1. Let Pi, Zi, p.i) (i= 1, 2) be probability

spaces and cp Sti (i= 1, 2) be measure-preserving trans-

formations. Suppose that LIJ : c
2

is a measure preserving-
1

transformation such that = co24, (in this case (p2 is said to be

a factor endomorphism of
co1

). Let2 be a finite subalgebra of
-and 1

= LI5 Then (1) = H(2)
We now give the third and final step in the proof of the converse

of Theorem 4.1.

Theorem 4.4. Let r be a countable abelian group,

T E M011.(r, r) and co be the adjoint of T in G = r. If

P(T) = r, then h(v) = 0.

Proof:

Recall that P(T) = Pn(T) and TPn(T) = P(T) (n>0).
n>0

Set Gn = Pn(T) and define the maps Trn : Gn (n>0) by

Trng = g I Pn(T ) (g E G)

Then the
Trn

are continuous epimorphisms (see for example [10,

p. 36]) and are thus normalized Haar measure preserving transfor-

mations.
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Let (pn : Gn Gn be defined by

(pngn = gno (T I Pn(T9)) (g G, n>0)

Thusgo is the adjoint of TIPn(T co) in Pn n(T) = G. Sincen

TPn(T) P(T) and T is a rnonomorphism it follows that the

are continuous automorphisms.

Let us show that
TTn =nTrn (n>0), Let g E G and

x E Pn(T). The assertion follows from

[nil 0 yo(g)](x) = [g T I Pn(T )] (x)

= (g T)(x)

= [g I Pn(T)](Tx)

= [g I Pnan o Pr I Pn(T )1(x)

= [92neTrn(g)](x)

Now observe that h(con) = 0 (n>0). Indeed, it follows from

the Pontrjagin Duality Theorem that
(Gn,

T ) z (Pn(T), T I Pn(T )).
fl

Thus
Pn(T(pn)

= Gn and the assertion follows from Theorem 4. 3.

Let E and denote the Borel subsets of G and
Gn

respectively. Set Z' = Tr -1Z (n>n oy Keeping in mind that Gn n

is a subset of

(s )r (0 denotes the 1-dimensional torus)
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it follows easily from the definition of Trn and the fact that

Pn(T)C Pn+1(T) that Zni C Znt+i (n>0). Let

= Zn .0 n>0

Then 5 is a field of subsets of Z. Since
0

r P(T) = v Pn(T)
n>0

it follows that generates Z.
0

Let be a finite subalgebra of
o.

Since t and

is finite, it follows that there exists an integer n> 0 such that

Thus there exists a finite subalgebrali C Zn such that

-11= Tr
n

Hence according to Proposition 4.1

y
H cp) H( -1

(p) =

Finally since (see formula (1. 8))

h(cp) = sup 1H : 71 is a finite subalgebra o

1- -

Zn = Trn Zn

) = 0
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we conclude that h(9) and the theorem is proved.

Theorem 4. 4 is evidently equivalent to

Theorem 4. 41. Let G be a compact metrizable abelian group

and E Epi(G, G). If T is quasi-periodic, then h(go) = 0.

Combining Theorems 4. 1 and 4. 41 we have finally

Theorem A. Let G be a compact metrizable group and

ço E Epi(G, G). Then h((p) = 0 iff P(T ) = G.

Theorem A and Lemma 4.1 give an interesting relationship be-

tween the properties of being ergodic and having zero entropy for

cO E Epi(G, G), where G is a compact metrizable abelian group.

Specifically, co is ergodic iff P(T ) = {0} while ç has zero

entropy iff P(T ) = G. The two notions are in this sense antitheti-

cal.

Let r be an abelian group and T E mon(r, r ). Then accord-

ing to Theorem 3. 2, it is possible to separate off the quasi-periodic

part of T leaving an aperiodic factor mon.omorphism. As we have

just seen, quasi-periodic monomorphisms correspond to epimorph-

isms with zero entropy, while (Lemma 4.1) aperiodic monomorphisms

correspond to ergodic epimorphisms. Thus
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Theorem 4. 5. Let G be a compact metrizable abelian group



and c0 E Epi(G, G). Then there exists a closed subgroup EGG

such that

i.) yoE = E

) yolE is ergodic

) h(ç) = 0 whereE is the epimorphism induced in
(P

G/E by cp.

iv. ) h(p) = h(cp I E).

Proof:

We claim that

(4.2) E = {ker (x) : x E P(T )}

satisfies all of the conclusions of the theorem. From

T P(T ) = P(T ) it follows that (pE = E. Since E is isomorphic
co

to 6/ P(T ), ii.)follows from a standard argument and Theorem 3.2.

The third conclusion is inferred from the fact that G/E z P(T )

and Theorem A. Finally iv. ) follows from iii. ) and formula (1. 8).
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V. A DECOMPOSITION THEOREM

In the last chapter we saw (Theorem 4. 5) that for an epimorph-

ism of a compact metrizable abelian group we can always separate

off the ergodic part leaving a factor automorphism with zero entropy.

Now Pinsker [6] has conjectured that possibly every ergodic (measure-

theoretic) automorphism, 9, of a Lebesgue space factors into the

direct product of an automorphism with completely positive entropy (i.e.,

H(71, co) > 0 for every nontrivial finite subalgebra 71 ) and an au-

tomorphism with zero entropy. Rohlin [9] has shown that for (group-

theoretic) automorphisms of a nontrivial compact metrizable abelian

group, the notions of ergodicity and completely positive entropycoincide.

Thus Pinskerls conjecture holds for the group-theoretic case.

1. E-Z Decompositions

In this chapter we consider a group-theoretic version of Pin-

skerr s conjecture without the assumption of ergodicity. That is, if

G is a compact metrizable abelian group and c'p E Epi(G, G), we

ask under what circumstances is G the direct product of two

closed subgroups
G1

and G2 such that yoG. = G. (i =1, 2) and
1

(pi
G1

is ergodic while 91 G2
has zero entropy? Is such a decom-

position always possible? For brevity we shall say that cp has the

E-Z decomposition property if co admits a decomposition of the

sort just described.
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We shall give an answer, though not an entirely satisfactory

one, to the first question. We do not know the answer to the second

que stion.

We begin by proving that the subgroup de'scribed in Theorem

4. 6 is actually unique. Let G be a compact metrizable abelian

group and yo E Epi(G, G). Let us agree to denote by E the sub-

group of G given by

E = (Th Iker (X.):c E P(T )} .

(See (4. 2). Thus E is the annihilator of P(T ) in G.

Lemma 5.1. Let G be a compact metrizable abelian group

and q, E Epi(G, G). If E is a closed subgroup of G invariant

under q, such that plE is ergodic, then EC E.

Proof:

Suppose that EC G satisfies the conditions of the theorem.

Set

(5.1) H = {\cEG:5rdE=0}

Now [10, p. 35]

(5. 2) E = (Th {ker (\c) : ;ZE H}

Thus it suffices to show that P(T)CH.
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It is clear that
TsoHC

H. Let
TH

denote the endomorphism

induced by T in G/H and set
(Pi =

E. Then (Theorem E)

(E, T ) Z (a/H, TH)

Sinceis ergodic it follows from Lemma 4.1 that T and
91

91
hence

TH is aperiodic. It thus follows from Proposition 3. 3 that

P(T)CH as desired.
CP

We are now prepared to prove

Theorem 5.1. Let G be a compact metrizable abelian group

and cp E Epi(G, G). Then there exists a unique closed subgroup

ECG such that

i.) (pE = E

) 1E is ergodic

iii.) h(cpE) = 0 where
cpE

is the epimorphism induced in

G/E by (p

iv. ) h(p) = h((pIE).

Proof:

The existence of a closed subgroup EC G satisfying i. )-iv. )

was proved in Theorem 4.5. Indeed, we showed that

(5.3) E = {ker E )}
9



satisfies these conditions. We will show that E is the only such
9

subgroup.

Suppose that EC G satisfies the conclusions of the theorem.

Let HC G be defined by (5. 1). Because E is uniquely deter-

mined by H (see (5. 2)) it suffices to show that H = P(T )

According to Lemma 5. 1, EC E so

P(T )= {XEG:XIE =0}C{Ccea:XIE=0}=H

Let (pi = colE and Go = G/E. Since (vE) = 0 it follows that

P(T9
) =

Go.

According to Theorem E, the mapping tIJ : Go-- G defined by

= a(x+E) (aE Go' XE G)

is a monomorphism satisfying LliT = T4i. Moreover,0 = H.
(P

1

Thus by Proposition 3.5

H = &ILO = LIJP(T )C P(T ) .

(PE 9

Consequently, H = P(T ) and the theorem is proved.

As will soon become apparent, Theorem 5. 1 contains what in-

formation we have about the E-Z decomposition problem. However,
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the following reformulation seems justified.

Theorem 5. 2. Let G be a compact metrizable abelian group

and co E Epi(G, G). Then go has the E-Z decomposition property

iff there exists a subgroup HC G such that T HC H and
Co

= H P(T ) .

Proof:

Suppose that G is the direct sum of two closed subgroups

G1
and G2 such that coG. = G. (j = 1, 2) and col

G1
is ergodic

3 3

while 991G2 has zero entropy. Evidently then, the epimorphism

co induced in G/G1 by cp has zero entropy. Thus the uniqueness

assertion of Theorem 5. 1 gives

G1 = Eco = (Th {ker ) : E P(T ))

Consequently, G1 = P T ). If we set H=2' then T HC H
Co

42

and a = H 0 Pa ) .
(-P ..

On the other hand, if there exists a subgroup HC G such that

T HC H and 6 = H (DP(T ), then, according to Theorem 3. 2,
9 V

.....

T IH is aperiodic. Thus the adjoint of T IH in H is ergodic
(I' 9

and the existence of an E-Z decomposition for 9 now follws from

Theorem 4.5.



VI. QUASI-PERIODIC MAPPINGS (II)

As we saw in Chapter V, the E-Z decomposition problem ad-

mits a "discrete" reformulation. In this chapter we investigate the

problem from this point of view. We also include here a discussion

of the parallels that exist between our characterization of the vanish-

ing of entropy (Theorem 4.5) and that given in Chapter I (formula

(1. 5)).

1. The E-Z Decomposition Property

Let r be an abelian group and T E Hom(r, r). Then we are

interested in determining whether or not there exists a subgroup

HC r such that THC H and r H OP(T). If such a decompo-

sition exists we will say that T has the E-Z decomposition property.

If r is torsion free, then a necessary condition for P(T)

to be a direct summand is that r/P(T) also be torsion free. The

following theorem shows that the non-existence of an E-Z decompo-

sition cannot be asserted on these grounds:

Theorem 6.1. Let r be an abelian group and T E Horn(r, r).

If r is torsion-free, then r/P(T) is torsion free.

Proof:
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Suppose that mx E P(T) for some integer m> 0 and x E r



(i. e. , m(x+P(T)) = 0 ). Then

(6.1) mx E P(T)

for some n > 0. We prove by induction that from (6.1) it follows_

that X E P(T). If n = 0, then, since P0 (T) = {0} and r is

torsion free, it follows that x E Po(T). Suppose that if mx E Pn(T)

for some m> 0 and x E r, then x E Pn(T). If mx E Pn+1 en'

then there exists an integer k> 0 such that

Tk(mx) mx = m(Tk(x)-x) E Pn(T) .

Thus Tk(x) - x E Pn(T) and so x E Pn+1(T). This completes the

proof of the theorem.

Let us recall here that a subgroup rl of an abelia.n group r
such that r/rt is torsion free is necessarily a pure subgroup of

(see [3, p. 76] for a discussion of this notion). In view of this

fact, Theorem 6.1 guarantees that for an interesting class of abelian

groups, P(T) is at least a direct summand. Indeed, according to

[3, p. 166] we have

Theorem 6. 2. A torsion free abelian group r has the pro-

perty that all its pure subgroups are direct summands iff r = D C)H

where D is a divisible group and H = H1 H C) Hr (r a
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nonnegative integer). The H. being isomorphic torsion free abelian

groups of rank 1.

We conclude this section by showing that every linear endo-

morphism of a finite dimensional vector space has the E-Z decompo-

sition property.

For the remainder of this discussion we shall suppose that V

is a finite dimensional vector space over some field and that

T: V V is linear.

The following proposition is immediate:

Proposition 6. 1. Each of the following is a subspace of V:

Pn(T) (n>0)

(Tp -I)-1 [Pn(T)] (p>0, n>0)

P(T).

Let us now prove

Proposition 6. 2. For each integer n > 0, there exists an in-

teger > 0 such that

Pn(T) = (T/ -I)-1[Pn-1(T)]

Proof:

Let n> 0 be given. Recall that



Set

Now

(6. 2)

Pn(T) = (T -
k>0k>0

K = (T'-I)- 1

[Pn- 1
(T )11 (p >0) .

K C Km! .
p=1

Indeed, if x E K for some 1 < p < m, then

Tx =x + y

where (T). Let1-5 = m ! /p. Then (see (3. 8))

Tm!x = T1-5Px = x + Ty.
f=0

Since Pn-1(T) is a subspace and TPn-1(T) = P (T), it followsn-1

that

X E am! -I)- 1[Pn- 1
(T)] = Km !

For each m> 1 let V be the subspace spanned by

(T)]
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L.) K.
P=1 13

Since Km! is a subspace it follows from (6. 2) that

VmC Km!. Now since {V :m >1} is an increasing sequence and

V is finite dimensional, there is an integer s > 0 such that



V = V for all r> 0. Thus we have
+rs s

Pn(T) = (Tp-1[Pn-1(T)) = K = j i K
p>0 p>0 m>0 p=1

C VniC Km, C Pn(T) .
m>0 m>0

Hence Pn(T) = =V C Ks, C Pn(T)
m>0

and so finally

Pn(T) = Ks,

Thus with I = ! we have

Pn(T) = K = (Ti-I)-1 n-1(T)]

and the proposition is proven.

Corollary 6.1. For each n> 0 there exist integers

kl' k2' ..., kn > 0 such that

ki k
P(T) = ker [(T (T n-1)]

The following elementary proposition plays a fundamental role

in our discussions:
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Proposition 6. 3. Let kl' k2' .., kn be any positive integers

and set

H
1n

= (T 2-I)... (TI) .

If Hnx = 0, then x E Pn(T).

Proof:
klThe proof is by induction on n. From (T -I)x = 0 it fol-

lows that x E P1 (T). Suppose it is true that if

(T 1-I)(T 2-I)... (T n-I)x = 0,

then x E Pn(T). Thus if

k
(T 1-I)(T 2-I)... (T n-I)(Tfl+l1)= 0,

then T n+1x - x E Pn(T) and so x E Pn+1(T).

We prove finally

Theorem 6. 3. Let V be a finite dimensional vector space

over some field K and T be a linear self-map of V. Then

there exists a subspace R such that V = R 0 P(T) and TR C R,

i. e., T has E-Z decomposition property.

Proof:

Since V is finite dimensional and {Pn(T):n > 0} is an



increasing sequence of subspaces, there exists an integer n> 0

such that Pn+p (T) = Pn(T) (p >0). Let k1, k2, kn be positive

integers such that

k1 k2Pn(T) = ker [(T -IXT -I (T n-1)] .

Set

k2
Hn = (T 1-I)(T 21) n-I)

and

R = HV =InaHn n .

Since clearly THn = HnT we have TRC R. Let us show

next that

R P(T) = {0}

Recall that P(T) = Pn(T) = ker(Hn). Thus if y = Hnx E ker (Hn),

then H 2x = 0 or what is the same thing

kl
(T 11) n

1-I)(T -I)... (T n-I)x = 0 .

According to Corollary 6.1, x E P2n(T). But P211(T) = Pn(T)

Consequently x E Pn(T) = ker (Hn). Thus y = Hx = 0, i. e.,

R P(T) = {0}.

Finally since
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Finally let

Then [11]

(6.3) h((p) =0 iff ` 17(i) =

If in addition, SZ is a compact metrizable abelian group,

the Borel subsets of S-2, p. the normalized Haar measure in S2

and p E Aut(0, ), then (Theorem A)

{r, yok,71 e (X} .
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dim (R 0 P(T)) = dim (R) + dim (P(T))

= dim (lmHn) + dim (ker Hn)

= dim (V)

and V is finite dimensional, it follows that

R P(T) = V.

2. Some Further Properties of P(T)

Let (c2, Z, p, ) be a _Lebesgue space and (p be an invertible measure-

preserving transformation. Denote by a the collection of all fi-

nite subalgebras of and for A E a set

k
= v

k<



(6. 4) h(9) = 0 iff P(T )

Because of the similarity between the characterizations (6. 3)

and (6.4) it is natural to expect that

some common properties.

and P(T ) should share
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The o- -algebra can be characterized in another fashion.

Namely [11], is the largest Cr -subalgebra of E invariant un-

der (19 such that for any o--subalgebra E IC 9f(p, the equality

coE' E° follows from yoz, 3zl.

It is interesting to note therefore

Theorem 6.4. Let r be an abelian group and T E Hom(r, r).

If A is a subgroup of P(T) such that TAC A, then TA = A.

Proof:

Let y E A. Then we want to find an x E A such that T = y,

Since y E AC P(T), there is according to Proposition 2. 1 a poly-

nomial

k1
(6. 5) u(t) (t -1)(t 2-1)... (t n-1) k. > () 1 < j < n

such that u(T)y = 0. We may without loss of generality suppose

that n is odd. Expanding the right-hand side of (6. 5) we obtain a

polynomial of the form



(6. 6) a t + am-1tm-1 + ... + a t - 1
M 1

m

where m > 0 and the a. are integers.

Thus from u(T)y = 0 it follows that

Inm - 1amT y + a1 y+... +a T -y=0m-

or

rn-1y = T[a T y +
am- 1

Tm- 2 + . . . + a y] .

rn

Since A is a subgroup, TA CA and y e A we have

m-1x = a T y + a

Clearly Tx Tx = y and the theorem is proved.

Let r be an abelia.n group and T E Horn (r, r). Denote by

the set of all subgroups rt of r such that Tric r, and

for every subgroup A Cr I such that TA CA it follows that

TA = A.

As we shall now proceed to show, hi (ordered by inclusion)

always contains a largest element which may be different from P(T).

Let W denote the set of polynomials with integer coefficients

and positive degree which are of the form

m-2y+... + y E A
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Set

w(t) = a t + am-1tm-1 + a t* 1 .

K(W) = j {ker w(T) :w(t) E

We will prove that K(W) is the unique maximal element of

Proposition 6.4. K(W) is a subgroup of T.

Proof:

Suppose x, y E K(W). Then there exists Wl(t)' W2(t) W

such that

w (T)x = w2(T)y = 0.

Set w(t) = (t)w2(t). Then clearly w(t) E W. Moreover,

w(T)(x-y)='w(T)x - w(T)y

= w2(T)w1 (T)x wi (T)w2(T)y = 0 .

Thus x - y E K(W) and so K(W) is a subgroup.

Now exactly as in the proof of Theorem 6.4 we can prove

Proposition 6.5. If A is a subgroup of K(W) such that

TA CA, then TA = A.
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5 4

Clearly TK(W)C K(W). Thus according to the preceding pro-

position, TK(W) = K(W). We conclude therefore that K(W) E )8.
That K(W) is the largest element of follows finally from

Proposition 6. 6. If rt E AV, the r' C K(W).

Proof:

Let x E r". We want to show that there exists an element

w(t) E W such that w(T)x = 0. If x = 0, the assertion is clear.

We suppose that x A 0. Let A be the subgroup generated by

{x, Tx, T2x... } .

Then surely AC r" and TAC A. Thus TA = A. In particular,

x E TA. But TA is generated by

{Tx, T2x, ...} .

Thus there exists integers al, a2, , a not all zero and m> 0

such that

x=a T x+ am-1Tm-1x + + a1Tx.

Set

Then w(t) E W and w(T)x = 0.

w(t) = a t + am-1tm-1 + + a t - 1 .
1
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Consider now

Example 6.1. Let r =ZxZ and define T E Aut(r, r ) by

T(m, n) = (m+n, m)

Then T is the adjoint of the ergodic automorphism

(z1, z2)-- (zizz, z1) of the 2-dimensional torus (see for example [5,

p. 55]). Thus according to Lemma 4.1

P(T) = {0}

But as the reader can easily verify

(T2 - T - I =0 E r) .

Since w(t) = t = t - I E W, it follows that

K(W) = r



VII. SOME EXTENSIONS

Let G be a compact group with Borel sets and

cp E Epi(G, G). Denote by M(p) the set of all probability measures

defined on which are preserved by q'. Thus the normalized

Haar measure, m, belongs to M(). Unless G = 0, M(cp) al-

ways contains elements other than m (for example the probability

measure with all its mass concentrated in the identity of G).

If we let h(co, X) denote the entropy of go computed with re-

spect to X E M(9), then it is natural to ask what is

sup {h (cp ,X) X E M (9)} ?

An interesting conjecture is that

(7.1) h(cp, X) < h (g o , rn) (X E M(9)) .

In other words we conjecture that

sup {h(9, X) X E M(9)} = h(, .

A consideration of the Bernoulli shift provides some motivation

for this conjecture. Let r= {yr y2, ..., yn} be a fixed finite group

with n elements and set

G =rxrxrx...
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Then with the natural coordinate-wise operations and the Tichonov

topology, G is a compact group.

If P = (P1,132, Pn) is a probability measure defined on r
by Payk}) = pk (1 < k< ), we shall denote by 15 the induced

product measure in G. The normalized Haar measure, iii, on

G is obtained by taking m = (1/n, 1/n, ..., 1/n).

The (one-sided) Bernoulli shift, T, on G is defined by

T0' w w2' (w1, w2, ) ((w0, w1, w2, )E G) .

Clearly T E Epi(G, G). In addition, it is easily shown that T

preserves each of the product measures described above. Moreover,

these are the only product measures preserved by T. That is, if

(k>0) are probability measures on r such that the corres-

ponding product measure is preserved by T, then p.0 = p.i

Let P = (p1, p2, pn be a probability measure on I' .

Then [1, p. 64]

(7. 2) h(T,I5) = - p log pk

k=1

Now the right-hand side of (7. 2) is maximized when Pk = "n
(1 < k < n) (see e. g. [1, p. 61]. Thus

h(T,15)< h(T,
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holds for all the product measures preserved by T.

A rather less adventurous conjecture than (7. 1) is the following:

(7.3) Let G be a compact metrizable abelian group with

normalized Haar measure m and cp E Epi(G, G).

If h(, m) 0, then h(-p, = 0 for every XE M(9).

Evidently (7. 3) would follow from (7.1). Although (7. 3) is given

a purely group theoretic formulation, its truth would lead to a natural

generalization of Theorem (4.5) as we shall see.

Let (0, E, 1.0 be a probability space where 2 is a complete

separable metric space and E is the collection of Borel subsets of

2. We shall denote by U = U(2) the set of those complex valued

f E L2(0) such that If I = 1 a. e. : 2 S2 is an invertible

measure preserving transformation, we shall call a set rc Ti ad-

missible for cp if

i. ) r is a group under point-wise multiplication

) jr = L2(0) (that is the closure of the linear hull of

is L22) ).

iii.) TTCr where T is the adjoint of in
L2(Q)9 9

Thus for example U is admissible as is

U {feu : f is a simple function}
0

If G is a compact metrizable group and p E Aut(G, G), then G
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is admissible for v.

Suppose that r is admissible for v and let T=T IF.
cP

We define subsets Pn(T, r) (n> 0) and P(T, r) of r by

(7.4)
P0 (T'

r) = {1}

(7.5) P (T, r) = {fE r : Tkf = Of for some k>0, OE P(T, r)}
n+1 n

and

(7.6) P(T, r) = P (T, r ) .

n>0 n

It is easily seen that (7. 4)-(7. 6) correspond precisely to (3. 1)-

(3. 3) in multiplicative dress.

Now, if (7. 3) is true, then

(7.7) if r) = L2(0), then h((p) = 0.

Indeed, if ITDP(T, r) = L2(0), then since L2(0) is separable

and P(T, F) is a group invariant under T, there is a countable

subgroup HC P(T, r) which is admissible for v. According to

Proposition 3. 6, P(T I H, H) = H. Thus we may and shall suppose

that r is countable and that P(T, F) F. Give r the discrete

topology and let G =1"'. If T denotes the adjoint of T in G,

then, as Foais has shown [4], there exists a Borel probability meas-

ure X in G preserved by T and such that v and T are
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conjugate in the sense of [5, p. 551. Because the separable topology

on G can be given by a complete metric and the same holds by as-

sumption for 0, it follows that go and T are isomorphic in the

sense of [1, p.66. Thus h(cp , = h(T, X). Now since P(T, r ) =r,

it follows immediately from the Pontrjagin Duality Theorem that the

adjoint, TT' of T in G( zr) is quasi-periodic. Hence if m

is the normalized Haar measure in G, it follows from Theorem

(4.5) that h(T , m) = 0. Thus (7.3) would imply that h(T , X) = 0

and (7.7) follows.

It is with this final conjecture that we shall concern ourselves

for the remainder of this chapter. We shall prove that with the nota-

tion and hypotheses introduced above, if -§15P(T, U0) = L2 (0), then

h(v) = 0. We also include an example showing the converse to be

false.

Let (0, E,11) be a probability space and co : be a

measure-preserving transformation. For a set C U(S-2) let

cr - denote the least cr-algebra of E with respect to which all of

the members of I. are measureable. We shall denote by the

least of the subgroups I' of U(S2) such that ,f,C and TI- cr .

oo

Proposition 7.1. Let = o- - Then cr - <.t.>C V 9-
i=0

Proof:

Let If f, g E and )2, m, n> 0 let us



show for example that fTmgn is measurable with respect to

Since f, g e U(S2), there exists sequences

a x and y
pxkpB

(p >0)
K

11'13 kp A,
Pk=1 k=1

of simple functions measurable with respect to which converge

point-wise to f and g respectively. Thus.

tiJ
1 Tmyn-- f Trngn (point-wise) .
P P

Now, assurnin,g as we may that the expressions for qi and y

are the canonical ones,

(7. 8) m nTV =
P P

k=1
akpXA )( kpx -m

kp k=1 Bkp

It is thus clear from (7.1) that for each p > 0,

is measurable with respect to

v - c/v
i=0

Consequently fTmgr.' is measurable with respect to

Since a typical element of <it.> is of the form
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m m rnk Ik
T lf1 1T 2fa 2. . T fk

a rigorous proof based on these ideas is readily given.

Observing that with = a- - we have Cr' - T =

(n>0), one easily establishes

co

Proposition 7. 2. a- - T = V cp-1714/

n>0 n=0

Thus we finally have

Applying in turn Propositions 7. 1 and 7. 2 we have

co co

(P-i T=Vy9-37-1
i=0 i>0 i=0

and the theorem follows.

We are now prepared to prove

Theorem 7. 2. Let (0, E,11) be a separable probability space

and cp 0 0 be a measure-preserving transformation. If

Tp-P(T, Uo) = L2(0), then h(co) = 0.

Proof:

Recall that U is the set of all complex valued simple
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Theorem 7. 1. o- = V cp where = o- -
i=0

Proof:



functions f E L2(X) such that (I 1.

Since L2(0) is separable, there is a countable subset

rC P (T, Uo) such that spr = L2(0). Let fi, f , fn, ... be

some enumeration of the elements of r. Set

§ =f f } (n.>1)n l' 2" n.
Then

=

n>1
- §n

is a field of subsets of S-2 which generates Z.

Notice that since each of the members of§n is finitely val-

ued and §n
is a finite set, 0- - §n is a finite subalgebra.

Now suppose that is some finite subalgebra of

Then since 0- - § t
0

we must have A C Cr - § for some
n

n> 1. Suppose first that

Then (Theorem 7. 1)

oo

V(I)
i=0

= 0- - <§n>

Now it is clear that <I.n>C P(T, U0). Thus since T <§n>C<§n>

it follows from Theorem 6. 4 that
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(7. 9) T <§n> = < §



But T <,T,n> = <T
n>

and it is readily verified that

(7. 10)

Thus from (7. 9) and (7.10) it follows that

= 0 - C cr - < > = a- - >

oo

= cr - <Tn> = cp

i=1

As we have observed before, the inclusion

c co--.;1
i=1

implies co) = 0.

Now if C o- - then [1, p. 78]

, 9 < h(o-, 9) = 0.

Since

h(9) = sup {H( a finite subalgebra of

we conclude that h(cp) = 0 as desired.

We conclude this chapter with an example for which the con-

verse of Theorem 7. 2 does not hold.

Let SI be the one-dimensional torus equipped with its nor-

malized Haar measure. Consider a rotation 9 : CZ(ZE

oo
-

cr - < T > = V 9 71
n .

1=1
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where C is not a root of unity. Then is an invertible

measure-preserving transformation of X. Moreover, co is total-

ly ergodic (i. e., 9 is ergodic for each n> 0) and h(9) = 0

[6]. As with any totally ergodic transformation, we must have

Pi (T, Uo)C constants.

Since 9 is totally ergodic we also have

Proposition 7.3. If f E L2(Si) is not a constant and satisfies

T kf = Xf for some k> 0 and scalar X, then X is not a root
9

of unity.

Now with cp as above we prove that

(7.11) P2 (T' U0)C constants.

If f E P2 (T' U0), then' since P1(T U )C constants

(7.12) T kf = Xf

for some k> 0 and scalar X. Let R(g) denote the range of

g E Uo. Then clearly

(R(T kg) = R(g) and R(X.g) = X R(g)
9

Thus (7.11) implies
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R (f) = R(T kf) R(Xf) = XR(f) .

But since R (f) is a finite set and z X.z is an injective mapping,

it follows that X must be a root of unity. Thus by Proposition 7. 3,

f must be a constant and (7. 11) is established. It follows immedi-

ately that P(T, Uo)C constants. Thus h(v) = 0 but

-sp-P(T, U0) L2(St) .
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