

AN ABSTRACT OF THE THESIS OF

Trevor D. Ruiz for the degree of Doctor of Philosophy inStatistics and Statistics

presented on August 26, 2020.

Title: Estimation and Sparse Selection of Conditional Probability Models for Vector

Time Series

Abstract approved:

Sharmodeep Bhattacharyya Sarah C. Emerson

Diverse scientific fields collect multiple time series data to investigate the dynamical

behavior of complex systems: atmospheric and climate science, geophysics, neuro-

science, epidemiology, ecology, and environmental science. Identifying patterns of

mutual dependence among such data generates valuable knowledge that can be ap-

plied either for inferential or forecasting purposes. Vector autoregressive (VAR) pro-

cesses provide a flexible class of statistical models for multiple time series that are easy

to estimate using regression techniques. However, scaling to large data sets and ex-

tension to more general processes stretch the framework’s capacity: due to the dense

parametrization of VAR models, which have one parameter for every possible pairwise

relationship between components (i.e., between each univariate time series in a collec-

tion), high-dimensional data generate difficulties associated with model selection and

parametric regularization; and modeling more general processes requires data trans-

formations that complicate inference, forecasting, and model interpretation. Fields

such as epidemiology, neuroscience, and ecology generate high-dimensional time series

of count vectors, which incur both sets of challenges at once. Autoregressive condi-

tional probability models — models in which the conditional means of a time series

follow an autoregressive structure in the process history — are natural generaliza-

tions that preserve ease of estimation and, in conjunction with selection methods in

regression, promise to address challenges associated with modeling large multiple time

series of count (and other discrete) data. This thesis focuses on developing empirical

methodology for sparse selection of nonlinear VAR-type conditional Poisson models.

Chapter 1 provides an overview of related existing work. Chapter 2 develops an

empirical method for sparse selection in VAR models based on resampling methods.

Chapter 3 presents a conditional probability generalization of the VAR model and

analyzes the stability properties of Poisson generalized vector autoregressive (GVAR)

processes. Chapter 4 combines the work of the preceding two chapters and develops

a resampling-based method for sparse estimation of Poisson GVAR models. Finally,

Chapter 5 summarizes key findings, challenges, and future work.

©Copyright by Trevor D. Ruiz
August 26, 2020

All Rights Reserved

Estimation and Sparse Selection of Conditional Probability Models
for Vector Time Series

by

Trevor D. Ruiz

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented August 26, 2020
Commencement June 2021

Doctor of Philosophy thesis of Trevor D. Ruiz presented on August 26, 2020.

APPROVED:

Co-Major Professor, representing Statistics

Co-Major Professor, representing Statistics

Chair of the Department of Statistics

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Trevor D. Ruiz, Author

ACKNOWLEDGEMENTS

My advisors, Sharmodeep Bhattacharyya and Sarah Emerson, made significant intel-

lectual and material contributions to the work in this thesis and provided an extraor-

dinary amount of personal support during my time as a graduate student. Sharmo

introduced me to network estimation problems involving spatiotemporal data and

proposed a number of research projects during my first year as a graduate student.

He has since skillfully guided my work in this thesis and in several applied projects

with interest, flexibility, and vision. Sarah deftly reviewed and refined large volumes

of raw research material as I was beginning my thesis in earnest and provided invalu-

able guidance in developing and clarifying many of the key ideas that now appear in

these chapters. She also identified and resolved a number of technical flaws in com-

puter codes and in early chapter drafts. In addition to greatly improving the quality

of my work, Sharmo and Sarah have provided encouragment and advice that have

helped me navigate this project and graduate school more generally.

I am also grateful to several collaborators. David Gent has provided rich collabo-

rative opportunities throughout my time as a student and supported me on research

assistantships one term each year for the past several years and during multiple sum-

mers. While our applied work does not appear in the thesis, it has been equally

rewarding, and has strongly influenced the direction of my methodological research

and facilitated much intellectual growth. I have been fortunate to work with him.

Kris Bouchard was an early mentor and collaborator and contributed considerably to

the material in Chapter 2, along with several students in his lab, including Mahesh

Balasubramanian, Max Dougherty, and Pratik Sachdeva. Kris generously devoted

many hours to reviewing and discussing raw material, and provided editorial revi-

sions on a prior version of the chapter that appears in the 2nd L4DC conference

proceedings. Mahesh collaborated closely on the computer science side of the lat-

ter work and a complementary paper, developing C++ codes and conducting scaling

runtime experiments for the methodology we developed. I often consulted Max and

Pratik on datasets, codes, methodology, and a variety of other subjects. Their con-

tributions provided crucial support for my initial research efforts and helped set the

course for work that appears in later chapters.

I thank my committee members, Lan Xue, Duo Jiang, and Lori Cramer for re-

viewing the thesis and providing comments that improved the manuscript. Cathy

Lundmark also provided helpful editorial revisions.

Countless others have contributed in one way or another to the work that appears

here: all my teachers, peers, and students; and my friends and family. Thank you.

TABLE OF CONTENTS

Page

1 Introduction . 1

1.1 Background . 2
1.1.1 Vector autoregression . 2
1.1.2 Time series models for count vectors 6

1.2 Contributions and organization of the thesis 10

2 Sparse estimation of high dimensional VAR models 12

2.1 Introduction . 12

2.2 Background . 14
2.2.1 Vector autoregressive processes 14
2.2.2 Sparse estimation via LASSO . 20

2.3 Methods . 23
2.3.1 UoI-VAR estimation method . 24
2.3.2 A bootstrap method for time series 28

2.4 Results . 31
2.4.1 Simulation study . 32
2.4.2 Application . 36

2.5 Discussion . 40

3 Poisson generalized vector autoregression . 44

3.1 Introduction . 44

3.2 Poisson generalized vector autoregressive processes 47
3.2.1 Process definition and properties 47
3.2.2 Process stability . 57

3.3 Stability conditions for Poisson GVAR(1) processes 59
3.3.1 Stability of graphically constrained processes 60
3.3.2 Moment bounds for graphically-constrained processes 65
3.3.3 Other graphical structures . 68

3.4 Estimation . 74
3.4.1 Likelihood estimation . 75
3.4.2 Pseudo-unidentifiability . 77

3.5 Discussion . 80

TABLE OF CONTENTS (Continued)

Page

4 Sparse estimation of Poisson GVAR models 83

4.1 Introduction . 83

4.2 Methodological variants on UoI . 86
4.2.1 Algorithmic framework . 87
4.2.2 Methodological design choices . 94
4.2.3 Methodological variants . 99
4.2.4 Initial comparison: effect of conditioning 101

4.3 Simulation study . 103
4.3.1 Parameter generation and parameter recoverability 104
4.3.2 Simulation design . 114
4.3.3 Simulation results . 116

4.4 Discussion . 123

5 Conclusion . 127

Bibliography . 130

Appendices . 139

A Algorithms . 140

C Computation . 155

S Supplementary Figures . 161

LIST OF FIGURES

Figure Page

1.1 Illustration of mean structure in an example VAR model with D = 2
and four nonzero autoregressive parameters. Above, a graphical repre-
sentation with nodes representing vector components and edges repre-
senting autoregressive parameters. Below, the corresponding parame-
ter matrices A1 and A2. 3

2.1 Selection, estimation, and forecasting behavior for UoI-VAR and LASSO
estimators observed in the simulation study. Panel rows distinguish se-
lection, estimation, and forecasting metrics; panel columns distinguish
dimensions M ; and in each panel boxplots for the row metric for each
estimator are plotted against time series length T on the horizontal axis. 35

2.2 S&P dataset analyzed in the example causal analysis application. . . . 38

2.3 Causal networks inferred from S&P 500 data using LASSO estimates
of a VAR(1) model for first differences (left) and UoI-VAR estimates
of the same model (right). In each network, one node is shown per
company, and an edge between two nodes indicates an inferred causal
relationship between the corresponding companies. Node and label size
are proportional to degree centrality in the network. 39

3.1 Contours indicating the maximum magnitude of entries in A (α∗ =

maxi,j aij) as a function of the maximum intercept term (ν∗ = maxm νm)
for which a Poisson GVAR(1) process with parameters ν,A has a first
moment bounded by C = 106 (left) and a second moment bounded by
C = 106 (right), under the graphical constraint on path length and for
various maximum in-degrees. 69

4.1 Average selection errors observed in simulation, reported as the aver-
age proportion of matrix entries that are incorrectly classified as zero
or nonzero, for each combination of support estimation and support se-
lection method. Average selection errors are plotted against simulated
realization length. Separate panels are shown for each combination of
sparsity s (row) and process dimension M (column). 119

LIST OF FIGURES (Continued)

Figure Page

4.2 Marginal effect of support estimation method on selection errors. In
each panel, the proportion of incorrectly classified (zero/nonzero) ma-
trix entries given by the LASSO support estimation method (with ei-
ther support selection method) is plotted against the proportion of
incorrectly classified matrix entries given by the support aggregation
method (with the same support selection method) for each simulated
dataset. A dashed simple linear regression line is overlaid on the scat-
terplot to help visualize the trend. Separate panels are shown for each
combination of sparsity s (row) and process dimension M (column). . 121

4.3 Marginal effect of support selection method on selection errors. In each
panel, the proportion of incorrectly classified (zero/nonzero) matrix
entries given by the cross validation support selection method (with
either support estimation method) is plotted against the proportion
of incorrectly classified matrix entries given by the model aggregation
support selection method (with the same support estimation method)
for each simulated dataset. A dashed simple linear regression line is
overlaid on the scatterplot to help visualize the trend. Separate pan-
els are shown for each combination of sparsity s (row) and process
dimension M (column). 122

LIST OF TABLES

Table Page

3.1 Means and variances of a stable and stationary process with a single
nonzero parameter a21 and a single nonzero intercept ν2. 66

4.1 Notations for operations figuring in the UoI framework. These func-
tions are intended to create a succinct vocabulary for classes of key
operations (e.g., constrained estimation) rather than specific methods
for performing operations (e.g., constrained OLS estimation). 93

4.2 Notations for support estimation methods. 97

4.3 Summary of key choices in method design and options for each choice. 98

4.4 Initial comparison of methods to assess the effect of conditioning. Com-
parisons are made between variants differing in only the input data to
the operations Ŝ and model.aggregation and are reported on the basis
of the ratio of average computation times and the ratio of average false
positive rates (errors by inclusion, or estimated support set elements
that are not in the true support set). The variant that uses training
data is always reported as variant 1, and the variant that uses full data
is always reported as variant 2. 102

4.5 Method variants of interest; factorial combinations of two support es-
timation methods with two support selection methods. 102

4.6 Intercept entries fixed for each combination of process dimension and
parameter sparsity in the simulation study. The sample averages of
estimated recoverabilities of 50 generated A matrices for the intercepts
shown in the cells ranged from 0.79 to 1.57 and the sample standard
deviations ranged from 0.02 to 0.07. 116

LIST OF ALGORITHMS

Algorithm Page

2.1 Intersection step for UoI-VAR. 24

2.2 Union step for UoI-VAR. 26

2.3 Cross-validation for regularization parameter λ selection. 34

4.1 Support set selection by cross validation. 95

4.2 Support set selection by model aggregation. 95

4.3 cross validation algorithm for tuning model aggregation threshold. . . 100

4.4 Poisson GVAR(1) parameter generation. 106

4.5 Sample from the Poisson GVAR(1) parameter space. 114

A.1 Coordinate descent algorithm for computing the weighted least squares

estimate with an elastic net penalty. 144

A.2 Coordinate descent algorithm for computing the LASSO VAR(D) es-

timate with blockwise coordinate updates. 147

A.3 Coordinatewise IRLS algorithm for estimation of generalized linear

models with an elastic net penalty. 149

A.4 Coordinatewise IRLS algorithm for computing LASSO GVAR(D) es-

timates with blockwise updates. 154

LIST OF APPENDIX FIGURES

Figure Page

C.1 Runtime analysis of UoI-VAR under weak scaling (computation cores
increase with data dimensions). Total runtime for the method is di-
vided into computation, communication, and data distribution, and
runtimes associated with each division are plotted on a logarithmic
scale against the memory required to store the data. 157

C.2 Runtime analysis of UoI-VAR under strong scaling (computation cores
increase but data dimensions remain fixed). Total runtime for the
method is divided into computation, communication, and data distri-
bution, and runtimes associated with each division are plotted on a
logarithmic scale against the memory required to store the data. . . . 158

S.1 Selection behavior detail for UoI-VAR and LASSO estimators observed
in the simulation study of Section 2.4.1. Panel rows distinguish se-
lection accuracy, false negative rates, and false positive rates; panel
columns distinguish dimensions M ; and in each panel boxplots for the
row metric for each estimator are plotted against time series length T
on the horizontal axis. 161

S.2 Forecast and estimation behavior detail for UoI-VAR and LASSO es-
timators observed in the simulation study of Section 2.4.1. Panel rows
distinguish one-step forecast errors, four-step forecast errors, and es-
timation error; panel columns distinguish dimensions M ; and in each
panel boxplots for the row metric for each estimator are plotted against
time series length T on the horizontal axis. 162

S.3 First differences of S&P dataset analyzed in the example causal anal-
ysis application in Section 2.4.2. Each panel shows first differences of
weekly closes of one of 50 randomly chosen publicly traded companies
listed on the S&P 500 index in 2013-2014. 163

S.4 Comparison of estimation error between combinations of support se-
lection and support estimation methods observed in the simulation of
Section 4.3. For each combination of sparsity s (panel rows) and dimen-
sion M (panel columns) in the simulation, estimation error ∥A − Â∥F
for each of the estimates computed per method is plotted against re-
alization length T . The bold lines are average estimation errors per
method taken across each of the five simulated datasets for each of the
ten generated parameter matrices per simulation setting. 164

LIST OF APPENDIX FIGURES (Continued)

Figure Page

S.5 Average false negative counts for each combination of support selection
and support estimation method observed in the simulation of Section
4.3. For a given estimate Â of A, the false negative count is the num-
ber of nonzero parameters in A that are estimated as zero in Â; or,
expressed in terms of the true and estimated support sets, the quantity
∣S ∖ Ŝ∣. Average false negative counts are computed for each combi-
nation of sparsity s (panel rows), dimension M (panel columns), and
realization length T (horizontal axis), and taken across each of the five
simulated datasets for each of the ten generated parameter matrices
per combination. 165

S.6 Average false positive counts for each combination of support selection
and support estimation method observed in the simulation of Section
4.3. For a given estimate Â of A, the false positive count is the number
of zero-valued parameters in A that are estimated as nonzero in Â;
or, expressed in terms of the true and estimated support sets, the
quantity ∣Ŝ ∖ S∣. Average false negative counts are computed for each
combination of sparsity s (panel rows), dimension M (panel columns),
and realization length T (horizontal axis), and taken across each of
the five simulated datasets for each of the ten generated parameter
matrices per combination. 166

Chapter 1: Introduction

Technological advances in the sophistication of scientific devices, personal devices,

and information management have produced an abundance of multivariate time series

data, underscoring the need for statistical methods for modeling mutual dependence

among large collections of time series of diverse data types. Stochastic process models

for vector time series provide the basis for such methods. Modern data are both high-

dimensional and diverse in type, which presents two major challenges. First, high di-

mensionality generates both theoretical and computational difficulties for estimation

of stochastic process models and inference. Second, diverse data types present difficul-

ties for the distributional assumptions of common (Gaussian) models. To date, there

is a limited amount of work that targets both challenges at once: specification of vec-

tor time series models with flexible distributional assumptions and high-dimensional

estimation of such models. However, many authors have considered high-dimensional

estimation in the context of the Gaussian vector autoregressive model, and there is

also a rich literature on generalized univariate models for discrete time series. This

thesis presents work at the intersection of these two areas that focuses on developing

methodology for vector time series of counts.

2

1.1 Background

This section contextualizes the contributions of the thesis with a brief review of two

threads of existing work. The first thread, covered in Section 1.1.1, pertains to sparse

estimation of vector autoregressive models, and is motivated by applications of vector

autoregressive models to high-dimensional data. The second, discussed in Section

1.1.2, pertains to generalizations of univariate AR models to count data, focusing on

so-called ‘observation-driven’ conditional models. Considered together, this body of

literature provides the relevant background for generalizations of time series models

to count vectors and sparse estimation methods.

1.1.1 Vector autoregression

The vector autoregressive (VAR) model is a multivariate extension of the univariate

autoregressive stochastic process model, Xt = ∑
D
d=1αdXt−d + εt. In univariate autore-

gression, the fixed parameters α1, . . . , αD relate present values of the random variable

Xt to its past values Xt−1, . . . ,Xt−D up to lag order D and the relationship is mod-

ulated by a random noise process {εt}t∈Z. The multivariate generalization posits the

same structure for a vector process. The VAR model is

Xt =
D

∑
d=1
AdXt−d + εt

where Xt and εt are random vectors and A1, . . . ,AD are fixed parameter matrices. In

the VAR model, the diagonal elements of A1, . . . ,AD relate present values of each vec-

3

tor component to their own past values, and the off-diagonal elements relate present

values of each vector component to the past values of other components. Figure

1.1 provides a graphical illustration for a sparse set of example parameters. These

relationships together with the covariance of the noise process characterize the de-

pendence structure of the vector process {Xt}t∈Z.

Xt−2,1

Xt−2,2

⋮

Xt−2,M

Xt−2

Xt−1,1

Xt−1,2

⋮

Xt−1,M

Xt−1

Xt,1

Xt,2

⋮

Xt,M

Xt

⋯

⋯

⋯

⋯

⋯

⋯

α121

α
1M

2

α12
M

α121

α
1M

2

α12
M

α211

A1 =

⎛
⎜
⎜
⎜
⎝

0 0 ⋯ 0
α121 0 ⋯ α12M

⋮ ⋮ ⋱ ⋮

0 α1M2 ⋯ 0

⎞
⎟
⎟
⎟
⎠

A2 =

⎛
⎜
⎜
⎜
⎝

α211 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

⎞
⎟
⎟
⎟
⎠

Figure 1.1: Illustration of mean structure in an example VAR model with D = 2 and
four nonzero autoregressive parameters. Above, a graphical representation with nodes
representing vector components and edges representing autoregressive parameters.
Below, the corresponding parameter matrices A1 and A2.

Historical background. The VAR model initially gained popularity in economet-

rics. Granger (1969) proposed a framework for statistical inference of causal rela-

4

tionships between time series based on forecasting accuracy that leveraged the VAR

model. Subsequently, Sims (1980) advocated the VAR model more broadly as provid-

ing a flexible time-domain framework for multiple time series analysis with minimal

a priori assumptions about the data-generating system. Based largely on the works

of these two authors, the VAR model became a popular tool in econometrics for

forecasting and macroeconomic structural analysis (Lütkepohl, 2005; Tsay, 2005).

Following the works of Granger and Sims, the VAR model found both broader

methodological applications and broader subject-area applications. Based on Granger’s

notion of causality, the VAR model figured centrally in the development of graphical

models for time series in the statistics and machine learning communities (Arnold

et al., 2007; Bach and Jordan, 2004; Dahlhaus, 2000; Dahlhaus and Eichler, 2003;

Eichler, 1999; Qiu et al., 2016; Songsiri et al., 2010). In parallel, technological ad-

vances expanded the range of contexts in which multiple time series data were col-

lected in the sciences, providing novel application domains for these methods and

temporal and spatial statistical models in general (Atluri et al., 2018). For example,

enhanced recording devices, sensors, and remote sensing technologies enabled simul-

taneous time-course measurements to be taken at multiple locations for a variety of

physical systems, including the brain (Bassett and Sporns, 2017; Buzsáki et al., 2012;

Pesaran et al., 2018) and the earth’s geophysical and atmospheric climate (Kalnay

et al., 1996; Karpatne et al., 2013, 2018).

High-dimensional VAR models. The above developments coupled with advances

in computing led to modern use of the VAR model at scales far beyond its ini-

5

tial applications. A well-known challenge inherent in the VAR model is its dense

parametrization — the number of parameters grows quadratically with the number

of component time series (i.e., with the vector dimension) — which motivated several

relatively early works on subset and order selection methods tailored to VAR models

(e.g., Chen et al. (1996); Penm and Terrell (1982)). However, increases in application

scales created the need for more computationally efficient alternatives that work well

in high-dimensional settings or with large data sets (Hsu et al., 2008; Valdés-Sosa

et al., 2005).

Hsu et al. (2008) provided empirical support and asymptotic theory for VAR esti-

mation with a LASSO (Least Absolute Shrinkage and Selection Operator (Tibshirani,

1996)) penalty, which induces sparsity and can be computed efficiently using a variety

of fast algorithms (Boyd et al., 2011; Efron et al., 2004; Friedman et al., 2007). More

recently Basu et al. (2015) established finite-sample estimation and selection error

bounds for the method. However, the method is known to overfit in certain contexts

(e.g., Arnold et al. (2007)), and as a result there has been a proliferation of alterna-

tive penalization strategies that attain various theoretical or empirical improvements

on estimation and selection efficiency relative to the LASSO (Davis et al., 2016; Han

et al., 2015; Shojaie and Michailidis, 2010; Song and Bickel, 2011). These methods

and other field-specific variations now appear in a wide range of application domains,

including climate science (Lozano et al., 2009a,b; Triacca et al., 2013), econometrics

(Barigozzi and Brownlees, 2019; Barigozzi and Hallin, 2017; Fan et al., 2011), mete-

orology (Cavalcante et al., 2017; Dowell and Pinson, 2015), and neuroscience (Wang

et al., 2016).

6

1.1.2 Time series models for count vectors

Many fields generate time series of count vectors: ecological studies collect species

counts over time (Ives et al., 2003)); epidemiological studies examine infection case

counts observed at multiple locations (Bracher and Held, 2019)); in neuroscience,

counts of cellular activations (‘neural spikes’) are recorded simultaneously across mul-

tiple cells (Brown et al., 2004; Buzsáki et al., 2012); and in the social sciences, his-

torical data is generated on events of distinct types (Brandt and Sandler, 2012). In

these contexts it is of interest to model the dependence structure between individ-

ual time series in order to understand, e.g., ecological interactions, cellular functional

connectivity patterns, dynamic event feedback in certain types of historical processes,

and epidemic cascade networks. While data transformations might justify the use of

VAR models as approximations in the analysis of vector time series in a wide range of

contexts, for discrete data in particular such transformations can be artificial and the

resulting approach to statistical modeling can lack interpretability. Thus, generaliza-

tions of the VAR model that relax distributional assumptions are desirable. There

is comparatively much more literature on this subject in the univariate case than in

the vector case; a brief overview of univariate time series models for counts is given

below before turning to multivariate extensions.

Univariate models. A thread of early work on non-Gaussian time series models

focuses on exponential family generalizations of univariate process models; these ap-

proaches characterize a stochastic process {Xt}t∈Z with history Ht by specifying a

parametric model for Xt∣Ht in the exponential family. Cox et al. (1981) introduce a

7

broad distinction between ‘parameter-driven’ models in which the parameter of inter-

est is a function of a latent random process, and ‘observation-driven’ models in which

the parameter of interest depends on the past observations.

Observation-driven models specified through conditional means later became known

as ‘generalized autoregressive models’ (Fahrmeir and Tutz, 1994; Wong et al., 1986),

and bear an analogous relationship to the autoregressive process as generalized linear

models do to the normal linear model. A generalized autoregressive model is of the

form

µt = Ef(Xt∣Ht) = g (zt(Ht)
′β) (1.1)

where f is an exponential family density, g is a known (inverse link) function, and

zt(Ht) is a vector of covariates that depends on the process history (e.g., zt = (Xt−1 Xt−2)′

or zt = ((Xt−1−µt−1) (Xt−2−µt−2))′). These models have the advantage that maximum

likelihood estiamtes (MLEs) can be computed using standard methods for general-

ized linear models and large-sample inference is substantially similar to the GLM case

(Fahrmeir and Kaufmann, 1985), only based on conditional observed Fisher informa-

tion in place of unconditional expected Fisher information (Fahrmeir, 1988, 1987).

However, in most contexts the regularity conditions under which asymptotic theory

for the MLE is derived include the assumption that the process specified by Equation

(1.1) is ergodic (see, e.g., Wong et al. (1986)), which of course depends on g and zt

and is not guaranteed in general.

The Poisson case provides a natural and easy-to-implement framework for mod-

eling count data,1 but ergodicity can require sometimes restrictive parameter con-

1Poisson generalized autoregressive models also have some interesting connections with point

8

straints (Fahrmeir and Tutz, 1994; Wong et al., 1986; Zeger and Qaqish, 1988). For

instance, if zt(Ht) are exactly lagged observations, the log-linear model

µt = exp{β0 + β1Xt−1}

is only ergodic when β1 < 0 (Fokianos and Tjøstheim, 2011; Zeger and Qaqish, 1988),

and therefore the model excludes positive serial dependence. Alternatively, ergodicity

conditions under the identity link exclude negative serial dependence (Fokianos et al.,

2009).

This issue has motivated a number of variations on the transformation zt(⋅) and

the inverse link function g (e.g., Aknouche et al. (2018); Fokianos and Tjøstheim

(2012)). Several good reviews are available, including Davis et al. (1999); Fahrmeir

and Tutz (1994); Fokianos (2012); Kedem and Fokianos (2005). Specific variations

tend to balance parameter flexibility with model interpretability, and many achieve

good results. For example, Davis et al. (2003) consider a variation in which µt is

log-linear in scaled deviations of past observations from their means to allow positive

and negative dependence, and the resulting process is ergodic under fairly general

conditions. More generally, Neumann et al. (2011) establishes a contraction condition

on µt that guarantees ergodicity in the Poisson case, and the result is extended to the

exponential family in Davis and Liu (2012), providing a simple condition to check for

any parametrization.

process models. See, for instance, Brown (2005); Jacobs and Lewis (1977); Lawrance and Lewis
(1977); Truccolo et al. (2005).

9

Multivariate models. There is a relative paucity of literature in statistics and

probability on vector extensions of the univariate models discussed above, though a

few early examples can be found (McKenzie, 1988; Ord et al., 1993) and the subject is

beginning to receive renewed attention (Hall et al., 2016a,b, 2018; Mark et al., 2017).

Additionally, multivariate extensions appear in a number of specific subject areas.

In finance, for example, Heinen et al. (2003) propose a VARMA-type model (Vector

Autoregressive Moving Average) for a vector process {Xt}t∈Z wherein, conditional

on the process history Ht, the components Xt,m∣Ht are independent Poisson random

variables with conditional means given by

µt = E(Xt∣Ht) = ν +
D

∑
d=1
AdXt−d +

D

∑
d=1
Bdµt−d

where ν is a fixed intercept, A1, . . . ,AD are autoregressive parameter matrices, and

B1, . . . ,BD are moving average parameter matrices. This model is extended to the

double Poisson distribution in Heinen and Rengifo (2007) to accommodate overdis-

persion. A similar model is considered in political science methodology by Brandt

and Sandler (2012), who propose a purely autoregressive conditional mean structure

with covariate and latent effects given by

µt = AXt−1 + exp{Ztβ + bt}

where Zt are covariates and bt are latent effects. Finally, Pillow et al. (2008) use an

autoregressive model with covariate effects to analyze neural spike counts; in their

10

model, the mean structure is

µt = exp{ν +Ztβ +
D

∑
d=1
Adhd(Xt−d)}

where hd are known functions and the remaining parameters are as above.

Little attention in the above works is given to the choice of link function or co-

variate transformations and their implications for parameter constraints. When the

linear link is used a sufficient condition for process stationarity can be derived (Heinen

et al., 2003) but the parameters must be positive, so such models exclude negative

serial dependence. Under the log link, both positive and negative serial dependence

are possible, but it is unclear what parameter constraints might be required to ensure

that the process is well-behaved in some sense (stable, stationary, or ergodic). Mark

et al. (2017) acknowledge that process stability is a problem in this case, but they

address the issue by thresholding the effects of Xt−1 on Xt.

1.2 Contributions and organization of the thesis

Existing work leaves ample room for contributions focusing on vector extensions of

generalized autoregressive models and high-dimensional estimation and inference of

these and other multivariate time series models. First, sparse estimation methods for

VAR models continue to be developed. Second, few generalizations of VAR models

are available and the probabilistic behavior of existing generalizations is not well

understood. Third, very few estimation methods have been developed for generalized

11

vector autoregression.

The chapters of this thesis contribute to addressing these gaps by jointly develop-

ing an empirical method for sparse estimation of VAR and Poisson generalized VAR

models utilizing a log link and providing initial probabilistic analysis of the latter

stochastic process model. Chapter 2 presents a resampling-based empirical method

for sparse estimation of VAR models. The method achieves good selection perfor-

mance in simulation and in principle is of comparable computational efficiency to the

LASSO technique. Chapter 3 analyzes the stability properties of Poisson generalized

vector autoregressive models with a log link. A graphical constraint that ensures

the existence of moments when the process has both positive and negative serial de-

pendence is derived, and some additional results helpful in understanding process

stability are presented and discussed. Finally, Chapter 4 extends the methodology

of the Chapter 2 and applies it to sparse estimation of Poisson generalized vector

autoregressive models discussed in Chapter 3. A simulation framework is constructed

based on the results of the Chapter 3 and an empirical sparse estimation method is

developed based on the results of the Chapter 2 and evaluated using the simulation

framework. Chapter 5 concludes the thesis with a discussion of impact and future

work.

12

Chapter 2: Sparse estimation of high dimensional VAR models

2.1 Introduction

This chapter presents a novel empirical method for sparse selection in vector au-

toregressive (VAR) models.1 The method extends an existing framework for sparse

selection with low-bias estimation in regression (Bouchard et al., 2017) to the vector

time series setting under modifications. Most existing methods for sparse selection

in VAR models are based on L1 penalization (Davis et al., 2016; Han et al., 2015;

Hsu et al., 2008; Shojaie and Michailidis, 2010; Song and Bickel, 2011; Songsiri et al.,

2010), and by far the most widely used approach is to perform both selection and esti-

mation simultaneously using the LASSO (Basu, 2014; Basu et al., 2015). However, it

has been frequently observed that the LASSO tends to overfit in general (Bühlmann

and Van De Geer, 2011; Meinshausen and Bühlmann, 2010; Meinshausen et al., 2006)

and especially in the VAR context (Arnold et al., 2007; Davis et al., 2016; Valdés-Sosa

et al., 2005), and if the method is also used for estimation, estimates can be severely

biased (as shown in this chapter).

Purpose and contributions. The aim of the method developed in this chapter is

to improve both selection and estimation accuracy relative to the LASSO. Empirical

support is provided in the form of a simulation study, computational scaling exper-

1A version of this chapter appears as Ruiz et al. (2020).

13

iments (described in Appendix C), and a data application. Together, these results

explore the statistical and computational properties of the method and illustrate its

use. The simulation study compares the selection, estimation, and forecasting accu-

racy of models estimated by the novel method with models estimated by the LASSO.

The scaling experiments identify implementation bottlenecks that limit runtime for

large datasets, and incidentally demonstrate successful estimation of very large VAR

models. The data analysis illustrates the utility of the novel method in a causal

analysis of financial time series.

The main contributions of the chapter are:

1. novel methodology for sparse VAR estimation;

2. basic and distributed-computing implementations of the method;

3. empirical experiments demonstrating improved selection accuracy and lower

estimation bias relative to LASSO-penalized least squares estimates;

4. illustrative example of causal analysis of financial time series data.

Organization. The chapter is organized as follows. Section 2.2 reviews background

material to contextualize the main contributions: Section 2.2.1 introduces the VAR

model class and several of its key properties; and Section 2.2.2 introduces the LASSO

estimator and discusses a technique for computing the estimator. Section 2.3 presents

the novel methodology: Section 2.3.1 presents the estimation algorithm with a line-by-

line explanation of key steps; and Section 2.3.2 discusses bootstrap methods, which are

used in the estimation algorithm, in the context of time series. Section 2.4 presents a

14

collection of empirical results: Section 2.4.1 summarizes a simulation study exploring

the statistical properties of the estimation method; and Section 2.4.2 presents an

example application of the method to causal analysis of financial time series. Section

2.5 closes the chapter with a discussion of the main findings, challenges, and possible

extensions of this work.

2.2 Background

This section reviews key material leveraged in the development and application of

methodology for sparse estimation of vector autoregressive models in this chapter.

Section 2.2.1 introduces the VAR model class with a formal definition of vector au-

toregressive processes, a review of process stability conditions and stationarity prop-

erties, and a review of forecasting and causality for VAR processes. Section 2.2.2

introduces existing sparse estimation methodology with a review of least squares esti-

mation of VAR processes, the addition of a sparsity constraint to the estimator, and

a ‘vectorization’ strategy for computation using LASSO regression algorithms.

2.2.1 Vector autoregressive processes

The exposition here closely follows Lütkepohl (2005), and the reader is referred to

this work for a comprehensive review of VAR models and time-domain multiple time

series models more generally.

VAR(D) process definition. Vector autoregressive processes of order D (VAR(D))

15

are the family of stochastic processes {Xt ∶ Ω→ RM}t∈Z characterized by:

Xt = ν +
D

∑
d=1
AdXt−d + εt , for all t ∈ Z (2.1)

It is assumed that the error process εt is a white noise process with finite variance:

Eεt = 0 for every t; Eεtε′t = Σ for every t; Σ is finite and positive definite; and Eεtε′s = 0

for every t ≠ s.

VAR(1) process stability. For any V AR(1) process, recursively applying Equation

(2.1) s + 1 times beginning at any timepoint t ∈ Z, one can write:

Xt = (I +A1 +A
2
1 +⋯ +As1)ν +A

s+1
1 Xt−s−1 +

s

∑
j=0
Aj1εt−j

This recursion holds for time point t and number of steps s into the process his-

tory. Since s, t ∈ Z, in order for Xt to be well-defined, one needs that the limits

lims→∞∑
s
j=0A

j
1 and lims→∞∑

s
j=1A

j
1εt−j exist and are finite: that the former converges

to a finite matrix, and that the latter converges to a non-degenerate random vector.

A sufficient condition can be expressed as a constraint on the eigenvalues of A1. If

the eigenvalues of A1 are all in the interval (−1,1), then:

(i) {Ai1}
∞
i=0 is absolutely summable and the sequence converges quickly to 0;

(ii) ∑
j
i=0A

j
1 → (I −A1)

−1 as j →∞; and

(iii) the sum ∑
s
j=1A

j
1εt−j converges in the L2 sense.

For proof details, see Lütkepohl (2005), Appendix C. The eigenvalues of A1 are all in

16

(−1,1) just in case:

det (I −A1z) ≠ 0, for all z ∈ C with ∣z∣ ≤ 1

This is referred to as a ‘stability’ condition, and a VAR(1) process is said to be stable

if the condition holds.

Stable VAR(1) processes are also stationary. Letting as s → ∞ in the recursion

yields the process representation:

Xt = (I −A1)
−1ν +

∞
∑
j=0
Aj1εt−j

From this representation it can be seen that the process mean and autocovariances

are time-invariant, since independently of t:

EXt = (I −A1)
−1ν

E(Xt −EXt)(Xt−s −EXt−s)
′ = E((

∞
∑
i=0
Ai1εt−i)(

∞
∑
j=0
Aj1εt−s−j)

′

)

=
∞
∑
i=0

∞
∑
j=0
Ai1Eεt−iε′t−s−j(A′

1)
j

=
∞
∑
j=0
As+j1 Σ(A′

1)
j

The autocovariance function has a more tractable representation, though the above

derivation is more straightforward and suffices to establish stationarity of the process.

VAR(D) process stability. Any VAR(D) process can be rewritten as a VAR(1)

17

process, and so it is said that a VAR(D) process is stable just in case its VAR(1)

representation is stable. Let Xt be a VAR(D) process; its VAR(1) representation is

defined in terms of Yt, ν̃, Ã, and ψt, given blockwise by:

Yt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xt

Xt−1

⋮

Xt−D+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ν̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν

0

⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ã =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A2 ⋯ AD−1 AD

IM 0 ⋯ 0 0

0 IM ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ IM 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ψt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

εt

0

⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then by the process definition (Equation (2.1)) one has:

Yt = ν̃ + ÃYt−1 + ψt , for all t ∈ Z

Since it is assumed that εt is a white noise process, it follows immediately that ψt is

a white noise process.

Therefore Yt is a VAR(1) process. The process is stable if det (I − Ãz) ≠ 0 for all

∣z∣ ≤ 1. Since Yt and Xt are exactly the same process, Xt is stable under the same

condition. The stability condition on Ã rewritten in terms of A1, . . . ,AD gives that

Xt is stable if:

det(I −
D

∑
d=1
Adz

d) ≠ 0, for all z ∈ C with ∣z∣ ≤ 1

Forecasting. An h-step forecast is a prediction of Xt+h based on the history of the

process up to time t. The conditional expectation E(Xt+h∣Xs = xs, s ≤ t) (wherein

18

the lowercase xs denotes a fixed realization of the random vector Xs) satisfies certain

optimality properties as an h-step forecast within the VAR(D) model class. Denote

this predictor by:

X̂t(h)
def
= E(Xt+h∣Xs = xs, s ≤ t) = ν +

D

∑
d=1
AdE(Xt+h−d∣Xs = xs, s ≤ t)

When h = 1, one has that E(Xt+h−d∣Xs = xs, s ≤ t) = xt+h−d for every d in the summand

because Xt+h−d ∈ {Xs, s ≤ t} for d ≥ 1. In this case, the forecast is:

X̂t(1) = ν +
D

∑
d=1
Adxt+1−d

Otherwise, for h > 1, the forecasts X̂t(h) can be computed sequentially in h starting

from h = t + 1. With the convention that X̂t(h) = xh for any h ≤ t, one has that:

X̂t(h) = ν +
D

∑
d=1
AdX̂t(h − d)

The forecast X̂t(h) is unbiased since EX̂t(h) = E(EXt+h ∣ Xs = xs, s ≤ t) = EXt+h,

and optimal in the MSE sense. That is, for any h-step forecast X̂∗
t (h), the difference

in MSE between X̂∗
t (h) and X̂t(h) is positive semi-definite:

E(Xt+h − X̂
∗
t (h))(Xt+h − X̂

∗
t (h))

′ −E(Xt+h − X̂t(h))(Xt+h − X̂t(h))
′ ⪰ 0

Granger causality. The forecast X̂t(h) can be used to characterize a notion of

causality originally proposed in Granger (1969): one process is causal for another if

19

conditioning on the former reduces forecasting error for the latter. Here this notion

of causality is articulated in the context of VAR processes.

Consider the partition of Xt into subprocesses XA
t and XB

t . Denote the h-step

conditional expectation forecast of the subprocess XA
t given the full process up to

time t by:

(X̂t(h))
A def
= E(XA

t+h∣Xs = xs, s < t)

Then denote the h-step conditional expectation forecast of the subprocess XA
t given

only its own history up to time t by:

X̂t(h)
A def
= E(XA

t+h∣X
A
s = xAs , s < t)

X̂t(h)A and (X̂t(h))A distinguish ‘partly conditional’ forecasts (forecasts conditioned

only on the subprocess) from ‘fully conditional’ forecasts (forecasts conditioned on

the full process).

The subprocess XA
t causes the subprocess XB

t (in the Granger sense) just in case

for at least one h the difference in MSE between the partly conditional forecast X̂t(h)A

and the fully conditional forecast (X̂t(h))A is positive semi-definite:

E (XA
t+h − X̂

A
t (h)) (XA

t+h − X̂
A
t (h))

′
−E (XA

t+h − (X̂t(h))
A) (XA

t+h − (X̂t(h))
A)

′
⪰ 0

It can be shown that for any pair of univariate subprocesses Xti and Xtj, Xtj causes

Xti just in case (Ad)ij ≠ 0 for at least one d. As a result, it is possible to determine

causal relationships among the components Xt1, . . . ,XtM of a VAR(D) process Xt by

20

direct examination of the sparsity pattern of ∑dAd:

Xtj causes Xti ⇐⇒ (∑
d

Ad)
ij

≠ 0

2.2.2 Sparse estimation via LASSO

Sparse estimation of VAR processes is particularly useful if the application involves

assessing causality among components, since, following the discussion of Granger

causality above, the sparsity patterns of A1, . . . ,AD directly indicate the presence

and absence of pairwise causal relationships. The three most common estimation

techniques for VAR processes are moment estimation (solving the Yule-Walker equa-

tions), maximum likelihood (under the assumption that the error process is Gaussian),

and least squares. Here an overview of the least squares technique with a sparsity

constraint is given.

Least squares estimation. Let {xt ∈ RM}Tt=0 denote an observed time series of

length T + 1. The VAR(D) model for {xt}Tt=0 can be expressed in the form of a

multivariate multiple regression Y = UB +E where:

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x′T

x′T−1

⋮

x′D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x′T−1 ⋯ x′T−D

1 x′T−2 ⋯ x′T−D−1

⋮ ⋮ ⋱ ⋮

1 x′D−1 ⋯ x′0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν′

A′
1

⋮

A′
D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

E =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε′T

ε′T−1

⋮

ε′D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.2)

21

The ordinary least squares estimator of B is:

B̂ = argminB ∥Y −UB∥2F = (U ′U)−1U ′Y (2.3)

Then, an estimate of Σ is given by Σ̂ = 1
T−1(Y −UB̂)(Y −UB̂)′. If the data are centered

and the intercept ν is omitted, this estimation technique is identical to maximum

likelihood estimation under the assumption that the noise process is Gaussian (for

details, see Lütkepohl (2005)).

LASSO penalty. The least squares estimator B̂ can be modified to impose a sparsity

constraint on A1, . . . ,AD by including a LASSO penalty distributed over the elements

adij of each matrix Ad:

B̃ = argminB {∥Y −UB∥2F + λ
D

∑
d=1
∑
i,j

∣adij ∣} (2.4)

The regularization hyperparameter λ controls the sparsity of the optimum; larger val-

ues of λ result in more sparse estimates, and smaller values result in denser estimates.

Computation via vectorization. Computations for the sparse least squares esti-

mate B̃ can be obtained by rewriting the problem as a univariate multiple regression

and applying algorithms for LASSO regression. Let vec(⋅) denote the column-

stacking operator. Applying this term to the response Y and predictor UB produces

an equivalent representation of the regression equation:

Y = UB ⇐⇒ vecY = vec(UB)

22

Noting that vec(UB) = (U ⊗ IM)vecB,2 define the quantities:

Y
def
= vecY , X

def
= U ⊗ IM , and β

def
= vecB

Then Equation (2.2.2) becomes:

Y = UB ⇐⇒ Y = Xβ

This rearrangement ‘vectorizes’ the multivariate regression equation Y = UB since it

re-expresses the regression equation in terms of the vector Y.

The estimator B̃ can be recovered from a LASSO regression estimate of β. Since

for any matrix X, ∥X∥F = ∥vecX∥2, and the vec(⋅) operator is linear, it follows that:

∥Y −UB∥F = ∥Y − Xβ∥2

Now consider the estimator:

β̃ = argminβ {∥Y − Xβ∥
2
2 + λ

D

∑
d=1
∑
i,j

∣adij ∣}

The estimators β̃ and B̃ minimize identical loss functions, and by definition, β = vecB.

Therefore, the same relationship holds between the estimates:

β̃ = vecB̃

2The notation ⊗ denotes the Kronecker product.

23

This renders a strategy for computing B̃: recovery via the LASSO estimate β̃. The

strategy is useful because the latter estimate can be computed by direct application

of LASSO regression algorithms. Such algorithms are widely available and can be

implemented efficiently for the VAR case by leveraging the sparsity pattern of X .

Appendix A gives details on implementing pathwise coordinate descent with such

modifications and an appropriate penalty distribution strategy to accommodate the

intercept terms interspersed throughout the parameter vector β.

2.3 Methods

This section presents novel methodology for sparse estimation of vector autoregressive

models by extending an existing algorithmic framework, the Union of Intersections

(UoI) (Bouchard et al., 2017). The framework separates estimation of sparse pa-

rameter support sets from selection of support sets and subsequent estimation of

parameters in a resampling-intensive scheme. This idea is developed in the context

of VAR estimation based on the least squares and LASSO estimators B̂ (Equation

(2.3)) and B̃ (Equation (2.4)) in conjunction with time series resampling methods to

produce a ‘UoI-VAR’ estimator.

The UoI-VAR method is presented in subsection 2.3.1. Following this, subsection

2.3.2 indicates challenges associated with bootstrapping for time series and presents

the bootstrap method used in implementing the UoI-VAR method.

24

2.3.1 UoI-VAR estimation method

The UoI-VAR method separates estimation of VAR parameters B = (ν A1 ⋯ AD)′

into an intersection step utilizing the LASSO estimator B̃ (Equation (2.4)) to iden-

tify candidate support sets and a union step utilizing the least squares estimator B̂

(Equation (2.3)) to combine estimates on the candidate supports. These steps are

given in detail separately as Algorithms 2.1 and 2.2.

Algorithm 2.1 Intersection step for UoI-VAR.

Require:
data {xt ∈ RM}Tt=0
regularization path λ ∈ RK

number of bootstrap samples B1

for b = 1 to B1 do
draw bootstrap sample {x∗t }

T
t=0

construct Y ∗, U∗ based on {x∗t }
T
t=0 according to Equation (2.2)

for k = 1 to K do
estimate B̃bk ← argminB {∥Y ∗ −U∗B∥2F + λk∑

D
d=1∑i,j ∣adij ∣}

compute support Sbk ← {(i, j) ∶ b̃bkij ≠ 0}
end for

end for
Ensure: aggregated supports Sk ← ⋂

B1

b=1 Sbk , k = 1, . . . ,K

Intersection step. Algorithm 2.1 begins by drawing B1 bootstrap samples. LASSO

estimates are computed on each bootstrap sample for a range of regularization hyper-

parameters λk. That is, if {x∗t }
T
t=0 denotes the bth bootstrap sample, the procedure

forms the multivariate regression response Y ∗ and design matrix U∗ according to

25

Equation (2.2) and computes the sparse least squares estimator (Equation (2.4)):

B̃bk = argminB {∥Y ∗ −U∗B∥2F + λk
D

∑
d=1
∑
i,j

∣adij ∣} k = 1, . . . ,K

Since the magnitude of the regularization hyperparameter λk controls the sparsity

level of the estimate, each such estimate B̃bk is associated with a support set and

the sparsity of those support sets varies with the index k. Each such support set is

denoted here as the collection of indices (i, j) that correspond to row and column

positions in the matrix B̃bk with nonzero values:

Sbk = {(i, j) ∶ b̃bkij ≠ 0}

A final collection of candidate support sets S1, . . . , SK is formed by performing inter-

section operations on the support sets Sbk across bootstrap samples (index b) for each

regularization hyperparameter (index k):

Sk =
B1

⋂
b=1
Sbk , k = 1, . . . ,K

Each resulting support set Sk comprises the parameter positions that are selected

under the sparsity constraint corresponding to λk with high probability under re-

sampling of the data. This procedure is an extension of the methodology of Bach

(2008) to the time series context, and bears close connection to stability methods in

high-dimensional regression (Meinshausen and Bühlmann, 2010).

26

Algorithm 2.2 Union step for UoI-VAR.

Require:
data {xt ∈ RM}Tt=0
candidate support sets S1, . . . , SK (from intersection step)
number of bootstrap samples B2

threshold parameter γ
for b = 1 to B2 do

draw bootstrap samples {x
∗(1)
t }

T

t=0
, {x

∗(2)
t }

T

t=0

construct Y ∗, U∗ based on {x
∗(1)
t }

T

t=0
according to Equation (2.2)

for k = 1 to K do
fix subspace Bk ← {B ∈ RM×D(D+1) ∶ {(i, j) ∶ bij ≠ 0} = Sk}

compute constrained OLS estimate B̂bk ← argminB∈Bk {∥Y
∗ −U∗B∥F}

compute forecast error fbk ← ∑t ∥x
∗(2)
t − X̂

∗(2)
t−1 (1; B̂bk)∥2

end for
find minimum error k∗b ← argmink fbk
select support S∗b ← Sk∗b

end for
determine sparsest selected supports Q← {b ∶ ∣S∗b∣ ≤ γ ⋅ quantile(∣S∗1∣, . . . , ∣S∗B2 ∣)}

Ensure: final estimate B̂ ← ∑b∈Q B̃k∗b

27

Union step. Algorithm 2.2 begins by drawing B2 pairs of bootstrap samples. Now,

each of the candidate support sets S1, . . . , SK from the intersection step defines a

parameter subspace Bk = {B ∈ RM×D(D+1) ∶ {(i, j) ∶ bij ≠ 0} = Sk} in which the

positions of B not included in Sk are set to zero. The algorithm computes least

squares estimates on each subspace B1, . . . ,BK from one of the bootstrap samples in

each of the B2 pairs. That is, if {x
∗(1)
t }

T

t=0
denotes the first bootstrap sample in the

bth pair, the procedure computes:

B̂bk = argminB∈Bk {∥Y
∗ −U∗B∥F} , b = 1, . . . ,B2 and k = 1, . . . ,K

The solution can be computed easily leveraging the vectorization transformations

discussed above.3

Next, for each of the B2 pairs, one-step forecast errors are computed on the remain-

ing bootstrap sample in the pair. That is, if {x
∗(2)
t }

T

t=0
denotes the second bootstrap

sample in the bth pair, and X̂
∗(2)
t (h; B̂bk) denotes the h-step conditional expecta-

tion forecast of X
∗(2)
t+h from time t based on the estimate B̂bk, then for each estimate

B̂b1, . . . , B̂bK the following error quantity is computed:

fbk =
T

∑
t=1

∥x
∗(2)
t − X̂

∗(2)
t−1 (1; B̂bk)∥2

3The vectorized problem is argminB∈Bk
∥Y∗ − X ∗β∥22, where Y∗ = vecY ∗, X ∗ = U∗ ⊗ IM , and

β = vecB. The least squares solution constrained to Bk is found by dropping columns of X ∗ in
correspondence to the sparsity pattern induced in β by Sk and computing the usual solution: if
χk = vec{1{(i, j) ∈ Sk} denotes the vectorized adjacency matrix generated by Sk, then ∣χk ∣ matches
the dimension of the column space of X ∗; letting X ∗

k denote the columns of X ∗ for which the entry

in the corresponding position in χk is 1, the constrained solution is B̂bk = (X
∗′
k X

∗
k)

−1
X ∗′
k Y

∗.

28

The index k that minimizes fbk is then used to find an optimal support set for each

pair of bootstrap samples:

S∗b = Sk∗b where k∗b = argmink fbk , b = 1, . . . ,B2

Each support set in the resulting collection S∗1, . . . , S∗B2 is exactly one of the can-

didate supports S1, . . . , SK from the intersection step: S∗b is whichever candidate

support yielded the constrained least squares estimates that gave the best forecasts

for the bth pair of bootstrap samples.

Lastly, the sparsest approximately 100 × γ% support sets are identified:

Q = {b ∶ ∣S∗b∣ ≤ γ ⋅ quantile(∣S∗1∣, . . . , ∣S∗B2 ∣)}

The final estimate is the average of the estimates B̂bk corresponding to the selected

supports S∗b for each b ∈ Q:

B̂ = ∑
b∈Q

B̃k∗b

This final step performs a union operation on the selected support sets and returns

an estimate on the resulting union.

2.3.2 A bootstrap method for time series

Modified bootstrap procedures suitable for time series are required to implement the

UoI-VAR method. ‘Suitable’ means that such procedures must largely preserve the

29

form of dependence implicit in the model being estimated. The classical bootstrap

does not meet this criterion; a block bootstrap procedure is adopted in its place.

Classical bootstrap. The classical bootstrap is random sampling with replacement

from the observations. Applied to time series observations, random sampling with

replacement fails to preserve any dependence between lagged observations, which

results in a loss of information about the structure of interest. For example, suppose

{Xt}t∈Z is a VAR(1) process, and consider that one obtains by a bootstrap sample

the process rearrangement:

{. . . ,X∗
1 ,X

∗
2 , . . .} = {. . . ,X14,X3, . . .}

According to the data-generating process:

E(Xt∣Xt−1 = xt−1) = ν +Axt−1 , t ∈ Z

However, for the rearrangement, one has that E(X∗
2 ∣X

∗
1 = x∗1) = E(X3∣X14 = x14) =

E(X3) and EXt = (I−A)−1ν for every t. As a result, whenever x∗1 ≠ A
−1((I−A)−1ν−ν):

E(X∗
2 ∣X

∗
1 = x∗1) ≠ ν +Ax

∗
1

So the bootstrap sample does not in general follow the same data generating process.

Moving block bootstrap. The moving block bootstrap (Kunsch et al., 1989; Lahiri

et al., 1999; Liu and Singh, 1992) resamples blockwise with replacement from obser-

30

vations, and in doing so largely preserves serial dependence in data (Liu and Singh,

1992). Consider a finite-length stochastic process {Xt}
T
t=0. Denote a fixed block length

by L and a random starting index by I ∼ uniform{0, . . . , T −L+1}. A randomly chosen

block from {Xt}
T
t=0 of length L is:

{XI , . . . ,XI+L−1}

The moving block bootstrap is simply a concatenation of B such blocks. Let:

I1, . . . , IB
iid
∼ uniform{0, . . . , T −L + 1}

Then a moving block bootstrap sample of {Xt}
T
t=0 with block length L and B blocks

is:

{X∗
s }

S
s=1 = {XI1 , . . . ,XI1+L−1, . . . ,XIB , . . . ,XIB+L−1} , where S = BL

The moving block bootstrap does not perfectly preserve VAR data-generating pro-

cesses — it preserves the data-generating process within each block but not across

blocks. That is, if {Xt}
T
t=0 is a VAR(1) process and {X∗

s }
S
s=1 is a moving block boot-

strap sample, then in general between blocks one has:

E(X∗
s ∣X

∗
s−1 = x

∗
s−1) ≠ ν +Axs−1 , whenver s = bL for b = 1, . . . ,B

However, the data-generating process is preserved within blocks, since in the same

31

example:

E(X∗
s ∣X

∗
s−1 = x

∗
s−1) = ν +Axs−1 , whenever s ≠ bL for b = 1, . . . ,B

In general, the method introduces BD ‘discontinuity’ points for VAR(D) processes

— points at which the data-generating process fails to describe the bootstrapped

process.

For VAR(D) estimation, the block length L and number of blocks B should be

chosen so that L≫ B and L≫ D. Maintaining L≫ B limits the number of discon-

tinuity points that violate the dependence structure assumed in the VAR(D) model,

and maintaining L≫ D ensures that the blocks preserve a sufficient order of depen-

dence from the original data to estimate a VAR(D) model using the MBB sample.

However, estimation quality may be sensitive to small changes in the choice of L and

B. For further discussion of block length selection, see Bühlmann and Künsch (1999);

reviews of alternative bootstrap methods for time series are given in Kreiss and Lahiri

(2012); Lahiri et al. (1999).

2.4 Results

This section presents results from a simulation study and a data application that

together provide empirical support for the UoI-VAR method. The simulation study,

presented in Section 2.4.1, explores the selection, estimation, and forecasting per-

formance of the UoI-VAR estimator relative to the LASSO estimator. Section 2.4.2

32

summarizes a data analysis that illustrates the utility of the UoI-VAR method in

causal network analysis.

Method implementations. Two distinct implementations of the method were de-

veloped: a MATLAB implementation for the simulation study and data analysis;

and a distributed implementation in C++ for conducting scaling experiments (Bala-

subramanian et al., 2020). While code testing confirmed matching outputs, the two

implementations utilize different methods of computing LASSO and OLS estimators

on bootstrap samples in the intersection and union steps. The results presented here

rely on the MATLAB implementation, which executes a pathwise coordinate descent

algorithm based on Friedman et al. (2010) and modified for the VAR setting per

Appendix A, setting λ = 0 for computing least squares estimates. The C++ imple-

mentation and scaling experiments are discussed in Appendix C.

2.4.1 Simulation study

The performance of the UoI-VAR estimator on synthetic data was assessed relative

to the LASSO estimator for a range of data dimensionalities, with the parametric

sparsity of the data-generating processes fixed in proportion to the process dimension.

The performance comparisons were made in terms of selection accuracy, model fit,

and estimation bias for each method.

Simulation study design. The simulation study consisted in generating a set of

VAR(1) parameters for each combination of the process dimensionsM = 5,10,20,40,80

33

and time series lengths T = 50,100,200; then, 50 datasets were simulated at the ap-

propriate length from each set of parameters, comprising 750 synthetic datasets in

total. UoI-VAR and LASSO estimators were computed on each datset.

Parameter generation. VAR(1) process parameters were generated as follows:

M nonzero matrix parameters were drawn at random from a distribution increasing

exponentially away from zero in either direction, and allocated to random positions

in an M ×M parameter matrix A1. The matrix A1 was then rescaled by a factor

of (∣Λmax(A1)∣ + 0.1)−1, where Λmax(A1) denotes the maximum eigenvalue of A1, in

order to guarantee process stability. The parameters generated by this process exhibit

1−1/M% sparsity. The intercept was fixed at ν = 0, and the error process covariance

was fixed at Σ = 0.5IM .

Hyperparameter settings. Both the UoI-VAR and LASSO methods utilized the

same regularization path λ, which was adjusted slightly for each distinct combination

of M,T to ensure that the LASSO selection spanned the full range of sparsity levels

from a null model to a saturated model. For the LASSO, the regularization strength

that minimized average forecasting errors over five-fold cross-validation was used for

the final estimate. In detail, this cross validation procedure is shown as Algorithm

2.3. For UoI-VAR, the additional hyperparameters B1 = 10, B2 = 50, and γ = 0.3 were

fixed for all combinations of M,T .

Simulation results. Figure 2.1 summarizes the results of the simulation study,

reporting empirical distributions of selection accuracy, estimation error, and forecast

34

Algorithm 2.3 Cross-validation for regularization parameter λ selection.

block length L← floor(T /5)
for j = 1 to 5 do

starting index i0 ← (j − 1)L
block I ← {i0, . . . , i0 +L − 1}
training data {x∗s}

S
s=0 ← {xt}t/∈I , where S = T −L

construct Y ∗, U∗ based on {x∗s}
S
s=0 according to Equation (2.2)

estimate B̃jk ← argminB {∥Y ∗ −U∗B∥2F + λk∑
D
d=1∑i,j ∣adij ∣}, for all λk ∈ λ

forecast error fjk ← ∑t∈I ∥xt − X̂t−1(1; B̃jk)∥2, for all λk ∈ λ
end for
set optimal λ∗ ← λk∗ where k∗ = argmink∑j fjk

error for each estimator under the combinations of dimension M and time series length

T considered in the study. To describe these quantities precisely, denote a parameter

estimate of B = (ν A)′ by B̂ = (ν̂ Â)′, and denote an estimate of the support set of A,

S = {(i, j) ∶ aij ≠ 0}, by Ŝ = {(i, j) ∶ âij ≠ 0}. The selection accuracy metric is defined

in terms of false positives FP = ∣Ŝ ∖ S∣, the number of positions in the parameter

estimates that are in fact zero but estimated as nonzero, and false negatives FN =

∣S ∖ Ŝ∣, the number of positions that are in fact nonzero but estimated as zero. The

selection accuracy metric is defined as 1− FN+FP
M+FP (for a more general definition, replace

M by TP = ∣S∣). The metric equals 1 if selection is perfect (FN = 0 and FP = 0)

and 0 if selection is maximally erroneous (FP =M2 −M and FN =M). Estimation

error is computed on the estimated support and defined as ∑i,j∈Ŝ ∥aij − âij∥22. Finally,

one-step forecast error is defined as 1
T−1 ∑t ∥xt+1 − X̂t−1(1; B̂)∥22.

Across all settings, UoI-VAR exhibits improved selection accuracy relative to

LASSO; these behaviors are driven predominantly by false positive rates (depicted

in Supplementary Figure S.1). The main limitation of UoI-VAR is an increased false

35

Figure 2.1: Selection, estimation, and forecasting behavior for UoI-VAR and LASSO
estimators observed in the simulation study. Panel rows distinguish selection, estima-
tion, and forecasting metrics; panel columns distinguish dimensions M ; and in each
panel boxplots for the row metric for each estimator are plotted against time series
length T on the horizontal axis.

36

negative rate relative to LASSO when less data are available (shorter T settings).

However, this problem diminishes rapidly as time series length T increases, and as a

result, for larger dimensions M , the selection performance of the UoI-VAR method

improves much faster than LASSO as T increases. Furthermore, as depicted in the

second row of the figure, UoI-VAR achieves dramatically lower estimation errors in

large-M settings. Finally, it appears that these improvements come at the cost of a

slight decrease in forecast accuracy.

2.4.2 Application

To illustrate an application, a VAR(1) model was used to identify putative causal

connections between weekly closes of 50 randomly chosen publicly traded companies

listed on the S&P 500 index in 2013-2014, and the causal analysis was repeated with

each of the UoI-VAR and LASSO methods compared in the simulation study (Section

2.4.1).

S&P data. The dataset analyzed in the application is shown in Figure 2.2, in which

each panel depicts weekly closes of share prices for one of 50 randomly chosen com-

panies listed on the S&P 500 index during the years 2013-2014, which saw a steadily

climbing index with no major economic disturbances.4 To obtain an approximately

stationary process, first-order differences were calculated from the raw series (shown

4Long-term historical data on daily closes for all 500 companies listed in the index are publicly
available. A subset of companies was chosen for this illustration to simplify visualization of results,
and a subset of years was chosen so that stationarity assumptions would be plausible. The time
series was thinned from daily closes to weekly closes to obtain a regular time step, since trading days
are Monday through Friday.

37

in Supplementary Figure S.3); then, VAR(1) model parameters were estimated from

these differences using the UoI-VAR method and LASSO.

Causal analysis. Figure 2.3 shows two causal networks among the 50 companies

in the dataset: one network inferred from the sparsity pattern of a LASSO estimate

of the VAR(1) model for the first-order differences; and another network inferred

from the UoI-VAR estimate. Following the discussion of Granger causality in Section

2.2.1, these networks are direct visualizations of the zero or nonzero classification of

estimated entries in the parameter matrix A. That is, each network is the graph

G = (V,E) where the node set V = {1, . . . ,50} represents the 50 companies in the

data and the edge set E = {(i, j) ∈ V × V ∶ Âji ≠ 0} is the estimated support set of A.

The UoI-VAR estimate identified 44 pairwise causal relationships that mostly

describe influences on Google’s share price from other companies. Relatively few

causal relationships connect other companies. By comparison, the LASSO estimate

identifies 146 causal relationships among a larger collection of companies. The latter

contains the network identified using the UoI-VAR estimate, but the network is much

less prominent due to the density of the graph. The network based on the UoI-VAR

estimate is comparatively easier to examine directly, and highlights a single prominent

causal structure.

Forecasts are comparable between the two estimates. One-step forecast root mean

square error (RMSE) averaged over all companies using the LASSO estimate is 8.3993;

for the UoI-VAR estimate, 8.4525 (an increase of 0.6% relative to LASSO). The scale

of share prices varies widely among the companies, and the forecast errors for both

38

Figure 2.2: S&P dataset analyzed in the example causal analysis application.

39

Figure 2.3: Causal networks inferred from S&P 500 data using LASSO estimates of
a VAR(1) model for first differences (left) and UoI-VAR estimates of the same model
(right). In each network, one node is shown per company, and an edge between two
nodes indicates an inferred causal relationship between the corresponding companies.
Node and label size are proportional to degree centrality in the network.

40

methods are approximately ordered in correspondence with average share prices. The

median per-company forecast RMSE is 4.7807 using LASSO, and 4.3329 using UoI-

VAR (a decrease of 9% relative to LASSO). Thus, forecasts viewed in aggregate reflect

slightly worse performance using the UoI-VAR estimate; however, on a company-

by-company basis, the forecasts from UoI-VAR are slightly more accurate for most

companies.

2.5 Discussion

The UoI-VAR method presented in this chapter addresses the problem of sparse

selection and estimation in large vector autoregressive models. Existing methods

impose LASSO-type sparsity constraints on least squares or maximum likelihood

estimators and provide little practical guidance on how to adjust the strength of the

constraint. This chapter presents an empirical estimation method, UoI-VAR, and

several experiments exploring its statistical and computational properties.

Findings. The simulation study and data analysis suggest that the UoI-VAR method

is most advantageous when model parsimony is a priority. The simulation study in-

dicates that UoI-VAR exhibits much improved selection accuracy, mainly through

control of erroneous selection (rather than erroneous omission). This improvement

comes at an apparent slight cost in forecasting. A similar tradeoff appears in the

data analysis, where the causal network inferred from UoI-VAR parameter estimates

is simpler than the network inferred from LASSO estimates but forecasts are slightly

worse. However, both the simulation study and data analysis report one-step forecast

41

errors at each time point in the dataset given the preceding history but after estimat-

ing parameters based on the entire dataset; genuine out-of-sample forecasts were not

assessed. Therefore, the apparent increase in forecast error for UoI-VAR estimates

relative to LASSO estimates may simply reflect that the LASSO tends to overfit.

In developing the methodology, it was found that a thresholding modification to

the UoI framework was needed to maintain sparse selection in the method. The

threshold γ, which limits the density of the final estimate, is introduced in the union

step. It was found that a direct extension of the union step (i.e., setting γ = 1)

tends to produce overly dense estimates due to a small number of dense selected

supports S∗b. Overall, the selected supports S∗b tend to have mutually comparable

sparsity levels, yet outliers occur reliably often within the variation exhibited by the

bootstrap samples. This behavior does not appear in other UoI methods. The most

straightforward strategy for addressing this problem is to draw many supports S∗b

and utilize only those below a manually chosen sparsity quantile. This strategy avoids

imposing an explicit limit on sparsity and captures the overall selection behavior of

S∗b while eliminating extreme cases. It is possible that the underlying issue is a

too-frequent failure of the bootstrap method to capture dependence in the data.

Challenges. The VAR estimation problem exhibits inherent challenges due to the

large number of parameters. The VAR estimation problem is superficially similar to

estimation of regression parameters due to the use of analogous techniques and algo-

rithms, yet the VAR problem scales quite differently. Estimation of a VAR(1) model

from T ×M data (length × vector dimension) using regression techniques translates

42

after vectorization to a pseudo-regression problem involving a (T − 1)M ×M(M + 1)

design matrix; so for instance, if M = 50 and T = 1001, which is a relatively small

dataset for certain application domains, the pseudo-design matrix is 50000 × 2550.

As indicated above, this particular data transformation is a poor choice for scalable

implementations. However, even if it is avoided, modeling T ×M data with a VAR(D)

model requires an M(DM + 1) parameter space that scales quadratically in M and

linearly in D. This creates a challenge mainly in the sense that it limits the ability

to conduct controlled experiments for large data dimensions. The work presented

here involves estimation of large models, up to M = 1000 in the scaling experiments.

However, it was found to be infeasible given available resources to scale simulation

experiments much beyond M ≈ 150 due to the need to repeat estimation on multiple

datasets to obtain informative results.

A second challenge encountered was the absence of any obvious efficient methods

for tuning hyperparameters for the UoI-VAR method. While the method requires only

an appropriate choice for the range of regularization hyperparameters λk, it eliminates

the need to select a single regularization hyperparameter at the cost of introducing

B1,B2, γ,L: the numbers of bootstrap repetitions, the threshold parameter, and the

bootstrap block length. While the method is relatively less sensitive to small changes

in these parameters than LASSO is to the choice of λ, and in some sense this is a

helpful tradeoff, there are no clear strategies for fixing these parameters. In the work

presented here, they were each tuned manually by trial and error experimentation

across a range of settings.

43

Future work. Future work could address either of the challenges identified above:

developing scalable implementations of ‘core’ methods for estimating VAR parame-

ters; or developing systematic methods for tuning hyperparameters in the UoI-VAR

method. In addition, several other extensions are possible. In terms of methodology,

developing theory for the estimator and investigating the effect of bootstrap meth-

ods would add valuable information to the results presented here. Extension of the

method to other time series models would broaden the methodology. Finally, appli-

cations to a wider range of scientific data could produce valuable domain knowledge.

44

Chapter 3: Poisson generalized vector autoregression

3.1 Introduction

Chapter 2 developed a sparse estimation method for VAR processes, motivated by

applications involving estimation of (Granger) causal networks from continuous mul-

tivariate time series. In many application areas it is of interest to estimate networks

from multivariate count time series rather than from continuous data (Bracher and

Held, 2019; Brandt and Sandler, 2012; Pillow et al., 2008). The VAR process provides

possible description of such data only under transformations (e.g., log and square-root

or power transformations); one natural alternative is to fit generalized linear mod-

els with autoregressive-type predictors. This approach maintains the methodological

simplicity of using regression methods for model estimation and avoids the loss of

model interpretability associated with data transformations (Cox et al., 1981).

This chapter studies the underlying stochastic process implied by modeling mul-

tivariate count time series using a Poisson GLM with a log link function and a vector

autoregressive predictor for the conditional distributions of the component time se-

ries. The resulting process is approached through the lens of generalizing the Gaussian

VAR process: examining the conditional distributions of component univariate time

series given the process history and positing an analogous conditional mean structure

under different distributional assumptions. The Poisson log-linear case is referred to

45

here as a Poisson generalized vector autoregressive (GVAR) process. This view situ-

ates the resulting process in a much broader class of multivariate stochastic process

models.

Contributions. After framing the generalization and introducing the Poisson GVAR

process, the chapter presents a number of insights into its probabilistic behavior, fo-

cusing on conditions under which first and second moments exist. It is shown that

the use of a non-linear link function introduces a need for parametric constraints

to avoid unbounded means and variances, a possibility which is well-acknowledged

for univariate versions of the model (Davis and Liu, 2012; Fahrmeir and Tutz, 1994;

Zeger and Qaqish, 1988) but appears to have been largely overlooked for multivariate

extensions. As discussed in Chapter 1, one of the challenges in developing univariate

models is finding parametrizations that allow both positive and negative serial de-

pendence and specify stable processes under fairly general conditions. This chapter

proposes a graphical constraint under which the Poisson GVAR(1) vector process

is stable and allows positive and negative mutual serial dependence among vector

components. However, it is further shown that the existence of finite moments un-

der this constraint does not necessarily guarantee that moments are computationally

tractable, which suggests that the distinction between stability and instability is per-

haps less relevant than that between satisfying and failing specific bounds on process

moments (for an interesting general discussion of the distinction between finiteness

and computatibilty, see Knuth (1976)). A sufficient condition for attaining prespec-

ified moment bounds is derived. Finally, stability under relaxations of the graphical

46

constraint is considered. After developing these main results, the chapter turns briefly

to likelihood estimation and shows that there are parameter regimes that satisfy both

these theoretical and practical constraints that are nonetheless difficult to estimate

due to issues related to parameter identifiability.

In short, the chapter explores the probabilistic properties of Poisson GVAR pro-

cesses and identifies challenges in parametrization and estimation with a focus on

order-1 processes. Its main contributions are:

(i) generalization of Poisson log-linear autoregression to the multivariate setting

and identification of problematic parameter regimes;

(ii) derivation of a graphical constraint on Poisson GVAR(1) process parameters

that guarantees finite process moments or process ‘stability’;

(iii) derivation of conditions on parameter magnitudes that ensure bounded moments

of a specific magnitude for processes satisfying the graphical constraint;

(iv) identification of practical issues in likelihood estimation related to parameter

identifiability.

The chapter is organized as follows. Section 3.2 presents the generalization of

VAR processes and discusses the log-linear Poisson GVAR process as a special case:

the process definition and properties are given in Section 3.2.1; and the need for

parametric constraints is introduced in Section 3.2.2. Section 3.3 presents the main

results of the chapter on process stability: a sufficient stability condition is established

in Section 3.3.1; constraints on parameter magnitudes that ensure specified bounds

47

on process moments are developed in Section 3.3.2; and a discussion of conditions

under which parameters that do not satisfy the graphical constraint produce unstable

processes is given in Section 3.3.3. Lastly, Section 3.4 discusses challenges associated

with estimation: the maximum likelihood estimator is defined and computation is

discussed in Section 3.4.1; the concept of ‘pseudo-unidentifiability’ is introduced and

discussed in Section 3.4.2. Section 3.5 closes the chapter with a discussion of the main

findings, challenges, and further work.

3.2 Poisson generalized vector autoregressive processes

This section generalizes the vector autoregressive process (introduced in Chapter 2,

Section 2.2.1) to the exponential family and considers Poisson log-linear autoregres-

sion as a special case. The basic properties — conditional moments, likelihood and

parameter identifiability, independence conditions for subprocesses, and parameter

interpretation — of the Poisson case are discussed.

3.2.1 Process definition and properties

Poisson generalized vector autoregression. Generalized vector autoregressive

(GVAR) processes are a wide class of stochastic processes {Xt ∶ Ω → RM}t∈Z char-

acterized by conditionally independent marginal probability distributions of the vec-

tor components Xt,m given the process history. The class can be viewed as com-

prising generalizations of the V AR(D) process with uncorrelated Gaussian errors

48

εt ∼ N(0,Σ) (where Σ is diagonal):

Xt = ν +
D

∑
d=1
AdXt−d + εt , for all t ∈ Z

Conditional on the process history, one has that for every time point t:

(Xt ∣Xs = xs, s < t) = ν +
D

∑
d=1
Adxt−d + εt

It is immediate that the distribution of (Xt ∣Xs, s < t) is

(Xt ∣Xs = xs, s < t) ∼ N (ν +
D

∑
d=1
Adxt−d,Σ)

Since Σ is diagonal, the components Xt,m are conditionally independent:

(Xt,m ∣Xs = xs, s < t)
indep.
∼ N (νm +

D

∑
d=1
a′dmxt−d,Σmm) , m = 1, . . . ,M

The following definition generalizes this last conditional probability formulation.

Definition 3.1 (GVAR Process). Let p be a probability density with parameter θ.

{Xt}t∈Z is a GVAR process if for every t ∈ Z:

(Xt,m ∣Xs = xs, s < t)
indep.
∼ p (⋅ ; θt,m = θm(xt−1, xt−2, . . .)) , m = 1, . . . ,M

For any finite-time process, an initial distribution ν0 together with the process defi-

nition completely characterizes the probabilistic behavior of a GVAR process, since

49

the joint density of any realization {xt}Tt=0 of length T + 1 is then given by

P(X0 = x0, . . . ,XT = xT) = ν0(x0)
T

∏
t=1

M

∏
m=1

p(xt,m; θt,m)

Further conditions are required on θm(⋅) that depend on the density p to guarantee

that the class is well-defined for particular families of distributions. In particular,

θt,m must map from the support of p to the parameter space for every t and m.

Now, a GVAR process is a Poisson GVAR(D) process if p is the Poisson density

and θt,m is linear in D lags. To state this exactly, consider the Poisson(λ) density

defined on the nonnegative integers Z+ and parametrized in terms of the canonical

parameter θ = logλ:

p(x; θ) =
exp{xθ − eθ}

x!
, x ∈ Z+ , θ ∈ R (3.1)

The Poisson GVAR(D) process is defined as a GVAR(D) process with the density

above and θt,m = νm +∑
D
d=1 a

′
dmxt−d.

Definition 3.2 (Poisson GVAR(D) process). Let p be the Poisson density with

canonical parameter θ as in Equation (3.1). {Xt ∶ Ω→ RM}t∈Z is a Poisson GVAR(D)

process if for every t ∈ Z, one has that for m = 1, . . . ,M :

(Xt,m ∣Xs = xs, s < t)
indep.
∼ p(xt,m; θt,m = νm +

D

∑
d=1
a′dmxt−d) (3.2)

Poisson GVAR(D) processes are well-defined for any values of the parameters νm ∈ R

and a′dm ∈ RM , since for any z ∈ ZD+ , one has that θm(z1, . . . , zD) ∈ R for every

50

m = 1, . . . ,M .

Conditional mean and variance. By definition, the component random variables

Xt,m of a Poisson GVAR(D) process are conditionally Poisson with mean E(Xt,m∣Xs, s <

t) = exp{θt,m} and the components are conditionally independent. As a result, Pois-

son GVAR(D) processes admit a straightforward characterization of the conditional

moments of the vector process {Xt}t∈Z. Define the vector and matrix quantities:

θt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θt,1

⋮

θt,M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ν =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν1

⋮

νM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ad =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a′d1

⋮

a′dM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now it follows immediately that the conditional mean and variance are:

E (Xt∣Xs = xs, s < t) = exp{θt} = exp{ν +
D

∑
d=1
Adxt−1}

Since the components are conditionally independent, cov(Xt,i,Xt,j ∣Xs = xs, s < t) = 0.

As a result, the conditional variance of the process is simply a diagonalization of the

conditional mean: var (Xt∣Xs = xs, s < t) = diag (exp{θt}). Higher moments can be

obtained directly from the Poisson distribution.

Likelihood and identifiability. Denote a finite-length M -dimensional Poisson

GVAR(D) process by X = (X0 ⋯ XT) ∈ ZM×(T+1)
+ , and a process observation by

51

x = (x0 ⋯ xT). The joint density of X is:

P(X = x) ∝ exp{
T

∑
t=1

M

∑
m=1

xt,m (νm +
D

∑
d=1
a′dmxt−d) −

T

∑
t=1

M

∑
m=1

exp{νm +
D

∑
d=1
a′dmxt−d}}

Now denote the concatenation of process parameters by B = (ν A1 ⋯ AD). Then the

log-likelihood function is:

`(B;x) =
T

∑
t=1

M

∑
m=1

xt,m (νm +
D

∑
d=1
a′dmxt−d) −

T

∑
t=1

M

∑
m=1

exp{νm +
D

∑
d=1
a′dmxt−d} +C (3.3)

The parameters are identifiable just in case any distinct parameters B ≠ B∗ induce

different probability distributions, so that PB(X = x) ≠ PB∗(X = x) for some x and

some T .

Proposition 3.3 (Identifiability). Let {Xt ∈ ZM+ }Tt=0 be a Poisson GVAR(D) process

with parameter B = (ν A1 ⋯ AD)′. Then B is identifiable for any T >D.

Proof. Let X = (X0 ⋯XT) ∈ ZM×(T+1)
+ denote the process {Xt ∈ ZM+ }Tt=0. It suffices to

show that PB(X = x) ≠ PB∗(X = x).

Consider the first T time points. Either

PB (X0 = x0, . . . ,XT−1 = xT−1) = PB∗ (X0 = x0, . . . ,XT−1 = xT−1)

for every realization (x0 ⋯ xT−1) or not. If not, then B and B∗ induce different

distributions, so B is identifiable. Suppose, then, that the equality holds, so that B

and B∗ induce the same distribution on the first T time points.

52

Let (x0 ⋯ xT−1) be an arbitrary realization of the first T time points. One has

that in general

P (X = x) = P (Xs = xs, s < T)P (XT = xT ∣Xs = xs, s < T)

It follows that PB(X = x) = PB∗(X = x) just in case

PB (XT = xT ∣Xs = xs, s < T) = PB∗ (XT = xT ∣Xs = xs, s < T)

Since the realization up to time T − 1 is arbitrary by hypothesis, the distributions of

X induced by B and B∗ are the same just in case the conditional distributions of

(XT ∣Xs = xs, s < T) are equal under B and B∗ for every history {xs ∈ ZM+ }T−1s=0 .

Now note that by the process definition,

PB (XT = xT ∣Xs = xs, s < T) =
M

∏
m=1

Pbm (XT,m = xT,m∣Xs = xs, s < T)

where (XT,m = xT,m∣Xs = xs, s < T) are independent Poisson random variables and bm

denote rows of B. With z′T = (1 x′T−1 ⋯ x′T−D), the Poisson rates for the conditional

distributions are

λT,m = exp{b′mzT}

so that the vector of Poisson rates is λT = exp{BzT}. The rate vectors λT and λ∗T

corresponding to B and B∗ are equal just in case BzT = B∗zT for some zT . Let m

be the index of any row bm of B for which bm ≠ b∗m, and let j be any index such

53

that bmj ≠ b∗mj. If zT is equal to a basis vector ej with a 1 in the jth position, then

b′mzT ≠ (b∗m)′zT . Consequently, BzT ≠ B∗zT and λT ≠ λ∗T .

Therefore, for any B ≠ B∗, one has that λT ≠ λ∗T for at least one (x0 ⋯ xT−1). But

then one has that

PB (XT = xT ∣Xs = xs, s < T) ≠ PB∗ (XT = xT ∣Xs = xs, s < T)

for at least one xT .1 So the conditional distributions of (XT ∣Xs = xs, s < T) differ

under B and B∗, which entails that PB(X = x) ≠ PB∗(X = x) for at least one x,

completing the proof.

Independent subprocesses. From the likelihood function, it can be shown that

the independence of partitions of (finite-length) Poisson GVAR(D) processes reduces

to a simple condition on the matrices A1, . . . ,AD. Define a partition of the process

as follows:

XA
t = (Xt,m ∶m ∈ A) , A ⊂ {1, . . . ,M}

XB
t = (Xt,m ∶m ∈ B) , B ⊂ {1, . . . ,M}

A ∪B = {1, . . . ,M} and A ∩B = ∅

1To see this, let m be any index for which λTm ≠ λ∗Tm, and let xT = cem, where em is a basis
vector with a 1 in the mth position and zeroes elsewhere, and where c ∈ Z+. Then the ratio of the
conditional distributions under B and B∗ given zT as above is

PB (XT = xT ∣XT−D = xT−D, . . . ,XT−1 = xT−1)
PB∗ (XT = xT ∣XT−D = xT−D, . . . ,XT−1 = xT−1)

=
⎛

⎝
exp

⎧⎪⎪
⎨
⎪⎪⎩

− ∑
j≠m
(λTj − λ

∗
Tj)

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠
(
λTm
λ∗Tm

)

c

which is of the form axc where a ≠ 0 and x ≠ 1. This cannot be equal to 1 for every c ∈ Z+.

54

The subprocesses XA
t and XB

t are independent just in case:

P(X0 = x0, . . . ,XT = xt) = P(XA
0 = xA0 , . . . ,X

A
T = xAt)P(XB

0 = xB0 , . . . ,X
B
T = xBt)

In other words, the joint density must factor into a function of only the components

xt,m for m ∈ A and a function of only the components xt,m for m ∈ B. Equivalently,

the log-likelihood function (Equation (3.3)) must be a sum of such functions. With

xA = (xA0 ⋯ xAT) and xB = (xB0 ⋯ xBT) denoting the portions of an arbitrary process

observation that correspond to the partitioning, the latter condition is that:

XA
t ⊥X

B
t ⇐⇒ `(ν,A1, . . . ,AD;x) = g(xA) + h(xB) for some functions h, g

Assume for the sake of argument and without loss of generality that the partition

divides the first K components from the subsequent M −K components. In other

words, assume that the component indices m are arranged so that A = {1, . . . ,K}

and B = {K + 1, . . . ,M}, yielding Xt = (XA
t X

B
t). Then, splitting the sum over m in

the likelihood in correspondence to the partitioning yields:

`(ν,A1, . . . ,AD;x) =
K

∑
m=1

T

∑
t=1

(xt,m (νm +
D

∑
d=1
a′dmxt−d) − exp{νm +

D

∑
d=1
a′dmxt−d})

+
M

∑
m=K+1

T

∑
t=1

(xt,m (νm +
D

∑
d=1
a′dmxt−d) − exp{νm +

D

∑
d=1
a′dmxt−d}) +C

Since this is the only possible representation of the log-likelihood that separates the

xt,m terms in correspondence with the partitioning given by A and B, the indepen-

55

dence condition can only be satisfied if the first summation includes no terms in xB

and the second summation includes no terms in xA.

The first summation (fromm = 1 toK) is a function of only the firstK components

(those in A) just in case the term ∑
D
d=1 a

′
dmxt−d does not depend on xt,j for any j >K

and any t. Likewise, the second summation is a function of only the last M − K

components just in case the same term does not depend on xt,j for any j ≤ K and

any t. This is true just in case adij = 0 and adji = 0 for every d whenever i ≤ K and

j >K. Therefore:

XA
t ⊥X

B
t ⇐⇒ adij = adji = 0 for every i ∈ A, j ∈ B, d = 1, . . . ,D

Another way of stating this condition is that the matrices A1, . . . ,AD must be

block-diagonal. Let Ad11 ∈ RK×K , Ad12 ∈ RK×(M−K), Ad21 ∈ R(M−K)×K , and Ad22 ∈

R(M−K)×(M−K) denote partitions of Ad so that:

Ad =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ad11 Ad12

Ad21 Ad22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then, the independence condition for subprocesses XA
t and XB

t can be restated as:

XA
t ⊥X

B
t ⇐⇒ Ad12 = 0 and Ad21 = 0 for every d = 1, . . . ,D

This extends directly to arbitrarily many partitions by recursively applying the con-

56

dition.2 As a result, collections of independent subprocesses can be identified from

direct examination of the matrices A1, . . . ,AD: if any permutation of the indices yields

n block-diagonal matrices, then the process contains n independent subprocesses.

Parameter interpretation and graphical representation. The Poisson distri-

bution is often construed as a probability model for event counts, in which case the

parameter is thought of as an event rate. Under this interpretation, the parameters

νm give baseline event rates for each component. That is, if the process remains at

the origin for D or more time steps, each of the m component has a corresponding

mean exp{νm}.

By contrast, the elements of A1, . . . ,AD represent mutual influences between the

components’ event rates. Each event at time t in the kth component is associated

with a change in the mth component’s event rate for the later time step t + d of a

factor of exp(admk), after accounting for other such associations. The sign of the

entries indicates the direction of influence. If admk < 0, then the relationship between

components m and k is inhibitory: the occurrence of events in the kth component

reduces the event rate for the mth component over d time steps. If on the other hand

admk > 0, then the relationship between components m and k is excitory: the occur-

rence of events in the kth component increases the event rate for the mth component

over d time steps.

It will be convenient in later sections to consider graphical representations of these

relationships. It is straightforward to define directed graphs G1, . . . ,GD on the set of

2For example, say one has XA
t ⊥ X

B
t . If there exists a partition XC

t and XD
t of XA

t satisfying
the independence condition, then one has XB

t ⊥X
C
t ⊥X

D
t .

57

vertices V = {1, . . . ,M} based on the sparsity patterns of A1, . . . ,AD and their entries:

Gd = (V,Ed) , Ed = {(i, j) ∶ adji ≠ 0} , d = 1, . . . ,D (3.4)

Additionally, weights can be assigned to each edge in Ed based on the corresponding

entries adji. For example, it can be useful to represent the sign of the entry so that

the graph indicates whether the influences displayed are excitory or inhibitory.

3.2.2 Process stability

Although the class of Poisson GVAR(D) processes is well-defined, not all processes in

the class are well-behaved. Consider, for example, the univariate case (M = 1) with

D = 1:

(Xt ∣Xt−1 = xt−1) ∼ p(xt; exp{αxt−1 + ν})

Since the exponential function is convex, it follows by the law of total expectation

and Jensen’s inequality that:

EXt = E (E (Xt∣Xt−1)) = E (exp{αXt−1 + ν}) ≥ exp{αEXt−1 + ν}

Recursive application of Equation (3.2.2) gives that:

EXt ≥ exp{αEXt−1 + ν} ≥ exp{α exp{αEXt−2 + ν} + ν} ≥ ⋯

58

Therefore, for any k, one has:

EXt ≥ exp{ν + α exp{ν + α exp{⋯ exp{ν + αEXt−k}}}}

Since Xt is nonnegative, if α > exp{−(ν + 1)} then the mean sequence {EXt}t∈Z is

monotonic and diverges rapidly.3 On the other hand, if α ≤ 0 then for all t ∈ Z:

EXt = E (E (Xt∣Xt−1)) = E (exp{aXt−1 + ν}) ≤ E exp{ν} ≤ exp{ν}

Therefore, depending on the value of α, the process means may or may not be finite.

In consideration of the above, it is useful to introduce a distinction between pro-

cesses with finite moments up to a certain order and all other processes within the

class. To that end, define ‘first-order stability’ and ‘second-order stability’ as follows.

Definition 3.4 (Stability). A process {Xt}t∈Z is first-order stable if suptEXt,m < ∞

for every m = 1, . . . ,M and second-order stable if suptEX2
t,m < ∞ for every m =

1, . . . ,M .

Stability in higher-order moments can be defined similarly. For the present purposes,

it is said that a process is stable if it is first-order and second-order stable. The above

discussion establishes the following lemma.

Lemma 3.5. Let {Xt}t∈Z be a Poisson autoregressive process with parameter α (that

is, GVAR(D) with D = 1 and M = 1 and A = α). {Xt} is stable whenever α ≤ 0 and

unstable whenever α > exp{−(ν + 1)}.

3Further discussion on this condition is given in Section 3.3.3.

59

As the lemma pertaining to the univariate case suggests, the values of ν,A1, . . . ,AD

jointly determine whether a Poisson GVAR(D) process is first-order or second-order

stable. The subject of the following section is establishing certain (sufficient) condi-

tions under which order D = 1 processes satisfy these stability properties.

3.3 Stability conditions for Poisson GVAR(1) processes

The specification of stable classes of processes is in general only of interest when the

parameters A1, . . . ,AD contain positive-signed entries: that is, when adij > 0 for some

d, i, j. This is due to the following result.

Lemma 3.6. Any Poisson GVAR(D) process with adij ≤ 0 for every d, i, j is stable.

Proof. If all parameters adij are negative, then each of the components Xt,1, . . . ,Xt,M

are stochastically dominated by Poisson random variables with rates exp{νm} and

therefore have finite moments. The Poisson distribution is stochastically ordered by

rate, and the conditional distributions of (Xt,m∣Xs = xs, s < t) are Poisson with rates

eθt,m . If adij ≤ 0, then for any xt−1, . . . , xt−D and every m = 1, . . . ,M :

exp{θt,m} = exp{νm +
D

∑
d=1
a′mxt−d} ≤ exp{νm}

As a result, if Ym ∼ p(y;νm), then for every x and xs, s < t:

P (Xt,m > x∣Xs = xs, s < t) ≤ P (Ym > x∣Xs = xs, s < t)

60

Taking expectations with respect to Xs yields that Ym stochastically dominates Xt,m

for every t ∈ Z:

P (Xt,m > x) ≤ P (Ym > x)

A consequence of this ordering is that the moments of Xt,m are dominated by the

moments of Ym. Since the first two moments of Ym are finite, so are those of Xt,m.

In view of the above, this section discusses the stability of processes with positive-

signed parameters in the context of order D = 1 processes. First, a stable class of

processes is identified in Section 3.3.1 via a graphical constraint. Next, criteria for the

parameter magnitudes that ensure practical bounds on process moments are devel-

oped in Section 3.3.2. Finally, Section 3.3.3 identifies a class of graphical structures

that correspond to unstable processes, and indicates parameter regimes with unknown

stability properties.

3.3.1 Stability of graphically constrained processes

The following establishes the stability of any Poisson GVAR(1) process that satisfies

a constraint on the positive-signed entries of the parameter matrix A. The constraint

is expressed in terms of graphical structure for ease of interpretation, rather than as

a purely technical constraint on A. The result is given immediately below, followed

by a proof.

Proposition 3.7. Let {Xt}t∈Z be an M-dimensional Poisson GVAR(1) process with

parameters ν and A, and let G denote the graph of A as defined in Equation (3.4), with

61

edge weights indicating the sign of the corresponding entry in A. If G is partitioned

into positive-signed and negative-signed edges, then {Xt}t∈Z is first-order and second-

order stable whenever the positive-signed partition of G has no paths exceeding length

1.

Proof. Consider the partition of A into positive and negative portions:

A = A+ +A− , a+ij = aij1{aij > 0} , a−ij = aij1{aij < 0}

Let G+,G− denote the corresponding partition of the graph G into a positive-signed

portion G+ generated by A+ and a negative-signed portion G− generated by A−.

Assume that the maximum path length in G+ is 1, so that ∥a+j ∥0 = 0 whenever a+mj > 0

(note that this entails amm ≤ 0 for every m).

Each component Xt,m has either ∥a+m∥0 = 0 or ∥a+m∥0 > 0. If ∥a+m∥0 = 0, then the

component has an in-degree of zero in G+ and in fact a+m = 0. In this case the same

62

argument pertaining to negative entries applies:

EXt,m = E (exp{a′mXt−1 + νm})

≤ E (exp{a+
′
mXt−1 + νm})

= E (exp{νm})

= exp{νm}

EX2
t,m = E (exp{a′mXt−1 + νm}) (exp{a′mXt−1 + νm} + 1)

≤ E (exp{a+
′
mXt−1 + νm}) (exp{a+

′
mXt−1 + νm} + 1)

= E (exp{νm} (exp{νm} + 1))

= exp{νm} (exp{νm} + 1)

So if ∥a+m∥0 = 0, then Xt,m has finite first and second moments.

Consider, then, the components Xt,m with ∥a+m∥0 > 0. These components have

positive in-degree in G+ and are the terminal points of each path in G+. Denoting

the set of indices of components that influence Xt,m by Im = {i ∶ a+mi > 0}, so that

63

a+
′
mx = ∑i∈Im amixi. Now, one has that:

EXt,m = E (exp{a′mXt−1 + νm})

≤ E (exp{a+
′
mXt−1 + νm})

= exp{νm}E(exp{∑
i∈Im

amiXt−1,i})

= exp{νm}E(E(exp{∑
i∈Im

amiXt−1,i} ∣Xt−2))

= exp{νm}E(∏
i∈Im

E (exp{amiXt−1,i} ∣Xt−2))

By hypothesis, ∥a+i ∥0 = 0 for every i ∈ Im, so each Xt−1,i is stochastically dominated

by a Poisson random variable with rate eνi . Consequently, letting Yi ∼ p(y; exp{νi}),

the innermost expectation can be calculated explicitly using the moment generating

function MYi(t):

E (exp{amiXt−1,i} ∣Xt−2) ≤ E (exp{amiYi}) =MYi (ami) = exp{eνi(eami − 1)}

The inequality follows by the stochastic ordering.4 As a result:

EXt,m ≤ exp{νm}E(∏
i∈Im

exp{eνi(eami − 1)}) = exp{νm + ∑
i∈Im

eνi(eami − 1)}

4If X is stochastically dominated by Y , then for any function φ monotonically increasing on the
support of X and Y , one has that Eφ(X) ≤ Eφ(Y). The function f(x) = exp{ax} is monotonically
increasing for a > 0.

64

By a similar calculation:

EX2
t,m = E (exp{a′mXt−1 + νm}) (exp{a′mXt−1 + νm} + 1)

≤ E (exp{a+
′
mXt−1 + νm}) (exp{a+

′
mXt−1 + νm} + 1)

= E(exp{∑
i∈Im

2amiXt−1,i + 2νm}) +E(exp{∑
i∈Im

amiXt−1,i + νm})

= E(E(exp{∑
i∈Im

2amiXt−1,i + 2νm} ∣Xt−2)) +E(E(exp{∑
i∈Im

amiXt−1,i + νm} ∣Xt−2))

= E(∏
i∈Im

E (exp{2amiXt−1,i + 2νm} ∣Xt−2)) +E(∏
i∈Im

E (exp{amiXt−1,i + νm} ∣Xt−2))

≤ E(exp{2νm + ∑
i∈Im

eνi(e2ami − 1)}) +E(exp{νm + ∑
i∈Im

eνi(eami − 1)})

= exp{2νm + ∑
i∈Im

eνi(e2ami − 1)} + exp{νm + ∑
i∈Im

eνi(eami − 1)}

Together, the above inequalities establish that the process is first-order and second-

order stable for any values of the parameters A,ν. Since the calculations hold for every

t ∈ Z, it follows that:

sup
t

EXt,m ≤ exp{νm +
M

∑
j=1
eνj(ea

+
mj − 1)}

sup
t

EX2
t,m ≤ exp{2νm +

M

∑
j=1
eνj(e2a

+
mj − 1)} + exp{νm +

M

∑
j=1
eνj(ea

+
mj − 1)}

Note that this includes the case where ∥a+m∥0 = 0, since then (e2a
+
mj − 1) = 0 for every

j. Therefore, any process for which G+ has a maximum path length of 1 is stable.

65

3.3.2 Moment bounds for graphically-constrained processes

Inspection of the bounds used to establish the stability of graphically-constrained

Poisson GVAR(1) processes in Section 3.3.1 should suffice to convince that although

the process moments can be bounded by finite functions of the parameters, the bounds

can be quite large. This motivates distinguishing between theoretically stable pro-

cesses — processes having finite first and second moments — and practically stable

processes in which the moments are not only finite but bounded by a specific constant.

Example. In the arguments of the previous section, the inequalities account for

the possibility that A ≠ A+; however, if A = A+, then the same calculations hold

with equality. The calculations produce functions of the parameters of the form

∑j e
νj(ea

+
mj −1) and ∑j e

νj(e2a
+
mj −1). For compactness, denote these functions by the

notation ξm, ψm:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ1

⋮

ξM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
M
j=1 e

νj(ea
+
1j − 1)

⋮

∑
M
j=1 e

νj(ea
+
Mj − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ1

⋮

ψM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
M
j=1 e

νj(e2a
+
1j − 1)

⋮

∑
M
j=1 e

νj(e2a
+
Mj − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now, if A = A+, then one has that for every t ∈ Z:

EXt,m = exp{νm + ξm}

EX2
t,m = exp{νm + ξm} + exp{2νm + ψm}

66

In this case, the process is in fact stationary, and moreover, the largest moments are:

sup
m

EXt,m = max{exp{νm + ξm}}

sup
m

EX2
t,m = max{exp{νm + ξm} + exp{2νm + ψm}}

These suprema can be very large for parameter magnitudes of seemingly innocuous

magnitudes. For instance, if A contains a single nonzero entry a21 and ν contains a

single nonzero entry ν2, varying the two nonzero parameters in combinations of seem-

ingly small values between -0.5 and 1.5 can produce a process with means ranging

from 2.8 to 311 and variances ranging from 42 to 4.632 ×1013. Several such com-

binations are shown in Table 3.1. This example indicates that without any further

ν2 a21 supmEXt,m supm VarXt,m

-0.5 1 2.835 42.986
-0.5 1.5 8.263 1.064 ×105

0 1 5.575 569.789
0 1.5 32.515 1.944 ×108

0.5 1 16.996 3.729 ×104

0.5 1.5 311.169 4.632 ×1013

Table 3.1: Means and variances of a stable and stationary process with a single
nonzero parameter a21 and a single nonzero intercept ν2.

constraints on parameter magnitudes, there are regions in the parameter space where

the process moments become so large that it is of little practical importance whether

they are finite (Knuth, 1976). The result below develops a heuristic for identifying

constraint regions within which process moments are bounded by a specific constant.

Moment bounds. The moment bounds above can be equated with a constant C

67

to define a constraint on the parameter space that ensures the process moments are

bounded by C. However, this strategy produces a somewhat complex constraint re-

gion that is a function of all positive parameters in A and ν. By loosening the bounds,

a simpler constraint can be obtained in terms of maximum parameter magnitudes that

accomplishes the same objective.

Proposition 3.8. Let {Xt}t∈Z be a Poisson GVAR(1) process with parameters A,ν.

Let A+ denote the positive-signed portion of A and G+ denote the graph generated by

A+. Denote the maximum in-degree of G+ and the maximum parameter magnitudes

by:

d∗ = max
m

{∥a+m∥0} , α∗ = max
i,j

{a+ij} , ν∗ = max
m

{νm}

Then it follows that for any C:

α∗ ≤ log(
logC − ν∗

d∗ exp{ν∗}
+ 1) Ô⇒ sup

t,m
EXt,m ≤ C

α∗ ≤
1

2
log(

logC − log 2 − ν∗ − ν∗1{ν∗ > 0}

d∗ exp{ν∗}
+ 1) Ô⇒ sup

t,m
EX2

t,m ≤ C

68

Proof. Following the proof of Proposition 3.7, for every t,m, one has:

EXt,m ≤ exp{νm +
M

∑
j=1
eνj(ea

+
mj − 1)}

≤ exp{ν∗ + d∗eν
∗
(eα

∗
− 1)}

EX2
t,m ≤ exp{2νm +

M

∑
j=1
eνj(e2a

+
mj − 1)} + exp{νm +

M

∑
j=1
eνj(ea

+
mj − 1)}

≤ exp{2ν∗ + d∗eν
∗
(e2α

∗
− 1)} + exp{ν∗ + d∗eν

∗
(eα

∗
− 1)}

Equating the right-hand side of each bound with C completes the proof.

These constraint regions are plotted in Figure 3.1 for C = 106 and maximum in-

degrees between 1 and 6. The figure indicates the decrease in the maximum entry

in A required to accommodate increasing maxima of ν in order to maintain a fixed

bound on first and second moments. The changes in α∗ are approximately linear in

ν∗ when ν∗ < 0, and exponential when ν∗ > 0.

3.3.3 Other graphical structures

A notable feature of the graphical constraint above is that it establishes stability

based only on the positive-signed structure G+. More generally, it can be shown that

a Poisson GVAR(1) process is stable if the structure G+ alone characterizes a stable

process.

Proposition 3.9. Let {Xt}t∈Z be a Poisson GVAR(1) process with parameters ν,A,

and let {X+
t }t∈Z be a Poisson GVAR(1) process with parameters ν,A+, where a+ij =

69

Figure 3.1: Contours indicating the maximum magnitude of entries in A (α∗ =

maxi,j aij) as a function of the maximum intercept term (ν∗ = maxm νm) for which
a Poisson GVAR(1) process with parameters ν,A has a first moment bounded by
C = 106 (left) and a second moment bounded by C = 106 (right), under the graphical
constraint on path length and for various maximum in-degrees.

aij1{aij ≥ 0}. Then if {X+
t } is stable, so is {Xt}.

Proof. It suffices to establish the stochastic ordering Xt,m ≤st X+
t,m. Two random

variables X and Y are stochastically ordered as X ≤st Y just in case P (X ≤ x) ≥

P (Y ≤ x) for every x. A useful property of stochastically ordered random variables

is that for any function f that is monotonically increasing on the support of X and

Y , X ≤st Y implies f(X) ≤st (Y) and Ef(X) ≤ Ef(Y). Therefore, since Xt and X+
t

are nonnegative random vectors, if Xt,m ≤st X+
t,m then EXq

t,m ≤ E(X+
t,m)q for every q,

so the stability of X+
t ensures the stability of Xt.

For ease of notation, let Xt ≤st X+
t indicate that Xt,m ≤st X+

t,m elementwise for

each m = 1, . . . ,M . The strategy will be to consider a common starting point t = 0,

establish X1 ≤st X+
1 , and then show that if Xt−1 ≤st X+

t−1 then Xt ≤st X+
t , establishing

the ordering by induction. Let λt = exp{ν+AXt−1} and λ+t = exp{ν+A+X+
t−1} indicate

70

the conditional rates of Xt and X+
t given their respective histories.

First let X0 = X+
0 = 0. Then λ1 = λ+1 = exp{ν}, so X1

d
= X+

1 and it follows trivially

that X1 ≤st X+
1 .

Next suppose that for an arbitrary t, Xt−1 ≤st X+
t−1. Since elementwise exp{ν +

A+x} is a monotonically increasing function of x on [0,∞)M , and exp{ν +Ax} ≤

exp{ν +A+x} elementwise, it follows that:

λt = exp{ν +AXt−1} ≤st exp{ν +A+X+
t−1} = λ

+
t

Now let Gt,m(λ) = P (λt,m ≤ λ) and similarly G+
t,m(λ) = P (λ+t,m ≤ λ). If f(x;λ) denotes

the Poisson density, then following results discussed in Karlis and Xekalaki (2005) one

has:

P (Xt,m ≤ x) = ∫
∞

0
f(x;λ)Gt,m(λ)dλ

P (X+
t,m ≤ x) = ∫

∞

0
f(x;λ)G+

t,m(λ)dλ

Since λt ≤st λ+t , Gt,m(λ) −G+
t,m(λ) ≥ 0 for each m, so it follows that

P (Xt,m ≤ x) − P (X+
t,m ≤ x) = ∫

∞

0
F (x;λ) (Gt,m(λ) −G+

t,m(λ))dλ ≥ 0

Therefore P (Xt,m ≤ x) ≥ P (X+
t,m ≤ x) for every m, i.e., Xt ≤st X+

t , concluding the

proof.

In view of the above, a key question is whether and under what conditions longer

71

paths in G+ characterize stable processes. Loops can be examined as a limiting case,

and are in fact unstable for relatively large regimes of the parameter space, as the

following result shows.

Proposition 3.10. Let {Xt}t∈Z be an M-dimensional Poisson GVAR(1) process with

parameters ν and A, and let G denote the graph of A as defined in Equation (3.4),

with edge weights indicating the sign and magnitude of the corresponding entry in

A. If the positive-signed portion of G contains a loop, and no component in the loop

is the terminus of any edge in the negative-signed portion of G, then {Xt}t∈Z is not

stable whenever the minimum edge weight α∗ and intercept parameter ν∗ in the loop

satisfy ν∗ > − logα∗ − 1.

Proof. Let A+,A−,G+, and G− be defined as in Section 3.3.1. Suppose G+ contains

a loop of length L ≤ M , and assume without loss of generality that the indices m

are ordered so that the loop connects components 1, . . . , L in order. That is, assume

{a21, a32, . . . , aL(L−1), a1L} ⊆ {aij ∶ aij ≠ 0}. Finally, assume that ∥a−m∥0 = 0 for every

m ≤ L, so that no components involved in the loop are terminal points for any path

in G−.

Denote a(l+1)l by αl for l = 1, . . . , L − 1, and denote a1L by αL. The αl terms

parametrize the edge weights in the loop. For example, if no other nonzero entries

are present and {aij ∶ aij ≠ 0} = {a21, a32, . . . , aL(L−1), a1L}, then the upper L×L block

72

of the parameter matrix is:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 α1 0 ⋯ 0 ⋯

0 0 α2 ⋯ 0 ⋯

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ αL−1 ⋯

αL 0 0 ⋯ 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The conditions of the proof allow that other entries in this block are nonnegative, but

not less than zero.

Now, by nonnegativity of Xt and am and Jensen’s inequality, one has that for

every m = 2, . . . , L and any t ∈ Z:

EXt,m = E (E(Xt,m∣Xt−1))

= E exp{a′mXt−1 + νm}

≥ E exp{αmXt−1,m−1 + νm}

≥ exp{αmEXt−1,m−1 + νm}

By the same argument, for m = 1 one has:

EXt,1 ≥ exp{α1EXt−1,L + ν1}

73

Then, it follows that:

EXt,L ≥ exp{νL + αLEXt−1,L−1}

≥ exp{νL + αL exp{νL−1 + αL−1EXt−2,L−2}}

⋮

≥ exp{νL + αL exp{⋯ exp{ν1 + α1EXt−L,L}⋯}}

Now, replacing each αl and νl by the minima α∗ = minl{αl} and ν∗ = minm≤L{νm},

one has:

EXt,L ≥ exp{ν∗ + α∗ exp{⋯ exp{ν∗ + α∗EXt−L,L}⋯}}

More generally, this inequality holds if L is replaced by any m = 1, . . . , L.

Now consider for a fixed t and anym ≤ L the sequence of expectations {EXt+kL,m}∞k=0.

The above inequality establishes that this sequence is bounded below by the recursive

sequence {skL}∞k=0 defined by:

s0 = EXt,m

sn+1 = exp{ν∗ + α∗sn}

In general, if limn→∞ sn < ∞, then the limit must be a fixed point of the sequence,

i.e., a point s satisfying s = exp{ν∗ +α∗s}. It is straightforward to show that no such

point exists whenever ν∗ > − logα∗ − 1.5 Furthermore, in this case the sequence is

5The function used to define the recursion is f(x) = exp{ν∗+α∗x}. Limits can exist for sequences
defined by recursive exponentiation under a variety of interesting conditions (Bromer, 1987; Wassell,
2000). In this particular case, it can be shown by a calculus argument that f(x) > x whenever ν∗ is

74

monotonic. Therefore, if ν∗ > − logα∗ − 1 then {sn} diverges, from which it follows

that for every t and any m ≤ L:

ν∗ > − logα∗ − 1 Ô⇒ EXt+kL,m →∞ as k →∞

Consequently, the process is not first-order stable.

Note that these results leave open the possibility that structure in G− can mitigate

instability in G+.

3.4 Estimation

This section provides a brief overview of unconstrained likelihood estimation for Pois-

son GVAR(D) processes, deferring to Appendix A for computational details, and

develops a characterization of parameter regimes where estimation is difficult. Sec-

tion 3.4.1 presents the likelihood estimation technique and computations, and Section

3.4.2 defines pseudo-unidentifiability and characterizes circumstances where pseudo-

unidentifiable parameters pose estimation challenges.

sufficiently large relative to α∗, in which case no points satisfy f(x) = x.
Let g(x) = f(x) − x, and consider finding the minimum of g by differentiation:

g′(x) = α∗ exp{ν∗ + α∗x} − 1 = 0 ⇐⇒ x =
− logα∗ − ν∗

α∗

Since f is convex, so is g, so this is a minimum. At the minimum, the difference is:

min
x∈R

g(x) = g (
− logα∗ − ν∗

α∗
) =

logα∗ + 1 + ν∗

α∗

Therefore, whenever ν∗ > − logα∗ − 1, g(x) > 0 for every x, and in this case, f(x) > x.

75

3.4.1 Likelihood estimation

Poisson GVAR(D) models can be estimated efficiently by maximum likelihood using

the classical technique for generalized linear models. The log-likelihood of a process

observation x = (x0 ⋯ xT) ∈ RM×(T+1) given parameters B = (ν A1 ⋯ AD)′, restated

from Section 3.2.1, is:

`(B;x) =
T

∑
t=1

M

∑
m=1

(xt,m (νm +
D

∑
d=1
a′dmxt−d) − exp{νm +

D

∑
d=1
a′dmxt−d}) +C

The maximum likelihood estimator is defined as:

B̂ = argminB {−`(B;x)}

Computation by IRLS. Exchanging the order of summation in the log-likelihood

yields a partitioning according to component. That is, if bm = (νm a′1m ⋯ a′Dm)

denotes the mth column of B, the log-likelihood can be written in the form `(B;x) =

∑
M
m=1 `m(bm;x) where the mth likelihood summand `m is:

`m(bm;x) =
T

∑
T=1

(xt,m (νm +
D

∑
d=1
a′dmxt−d) − exp{νm +

D

∑
d=1
a′dmxt−d})

The full likelihood ` is maximized in B exactly when each partition `m is maximized

in bm. In other words, the MLE B̂ is equivalent to the concatenation of the MLEs

b̂m, defined as:

b̂m = argminbm {−`m(bm;x)}

76

Each b̂m can be computed by iteratively reweighted least squares (IRLS), which is a

standard and efficient algorithm for computing MLEs for genreralized linear models.

To see this, it suffices to express the estimation problem as a generalized linear model.

Define the mth pseudo-response ym and correpsonding pseudo-covariates Zm as:

ym =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xT,m

xT−1,m

⋮

xD,m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Zm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 xT−1,1 ⋯ xT−1,M ⋯ xT−D,1 ⋯ xT−D,M

1 xT−2,1 ⋯ xT−2,M ⋯ xT−D−1,1 ⋯ xT−D−1,M

⋮ ⋮ ⋮ ⋮ ⋮

1 xD−1,1 ⋯ xD−1,M ⋯ x0,1 ⋯ x0,M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now let the mth parameter vector βm be simply bm:

βm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

νm

a1m1

⋮

a1mM

⋮

aDm1

⋮

aDmM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Define the model:

ymj
indep.
∼ Poisson(λmj) where logλmj = z

′
mjβm , j = 1, . . . , T −D

77

This is a Poisson GLM with a log link function. By simply exchanging notations it

follows that:

`(βm; ym, Zm) =
T−D
∑
j=1

(ymj(z
′
mjβm) − exp{z′mjβm}) = `(b′m;x)

Consequently, B̂ can be obtained by computing each column b̂m separately via IRLS,

i.e., regressing ym on Zm. Details on the IRLS algorithm are provided in Appendix

A.

3.4.2 Pseudo-unidentifiability

The parameters of any Poisson GVAR(D) process are identifiable, as shown in Sec-

tion 3.2.1. However, there are circumstances under which the likelihood varies either

minimally or not at all with the parameters. Under either of these two circumstances,

parameters are difficult to estimate. This potential problem is not exactly an identi-

fiability issue, but it is similar in nature. The parameters are identifiabile if B ≠ B∗

implies that `(B;x) ≠ `(B∗;x) for some x. One problem that arises for certain pa-

rameter regimes of Poisson GVAR processes is that for some x that occur with at

least moderate probability, `(B;x) = `(B∗;x) but B ≠ B∗. This issue is referred to

as ‘pseudo-unidentifiability’.

Consider the possibility that for some x, the log-likelihood ` is not a one-to-one

function of B:

`(B;x) = `(B∗;x) and B ≠ B∗

78

In this case, B is ‘pseudo-unidentifiable’ from x in the sense that it cannot be distin-

guished from B∗ via the likelihood.

The notion requires some refinement. Pseudo-unidentifiability obviously occurs

whenever x = 0, since then `(B; 0) = −T ∑m exp{νm} is a function only of ν and not

A1, . . . ,AD. However, for many finite-length processes X = (X0 ⋯ XT), P (X = 0) is

negligibly small. Moreover, from a practical perspective one would not attempt esti-

mation if x = 0, since a process model is frivolous for data with zero variance. On the

other hand, process parameters can be such that particular components are unlikely

to vary much or at all; for example, when some bm are dominated by large negative

parameters. Thus, pseudo-unidentifiability is a more realistic problem componentwise

and for specific parameter regimes, rather than for the process as a whole.

By way of refinement, consider instead the possibility that the mth log-likelihood

summand `m is not a one-to-one function of bm, so that bm is pseudo-unidentifiable

from x if:

`m(bm;x) = `(b∗m;x) and bm ≠ b∗m

Now, this property holds on a subset Θ of the parameter space R1+DM if it holds

for every bm, b∗m ∈ Θ. Further, `m(bm;x) = `(b∗m;x) for every bm, b∗m in a nontrivial

subspace Θ just in case the mth component xm = (x0,m ⋯ xT,m) = 0. The latter event

occurs with probability P (Xm = 0). This motivates the following defintion.

Definition 3.11 (ε-pseudo-unidentifiability). Say that bm is ε-pseudo-unidentifiable

79

on Θ if P (Xm = 0) > ε, or put differently, if:

P (Xm ∈ {xm ∶ `(bm;xm) = `(b∗m;xm) ∀bm, b
∗
m ∈ Θ}) > ε

Technically, every bm is ε-pseudo-unidentifiable on every Θ for some ε > 0. However,

when ε is small, pseudo-unidentifiability poses no problems for estimation. Pseudo-

unidentifiability is only a realistic problem for large ε and Θ.

Examples. Suppose D = 1 and ∥a+m∥0 = 0, so that amj ≤ 0 for every j = 1, . . . ,M .

Then, Xt,m is stochastically dominated by a Poisson random variable with rate eνm ,

so P (Xt,m > 0) ≤ 1 − exp{eνm}. As a result:

P (Xm = 0) = 1 − P (
T

⋃
t=1

{Xt,m > 0}) ≥ 1 − T (1 − exp{eνm})

If νm = −5 and T = 100, the bound gives that P (Xm = 0) ≥ 0.328, in which case bm

is 0.33-pseudo-unidentifiable on Θ = {bm ∈ RM ∶ bmj ≤ 0}. If instead νm = −6, bm

is 0.75-pseudo-unidentifiable on the same region. In these examples, negative-signed

parameters are challenging to estimate.

In practice, a column bm may be difficult to estimate due to ε-pseudo-unidentifiability

if a high proportion of the mth component series xm is zero. As the example illus-

trates, this arises when the baseline rate eνm for Xt,m is small; it can also arise when

Xt,m receives a strongly negative influence from a component with a high baseline

rate. Furthermore, these two cases — large negative νm and large negative a′dm —

can be difficult to distinguish from one another.

80

3.5 Discussion

Findings. The chapter’s main results are the development of a graphical stability

condition for Poisson GVAR(1) processes (Section 3.3.1), the derivation of parame-

ter constraints that ensure specific bounds on process moments (Section 3.3.2), and

a characterization of parameter regimes in which estimation is challenging (Section

3.4.2). These results highlight the recognition that Poisson GVAR models only de-

scribe plausible data-generating processes under certain complex conditions, and con-

straints on the magnitudes of positive-signed parameters that depend on the graphical

representation of such parameters provide one way to preserve this kind of plausibility.

The discussion of pseudo-unidentifiability underscores the point that even plausible

data-generating processes can be hard to estimate.

The results in the chapter constitute a first step towards understanding the prob-

abilistic behavior of nonlinear Poisson GVAR processes. Analysis of the linear case

is more straightforward, but the parametrization largely excludes negative mutual

serial dependence Heinen et al. (2003). By contrast, mixed dependence is possible for

nonlinear GVAR processes, but the stochastic process is less analytically tractable.

Although it has been acknowledged that process stability is a difficulty for the nonlin-

ear case (Mark et al., 2017), existing approaches address the challenge through data

transformations (Mark et al., 2017; Pillow et al., 2008). The results here reveal that

process stability is possible to guarantee without such transformations through ap-

propriate constraints on both parameter magnitudes as well as graphical complexity.

81

Challenges encountered. The unconditional moments of Poisson GVAR processes

are challenging to compute in general because the superexponentiation that arises

from the log link function does not lead to a straightforward recursion that generalizes

beyond one time step. The marginal distributions are no easier to calculate since they

require an analytic solution to the summation:

∞
∑
xt,j=0

exp{∑
t
∑
m

(xt,m (νm +∑
d

a′dmxt−d) − exp{νm +∑
d

a′dmxt−d})}

These challenges are traversed in this chapter only under certain limitations. The use

of a graphical constraint to establish stability for a subclass of order 1 processes is

based on two observations. First, when no positive influences are present on a com-

ponent it is easy to specify a stochastically dominating Poisson random variable for

that component that doesn’t depend on the process history. Second, the mean of a

once-exponentiated Poisson random variable can be calculated using the Poisson mo-

ment generating function. Together, these properties make it feasible to calculate or

bound unconditional moments when the positive influences don’t induce conditional

dependence among multiple components and spanning more than a single time step.

Future work. It remains a likelihood that the graphical constraint developed in the

chapter can be relaxed. Further work is needed to identify constraints on positive-

signed parameters that provide sufficient stability conditions and constraints that

ensure specific moment bounds for longer paths in G+. Further, it may be possi-

ble to mitigate unstable structures in G+ through complementary structure in G−,

thereby preserving stability though interactions between positive and negative serial

82

dependence. Resolving these subjects would complete the understanding of moment

behavior across the full parameter space. Additionally, it would be useful to extend

this analysis by determining ergodicity conditions for Poisson GVAR(D) processes,

which would allow asymptotic analysis of the MLE for the model class using existing

results (Fahrmeir, 1987).

83

Chapter 4: Sparse estimation of Poisson GVAR models

4.1 Introduction

Chapter 2 presented an empirical method that improves estimation of sparse VAR

process parameters relative to L1-constrained maximum likelihood (LASSO). The

empirical method is a two-step procedure that first estimates candidate parameter

support sets and then selects from among the candidates and returns a final estimate.

Although the empirical performance of the method is promising, the relative contri-

butions of methodological features employed in each step are not well understood.

That is, existing experimental work only establishes that the particular combination

of support set estimation and support set selection techniques used in the method con-

fers an improvement over LASSO estimation, but the marginal effects on estimation

behavior associated with each feature and those associated with other implementa-

tion details in the method are not known. In other words, no constructive account

of the method is available that demonstrates the utility of each part. The existing

study of the algorithm leaves open the possibility that variants or simpler versions of

the method may perform equally well or better.

Chapter 3 generalizes the VAR model to Poisson GVAR models, motivated by

seeking more natural descriptions of count vector time series. The same sparse net-

work estimation problem considered in Chapter 2 arises in connection with count data

84

for certain applications. While a generalization of the VAR model has been used in

such applications, the performance of different estimators for process parameters in

the generalization has not been studied carefully, nor has the empirical method been

extended to the generalized model in order to cover a broader range of application

contexts.

Purpose and contributions. There are two clear gaps in understanding that

emerge from considering prior work: the effects of individual features that are com-

bined in the empirical method, relative to benchmarks, are not known; and the

method in its current form cannot cover the full range of applications in network

estimation. This chapter addresses these gaps by providing a systematic study of the

individual features of the method of Chapter 2 in the context of estimating sparse

Poisson GVAR models. The chapter begins by dividing the empirical method into

pieces and developing benchmark methods for each piece. The resulting possible

combinations are used to generate a set of variant methods, and these variants are

compared to one another empirically on synthetic data generated by sparse Poisson

GVAR(1) processes to capture the effects of specific design choices on selection and

estimation performance. Based on the optimal combination in the empirical compar-

ison, a number of modifications are proposed to the original method. In doing so, the

following contributions are made:

(i) development of novel benchmark methods for support estimation and support

selection in sparse time series models

(ii) generalization of the empirical method from Chapter 2 to Poisson GVAR models

85

(iii) proposal of novel modifications to the empirical method from Chapter 2

(iv) development of a simulation framework for constructing stable Poisson GVAR(1)

processes

(v) proposal of a novel ‘recoverability’ statistic to quantify estimation difficulty for

process parameters

(vi) experimental assessment of selection and estimation performance for a collection

of methods under varying parametric sparsity, parameter dimensions, and data

quantities

Chapter organization. The chapter is organized as follows. First, Section 4.2 re-

views the estimation method from Chapter 2 and develops variant methods. This pro-

ceeds in several steps: subsection 4.2.1 divides the method into constituent features;

subsection 4.2.2 posits benchmark design choices for each feature; subsection 4.2.3

enumerates the possible combinations of design choices; and subsection 4.2.4 iden-

tifies four specific methodological variants of interest based on initial comparisons.

Next, Section 4.3 presents a simulation study of the methods. This also proceeds

in several steps: subsection 4.3.1 develops a simulation framework for constructing

stable Poisson GVAR(1) processes, proposes a ‘recoverability’ statistic to quantify

estimation difficulty, and presents a method for sampling from the Poisson GVAR(1)

parameter spaces of arbitrary dimension and sparsity; subsection 4.3.2 presents a

factorial simulation study design to assess Poisson GVAR(1) estimation performance

under varying sparsity levels and process dimensions; and subsection 4.3.3 reports

86

the results of the study carried out with the four methodological variants of interest

developed in the previous section. Last, Section 4.4 concludes the chapter with a

brief discussion of the main contributions of this work and possible extensions.

4.2 Methodological variants on UoI

The main aim of this section is to produce family of variants based on the method

presented in Chapter 2 in which certain pairs of variants in the family differ by ex-

changing a single methodological design choice for its benchmark alternative while

keeping other design choices fixed. Comparing performance among such pairs, which

will be the subject of a later section, allows one to isolate the effect of each design

choice relative to its benchmark both marginally and conditionally on other design

choices, thereby clearly depicting the relative contributions of methodological fea-

tures.

In service of this aim, the section is divided into four subsections. Subsection

4.2.1 reintroduces the algorithmic framework presented in Chapter 2 in more general

terms. Subsection 4.2.2 identifies design choices by contrasting the framework with a

benchmark method and identifying differences. Subsection 4.2.3 articulates a collec-

tion of methodological variants by enumerating the possible combinations of design

choices. Lastly, an initial comparison that narrows the full set of variants to a subset

of particular interest is given in subsection 4.2.4.

This portion of work identifies four variants of interest for further study: the

combinations of two possible support estimation methods with two possible support

87

selection methods. In doing so, the variants that are eliminated from consideration

reveal design choices that are detrimental to performance.

4.2.1 Algorithmic framework

To begin with, a brief review of the two-step UoI-VAR method presented in Chapter

2 is given, and from this a general description of the algorithmic framework is derived.

The UoI-VAR method accomplishes four high-level tasks:

(i) estimation of candidate support sets (‘intersection’ or first step);

(ii) selection of well-performing supports (‘union’ or second step);

(iii) combination of the latter to obtain a final support set (‘union’ or second step);

and

(iv) estimation on the final support set (‘union’ or second step).

These are articulated in the context of estimating, under a sparsity constraint, the

Gaussian V AR(D) model for an M -dimensional vector process:

Xt = ν +
D

∑
d=1
AdXt−d + εt , εt

iid
∼ NM(0,Σ)

Parameter estimation from data {xt}Tt=0 (the lower case distinguishes observed vectors

xt in a dataset from random vectors Xt) is articulated in terms of estimating B =

(ν A1 ⋯ AD)′. The loss function is denoted by −`(B ; x0, . . . , xT).

88

Intersection step. The first step of the UoI-VAR algorithm estimates candidate

support sets (accomplishing task (i)) by performing an intersection operation on sup-

port sets estimated from bootstrap samples of the data. The intersection step begins

by forming B1 bootstrap samples from the data. Then, K LASSO estimates are

computed for each bootstrap sample using the regularization path λ1, . . . , λK . If the

bth bootstrap sample is denoted by {x∗t }
T
t=0, these estimates are:

B̃bk = argminB {−`(B ; x∗0, . . . , x
∗
T) + λkP (B)} , k = 1, . . . ,K

For LASSO estimation, the L1 penalty P (B) = ∑d∑i ∥a
T
di∥1 is applied to the rows aTdi

of the matrices Ad. The values of the regularization parameter λk control the strength

of the penalty and consequently the strength of the sparsity constraint applied to

A1, . . . ,AD. Each estimate B̃bk is associated with a support set:

Sbk = {(i, j) ∶ b̃bkij ≠ 0} , k = 1, . . . ,K , b = 1, . . . ,B1

The index k is generally arranged so that Sb1, . . . , SbK are increasing sets for each

b = 1, . . . ,B1. Finally, an intersection of the support sets is taken across bootstrap

samples (index b) for each λk:

Sk =
B1

⋂
b=1
Sbk , k = 1, . . . ,K

The series of computations described above is summarized as follows:

89

for b = 1 to B1 do
draw bootstrap sample {x∗t }

T
t=0

for k = 1 to K do
estimate B̃bk ← arg minB {−`(B ; x∗0, . . . x

∗
T) + λkP (B)}

compute support Sbk ← {(i, j) ∶ b̃bkij ≠ 0}
end for

end for
(output) aggregated supports Sk ← ⋂

B1

b=1 Sbk , k = 1, . . . ,K

Each outputted support set Sk comprises parameters that have a high probability of

being selected with the sparsity constraint corresponding to λk and under resampling

of the data. Relative to a single collection of LASSO estimates computed from the

original data, the sets S1, . . . , SK are sparser; however, they are not necessarily nested

due to variation in the sparsity pattern of estimates B̃bk across bootstrap samples for

a fixed k.

Union step. The second step of the UoI-VAR algorithm accomplishes tasks (ii)-

(iv) in several stages: first, a number of ‘good’ supports are chosen from S1, . . . , SK

based on forecasting accuracy (accomplishing task (ii)); next, the ‘good’ supports are

combined by a union operation to obtain a final support set (accomplishing task(iii));

and last, an estimate is computed on the final support set by averaging estimates

computed on bootstrap samples (accomplishing task(iv)).

The first stage selects ‘good’ supports from the collection S1, . . . , SK based on fore-

casting accuracy. This begins by forming a collection of B2 pairs of bootstrap samples.

Each support set Sk characterizes a parameter subspace Bk = {B ∈ RM×D(D+1) ∶ {(i, j) ∶

bij ≠ 0} = Sk}. Now, unpenalized estimates are computed in each of the K subspaces

on one of the bootstrap samples in each pair. If {x
∗(1)
t }

T

t=0
denotes the first bootstrap

90

sample in the bth pair, these estimates are:

B̃bk = argminB∈Bk {−`(B ; x
∗(1)
0 , . . . , x

∗(1)
T)} , k = 1, . . . ,K , b = 1, . . . ,B2

Next, for each estimate B̃bk, forecasting errors are computed on the second bootstrap

sample in the corresponding (bth) pair. Denoting the one-step forecast of xt based

on B by x̂t(B;xt−1, . . . , xt−D), if {x
∗(2)
t }

T

t=0
is the second bootstrap sample in the bth

pair, then the forecast errors are:

fbk = ∑
t

∥x
∗(2)
t − x̂t(B̃bk;x

∗(2)
t−1 , . . . , x

∗(2)
t−D)∥2 , k = 1, . . . ,K, , b = 1, . . . ,B2

Then, for each pair of bootstrap samples b = 1, . . . ,B2, the support set associated

with the minimum forecasting error fbk is selected:

S∗b = Sk∗b , where k∗b = argmink fbk , b = 1, . . . ,B2

The sets S∗1, . . . , S∗B2 comprise the ‘good’ supports selected from the initial collection

S1, . . . , SK .

The second stage of the union step combines the selected support sets S∗1, . . . , S∗B2

by a union operation over the sparsest (100 × γ)% of the sets. That is, if the size

of the bth selected support set is ∣S∗b∣, Q = {b ∶ ∣S∗b∣ ≤ γ ⋅ quantile(∣S∗1∣, . . . , ∣S∗B2 ∣)}

gives the set of indices corresponding to the sparsest approximately (100×γ)% of the

91

selected supports, and the final support set is:

S∗ = ⋃
b∈Q

S∗b

This is the (thresholded) collection of parameter subsets selected with high probability

that are most predictive under resampling of the data. Thresholding the average by

sparsity is an ad-hoc way of evading an overly dense final support set due to one or

two dense S∗b, which arise rather often in practice.

Lastly, the remainder of the union step averages the unpenalized estimates used

to compute each S∗b over the indices in Q:

B̂ = ∑
b∈Q

B̃k∗b

The full series of computations in the union step is summarized as follows:

for b = 1 to B2 do

draw bootstrap samples {x
∗(1)
t }

T

t=0
, {x

∗(2)
t }

T

t=0
for k = 1 to K do

subspace Bk ← {B ∈ RM×D(D+1) ∶ {(i, j) ∶ bij ≠ 0} = Sk}

unpenalized estimate B̃bk ← arg minB∈Bk {−`(B ; x
∗(1)
0 , . . . , x

∗(1)
T)}

forecast error fbk ← ∑t ∥x
∗(2)
t − x̂t(B̃k;x

∗(2)
t−1 , x

∗(2)
t−D)∥2

end for
minimum error k∗b ← argmink fbk
selected support S∗b ← Sk∗b

end for
sparsest selected supports Q← {b ∶ ∣S∗b∣ ≤ γ ⋅ quantile(∣S∗1∣, . . . , ∣S∗B2 ∣)}

final support S∗ ← ⋃b∈Q S∗b

(output) final estimate B̂ ← ∑b∈Q B̃k∗b

92

Algorithmic framework. With the foregoing review in place, the algorithmic

framework for the method can now be described in greater generality. In its en-

tirety, the method presented above relies on a relatively limited number of operations

performed on the data (or bootstrap samples of the data), support sets, estimates,

and tuning parameters. These operations are: resampling; estimation of support sets;

estimation of parameters constrained to a support set; error metric calculation; and

thresholded combination of support sets. By omitting the details of how these op-

erations are performed, the entire algorithm can be described at a high level quite

compactly. To that end, these operations are given notations and brief descriptions

in Table 4.1.

The functions in Table 4.1 can be composed to describe chains of computations

compactly. For example, β̂(train; Ŝ(data;λ)) describes first computing a support set

estimated from the full data ‘data’ with tuning parameter λ and then computing an

estimate from training data ‘train’ on the support set from the first computation. To

extend the example, this composition could be further embedded in e to describe next

computing an error metric associated with those estimates: e(β̂(train, Ŝ(data, λ))).

A description of the algorithmic framework in this new notation is:

for b = 1 to B2 do
(trainb, testb) ← resample(data)
eλb ← e (testb, β̂ (trainb, Ŝ(data, λ))), ∀λ ∈ Λ
λ∗b ← argminλ e

λ
b

Sb ← Ŝ(trainb, λ∗b)
end for
S∗ ← t ({Sb}

B2

b=1, γ)

B̂ = (γB2)
−1∑b∶∣Sb∣≤∣S∗∣ β̂ (trainb, Ŝ(data, λ∗b))

93

Function Desription Example
resample(⋅) produces test data and

training data
resample(data) = (train, test)

Ŝ(⋅ ;λ) produces support set with
selection controlled by tun-
ing parameter(s) λ

Ŝ(data; 0.012) = {1,3}

β̂(⋅ ;S) produces estimates con-
strained to support set
S

β̂(data;{1,3}) = (6.1 00.76 0⋯ 0)T

e(⋅ ;β) produces the value of an
error metric for parameter
value β

e(data; (6.1 0 0.76 0 ⋯ 0)T) = 153.8

t ({Sj}Jj=1;γ) produces a single support
set from a collection of sup-
ports {Sj}Jj=1 and threshold
parameter γ

t ({{1},{1,3}}; 0.8) = {1}

Table 4.1: Notations for operations figuring in the UoI framework. These func-
tions are intended to create a succinct vocabulary for classes of key operations (e.g.,
constrained estimation) rather than specific methods for performing operations (e.g.,
constrained OLS estimation).

To specify the exact UoI-VAR algorithm from this description, simply define Ŝ(⋅ ; ⋅)

as the intersection step, e(⋅ ; ⋅) as one-step forecasting error, and t(⋅ ; ⋅) as the

thresholding operation presented above.

Accordingly, the intersection step is simply a means of generating candidate mod-

els, but is a relatively inessential detail in the algorithmic framework. In other words,

the intersection step amounts to a specific choice of the function Ŝ, but could easily be

exchanged for another support estimation method without altering the algorithm as

written above. While this methodological choice is not inconsequential, the algorithm

itself serves to select a final model, regardless of the means of generating candidate

94

models. The overall method can therefore be viewed as a combination of a support

estimation method (a choice of Ŝ) with a support selection method (the algorithmic

framework).

4.2.2 Methodological design choices

In light of the foregoing, two central features figure in the design of the method in

Chapter 2. First, there is a support selection method: this is the general algorithmic

framework articulated above. Second, there is a support estimation method Ŝ used

by the support selection method: this is the intersection step. In addition, there is

an implementation detail in the framework above aimed at saving computation time

that constitutes a third important feature. This subsection frames each feature as a

choice made relative to a particular benchmark method.

Choice 1: support selection. The distinctive feature of the algorithmic framework

above – as a support selection method – is that it selects multiple candidate models

using an optimality criterion and then combines the models. This model aggregation

strategy is a novel method that stands in stark contrast to selecting a single candidate

model. To highlight this contrast, a benchmark method that selects supports by cross

validation is shown below as Algorithm 4.1, and compared directly with the model

aggregation method, restated as Algorithm 4.2.

The benchmark method generates J pairs of training and test data from the

original dataset. On each pair, supports are first estimated from the training set for

each value of λ, and then parameters constrained to each support are estimated from

95

Algorithm 4.1 Support set selection by cross validation.

Require:
data
regularization path Λ
for j = 1 to J do

(trainj, testj) ← resample(data)

eλj ← e (testj, β̂ (trainj, Ŝ(trainj, λ))), ∀λ ∈ Λ
end for
λ∗ ← argminλ ē

λ

Ensure: estimate β̂ (data, Ŝ(data, λ∗))

the training set. Errors are evaluated for each estimate (and consequently support

set) on the test set. This produces one error per value of λ per pair of training and

test data. The value of λ with the lowest average error across the J pairs is then

selected as optimal. Using this optimal value, a final support set and parameters are

estimated on the original data.

Algorithm 4.2 Support set selection by model aggregation.

Require:
data
regularization path Λ
tuning parameter γ
for j = 1 to J do

(trainj, testj) ← resample(data)

eλj ← e (testj, β̂ (trainj, Ŝ(trainj, λ))), ∀λ ∈ Λ

λ∗j ← argminλ e
λ
j

Sj ← Ŝ(trainj, λ∗j)
end for
S∗ ← t ({Sj}Jj=1, γ)

Ensure: estimate β̂ (data, S∗))

96

The model aggregation method is the same up to the point of computing errors

associated with each value of λ for each pair of training and test data. However, it

differs from that point forward: instead of averaging the errors across the pairs, an

optimal λ is chosen for each pair and the corresponding estimated support set is set

aside. This produces a collection of J optimal support sets. The support sets are

then aggregated by a union operation, and a single estimate is computed on this final

support.1

Choice 2: support estimation. In the method of Chapter 2, the intersection step

— bootstrap aggregation of LASSO supports as described in Section 4.2.1 — is the

method of support estimation. The bootstrap aggregation procedure has already been

established in the context of regression, where it is referred to as the bootstrapped

LASSO or ‘BoLASSO’ (Bach (2008)). The BoLASSO stabilizes the selection behavior

of LASSO estimates by limiting the support set associated with a given regularization

parameter λ to parameters with a high probability of being selected under resampling

of the data. Thus, the natural benchmark alternative to the intersection step is to

use supports from a single LASSO estimate on the full dataset. These alternatives

will be distinguished using the notations in Table 4.2.

Choice 3: conditioning. There is a subtle implementation difference between

Algorithm 4.2 and the framework presented at the end of Section 4.2.1: the argument

of Ŝ(⋅ , λ). In Algorithm 4.2, the argument is trainj, meaning that new support

1This replaces an average of several estimates as in UoI-VAR and the framework written in
Section 4.2.1.

97

Function Description

Ŝ(1)(⋅ , λ) produces support set for LASSO estimate with regular-
ization parameter λ

Ŝ(2)(⋅ , λ) produces bootstrap aggregated LASSO support set for
regularization parameter λ (intersection step with some
fixed B1)

Table 4.2: Notations for support estimation methods.

sets are computed for each training set. In the framework as stated previously, the

argument is data, meaning that support sets are computed just once on the full

dataset, and the selected supports are always one of this fixed collection of support

sets. In other words, the original method conditions the model aggregation procedure

on a fixed collection of candidate supports. This conditioning strategy reduces the

computation time by performing Ŝ just once instead of J + 1 times, but also limits

the flexibility of the procedure.

Other choices. Aside from the support estimation method, support selection method,

and conditioning, there are a number of other relatively more minor implementation

choices. Among these are the method of resampling, the method of thresholding im-

plemented in model aggregation, the method of parameter estimation, and the error

metric. In other words, the precise definitions of each of the operations in Table 4.1.

For each of these choices, a single method is fixed based on empirical experimentation.

First, while a range of time series bootstrap methods exist (Bühlmann and Künsch

(1999); Kreiss and Lahiri (2012); Kunsch et al. (1989); Lahiri et al. (1999); Liu and

Singh (1992)), a blockwise jackknife is used. This was found to produce more stable

98

results than other block bootstrap approaches, including that utilized in Chapter 2.

Second, thresholding based on position frequency was found to produce more stable

results than thresholding based on sparsity, and as a result the threshold method is

fixed as:

t ({Sj}
J
j=1, γ) = {i ∈ ⋃

j

Sj ∶ ∑
j

1{i ∈ Sj} ≥ γJ}

Finally, appropriate choices of support-constrained parameter estimation and error

metric are somewhat problem-dependent, but in the contexts considered in this chap-

ter, maximum likelihood and deviance are used.

Summary. Three key methodological design choices have been identified above: the

method of support estimation, the method of support selection, and conditioning

the support selection method on a fixed collection of support sets. Further, there

are a few incidental decisions about how to implement specific operations, some of

which have been replaced with alternatives that produce more stable behavior than

the original UoI-VAR method. The design choices are summarized in Table 4.3. The

Choice Options

Support estimation method LASSO supports (Ŝ ≡ Ŝ(1)) or intersection
step (Ŝ ≡ Ŝ(2))

Support selection method cross validation (Algorithm 4.1) or model
aggregation (Algorithm 4.2)

Conditional support selec-
tion

Constrain estimates on training data to
Ŝ(trainj;λ) or Ŝ(data;λ) when evaluating
errors

Table 4.3: Summary of key choices in method design and options for each choice.

99

particular options that appear in UoI-VAR are aimed at specific improvements relative

to the corresponding benchmark option: support estimation by support aggregation

and support estimation by model aggregation are each intended to improve support

recovery relative to LASSO support estimation and cross validation, respectively; and

conditioning is intended to lessen computation time relative to the unconditioned

procedures.

4.2.3 Methodological variants

The possible combinations of the options for support estimation, support selection,

and conditioning status established in the previous section generate a family of

methodological variants whose differences systematically capture the effect of each

design choice. These possible combinations are eight in number. However, the model

aggregation method involves a threshold parameter (γ) that itself requires tuning. A

cross validation strategy is proposed here as Algorithm 4.3: the entire model aggre-

gation method with a range of possible tuning parameters is repeated for a number of

training datasets derived from the full data by resampling, and errors are evaluated

for each tuning parameter on test datasets. As with the conditioning design choice,

there is the possibility for each methodological variant involving model aggregation to

condition Algorithm 4.3 on a fixed collection of estimates model.aggregation(data;γ).

In other words, conditioning can be applied at both an inner (model aggregation) and

outer (threshold parameter tuning) level for each of the four variants that perform

support selection by model aggregation.

100

Algorithm 4.3 cross validation algorithm for tuning model aggregation threshold.

Require:
data
threshold parameter path Γ
for i = 1 to I do

(traini, testi) ← resample(data)
eαi ← e (testi,model.aggregation(traini;γ)), ∀γ ∈ Γ

end for
α∗ ← argminγ ē

γ

Ensure: estimate model.aggregation(data, γ∗)

In sum, all possible combinations of these choices yield twelve algorithmic variants:

1. cross validation with Ŝ(1)(trainj, λ)

2. cross validation with Ŝ(2)(trainj, λ)

3. cross validation with Ŝ(1)(data, λ)

4. cross validation with Ŝ(2)(data, λ)

5. Model aggregation with Ŝ(1)(trainj, λ) and model.aggregation(traini, γ)

6. Model aggregation with Ŝ(2)(trainj, λ) and model.aggregation(traini, γ)

7. Model aggregation with Ŝ(1)(data, λ) and model.aggregation(traini, γ)

8. Model aggregation with Ŝ(2)(data, λ) and model.aggregation(traini, γ)

9. Model aggregation with Ŝ(1)(trainj, λ) and model.aggregation(data, γ)

10. Model aggregation with Ŝ(2)(trainj, λ) and model.aggregation(data, γ)

101

11. Model aggregation with Ŝ(1)(data, λ) and model.aggregation(data, γ)

12. Model aggregation with Ŝ(2)(data, λ) and model.aggregation(data, γ)

4.2.4 Initial comparison: effect of conditioning

The option to condition procedures by replacing training data with the full data in

Ŝ(⋅ , λ) and model.aggregation(⋅ , γ) lessens run time by reducing the number of

times those operations are performed. However, this conditioning may affect the

behavior of the estimators. While the computational advantage of certain variants is

attractive, they should not be adopted at too high a cost of estimation performance.

The effect of each conditioning strategy can be figured by comparing estimation

performance empirically between the pairs of variants that differ only in the replace-

ment of training data with full data in a single location in the algorithm. Table 4.4

compares average computation times and selection errors between appropriate pairs

of variants in estimating a single 5×5 parameter matrix A with 3 nonzero parameters

among the 25 matrix positions from Poisson GVAR(1) data realizations. Estimates

were computed for each variant on ten data realizations of length 500. The table

indicates that the average runtimes for the ‘conditioned’ variants are faster than the

other variant in the pair by up to 50%, but the average false positive counts for the

‘conditioned’ variants exceed their complementary variants by at least a factor of 2.

The design choices that involve conditioning have a detrimental impact on se-

lection behavior. These are therefore poor design choices, and can be eliminated

from further study. In other words, every variant identified under the V2 column

102

Variants Ratio Comparisons (V2:V1)
V1 V2 Time ratio (sec) FP ratio (count)
1 3 0.79:1 23.00:1
2 4 0.56:1 3.88:1
5 7 0.71:1 10.00:1
6 8 0.58:1 41.00:1
5 9 0.80:1 14.00:1
6 10 0.60:1 2.90:0
7 11 0.94:1 2.75:1
8 12 1.05:1 3.14:1

Table 4.4: Initial comparison of methods to assess the effect of conditioning. Com-
parisons are made between variants differing in only the input data to the operations
Ŝ and model.aggregation and are reported on the basis of the ratio of average com-
putation times and the ratio of average false positive rates (errors by inclusion, or
estimated support set elements that are not in the true support set). The variant
that uses training data is always reported as variant 1, and the variant that uses full
data is always reported as variant 2.

is dropped. The remaining variants are four in number: variants 1, 2, 5, and 6.

These capture the design choices pertaining to support estimation and support selec-

tion. Specifically, they are the factorial combinations of support estimation by either

LASSO supports or support aggregation, and support selection by either cross vali-

dation or model aggregation. These remaining methods of interest are summarized

in Table 4.5.

LASSO supports Support aggregation
cross validation Variant 1 Variant 2

Model aggregation Variant 5 Variant 6

Table 4.5: Method variants of interest; factorial combinations of two support esti-
mation methods with two support selection methods.

103

The subsequent sections empirically study the impact of each design choice on

estimation performance by comparing these four variants in a simulation study.

4.3 Simulation study

The four method variants — the possible combinations of support estimation and

support selection methods — identified in Section 4.2 represent precise comparisons

of the central features of the method in Chapter 2 with benchmark methods. This

section studies the performance of each variant empirically to capture the effect of

each feature and identify an optimal combination. Both high selection accuracy

(recovery of the true parameter support) and low bias are desirable properties for

the methods. In addition, maintaining high accuracy and low bias across a range of

problem scenarios is desirable: the effect of varying the parameter dimensions and

sparsity on method performance is also of interest.

The empirical study is conducted in the context of estimating Poisson GVAR(1)

models, and can be viewed from two perspectives. From one point of view, the effects

of methodological features are the subject of the study, and the Poisson GVAR(1)

model is just a particular context that represents a difficult class of problems in which

these effects will be most pronounced. From another point of view, the development

of an estimation method for sparse Poisson GVAR(1) models is the subject of the

study, precisely because the model class comprises difficult estimation problems that

challenge existing methods. In truth, both aims are being served.

The section begins with an extended discussion of fixing Poisson GVAR(1) process

104

parameters under a specified dimension and sparsity level, citing challenges that arise

for this particular family of stochastic processes. Due to the existence of unstable

parameter regimes and nearly unidentifiable parameter regimes, care is required in

constructing process parameters; Section 4.3.1 presents an algorithm for generating

stable parameters and a recoverability statistic for characterizing the difficulty of

estimating a particular set of parameters. Section 4.3.2 then gives the design of the

simulation study, followed by a presentation of key results in Section 4.3.3.

4.3.1 Parameter generation and parameter recoverability

Poisson GVAR(1) process parameters cannot be drawn at random due to regimes

in the parameter space that are unstable (unbounded means and/or variances) and

regimes that are nearly unidentifiable (data realizations contain extremely little infor-

mation about the parameters). Here a method of sampling from the parameter space

for an M -dimensional process at a particular sparsity level is given. The method uses

an algorithm for generating stable parameters at a given sparsity level to propose

parameters and a recoverability statistic to determine whether to accept proposals.

The parameter generation algorithm is presented first, followed by the recoverability

statistic.

Parameter generation. The parameter generation task consists in constructing an

105

intercept vector ν and a matrix A such that the process

Xt,m∣Xt−1
indep.
∼ Poisson(λt,m), m = 1, . . . ,M, t ∈ Z

logλt = ν +AXt−1

is stable. It is possible to guarantee stability using only the sparsity pattern of A

by placing constraints on the positions of positive-signed entries (Proposition 3.7).

Algorithm 4.4 a simple procedure for generating an A with sparsity level s (100× s%

of entries are nonzero) that ensures a stable M -dimensional Poisson GVAR(1) process

for any intercept ν.

This procedure draws nonzero parameter magnitudes from a uniform distribution,

allocates a sign to each parameter, fixes the locations of positive-signed nonzero pa-

rameters (the set S+) and the locations of negative-signed nonzero parameters (the

set S−), and allocates the parameters to the selected locations. The locations S+ are

chosen so that the graph of the positive part of A has no paths exceeding length 1.

This constraint is imposed by partitioning the vector components into a ‘receiver’ set

R and an ‘influencer’ set I and drawing the locations in S+ with replacement from

R×I. This only constructs edges in the graph of the positive part of A that map from

I to R, and therefore cannot produce positive-signed paths exceeding length 1. Any

such A satisfies stability constraints, so the algorithm guarantees that A is stable.

This property holds for any p and θ, so the choice of inputs is largely incidental.

Parameter recoverability. Certain parameters obtainable by Algorithm 4.4 are

difficult to estimate, and others are too easy. For example, the following parameters

106

Algorithm 4.4 Poisson GVAR(1) parameter generation.

Require:
process dimension M
sparsity level s
maximum absolute parameter magnitude θ
expected proportion of positive-signed parameters p
define receiver set R ← {1, . . . ,floor(M/2)}
define influencer set I ← {ceiling(M/2), . . . ,M}

define S ← {(i, j) ∶ i ∈ R, j ∈ I}
for k = 1 to sM2 do

αk ←

⎧⎪⎪
⎨
⎪⎪⎩

draw from U(0, θ) w.p. p

draw from U(−θ,0) w.p. 1 − p

end for
nNZ ← ∣{k ∶ αk > 0}∣
S+ ← sample nNZ times without replacement from S
S− ← sample sM2 − nNZ times without replacement from {1, . . . ,M}2 ∖ S+

for k = 1 to ∣S∗+ ∣ do
if αk > 0 then
As+

k
← αk

else
As−

k
← αk

end if
end for

Ensure: A

107

are challenging to recover:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.1 0

0 0 0.1

−0.1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ν =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−2

−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The difficulty is that the baseline component rates are e−2 = 0.135, so data realizations

will be mostly zeros, and A modulates the rates by weak multiplicative factors that

are hard to detect even with large quantities of data.2 By contrast, the following

parameters are easy to recover:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 0

1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ν =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The baseline rates are e0 = 1, and the single multiplicative factor in A is large enough

that the corresponding changes in mean are easy to detect with little data.3 One

would expect that no estimation method would recover the first example parameters

2Whenever a 1 appears in simulated data, one of the rates changes from 0.1353 to 0.1496 (via
positive-signed influence) or to 0.1225 (via negative-signed influence). The baseline rates suggest
that ones appear only about 12% of the time for a given component, and that zeros appear about
87% of the time. So one can view estimating each nonzero entry in A as in effect attempting to
detect a difference in Poisson rates on the order of 0.01 based on 12 data points per 100 in the
dataset.

3To see this, consider that a count of 1 in the first component (its baseline mean) modulates the
rate of the third component by a factor of e1 = 2.72, so the third component’s conditional mean
at the following time step is 2.72. This difference in Poisson rates occurs frequently in simulated
realizations from this parameter configuration since roughly one in three data points for the third
component are expected to be 1. Due to the magnitude and frequency of this particular rate change,
the nonzero entry in A is relatively easy to detect with few data points.

108

well, and any method should recover the second example parameters easily. There-

fore, sampling from a moderately challenging region in the parameter space that

excludes such possibilities is desirable for conducting meaningful method evaluations.

To achieve this, it is helpful to quantify the difficulty of recovery so that one can

check whether generated parameters are within the target difficulty range.

The essential difference in recoverability between the two examples above is the

information that data realizations are expected to contain about the parameters.

Unfortunately, Fisher information has no closed-form solution and is difficult to ap-

proximate in this setting in general due to the potential high dimensionality of the

parameter space. Fisher information characterizes how difficult it is to find optima on

the likelihood surface by quantifying the expected variability in the likelihood around

the true parameter values. 4 As an alternative measure of information, a recoverabil-

ity statistic for Poisson GVAR(1) parameters is constructed based on a deviance-based

generalization of the signal-to-noise ratio (SNR) for linear models from Czanner et al.

(2008, 2015). First an overview of generalized SNR is given, then extended to the

4The likelihood variability around the true parameters can be investigated empirically for each
of the examples above to confirm the intuition that the relevant property is information content.
The first set of parameters is challenging to recover because the likelihood varies little around the
true parameter values, making them difficult to discern; the second set, by contrast, is easy to
discern from the likelihood surface due to a clear peak around the true value. In the first (difficult)
parameter configuration, computing the log-likelihood based on a simulated realization of length
100,000 for perturbations of A around the true value by multiplicative factors ranging from -3 to 3
produces an optimum when A is nearest to zero. Furthermore, overall the perturbations change the
log-likelihood by a factor of at most 0.003 of the optimum value. As a result, the MLE fails because
the likelihood does not vary on a meaningful scale. In other words, A is nearly unidentifiable. In
the second configuration, computing the log-likelihood from a simulated realization of length 100 for
perturbations around the true value by multiplicative factors ranging from -1.2 to 1.2 produces an
optimum near the multiplicative factor 1 and an overall change in log-likelihood by up to a factor
of 3.3 of the optimum value. By contrast, the likelihood in this example varies considerably about
the true value, making the optimum easy to find.

109

Poisson GVAR(1) case, followed by a discussion of how well the extension captures

intuitions about parameter estimability.

In the linear model y = xβ + ε (with Eε = 0 and Eεε′ = σ2I), call xβ the ‘signal’

component and ε the ‘noise’ component. The SNR is the ratio of signal variability

to noise variability. Denoting by µ a vector with each entry equal to the grand mean

x̄′β, where x̄ is the vector of column means of x, define the signal variability to be

(µ−xβ)′(µ−xβ). Define the noise variability to be ε′ε or equivalently (y−xβ)′(y−xβ).

Then the SNR is:

SNR =
(µ − xβ)′(µ − xβ)

(y − xβ)′(y − xβ)

Low SNR is interpreted as indicating a weak signal. This can arise in two ways: either

the covariates x have low variances, in which case β is difficult to estimate,5 or β is

near zero, in which case the relationship between x and y is negligible.

An estimator of SNR can be obtained by replacing µ and β with the estimates

µ̂ = ȳ (where ȳ denotes an n×1 vector whose entries are n−1∑i yi) and β̂ = (x′x)−1x′y.

In that case, the estimator is the ratio of the model sum of squares to the residual

sum of squares:

ˆSNR =
(ȳ − ŷ)′(ȳ − ŷ)

(y − ŷ)′(y − ŷ)
=
SSmodel
SSresidual

The classic partitioning of sums of squares in regression establishes that for the esti-

mate ŜNR:

ŜNR =
(y − ȳ)′(y − ȳ) − (y − ŷ)′(y − ŷ)

(y − ŷ)′(y − ŷ)
=
SStotal − SSresidual

SSresidual
5If the covariates x have low variances, then det(x′x) is small and the variance of the OLS

estimator σ2(x′x)−1 is large; thus, β is difficult to estimate accurately.

110

Thus, the estimated SNR can be interpreted as the estimated reduction in residual

variance attributable to the covariates, scaled by the estimated residual variance.6

SNR can be extended to generalized linear models based on the last expression.

While the same partitioning does not hold for the population quantities µ and β,

the estimator suggests a closely related quantity. Let SS(a, b) = (b − a)′(b − a), and

consider:

SNR∗
=
SS(µ, y) − SS(xβ, y)

SS(xβ, y)

When the errors ε are Gaussian, the log-likelihood (written as a function of xβ and

the data) is `(xβ, y) = −SS(xβ, y)/2σ2 − n log(2πσ2)/2. Now SNR∗ can be rewritten

in terms of deviance, defined as dev(η, y) = −2(`(η, y)−`(y, y)). Noting that `(y, y) =

−n log(2πσ2)/2 since SS(y, y) = 0, it is immediate that dev(η, y) = SS(η, y)/σ2.

Therefore, one has from premultiplying SNR∗ by σ2/σ2 that for Gaussian linear mod-

els,

SNR∗
=

dev(µ, y) − dev(xβ, y)

dev(xβ, y)

The numerator dev(µ, y) − dev(xβ, y) can be interpreted as the change in deviance

attributable to the regression covariates.

Generalized SNR can be applied to describe the change in deviance attributable to

the autoregressive portion of Poisson GVAR(1) processes. Denote the log-likelihood

of an M -dimensional Poisson GVAR(1) process realization x = (x0, x1, . . . , xT)′ ∈

R(T+1)×M (written as a function of the Poisson rate parameters λ = (λ0, λ1, . . . , λT)′

6For another perspective, note that this is the scaled F statistic for the overall significance test
in regression.

111

where λt ∈ RM) by:

`(λ;x) =
T

∑
t=1

(xt logλt − λt) +C

Let λ(A,ν;x) ∈ RT be given by logλt(A,ν;xt−1) = exp{ν + Axt−1} for t ≥ 1. Then,

deviance is defined as: dev(A,ν;x) = −2(`(λ(A,ν;x);x)− `(x;x)). Now define recov-

erability of A and ν from data x as the scaled change in deviance attributable to the

autoregressive component:

recoverability(A,ν;x) =
dev(0, ν;x) − dev(A,ν;x)

dev(A,ν;x)

If the likelihood varies little in A, the change in deviance from setting A to zero will

be small — note that the numerator is simply the difference in log-likelihood at (A,ν)

and at (0, ν). Conversely, if the likelihood is sensitive to A, the change in deviance

will be comparatively large. Intuitively, this quantity captures the information that

the data realization x contains about A: if x is informative for A, recoverability

should be large; otherwise, it should be small. Of course, the intercept ν modulates

how informative data realizations are for any particular matrix A; smaller values of

ν diminish the recoverability.

Recoverability is expressed as a function of the parameters conditional on a par-

ticular realization x. A simple strategy to estimate unconditional recoverability is

to approximate its expected value by a parametric bootstrap: repeatedly simulate x

using the parameters A and ν and compute the average of the quantity across real-

izations. Empirically, a modest number (10) of long (10,000) simulated realizations

produces a stable estimate with relatively low variance. Executing this procedure for

112

the examples given at the beginning of the section produces a recoverability score

of 0.00034 for the difficult example and a recoverability score of 6.65 for the easy

example, aligning with intuition.

The proposed quantity measures recoverability of at least part of A but not all of

A. Note that the log-likelihood can be written as a sum of log-likelihood components

corresponding to the rows of A:

`(λ;x) =
T

∑
t=1

(xt logλt − λt) +C =
M

∑
m=1

(
T

∑
t=1

(xt,m logλt,m − λt,m) +Cm)
def
=

M

∑
m=1

`m(λm;xm)

Now denote rows of A by a′m, columns of x by xm, elements of ν by νm, and define

λm(a′m, νm;x) ∈ RT by logλt,m(a′m, νm;xt−1) = νm + a′mxt−1. The deviance can be

decomposed into componentwise deviances:

dev(A,ν;x) =
M

∑
m=1

(−2(`m(λm(a′m, νm;x);xm) − `m(xm;xm)))
def
=

M

∑
m=1

dev(a′m, νm;x)

Therefore, recoverability can be rewritten as:

recoverability(A,ν;x) =
M

∑
m=1

dev(0, νm;x) − dev(a′m, νm;x)

dev(A,ν;x)

Thus, if the change in deviance away from zero is considrable for any single row of

A, A has a high recoverability score even if other rows of A are difficult to estimate

from the likelihood.

Consider the following example that is a mixture of the parameters for the third

component from the easy example with the parameters for the second component

113

from the hard example:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 0.1

1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ν =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

An estimate of E(recoverability(A,ν;x)) based on 10 simulated realizations of length

10,000 each is 7.46; however, the contribution to recoverability(A,ν;x) from the sec-

ond component is 0.01 and the contribution from the third component is 7.45. In

other words, the parameters associated with the third process component are easy to

recover and those associated with the second are difficult, but recoverability(A,ν;x)

does not reflect this discrepancy. This is a limitation with respect to how precisely

recoverability(A,ν;x) represents ease or difficulty of estimation. However, the quan-

tity is sufficiently useful for the present purposes as high values indicate that at least

some subset of parameters can be estimated easily and low values indicate that no

such subset exists, so it still captures the extremes that should be avoided in param-

eter generation.7

Sampling from the parameter space. Algorithm 4.4 and the recoverability statis-

tic are used in conjunction to sample from the Poisson GVAR(1) parameter space for

any dimension M and sparsity s. The method is simple: first, Algorithm 4.4 is used

to generate a proposal for A; then, the proposal is accepted if estimated recoverability

7The quantity could be easily refined to the level of individual parameters, in the sense that
a separate recoverability score could be calculated for each nonzero parameter amj , such as
dev(0,νm;x)−dev((0 ⋯ amj ⋯ 0),νm;x)

dev((0 ⋯ amj ⋯ 0),νm;x) . From this, a composite metric could be formed that more pre-

cisely measures overall recoverability of A.

114

is within a target range. This method is given in detail as Algorithm 4.5.

Algorithm 4.5 Sample from the Poisson GVAR(1) parameter space.

Require:
parameter generation settings M,s, θ, p
intercept ν ∈ RM

recoverability range (rmin, rmax)

recoverability estimation settings Tsim,N
while r̄ /∈ (rmin, rmax) do
A← Algorithm4.4(M,s, θ, p)
for n = 1 to N do

generate data x ∈ RM×Tsim from Poisson GVAR(1) with A,ν
rn ← recoverability(A,ν;x)

end for
r̄ ← N−1∑n rn

end while
Ensure: A

4.3.2 Simulation design

With the foregoing methodology established for sampling from the Poisson GVAR(1)

parameter space of arbitrary dimension at a prespecified sparsity level (Algorithm

4.5), and the candidate estimation methods developed in Section 4.2 (Table 4.5), it

is now possible to describe cogently the simulation study from which the key results

in this chapter are derived.

In the study, each method is used to estimate theM -dimensional Poisson GVAR(1)

115

model:

Xt,m∣Xt−1
indep.
∼ Poisson(λt,m), m = 1, . . . ,M, t ∈ Z

logλt = ν +AXt−1

The parameter of interest is A and it is assumed to be s-sparse (∥vec(A)∥0 = sM2).

Synthetic data of length T are generated according to this process, and each method

is used to recover the parameter A. The dimension M , sparsity s, and realization

length T are varied.

Study design. The study is a factorial design generated by three levels of process

dimensions, M = 10,15,20, and three levels of sparsity, s = 0.01,0.02,0.05. For each

factorial combination, three data realization lengths T = 500,1000,2000 are consid-

ered. For the main effects there is parameter-level replication: 10 different A matrices

are generated for each factorial combination. Further, there is also realization-level

replication: for each factorial combination, each A, and each realization length T , 5

datasets are generated. In total, the number of datasets constructed in the design is

5× 3× 10× 3× 3 = 1350 (data replicates × realization lengths × parameter replicates ×

sparsity levels × dimensions). Each of the four methods are applied to every dataset

and the estimates are recorded.

Parameter sampling settings. To sample from the parameter space for a given

factorial combination of dimension M and sparisty s, Algorithm 4.5 is implemented

with parameter generation settings θ = 1 and p = 0.3 and target recoverability between

116

rmin = 0.5 and rmax = 1.5 based on N = 10 realizations of length Tsim = 100,000.

Although the recoverability statistic is a function of both the intercept ν and the

autoregressive parameter A, the parameter of interest is A. Obtaining an A in the

target recoverability range can be made easier by conditioning on a fixed intercept

for each factorial combination of dimension and sparsity (rather than also generating

an intercept). To accomplish this, a large number of A matrices were generated

as above for each setting, and recoverability was estimated across a coarse grid of

intercepts ν with equal entries νm. The intercept that gave a distribution of estimated

recoverabilities centered nearest the target range was then fixed. The intercept entries

fixed for each combination are shown below.

M = 10 M = 15 M = 20

s = 0.01 νm = 0.5 νm = 0.4 νm = 0.3
s = 0.02 νm = 0.5 νm = 0.4 νm = 0.3
s = 0.05 νm = 0.1 νm = 0.1 νm = 0.1

Table 4.6: Intercept entries fixed for each combination of process dimension and
parameter sparsity in the simulation study. The sample averages of estimated re-
coverabilities of 50 generated A matrices for the intercepts shown in the cells ranged
from 0.79 to 1.57 and the sample standard deviations ranged from 0.02 to 0.07.

4.3.3 Simulation results

The simulation study results are summarized in Figures 4.1, 4.2, and 4.3, and Sup-

plementary Figures S.4, S.6, and S.5. The main figures focus on comparing selection

errors associated with each method. Selection errors are reported as the proportion

of entries in A whose zero/nonzero status is misclassified by an estimate Â. So for

117

example, an error rate of 0.1 indicates that 10% of the entries in Â are either false

positives (zero-valued entries of A erroneously estimated as nonzero in Â) or false

negatives (nonzero-valued entries in A erroneously estimated as zero in Â). These

error rates are compared on average for each combination of sparsity s, dimension M ,

and realization length T , and also on a dataset-by-dataset basis.

Figure 4.1 shows the average selection error for each method, plotted against real-

ization length T , for each combination of parameter sparsity s and process dimension

M . The total number of nonzero parameters for each combination of M and s is

given by sM2. Thus, the lowest-dimensional and sparsest case (M = 10 and s = 0.01)

represents problems involving selection and estimation of a single nonzero autore-

gressive parameter out of a possible 100; and the highest-dimensional and densest

case (M = 20 and s = 0.05) represents problems involving selection and estimation

of 20 nonzero parameters out of a possible 400. For all methods, the average error

rates range from 0 to 0.1 across combinations of M,s,T , and, as one might expect

in general, selection errors decrease with T and increase with M and s. Only in

the lowest-dimensional and sparsest setting do all methods select equally well on av-

erage. Otherwise, support estimation by support aggregation outperforms support

estimation by LASSO supports, support selection by model aggregation outperforms

support selection by cross validation, and the performance gaps widen as s and M

increase. The combination performs favorably, maintaining a 0−2% error rate across

cases.

The support estimation method has the relatively larger impact on average se-

lection error compared with the support selection method, which produces a rela-

118

tively narrower difference. In particular, the combination of support estimation by

support aggregation (the better-performing support estimation method) with sup-

port selection by cross validation (the worse-performing support selection method)

outperforms the combination of support estimation by LASSO supports (the worse-

performing support estimation method) with support selection by model aggregation

(the better-performing support selection method).

These behaviors are driven largely by false positive rates. Supplementary Figures

S.6 and S.5 show selection error comparisons parsed separately (rather than as a com-

bined metric) in terms of false positive and false negative counts. Therein, the false

negative counts are nearly equal (and low) on average across methods (Supplemen-

tary Figure S.5), whereas the false positive counts differ considerably across methods

(Supplementary Figure S.6).

Figure 4.2 shows the marginal effect of the support estimation method on a

dataset-by-dataset basis. For each dataset, the selection error rate (again, the pro-

portion of misclassified entries in A) from the support aggregation method is plotted

against the selection error rate from the LASSO support estimation method, keeping

the support selection method fixed. These scatterplots are produced for each combi-

nation of sparsity s and dimension M , shown as the rows and columns of the figure.

Each scatterplot includes the simulated datasets of every length (T = 500,1000,2000)

corresponding to all generated parameters (ten distinct A matrices) without aesthetic

distinction. Simple regression lines are superimposed to help visualize the trend, along

with a y = x reference. The trends, and in fact the majority of the points themselves,

are below the reference line, indicating that the selection error rates for the two meth-

119

Figure 4.1: Average selection errors observed in simulation, reported as the average
proportion of matrix entries that are incorrectly classified as zero or nonzero, for each
combination of support estimation and support selection method. Average selection
errors are plotted against simulated realization length. Separate panels are shown for
each combination of sparsity s (row) and process dimension M (column).

120

ods utilizing support aggregation for support estimation are lower than the selection

error rates for the two methods utilizing LASSO support estimation. In other words,

the marginal effect of exchanging support aggregation for LASSO support estimation

is to lower the selection error rate.

Figure 4.3 shows the marginal effect of the support selection method on a dataset-

by-dataset basis. The same type of comparison is given as in Figure 4.2, except as

applied to the support selection method rather than the support estimation method:

that is, the scatterplots show the selection error rates for support selection by model

aggregation plotted against the selection error rates for support selection by cross

validation, with the support estimation methods fixed. The trends are all below the

reference line, and in all but the M = 10 cases, most of the scatter is also below the

reference line, indicating that the selection error rates are lower for support selection

by model aggregation than by cross validation, in combination with either support

estimation method. The marginal effect of exchanging model aggregation for cross

validation, then, is to lower the selection error rates.

The dataset-by-dataset comparisons (Figs. 4.2, 4.3) are consistent with the be-

havior of average selection errors shown in Figure 4.1: both model aggregation and

support aggregation confer improvements in selection accuracy in any combination,

yet model aggregation confers a relatively narrower improvement.

121

Figure 4.2: Marginal effect of support estimation method on selection errors. In
each panel, the proportion of incorrectly classified (zero/nonzero) matrix entries given
by the LASSO support estimation method (with either support selection method) is
plotted against the proportion of incorrectly classified matrix entries given by the
support aggregation method (with the same support selection method) for each sim-
ulated dataset. A dashed simple linear regression line is overlaid on the scatterplot to
help visualize the trend. Separate panels are shown for each combination of sparsity
s (row) and process dimension M (column).

122

Figure 4.3: Marginal effect of support selection method on selection errors. In each
panel, the proportion of incorrectly classified (zero/nonzero) matrix entries given
by the cross validation support selection method (with either support estimation
method) is plotted against the proportion of incorrectly classified matrix entries given
by the model aggregation support selection method (with the same support estimation
method) for each simulated dataset. A dashed simple linear regression line is overlaid
on the scatterplot to help visualize the trend. Separate panels are shown for each
combination of sparsity s (row) and process dimension M (column).

123

4.4 Discussion

Findings. The simulation study presented in this chapter indicates that both sup-

port aggregation and model aggregation marginally improve selection performance,

and that their combination performs best among all those considered. The average

selection error rates for this method vary between roughly 0-3% — that is, 0-3% of

estimated parameters are erroneously zero or erroneously nonzero — depending on

process dimension, parametric sparsity, and time series length. Support aggregation

(the optimally-performing support estimation method) contributes relatively more to

improving selection accuracy in comparison with its benchmark, reducing average er-

ror rates by up to roughly 3%; however, model aggregation (the optimally-performing

support selection method) also produces considerable improvements, reducing aver-

age error rates by up to 2%. The combination reduces average error rates by up to

5% relative to the worst-performing method. Further, the study indicates that false

positive rates — rates of erroneous nonzero estimates — drive the difference in selec-

tion performance, and that estimation errors are comparable despite large differences

in selection errors.

The preliminary method variant comparisons showed that conditioning support

selection on a fixed set of supports — a strategy employed in the original empirical

method to reduce computation time — produces a deterioration of selection accuracy.

Performing unconditional support selection clearly improves the method.

Additionally, a number of modifications were introduced. First, a novel threshold-

ing strategy was proposed for the model aggregation method: thresholding position

124

frequencies in the collection of all selected supports rather than thresholding the el-

ements in the collection based on sparsity quantiles. Second, the final estimation

method was simplified from an average of multiple estimates to a single estimate.

Lastly, an alternative resampling strategy was proposed: a blockwise jackknife scheme

replaced the moving block bootstrap used in the original method. All proposals were

based on improved stability observed in anecdotal experiments.

Beyond identifying optimal method design, the general methodological framework

was extended to sparse estimation of Poisson GVAR models, which can be applied to

multivariate count data without data transformation where classical VAR models can-

not. This both broadens the range of potential applications for the proposed method,

and also establishes some baseline methods for model estimation and methodological

performance comparisons where few previously existed.

In the course of modifying and extending the method, a number of contributions

were made in order to develop the simulation study. First, an algorithm for generat-

ing sparse stable parameter matrices with both positive-signed and negative-signed

entries was developed. Second, a recoverability metric was proposed to quantify diffi-

culty of estimation in the absence of closed-form expressions or simple approximations

for Fisher information.

Challenges encountered. The majority of challenges encountered in the course

of this work arose in the context of computations. First, the computationally inten-

sive nature of the methods — repeated estimation of moderately high-dimensional

models from resamples of the data — imposed feasibility limits on the data dimen-

125

sions considered in the simulation study, the number of replications at the parameter

level and at the dataset level, and the number of levels of dimension, sparsity, and

time series length considered. In many of the higher-dimensional settings, a single

estimate could take several minutes to compute, and when aggregated over all the

repetitions required in the study, simulation for such factorial combinations could

take weeks to complete. A second computational challenge had to do with adequate

selection of the range of values used for the regularization parameter λ. The stan-

dardization of process parameters according to estimated recoverability had the effect

of standardizing the regularization path across factorial combinations. However, this

was a lucky coincidence; in general, the scale of appropriate λ values varies dramati-

cally over the parameter space. Lastly, the regularized likelihood optimizations were

based on vectorizing data matrices and using LASSO-GLM, and a number of practi-

cal hurdles with commerically available implementations required developing manual

implementations of pathwise coordinate descent algorithms for LASSO-GLM. In ini-

tial iterations, R and MATLAB implementations were considered. It was discovered

that the glmnet package in R does not handle user-specified regularization paths

well, and since the package calls routines written in other code environments, many

errors are untraceable. On the other hand, MATLAB’s implementations are more

stable under perturbation of λ, but do not currently leverage sparse linear algebra

operations, which are critical to efficient computation in the VAR/GVAR context.

Moreover, when intercepts are folded into the likelihood optimization, an unusual

strategy for distributing the penalty is required since VAR/GVAR models have mul-

tiple intercepts, and neither implementation is easily adaptable to accommodate this

126

requirement.

Future work. This work could be extended in several directions. First, the novel

portion of the proposed method is the model aggregation technique. This technique

is articulated in fully general terms, and could be directly applied in any model se-

lection problem; exploring the performance of the method in other contexts (sparse

regression or GLM, sparse factorizations, etc.) relative to existing selection methods

could reveal similar improvements to those observed in this work and provide insight

into the problem conditions under which it performs well. Second, less constrained

frameworks for simulating process parameters could be developed to allow for ex-

ploration of more complex processes. Third, the development of computationally

efficient implementations of the methods developed in this work would allow for ex-

plorations of performance in higher-dimensional settings and enhance understanding

of the method’s advantages and limitations, and dissemination of existing or improved

implementations would encourage the methods’ use.

127

Chapter 5: Conclusion

The foregoing chapters developed a resampling-intensive empirical method for sparse

estimation of Poisson GVAR(D) models in stages. Chapter 2 presented a prelimi-

nary version of the method that was developed in the context of VAR models for

continuous data and illustrated its application in a network analysis of financial time

series. Chapter 3 considered a generalization of the VAR model to conditionally Pois-

son count vectors and provided a rigorous analysis of the stability properties of the

corresponding class of stochastic processes. The analysis highlighted some of the chal-

lenges associated with Poisson GVAR models while also showing that stability can

be preserved for flexible parameter regimes without the use of data transformations.

Chapter 4 refined the methodology presented earlier in the thesis and demonstrated its

advantages in the context of sparse estimation of Poisson GVAR(D) models through

a simulation study. Very little methodology exists for this particular estimation prob-

lem, so the novel method was compared with the only existing method (Hall et al.,

2016a,b, 2018; Mark et al., 2017). Considerable improvements in selection accuracy,

largely achieved through false positive control, were demonstrated across data dimen-

sions and averaging over various model parametrizations.

A significant practical challenge in the development of the methodology was the

stability of the Poisson GVAR model, since simulation experiments required gener-

ating parameters, parameter configurations (i.e., graphical structures), and subse-

128

quently, data. In order to avoid having results on estimation performance depend

too heavily on specific data-generating processes in the model class, heuristics for

sampling from the parameter space were needed, and fully random draws from the

parameter space too often result in unstable or uncomputable processes. The need

for these heuristics motivated much of the work presented in Chapter 3 and called

attention to the somewhat surprising fact that the same degree of rigor in model

specification of univariate generalized autoregression (Davis and Liu, 2012; Fahrmeir

and Tutz, 1994; Neumann et al., 2011; Zeger and Qaqish, 1988) has not been present

in the literature on vector extensions of these models. Chapter 3 represents an initial

effort towards closing this gap.

Another practical challenge was computation on large scales. Between the sim-

ulation studies and data application, the process (vector) dimensions considered in

this thesis range from 10 to 80, and the empirical method presented in the thesis

has been successfully applied to data of vector dimension around 200 using relatively

naive implementations on a laptop computer and to data of vector dimension 1000

using a distributed implementation on a multi-node system (see Appendix C and

Balasubramanian et al. (2020)). While the term ‘high-dimensional’ is used variously,

most authors explicitly compute VAR models on datasets with tens to hundreds of

vector components (Fan et al., 2011), and most methodological works focus on data

with 10-50 vector components (including the chapters presented here; see also Basu

et al. (2015); Davis et al. (2016)). In practice, larger-scale data are often handled

by applying preliminary dimension reduction or selection techniques prior to model

estimation (Pillow et al., 2008). In general, it is not empirically known how selec-

129

tion and estimation performance scale in process dimension, and many applications

extrapolate far beyond scales explored in methodological work. One benefit of the

improved false positive rates that result from using the resampling-based methods

presented in Chapters 2 and 4 is that controlled selection errors are more likely under

increases in vector dimension to application scale.

Several extensions of the work here are possible, and have been described in the

concluding discussions in each chapter. Two in particular are worth underscoring.

First, the key innovation of the methodological work in Chapters 2 and 4 is the use of

model aggregation in place of model (hyperparameter) selection by cross validation,

and Chapter 4 demonstrates the selection improvements associated with this innova-

tion in the context of Poisson GVAR estimation, which represents a relatively chal-

lenging selection problem due to dependence, nonlinearity, and discreteness. While

it has been known for some time that cross validation is not in general a consis-

tent selection technique (Shao, 1993; Zhang, 1993), the technique is used anyway

in a wide range of applications. More recent methodological research has examined

the consistency of selection by cross validated LASSO estimation for linear models

(Chetverikov et al., 2019; Lei, 2019; Zhao and Yu, 2006). Model aggregation provides

a potential alternative to cross validation, and the results of Chapter 4 suggest it

may be a promising technique in a broader range of selection problems. Second, the

probabilistic analysis of Poisson GVAR processes presented in Chapter 3 gives only a

partial understanding of the process behavior focusing on process moments. Determi-

nation of ergodicity conditions is a key effort that would support theory for likelihood

estimation and inference, and would thus represent a valuable further contribution.

130

Bibliography

Abdelhakim Aknouche, Wissam Bentarzi, and Nacer Demouche. On periodic ergod-
icity of a general periodic mixed poisson autoregression. Statistics & Probability
Letters, 134:15–21, 2018.

Andrew Arnold, Yan Liu, and Naoki Abe. Temporal causal modeling with graphical
granger methods. In Proceedings of the 13th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 66–75, 2007.

Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. Spatio-temporal data mining:
A survey of problems and methods. ACM Computing Surveys (CSUR), 51(4):1–41,
2018.

Francis R Bach. Bolasso: model consistent lasso estimation through the bootstrap. In
Proceedings of the 25th international conference on Machine learning, pages 33–40,
2008.

Francis R Bach and Michael I Jordan. Learning graphical models for stationary time
series. IEEE transactions on signal processing, 52(8):2189–2199, 2004.

Mahesh Balasubramanian, Trevor D Ruiz, Brandon Cook, Mr Prabhat, Sharmodeep
Bhattacharyya, Aviral Shrivastava, and Kristofer E Bouchard. Scaling of union of
intersections for inference of granger causal networks from observational data. In
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 264–273, 2020.

Matteo Barigozzi and Christian Brownlees. Nets: Network estimation for time series.
Journal of Applied Econometrics, 34(3):347–364, 2019.

Matteo Barigozzi and Marc Hallin. A network analysis of the volatility of high dimen-
sional financial series. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 66(3):581–605, 2017.

Danielle Bassett and Olaf Sporns. Network neuroscience. Nature Neuroscience, 20
(3):353–364, 2017.

131

Sumanta Basu. Modeling and Estimation of High-dimensional Vector Autoregressions.
PhD thesis, The University of Michigan, 2014.

Sumanta Basu, George Michailidis, et al. Regularized estimation in sparse high-
dimensional time series models. The Annals of Statistics, 43(4):1535–1567, 2015.

Kristofer Bouchard, Alejandro Bujan, Fred Roosta, Shashanka Ubaru, Mr Prabhat,
Antoine Snijders, Jian-Hua Mao, Edward Chang, Michael W Mahoney, and Shar-
modeep Bhattacharya. Union of intersections (uoi) for interpretable data driven
discovery and prediction. In Advances in Neural Information Processing Systems,
pages 1078–1086, 2017.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Dis-
tributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends® in Machine learning, 3(1):1–122, 2011.

Johannes Bracher and Leonhard Held. Multivariate endemic-epidemic models with
higher-order lags and an application to outbreak detection. arXiv preprint
arXiv:1901.03090, 2019.

Patrick T Brandt and Todd Sandler. A bayesian poisson vector autoregression model.
Political Analysis, pages 292–315, 2012.

Nick Bromer. Superexponentiation. Mathematics Magazine, 60(3):169–174, 1987.

Emery Brown. Theory of point processes for neural systems. In Carson Chow, Boris
Gutkin, David Hansel, Claude Meunier, and Jean Dalibard, editors, Methods and
models in neurophysics, volume 80 of Les Houches, chapter 14, pages 691–727.
Elsevier Science, 1 edition, 2005.

Emery N Brown, Robert E Kass, and Partha P Mitra. Multiple neural spike train
data analysis: state-of-the-art and future challenges. Nature neuroscience, 7(5):
456–461, 2004.

Peter Bühlmann and Hans R Künsch. Block length selection in the bootstrap for
time series. Computational Statistics & Data Analysis, 31(3):295–310, 1999.

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: meth-
ods, theory and applications. Springer Science & Business Media, 2011.

132

György Buzsáki, Costas Anastassiou, and Christof Koch. The origin of extracellular
fields and currents – eeg, ecog, lfp and spikes. Nature Reviews Neuroscience, 13:
407–420, June 2012.

Laura Cavalcante, Ricardo J Bessa, Marisa Reis, and Jethro Browell. Lasso vector
autoregression structures for very short-term wind power forecasting. Wind Energy,
20(4):657–675, 2017.

Changhua Chen, Richard A Davis, and Peter J Brockwell. Order determination
for multivariate autoregressive processes using resampling methods. Journal of
multivariate analysis, 57(2):175–190, 1996.

Denis Chetverikov, Zhipeng Liao, and Victor Chernozhukov. On cross-validated lasso
in high dimensions. Technical report, UCLA, 2019. Working paper.

David R Cox, Gudmundur Gudmundsson, Georg Lindgren, Lennart Bondesson, Erik
Harsaae, Petter Laake, Katarina Juselius, and Steffen L Lauritzen. Statistical anal-
ysis of time series: Some recent developments. Scandinavian Journal of Statistics,
pages 93–115, 1981.

Gabriela Czanner, Sridevi V Sarma, Uri T Eden, and Emery N Brown. A signal-to-
noise ratio estimator for generalized linear model systems. In Proceedings of the
world congress on engineering, volume 2, 2008.

Gabriela Czanner, Sridevi V Sarma, Demba Ba, Uri T Eden, Wei Wu, Emad Es-
kandar, Hubert H Lim, Simona Temereanca, Wendy A Suzuki, and Emery N
Brown. Measuring the signal-to-noise ratio of a neuron. Proceedings of the Na-
tional Academy of Sciences, 112(23):7141–7146, 2015.

Rainer Dahlhaus. Graphical interaction models for multivariate time series. Metrika,
51(2):157–172, 2000.

Rainer Dahlhaus and Michael Eichler. Causality and graphical models in time series
analysis. Oxford Statistical Science Series, pages 115–137, 2003.

Richard A Davis and Heng Liu. Theory and inference for a class of observation-driven
models with application to time series of counts. arXiv preprint arXiv:1204.3915,
2012.

Richard A Davis, William TM Dunsmuir, and Ying Wang. Modeling time series of
count data. Statistics Textbooks and Monographs, 158:63–114, 1999.

133

Richard A Davis, William TM Dunsmuir, and Sarah B Streett. Observation-driven
models for poisson counts. Biometrika, 90(4):777–790, 2003.

Richard A Davis, Pengfei Zang, and Tian Zheng. Sparse vector autoregressive mod-
eling. Journal of Computational and Graphical Statistics, 25(4):1077–1096, 2016.

Jethro Dowell and Pierre Pinson. Very-short-term probabilistic wind power forecasts
by sparse vector autoregression. IEEE Transactions on Smart Grid, 7(2):763–770,
2015.

Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle
regression. The Annals of statistics, 32(2):407–499, 2004.

Michael Eichler. Graphical models in time series analysis. PhD thesis, Universität
Heidelberg, 1999.

L Fahrmeir. A note on asymptotic testing theory for nonhomogeneous observations.
Stochastic processes and their applications, 28(2):267–273, 1988.

Ludwig Fahrmeir. Asymptotic likelihood inference for nonhomogeneous observations.
Statistische Hefte, 28(1):81, 1987.

Ludwig Fahrmeir and Heinz Kaufmann. Consistency and asymptotic normality of
the maximum likelihood estimator in generalized linear models. The Annals of
Statistics, pages 342–368, 1985.

Ludwig Fahrmeir and Gerhard Tutz. Multivariate Statistical Modeling Based on Gen-
eralized Linear Models. Springer-Verlag: New York, 1994.

Jianqing Fan, Jinchi Lv, and Lei Qi. Sparse high-dimensional models in economics.
Annu. Rev. Econ, 3:291–317, 2011.

Konstantinos Fokianos. Count time series models. In Handbook of statistics, vol-
ume 30, pages 315–347. Elsevier, 2012.

Konstantinos Fokianos and Dag Tjøstheim. Log-linear poisson autoregression. Jour-
nal of Multivariate Analysis, 102(3):563–578, 2011.

Konstantinos Fokianos and Dag Tjøstheim. Nonlinear poisson autoregression. Annals
of the Institute of Statistical Mathematics, 64(6):1205–1225, 2012.

134

Konstantinos Fokianos, Anders Rahbek, and Dag Tjøstheim. Poisson autoregression.
Journal of the American Statistical Association, 104(488):1430–1439, 2009.

Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise
coordinate optimization. The Annals of Applied Statistics, 1(2):302–332, 2007.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for gen-
eralized linear models via coordinate descent. Journal of statistical software, 33(1):
1, 2010.

Clive WJ Granger. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica: journal of the Econometric Society, pages 424–
438, 1969.

Eric C Hall, Garvesh Raskutti, and Rebecca Willett. Inference of high-dimensional
autoregressive generalized linear models. arXiv preprint arXiv:1605.02693, 2016a.

Eric C Hall, Garvesh Raskutti, and Rebecca Willett. Inferring high-dimensional pois-
son autoregressive models. In 2016 IEEE Statistical Signal Processing Workshop
(SSP), pages 1–5, 2016b.

Eric C Hall, Garvesh Raskutti, and Rebecca M Willett. Learning high-dimensional
generalized linear autoregressive models. IEEE Transactions on Information The-
ory, 65(4):2401–2422, 2018.

Fang Han, Huanran Lu, and Han Liu. A direct estimation of high dimensional sta-
tionary vector autoregressions. Journal of Machine Learning Research, 2015.

Andréas Heinen and Erick Rengifo. Multivariate autoregressive modeling of time
series count data using copulas. Journal of Empirical Finance, 14(4):564–583,
2007.

Andréas Heinen, Erick Rengifo, et al. Multivariate modelling of time series count
data: an autoregressive conditional poisson model. Technical report, Universite
catholique de Louvain, 2003.

Nan-Jung Hsu, Hung-Lin Hung, and Ya-Mei Chang. Subset selection for vector
autoregressive processes using lasso. Computational Statistics & Data Analysis,
52(7):3645–3657, 2008.

135

Anthony R Ives, B Dennis, KL Cottingham, and SR Carpenter. Estimating commu-
nity stability and ecological interactions from time-series data. Ecological mono-
graphs, 73(2):301–330, 2003.

PA Jacobs and PAW Lewis. A mixed autoregressive-moving average exponential
sequence and point process (earma 1, 1). Advances in Applied Probability, pages
87–104, 1977.

Eugenia Kalnay, Masao Kanamitsu, Robert Kistler, William Collins, Dennis Deaven,
Lev Gandin, Mark Iredell, Suranjana Saha, Glenn White, John Woollen, et al.
The ncep/ncar 40-year reanalysis project. Bulletin of the American meteorological
Society, 77(3):437–472, 1996.

Dimitris Karlis and Evdokia Xekalaki. Mixed poisson distributions. International
Statistical Review/Revue Internationale de Statistique, pages 35–58, 2005.

Anuj Karpatne, James Faghmous, Jaya Kawale, Luke Styles, Mace Blank, Varun
Mithal, Xi Chen, Ankush Khandelwal, Shyam Boriah, Karsten Steinhaeuser, et al.
Earth science applications of sensor data. In Managing and Mining Sensor Data,
pages 505–530. Springer, 2013.

Anuj Karpatne, Imme Ebert-Uphoff, Sai Ravela, Hassan Ali Babaie, and Vipin Ku-
mar. Machine learning for the geosciences: Challenges and opportunities. IEEE
Transactions on Knowledge and Data Engineering, 2018.

Benjamin Kedem and Konstantinos Fokianos. Regression models for time series anal-
ysis, volume 488. John Wiley & Sons, 2005.

Donald Ervin Knuth. Mathematics and computer science: coping with finiteness.
Science (New York, NY), 194(4271):1235–1242, 1976.

Jens-Peter Kreiss and Soumendra Nath Lahiri. Bootstrap methods for time series. In
Tata Rao, Suhasini Rao, and C. Rao, editors, Handbook of Statistics, volume 30 of
Time Series Analysis: Methods and Applications, chapter 1, pages 3–26. Elsevier,
2012.

Hans R Kunsch et al. The jackknife and the bootstrap for general stationary obser-
vations. The Annals of Statistics, 17(3):1217–1241, 1989.

SN Lahiri et al. Theoretical comparisons of block bootstrap methods. The Annals of
Statistics, 27(1):386–404, 1999.

136

AJ Lawrance and PAW Lewis. An exponential moving-average sequence and point
process (ema1). Journal of Applied Probability, pages 98–113, 1977.

Jing Lei. Cross-validation with confidence. Journal of the American Statistical Asso-
ciation, pages 1–20, 2019.

Regina Y Liu and Kesar Singh. Moving blocks jackknife and bootstrap capture weak
dependence. Exploring the limits of bootstrap, 225:248, 1992.

Aurélie C Lozano, Naoki Abe, Yan Liu, and Saharon Rosset. Grouped graphical
granger modeling for gene expression regulatory networks discovery. Bioinformat-
ics, 25(12):i110–i118, 2009a.

Aurelie C Lozano, Hongfei Li, Alexandru Niculescu-Mizil, Yan Liu, Claudia Perlich,
Jonathan Hosking, and Naoki Abe. Spatial-temporal causal modeling for climate
change attribution. In Proceedings of the 15th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 587–596, 2009b.

Helmut Lütkepohl. New introduction to multiple time series analysis. Springer Science
& Business Media, 2005.

Ben Mark, Garvesh Raskutti, and Rebecca Willett. Network estimation via poisson
autoregressive models. In 2017 IEEE 7th International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 1–5, 2017.

Ed McKenzie. Some arma models for dependent sequences of poisson counts. Ad-
vances in Applied Probability, pages 822–835, 1988.

Nicolai Meinshausen and Peter Bühlmann. Stability selection. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

Nicolai Meinshausen, Peter Bühlmann, et al. High-dimensional graphs and variable
selection with the lasso. The annals of statistics, 34(3):1436–1462, 2006.

Michael H Neumann et al. Absolute regularity and ergodicity of poisson count pro-
cesses. Bernoulli, 17(4):1268–1284, 2011.

K Ord, C Fernandes, and AC Harvey. Time series models for multivariate series
of count data. Ed. T. Subba Rao, Developments in Time Series Analysis, pages
295–309, 1993.

137

Jack HW Penm and RD Terrell. On the recursive fitting of subset autoregressions.
Journal of Time Series Analysis, 3(1):43–59, 1982.

Bijan Pesaran, Martin Vinck, Gaute Einevoll, Anton Sirota, Pascal Fries, Markus
Siegel, Wilson Truccolo, Charles Schroeder, and Ramesh Srinivasan. Investigating
large-scale brain dynamics using field potential recordings: analysis and interpre-
tation. Nature neuroscience, 21(7):903–919, 2018.

Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke,
EJ Chichilnisky, and Eero P Simoncelli. Spatio-temporal correlations and visual
signalling in a complete neuronal population. Nature, 454(7207):995–999, 2008.

Huitong Qiu, Fang Han, Han Liu, and Brian Caffo. Joint estimation of multiple
graphical models from high dimensional time series. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 78(2):487–504, 2016.

Trevor Ruiz, Sharmodeep Bhattacharyya, Mahesh Balasubramanian, and Kristofer
Bouchard. Sparse and low-bias estimation of high dimensional vector autoregressive
models. Proceedings of Machine Learning Research, 120:55–64, 2020.

Jun Shao. Linear model selection by cross-validation. Journal of the American sta-
tistical Association, 88(422):486–494, 1993.

Ali Shojaie and George Michailidis. Discovering graphical granger causality using the
truncating lasso penalty. Bioinformatics, 26(18):i517–i523, 2010.

Christopher A Sims. Macroeconomics and reality. Econometrica: journal of the
Econometric Society, pages 1–48, 1980.

Song Song and Peter J Bickel. Large vector auto regressions. arXiv preprint
arXiv:1106.3915, 2011.

Jitkomut Songsiri, Joachim Dahl, and Lieven Vandenberghe. Graphical models of
autoregressive processes., 2010.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

Umberto Triacca, Alessandro Attanasio, and Antonello Pasini. Anthropogenic global
warming hypothesis: testing its robustness by granger causality analysis. Environ-
metrics, 24(4):260–268, 2013.

138

Wilson Truccolo, Uri Eden, Matthew Fellows, John Donoghue, and Emery Brown.
A point process framework for relating neural spiking activity to spiking history,
neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2):
1074–1089, 2005.

Ruey S Tsay. Analysis of financial time series, volume 543. John wiley & sons, 2005.

Pedro A Valdés-Sosa, Jose M Sánchez-Bornot, Agust́ın Lage-Castellanos, Mayrim
Vega-Hernández, Jorge Bosch-Bayard, Lester Melie-Garćıa, and Erick Canales-
Rodŕıguez. Estimating brain functional connectivity with sparse multivariate au-
toregression. Philosophical Transactions of the Royal Society of London B: Biolog-
ical Sciences, 360(1457):969–981, 2005.

Anita J van der Kooij. Prediction accuracy and stability of regression with optimal
scaling transformations. PhD thesis, Lieden University, 2007.

Yuxiao Wang, Chee-Ming Ting, and Hernando Ombao. Modeling effective connec-
tivity in high-dimensional cortical source signals. IEEE Journal of Selected Topics
in Signal Processing, 10(7):1315–1325, 2016.

Stephen R Wassell. Superexponentiation and fixed points of exponential and loga-
rithmic functions. Mathematics Magazine, 73(2):111–119, 2000.

Wing Hung Wong et al. Theory of partial likelihood. The Annals of statistics, 14(1):
88–123, 1986.

Scott L Zeger and Bahjat Qaqish. Markov regression models for time series: a quasi-
likelihood approach. Biometrics, pages 1019–1031, 1988.

Ping Zhang. Model selection via multifold cross validation. The Annals of Statistics,
pages 299–313, 1993.

Peng Zhao and Bin Yu. On model selection consistency of lasso. Journal of Machine
learning research, 7:2541–2563, 2006.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the royal statistical society: series B (statistical methodology), 67(2):
301–320, 2005.

139

APPENDICES

140

Appendix A: Algorithms

A.1 Coordinate descent for VAR(D) estimation

Weighted least squares with elastic net. The algorithms that follow for com-

puting regularized MLEs for vector autoregressive models and generalized vector au-

toregressive models are all based on coordinate descent updates for the weighted least

squares regression estimate with an elastic net penalty. This section presents this core

update rule used in subsequent algorithms.

Consider estimation of the regression model

z =Xβ + ε

where z is the response, X is the matrix of fixed covariate information, β is a vector

of fixed but unknown parameters, and ε is a vector of uncorrelated random errors

with mean zero.

The weighted least squares estimate of β is given by

β̂ = argminβ {
1

2
(z −Xβ)′W (z −Xβ)}

141

where W is a diagonal matrix of known weights. Denote the objective function by

f(β) =
1

2
(z −Xβ)′W (z −Xβ) (A.1)

The weighted least squares estimate with an elastic net penalty is obtained by adding

a penalty term P (β) to the objective function

β̂ = argminβ {
1

2
(z −Xβ)′W (z −Xβ) + λP (β)} (A.2)

where P (β) = 1−α
2 ∥β∥22 + α∥β∥1 and λ is a hyperparameter that controls the strength

of the penalty. The hyperparameter α controls the relative balance of the L2 (ridge)

and L1 (LASSO) terms in the penalty.

The coordinate descent approach to computing β̂ in Equation (A.2) is to iteratively

minimize the objective function in each βj conditional on the current values of the

other parameters βk for k ≠ j until convergence. Each iteration can be accomplished

by a simple update rule that can be equivalently derived by a number of approaches

(Friedman et al., 2007, 2010; van der Kooij, 2007; Zou and Hastie, 2005). Here the

rule is derived from the update given by Newton’s method.

For the purpose of taking derivatives in βj, the first portion of the objective

function f(β) can be rewritten as

f(β) =
1

2

⎛

⎝
z −∑

k≠j
xkβk − xjβj

⎞

⎠

′

W
⎛

⎝
z −∑

k≠j
xkβk − xjβj

⎞

⎠

where xj denotes the jth column of X. The first and second partial derivatives of

142

this portion with respect to βj are

∂

∂βj
f(β) = −

⎛

⎝
z −∑

k≠j
xkβk − xjβj

⎞

⎠

′

Wxj

= βjx
′
jWxj −

⎛

⎝
z −∑

k≠j
xkβk

⎞

⎠

′

Wxj

= βjx
′
jWxj − (z − z(j))

′
Wxj

∂2

∂2βj
f(β) = x′jWxj

where z(j) denotes ∑k≠j xkβk. The quantity (z − z(j)) is known as the jth partial

residual.

Now, the derivatives of the penalty portion of the objective function are

∂

∂βj
(λ

1 − α

2
∥β∥22 + λα∥β∥1) = λ(1 − α)βj + λα

∂

∂βj
∣βj ∣

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(1 − α)βj + λα , if βj > 0

λ(1 − α)βj − λα , if βj < 0

λ(1 − α)βj + λα∂∣βj ∣ , if βj = 0

∂2

∂2βj
(λ

1 − α

2
∥β∥22 + λα∥β∥1) = λ(1 − α)

where ∂∣βj ∣ denotes a subgradient. Supposing the current estimate is β̂(k), the Newton

update for minimization in the jth coordinate is

β̂
(k+1)
j ←Ð β̂

(k)
j −

∂
∂βj

(f(β) + λP (β))∣β=β̂(k)

∂2

∂2βj
(f(β) + λP (β))∣β=β̂(k)

(A.3)

143

When articulated casewise according to whether β̂
(k)
j > 0 or β̂

(k)
j < 0 or β̂

(k)
j = 0,

Equation (A.3) gives the update rule (after minor algebraic simplification)

β̂
(k+1)
j ←Ð

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z−z(j))′Wxj−λα
x′jWxj+λ(1−α) , if β̂

(k)
j > 0

(z−z(j))′Wxj+λα
x′jWxj+λ(1−α) , if β̂

(k)
j < 0

(z−z(j))′Wxj−λαc
x′jWxj+λ(1−α) , if β̂

(k)
j = 0

where c ∈ [−1,1]. Now if ∣ (z − z(j))
′
Wxj ∣ ≤ λα, the (sub)gradient in Equation (A.3) is

not a descent direction, and in this case, the optimal value of the objective function is

achieved by setting β̂
(k+1)
j to zero. Rewriting the conditions in terms of (z − z(j))

′
Wxj

and dropping the iteration count k yields the update rule

β̂j ←Ð

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z−z(j))′Wxj−λα
x′jWxj+λ(1−α) , if (z − z(j))

′
Wxj > 0 and ∣ (z − z(j))

′
Wxj ∣ > λα

(z−z(j))′Wxj+λα
x′jWxj+λ(1−α) , if (z − z(j))

′
Wxj < 0 and ∣ (z − z(j))

′
Wxj ∣ > λα

0 , if and ∣ (z − z(j))
′
Wxj ∣ ≤ λα

Finally, the update can be re-expressed in terms of the soft-threshold function

S(x, y) = sign(x)(∣x∣ − y)+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − y , if x > 0 and ∣x∣ > y

x + y , if x < 0 and ∣x∣ > y

0 , if ∣x∣ ≤ y

144

compactly as the coordinate update

β̂j ←Ð
S ((z − z(j))

′
Wxj, λα)

x′jWxj + λ(1 − α)

The coordinate descent algorithm using this update rule and a gradient norm stopping

criterion is given as Algorithm A.1.

Algorithm A.1 Coordinate descent algorithm for computing the weighted least
squares estimate with an elastic net penalty.

Require:
Data z,X; hyperparameters λ,α; and convergence threshold δ
Initialize β̂
while ∥∇f(β̂)∥2 > δ do

for j = 1, . . . , J do
z(j) ←Ð ∑k≠j xkβ̂k

β̂j ←Ð
S((z−z(j))′Wxj ,λα)
x′jWxj+λ(1−α)

end for
end while

Ensure: β̂

VAR estimation. Algorithm A.1 can be applied directly to estimation of a VAR

model after an appropriate vectorization transformation of the data. However, a

slight modification of the algorithm results in more efficient computations. First the

data transformation is described, followed by the modification strategy.

In Chapter 2, Equation (2.2) expresses the VAR(D) model as a multivariate mul-

145

tiple regression Y = UB +E where

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x′T

x′T−1

⋮

x′D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x′T−1 ⋯ x′T−D

1 x′T−2 ⋯ x′T−D−1

⋮ ⋮ ⋱ ⋮

1 x′D−1 ⋯ x′0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν′

A′
1

⋮

A′
D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

E =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε′T

ε′T−1

⋮

ε′D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This can be further expressed as a univariate regression Y = Xβ + E where the mean

portion and response are given by

Y
def
= vecY , X

def
= U ⊗ IM , and β

def
= vecB (A.4)

Now, a simple strategy for computing the LASSO estimate of ν,A1, . . . ,AD, given by

β̂ = argminβ {∥Y − Xβ∥
2
2 + λ

D

∑
d=1
∑
i,j

∣adij ∣}

is to apply Algorithm A.1 directly withX = X , z = Y, α = 0, W = I, and setting λ = 0 in

the update rule whenever βj = νk, so as to avoid applying the penalty to the intercept.

However, the matrix X is a block-diagonal matrix comprising M copies of U , and the

corresponding blocks of Y are the univariate series xm = (xmT xm(T−1) ⋯ xmD)′

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮

xM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U 0 ⋯ 0

0 U ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ U

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

146

As a result, computation and storage of X occupies unnecessary memory, so direct

application of Algorithm A.1 to X and Y is inefficient.

Due to the sparsity pattern in X , the computations involved in the update rule for

the lth coordinate are given under index transformations by operations involving only

U and Y . Specifically, denoting the row and column dimensions of U as N = T −D and

P =DM+1 and the row and column dimensions of X asK = NM and L =M(DM+1),

one has

(Y − Y(l))
′
Xl = (xm − x

(p)
m)

′
up

X ′
lXl = u

′
pup

where the index transformation is given by

(n,m) = (kmodM +M1{kmodM = 0},
k − kmodM

M
+ 1{k = kmodM})

(p,m) = (lmodP + P1{lmodP = 0},
l − lmodP

P
+ 1{l = lmodP})

The computation of x
(p)
mn = ∑j≠p unjbjm depends only on the mth column of B.

Consequently, a more efficient strategy for computing the LASSO estimate for a

VAR(D) model is to divide the coordinate iterations into blocks corresponding to the

blocks of B and compute the update rules using data stored in the formats specified

by U and Y . A slight ridge penalty is included for numerical stability. This strategy

is given as Algorithm A.2.

147

Algorithm A.2 Coordinate descent algorithm for computing the LASSO VAR(D)
estimate with blockwise coordinate updates.

Require:
Data Y,U , hyperparameters λ,α, and convergence threshold δ
Initialize B̂
while ∥∇f(B̂)∥2 > δ do

for m = 1, . . . ,M do
for p = 1, . . . ,DM + 1 do
x
(p)
mn ←Ð ∑j≠p unj b̂jm for n = 1, . . . ,N

b̂pm ←Ð

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(xm−x(p)m)
′
up

u′pup
, if p = 1

S((xm−x(p)m)
′
up,λα)

u′pup+λ(1−α)
, if p > 1

end for
end for

end while
Ensure: B̂

A.2 Coordinate descent for GVAR(D) estimation

The strategy above can be extended directly to estimation of generalized vector au-

toregressive models since the data transformations and predictor structure exhibit

analogous sparsity patterns. This section describes the coordinate descent algorithm

for computing coefficient estimates in univariate GLMs with an elastic net penalty,

and then restates the blockwise update strategy from the previous section in this case.

Penalized IRLS for univariate generalized linear models. Consider the uni-

variate generalized linear model: a response vector y and covariate information X

where

yi
indep.
∼ p(⋅ ; θi) and g(Ey) = g(µ) = η =Xβ

148

where p is an exponential family density of the form

p(yi; θi) ∝ exp{
yiθi − b(θi)

a(φi)
}

Assume that g is the canonical link function that results from equating η = θ. The

log-likelihood as a function of the linear predictor η is, up to a constant,

`(η;x, y) =
n

∑
i=1

(
yiηi − b(ηi)

a(φi)
)

The classical technique for unpenalized maximum likelihood estimation maximizes

`(η;x, y) iteratively by:

1. computing an approximation ˜̀ to the log-likelihood from current estimates;

2. maximizing the approximation ˜̀ to get new estimates;

3. repeating 1 - 2 until the estimates converge.

Conveniently, the approximation −˜̀ takes the form of the loss function for a weighted

least squares problem for which a closed form solution is available, which eases cal-

culations in step 2.

Consider now computing the penalized MLE

β̂ = argminβ {−`(η;x, y) + λP (β)} (A.5)

The same strategy for unpenalized estimation is applicable with the penalty, though

generally iterative methods will replace closed form solutions for the optimization

149

step (step 2). The objective function −`(η;x, y) + λP (β) can be approximated by

the loss function for a penalized weighted least squares problem. For the elastic net

penalty, the approximation can be maximized with respect to β via Algorithm A.1.

The penalized MLE in Equation (A.5) with the elastic net penalty can therefore be

found iteratively by:

1. computing the approximation −˜̀(η;x, y) + λP (β) to the (negative) penalized

log-likelihood from current estimates;

2. maximizing the approximation −˜̀(η;x, y)+λP (β) with respect to one coordinate

via the update rule in Algorithm A.1 to get new estimates;

3. repeating 1 - 2 for each coordinate and cycling through the coordinates until

the estimates converge.

This procedure is given as Algorithm A.3.

Algorithm A.3 Coordinatewise IRLS algorithm for estimation of generalized linear
models with an elastic net penalty.

Require: data x, y; hyperparameters λ,α; convergence threshhold δ
Initialize β̂
while ∥∇`(η̂;x, y)∥2 > δ do

for j = 1, . . . , J do
W ←Ð (diag(g′(µ̂))

−1

z ←Ð xβ̂ − (y − µ̂)W −1

z(j) ←Ð ∑k≠j xkβ̂k

β̂j ←Ð
S((z−z(j))′Wxj ,λα)
x′jWxj+λ(1−α)

end for
end while

Ensure: β̂

150

The update rules for z and W in Algorithm A.3 are derived from a Taylor ex-

pansion around current estimates. Let η̂ denote the linear predictor from the current

estimates β̂, `(η) denote the log-likelihood (suppressing the data arguments), v and

W denote the gradient and Hessian of `(η). A second-order Taylor expansion of the

log-likelihood about η̂ gives

`(η) ≈ `(η̂) + (η − η̂)′`′(η̂) −
1

2
(η − η̂)′`′′(η̂)(η − η̂)

= C + (η − η̂)′`′(η̂) −
1

2
(η − η̂)′`′′(η̂)(η − η̂)

= C + (η − η̂)′v −
1

2
(η − η̂)′W (η − η̂)

= C∗ −
1

2
(η − η̂ − vW −1)′W (η − η̂ − vW −1)

= C∗ −
1

2
(η − z)′W (η − z)

with z = η̂−vW −1. Now W and z depend on the current estimates and can be derived

in general for any GLM. Since by hypothesis µi = b′(θi) = g−1(ηi),

∂`

∂ηi
= (

yi − b′(θi)

ai(φ)
)
∂θi
∂ηi

= (
yi − b′(θi)

ai(φ)
)
∂θi
∂µi

∂µi
∂ηi

= (
yi − b′(θi)

ai(φ)
)

1

g′(µi)

1

b′′(θi)

= (yi − µi) (ai(φ)g
′(µi)b

′′(θi))
−1

151

When ai(φ) = 1 and g is the canonical link, g′(µi) =
∂ηi
∂µi

and b′′(θi) =
∂µi
∂θi

, so

∂`

∂ηi
= yi − µi

and

∂2`

∂ηi∂ηj
=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

− 1
g′(µi) i = j

0 i ≠ j

So W = diag(1/g′(µ)) and v = (y1 −µ1⋯yN −µN). Therefore, given current estimates,

updating the approximation amounts to computing

z =X ′β̂ − (y − µ̂)W −1 (A.6)

W = (g′(µ̂))
−1

(A.7)

Equations (A.6) and (A.7) give the updates that appear in the outer while loop of

Algorithm A.3.

GVAR(D) estimation. Algorithm A.3 can be modified for efficient estimation of

GVAR(D) models with an elastic net penalty using a blockwise update strategy for

the inner while loop. The modification bears an identical relationship to Algorithm

A.3 as Algorithm A.2 bears to Algorithm A.1.

The GVAR(D) model for data {xt ∈ RM}Tt=0 is the random process {Xt ∈ RM}Tt=0

characterized by the conditional mean structure

g (E (Xt ∣Xt−1 = xt−1, . . . ,Xt−D = xt−D)) = ν +
D

∑
d=1
Adxt−d

152

under the assumption that for each m = 1, . . . ,M and each t

Xt,m ∣Xt−1 = xt−1, . . . ,Xt−D = xt−D
indep.
∼ p(⋅ ∣ θt,m = νm +

D

∑
d=1
a′d,mxt−d)

where p(⋅∣θ) is an exponential family density and g is the canonical link so that

ηt,m = θt,m = g(µt,m) = E(Xt,m∣Xt−1, . . . ,Xt−D)). Denoting the data by X = (X0 ⋯XT)

log-likelihood by `(B;X), the penalized maximum likelihood estimate of B is

B̂ = arg min
B

{−`(B;X) + λP (B)}

where the explicit form of the likelihood is given in Chapter 3 as Equation (3.3). Here

let P be the elastic net penalty applied only to the elements of A1, . . . ,AD

P (B) =
1 − α

2
∑
d,i,j

a2dij + α∑
d,i,j

∣adij ∣

An iterative estimation algorithm based on Algorithm A.3 is derived below by vec-

torizing the problem and developing a blockwise update strategy analogous to the

VAR(D) case (Algorithm A.2).

The GVAR(D) model can be expressed as a multivariate generalized regression

model

g (E(Y ∣U)) = g (µ) = η = UB

153

expressed in terms of Y,U,B where

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X ′
T

X ′
T−1

⋮

X ′
D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 X ′
T−1 ⋯ X ′

T−D

1 X ′
T−2 ⋯ X ′

T−D−1

⋮ ⋮ ⋱ ⋮

1 X ′
D−1 ⋯ X ′

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν′

A′
1

⋮

A′
D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Analogous to the VAR(D) case, the core model relationship can be expressed in

univariate terms by applying the vectorization transformations given in Equation

(A.4), with the result

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮

xM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U 0 ⋯ 0

0 U ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ U

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

β = vec(B)

where xm = (x0,m ⋯ xT,m)′ denote the univariate series in each component so that

g (E(Y∣X)) = g (vec(µ)) = vec(η) = Xβ

It is straightforward to verify by inspection that if the the elements of Y are assumed

to be Poisson conditional on X with the corresponding mean, the likelihoods of β and

B are identical, i.e.,

`(β;Y,X) = `(B;Y,U)

154

since the likelihood contributions from each xt,m are exactly the same. Therefore, the

estimate B̂ can be recovered from the estimate

β̂ = argminβ {−`(β;Y,X) + λP ∗(β)}

where P ∗(β) = P (B). Now, following the discussion in the previous section, due to

the sparsity pattern of X the key operations in coordinate updates that result from

directly applying Algorithm A.3 to the vectorized data X and Y can be expressed

in terms of U and X. The result is given as Algorithm A.4, following the index

conventions used in Algorithm A.2.

Algorithm A.4 Coordinatewise IRLS algorithm for computing LASSO GVAR(D)
estimates with blockwise updates.

Require:
Data Y,U , hyperparameters λ,α, and convergence threshold δ
Initialize B̂
while ∥∇`(B̂;X)∥2 > δ do

for m = 1, . . . ,M do
for p = 1, . . . ,DM + 1 do
Wm ←Ð (diag(g′(µ̂m))

−1

zm ←Ð Ub̂m − (xm − µ̂m)W −1
m

z
(p)
mn ←Ð ∑j≠p unjβ̂j for n = 1, . . . ,N

b̂pm ←Ð

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(zm−z(p)m)
′
Wmup

u′pWmup
, if p = 1

S((zm−z(p)m)
′
Wmup,λα)

u′pWmup+λ(1−α) , if p > 1

end for
end for

end while
Ensure: B̂

155

Appendix C: Computation

This appendix describes scaling experiments that explore the effect of dataset size on

runtimes in a distributed computing environment and identify computational bottle-

necks for execution of the UoI-VAR algorithm.

Overview of scaling experiments. The scalability of the UoI-VAR method was ex-

plored in empirical experiments using a distributed implementation of the algorithm.

One set of experiments explored weak scaling: the effect of simultaneous increase of

data dimensions and computation cores on runtime. Another explored strong scaling:

the effect of increasing computation cores on runtime given fixed data dimensions.

Scaling in these experiments is reported as a function of the memory required to store

Y and X arising from time series data; the dimension M of the synthetic input data

xt ∈ RMT
t=0 used in the experiments varied between M = 356 and M = 1000 and was

adjusted with T = 2M to yield target memory requirements.

For these experiments, a distributed implementation of the UoI-VAR method was

developed with bootstrap-level and regularization path parallelisms in C++ using

Message Passing Interface (MPI) for inter-nodal communication and the program

was executed on Cori Knight’s Landing supercomputer at Lawrence Berkeley Na-

tional Laboratory. It was found that generating data for bootstrap samples in both

the intersection and union steps can be quite challenging because of immense inter-

nodal communication; a data distribution strategy developed specifically for the UoI

156

algorithmic framework was used to address this challenge (Balasubramanian et al.,

2020).

The implementation that exploits regularization path parallelism and computes

LASSO estimates in a distributed fashion via the Alternating Direction Method of

Multipliers (ADMM) algorithm (Boyd et al., 2011) using publicly available codes.

An important consequence of this strategy for computing LASSO estimates is that

it dramatically increases memory requirements for LASSO and least squares compu-

tations within the UoI-VAR algorithm relative to the coordinate descent approach

described in Appendix A. The ADMM codes require explicitly constructing the vec-

torized quantities Y∗ and X ∗ = U∗ ⊗ IM and rely on sparse matrix operations to

improve the efficiency of subsequent computations. While the Kronecker product

calculation is costly and the result is a potentially very large object that contains

no information over and above U∗, the advantage is that regularization path paral-

lelism can be easily implemented. By contrast, the coordinate descent codes avoid

this operation and compute solutions using just U∗, but proceed in serial across the

regularization path. This is not a strictly necessary tradeoff, and a manual imple-

mentation of ADMM adjusted for the VAR problem could exploit the additional level

of parallelism without increasing memory requirements.

Weak scaling. Figure C.1 shows the runtime performance of the algorithm on syn-

thetic datasets under weak scaling, i.e., under increases in dataset size concurrent

with proportional increases in the number of computation cores. In this scaling ex-

periment, the total runtime performance is divided into computation, communication,

157

UoI
VAR

 Weak Scaling

128GB 256GB 512GB 1TB 2TB 4TB 8TB
Problem size

101

102

103

104

T
im

e
(s

)

Communication
Distr. Kron & Vec.
Computation

Figure C.1: Runtime analysis of UoI-VAR under weak scaling (computation cores
increase with data dimensions). Total runtime for the method is divided into com-
putation, communication, and data distribution, and runtimes associated with each
division are plotted on a logarithmic scale against the memory required to store the
data.

and distribution times: computation time is associated with calculating LASSO and

OLS estimates on bootstrap samples; communication time is associated with MPI

calls in the program; and distribution time is dominated by distribution of the boot-

strap data quantities Y∗,X ∗ to computation nodes. These three times are plotted

against problem size in the figure on a logarithmic scale. As the problem size in-

creases, LASSO computation runtime remains nearly constant, but the distribution

runtime increases exponentially and the communication runtime increases above a

problem size of 1TB. This reflects that for relatively smaller data dimensions, com-

putation dominates total runtime, but above a certain threshold, distribution (and

to a lesser extent communication) dominate runtime. Further, the exponential in-

158

UoI
VAR

 Strong Scaling

4,352 8,704 17,408 34,816
No. of KNL cores

0

200

400

600

800

1000

1200

1400

T
im

e
(s

)

Communication
Distr. Kron & Vec.
Computation

Figure C.2: Runtime analysis of UoI-VAR under strong scaling (computation cores
increase but data dimensions remain fixed). Total runtime for the method is divided
into computation, communication, and data distribution, and runtimes associated
with each division are plotted on a logarithmic scale against the memory required to
store the data.

crease in distribution runtimes indicates that the implementation strategy involving

explicit construction of Y and X creates a computational bottleneck that becomes

problematic for massive data.

Strong scaling. A second set of experiments explored strong scaling on synthetic

data by recording computation, communication, and distribution runtimes on a 1TB

dataset under increases — specifically, consecutive doublings — in the number of

computation cores available. Figure C.2 shows each runtime plotted on a linear scale

against number of available cores. The results indicate a decrease in computation time

and an increase in distribution time. This suggests that the computation bottleneck

associated with distribution time due to explicit construction of Y and X can be

159

mitigated to some extent by limiting the number of cores: for the 1TB dataset in this

particular experiment, a number of cores around roughly 18,000 (near the third set of

times assessed using 17,408 cores) achieves a reasonable balance between computation

and distribution time. More broadly put, choosing a large but moderate number of

cores relative to data dimensions can achieve substantial efficiency in computation

time without exacerbating distribution time.

Summary of findings. The scaling experiments indicate two important findings.

First, above certain dataset dimensions, distribution time associated with vectorizing

the bootstrap samples (i.e., forming X ∗ and Y∗) to compute estimates dominates

runtimes. Second, for a fixed data dimension, distributing computations across too

few cores prolongs computation time but limits distribution time, and distributing

computations across too many cores prolongs distribution times but diminishes com-

putation time. Both findings indicate that distribution time is the main computa-

tional bottleneck for algorithm execution. This result suggests more broadly that the

vectorization strategy has its limitations. Based on the weak scaling experiments,

the strategy can be expected to fail in applications involving massive data due to

the exponential increase in distribution time. It is worth highlighting that although

this finding was observed in the context of UoI-VAR runtimes, the bottleneck iden-

tified arises from vectorization, which is a common general strategy for computing

VAR model estimates (of any type) using regression methods (of any type). In other

words, the limitation observed is not specific to the UoI-VAR method, and in fact

is much more general. This suggests that for VAR estimation in large-scale applica-

160

tions, it is essential to develop efficient computation strategies as alternatives to direct

implementation of regression methods. The modified pathwise coordinate descent al-

gorithm developed in Appendix XX provides an example of this kind of approach.

161

Appendix S: Supplementary Figures

Supplementary figures for Chapter 2

Figure S.1: Selection behavior detail for UoI-VAR and LASSO estimators observed
in the simulation study of Section 2.4.1. Panel rows distinguish selection accuracy,
false negative rates, and false positive rates; panel columns distinguish dimensions M ;
and in each panel boxplots for the row metric for each estimator are plotted against
time series length T on the horizontal axis.

162

Figure S.2: Forecast and estimation behavior detail for UoI-VAR and LASSO es-
timators observed in the simulation study of Section 2.4.1. Panel rows distinguish
one-step forecast errors, four-step forecast errors, and estimation error; panel columns
distinguish dimensions M ; and in each panel boxplots for the row metric for each es-
timator are plotted against time series length T on the horizontal axis.

163

Figure S.3: First differences of S&P dataset analyzed in the example causal analysis
application in Section 2.4.2. Each panel shows first differences of weekly closes of one
of 50 randomly chosen publicly traded companies listed on the S&P 500 index in
2013-2014.

164

Supplementary figures for Chapter 4

Figure S.4: Comparison of estimation error between combinations of support se-
lection and support estimation methods observed in the simulation of Section 4.3.
For each combination of sparsity s (panel rows) and dimension M (panel columns)
in the simulation, estimation error ∥A − Â∥F for each of the estimates computed per
method is plotted against realization length T . The bold lines are average estimation
errors per method taken across each of the five simulated datasets for each of the ten
generated parameter matrices per simulation setting.

165

Figure S.5: Average false negative counts for each combination of support selection
and support estimation method observed in the simulation of Section 4.3. For a given
estimate Â of A, the false negative count is the number of nonzero parameters in
A that are estimated as zero in Â; or, expressed in terms of the true and estimated
support sets, the quantity ∣S∖Ŝ∣. Average false negative counts are computed for each
combination of sparsity s (panel rows), dimension M (panel columns), and realization
length T (horizontal axis), and taken across each of the five simulated datasets for
each of the ten generated parameter matrices per combination.

166

Figure S.6: Average false positive counts for each combination of support selection
and support estimation method observed in the simulation of Section 4.3. For a given
estimate Â of A, the false positive count is the number of zero-valued parameters in A
that are estimated as nonzero in Â; or, expressed in terms of the true and estimated
support sets, the quantity ∣Ŝ∖S∣. Average false negative counts are computed for each
combination of sparsity s (panel rows), dimension M (panel columns), and realization
length T (horizontal axis), and taken across each of the five simulated datasets for
each of the ten generated parameter matrices per combination.

	Introduction
	Background
	Vector autoregression
	Time series models for count vectors

	Contributions and organization of the thesis

	Sparse estimation of high dimensional VAR models
	Introduction
	Background
	Vector autoregressive processes
	Sparse estimation via LASSO

	Methods
	UoI-VAR estimation method
	A bootstrap method for time series

	Results
	Simulation study
	Application

	Discussion

	Poisson generalized vector autoregression
	Introduction
	Poisson generalized vector autoregressive processes
	Process definition and properties
	Process stability

	Stability conditions for Poisson GVAR(1) processes
	Stability of graphically constrained processes
	Moment bounds for graphically-constrained processes
	Other graphical structures

	Estimation
	Likelihood estimation
	Pseudo-unidentifiability

	Discussion

	Sparse estimation of Poisson GVAR models
	Introduction
	Methodological variants on UoI
	Algorithmic framework
	Methodological design choices
	Methodological variants
	Initial comparison: effect of conditioning

	Simulation study
	Parameter generation and parameter recoverability
	Simulation design
	Simulation results

	Discussion

	Conclusion
	Bibliography
	Appendices
	Algorithms
	Computation
	Supplementary Figures

