

AN ABSTRACT OF THE THESIS OF

Hima Gotlur Muralidhar for the degree of Master of Science in Computer Science

presented on September 17, 2019

Title: Enabling Graceful Software Upgrades in Distributed Systems

Abstract approved:

Jesse R. Walker

In today’s world, we are highly dependent on software systems together with

devices for almost every task in our day to day life. Software system upgrades are

released whenever it is necessary to accommodate the ever-changing user’s needs. The

devices we use to run the software systems might be of different configurations, and

we might be running different versions of these software systems on the devices. In

such events, it is not possible for everybody to continue to run the same version of the

software, nor can these billions of people using a software system update their software

at the same time or even on the same day. Therefore, it has become necessary to design

systems to maintain uninterrupted communication among the devices irrespective of

software versions and device configurations. One of the key characteristics to achieve

uninterrupted communication among the software systems is interoperability. In this

thesis, we study techniques to achieve graceful software upgrades in distributed

systems by implementing interoperability techniques. It is also observed that multiple

software systems, like Bitcoin, failed to facilitate communication between versions.

This thesis identifies the necessary elements to support graceful upgrade, i.e., the

principles that are recommended for an upgrade to avoid interruption of user’s work or

data. These elements were discovered by closely studying multiple widely popular

distributed technologies that successfully achieved graceful upgrades. This thesis also

analyzes the Bitcoin protocol and identifies the factors in its design that undermine the

possibilities to have graceful upgrades in this cryptocurrency. A coding experiment was

conducted to illustrate the efficacy of these principles and demonstrate graceful

communications across three different versions of the same software.

©Copyright by Hima Gotlur Muralidhar

September 17, 2019

All Rights Reserved

Enabling Graceful Software Upgrades in Distributed Systems

by

Hima Gotlur Muralidhar

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented September 17, 2019

Commencement June 2020

Master of Science thesis of Hima Gotlur Muralidhar presented on September 17,

2019

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes the release of my thesis to

any reader upon request.

Hima Gotlur Muralidhar, Author

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest appreciation to my advisor, Dr. Jesse

Walker for providing outstanding support for my research endeavors, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. As my teacher and mentor, Dr. Jesse Walker

has taught me more than I could ever give him credit for here and I could not have

imagined having a better advisor.

I am incredibly grateful to Dr. Rakesh Bobba, and Dr. Yeongjin Jang for their

competent remarks, suggestions, and support. Their advice on my research has been

invaluable.

I would like to extend my sincere thanks to Dr. Zhaoyan Fan for his insightful

comments and encouragement.

Last, but not the least I owe all of this to my loving parents and grandparents, Mr.

G.S. Muralidhar, Ms. Vinutha, Mr. Raghavendra Setty, and Ms. Rathnamma, and other

family members, without whom my master’s journey would not be possible. Their

unconditional love and support has made this journey a dream come true. I am also

grateful to my friends who have supported me along the way.

TABLE OF CONTENTS

Page

1 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Background .. 2

1.3 Problem Overview.. 3

1.4 Research Question .. 4

1.5 Thesis Outline .. 4

2 Literature Review ... 6

2.1 Upgrade from BOOTP to DHCP ... 6

2.1.1 BOOTP [2] .. 6

2.1.2 Dynamic Host Configuration Protocol [4] .. 15

2.2 X.509 [3] .. 22

2.2.1 The X.509 architecture.. 23

2.2.2 Certificate Life-cycle .. 27

2.2.3 Management protocols .. 29

2.2.4 Abstract Syntax Notation One (ASN.1) [7] .. 30

2.2.5 X.509v3 Request Format [3]... 32

2.2.6 X.509 v3 Certificate Format [3].. 34

2.2.7 Comparison of X.509 v2 and X.509 v3 [3], [8] 39

2.3 802.11i [9] .. 41

2.3.1 How 802.11i discovery and association establishment work? 41

2.3.2 Robust Security Network Information Element (RSN IE) 47

2.3.3 Key Management .. 48

2.3.4 How 802.11i reuses 802.11’s original security architecture 53

TABLE OF CONTENTS (Continued)

Page

3 Hypothesis .. 55

3.1 Lessons learned from prior work ... 55

3.1.1 How DHCP reused BOOTP [2], [4], [13]... 55

3.1.2 How X.509 supports upgrades [3], [7].. 56

3.1.3 How 802.11i supports upgrade [9].. 57

3.2 Requirements to support successful upgrades .. 57

3.3 Interoperability Trade-offs ... 64

4 Testing the Hypothesis ... 66

4.1 Bitcoin [16]–[19] .. 66

4.1.1 A Brief History ... 67

4.1.2 The blockchain .. 68

4.1.3 Key Management .. 71

4.1.4 Bitcoin transaction lifecycle ... 73

4.1.5 Bitcoin transaction .. 75

4.1.6 Bitcoin Mining Process ... 84

4.1.7 The Blockchain ... 90

4.1.8 Bitcoin Network [16], [17], [22] ... 98

4.2 Analysis of Bitcoin [17]–[19], [23] .. 102

4.2.1 Upgrade problems with Bitcoin protocol .. 102

4.3 Engineering a protocol to demonstrate graceful upgrades 106

4.3.1 Description of initial protocol code .. 108

4.3.2 Upgrading from version 1 to version 2 ... 110

4.3.3 Upgrading from version 2 to version 3 ... 112

TABLE OF CONTENTS (Continued)

Page

4.4 Lessons Learned ... 112

5 Conclusion .. 114

6 References .. 117

7 APPENDICES .. 119

7.1 Appendix A: C Source Code .. 119

LIST OF FIGURES

Figure Page

Figure 2.1: DHCP Message Format .. 17

Figure 2.2: An Example Illustrating a Certificate Chain .. 25

Figure 2.3: Certificate Life-cycle .. 27

Figure 2.4: RSN Information Elements .. 47

Figure 2.5: EAPoL message format .. 48

Figure 2.6: 802.1X Authentication Overview... 51

Figure 2.7: Key Hierarchy Scheme ... 53

Figure 2.8: 802.11 Frame Format ... 54

Figure 2.9: 802.11i reusing WEP header .. 55

Figure 4.1: Structure of a Bitcoin Transaction.. 76

Figure 4.2: Input and Output Length Encoding .. 77

Figure 4.3: Structure of an Input Transaction ... 79

Figure 4.4: Structure of an Output Transaction .. 80

Figure 4.5: Coinbase transaction... 90

Figure 4.6: Structure of a Block .. 93

Figure 4.7: Structure of a Block Header ... 94

LIST OF TABLES

Table Page

Table 2.1: BOOTP Packet Format .. 8

Table 4.1: P2PKH checking process ... 83

1

1 INTRODUCTION

1.1 Motivation

There is a constant need for updates in any software, based on the needs of the

users, and it is very important that software is upgraded responsibly. Though an

upgrade process is one of the most important aspects to be followed, it is often

overlooked by the software organizations and not everyone is aware of the design

principles that must be conducted to support successful upgrades. These principles are

rarely addressed in the engineering curriculum. A Software should be designed to allow

upgrades without disrupting services users depend upon.

Upgrades become tricky in a distributed environment, where there might be

millions or even billions of machines using a single software system at the same time,

but it is impossible to upgrade the software on every system simultaneously; upgraded

clients must still operate correctly with un-upgraded servers and vice versa. The

configurations of these machines are mostly different from each other, and they are

owned by different entities, who will each enforce select different times to perform

upgrades. Even though these applications might be running on these machines on

different versions, the users should be able to interact with each other, if needed. Since

many developers assume a Flag-day, where everyone is required to stop the application

and upgrade its software at the same time. But this is impossible to achieve because of

the upgrade policies of the distributed ownership, and because of regulations in some

industries, which does not allow for downtime.

Whenever a newer version of a software is released, a user’s activity should not be

interrupted, and it should be user-friendly; that is, the experience should be seamless

2

for the user. As we shall see, Bitcoin is a distributed software system that was not

designed keeping upgrades in mind, and a change to its block structure in March 2013

caused a hard fork: non-upgraded Bitcoin clients and miners would no longer accept

bitcoins from upgraded clients and blocks published by upgraded miners [1]. This is

not a good practice. We need to design our software in a way that each version can

understand and communicate with each other successfully, this is to achieve

interoperability.

The objective of this thesis is to investigate and propose design techniques to

support graceful software upgrade. This is an engineering study more than computer

science, as it explores techniques which have proved useful to solve the problem in real

systems, and then demonstrates them in example code and an examination of Bitcoin.

This study would be helpful to the software community to identify the techniques

needed to make any version of the software user-friendly by making it interoperable.

1.2 Background

The aim of any version of the software is to carter the needs of the users for a long

time. On the contrary, user needs are not constant over time, and this necessitates

changes in the software. Therefore, we need a methodology to change a version of the

software without disrupting the user experience or voiding resources users have

accumulated by using prior versions.

Bitcoin is an example of a distributed system (DS). This study analyzes Bitcoin and

identifies elements in its design that undermine the ability to upgrade its functionality.

It also proposes techniques which would have overcome those shortcomings if they

had been used by the Bitcoin designer. Few of the issues Bitcoins failed to address are

3

what if the signature algorithm or hash function is broken? What if better hash or proof

of work (PoW) algorithms are invented? What if the block size must be increased?

What if new features must be implemented? People who designed Bitcoin might not

have thought of these issues. A major constraint that needs to be achieved while

implementing the necessary changes is that the system should not be broken, i.e., the

system containing these new changes should be able to communicate with other

versions successfully and know how to parse the fields that it doesn’t recognize.

The solutions for these problems can be obtained by studying a few of existing

distributed system protocols that did grapple with upgrade issues, such as migration

from Bootstrap Protocol (BOOTP) to Dynamic Host Configuration Protocol (DHCP),

working of X.509 and 802.11i. One of the main lessons learned from migration from

BOOTP to DHCP is that you need to have reserve bits for future use [2]. X.509 points

out the importance of extensions and how the signature algorithm in the certificates can

be changed if the previous one is broken [3]. 802.11i illustrates the technique for a

server to support clients implementing different versions of the protocol. These systems

illustrate how to achieve interoperability in a distributed system and how the existence

of features like version number, reserved bits, extensions, etc. makes a great impact in

making the upgrade process successful.

1.3 Problem Overview

Bitcoin, a distributed system, failed to deliver a successful upgrade capability to its

users. When a new version of Bitcoin was released after an increase in the block size

of data structure, old clients would not recognize transactions published in the new

larger blocks. That is, the older version of Bitcoin software was not able to

4

communicate with the newer version. Due to this, the new software had to be

abandoned in order to maintain a single community-wide view of the Bitcoin economy.

A flag day is not possible, i.e., it is impossible that all the users around the world would

halt Bitcoin trading simultaneously and update their software at the same time on the

same day before resuming the Bitcoin economy. This failure illustrates that it is

essential that every software version should be able to communicate with other versions

of the same software irrespective of the version they are using.

1.4 Research Question

The primary research question of the work presented in this document is how to

gracefully migrate from a prior version of software to a newer version, i.e., a software

upgrade that does not break the environment or user data in a distributed system? The

primary research question can be further broken down into the following sub-questions:

Sub-Question 1: What are the factors in a system design that enable graceful

upgrades?

Sub-Question 2: What are the principles needed to achieve interoperability in a

distributed system in the presence of software upgrades?

Sub-Question 3: Can we illustrate these principles using real software?

Sub-Question 4: Does Bitcoin fail to illustrate these principles? And how?

1.5 Thesis Outline

The first chapter starts with an introduction to this research, along with a brief

background, finally laying out the problem, i.e., interoperability between different

versions of software, this research aims to solve. The second chapter describes how a

few existing protocols or software, like BOOTP – DHCP, X.509, and 802.11i, have

5

been successful in achieving smooth communication between versions. Chapter two

also provides a detailed working of Bitcoin. After understanding the functionality of

the Bitcoin protocol, Chapter three has a detailed analysis of the problems hindering

smooth or successful upgrades in Bitcoin. Furthermore, chapter three contains the

demonstration of graceful upgrades achieved using all the necessary elements

identified in this search so far. Finally, chapter four lists all the requirements that

support graceful upgrades in distributed systems. Chapter 5 summarizes and concludes

the research conducted in this study.

6

2 Literature Review

This chapter reviews multiple protocols in distributed systems that witnessed

successful upgrades.

2.1 Upgrade from BOOTP to DHCP

2.1.1 BOOTP [2]

BOOTP is an Internet Protocol (IP)/ User Datagram Protocol (UDP) used by a

server to assign IP addresses to the diskless devices in the network. A diskless

workstation is a computer that requests the server on its network to load the required

operating system. The bootstrap process can be categorized into two phases. In the first

phase, the IP address of the client and the boot-file selection is determined. Here, the

diskless workstations use BOOTP to obtain an IP address, along with other necessary

information like the subnet mask, address of the router, address of the Domain Name

Server (DNS) server, and the name of a Trivial File Transfer Protocol (TFTP) server.

The second phase of the bootstrap process is where a file transfer occurs, and this phase

is beyond the scope of the study presented in this document. The bootstrap protocol

operates over UDP. The UDP port 67 is used for the server to receive the client’s

messages/requests, and UDP port 68 is used for the client to receive the server’s

responses.

The way the layers are stacked is: a BOOTP message is set as a payload inside a

UDP datagram, UDP is a payload inside an IP datagram, IP is a payload inside an 802.2

frame, which in turn is inside an 802 (Ethernet or Wi-Fi) frame. When messages are

exchanged between BOOTP client and BOOTP server, it has to go through all these

7

different layers, i.e., each layer verifies the message and then passes it to the next layer.

A receiving node processes as the following at each level of the protocol stack.

BOOTP performs a single packet exchange between a client and a server. Both

client and server use the same packet layout with fixed-size fields to simplify the

parsing. The client broadcasts a “BootRequest” containing its hardware address. The

server then answers using a “BootReply.” The two packets are differentiated using an

“op” field, which has two distinct values for each of these types. When a client doesn’t

know its IP address, the server fetches the IP address of the client corresponding to the

hardware address provided by the client in its BootRequest packet. A client can

optionally provide the name of the server it wants to communicate with and receive

replies from that server. In a given network if the server is not directly connected using

a physical cable, the packet is forwarded to the neighboring gateways cooperating with

each other. The packet is again forwarded based on the value in the “hops” field.

The BOOTP packet, along with client and server values to the corresponding fields,

is given in the Table. 2.1.

8

Table 2.1: BOOTP Packet Format

BOOTP Header

format

Description Length in bytes Client

Transmission

(BOOTREQUEST)

Server

Transmission

(BOOTREPLY)

Op

Operation code or

opcode – indicates the

message type

1 = BOOTREQUEST

2 = BOOTREPLY

(0, 3-255 reserved)

1 Sets to 1 Sets to 2

htype

Specifies the Hardware

Address type; Ethernet

10mb is the htype

usually used, its value is

1.

1 Sets to 1
Sets the same as in

BootRequest

hlen

Specifies Hardware

Address Length of the

type specified in the

1 Sets to 6
Sets the same as in

BootRequest

9

above field; value for 10

MB ethernet is 6

Hops

Used for cross-gateway

booting by gateways. It

should be incremented

on each forwarding.

1 Sets 0

If a gateway is used,

fills this with the

appropriate number to

reach the intended

server

Xid

A random 32-bit

transaction ID; this is

used to match the

request and the response

corresponding to it.

4

Generates a random

number and sets it to

that.

Uses the same ID while

responding to the

BOOTREQUEST

Secs

Used by the Client to

indicate the time since it

started trying to boot.

Servers might use this to

decide the order in

which it wishes to

respond

2

Sets to the number of

seconds since it started

to request for booting

Might use this to decide

on the order of response

to be given to the

requests

10

Reserved bits/unused Saved for future use 2 N/A N/A

ciaddr

Client IP Address; if the

client already has an IP

address it fills this value

with that address

otherwise it sets to 0

4 0 N/A

yiaddr

“Your” IP Address;

after allotting the IP

address to the client, the

server fills this field

with the client’s IP

address

4 N/A

Sets to the Client’s IP

address if this was

previously 0; this is to

inform the client about

its new IP address that it

can use

siaddr

Server IP Address; this

is the address of the

server that is replying to

the BOOTREQUEST

4

Sets to

255.255.255.255; since

it is a broadcast message

at the start as the client

does not know who the

server is

Sets its own IP address;

may be used for further

communication

11

giaddr

Gateway IP address;

Used to indicate their IP

address in cross-

gateway booting by

gateways; this is an

optional field

4 N/A

The gateway address is

used if the server and

the client are not on the

same subnet

chaddr

Indicates the client’s

hardware address, i.e.,

the MAC address of the

machine

16
Sets its own hardware

address

Sets the same as in

BootRequest

sname

Server Host Name; this

is an optional field; the

null-terminated name of

the server the client

wants to restrict the

request to; it can be a

nickname or a fully-

64

Might set it some

desired server name if

required

Fills in with current

server’s address

http://www.tcpipguide.com/free/t_AbsoluteFullyQualifiedandRelativePartiallyQualifie.htm

12

qualified DNS domain

name of the server

File

File Name of the

required Boot file to be

loaded into the client

device by the server; it

has to be a null-

terminated name; it can

null for default boot file;

it can be a fully

qualifies directory path;

it can be a generic name

like ‘Unix.’

128

Might specify either of

the three formats as

mentioned in the

description

If the specified file

name exists

corresponding to the IP

address of the client,

then it replaces the ‘file’

with fully-specified

pathname.

Vend

Vendor Extension.

Optional. This contains

the vendor information

64

Vendor related

information can be

present if required

Vendor related

information can be

present if required

http://www.tcpipguide.com/free/t_AbsoluteFullyQualifiedandRelativePartiallyQualifie.htm
http://www.tcpipguide.com/free/t_AbsoluteFullyQualifiedandRelativePartiallyQualifie.htm

13

Before setting up the packet for the first time, the entire buffer is cleared and is set

to all zeros. The BOOTP client then sets the fields with the values as mentioned in

Table 2.1 and broadcasts it in the network. As the client does not have an IP address

yet, it cannot send unicast IP datagrams. The two most vital fields in a BootRequest

message are the transaction id and the client’s hardware address.

After receiving the client’s request, the BOOTP server checks for the following

conditions to decide whether to accept and process the request or discard it:

a) If UPD destination port doesn’t match the BOOTP server port; then discard the

packet.

b) If sname field is null or is specified, check for the match; if a match exists,

continue with packet processing.

c) If sname does not match name or nickname, the packet is simply discarded. If

the sname is present on the same physical network, discard the packet, as that

server will pick this request and process it. If sname is not present on the same

subnet, check for giaddr to see if the gateway is specified to forward the request

on to a different network. If giaddr is zero, either fill it with the current server’s

address or a gateway that can be used to get to that network and then forward

it.

d) If ciaddr is zero, then look for the client hardware address (chaddr, hlen, htype)

in the database. If there is a match, fill yiaddr with the match found in the

database. If no match is found, discard the packet or forward the packet on to

other subnets.

14

e) If file is not null, lookup for a file name or fully-specified pathname along with

client’s IP address, if a match is found, replace the 'file' field with the fully-

specified pathname of the boot file.

f) If file is null, fill with the default Boot file

g) If the value in the file does not match any value in the database, then discard

the packet.

After performing the above checks, the server populates the packet as displayed in

Table 2.1. It sets the “op” to 2, “xid” to the same value to match the request, “siaddr”

to its IP address, “yiaddr” to the client’s IP address, “giaddr” to the respective gateway

address, “sname” to specify the DNS server, “siaddr” to the its (current server’s) IP

address, and replaces “file” to the corresponding fully qualified directory-path.

When a client receives this BootReply packet, it does the following checks:

a) If Opcode is set to 2. If yes, the packet is processed. Otherwise, it is discarded.

b) If the xid matches the xid from BootRequest, if yes, process the packet. Discard

the packet if xid doesn’t match.

c) As the client doesn’t know its IP address, it checks to see if the chaddr in

BootReply match the client’s hardware address mentioned in its BootRequest.

If it is not its hardware address, the packet is discarded. Otherwise, the packet

is accepted.

After making these checks, if the packet is accepted, the client now has an IP

address, which is the value in yiaddr, a server address (siaddr), a gateway address

(giaddr) and a fully qualified path to the boot file.

15

 When the request server is not on the same physical network, the packet should be

forwarded to other networks using gateways. A gateway listening to the broadcast

BootRequests takes its time to decide when it is appropriate to forward these packets.

As a part of its configuration, a gateway might have a list of other networks to receive

the broadcasted BootRequests. The gateway could wait until the “secs” or decide to

forward the packet immediately. If the gateway decides to forward, it first checks the

“giaddr” field. If the field is empty, it fills this field with its own IP address and then

forwards the packet, so that other servers receiving this packet know which network or

which server to contact to reach to that client. The “hops” fields can also be used along

with giaddr to control how far the packet should be again forwarded.

2.1.2 Dynamic Host Configuration Protocol [4]

DHCP is an upgrade of BOOTP. DHCP is fundamentally interested in a dynamic

IP stack configuration, while BOOTP is concerned about diskless workstation

configuration, as discussed in the previous section 2.1.1. Despite this difference,

BOOTP had the right infrastructure needed for DHCP to reuse BOOTP packet formats

and infrastructure to achieve an entirely new function. For example, BOOTP gateway

becomes the DHCP forwarding agent (discussed later in this chapter). That is, the

BOOTP gateway infrastructure can be reused to forward messages between

unconfigured nodes on one subnet and BOOTP/DHCP servers on another, thus

allowing the TCP/IP stack configuration to be centralized at a site.

DHCP offers two services. First is a protocol where servers deliver host-specific

configuration parameters to a host, and second is a mechanism to dynamically allocate

network address or IP address to a host for a finite time. To provide the first service,

16

DHCP needs to have persistent storage of its network clients. Each client entry is stored

as a key-value. For each client, a key can be a single unique identifier, such as,

transaction ID, hardware address or even a pair of identifiers, like, IP-subnet-number

and hostname or IP-subnet-number and hardware address, within the subnet that make

the combination unique and value is its configuration parameters, like, the lease during,

etc. To provide the second service, DHCP can allocate temporary or permanent

network addresses when requested by its clients. The period over which an IP address

is allocated to a client is called “lease.” Once the IP address is assigned to a client, it is

not reallocated to any other client before the lease ends. These DHCP servers have a

limited number of IP addresses to allocate among clients. Therefore, non-leased IP

addresses can be reused when a new device joins the network. There might be cases

where a client can ask for a permanent IP address; for examples, devices like printers,

servers, routers can require unchanging IP addresses. In such cases, the DHCP server

allocates a lengthy but not infinite lease, as a client can retire and not inform the server

about it, statically using the BOOTP subset of the DHCP protocol. Figure 2.1 presents

the DHCP message format.

17

Figure 2.1: DHCP Message Format

 The two main differences in the functionality of DHCP over BOOTP is that:

First, DHCP assigns a network address to its clients for a finite lease. Second, a client

can receive all the IP configuration parameters required to operate. A few modifications

that are made to the existing BOOTP implementation to achieve DHCP are as follows:

a) Vendor Extensions (vend) field is renamed as Options. Multiple new option

types are defined.

b) A new “client identifier” option was introduced. This “client identifier” option

acts as a key and must be unique to that client within the subnet. Previously in

BOOTP, chaddr was used for both hardware address and as a client identifier.

This “client identifier” option must be unique to that client within the subnet.

op (1) htype (1) hlen (1) hops (1)

xid (4)

secs (2) flags (1) reserved (1)

ciaddr (4)

yiaddr (4)

siaddr (4)

giaddr (4)

chaddr (16)

sname (64)

file (128)

options (variable)

18

c) The “siaddr” is now used to return the IP address of the next server to use in the

next bootstrap service. To provide the IP address of the current server, a new

“server identifier” option was introduced.

d) One of the reserved bits in BOOTP was used. As an alternative to the client

who cannot receive unicast messages, a new field “flags” was introduced. The

leftmost bit of this field is defined as the BROADCAST (B) flag. If this flag is

set, it provides a hint to the server to broadcast any messages to the client.

DHCP is a two-phase commit protocol to make sure that clients and servers a

synchronized view of the server’s dynamic database. So that the clients can depend on

the state of the database they are aware of. This suggests that a client can believe that

the IP address it is allocated to is not used by anybody else. Two-phase commit is

required as UDP packets can be lost. In the two-phase protocol, the first phase is the

request phase, where a client requests for an IP address, and the server responds with

an available IP address. The second phase is called the commit phase. Upon receiving

the IP address from the server, if the client agrees with the server’s decision, the client

votes a “yes,” and the server commits the IP address into the database.

DHCP uses BOOTP messages to communicate with each other. A client initiates

the process by requesting an IP address. The messages from a client to a server use

BootRequest and the messages from a server to a client use BootResponse. Typically,

four messages are exchanged between a client and a server to complete an agreement,

two from each client and server. Since the opcode of the two messages from client or

server is going to be the same, i.e., both messages from the client use BootRequest and

both messages from the server use BootReply, a new option, “DHCP message type,”

19

is defined which tells which of the four DHCP message it is. This option must be

included in every DHCP message. Just like BOOTP, DHCP uses UDP ports for

communication. It uses port number 68 for the client to send requests and port number

67 for the server to respond to those requests.

The interaction between the client and the server using the four message happens

as follows:

 “DHCPDISCOVER”: This message is broadcasted by the client on its local

physical network request the servers for an IP address. The client must include the

transaction ID (xid), its hardware address (chaddr) and DHCP message type option.

The client may include the desired server, IP address, IP address lease time, and client

identifier in its options. The DHCP forwarding agents may broadcast this request to the

servers on other subnets.

 “DHCPOFFER”: The servers willing to assign addresses sends a DHCPOFFER

in response to the DHCPDISCOVER. The server must include the xid, available IP

address in the “yiaddr” field, lease duration option, server identification option, and

DHCP message type option. It may also include other configuration options. For the

client on a different subnet, DHCP forwarding agents can transmit the DHCPOFFER

messages. In this case, the message must contain the subnet mask, DNS server, gateway

address, and the IP address of the next server to use in “siaddr” field. Since there can

be multiple servers at a site, a client can receive multiple offers. The client picks the

offer in which most of the desired configurations match. At this point, the offered IP

address is not reserved for this client; it can still be allocated to other clients. Therefore,

20

clients must not start using the IP address offered in this message and wait till all the

four messages are exchanged successfully.

 “DHCPREQUEST”: The client can broadcast this message to achieve any of

the three purposes. First, to accept the offer from one server and inform other servers

about it by implicitly declining their offers in response to the DHCPOFFER. Therefore,

the DHCPREQUEST also acts as a notification to inform the other servers that the

client did not select them. Second, to confirm the previously allocated address after a

system reboot or any such situation. Third, to renew or extend the lease duration. A

DHCPREQUEST must include the xid, the server identification options to imply which

serve the client has selected, and the requested IP address option must contain the IP

address (the network address in “yiaddr”) offered in the DHCPOFFER. If the client

chooses a server in other subnets, the DHCP forwarding agents broadcast

DHCPREQUEST message to other subnets.

 “DHCPACK”: Servers use this message in response to confirm

DHCPREQUEST. After receiving DHCPREQUEST, the server selected by the client

checks if it can still offer the parameters it promised in the DHCPOFFER. If yes, the

server commits the IP address to that client in its database and responds with a

DHCPACK message. The combination of “chaddr” or “client identifier” option and the

assigned IP address becomes the unique identifier for that client. Both client and server

use this unique identifier to identify the lease. The DHCPACK must contain all the

information (must not conflict with the parameters offered in DHCPOFFER) provided

by the server previously in DHCPOFFER. After receiving the DHCPACK, the client

21

must do a final check to see if all the parameters are correct, and then the client is

configured.

The client is responsible for retransmission of these messages. So, if the client does

not receive either the DHCPOFFER or the DHCPACK from the server, the client

should retransmit DHCPDISCOVER or DHCPREQUEST by setting the desired value

in “secs” field until it receives a reply from the server.

Along with the above four messages, there are additional messages used in DHCP,

which are discussed in the following paragraphs.

“DHCPNAK”: If the server has moved to another network or the network address

has already been allocated, the server uses DHCPNAK to inform the client that the

server is currently unavailable to satisfy the DHCPREQUEST message. After receiving

a DHCPNAK message, the client restarts the configuration process.

“DHCPDECLINE”: After receiving the DHCPACK, if the client detects that the IP

address it is allotted it is already in use, the client must use DHCPDECLINE message

to inform the server about this and restart the configuration process.

“DHCPRELEASE”: If there is still time left for the expiration of the lease, but the

client wants to end the lease, the DHCPRELEASE message is sent to the server by the

client to inform that the client wishes to quit the current lease and the server can make

this IP address available to other clients.

“DHCPINFORM”: When a client is already configured with an IP address, but it

requires other local configuration parameters, the client can send a DHCPINFORM

message. The server then replies with a DHCPACK message with the requested

22

configuration parameters. However, the server should not assign a new IP address and

should respond with a DHCPACK message.

2.2 X.509 [3]

X.509 is a standardized protocol used by public key infrastructure (PKI) to provide

electronic identities. It is a standard determining the format for public key certificates

(PKC). A certificate contains a public key and an identity, which can be a hostname, or

an organization, or an individual, and is signed by either a certificate authority or can

be self-signed. A self-signed certificate is a certificate that is signed by the same entity

whose identity this certificate certifies. A PKC provides an authenticated data structure

to communicate the public key used in asymmetric cryptography between entities in an

open network. It binds the public key to an assigned identity identifying the entity that

holds the corresponding private key. A PKC is considered valid and trustworthy when

it is signed by a certificate authority (CA) that is accepted as valid and trustworthy, as

the CA’s signature on the certificate attests that the named entity holds the private key

corresponding to the public key in the certificate. Thus, someone holding a certificate

signed by a trusted CA, or validated by other means, can rely on the public key it

contains to establish secure communications with another party or validate

documents digitally signed by the corresponding private key. Some people believe

self-signed certificates are trustworthy as well, but they assume that the certificate

verifier is received directly from an already entity.

X.509 certificates are used for authentication. The authentication process is often

started by an initiating entity when it sends its X.509 certificate to a responder. The

X.509 certificate conveys the sender’s public key and assigned identity, certified by a

https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Private_key

23

CA. If the responder recognizes the CA, it believes the details in the certificate. Next,

the responder generates and sends a random challenge. The initiator then signs a

response that includes the random challenge sent by the requester, along with other

protocol-specific information. Only the initiator who received random challenge will

be able to produce a signature which can be verified as correct using the public key in

the certificate. By doing this, the initiating entity proves its identity and can be now

trusted as the party identified by the certificate. This, in turn, proves that the key

received using this certificate is, in fact, the legitimate key. The protocol into which

this exchange has been embedded can also be designed to guarantee that nothing was

changed during the exchange of these messages.

2.2.1 The X.509 architecture

The X.509 architecture consists of the following entities:

Subjects and End Entities: A subject identifies the end entity whose public key is

present in the certificate.

Issuer: An issuer is called a CA. Issuers can be categorized into root CAs and

subordinate CAs. A root CA is a CA whose certificate is self-signed and well-known,

i.e., end entities that trust it believe they have somehow securely obtained the root CA’s

self-signed certificate. Since a root CA is well-known, it is usually difficult for an

attacker to forge a root certificate. A subordinate CA is a CA whose certificate is signed

by another CA. One could have two subordinate CA’s sign each other’s’ certificates,

but this is not done; ultimately there has to be a chain of certificates from a root CA to

a subordinate CA, with each certificate in the chain being signed by a subordinate CA

above it, except for the root CA at the beginning of the chain, which is a self-signed

24

certificate. Issuers create certificates for both subordinate issuers and end entities. An

issuer that signs its own certificate is called a root certificate authority, and its

certificate is well-known, i.e., publicly known by many other entities; since it is well-

known, it is usually difficult for an attacker to forge a root certificate.

Certification Chains: The issuer of an end entity’s certificate is usually a

subordinate CA; the subordinate CA normally also has a certificate issued by another

subordinate CA, and this process continues until the final subordinate CA has a

certificate issued by a root CA. This sequence of certificates is called a certificate chain.

As an example, an OSU student or faculty computer might be an end entity and be

certified by a certificate issued by OSU’s CA dedicated to issuing end entity

certificates. This OSU CA would be certified by OSU’s root certificate, which might

itself own a certificate issued by a well-known public CA such as Verisign’s CA for

signing enterprise certificates; VeriSign’s enterprise CA’s certificate would be signed

by VeriSign’s root CA. Thus, the entire certificate chain in this example would be as

shown in Fig. 2.2.

25

Figure 2.2: An Example Illustrating a Certificate Chain

End entities usually only trust certificates issued by root CAs a priori, and so a

certificate chain is a mechanism to recursively extend trust to entities unknown to the

end entity relying on certificates: the end entity trust certificates issued by the root CA,

so trusts certificates issued by the subordinate CA, etc.

Certificate Revocation List (CRL): It is a list of the serial numbers of digital

certificates that have been revoked by CAs and should no longer be used. A certificate

is revoked if the private key is believed to have been compromised. Revocation is

irreversible.

Registration Authority (RA): A registration authority is an entity that receives and

responds to certificate requests on behalf of an issuer. A certificate request asks for the

RA’s CA to issue a certificate to the requester. The X.509 architecture uses registration

authorities for several purposes. First, requiring end entities to interact with RAs

OSU end entity certificate

OSU end entity CA certificate

OSU root CA certificate

VeriSign entity CA certificate

VeriSign root CA certificate

26

instead of CAs makes it somewhat harder to directly attack and subvert issuers. Second,

RAs allow for more efficient operation of the public key infrastructure by batching

requests to the CA. Finally, this architecture separates concerns, with the checking of

the certificate requestor’s identity being performed in the RA and moving the

mechanics of issuing certificates to the CA. It is believed this separation of concerns

reduces the vulnerability of the entire PKI to attack.

Online Certificate Status Protocol (OCSP) [5]: This is a protocol used to access

revocation status of X.509 certificates, to avoid the cost to end entities of fetching

CRLs, which can grow quite large (large = megabytes or greater). It is a request-

response protocol running over HTTP. An OCSP response can be either good, revoked,

or unknown. If the server is unable to process the request, it sends an error message.

Lightweight Directory Access Protocol (LDAP) [6]: It is used to access a certificate

repository: It is a protocol to enable accessing and maintenance of the distributed

directory information services over an IP network. Using this any information like the

public keys, email address, etc. can be obtained. It was derived from the X.500 DAP

and simplified the X.500 standard. An LDAP directory is organized in a simple "tree"

hierarchy consisting of the following levels: The root directory is the starting point or

the source of the tree, which branches out to Countries, each of which branches out to

Organizations, which branch out to Organizational units (like divisions, departments),

which branches out to Individuals, which includes people, files and so on. Each entry

is identified by a unique identifier called a distinguished name. This works in request-

response format. Few of the requests that can be made on the items in the directory are:

https://en.wikipedia.org/wiki/Directory_service
https://searchnetworking.techtarget.com/definition/root-directory

27

a) StartTLS – use the LDAPv3 Transport Layer Security (TLS) extension for a

secure connection

b) Bind – authenticate and specify LDAP protocol version

c) Search – search for and/or retrieve directory entries

d) Compare – test if a named entry contains a given attribute value

e) Add a new entry

f) Delete an entry

g) Modify an entry

h) Abandon – abort a previous request

i) Unbind – close the connection (not the inverse of Bind)

2.2.2 Certificate Life-cycle

Figure 2.3: Certificate Life-cycle

L

D

A

P

Certificate

and CRL

Repository

End Entity

RA

OCSP Server

CRL Issuer

CA

CA

Management

Transaction

Request for Certificate

Publish Certificate

Publish Certificate

Publish CRL

Publish CRL

Certificate Status

Certificate Status

Cross

Certification

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Authentication

28

Figure 2.3 depicts the interactions involving certificates, CRL, end entities, and the

X.509 infrastructure. These interactions are explained below:

 The end entity can directly communicate with the CRL server to request a

certificate’s status. The CRL determines whether the certificate has been revoked by

checking with LDAP for each CA in its certificate chain. LDAP responds to the request

by searching for that certificate in its directory. If the certificate is not revoked after

checking with the CRL, the certificate is sent to the end entity.

 If an RA receives the request, the RA may check whether the information

provided in the request, and if so, ask its CA to issue the requested certificate. Finally,

the RA responds to the end entity’s request with a valid certificate or a denial of the

request. An RA can also use LDAP to insert the newly issued certificate into the

certificate directory.

 If CA receives the request, the CA can insert certificates it issues into the LDAP

directory itself, rather than relying on its RAs to accomplish this function for it. It is

more common for an RA to insert the certificates issued by a CA into the certificate

directory than the CA.

 Cross Certification: In this process, a certificate is issued by one CA to another

CA. The details in one certificate of one CA can then be trusted by a user who trusts

the certificate of the other CA. Two CAs establish and specify the terms of trust and

issue certificates to each other, entities within the separate certificates can now interact

subject to the policies specified in the certificates. End entities can’t know about every

possible root CA, so can’t necessarily trust certificates issued by these unknown CA.

The way X.509 attempts to alleviate this problem is through cross-certification. If the

29

end entity trusts certificates from, e.g., Symantec, but doesn’t know about GoDaddy,

then it can trust certificate chains rooted in GoDaddy if Symantec cross certifies the

GoDaddy root CA. In doing so, Symantec will issue a certificate with the GoDaddy

root CA’s certificate embedded in it, in effect saying, “Symantec hereby certifies that

GoDaddy certificate chains are also trustworthy.” This extends the end entity’s trust in

Symantec certificate chains to GoDaddy certificate chains by essentially making

GoDaddy’s root CA a sub-CA to Symantec’s. So, after a CAs verifies with the other

CA, the steps in c) would be followed.

2.2.3 Management protocols

The following management protocols help in establishing the online connection

between the end entities and the management entities (Few management entities are:

CAs, RAs, LDAP, etc.).

a) Initialization: In this phase, all the necessary materials needed to install keys

are initialized to carry out the further processes securely. This might include

installing or generating the public keys on the end entity’s side.

b) Registration: To register, an end entity contacts the RA function and gives it a

certificate request. The RA may acquire other information from the end entity,

and once it has collected “evidence” satisfying its policy, it forwards the request

to the CA, which issues a certificate. The CA returns the certificate to the RA

and then stores the certificate into some repository. Then, the RA delivers the

certificate to the end entity. This process binds an end entity name (Subject or

SubjectAltName) to the end entity’s public key.

30

c) Key pair recovery: In order to recover from hard crashes, where an end entity

is destroyed, the end entity might store the key materials like the encrypted

private key of the user, into a backup system. In case, the user loses the keys, it

can be recovered using this protocol.

d) Key pair update: All key pairs need to be updated from time to time. The old

key pairs will be replaced with a new key pair, and new certificates will be

issued. This is accomplished by requiring the end entity to randomly generate a

new key pair and registering it with an RA, with the request signed by both the

old and the new key.

e) Revocation request: If evidence exists that a key might be compromised, this

function is used by the CA to revoke that certificate.

2.2.4 Abstract Syntax Notation One (ASN.1) [7]

ASN.1 is a standardized data description language for defining machine-

independent data structures. It also supports serialization and deserialization of these

abstract data types in a cross-platform way. That is, an ASN.1 compiler can compile

modules into libraries of code that decode or encode the data structures. It is mostly

used in telecommunications and computer networking, and especially in application

protocols. ASN.1 is both human-readable and machine-readable. X.509 certificates are

written in the ASN.1 language. ASN.1 uses a type-length-value format. Types and

values can be assigned names using the assignment operator (::=). The four types that

ASN.1 supports are:

 Simple types: These are atomic and have no components. Few of the simple

types used in X.509 certificates are:

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Cryptography

31

a) BIT STRING, an arbitrary string of bits (ones and zeroes).

b) INTEGER, an arbitrary integer.

c) OBJECT IDENTIFIER, an object identifier, which is a sequence of integer

components that identify an object such as an algorithm or attribute type.

OBJECT IDENTIFIERs play the role of tags in ASN.1.

d) OCTET STRING, an arbitrary string of octets (eight-bit values).

e) UTCTime, a "coordinated universal time" or Greenwich Mean Time (GMT)

value.

 Structured types: These consist of components. Structured types can have

optional components, possibly with default values. Few of the structured types are:

a) SEQUENCE, an ordered collection of one or more types. Only this is used in

X.509 certificates.

b) SEQUENCE OF, an ordered collection of zero or more occurrences of a given

type.

c) SET, an unordered collection of one or more types. Note that a SET can include

multiple objects of the same type.

d) SET OF, an unordered collection of zero or more occurrences of a given type.

 Implicitly and explicitly tagged types: Tagging helps in distinguishing types

within an application, or even within a structured type. Tags help in avoiding

ambiguity. There are two ways to tag a type:

a) Implicitly tagged types: These tags are derived from other types and are

obtained by changing the tag of the underlying type. These tags are identified

by the keyword “IMPLICIT” present after the tag number.

32

b) Explicitly tagged types: These tags are derived from other types by adding an

outer tag to the underlying type. These tags are identified by the keyword

“EXPLICIT” present after the tag number. If only the tag number is present, it

is considered as an explicit tag type.

 Other types: These tags include

a) CHOICE: This type denotes a union of one or more alternatives from which

one type should be chosen.

b) ANY: This type denotes an arbitrary value of an arbitrary type, where the

arbitrary type is possibly defined in the registration of an object identifier or

integer value.

2.2.5 X.509v3 Request Format [3]

An X.509 v3 certificate request has the following formats:

CertRequest ::= SEQUENCE {

 certReqId INTEGER --ID for matching

request and reply

 certTemplate CertTemplate

 controls Controls

OPTIONAL}

CertTemplate ::= SEQUENCE {

 version [0] Version OPTIONAL

 serialNumber [1] INTEGER OPTIONAL

 signingAlg [2] AlgorithmIdentifier OPTIONAL

 issuer [3] Name OPTIONAL

 validity [4] OptionalValidity OPTIONAL

 subject [5] Name OPTIONAL

33

 publicKey [6] SubjectPublicKeyInfo OPTIONAL

 issuer ID [7] UniqueIdentifier OPTIONAL

 subjectUID [8] UniqueIdentifier OPTIONAL

 extensions [9] Extensions} OPTIONAL

Controls ::= SEQUENCE SIZE (1..MAX) OF AttributeTypeAndValues

Next, a CertReqMessage is created, containing CertRequest. The client formats and

sends a CertReq to an RA. The RA eventually sends a response, either giving the client

the certificate it has requested or a denial of the request. This request message contains

CertReqId field which contains a random number that is sent to the CA.

CertReqMessages ::= SEQUENCE SIZE (1..MAX) OF

CertRequest

After receiving this request, CA checks if the certificate can be granted. Whether

this is the case is outside the scope of the X.509 specification, as different CAs will

enforce different policies about how the requests are authenticated. The request is

discarded by the CA if the requirements do not match. If CA agrees to grant the

certificate, it signs the certificate along with the random number sent by the end entity.

By doing this, two things are proved:

A signature over the random number proves that certificate was generated after

receiving the request and not before. Random number proves the liveness of the

certificate.

The identity of the CA can be proved because only the legitimate CA can know the

private key used to sign the certificate.

34

2.2.6 X.509 v3 Certificate Format [3]

The X.509 v3 certificate basic syntax, which is represented in the ASN.1 structure.

A certificate is basically a header and is a sequence of three required fields, as shown

below:

Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate

 signatureAlgorithm AlgorithmIdentifier

 signatureValue BIT STRING}

tbsCertificate: Contains all the required information about the certificate. It

contains the names of the subject, issuer, a public key, the validity period of the

certificate, etc.

signatureAlgorithm: Contains the identifier for the cryptographic algorithm used

by the CA to sign this certificate. The algorithm identifier is used to identify a

cryptographic algorithm, and its structure is as follows:

AlgorithmIdentifier ::= SEQUENCE {

 Algorithm OBJECT IDENTIFIER

 Parameters ANY DEFINED BY

algorithm OPTIONAL}

The OBJECT IDENTIFIER component identifies the algorithm (such as DSA with

SHA-1). The contents of the optional parameters field depend on the algorithm used.

signatureValue: Contains the digital signature computed over the ASN.1 encoded

tbsCertificate. This value is encoded as BIT STRING. By computing the signature, CA

validates the information present in the tbsCertificate and certifies the binding between

the subject and the public key mentioned in the certificate.

35

The following ASN.1 structure presents the components that store all the necessary

information of a certificate

TBSCertificate ::= SEQUENCE {

 Version [0] EXPLICIT Version DEFAULT v1

 serialNumber CertificateSerialNumber

 signature AlgorithmIdentifier

 Issuer Name

 Validity Validity

 Subject Name

 subjectPublicKeyInfo SubjectPublicKeyInfo

 issuerUniqueID [1] IMPLICIT UniqueIdentifier

OPTIONAL

-- If present, version

MUST be v2 or v3

 subjectUniqueID [2] IMPLICIT UniqueIdentifier

OPTIONAL

-- If present, version

MUST be v2 or v3

 extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version

MUST be v3

 }

Version: This field is to identify the version of the X.509 certificate. Currently,

version 3 certificates are used, as it supports extensions. The value for version 3 is 2. If

the field - “UniqueIdentifier” is present, then the version of the certificate is 2, and the

value of this version is 1. If only basic fields are needed in the certificate, version 1 is

used, and the value of this is 0.

Version ::= INTEGER {v1(0), v2(1), v3(2)}

36

Serial number: It is a positive long integer, up to 20 octets, assigned by the CA. It

must be unique for each certificate issued by a given CA, i.e., the issuer name and serial

number identify a unique certificate.

CertificateSerialNumber ::= INTEGER

Signature: This field contains the algorithm used by the CA to sign the certificate.

It is the same as the field “signature algorithm” mentioned above.

Issuer: This field contains the information of the CA or the RA who issued the

certificate. The type of this field is Name, and this field should contain a non-empty

distinguished name. The attributes of the name are composed hierarchically. The

structure of Name defined in ASN.1 is as follows:

Name ::= CHOICE {

 rdnSequence RDNSequence}

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::= SET SIZE (1..MAX) OF

AttributeTypeAndValue

The value for Name is selected from the list of the RelativeDistinguishedName

mentioned in the RDNSequence. Only one value is chosen from the sequence.

AttributeTypeAndValue ::= SEQUENCE {

 Type AttributeType

 Value AttributeValue}

AttributeType ::= OBJECT IDENTIFIER

37

AttributeValue ::= ANY -- DEFINED BY AttributeType

The type of AttributeValue is decided by the value chosen for the field

AttributeType.

DirectoryString ::= CHOICE {

 teletexString TeletexString (SIZE (1..MAX))

 printableString PrintableString (SIZE (1..MAX))

 universalString UniversalString (SIZE (1..MAX)),

 utf8String UTF8String (SIZE (1...MAX)),

 bmpString BMPString (SIZE (1..MAX)) }

All the above decisions are based on the value present in DirectoryString, which

recommends the type of value Name can have. The values in DirectoryString can be a

country, organization, state, common name, surname, given name, etc.

Validity: This field specifies the validity period of the certificate granted by the CA,

who signed the certificate. This field as a sequence of two dates which specifies the

beginning of the certificate validity period and the time after which the certificate is

not considered valid. The validity period should be represented in UTC or generalized

time. Before the validity period begins and after it ends the certificate is considered

invalid, and any information in it is untrusted.

Validity ::= SEQUENCE {

 notBefore Time

 notAfter Time}

Time ::= CHOICE {

 utcTime UTCTime

38

 generalTime GeneralizedTime}

Subject: This field identifies the entity whose public key the certificate contains or

the entity bound to the public key. The subject can be either present here or in the

extension – “subjectAltName.” A certificate can be self-signed; in this case, the issuer

and the subject are the same (the certificate of a root CA is always self-signed).

Therefore, the subject field should contain a non-empty distinguished name that

matches the contents of the field Issuer and should be encoded in the same manner as

present in the Issuer field. If it is not a self-signed certificate, then this field should a

non-empty distinguished name which would not match the Issuer field. For all the other

name formats, the extension – “SubjectAltName” is used. If there is no value present

in the subject field, SubjectAltName is made critical, which makes it mandatory to have

either of the field populated at all times. The issuing CA assigns the SubjectAltName

for the end entity that generated the certificate request. The CA usually constructs this

by prepending some form of a name requested by the end entity to a string in a

namespace controlled by the issuer.

Subject Public Key Info: This field contains the subject’s public key used in the

certificate and the algorithm used to derive the key. The AlgorithmIdentifier used here

is the same used in signatureAlgorithm.

SubjectPublicKeyInfo ::= SEQUENCE {

 Algorithm AlgorithmIdentifier

 subjectPublicKey BIT STRING}

The subjectPublicKey BIT STRING is parsed according to the algorithm specified.

39

Unique Identifier: This field contains the subject’s and issuer’s unique identifier.

Because the names of the subject or the issuer might get reused later, this field should

be present only in version 2 and 3 and not in 1.

Extensions: This field provides a way of adding new information other than the

existing fields. These are present only in version 3 certificates.

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER

 Critical BOOLEAN DEFAULT

FALSE

 extnValue OCTET STRING}

One of the important extensions is the Subject Alternative Name. This field is used

as an extension of the “subject” field. The name form options this field should accept

are Internet electronic mail address, a DNS name, an IP address, and a Uniform

Resource Identifier (URI). If an alternative name form is used to identify the subject,

the Subject Alternative Name should be populated, and the subject field should be

empty. If the subject field is empty, the CA marks the Subject Alternative Name as

critical and fills the subject identity that is bound with the keys.

2.2.7 Comparison of X.509 v2 and X.509 v3 [3], [8]

In X.509 v2, the specifications of the field “Subject” were ambiguous. “Common

name” is a type defined for the Subject field. Since the ambiguity in the specifications

of this field made X.509 v2 vulnerable to attacks. There were multiple instances where

two implementations of the X.509 system interpreted the same input differently. This

led to a CA signing a certificate that it viewed as being granted one privilege, while the

client-side application (the web browser) parsed the same input differently. This

40

vulnerability caused “Null terminator attack.” In this attack, the attacker presents a

certificate signing request to the CA with the common name as

“www.google.com\x00.attacker.com” and get a signed certificate for this Subject

Common Name. Let us assume that the CA correctly interpreted the value in this

common name field, i.e., the CA parsed this string as Pascal-style string by including

\x00. However, other destinations might interpret the string as a C-style string and

consider \x00 as end-of-the-string. These destinations might decode the CA’s encoding

into a signed message vouching that the certificate is valid for www.google.com.

Therefore, to overcome this vulnerability, X.509 v3 introduced a new field

“SubjectAltName” as an extension, replacing the “Subject” field. The “Subject” field

is still preserved in version 3 to support interoperability between version 2 and version

3. However, in version 3, the Subject field is never used and is kept empty. In version

3, ASN.1 data structures were not changed from version 2; just a few extra types were

defined in the extensions for SubjectAltName.

http://www.google.com/x00.attacker.com
http://www.google.com/

41

2.3 802.11i [9]

Wi-Fi is a local area networking technology that uses radio signals to communicate

between the devices/mobile stations. It constitutes a wireless local area networking

(WLAN) defined by the IEEE 802.11 standards. Wi-Fi is widely used in today’s world,

covering almost 100% of the WLAN market share. In infrastructure mode, this

technology is based on the Client-Server model. The communication happens between

an Access Point (AP) - which plays the role of the Server - and a Station (STA) – which

plays the role of a Client. For easy understanding, let us imagine an AP as the 802.11i

analog of an Ethernet switch. An AP has two interfaces, one on the radio side, which

is a set of virtual STAs, and the other on the distributed system side, which is usually

Ethernet. The radio interface is used to form associations with multiple STAs

simultaneously. The DS interface side is used to connect the Wi-Fi WLAN with the

rest of the world. The AP shuttles packets or frames between the two interfaces using

switch-like technology, as it knows which MAC addresses can be reached through each

of its interfaces. In 802.11i, an AP is a combination of a station and a distributed system.

2.3.1 How 802.11i discovery and association establishment work?

There are typically 6 phases in establishing a Wi-Fi connection:

 Discovery: A STA must find an AP before it can form any connection, and this

process is called discovery. Discovery can occur in two ways: First, every AP

broadcasts announcements of its presence, called Beacons, periodically. Second, an

STA can broadcast Probe requests asking any AP within radio range to identify itself

and to share information about the 802.11i capabilities it supports, such as data rates

and security posture. An AP may ignore received Probe requests, but more commonly

42

it usually responds with a Probe Response. An AP unicasts its Probe Response to the

MAC address of the requesting STA. Like a Beacon, Probe Responses contain the AP’s

SSID (wireless network name), supported data rates, encryption types, and other

802.11i capabilities. If an STA receives Beacons or Probe Responses announcing

802.11i capabilities compatible with the STA, the STA can initiate the next stage of a

connection, which is called Association.

 Association: A STA selects a suitable AP from the broadcasted beacons and

Probe response it receives. An Association Request is sent by an STA to the selected

AP to establish a link. Upon receiving the request, AP decides whether to allow the

connection. If the AP can support the request, it sends an affirmative Association

Response to the STA. This is to inform the STA that the AP has granted access for STA

to exchange MAC level messages between the correct STA and the Distribution

System, which is the network behind the AP. If the AP has security enabled, it also sets

up a filter to allow only the exchange of 802.1X messages between the STA and the

DS.

 Authentication: This is skipped if the AP does not have security enabled. If

security is enabled, 802.1X authentication between the STA and the DS is required.

Typically, 802.1X authentication is facilitated by an Authentication Server (AS)

somewhere within the DS, and an 802.1X proxy running within the AP, which knows

how to route 802.1X messages between the STA and the AS. The IEEE 802.1X

protocol is also called EAPoL, to denote it uses EAP over LAN, to effect authentication

between the STA and AS. 802.11i security assumes that as a side effect of 802.1X

authentication a secret Pairwise Master Key (PMK) is established at both the STA and

43

AS. The PMK is an authorization key whose possession proves the holder is authorized

to send and receive messages on the association between the AP and the STA. On

successful authentication, the AS sends the PMK to the AP and then deletes its own

copy, so the AS cannot impersonate the AP to the STA nor vice versa. Both AP and

STA then use the PMK in the next step of the connection life cycle to confirm that they

are indeed the legitimate parties authorized to access the association. This next step is

called the 4-Way Handshake.

 4-Way Handshake: The 4-Way Handshake is an authentication process based

on 802.1X and used to prove (a) the STA and the AP are both authorized to send and

receive messages over the association between them and (b) derive cryptographic keys

from the PMK to restrict access to the channel between them. This protocol is named

the 4-Way Handshake since it requires four messages to achieve its goals. Mutual

authentication requires an exchange of at least three messages to prove identity and

liveness, but the use of 802.1X, which is a request/response protocol, means a 4th

message is used. The second, third, and fourth 4-Way Handshake messages include a

Message Integrity Code (MIC) to detect unauthorized forgeries and changes to the

information transmitted in these messages. MIC is an alternate name given in this

protocol for Message Authentication Code because the 802 community already used

the acronym MAC to mean Medium Access Control. MIC is usually constructed over

the entire message so that the receiver can check if the message was tampered before

it received the message. The protocol also uses nonces, defined as 32-byte (256-bit)

random number, that is used in these messages to prove the liveliness of a session. By

the Birthday paradox, the number of bits of security you get from randomness is half

44

the number of random bits, so a 256-bit random number yields 128 bits of security. In

this case, security means reuse resistance, so the use of 256-bit numbers, if random,

requires 2128 guesses to find one of the generated nonces. The nonce sent by the AP is

called ANonce, and that by the STA SNonce. ANonce is generated by the AP as a

challenge to the STA to prove its responses in the protocol were not generated before

the AP sent its ANonce. And, similarly, SNonce is the random number generated by

the STA to challenge the AP to prove its responses in the protocol were not generated

before the STA sent its SNonce. ANonce and SNonce are used to generate a Key

Confirmation Key (KCK) from the PMK so that a valid MIC value proves the liveliness

of this session. The MIC computed using this KCK also binds the information

exchanged to this session since information or nonces sent in a different session will

result in a different KCK and hence lead to an invalid MIC with very high probability.

The four messages exchange is depicted below:

a) Message-1(M1): The AP generates a random ANonce and sends a unicast

EAPOL message along with ANonce to the STA as soon as it gets PMK from

AP after 802.1X authentication. This message informs the STA that AP is

waiting for a reply.

 EAPOL-key (Response Required, Unicast, ANonce)

b) Message-2(M2): After receiving M1, STA responds to AP by generating a

random SNonce and sending a unicast EAPOL message along with its SNonce

and includes an RSN information element (RSN IE) that selects among the

security options the AP advertised by including an RSN IE in its Beacon or

45

Probe Response. The M2 MIC is computed over the entire message, along the

ANonce received from M1.

 EAPOL-key (Unicast, SNonce, MIC, STA RSN IE)

c) Message-3(M3): After receiving M2, AP computes the KCK using the PMK,

the ANonce from M1, and the SNonce from M2, and then checks whether the

MIC value sent by the STA in M2 is valid, using the KCK. AP checks whether

the RSN IE in M2 selects from the security options, the AP advertises in its

Beacons and Probe Responses, and discards the message, aborts, the protocol,

and ends the association if not. If, however, the RSN IE selections are valid, the

AP generates and sends M3. Message M3 includes the RSN IE it advertises in

its Beacons and Probe Responses. It also reiterates ANonce. The AP computes

the MIC over this information and adds it to M3, sends M3, and then computes

a set of cryptographic keys called the Pairwise Temporal Key from the PMK,

ANonce, and SNonce as described in the section 2.3.3.3.

EAPOL-key (Response Required, Install PTK, Unicast, ANonce, MIC,

AP RSN IE)

d) Message -4(M4): On the arrival of M3, STA checks for the MIC sent in M3. It

also checks that the included RSN IE is identical to that included in the Beacons

and Probe Responses received from the AP. If not, the STA abandons the

association and reenters discovery; this check defends against a “down-grade

attack, where an attacker forges Beacons or Probe Responses that include a

security policy different from that specified in the RSN IE the AP includes in

its discovery messages. If so, the STA computes the PTK and installs it to begin

46

encrypting the channel with the AP. Finally, the STA encodes M4, reiterating

SNonce and including a MIC computed using the KCK over the rest of M4.

The STA sends M4 as a confirmation message to the AP.

 EAPOL-key (Unicast, MIC)

If anytime the checks fail, the connection is terminated right away. Temporal or

session key is installed on both sides, i.e., STA and AP. AP takes the 802.1X filter

away, and any message can be now exchanged.

 Data Transmission: As the 802.1X filter is removed and STA and AP

successfully prove their identities to each other, all types of messages are exchanged.

All of the messages exchanged during this stage of the connection are encrypted and

authentication using the scheme selected by the RSN IE exchange in the 4-Way

Handshake.

 Disassociation: When the STA and AP no longer wish to exchange messages,

either can send a Disassociation message to terminate the connection. Both parties

delete the PMK and all derivative cryptographic keys upon disassociation.

47

2.3.2 Robust Security Network Information Element (RSN IE)

Figure 2.4: RSN Information Elements

The RSN IE contains the Security policy an AP offers to its client or the selection

of features from this policy, a client will use over a session, as shown in Fig 2.4. It

conforms to the tag-length-value concept to distinguish it from other 802.11i

information elements, but its subfields do not; thus, the expectation is that if later

versions have to change the RSN IE format, these changes will be compatible with the

existing version of the element. Element ID is the tag, Length has the length of IE, and

the rest of the fields are the values. It is present in Beacons, Probe response and

Message 2 and 3 of the 4-way handshake. Group Cipher Suite contains the cipher suite

selectors used by BSS to protect broadcast messages. The count of all the pairwise

cipher suite selectors contained in the RSN IE and their list is present in the next two

Element ID (In Octets) 1

Length 1

Version 2

Group Cipher Suite 4

Pairwise Cipher Suite Count (m) 2

Pairwise Cipher Suite List 4-m

AKM Suite Count (n) 2

AKM Suite List 4-n

RSN Capabilities 2

PKMID Count (s) 2

PMKID List 16-s

48

fields. AKM (Authentication and key management) Suite List contains all the

algorithms used to provide Authentication and key management, and AKM suite count

had the count of all these algorithms. All the advertised or requested capabilities are

present in RSN Capabilities field. The last two fields contain the count and the list of

Pairwise master key identifiers that STA feels it is suitable for the AP.

2.3.3 Key Management

2.3.3.1. Extensible Authentication Protocol over LANs (EAPoL) [10]

Figure 2.5: EAPoL message format

Extensible Authentication Protocol is a transport or encapsulation for the

authentication protocol. EAP was introduced into the Point-to-Point Protocol (PPP) to

support authentication for dial-in Internet service [11]. More importantly, EAP was

introduced to allow enterprise IT departments to reuse their existing authentication

Protocol Version – 1 Octet Packet Type – 1 Octet Packet Body Length – 2 Octets

Descriptor Type - 1 Octet

Key Information - 2 Octets Key Length - 2 Octets

Key Replay Counter - 8 Octets

Key Nonce - 32 Octets

EAPoL Key IV - 16 Octets

Key RSC - 8 Octets

Reserved - 8 Octets

Key MIC - 16 Octets

Key Data Length - 2 Octets Key Data - n Octets

49

infrastructures. This reuse was an economic necessity and was one of the things that

made dial-in and Wi-Fi successful. Since 802.1X is based on the EAP authentication

model, EAP assumes an authentication server, an authenticator, and a client. The

authenticator acts as an agent between the client and the authentication server to relay

EAP messages between them. The Authentication Server drives the authentication

protocol using a request/response protocol. It sends the EAP message to the client, and

then the client must respond to it or abort the protocol. Therefore, there is always even

number of messages that are exchanged in an EAP protocol. EAPoL is another name

for 802.1X, and each EAPoL message carries a single EAP message. EAPoL is just an

EAP message and the 802 header needed to send the EAP message over an 802 LAN

without a network or transport layer. It is needed because TCP/IP cannot initiate itself

until after EAP authentication completes.

EAPoL can transport the cryptographic keys between AP/AS and STA in the

message format as shown in Fig 2.5; the only key so transported is the AP’s broadcast

key, called the Group Temporal Key or GTK< and which is sent in message M3 of the

4-Way Handshake; in this message the AP encrypts the broadcast key under another

key, the Key Encryption Key (KEK) derived from the PMK, ANonce, and SNonce, so

only the intended STA can decrypt the key. The field Descriptor Type is a value

identifying the IEEE 802.11i key descriptor. The Key Length field is an unsigned

binary number representing the length of PTK in bytes or octets. Key Replay Counter

is an unsigned binary sequence number which is set to 0 initially when the AP

establishes the GTK after a reboot. Client and server keep track of the replay counter

to detect replayed messages. In particular, without the latest counter value, an attacker

50

could replay any encrypted broadcast message sent by the AP before the STA’s

association, and the STA would otherwise accept as valid; with the current counter

value, the STA will drop these out-of-date replays if received. EAPoL-Key IV contains

the IV concatenated with KEK while deriving the encryption key used to encrypt the

Key data field. Key RSC is the receive sequence counter used in 3rd message of the 4-

way handshake to synchronize the IEEE 802.11i replay state. Key MIC is a value

generated by a cryptographic function after including all the elements in the EAPoL

message frame. Initially, Key MIC is set to 0, and the EAPoL-key MIC is computed.

If the key descriptor version in key information is set to 1, then it uses HMAC-MD5 to

compute the MIC, and if the key descriptor version is set to 2, HMAC-SHA1-128 is

used. Key Data Length represents the length of the Key Data and is an unsigned binary

number. Key Data includes all the extra details that are required for key exchange,

which are not already present in other fields. It can include information elements like

RSN IE or cryptographic encapsulation KDEs like group key ID or Pairwise key ID.

2.3.3.2 802.1X Authentication

802.1X is the transport for EAP over LANs. 802.1X has to act like EAP because

EAP messages drive what it does. 802.1X authentication is a process that facilitates the

exchange of Pairwise Master Key between a station and an access point with the help

of the authentication server, as shown in Fig. 2.3. The AP requests the STA for its

information using the EAP Request Identity message. To reply to the identity request,

STA sends over the EAP Response Identity containing all the required details about

itself. Upon receiving the response, the AP sends this information to the AS using a

RADIUS message. The AS then checks how legitimate the identity of the STA is. The

51

STA can check the authenticity of the AP as well. If either of them cheated about their

identity, the process is aborted without going any further. If the STA and AS are

successful in authenticating each other’s identity, an EAP mutual authentication is

exchanged between the STA and AS. After this, the PMK is derived on both STA and

AS. There is supposed to be only one copy of the PMK on the infrastructure end and

the client end for security reasons. Therefore, the AS sends a RADIUS Accept message,

along with the PMK, to the AP and deletes its own copy of the PMK. Finally, after

receiving the PMK, the AP sends an EAP success message to the STA informing that

it has received the PMK and that the STA and the AP can start the 4-way handshake.

Figure 2.6: 802.1X Authentication Overview

2.3.3.3. Key Generation

It is a challenge to generate, manage, and distributed keys. 802.11i uses fresh keys

for each session to prevent replay attacks. 802.11i follows the key hierarchy scheme,

STA AP AS

802.1X/EAP-Request Identity

802.1X/EAP-Response Identity

RADIUS Access Response Identity

EAP type specific mutual authentication

Derive Pairwise Master Key (PMK) Derive Pairwise Master Key (PMK)

RADIUS Accept (with PMK)

802.1X/EAP-SUCCESS

52

shown in Fig 2.3, to manage the keys. The AS and STA somehow derive a pairwise

master key; how this is done is outside the scope of 802.11i. The AP and STA then use

the PMK to derive a pairwise temporal key or session key. The pairwise transient key

is derived using the PRF function, which includes PMK, Access Point’s Mac address,

Station’s MAC address, ANonce, and SNonce as the parameters. The MAC addresses

bind the derived keys to the AP and STA. If they are indeed chosen randomly, then

ANonce and SNonce guarantee that the derived keys for this session are independent

of keys derived for other sessions (the probability of a collision with any other key is

1

2512). PMK has a PMK Identifier (PMKID) which is derived using HMAC -SHA1 -128

(PMK, “PMK Name” || AP MAC Addr || STA MAC Addr). The label “PMK Name”

guarantees that other keys derived from the same PMK are independent of the temporal

keys. From the PTK three types of keys are derived; Key confirmation key provides

data origin authenticity, Key encryption key provides data confidentiality, and temporal

keys are valid only for a particular session which will be mostly discarded when the

session expires. It is sufficient only to preserve Master key and not the others. The

parties can derive the other keys anytime they want if they have the master key. This

also saves memory. The pairwise keys are used in unicast messages to preserve the

message content. Similarly, group keys are used in broadcast messages.

53

Figure 2.7: Key Hierarchy Scheme

2.3.4 How 802.11i reuses 802.11’s original security architecture

2.3.4.1 Working of 802.11

An 802.11 frame format is mainly divided into two parts – a header and a payload,

as shown in Fig. 2.5. There is no 4-Way Handshake in 802.11 to protect the data.

Instead, there is a field named “encrypt flag” whose value decides if the payload is

encrypted or not. If the flag is set to 0, the payload is unencrypted. And, if the flag is

set to 1, the payload is encrypted using Wired Equivalent Privacy (WEP) algorithm. A

WEP header has a WEP key ID and an Initialization Vector (IV) as shown in Fig 2.6.

The key ID has four values – 0,1,2 and 3; with byte values between 4 to 255 being

reserved. A per-packet key used to encrypt the payload is generated by appended the

24-bit IV with the WEP key ID value.

EAPoL - PRF (PMK, “Pairwise key

expansion” || Min (AP MAC Addr, STA

MAC Addr) || Max (AP MAC Addr, STA

MAC Addr) || Min (ANonce, SNonce) ||

Max (ANonce, SNonce))

Master Key

Pairwise Master key (PMK)

Pairwise Transient key (PTK)

KCK: EAPOL – key

Confirmation key

L(PTK,0,128)

KEK: EAPOL – Key

Encryption key

L(PTK,128,128)

TK: Temporal

key

L(PTK,256,256)

TLS - PRF (MasterKey, “client EAP

encryption” || clientHello.random ||

serverHello.random)

54

When an 802.11 client receives an 802.11i packet, as it doesn’t know anything

about RSN IE and since 802.11 follows tag-length-value format, 802.11 parser skips

that field and moves on to the next field.

Figure 2.8: 802.11 Frame Format

2.3.4.2 How 802.11i reuses 802.11

Dr. Jesse Walker broke the WEP protocol in July 2000. The 3 bytes (24 bit) IV

is too small to avoid key reuse, and the WEP per-packet key is too weak to protect the

WEP key from being learned from analyzing encrypted packets; this second fact was

demonstrated by Scott Fluhrer, Itsik Mantin, and Adi Shamir in the spring of 2001 [12].

It is also feasible to construct valid WEP encrypted forgeries from captured WEP

encrypted packets without the encryption key by modifying a previously encrypted

WEP packet. Since 802.11i had to use the first generation WEP hardware used by

802.11, all the previous fields from 802.11 were kept intact, as shown in Fig. 2.6. The

Encrypt Flag Payload

Header

If Encrypt Flag = 1 WEP Header Payload

Key ID IV

4 bytes

1 bytes 3 bytes

802.11 frame format

55

encrypt flag is always set to 1, and the WEP header is replaced by an 802.11i header.

Along with the WEP fields - “key ID” and “IV,” there are two more fields that were

added in 802.11i to increase the security - “Extended key ID” and “Extended IV,” as

shown in Fig 2.9. The protocol was designed in such a way that the hardware would

read only the WEP key ID and the WEP IV and not the extended key ID and IV.

However, the key to encrypt the payload is generated using all the four fields.

Figure 2.9: 802.11i reusing WEP header

3 Hypothesis

3.1 Lessons learned from prior work

3.1.1 How DHCP reused BOOTP [2], [4], [13]

Two main learnings from this BOOTP to DHCP upgrade is that:

 Having reserved fields and reserved bits are important concerning upgrades.

Since the BOOTP design reserved bits for future use, new features could be added

without changing the meaning of the existing fields.

Encrypt Flag = 1 802.11i Header Payload

WEP Key ID WEP IV Extended Key ID Extended IV

WEP Header

1 byte 3 bytes 1 byte 5 bytes

802.11i frame format

10 bytes

56

 Extensions also play an important role in bringing in new changes according to

the new needs of the population. New changes were brought in by successfully

retaining old features and using reserved fields ignored by BOOTP entities to convey

new features. Therefore, clients who are just BOOTP compatible can communicate

using DHCP messages, as BOOTP functionality is fully maintained by DHCP. This is

an example of interoperability: all the devices on a network should be able to

communicate with each other irrespective of the protocol version, and upgraded

messages still being interpretable by devices that haven’t been upgraded.

3.1.2 How X.509 supports upgrades [3], [7]

X.509 can support upgrades because of the following features.

 It contains a version number. Version number helps us identify which fields should

be populated or present and which shouldn’t. Based on that it also specifies how to

interpret these fields correctly, i.e., it indicates the semantics attached to each field.

 X.509 follows ASN.1 encoding rule. Thereby, following tag-length-value

format in which each field has a unique tag. Based on each version, if the tag is not

recognized, it can be skipped, based on the length field.

 The certificates accommodate adding new fields in the form of Extensions.

Therefore, as the situation demands, new attributes can be added without breaking the

system.

 By marking the fields critical, it mandates the future versions to keep this field.

Therefore, criticality can enable interoperability between versions. In particular, the

inclusion of a critical extension can guarantee that an entity which supports only an

57

earlier version will reject a certificate containing a critical field about which it does not

know, thus enforcing a security policy that requires process the critical field.

3.1.3 How 802.11i supports upgrade [9]

802.11i supports upgrade in the following ways:

 802.11i RSN information element includes a version number. Having a version

number helps in introducing new changes and keeping track of the changes. Version

number also helps the interpreter parse the packets correctly. The version number

indicates how each of the RSN IE fields are to be interpreted.

 As described in section 2.3.2, RSN IE follows Tag-length-value. This

mechanism facilitates interoperability between various versions of the software. If a

version doesn’t recognize the tag, it reads the length, skips that value and moves on to

the next tag.

 Elements in RSN IE includes a list of items it supports. This facilitates adding

new items in future versions

3.2 Requirements to support successful upgrades

There is no way to make a product perfect that meets all the requirements/needs of

the users and without making mistakes or misjudgments. Even if this is somehow

achieved, the ever-changing needs of software users make upgrades inevitable. We

need to consider and accommodate these situations while designing software. Hence,

we do work to explicitly enable upgrades. There are numerous principles that are

needed to enable graceful upgrades. After studying and analyzing various examples of

systems that successfully supported upgrade, this research has the identified design

features that seem to make them work. There are few requirements that are to be

58

implemented in the carriers of the information or communication mediums, like

messages or certificates, and a few requirements to be considered crucial while

designing the software or hardware, like parsers or formatters, receiving the

information through these carriers. These negotiations or decisions help in easy

transition among various versions, which in turn makes the communication and

understanding of these messages effortless. This section will be talking about these

requirements that are necessary while designing the data structures of the messages or

designing the protocols at the nodes receiving or sending the messages.

 Version number: It is always necessary to include version numbers in the

protocol messages. Each version has its own rules that will be implemented by the

formatters or parsers of that version. Therefore, the version number informs the

implementation about which rules to follow in order to properly interpret the message

and data structure fields supported by that version. A version number by itself is not

sufficient to support upgrades. For example, as we will see later on, although Bitcoin

has a version number, it does not support changes to its basic data structures

(transactions and blocks in the blockchain) without imposing a hard fork on the entire

Bitcoin community. [14]. Another example, there is no way to change the hash

algorithm or the PoW algorithm. Whereas, in X.509, since the ASN.1 for the “subject”

field was ambiguous and led to attacks, the tag-length-value structure of X.509 data

elements allowed a new field “subjectAltName” defined using unambiguous ASN.1 to

be introduced in version 3 to replace the “subject” field for version 3 X.509

implementations [3].

59

 Preserve old features in new versions: While upgrading from one version to

another, the newer version might have its own parser and formatter. However, along

with the new implementation, it is very important to the preserve and support the old

parsers and formatters to support the older versions of the protocol. For instance, let’s

considering upgrading from version 1 to version 2, it is very important to keep all the

existing fields/features present in version 1 while adding new fields/features required

version 2, even if the old fields are not required in the new version. This decision might

differ if the requirements explicitly specify to remove old functionality. Maybe there

are sufficient versions of the older software to justify supporting the old field. For

example, as we will see later, in the coding experiment conducted for this research,

versions 1 and 2 supported a “name” field, even though version 2 did not need this. It

was preserved for interoperability between version 1 and version 2. Version 3 removed

the “name” field from its messages because we made an arbitrary decision to no longer

require interoperability of version 3 with version 1. Another example, while upgrading

from BOOTP to DHCP, DHCP is built on the BOOTP utilizing the reserved fields and

not removing any existing fields, so the messages could still be properly interpreted by

the BOOTP infrastructure [2], [4]. Using the “Reserved/Unused” bits from BOOTP,

DHCP utilizes one bit to build a new field “BROADCAST message,” and the

remaining bits are still reserved for future use. Therefore, preserving old features in

new version helps in unbroken communication between different versions.

 Tag-length-value: Using tag-length-value implementation for the message

formats informs the parser and the formatter implementations about the representation

of the information present in that field just by reading the tag. In this type of encoding,

60

the version number specifies which tags are valid, and the tag for a field tells how to

parse the field’s value, i.e., it specifies the semantics to apply to the serialized bit string

representing the value: will it remain a bit string, become an integer, a compound data

structure, etc. Length gives the size of the value this tag represents, and finally, the

value is where the actual intended value of the field is present. Each tag value should

be unique across version numbers. A version which uses a tag value can correctly

format and parse the field; a version that does not use this tag value can use the length

field to skip over the field in messages it receives from an implementation that does

use the field. This thus differentiates fields by version number and tags. By doing this

doing, the version 2 parser can differentiate its native tags from the version 1 tags. This

is useful because version 2 or any later versions can skip the tags they do not recognize.

The way this works is, the parser of a version first reads the tag ID, if it doesn’t

recognize this tag, the parser moves on to the next bit and reads the length field, and

then skips over those many bytes. This way, old fields can be preserved, and the next

versions can just skip over those fields if not recognized. If the old fields are no longer

required, they can be removed. And later version can add new features. That is, fields

can be added or removed before and after a tag-length-value without affecting how this

field gets processed. Therefore, Tag-length-value format provides maximum

flexibility.

 Reserved values: The main reason for having different variants of software is

because of the changing needs of the users or exploring new requirements that can be

added to the software to accommodate the user needs. If we want to add new

requirements to the existing software, we need to save some space for future use

61

because the future is unpredictable. New parsing and formatting rules can be introduced

by having reserved fields and reserved tag values in the data structure of the protocol

messages. In practice, this means incrementing the version number and allocating new

tag values or fields reserved in prior versions. These reservations are important so that

others do not use them for their personal use. All the reserved items should follow the

intended standards. For example, in version 1 of the coding experiment, tag numbers

till 6 were used and the rest was reserved; the tags 7 and 8 were used in version 2 to

define new fields first name and last name. If we did not reserve bits, we would not be

able to add these fields. If either the reserved version numbers or the tags number are

used deviating from the standards, it will cause confusions. An example for this is

802.11i standards has reserved bits, using this China created a variation of their own

called the “WAPI” which did not follow the 802.11i standards and used these reserved

bits for their own [15]. WAPI was the alternative for WI-FI. This caused

interoperability problems when Wi-Fi entered China’s market.

 Preserve the semantics: Though each version has its own formatting and parsing

rules, the semantics of the messages should be preserved. This makes it easy to

maintain standards throughout the organization or a hierarchical level and helps to

make it easy for the future developers and other team members to understand the code

and make changes. In the experiment conducted for this research, when we added new

version, we left the old versions of code to handle the prior versions, and we added new

code to handle the new versions. Changing the old code increases the complexity and

the bug count. It is always recommended to make a copy of the old code and add the

new code without changing the old code. The coding style, the naming conventions,

62

alignment of code, keeping related code together, commenting style, and other

necessary semantics were kept in mind while adding new changes. If the new versions

change the semantics of any older versions, the other parsers would not recognize these

semantics for that field and would result in discarding the message. Therefore, all the

messages received from this version will be discarded by other parsers. This fails the

main cause of this research, which is to achieve interoperability between versions.

 Critical flag: It is sometimes useful to extend the tag-length-value construction

to include a criticality flag. This is useful when, by policy, we explicitly do NOT want

an older software version to process a received data structure when it does not already

understand a critical field. The semantics of critical fields in the messages indicate and

force the parsers and the formatters to drop the packets if they are not aware of these

fields marked as critical. X.509v3 includes a flag for its extension fields, in order to

enforce security policies that older versions that do not understand but must not violate

[3]. Using the reserved bits, new fields can be added in the later versions. If tag-length-

value encoding is not followed, extensions can be used here. Creation of new fields can

also be used in an effective way to correct the mistakes made in the past. Just like how

extensions are used in X.509. In version 2 and 1, the way “subject” field was encoded,

caused a lot of confusions while parsing, which were exploited by the attackers [8]. To

solve this problem, in version 3, a new field named “subjectAltName” was created as

an extension, with more specific encoding rules, and the original field “subject” was

not used anymore. Things could go wrong if either of these did not have values. A rule

was also made to which indicated that if “subject” field is not populated with some

value, the field “subjectAltName” should have value. To achieve this, the concept of

63

critical fields was used. That is, in version 3, “SubjectAltName” was made mandatory

by marking it critical. The way critical fields work is, the fields marked are to be always

used while constructing a message. If any of the parser receiving the message doesn’t

know how to decode it, then the packet should be discarded. If the parser knows to

decode this field but has not received it in the packet, even in this case the packet should

be discarded. They are a little different from tag-length-value here because critical

fields cannot be just skipped over if they are not recognized. Critical fields are

important in financial type transaction and are useful in messages containing policy-

driven information.

There are also special rules for versioning in protocols that support negotiation.

 Include a list of supported version numbers when possible: By including the list

of version number a device supports in its message, the device is making it easy for the

parsers or formatters at the receiver’s end, to decide whether the receiver supports one

or more versions from the list and select the most favorable versions or features from

among those advertised. Since large distributed systems consist of software with

different versions, it is necessary to discover the best version common to sender and

receiver whenever possible. This is usually the highest version number supported by

all members of a group of communicating implementations. When the system

dynamics makes it feasible to do so, it is recommended that communicating

implementations negotiate a favorable version number and then communicate using the

data structures and messages for that version. For example, an 802.11i access point

publishes in its beacons the minimum version and the maximum version number it

supports. 802.11i clients then select the highest version number they share with the

64

access point to adopt the most advanced security features [9]. This is an effective way

of eliminating unsuitable peers. 802.11i server also broadcasts the security

implementations it supports in its beacons and probe responses in its RSN IEs. In

X.509, the list of extensions that version 3 supports is presented [3].

 Negotiations: To achieve all the above-mentioned requirements, it is often

useful to have some sort of negotiations while agreeing on the tags, versions, parsing

rules, encoding rules, and formatting rule. Wi-Fi uses negotiation to establish version

and features [9]. This is possible because the AP and STA must agree on version and

features to operate correctly, and so Wi-Fi uses an interactive request-response protocol

for this purpose. Only the receiver and sender should agree on these rules. As we will

see later, the broadcast communication protocol in Bitcoin does not support

negotiations [16]. Instead, every member of the Bitcoin network must support the same

messages, since Bitcoin is based on a non-interactive broadcast protocol.

3.3 Interoperability Trade-offs

There are situations where choosing interoperability would not be the best decision.

The protocols or the applications we have studied so far in this thesis also encountered

these circumstances where other tradeoffs were chosen upon interoperability.

Therefore, it is necessary to break interoperability to achieve other goals. Few of those

examples are listed below:

 As a security measure: For security reasons, X.509 decided to break

interoperability among its versions. Version 3 was designed not to communicate with

version 1 and version 2. As discussed in section 2.2.7, the common name type in the

subject field had a vulnerability. To prevent downgrade attacks, X.509 v3 certificates

65

included the concept of criticality into their certificates. The “SubjectAltName” was

made critical in version 3. If the older versions received this certificate and if they did

not support the critical fields, they simply discarded the packets. Therefore, to prevents

bugs in the older version onto the newer versions, interoperability can be broken.

 To force an upgrade: It is economically difficult for the vendor to support many

versions of the software. Therefore, all the users of that software might be forced to

upgrade to a certain version. As we will later in section 4.3, the coding projects forces

the users of version 1 to upgrade at least to version 2. Version 1 and version 2 of the

project are interoperable, and version 2 and version 3 are interoperable. However,

version 1 and version 3 are not interoperable as version does not support the “name”

field.

 Hardware compatibility: The RSN IE of 802.11i do not follow tag-length-value

throughout. Instead, few of the fields follow just length-value format. This is because

tag-length-value format takes up too much bandwidth, and it becomes too expensive to

use hardware that would support flexibility to this extent. Though using length-value

format does not provide complete interoperability when compared to tag-length-value,

it is advised to follow this format to ease the implementation of the parser when

hardware parsing is used instead of software.

 Network bandwidth limitation: Using tag-length-value format might facilitate

flexibility and efficiency at the software implementation level, but having a tag and a

length field for every field in the message increases the size of the message. So, tag and

length are extra information that is to be transmitted for the parser to understand the

message and might take up bandwidth more than a communication link would tolerate.

66

In some cases where the bandwidth is low, it is easier to have fixed formats to transfer

limited data.

4 Testing the Hypothesis

4.1 Bitcoin [16]–[19]

Bitcoin is a cryptocurrency, a version of electronic cash. It is an alternative currency

to the existing traditional physical currencies. Cryptocurrencies enable users to

exchange value digitally without the involvement of without an infrastructure of

accredited brokers or governments. Bitcoin is a billion-dollar economy, and there are

millions of users participating in the Bitcoin community.

Since Bitcoin is a distributed system, it is a P2P protocol, meaning all the nodes

running the Bitcoin protocol are each other’s peers, and they have no hierarchical

relationship among them. All nodes have equal access to all Bitcoin activities. These

nodes of the Bitcoin ecosystem are spread across the world and are not controlled by

any centralized authority, which makes Bitcoin a decentralized distributed system. Any

node can join the Bitcoin Network and do the operations without registering or

requiring any approval from any peer. No node is enrolled for any special treatment.

A unit of currency in Bitcoin is a bitcoin. It can be represented using these symbols

BTC, XBT, and ₿. The smallest fraction of a bitcoin is 10-8 bitcoins and called as a

satoshi, i.e., a single bitcoin can be divided up into 100 million satoshis.

Nodes or the clients in the Bitcoin network can acquire bitcoins in only two ways.

One is by mining bitcoins, and the second is when a bitcoin owner transfers some

number of satoshis to a peer. There are two types of Bitcoin functionality: a wallet and

67

a miner. Wallets are used to store, receive, and send bitcoins. A miner is an entity which

verifies these exchanges of bitcoins among wallets.

A wallet can send bitcoins to another node in the Bitcoin ecosystem using

transactions. These transactions contain all the necessary details about who is sending,

how many bitcoins, and to whom. Since there is no centralized authority to verify these

transactions, Bitcoin uses the Nakamoto consensus protocol, described later, to approve

these unverified transactions. This protocol is used to establish consensus among all

the peers of the Bitcoin community about which are the valid transactions.

A miner collects valid unverified transactions and forms them into what is called a

block. PoW, a challenging computational puzzle, is a lottery that decides which miner

gets to publish a block of verified transactions. After winning this puzzle, the blocks

are published by the miner into a back-linked list called the blockchain. The blockchain

is publicly available to all peers. Miners add new blocks to the blockchain. Once a

miner adds a new block to the blockchain, the community assumes it cannot be edited

or deleted by anyone. Hence, the transactions in a published block in the blockchain

are considered confirmed. On an average, a block is added, or in the Bitcoin jargon,

mined every 10 minutes.

4.1.1 A Brief History

Bitcoin is an online P2P decentralized cryptocurrency. A domain with the name

“bitcoin.org” was registered in August 2008, its initial software released as open-source

software in January 2009, and a paper with the title “Bitcoin: A P2P Electronic Cash

System” was posted to a security mailing list called the Cypherpunks. All this was

issued under a pseudonym, Satoshi Nakamoto.

68

A main intent of the Bitcoin protocol was to make transactions between the Bitcoin

nodes untraceable. This intent was not realized, although it took a number of years to

realize; and the misconception encouraged various black markets, like illegal weapons

sales, money laundering, copyright pirating, human trafficking, etc., used bitcoins for

their transactions. This illicit activity started when bitcoins were used in Feb 2011 by a

very popular black-market website named Silk Road. Silk Road was a platform used

for selling illegal drugs. This website was seized and shut down by the FBI in Oct 2013.

The notion of untraceable payments is a misconception in Bitcoin because every

Bitcoin transaction is recorded in the public blockchain and hence can be traced.

However, it might take more time to trace Bitcoin transactions when compared with

the time taken to trace transactions that use traditional currencies which are monitored

by some centralized authority.

An essential element of Bitcoin is the public ledger known as the blockchain.

Auditable electronic cash was proposed in the late 1990s, where the banks maintained

a public database to detect double-spending. This design served as a good inspiration

to the Bitcoin community to fight against double-spending (described in section

4.1.7.4).

4.1.2 The blockchain

The base or the initial block of the blockchain is called the genesis block and was

created in 2009. The genesis block creates 21 million bitcoins, all that will ever be, and

all these bitcoins will be transferred to miners by the year 2140. The genesis block is

the common ancestor of all the blocks. The genesis block was mined in 2009 for the

first time. The Bitcoin currency was used in 2010 for the first time to buy a pizza in

69

exchange for 10,000 bitcoins. Just like any other traditional physical currency, the

Bitcoin currency can be converted into most of the traditional currencies used across

the world.

In a system that is governed by a central authority, the verification of any

transaction is done by this authority and everybody trusts and agrees to the decision

taken by this authority. Since Bitcoin is a decentralized distributed system, there is no

central authority to verify the transactions and make decisions. A key building block of

Bitcoin is the challenging computational puzzle used to verify the transactions. These

are called the PoW puzzles and were proposed in the early 1990s to fight email spam;

the PoW puzzle will be described later. In Bitcoin, PoW demonstrates to all the Bitcoin

nodes that a miner has confirmed a set of transactions and thereby enables the

community to reach consensus about which transactions are valid. Each block contains

a PoW challenge which the miner who publishes the block containing this transaction

must choose to solve this PoW puzzle.

A miner who solves the PoW puzzle publishes its block into the blockchain by

broadcasting it to the entire Bitcoin network. Other miners may notice this new block

and try to add their own blocks onto this one, thus, extending the blockchain. Since

more than one miner might try to add a block to the blockchain at the same time, the

blockchain could begin to grow a tree-like structure instead of being a chain of blocks.

However, miners overcome this problem by adding new blocks to the longest sub-chain

of which they are aware, and eventually one chain grows longer than the rest, and all

blocks of this longest one become obsolete. Once this block is published into the

blockchain and has been extended six times, all the nodes on Bitcoin network have

70

reached consensus, i.e., all the nodes are bound to agree to this decision of adding this

block into the blockchain.

We will describe the blockchain in more detail in section 4.1.7.

71

4.1.3 Key Management

4.1.3.1 Private and Public Keys

Ownership of bitcoins is determined using a pair of keys – a public key and private

key – in the EC-DSA signature algorithm on the elliptic curve secp256k1. A pair of

keys consists of a public key which is derived from a private key and a generator point

on the curve using elliptic curve point addition. The private key is a 256-bit (32 bytes)

random number between 1 and 2256 picked randomly by the end user’s Bitcoin

software. The bitcoins in a wallet are some number of satoshis bound to the public key.

A wallet can have multiple key pairs. Therefore, it is very important to back-up the

private keys in a secure location so that they can be recovered if lost. If the private key

is lost and cannot be recovered, then the bitcoins associated with this private key are

lost forever, i.e., these bitcoins cannot be used ever again. These bitcoins are called the

“zombie coins.” The public key is derived from this private key using elliptic curve

addition of the fixed generator point G for the curve

 𝐾 = 𝑘 𝐺,

Where k is the private key, G is the constant point on the curve, called the generator

point because every point on the curve is of this form for some k, and K is the resulting

public key. When the curve and the generator point is carefully chosen, it is

computationally infeasible to calculate the private key k using the public key K and

generator point G.

72

4.1.3.2 Bitcoin address

Bitcoin uses addresses to identify public keys to send and receive bitcoins. A

Bitcoin address is a 160-bit number (20 bytes) generated from the public key using

SHA256 and RIPEMD160:

 address := RIPEMD160(SHA256(public-key))

SHA256 and RIPEMD256 are one-way cryptographic hash algorithms. The results

of these functions are hashes. Hashes are like fingerprints, unique, and uncorrelated

with their inputs. An address is used to represent the recipient’s identity similar to an

email address or a beneficiary name on a cheque. Bitcoin encodes addresses in Base 58

to make them human-readable and to avoid digits, and letters than appear similar in

form, i.e.., 0, O, and o, and 1, l, and I have been removed from the usual base 64-

character set.

4.1.3.3 Wallet(s):

Wallets are the structured, allegedly secure, personal databases to store keys

(private and public key pairs) and the number of bitcoins associated with each of these

keys. There is no need to store a Bitcoin address, as the public key can be efficiently

computed from the private key and the address from the public key. When someone

wants to join the Bitcoin community, they can download the wallet application. One

such well-known wallet application is the “Satoshi Client” available on bitcoin.org. A

wallet can generate the key-pair using the key generator that comes along with an

elliptic curve package implemented by the wallet and the private key (32-byte random

number). These wallets can then be used to send and receive bitcoins while maintaining

a count of the bitcoins bound to each public key in the wallet. When receiving the

73

bitcoins, it checks to see if the transaction containing those bitcoins is confirmed and

then it updates its public keys with those bitcoins.

The keys are stored online in these kinds of wallets. The wallets are prone to attacks,

as adversaries often want to steal the bitcoins stored in a wallet by gaining access to the

private keys it contains and transferring any available bitcoins to themselves. It is the

user’s responsibility to keep their keys safe and protected.

4.1.4 Bitcoin transaction lifecycle

A Bitcoin transaction goes through the following steps:

 Creating transactions: The lifecycle of the transaction starts by creating the

transaction. This is known as the origination phase. A transaction specifies the number

of satoshis being transferred from one address to another. This number of satoshis

mentioned in the transaction cannot exceed the number of satoshis bound to the wallet

address of the sender of this transaction. As described in section 4.1.5, a transaction

contains all the necessary details about the sender and receiver of the coins, along with

the number of bitcoins that are being transferred. Once a transaction assigns bitcoin

from a sender key (sender) to a receiver key (receiver), the sender’s private key must

sign the transaction, as this is the only way to authorize the transaction

 Broadcasting the transaction: After signing the transaction, the wallet

broadcasts it on to the entire Bitcoin network. Since Bitcoin is TCP-based, broadcast

here means that each transaction is flooded to each neighbor recursively, until it has

traversed the entire network. However, while propagating these transactions, the nodes

check if they have already seen the transaction so that they do not propagate any

transaction multiple times. Each node maintains a list of recently-seen transaction it

74

has come across. Since the transaction does not contain any private or confidential

information, and since the transaction signature(s) protect it from modification, it can

be broadcasted on any insecure network like Wi-Fi, Bluetooth, text message, skype or

through web forms. The transaction is broadcasted to make every Bitcoin node aware

of this proposed transaction so that one or more miner receives the transaction and can

then attempt to verify it. However, before propagating each node validates the

transaction independently. Therefore, an invalid or infected transaction should not

propagate to more than one node. To prevent spamming or Denial of Service (DoS)

attack each node checks if it has already propagated this transaction.

 Mining: Once a miner receives the transaction, the miner verifies the bitcoins

in the transaction have not already been spent by the sender, and, if so, the miner adds

the transaction to a pool of unverified transactions. A miner picks from 1 to about 211

unverified transactions from its pool. The motivation for miners behind mining is

incentives they receive for publishing a block of transactions. The miner has to solve

the computational puzzle to win the competition to publish the block. To win the race,

the miner chooses a random number and then computes the hash of the random number

together with the selected unverified transactions. If the hash has a prescribed number

of leading zero bits, then the miner broadcasts the block to the entire Bitcoin network;

otherwise, the miner picks another random number or modifies the list of selected

unverified transactions (or both) and tries again. If instead, a miner receives a published

block from another miner before it completes this process, it discards its selected list,

removes all the transactions verified in the new block from its pool of unverified

transactions, and starts the entire process over again. The PoW algorithm is so-named

75

because it demonstrates that a miner solved the computational puzzle. In particular,

every node in the Bitcoin network can easily verify the PoW, but, since the output from

hash functions are uncorrelated with their inputs, the PoW algorithm is a random search

which on average requires the generation of 2n different random numbers to generate a

hash whose first n bits are zero – the miner must do substantial work to win.

 Confirming a transaction: A transaction in a published block is considered

verified. Because published blocks propagate across the Bitcoin network at a finite

speed, more than one miner can publish different blocks before anyone of them

propagates across the entire network. This kind of race condition is resolved by

considering no published block as valid until it has been extended by a chain of at least

six blocks. According to the protocol specification, this race condition is resolved by

requiring miners to add their blocks to the longest chain of blocks of which they are

aware. When some chain becomes six blocks longer than another chain, all the blocks

of the shorter chain up to the ancestor block common to both chains are deleted. The

miner who published the first block on the longest chain beneath this common block

then receives a reward in bitcoins mined from the Genesis block and a transaction fee

from the sender of each transaction in the published block.

4.1.5 Bitcoin transaction

Transactions are the heart of the Bitcoin system; everything else is designed to

support transactions. A transaction is a data structure or message that transfers bitcoins

from the source of funds, called input, to the destination, called an output. A transaction

can contain multiple inputs and multiple outputs. Since a single user can have multiple

pairs of private and public keys, and each public key has bitcoins bound to it, a user

76

can have individual input for each of these public keys. As a single user can transfer

bitcoins to multiple recipients or multiple bitcoin addresses, a user’s transaction can

have multiple outputs. The minimum size of a transaction is approximately 256 bytes,

with one input and two outputs and the average size of a transaction would be about

approximately 280 bytes with one input and three outputs. A transaction contains a

version, number of inputs, the list of transaction inputs, number of outputs, the list of

transaction outputs and Locktime as shown in Fig 4.1. Section 4.1.5.1 contains an

explanation of the structure of inputs and outputs.

Figure 4.1: Structure of a Bitcoin Transaction

The inputs and the outputs are length-value formats as shown in Fig 4.2, i.e., before

the actual input or the output field, the length of the input or the output field is provided.

Size Field Description

4 bytes Version
Specifies the formatting and parsing rules the transaction

follows

1-9 bytes Input Counter
Number of inputs included in a transaction represented as a

variable-length integer

Variable Inputs One or more transaction inputs

1-9 bytes Output Counter
Number of outputs included in a transaction represented as

a variable-length integer

Variable Outputs One or more transaction inputs

4 bytes Locktime

Block Number or Unix timestamp. It indicates the earliest

time a transaction can be added to the blockchain. It is

usually set to 0 to indicate immediate execution.

77

This format supports having multiple inputs and outputs. However, it does not provide

the level of flexibility provided by tag-length-value format. The length of these can be

encoded in 1 to 9 bytes varying the value of the length field as shown in Fig 4.2. If the

length of an input or an output is less than 253, it is encoded as 1-byte unsigned integer.

If the length is less than 65535, then it is encoded as a 3-byte unsigned integer. The

first byte of the 3 bytes contains 0xFD to indicate the parser that the value is more than

253, and there are two more bytes to read. Next, if the length is more than 0xFD and

less than 4294967295, it is encoded as a 5-byte unsigned integer. The first byte of the

5 bytes contains 0xFE to indicate the parser that there are four more bytes to be read.

Finally, for any value higher than 4294967295 is encoded as a 9-byte unsigned integer

with the first byte containing 0xFF.

Figure 4.2: Input and Output Length Encoding

4.1.5.1 Transaction outputs and inputs

A transaction in the Bitcoin network is called unspent transaction output (UTXO).

Each transaction has a set of inputs and outputs to indicate who is transferring the

bitcoins to whom respectively. That is, a transaction can have multiple inputs and

outputs. For example, if a node doesn’t have enough bitcoins bound to a single public

key, then the node has to combine multiple public keys to add up to an amount

Value Storage Length Format

<0xFD 1 unit8_t

<= 0xFFFF 3 0xFD followed by the length as uint16_t

<= 0xFFFF FFFF 5 0xFE followed by the length as uint32_t

- 9 0xFF followed by the length as unit64_t

78

exceeding the required number of bitcoins, where each public key would constitute an

input. A transaction can have multiple outputs if a node needs to send the bitcoins to

multiple destinations.

Transaction input contains a transaction hash, output index, unlocking script, and

its size and sequence number. All the details of a transaction input are depicted in Fig

4.3. Since, there are only two ways to obtain bitcoins: either by mining them from the

genesis block or by receiving bitcoins from other users; every transaction input is a

reference to an output from a previous transaction, meaning, the bitcoins used in this

input were received previously as a transaction output in some earlier transaction.

Therefore, it contains the hash of that previous transaction in the field “Transaction

hash,” which is a double SHA256 computed over that entire transaction. Since there

can be multiple outputs in a transaction, the field “Output index” is used to indicate the

specific output of this input in the referenced previous transaction. The input script –

“ScriptSig” provides the public key of the receiver of the bitcoins and a signature of

the sender over this public key. The public key provides the bitcoin address of the

recipient, and the signature over this public key eliminates the chance of false claiming

of bitcoins by editing the public key. That is, if an adversary tries to change the public

key and replace it with his public key to redirect bitcoins to their bitcoin address, the

adversary would not be successful because the signature provided in the input script

would be over the public key provided by the sender and not the public key changed

by the adversary. The input script is explained in section 4.1.5.2 There is also a

sequence number field which is usually not used.

79

Figure 4.3: Structure of an Input Transaction

Next, a transaction output contains the number of satoshis that are being transferred

in the transaction, an output script and its size. The structure of output is shown in Fig

4.4. Output script called the “scriptPubKey” contains the address of the recipient and

opcodes to perform various operations to verify the signature and public key present in

the input script against the bitcoin address provided in the output script (explained in

later section 4.1.5.2).

Size Field Description

32 bytes Transaction hash Pointer to the to-be accepted UTXO

4 bytes Output index Index number of the to-be UTXO

1-9 bytes Input-script size Length of the unlocking script in bytes

Variable Input-script

The input script is called ScriptSig. It contains the

public key of the recipient: which computes to the

bitcoin address of the recipient; and a signature

made by the sender, using their private key, over

this public key.

4 bytes Sequence number Currently disabled

80

Figure 4.4: Structure of an Output Transaction

A transaction typically contains a minimum of one input and three outputs. Let’s

consider the example where a node needs to send j satoshis. Suppose the sending public

key has some number, say i, of satoshis bound to it. Assuming i is the nearest

denomination to j and j < i. As we know, the miners get incentives for publishing a

block (explained later). One of the types of incentives is the transaction fee a sender

needs to pay the miner for verifying his transaction, i.e., publishing the block containing

this transaction. Therefore, one of the sender’s output should send m satoshis to some

miner. This is also called the Coinbase transaction (explained later). Next, the rest of

the satoshis, i.e., i – m – j, should be addressed back to the sender as change. If the

sender wants to receive the change, the sender must specify an output as one of its own

addresses. Then the input contains the information of the sender. Therefore, there are

three outputs, one to the receiver, one to the miner, and one to the sender himself. A

second example uses multiple inputs, i.e., i < j. Suppose a sender needs to send j

Size Field Description

8 bytes Amount Bitcoins, denominations in Satoshi

1-9 bytes Output-script size The size of the locking script in bytes

Variable Output-script

This field consists of a script known as ScriptPubKey. It

consists of some opcodes and a public key address. The

opcodes say the number of satoshis in the output

transaction to this public key. There can be different

opcodes to perform different operations to verify the

receiver of these bitcoins

81

bitcoins, but none of his public keys has at least j bitcoins individually. Since a sender

can have multiple public keys, the node may select from the available public keys

containing various denominations of bitcoins to form the amount greater than or equal

to the required transaction amount. In this way, a transaction can have multiple inputs.

4.1.5.2 Scripts [20]

A Script is a list of instructions describing how a node verifies the transfer of

satoshis in the input and output scripts. Typically to validate a transaction, Bitcoin relies

on two types of scripts: input script and output script. The input of a transaction

contains the input script called the ScriptSig. It contains the public key (<pubk>) of the

recipient receiving the bitcoins and a signature (<sig>) by the sender or the current

owner of these bitcoins over this public key (<pubk>). These parameters are provided

so that the recipient can verify and redeem the bitcoins in the output of the transaction.

<sig> <pubK>

The output of a transaction contains the output script called the scriptPubKey. It

contains the following parameters:

OP_DUP OP_HASH160 <PubKHash> OP_EQUALVERIFY OP_CHECKSIG

The output script contains the opcodes: OP_ DUP, OP_HASH 160,

OP_EQUALVERIFY and OP_CHECKSIG and the recipient’s bitcoin address, which

is the hash of public key of the recipient (<PubKHash>). These opcodes are to verify

the public key and the signature provided in the input script alongside the bitcoin

address present in the output script. This verification process is explained later.

A transaction is verified by executing the input and output script simultaneously

but separately, and the stack is transferred between the two executions. It is done this

82

way because of a vulnerability that allowed infected unlocking scripts to push data on

the stack (the same stack was used for both executions), allowing it to corrupt the

locking script.

4.1.5.3 Scripting Language

Bitcoin’s scripting language uses pushdown automata (PDA) to verify the contents

in the input and output scripts. Pushdown automata interpret context-free languages

which can accommodate an infinite amount of information temporarily using a stack.

A PDA has three main components: an input tape, a control unit, and a stack. An input

tape in case of Bitcoin are the elements of the Bitcoin input and output script. The input

tape is divided into symbols, and each symbol is read from left to right at a time. A

control unit has a pointer which points the current symbol, which is to be read from the

input. The size of a stack is infinite. Each of the symbols from the input tape is fed into

the stack using the control unit. A PDA stack does two operations push and pop. Push

adds items on to the top of the stack and pop reads and removes the item or symbol at

the top of the stack. Since a pushdown automata stack follows last-in-first-out the

Bitcoin scripting language executes the script from left to right. This language was

designed to carry out very basic operations on the stack. These symbols in the scripts

are either constants or opcodes. These opcodes specify the type of operation to be

performed on these constants. The opcodes used in Bitcoin scripts are OP_DUP:

duplicates the top of the stack, OP_HASH 160: the hash is computed over top of the

stack, OP_EQUALVERIFY: checks if the top two items of the stack are equal, and

OP_CHECKSIG: checks the signature for the top two items of the stack.

83

4.1.5.4 Pay-to-Public-Key-Hash (P2PKH)

Bitcoin uses Pay-to-Public-Key-Hash(P2PKH) script to verify the inputs and their

respective outputs of a transaction. The input script, ScriptSig, contains the public key

(<pubk>) of the recipient and the sender’s signature (<sig>) on this public key. And

the output script, scriptPubKey, contains OP_DUP OP_HASH160 <PubKHash>

OP_EQUALVERIFY OP_CHECKSIG. To follow the instructions and redeem the

coins, the following Table 4.1 illustrates the checking process. If at any point any of

these checks fail, the transaction is marked invalid and is discarded.

Table 4.1: P2PKH checking process

Stack Script Description

EMPTY <sig> <pubk> OP_DUP

OP_HASH160 < PubKHash >

OP_EQUALVERIFY

OP_CHECKSIG

scriptPubKey and

scriptSig are loaded on to

the stack

<pubk>

<sig>

OP_DUP OP_HASH160 <

PubKHash > OP_EQUALVERIFY

OP_CHECKSIG

Constants are pushed to

the top of the stack

<pubk>

<pubk>

<sig>

OP_HASH160 < PubKHash >

OP_EQUALVERIFY

OP_CHECKSIG

Top of the stack id

duplicated

<pubHashA>

<pubk>

<sig>

< PubKHash > OP_EQUALVERIFY

OP_CHECKSIG

Hash is computed over

top of stack

<pubKHash>

<pubHashA>

<pubk>

OP_EQUALVERIFY

OP_CHECKSIG

Constant is pushed to the

stack

84

<sig>

<pubk>

<sig>

OP_CHECKSIG It is checked if the top

two items of the stack are

equal. If equal, they are

popped out of the stack

TRUE EMPTY Signature is checked for

the top two items of the

stack. If it is true, then the

transaction is verified

successfully.

4.1.6 Bitcoin Mining Process

Bitcoin mining is a process of adding transactions on to the public ledger or the

blockchain. Transactions transfer bitcoins (satoshis) between wallets. The mining

process decides which of these transfers are accepted by the Bitcoin community. The

mining process consists of miners, PoW, and incentives. Miners are the end-entities

driving the mining process with the help of advanced computing devices called the

mining rigs. To decide which transaction should be added to the Blockchain, along with

the signature verification done in P2PKH (explained in section 4.1.5.4), the miners use

the PoW algorithm to verify the transactions to check and eliminate any malicious

activities. Miners get incentives in the form of transaction fees and rewards. The

senders or the creators of the transactions pay the miners transaction fees, called the

Coinbase transactions, for verifying and adding their transactions on to the Blockchain.

In addition to the transaction fee, miners get rewards, generated from the genesis block

for the same. All these concepts are explained in later sections.

85

Miners have mining rigs specially built for this purpose. These mining rigs consist

of high-performance CPUs with more cores than regular or special crafted ASICs.

Mining rigs cost and consume a great amount of resources like electricity, money,

hardware components, etc. because of which miners sometimes steal the resources. The

Bitcoin design motivates miners to perform the verification function by presenting the

winner of the lottery to publish a new block with a reward in the form of bitcoins

received from the genesis block. Anybody in a Bitcoin network can be a miner, but

only a limited number of Bitcoin network participants can afford to run a mining rig.

A miner is always listening to the proposed transactions broadcast by the wallets.

As soon as a miner becomes aware of a newly broadcasted transaction, it verifies that

the input bitcoins have not already been spent, and, if not, adds the transaction to a

temporary pool of unverified transactions maintained locally by the miner. The miner

picks from 1 to about 211 transactions from its pool and puts these into a buffer

representing a proposed new block. A miner verifies the transaction to check against

double-spending, i.e., the miner checks to see if the bitcoins included in this transaction

were ever used previously, refer section 4.1.7.4 for more information. Only one miner

out of all of them gets to publish a block at a time. To compete with other miners and

to get the incentives or rewards, a miner should solve the PoW faster than others.

To publish a block, the miner has to win a race by solving a challenging puzzle

called the PoW. To solve a PoW, a miner has to pick a nonce, which is a random

number to match the target, which is used to set a threshold value. A target is a 256-bit

number. The lower the target, the more difficult it is to compute the right hash. Harder

the difficulty target, the more computing resources it takes to solve the PoW. The

https://en.bitcoin.it/wiki/Difficulty

86

Bitcoin automatically maintain a target for the PoW. The target is to treat the hash of a

block as a little-Endian 256-bit number smaller than a threshold value. The threshold

value is chosen so that the binary representation of numbers smaller than it will have a

specified number of leading bits equal to zero. Since SHA256 acts like a random

mapping, finding a block of unverified transactions and a random number whose hash

results in a value smaller than the threshold is essentially a random search, for which

there is no shortcut; if a shortcut did exist, this could be used to break SHA256 collision

resistance and preimage resistance. Thus, being a random process, the PoW algorithm

requires every Bitcoin miner to selected trillions of random numbers and computing

the resulting hash to see whether the right number of leading bits are all zero. On the

other hand, any Bitcoin peer can verify that the winning miner did this work by

computing a single hash of a published block and seeing that the hash has the required

number of leading zeroes. Therefore, the algorithm has the property to prove that the

winning miner did the work needed to win the lottery. The number of miners and the

mining rigs used by them is not constant. If, it becomes easier for a miner to solve the

PoW puzzle with multiple mining rigs than with fewer since he can search a larger

space with more rigs. It is expected that over time, along with the advancement in

technology, the miners and the computers would increase. To cope up with these

external factors, the Bitcoin network adjusts its difficulty, called the target, to keep the

block generation time at about 10 minutes, regardless of the amount of computational

resources brought to bear on PoW. This means the difficulty target is set to whatever

mining power will result in a 10-minute block interval. This difficulty is adjusted

automatically by the Bitcoin protocol on every node for every 2016 blocks, i.e., for

87

every two weeks. The miner chooses a nonce (a random number) and then computes

the hash of the random number together with the selected unverified transactions. If the

hash has a prescribed number of leading zero bits i.e., the hash should be less than or

equal to the difficulty target, then the miner signs the block and broadcasts it to the

entire Bitcoin network; otherwise the miner picks another random number – a new

nonce is selected until the desired hash is achieved - or modifies the list of selected

unverified transactions (or both) and tries again. Meanwhile if any other miner is

successful in solving the PoW and publishes a block, this miner receives the published

block, the miner checks his selected list or his potential candidate block, that he/she

was trying to publish, to see if any of the transactions in the published block were

included in his block. If there is a match, these already published transactions are

removed from its pool of unverified transactions and the candidate block. The miner

then starts by recreating his candidate block with other unverified transactions from the

pool and starts the entire process of solving the PoW all over again.

On average, a new block is mined every 10 minutes. Once the block is published

and added to the blockchain, it is considered to be confirmed once. It takes six

confirmations for a block never to be altered. At this point, all the nodes of the Bitcoin

network have reached consensus. Everybody agrees that the block with six

confirmations is legitimate and trustworthy.

Bitcoin automatically maintains the 10-minute rate by using a difficulty target to

regulate the rate of new block production by miners statistically. Bitcoin adjusts the

number of leading zeroes in the hashes produced by the PoW algorithm to maintain

this rate; since finding a hash digest with n leading zeroes takes about 2n–1 invocations

88

of the hash algorithm, adding or removing the number of leading zeroes required

doubles or halves the length of time the computation takes; thus if the amount of

computing resources dedicated to PoW is doubled or halved, the time to successfully

complete the PoW and publish a new block remains about the same.

As discussed before, the miners are awarded two types of incentives, transaction

fee, and a reward, for publishing the blocks. The sender has to pay transaction fees to

the miners for each transaction. This fee is calculated as the difference in the sum of

bitcoins in the input and the sum of bitcoins in the output. So, when a transaction is

created, and the number of bitcoins that are to be transferred is specified, the sender

should make sure to add the transaction fee to this number of satoshis.

 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒𝑠 = 𝑠𝑢𝑚(𝐼𝑛𝑝𝑢𝑡𝑠) − 𝑠𝑢𝑚(𝑜𝑢𝑡𝑝𝑢𝑡𝑠)

As discussed before the size of each transaction is approximately 256 bytes.

Transaction fees are calculated based on the size of the transaction in kilobytes.

Currently, the transaction fee threshold is about 0.0001 bitcoin per kilobyte per

transaction. Using a higher transaction fee increases the chances of this transaction to

be picked by a miner. Most miners ignore proposed transactions that do not include a

transaction fee, as there is no incentive for the miner to invest resources verifying such

transactions.

Along with the transaction fee, a fixed number of bitcoins is given to the miner as

a reward. It started with 50 bitcoin per block. The reward is reduced by half every four

years. It is currently reduced to 12.5 bitcoin per block, and by 2021 it is further going

to be depreciated to 6.75 bitcoin per block.

89

Since the sender of the transaction does not know which miner would publish his

transaction, the transaction fees and the reward are delivered to the miner using a

special type of transaction called the Coinbase transaction [21]. The miners create

Coinbase transaction to themselves. A miner while creating a candidate block to

publish, creates the Coinbase transaction. This transaction is the first transaction in a

block. Figure 4.5 depicts a Coinbase transaction. This special type of transaction has

only one input, which is blank. Since this transaction is not referencing any existing

transaction, the transaction hash of the input is filled with 0s, and the output index is

filled the maximum hexadecimal value, i.e., all fs. The ScriptSig can contain any

information, as this is a black input. Just as the input, since there is only one output in

a Coinbase transaction, “output counter” is 1. The output of the transaction contains

the number of satoshis, received as incentives, and the Bitcoin address of the miner. As

a block contains multiple transactions and as there is a dedicated transaction fee in each

of these transactions, all these transaction fees added up, plus the reward amount

becomes the value for the “Amount” field in the Coinbase transaction. The miner enters

the Bitcoin address of the miner in ScriptPubKey script. Since Sequence Number and

Locktime are not used currently they are filled with default values.

90

Figure 4.5: Coinbase transaction

4.1.7 The Blockchain

Blockchain is a global and publicly available ledger. It is a data structure which is

an ordered back-linked list of blocks of transactions. Every node/user is supposed to

maintain a local copy of the entire Bitcoin blockchain. Each block has a reference to

its previous block, which makes is back-linked. The previous block to which it refers

Transaction

Fields

Input/Output

Fields

Value (Little-Endian / Hexadecimal)

Version 01000000

Input Counter 01

Input Transaction Hash

0000000000000000000000

0000000000000000000000

00000000000000000000

Output Index ff-ff-ff-ff

ScriptSig Size 45

ScriptSig

03ec59062f48616f4254432f53756e204368

756e2059753a205a6875616e67205975616

e2c2077696c6c20796f75206d61727279206

d653f2f06fcc9cacc19c5f278560300

Sequence Number ff-ff-ff-ff

Output Counter 01

Output Amount 529c6d9800000000

ScriptPubKey Size 019

ScriptPubKey
76a914bfd3ebb5485b49a6cf1657824623

ead693b5a45888ac00000000

Locktime 00000000

91

is known as the parent block of the current block. The hash of this parent block is

present in the block header, which is the back-link. It is an append-only list; new blocks

can only be added. The blocks in the blockchain cannot be edited or deleted once added

to the blockchain. This back-linking creates a chain going back all the way to the

genesis block. When a node receives a block, it checks the previous block hash field,

if it something that is already present in the copy of the blockchain it holds, then it

knows it is up to date. Otherwise, that is if it has never seen this hash value, it verifies

by checking the previous block hash this new last block contains, if it is same as the

block hash of its last block, it adds this block into its local copy.

Every block can be identified using a unique identifier and its block height. An

identifier is a unique and an unambiguous 32-byte cryptographic hash obtained by

hashing the block header twice using the SHA256 algorithm. This is not created by

each block to store in its data structure. Instead, this is created by a node when a block

joins the blockchain and has to compute the hash of its parent block. Block height is

the block’s position in the blockchain, as the position cannot be altered after

confirmation. The height of the genesis block is 0 and as blocks are added the numbers

increase. Block height is dynamically calculated when a block is received; it is not pre-

stored.

A block can have only one parent, but there can be a possibility where it has

multiple children. Since Bitcoin is a big network, multiple miners might mine their

proposed blocks at approximately the same time – that is, before the announcement of

their proposed block propagates to all the other miners, and these blocks can choose

the same parent. Hence, there can be multiple children for the same parent. This

92

situation is called a “soft fork” and is a temporary situation. At this point, two blocks

fighting for the same position might reference the same block height for a while. When

publishing new blocks, miners add their blocks to what appears to them to be the

longest soft-forked sub chain. Statistically, one of these sub-chains will be extended

faster than the other, and all blocks from all the sibling sub-chains will be deleted and

removed from the blockchain. Experience shows that a block has been safely linked

into the blockchain and all of its siblings removed once it has been extended six times.

A soft fork is backward compatible with existing clients. Whereas a “hard fork” is

irreversible. A hard fork in Bitcoin is a radical change to the protocol that makes

previously invalid blocks/transactions valid or vice-versa. This requires all nodes or

users to upgrade to the latest version of the protocol software. Therefore, a hard fork is

a permanent divergence from the previous version of the Bitcoin, and the newest

version will no longer accept nodes running previous versions. This essentially creates

a fork in the blockchain: one path follows the new, upgraded blockchain, and the

other path continues along the old path. Generally, after a short period, those on the old

chain will realize that their version of the blockchain is outdated or irrelevant and

quickly upgrade to the latest version.

However, two blocks fighting for the same position (when a fork happens) might

reference the same block height for a while. The height of the genesis block is 0 and as

blocks are added the numbers increase. Block height is dynamically calculated when a

block is received; it is not pre-stored.

https://www.investopedia.com/terms/b/blockchain.asp

93

4.1.7.1 Structure of a block

A block is a data structure which stores multiple transactions and blocks join to

form the public blockchain. The maximum size of a block can be 500k bytes. Therefore,

a block can contain up to roughly 2000 transactions, as the size of each transaction is

approximately 256 bytes. A block contains the size of the block- which depends on the

number of transactions a block has, a block header – contains important information

about the block (discussed in the section 4.1.7.2), a transaction counter to indicate the

number of transactions it has and finally, all the transactions. These components are

shown in Fig 4.6:

Figure 4.6: Structure of a Block

4.1.7.2 Block header

A block header contains minimum, but yet very important information to provide

an idea of all the information a block contains. If a user doesn’t want to use too much

space on their device to store the entire blockchain, storing just the headers is an option.

For example: If someone is using their smartphone to operate Bitcoin, smartphones do

not provide enough space to store the blockchain. Hence just the headers can be stored,

Size Field Description

4 bytes Block Size Size of the block

80 bytes Block header Contains important block information

1-9 bytes Transaction Counter
To indicate the number of transactions this block

contains

Variable Transaction

List of all the transactions approved by this block;

the size varies based on the number of transactions a

block stores

94

as a header takes up only 80 bytes. Along with its version, a block header is made up

of three sets of block metadata, as shown in Fig 4.7. First, it contains a pointer to the

hash of its previous block in the blockchain in the field “Previous block hash.” A

“Merkle tree,” which is a data structure used to summarize all the transactions a block

contains (discussed in section 4.1.7.3). Finally, a few details related to the mining

process, “Difficulty Target,” “Timestamp” and a “Nonce.”

Figure 4.7: Structure of a Block Header

4.1.7.3 Merkle Tree and Simplified Payment Verification

A Merkle tree is a type of binary tree data structure. In this data structure, the

content of each parent node is the cryptographic hash of the parent’s child nodes. They

are usually used to efficiently summarize and verify the integrity of large data sets. In

Size Field Description

4 bytes Version
A version number to specify the formatting and parsing

rules; Also, to track the protocol upgrades

32 bytes
Previous Block

Hash

A reference to the hash of its parent block (previous

block) in the blockchain

32 bytes Merkle Root A hash of all the transactions present in this block.

4 bytes Timestamp
The approximate time when this block was created; in

seconds

4 bytes Difficulty Target

The difficulty target is that challenging value set in the

PoW algorithm for this block (as explained in the section

4.1.6)

4 bytes Nonce

This is the random number picked to solve the PoW. That

is, this nonce helps the miner find a value lose to the

Difficulty target.

(as explained in the section 4.1.6)

95

Bitcoin, Merkle trees are used to summarize all the transactions a block contains. A

Merkle tree of a block produces an overall digital fingerprint of all the transactions. In

Bitcoin, the algorithm used to produce the hash is double-SHA256. All transactions are

nodes here and act as the leaves in this context. A Markle tree is constructed by hashing

nodes recursively in pairs until only one hash is obtained, called the root. A Merkle tree

can be constructed only even number of leaves. If there are an odd number of

transactions, the last transaction is duplicated. It is constructed bottom-up. For example,

if we have two transactions, Ta and Tb, the Merkle tree for this would be first applying

the hash on these two leaves individually as shown in the equation below.

 𝐻𝐴 = 𝑆𝐻𝐴256(𝑆𝐻𝐴256(𝑇𝑎)) and 𝐻𝐵 = 𝑆𝐻𝐴256(𝑆𝐻𝐴256(𝑇𝑏))

And next concatenating these two hashes and double hashing the result as shown

in the equation below. Here “+” is used to represent string concatenation.

 𝐻𝐴𝐵 = 𝑆𝐻𝐴256(𝑆𝐻𝐴256(𝐻𝐴 + 𝐻𝐵))

Similarly, this process is followed for all the n transactions in a block.

Storing the entire Bitcoin blockchain on a device to verify an incoming transaction

is very burdensome. Therefore, Simplified Payment Verification (SPV) helps in

verifying if a newly received transaction is included in a block using a Merkle tree.

SPV loads just the latest Merkle tree of the blockchain and verifies if the new block

was actually included by looking at the Merkle tree. If the transaction was actually

included in the block, SPV adds this new transaction into the client’s copy as it is

currently not present. A user/client needs to always keep an updated copy of the

blockchain or the Merkle tree because if it relies on its neighbors or has an outdated

96

copy, the client node is prone to get compromised and might lose all the coins the client

owns.

4.1.7.4 Double Spending

Double-spending means spending the bitcoins twice. For example, if a person “X”

uses $5 in cash to buy a coffee at Starbucks, that cash is not owned by Starbucks. “X”

cannot use the same $5 bill to make another purchase. But bitcoin is virtual cash and

not physical cash. There is a possibility that bitcoins can be spent twice by its owner.

To solve this, Bitcoin proposes PoW and public ledger. Once the transaction is verified

and added into the blockchain, it becomes computationally impractical for an attacker

to change this transaction to use the bitcoins present in this transaction again. Double-

spending in Bitcoin can be possible if a group of miners try to control more than 50%

of a network’s mining power or computational power. This type of attack is called the

51% attack. Miners in control of such computation power can edit the blockchain - that

is add the attacker's blocks in the existing blockchain; and double-spend bitcoins.

However, this situation of owning more than 51% of the mining power is unachievable

under normal circumstances, i.e., under the assumption that no miner has cheated in

acquiring more resources than other miners on the network to achieve the target faster.

There are multiple reasons why an attacker cannot be successful in extending his

chain in comparison with the honest chain; under the same assumption as above, that

all miners have balanced amount of mining resources to publish a block. Let’s consider

the scenario where an attacker and is trying to generate an alternate chain faster than

the honest child’s chain. The attacker has to hit the target and publish a block. As

discussed earlier, on average, only one block can be published every 10 minutes. For

97

this block to be extended, it has to traverse through the network to reach the majority

of the nodes. Next, after receiving a block, the node takes few milliseconds to check

the validity of this block. Therefore, the chances of multiple blocks being extended

simultaneously vanish, which leaves only one winner. Along with the above reasoning,

the original paper “Bitcoin: A P2P Electronic Cash System” says, “The race between

the honest chain and an attacker chain can be characterized as a Binomial Random

Walk. The success event is the honest chain being extended by one block, increasing

its lead by +1, and the failure event is the attacker's chain being extended by one block,

reducing the gap by -1”. Hence, the probability of an attacker catching up with the

honest chain becomes lower as the number of confirmations increases. Since a block

takes an average of 10 minutes to be mined. It becomes more challenging for an attacker

chain to catch up with the honest chain because of the 10-minute interval. Two blocks

can’t be mined in the 10 minutes window. Only one chain extends faster than the other.

Therefore, after considering all these circumstances, it is believed by the Bitcoin

community that six confirmations protect the block against double-spending. Also, a

block cannot be reversed or changed after six confirmations. All of this stands true

when no miner is cheating.

98

4.1.8 Bitcoin Network [16], [17], [22]

Bitcoin is a P2P network, which means, all nodes or the users of the protocol

network are each other’s peer, and there is no hierarchal topology of these nodes. All

nodes are afforded equal access to all Bitcoin transactions and to the Blockchain, no

node is treated special, i.e., the transactions or the request to send bitcoins from all the

nodes have an equal chance of being picked and confirmed. A bitcoin network is where

a group of nodes are running the Bitcoin protocol. A bitcoin node is a collection of the

following four functions:

a) Network Routine Node: This node contains all the necessary routine functions

to connect and participate in the network, validate, and propagate transactions.

b) Full Blockchain: The Bitcoin specification assumes that each Bitcoin node

maintains a copy of the complete Blockchain. However, since each block is

512K bytes, and a block is added to the blockchain every 10 minutes, the

Blockchain grows by 72 MB every day, or about 26 GB each year. Since

Bitcoin is about 10 years old, this means its full Blockchain requires about 260

GB of storage today. In practice, this means few nodes can afford to maintain a

copy of the entire Blockchain themselves, and so many nodes rely on others for

verifying the transactions.

c) Mining Node: These nodes are called the miners. They create new blocks, add

transactions to the existing or new blocks and work through the PoW algorithm.

Since a copy of the entire blockchain is needed for this process, a miner node

also acts as the full blockchain node by maintaining a local copy. Whenever a

99

miner gets a block extended at least 6 times on the Blockchain, it earns a reward

of some number of bitcoins from the Genesis block.

d) Wallet: These nodes are usually used with desktop or smartphone bitcoin

clients. They help the user set up all the necessary preliminary components like

keys, bitcoin address, etc.

It is not necessary for a node to contain all these four functions. However, A full

node contains all the four functions. It requires 260+ GB of storage to store the entire

Blockchain.

4.1.8.1 Network discovery

When a new node joins the network, it needs to find some neighbor(s). There are

long-running stable nodes which are implicitly trusted and available when needed,

called the seeds nodes. The Bitcoin client or the wallet is built with the list of the IP

addresses of the seed nodes. A new node can connect to one of these by default, and its

selected seeds node will communicate a list of IP addresses of other Bitcoin nodes to

which it can connect via TCP; these nodes thus become the new node’s neighbors.

Since Bitcoin is TCP/IP base, geographical location is irrelevant in a Bitcoin network.

These are various messages supported by a Bitcoin node, few of the important ones

are:

a) version: This message contains the version of the bitcoin protocol the node has

along with the block count or block height it currently contains. If it contains

only the genesis block, then this number is 0. It exchanged while connecting to

the network at the start.

100

b) verack: This message is sent in exchange to the above version message. If the

peer node supports the version present in the version message, it sends this

message to show its willingness to connect. It sends its version and the block

count it contains.

c) getaddr: This message is sent by a node to its peer requesting the addresses of

the nodes they know of. This message is useful for bootstrapping, i.e., let the

new node catch up with all of the activity since it was last on-line. A node

connects to 3-4 peer nodes at a time. If either one goes off-line, it connects to

another peer suggested by its selected seeds node.

d) addr: This message is sent in response to the Getaddr. It is also broadcasted

every 24 hours. It sends the IP address of one or more nodes it knows of.

e) getblock: Request is sent to get all the blocks in a range.

f) inv: This message is sent in response to Getblock request. It sends a list of

blocks it contains. A maximum of 500 blocks is sent as a response.

g) getdata: This message is sent in response to inv message requesting the hash of

a single block or transaction.

h) block: sends a block in response to the getdata.

i) getheader: Request is sent to get all the block headers in the range.

j) header: This response message sends up to 2000 block headers in response to

getheader message. This message is useful when just the headers are needed

and not the entire blocks.

k) alert: These messages are broadcasted to all the nodes in the network in case of

emergencies, such as when a high priority bug that has been identified.

101

l) ping: this message is sent to check if a peer is still connected.

If a previously connected node disconnects, it may attempt to reconnect to its peers

once it comes back on-line, providing it saves the IP addresses of its peers and its peers

accept its connection request. Alternatively, a node can start fresh each time it comes

back on-line. Every node sends getblock, getdata, and inv periodically to stay up to

date. As a response to these requests, when a node receives a block, it checks the

previous block hash field, if it something that is already present in the copy of the

blockchain it holds, then it knows it is up to date. Otherwise, that is if it has never seen

this hash value, it verifies by checking the previous block hash this new last block

contains, if it is same as the block hash of its last block, it adds this block into its local

copy.

102

4.2 Analysis of Bitcoin [17]–[19], [23]

4.2.1 Upgrade problems with Bitcoin protocol

 Fixed transaction semantics: Bitcoin transactions are simple scripts that

unconditionally transfers some number of bitcoins from a set of sellers to a set of

buyers. In particular, Bitcoin supports no notion of reversible or contingent transaction.

Existing Bitcoin clients and miners hardcode the semantics of transactions, so do not

support the addition of new semantics without a simultaneous upgrade of all miners

and clients.

 Fixed block size: Block size is fixed to 500k = 219 bytes. Since Bitcoin

transactions are at least 200 bytes each, each block can report at most 219

200⁄ =

2621 transactions. Since Bitcoin adds a new block to the blockchain every 10 minutes

= 600 seconds, this means a Bitcoin economy can support at most 2621
600⁄ ≈ 4.37

transactions/second on average, worldwide. This is a long-standing problem, as it is

very slow when compared to other transaction systems like VISA, which makes around

1667 transactions per second [24]. that the Bitcoin community tried to remedy in 2014

by increasing the block size from 500K to 1M. This resulted in a hard fork of the

blockchain, as clients and miners that had not upgraded their software failed to

recognize the new 1M blocks as valid blocks, and the changes had to be reverted. There

is no way to change the current block size without incurring a hard fork.

 Slow transactions: As already noted, a block is created every 10 mins, and a

block is not considered as “published” until it has been extended at least 6 times. This

means it takes on average at least 65 minutes to complete a transaction. This is because

the Bitcoin software automatically adjusts the cost of the PoW algorithm so that, given

103

the resources of all miners in the network, one miner will complete the PoW every 10

minutes. If this algorithm is changed, then miners who upgrade immediately when new

software becomes available will gain an advantage over miners who cannot, e.g.,

because they use custom hardware or software. Bitcoin was never designed for a

graceful transition to a change in this algorithm.

 Adding new algorithms: The current PoW consumes an enormous amount of

resources and time. What if a faster or more efficient PoW algorithm was identified?

Every cryptographic algorithm eventually becomes obsolete. What if a user/client

wants to sign a transaction with a different signing algorithm or hash with a different

hash algorithm? While discovering the nodes during the bootstrap process, since the

seed nodes are hard coded into a database that is accessible to everybody, it can be

modified by a malicious user to mislead the new node. If there was a new network

discovery protocol that was identified, it couldn’t be used until all of the old wallets

and miners had been upgraded and identifying whether all the old members have been

upgraded is an unsolved problem. There is no way to change these parts of the Bitcoin

protocol if the need arises without introducing a hard fork in the blockchain, which

would fragment the Bitcoin economy.

These problems are symptoms of a failure by the Bitcoin designers to rely on a

number of features which make the transition from one software version to another

more graceful. The features that do not support graceful upgrades in the current Bitcoin

design are:

 Hardcoded: All the elements of all the data structures are hardcoded. This kind

of encoding is satisfactory and even essential for hardware but provides insufficient

104

flexibility in a software system, as it makes it difficult or impossible to add new or

delete old features. When the data structures are hardcoded or fixed, the arrangement

of fields or data are in a fixed order or fixed location in offset. This means, the data

cannot be moved to a new location nor can they be made obsolete by adding new data.

Whereas, if tag-length-value encoding is used, the fields are allowed to be in any order,

as they are recognized by the tag and not by their location or the order of their presence.

 Prioritization of hardware compatibility over software flexibility:

Hardware is very efficient at accessing a particular address in memory and an offset

from it. So, the fixed-length or the hardcoded data structure formats chosen for the

transaction or block data structures are easy and efficient for the hardware to parse. The

fixed data structures also minimize the number of bits sent over. Therefore, these kinds

of data structure were useful when dial-up connections or low-speed connections were

used for communication. However, this was a poor tradeoff because Bitcoin needs

high-speed internet and all the basic Bitcoin functionality, except for PoW, are

implemented as application-level software, where flexibility is almost always more

important than efficiency per se.

 Doesn’t support tag-length-value encoding: Since all the fields of

transactions, blocks, blockchain, etc. are hardcoded, neither the syntax nor semantics

of the Bitcoin protocol can be changed without upgrading every client and miner

simultaneously. We could achieve greater interoperability by using tag-length-value

encoding since that would allow the implementation to skip over the fields that they do

not recognize instead of rejecting the entire message, as Bitcoin will have to do with

the original design.

105

 No significance of Version field: Though the protocol defines a version

number, describing the formatting and parsing rules, it doesn’t support upgrades. If a

new version of the protocol was to be defined, it should contain all the old features –

which is possible to obtain in this protocol and allow the addition of new fields – which

is not possible, because Bitcoin has no rules for how old clients and miners deal with

unknown fields and messages. The new version should be able to define its own

formatting and parsing rules. This is not allowed because the data structures cannot be

changed. Therefore, the version number present in this current Bitcoin protocol doesn’t

support upgrades. This violates the first requirement in the hypothesis, which is to have

a version number for each variant of the software. Numerous formatting and parsing

rules can be supported by implementing version numbers in the design.

 No reserved values: Not a single data structure in the entire Bitcoin protocol

has reserved values saved for future use. This means no new features can be added. The

future needs were not thought while designing this protocol. Having reserved values

not only allows new values or fields to be added but also offers standardization of the

protocol and avoid ambiguity, i.e., if a value is reserved by a version, v1, other versions

are not allowed to change it and are compelled to follow the value established by v1.

Having reserved values can be either reserving a version number or reserving a tag in

tag-length-value to preserve unambiguity.

 List view unavailable: Firstly, there is no scope of adding multiple items for a

single field, i.e., multiple signature algorithms cannot be provided for the user to choose

from. For instance, some version migrating from an old signature algorithm to a new

one must necessarily include the signatures and public keys of both the old and the new

106

signature algorithms, or else old wallets and miners will be unable to verify the

transactions secured by the new signature algorithm. Even if there was a way to upgrade

and support other methodologies, there is no opportunity to provide multiple options to

the users. For example, if protocol version 2 has its own new features, and it also

supports version 1, protocol 2 cannot display both the features of version 1 and

version2. A version 2 protocol cannot tell its peers that it supports version 1 as well.

This might allow version 1 users to assume that version 2 does not support version.

Having a list view is useful for nodes supporting multiple versions to agree upon a

common version.

4.3 Engineering a protocol to demonstrate graceful

upgrades

As discussed before, it is recommended to include a few necessary features while

constructing any program in a distributed system. Prof. Jesse Walker and I developed

a C code that demonstrates graceful upgrades among three different version of this

software codebase using the features discussed in the hypothesis of this study. This

code demonstrates that different versions of the software should be able to

communicate with other versions, except when a conscious decision is made to no

longer maintain backward compatibility with any earlier version. The protocol/code

works as a request-response message between a client and a server. The protocol is

designed such that, version 1 and version 2 protocol communicate and parse the

message received from each other, version 2 and version 3 communicate and parse the

message received from each other but version 1 and version 3 do not parse each other’s

messages. The initial database contains information about the customers, like,

107

customer’s ID, name, address, city, and state. The client initiates the protocol by

sending a request message to retrieve customer information based on a unique

identifier, which is customer’s ID in this case. Next, in version 2, the name field is split

into first name and last name. To support interoperability, the version 2 database

contains name field along with first name and last name fields. Finally, version 3

maintains interoperability with version 2 but breaks interoperability with version 1, by

including first name and last name fields and deleting the name field in its database.

Therefore, based on the version, the server decides whether it can accept this request.

If it can respond, the server locates the customer record by customer id from its

customer database, formats the response, and returns it to the client.

Note that a version 1 server cannot necessarily respond to a version 3 client request,

because we made the design decision that version 3 of the protocol is not backward

compatible with version 1. It would be possible for a version 3 server to respond by

formatting and returning a version 2 message, which a version 1 client can properly

interpret, in response to a version 1 request, but our implementation did not do this.

We use version numbers to determine which formatting and parsing rules to apply

to each version. The tag-length-format allows two versions to communicate with each

other even when that version doesn’t recognize few fields. We made the design

decision that an older version simply skips fields it cannot recognize with the help of

the length field, as the length field indicates the amount of data to skip to reach the next

field. The entire message is also formatted using tag-length-value format, with the

message type being a tag, and the overall message length, of all the encoded tag-length-

108

value fields combined. In addition to the message type and length, the message header

also includes the protocol version number.

Our implementation can be found in 4 files that help in carrying out all the

necessary operations: customer.c, demo.c, protocol_msg.c and msg_buffer.c.

4.3.1 Description of initial protocol code

The customer.c file defines an abstract data type, so manages all the operations that

are carried out on customer information, including serialization and deserialization of

the customer record fields. The initial version contains these customer record includes

the customer’s name, address, city, state, and customer id. Each customer record is

identified by a unique identifier, cid, which is a 32-bit unsigned integer.

To facilitate all the necessary operations, allocation of a buffer as desired by each

request is done in the file msg_buffer.c. This file defines the minimum, default and

maximum size of the buffer that can be allocated. A default buffer size is set in the

beginning. If the length of the message received is greater than the allocated default

buffer size, the buffer size is set to maximum buffer size. Finally, based on this size, a

buffer is allocated to store all the customer information, to conduct serialization and

deserialization, and to display to customer information. This file also manages the

functions used to clear and reset the buffer after its use and to skip the unrecognized

tags. The way this works is when the message parser encounters an unknown tag, it

deserializes (decodes) the length field and then skips that many bytes ahead to the next

tag. This allows an older version to skip fields in messages from newer version peers

that the older does not recognize, thus continuing interoperability across version

numbers. If this was an undesired behavior for an application, we could have included

109

a criticality flag in the tag-length-value formatting and parsing routines. In that case,

the receiver’s parser would abandon the message upon receiving a message with

unknown critical fields.

As mentioned before, this protocol uses a tag-length-value format to represent

structured data when serialized into a byte stream for communication across a network.

The tags are hierarchical, and the tag values are unique for that level. In the sample

code, there are two levels of tag hierarchy: message type tags and field tags. In

principle, there could be more tag hierarchy if there were a need for structures within

structures, but it is not required in this experiment. There are two types of messages

used in this code – request message and response message. The file protocol_msg.c

assigns tags to the request and response messages, assigns tags to the data fields,

handles illegal tags and generates the random 64-bit unsigned integer used as xid. At

the first level we have the header of a request message containing message id - which

is the message tags to informs if it is a request message or a response message, xid and

the data. The xid is a random 64-bit unsigned integer, serialized as an 8-byte little-

Endian value. The xid is used to match the reply to the request or to know which reply

message is for which request message. Little-Endian serialization stores the binary

representation of any multibyte data types like int, float, etc. It stores the last byte or

the least significant of the binary representation first and the first byte or the most

significant byte at last. There are two main reasons why Little-Endian serialization was

is generally used. First, it improves performance by achieving parallelism. As the least

significant byte is communicated first, the calculation of the xid starts without having

to wait for the rest of the bytes while the rest of the bytes load from memory. The

110

second reason is that most of the systems use Little-Endian to communicate with each

other. The second level defines the tags for message fields.

When a message is received, it needs to be decoded. The decoding functions utilize

the deserialization functions exported by the Customer abstract data type, using the

Message Buffer abstraction to access the serialized data. The code must make sure that

any field occurs only once in each valid message, and that all the fields needed to

populate a data structure are present and occur in the order specified by the protocol. If

a field is present more than once, or if fields occur in an order different than in the

protocol specification, the entire message is discarded.

Finally, the exchange of request and response messages between two peers can be

demonstrated or simulated using the file demo.c. The functions in this file initiate the

finding of customer details by the cid received in a request message, generates the

random cid, creates a structure to initiate the response and request messages. This file

is also prepared to deal with storing and deallocating the customer information in a

database. To summarize, the initialization of the protocol happens in this file.

4.3.2 Upgrading from version 1 to version 2

Version 2 of this protocol has a first name and last name fields in addition to the

version 1 name. Therefore, for a version 2 protocol, the fields, first_name, last_name,

address, city and state fields are sufficient to communicate with the same version

protocol, but version 2 maintains the name field for backward compatibility with

version 1. In particular, the version 1 client parser expects the name field to be present,

so to achieve backward compatibility version 2 must include the name field as well as

the new first and last name fields in its messages. To get started version 1 protocol code

111

is cloned. Most of the parts of the code in version 1 are maintained and reused in version

2. In the file customer.c of version 1, 2 new functions are added for each of these

operations to accommodate the requirements of version 2 protocol. For the message

that was received from version 1, containing the name field, there is a function that

splits name into first name and last name based on the occurrence of the first space in

it. Second, when a version 2 message is to be sent to version 1, it combines first_name

and last_name to compose the name field.

In protocol_msg.c of version 1, these new functions are added –

serialize_first_name, serialize_last_name, encode_first_name, encode_last_name,

deserialize_first_name, deserialize_last_name, decode_first_name and

decode_last_name. The functionalities of these functions are straightforward as the

name suggests. To facilitate the checks in protocol_msg.c file, the fields

first_name_count and last_name_count are added.

Along with these new functions, two new important functions are added to enable

communication between version 1 and version 2. The function

customer_name_merge_encode is used in the encoding process. This function

constructs a version 1 name field from the first and last name, as required to be

backward compatible with version 1 clients. The second function that is added is

customer_name_split_decode. This function is used during decoding a message that is

received from a version 1 protocol, to split the name field from a version 1 server into

the first and last names required by the version 2 Customer record. While parsing the

name field, the customer_name_split_decode function checks if the value in the name

field contains a space. The value in the field “name” is split into first_name and

112

last_name at the first occurrence of a space, which is the behavior specified in the

functional requirements for the coding exercise. If there is no space, then the value in

the field “name” is placed into first_name, and last_name is filled with a NULL string.

Though new functions and fields are added to the files, the functionality and

working of the protocol remain the same as version 1. These fields and functions are

added by borrowing the code from version 1. The semantics are preserved while adding

any new piece of code. Though protocol version 2 doesn’t need the functionalities

related to the field “name,” it is preserved to maintain unbroken communication

between version 1 and version 2 protocols.

4.3.3 Upgrading from version 2 to version 3

Version 3 no longer supports the version 1 name field. Hence version 3 simply had

to remove the name field from its processing. If a version 3 server tried to communicate

with version 1 client, the message sent would lack a name field and so be rejected by

the client. However, version 3 and version 2 can exchange information through

messages because version 3 still supports first_name and last_name fields.

To conclude, this coding project successfully achieved interoperability between its

versions by following the principles proposed in the hypothesis of this study.

4.4 Lessons Learned

It is not enough to just propose ideas. Ideas have added value when they are proved

correct by some means like implementing the ideas in a real protocol. At the start of

this experiment, I was very uncomfortable with coding. The last time I coded a few

projects on my own was during my undergraduate days. Though I did code some basic

113

programs in C, C++, JAVA, few other languages and a term project in C#, after a huge

gap of 4 years, I was not ready to take up this magnitude of responsibility in coding.

The difference between other term projects during my master’s program and this

was that I owned this experiment, I had to figure out a lot of things and also learn new

concepts on my own without any teammate’s help. This was going to be my master's

research project, which is a very big thing for me. One of the languages I was

comparatively comfortable with was Python. Hence, not to be overwhelmed, I started

the experiment by writing code in Python. I was successful in completing version 1 and

version 2. However, one of the motives of this experiment was to get familiarized with

the Object-Oriented Programming (OOP) concepts.

At the beginning of this project, I was very naïve at C programming and of course,

at the concept of pointers. Pointers have always been something that frightened me as

they do to most programmers. This coding project has helped me analyze a code base

comprehensively and make the required changes or additions while following the

semantics.

I also gained knowledge on using few code editors like Visual Studio Code, Atom;

along with Code Blacks, which is an Integrated Development Environment (IDE). For

this experiment, Visual studio Code was used to understand and make necessary

changes in the code and Cygwin terminal was used to compile, debug and run the code.

The features like outline and search (Ctrl+Shift+F) made it easy to understand the

connectivity between functions in the code. After this exercise I can confidently say

that I have gained adequate command on C programming, mainly OOPS concepts and

I feel I am ready to make my place in the software industry.

114

5 Conclusion

We know the ever-changing needs of the users of distributed software systems

imply they will be upgraded and have an unpredictable future. Therefore, we need to

plan and design the software enabling the software to evolve to address currently

unknown scenarios while still interoperating with earlier versions of the system. Since

there are no guidelines established that would make the community aware of the

important factors, forming these guidelines that are to be followed.

Studying a few successful and widely used distributed software, such as BOOTP,

802.11i (Wi-Fi) and X.509 identified design properties needed to enable successful

upgrades. These properties facilitate smooth and successful upgrades in applications.

The requirements that were discovered important in this research are:

a) Always include a version number in protocol messages. This permits a

receiving implementation to apply the right semantics to any messages it

receives, or even ignore entire messages whose version it does not recognize.

b) Add new features to the already existing ones without deleting the old features,

i.e., preserve existing semantics. This allows implementations of newer

versions to process messages sent by older version implementations that have

not yet been upgraded.

c) Use a tag-length-value format whenever possible. This allows older

implementations to skip fields in message versions they do not support,

meaning they do not necessarily need to ignore entire messages.

d) Reserve unused version numbers and tag values for future use, which means the

range of allowed tag values is explicitly defined for each version. This means

115

new versions can allocate reserved values without fear of the values being

misinterpreted.

e) Make the fields critical whenever it does not make sense for old versions to

process data structures and messages containing what is to them an unknown

field.

f) Define a way to negotiate the version number, so different implementations can

decide on the formatting and parsing rules for data structures they exchange.

Bitcoin does not support graceful updates. This was proved when the Bitcoin

community attempted to increase the size of blocks in the Bitcoin blockchain: earlier

versions of the software did not accept blocks issued by miners upgraded to use the

larger block size, causing hard fork in the blockchain, and the upgraded software had

to be rolled back to the old block size. When this was done, the users could use the

coins in this newer version that they owned in the previous version. The users had to

sell their coins and buy new ones in the latest version. We can see that even though

there was version number in the bitcoin code, the upgrade was not possible. Therefore,

avoiding these guidelines would result in rebuilding the entire software, mostly every

time changes are to be made, and as Bitcoin shows, can destroy user data.

A coding experiment was conducted to illustrate these recommended guidelines.

This experiment started with a simple client/server protocol, and fields were added and

removed to messages in subsequent versions. In my experiment, we exercised most of

these requirements: version number was included, tag-length-value encoding was

followed, new fields were added on top of the old fields, tags and versions were

reserved, and the semantics of old data was preserved in each upgrade. This experiment

116

successfully demonstrated, communication among three different versions of the

software. Each version knew how to read the messages from the other two versions.

This research area has many more aspects yet to be explored. In the future, perhaps

more of these requirements can be identified which could not be found in this research

due to lack of time. Further, it might be possible to find novel ways to upgrade software

that was never designed to make this easy, perhaps using techniques similar to how

DHCP repurposes BOOTP messages and infrastructure. How to accomplish this in a

complex distributed system like Bitcoin remains an open problem.

117

6 References

[1] A. Hertig, “In Big Block Hard Fork, Craig Wright’s Bitcoin Has Left Nodes

Behind,” CoinDesk, 10-Aug-2019. .

[2] J. Gilmore and W. J. Croft, “Bootstrap Protocol.” [Online]. Available:

https://tools.ietf.org/html/rfc951. [Accessed: 21-Aug-2019].

[3] D. Cooper, “Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile.” [Online]. Available:

https://tools.ietf.org/html/rfc5280. [Accessed: 21-Aug-2019].

[4] R. Droms, “Dynamic Host Configuration Protocol.” [Online]. Available:

https://tools.ietf.org/html/rfc2131. [Accessed: 21-Aug-2019].

[5] “Understanding Online Certificate Status Protocol and Certificate Revocation

Lists - TechLibrary - Juniper Networks.” [Online]. Available:

https://www.juniper.net/documentation/en_US/junos/topics/concept/certificate-

ocsp-understanding.html. [Accessed: 21-Aug-2019].

[6] J. Sermersheim <jimse@novell.com>, “Lightweight Directory Access Protocol

(LDAP): The Protocol.” [Online]. Available: https://tools.ietf.org/html/rfc4511.

[Accessed: 21-Aug-2019].

[7] “A Layman’s Guide to a Subset of ASN.1, BER, and DER.” [Online].

Available: http://luca.ntop.org/Teaching/Appunti/asn1.html. [Accessed: 21-Aug-

2019].

[8] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto, “Security

Applications of Formal Language Theory,” IEEE Syst. J., vol. 7, no. 3, pp. 489–

500, Sep. 2013.

[9] IEEE Computer Society, “IEEE Standard for Information Technology -

Telecommunications and Information Exchange between Systems - Local and

Metropolitan Area Network Specific Requirements Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications.”

[10] J. R. Vollbrecht, B. Aboba, L. J. Blunk, H. Levkowetz, and J. Carlson,

“Extensible Authentication Protocol (EAP).” [Online]. Available:

https://tools.ietf.org/html/rfc3748. [Accessed: 21-Aug-2019].

[11] W. Simpson, “The Point-to-Point Protocol (PPP).” [Online]. Available:

https://tools.ietf.org/html/rfc1661. [Accessed: 21-Aug-2019].

[12] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling

Algorithm of RC4,” in Selected Areas in Cryptography, 2001, pp. 1–24.

118

[13] R. Droms, “Interoperation Between DHCP and BOOTP.” [Online]. Available:

https://tools.ietf.org/html/rfc1534. [Accessed: 21-Aug-2019].

[14] Bitcoin Improvement Proposals. Contribute to bitcoin/bips development by

creating an account on GitHub. Bitcoin, 2019.

[15] “China, U.S. strike trade accord | Tech News on ZDNet,” 07-Apr-2005.

[Online]. Available:

https://web.archive.org/web/20050407222112/http://news.zdnet.com/2100-

9584_22-5197087.html. [Accessed: 21-Aug-2019].

[16] “Protocol rules - Bitcoin Wiki.” [Online]. Available:

https://en.bitcoin.it/wiki/Protocol_rules. [Accessed: 21-Aug-2019].

[17] A. M. Antonopoulos, Mastering bitcoin, First edition. Sebastopol CA: O’Reilly,

2015.

[18] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” p. 9.

[19] “Bitcoin - Open source P2P money.” [Online]. Available: https://bitcoin.org/en/.

[Accessed: 21-Aug-2019].

[20] “Script - Bitcoin Wiki.” [Online]. Available: https://en.bitcoin.it/wiki/Script.

[Accessed: 04-Sep-2019].

[21] “Coinbase Transaction.” [Online]. Available:

https://learnmeabitcoin.com/glossary/coinbase-transaction. [Accessed: 21-Aug-

2019].

[22] “Satoshi Client Node Discovery - Bitcoin Wiki.” [Online]. Available:

https://en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery#See_Also. [Accessed:

21-Aug-2019].

[23] “How Does Bitcoin Work?” [Online]. Available: https://learnmeabitcoin.com/.

[Accessed: 21-Aug-2019].

[24] J. Vermeulen, “Bitcoin and Ethereum vs Visa and PayPal – Transactions per

second.” .

119

7 APPENDICES

7.1 Appendix A: C Source Code

 Google Drive Link:

https://drive.google.com/drive/u/3/folders/1_9fiso3CG7d60kJD5tZlKkqaii3Uzc16

https://drive.google.com/drive/u/3/folders/1_9fiso3CG7d60kJD5tZlKkqaii3Uzc16

