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A parametric manifold is a manifold on which all tensor fields depend on an 
additional parameter, such as time, together with a parametric structure, namely a 
given (parametric) one-form field. Such a manifold admits natural generalizations 
of Lie differentiation, exterior differentiation, and covariant differentiation, all 
based on a nonstandard action of vector fields on functions. There is a new geo- 
metric object, called the dejciency, which behaves much like torsion, and which 
measures whether a parametric manifold can be viewed as a one-parameter family 
of orthogonal hypersurfaces. 0 199.5 American Znstitute of Physics. 

1. INTRODUCTION 

It is often useful to project the geometric structure of a manifold onto an embedded hyper- 
surface. This leads to the well-known Gauss-Codazzi formalism, which relates the projected 
geometry of the hypersurface to the original manifold. Initial value problems are often posed in 
this setting, with a one-parameter family of embedded hypersurfaces being used to describe the 
evolution. Identifying these hypersurfaces leads to the interpretation of tensor fields in the original 
manifold as one-parameter families of tensor fields on a given hypersurface. This is the beginnings 
of a theory of parametric manifolds. 

We recently generalized the Gauss-Codazzi formalism from the setting just described to the 
case where the manifold is foliated by the integral curves of a (suitably regular) vector field, but 
where these curves are not assumed to be hypersurface orthogonal.’ (The recent work of Gowdy’ 
also introduces a generalized notion of the Gauss-Codazzi formalism.) We will refer to this as the 
extrinsic approach to parametric manifolds. This results in a picture of a parametric manifold 
which is now the manifold of orbits of the given curves, on which there are one-parameter families 
of tensor fields. 

However, there are implicit properties which such parametric manifolds inherit from the 
original manifold. Notable among these is the behavior under reparameterizations, which consist 
of relabeling the parameter along the given curves, and which are hence a special class of coor- 
dinate transformations in the original manifold. 

We show here that parametric manifolds can be be defined completely intrinsically, without 
reference to an “original manifold.” The key idea is to generalize the action of vector fields on 
functions in a way reminiscent of the notion of horizontal lift in a fiber bundle. This naturally leads 
to generalizations of Lie differentiation, exterior differentiation, and covariant differentiation. 
These derivative operators reproduce intrinsically the corresponding projected operators obtained 
in our earlier extrinsic approach. 

The geometry of parametric manifolds is “almost a fiber bundle,” and as such may provide 
the groundwork for a generalization of Yang-Mills theory. 

We start by defining parametric manifolds in Sec. II. We then introduce parametric exterior 
differentiation in Sec. III, which allows us to define the all-important notion of dejkiency, which 
measures whether a parametric manifold can be viewed as a one-parameter family of orthogonal 
hypersurfaces. In Sec. IV, we then use the deficiency to define a parametric bracket, and hence a 
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parametric Lie derivative. Parametric connections are discussed in Sec. V, including their associ- 
ated (generalized) torsion and curvature. Finally, in Sec. VI, we discuss our results. 

II. PARAMETRIC FUNCTIONS AND VECTOR FIELDS 

Consider a smooth manifold 2. We wish to consider one-parameter families of tensor fields on 
C, parameterized by a parameter t. Since the particular choice of parameter should not be impor- 
tant, we first need to describe how to change the parameterization. 

Dejnition I: A reparameterization of 2 is an assignment 

s=t+F(p) 

A parametric structure on Z is a preferred one-parameter family of one-forms w(t) on 2 
which behaves as follows under a reparameterization: 

cj(s)=w(t)-dF, (1) 

i.e., o(t) transforms to 63(s) under a reparameterization. 
We can now start to consider parametric objects on C. 
Definition 2: A parametric function on Z is a mapping f:ZXB + 5%. Denote the collection of 

such mappings by Y*(Z). 
Given a parametric function f MY*, for a fixed t ~3% f can be considered as a function 

from Z to 3% Denote this function by ft. Thus f, EY(~), the ring of functions on 2, and can be 
acted on by tangent vectors of 2. 

Proposition 3: The action of ~9, on parametric functions is a covariant operation. 
Proof: Under a coordinate transformation of 2, the operator a, remains unaffected. This is 

because the parameter t is not a coordinate and, hence, any coordinate transformation of ZZ must 
be independent of t. Therefore, 8f /at 1 cp,r,j does not depend on the choice of coordinates for p E 2. 
Furthermore, under a reparameterization s = t + F(p), df/& = dfldt. n 

While tangent vector fields do not act uniquely on parametric functions, one-parameter fami- 
lies of tangent vector fields do. These one-parameter families of vector fields, called parametric 
vector fields, will act on parametric functions in a way reminiscent of the action of projected 
vector fields. 

Definition 4: A parametric vector field is a smooth mapping X:2X3% -+ fi such that for 
each p EC, X(p, t) E T& for all tE.95’. Let x,(c) represent the collection of smooth parametric 
vector fields dejned on 2. 

For a fixed t, let X, :Z -+ TC denote the obvious tangent vector field. We define the action of 
a parametric vector field on a parametric function as follows: 

Xf(PJ) =Xtftf,(p) + 4t)(X,) ; (PI. 

Suppressing the point p, we can write this action as 

Wf )=&ft+4X,) ;. (2) 

Theorem 5: Xcf ) is invariant under reparameterizations and coordinate transformations. 
Proof: Consider coordinates {xi} and a parameter t. Writing w=:Mi dx’, we have that 

X(f )=Xi( ~+,i &). 
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Under a reparameterization s = t+ F(p), the components of o transform according to Eq. (1). 
Denote the parametric structure o under this new parameterization by 0. Thus 

Although dflds=dfl&, we must be careful computing dfldx’. Using the notation introduced 
above, let f, :I: + 38 and let f,(p) = f (p,s) = f (p,t + F(p)) denote its reparameterization. Then 

8s af dxi af ds C’f Jf dt aF aft dF af 
dx’= 2 ax’ --+~ax’=ax’+~~ax’=~+ax’~. 

Therefore 

X(f )=Xi( $+Mi g) 

=xi($+(tij+$) &i 

=x( (tgg)+(ki+$) gj 

which is the expression for Xcf ) with respect to the parameter s, showing that X(f ) is invariant 
under a reparameterization. If we consider a coordinate transformation of 2, X, and d/ax’ will 
transform as usual, guaranteeing that X,cf,) is independent of the choice of coordinates. Since w 
and 8, are unaffected, Xcf ) remains invariant under a coordinate transformation of 2:. n 

Theorem 6: Parametric vector$elds are derivations on the ring F&). That is, 
(i) X(rf+sg)=rX(f)+sX(g) and 
(ii) X(fg)=fX(g)+gXcf ) for all r,sEB and f,gEF*(Z). 
Proof This follows directly from Eq. (2) since X, and ~3, are derivations. n 
Parametric vector fields have a very nice representation in terms of a local coordinate system, 

{xi}. Since a parametric vector field is just a family of tangent vector fields, we may write 

as usual, where we let the functions X’ depend on the parameter. That is, the X’ are parametric 
functions on 2. In terms of this representation we may write out the action of parametric vector 
fields on parametric functions 

X(f )=X,Cf,)+~(t)(X,)f=X’(f,i+Mj )=:X’(f.+i), 

where we have introduced the use off for dfldt. 
The action of parametric vector fields on parametric functions mimics the action of vector 

fields which are orthogonal to 3, in some bigger manifold, typically cX.98, which can be thought 
of as a fiber bundle over 2. In this interpretation, the action of X on f is given by taking the 
horizontal lift, as specified by CO. 

We can similarly define parametric tensors of higher rank. 

J. Math. Phys., Vol. 36, No. 3, March 1995 

Downloaded 19 Aug 2013 to 128.193.163.10. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



S. Boersma and T. Dray: Parametric manifolds. II. Intrinsic approach 1397 

Dejnition 7: A parametric (p,q)-tensor, T Ed, on 2 is a one-parameterfamily of (p,q)- 
tensors on 2. That is, 

T:Tl$X.-. XlT,XT*~X -**XT*CX.% -+ 5% 

such that T(. . . ,t) Ed. 
As with parametric vector fields, parametric tensors can easily be expressed in a coordinate 

basis 

Til”‘i~i,...j, $ . . . -& dxil.. .dxi,, 

where the Til”‘iPj,. .j4 are parametric functions. We can also talk about one-parameter families of 
metrics on I& that is, parametric metrics. 

The Lie bracket of two vector fields orthogonal to a given family of curves need not be a 
vector field orthogonal to the curves. This “deficiency” is carried over to the parametric theory, as 
can be seen explicitly by calculating the action of the commutator (XY - YX) on a parametric 
function. 

X(Y(f ))=X’(Yjf*j)*i=X’(Yj*if*j+ Yjf*ji) 

so 

(XY-YX)(f )=(X’Yj*i-YiXj*i)f*j+X’YjCf*ji-f*ii), (3) 

where, in general, f.+ji-f+ij # 0. 
The first term on the right-hand side can indeed be written as the (parametric) action of some 

vector field on f, but the second turns out to involve (only) differentiation off with respect to the 
parameter, and hence cannot be so written. In terms of horizontal lifts, the first term of Eq. (3) is 
again horizontal, and can thus be identified with (the action of) a parametric vector field, while the 
second term involves differentiation in the vertical direction, which does not correspond to a 
parametric vector field. 

We would nevertheless like to define a notion of the “bracket” of parametric vector fields. The 
noncommutativity of the mixed parametric derivative makes this nontrivial. Without the use of a 
projection operator, or equivalently of a horizontal lift, it is difficult to isolate the first term, which 
is the one we want. However, there is an intrinsic calculation that yields the second term, which is 
the deficiency. In order to define the deficiency intrinsically we will now turn our attention to 
exterior differentiation of parametric forms. 

III. PARAMETRIC EXTERIOR DIFFERENTIATION 

Perjis3 introduced a notion of exterior differentiation of parametric functions, namely, 

where d is the usual exterior differentiation on differential forms. Parametric functions may be 
considered as parametric differential zero-forms. Parametric differential p-forms are just one- 
parameter families of differential p-forms defined on C. Thus, in a coordinate basis, a parametric 
differential p-form may be written as 

B= Bil...ip dx”A...Adx’P, 

where the Oi,...i are functions of xi and t. P 
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There are four axioms needed to completely determine the exterior derivative d (see Ref. 4), 
namely, 

(i) df (X) = Xv ) for functions f and vector fields X, 
(ii) wedge-product rule: d( er\7-) = doAT+ ( - 1)Pt9Adr where t9 is a p-form, 
(iii) d(df )=0, and 
(iv) d is linear: d(e+T)=de+dr. 

We already have that d&X) = Xcf ) for parametric vector fields X and parametric functions f. 
Properties (ii) and (iv) also carry over easily. However, it is not clear that we wish d,(d,f ) =O. 
For the parametric case, consider replacing axiom (iii) by 

(iii’) d,(d.J )=0 f or p ammeter-independent functions f. 
Consider an exterior derivative operator, d, , on parametric differential forms satisfying (i), 

(ii), (iii’), and (iv) f or p arametric forms, vector fields, and functions. We have the following 
familiar coordinate expressions: 

(1) since the coordinate functions do not depend on the parameter, we have, by (ii) and (iii’) 

d,(dx’l... dXip)+d;Xi~)r\dXi2 dXi3...dXip-~~il~(d~~iz)~d~i3...d~ip... 

+(- l)P-’ dx” - * &p-‘/&+‘p) 

= 0, 

(2) 

d,Cfdx’I... dxip)=d~f~dxii...dxiP+fd*(dxii...dxiP)=d~~dxil...dxiP, 

and 

(3) using (iv), d, on any parametric p-form has the coordinate expression 

d,( 8)=d,( Bii...ip)r\dxil...dxip, 

which can also be written 

d*(e)=de+oAk 

It thus follows just as in the standard case that these axioms uniquely define the parametric 
exterior derivative operator d, . 

What about d,(d,f ) on arbitrary parametric functions? According to this set of axioms we 
have 

d2,f=d*Cf*i dxi)=f*ijdx’/\dXi=-f,ji dX’/\dX’. 

Therefore, 2d’*f = cf.+ij - f,j,)dxj A dx’, which turns out to involve only parameter deriva- 
tives off. This is the intrinsic version of the dejiciency, which now measures the failure of di to 
be identically zero. 

Dejnition 8: The deficiency, LB, is the derivative operator defined by 

%X,Y)f=2d;f(X,Y) 

for X, Y =x,(C) and f E.F&). 
In terms of a coordinate basis we have 

which is precisely the second term in Eq. (3). 
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IV. A BRACKET OPERATOR 

We can now easily define the bracket of two parametric vector fields intrinsically. We want 
our intrinsic definition to correspond to the projected bracket, i.e., the first term of Eq. (3). But the 
deficiency gives us a way to describe the second term there. Thus, for two parametric vector fields 
X and Y, define 

[X, Y]*f=X(Y(f ))- Y(X(f ))-S(X,Y)f. 

Working this out in a coordinate basis, we have 

[X, Y]*f=(xiyj*,-yix~*i)f*j+xiyj(f,ji-f*ij)-x~y~(f*j,-f*ij)=(x~yj,i-y~x~*i)f*j, 

which is of course the first term in Eq. (3) as desired. If {xi} are coordinates on C, then 
[ ai, a,] *=O as one would like. 

The parametric bracket operator [,I.+ just defined fails to satisfy the Jacobi identity, but rather 
satisfies a generalized (and somewhat messy) form of this identity involving the deficiency. How- 
ever, many of the usual properties do hold without modification. For instance, the standard ex- 
pressions for the exterior derivatives of differential forms in terms of Lie bracket are still valid in 
the parametric case. 

Theorem 9: If t9 is a (parametric) one-form, then 

for all (parametric) vector fields X and Y. 
Given a parametric vector field X, we can define an .&linear mapping 54*,:X.+.(Z) 

4 x.+(c) by 5TexY = [X, Y],. Since 

K*,(f Y),=K f Yl*g 

=x(f)(y(g))-fy(x(f))-%x,fy)g 
=x(f )y(g)+fxy(g)-fy(x(gH-f2d:g(x,y) 
=(x(f)y+f~*Xy)g 

for all f,g ~3.+(2) and X, Y EX*(C), xix may be extended uniquely to a parametric tensor 
derivation on C, the parametric Lie derivative. (See Theorem 1.5 in Chap. 2 of Ref. 5.) 

The standard expression relating Lie differentiation, exterior differentiation, and the interior 
product generalizes directly to the parametric setting. Specifically, letting i,a denote the obvious 
extension to parametric fields of the usual interior product of a differential form by a vector field 
X, we have the following result. 

Theorem 10: When acting on dzrerential forms, parametric Lie differentiation satisjies the 
operator equation 

for any parametric vector field X. 
Proof It is straightforward to show that the right-hand side of this equation defines a deriva- 

tion. It thus suffices to check the action of both sides on functions and certain one-forms. (It in fact 
suffices to check the action of both sides for parameter independent one-forms of the form df, 
since all parametric forms can be written as the product of a parametric function and a parameter- 
independent differential form. It is nevertheless instructive to keep track of the deficiency in the 
more general calculation presented here.) We have 
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Z*$=X(f )=d.J(X)=ixd.J=(ixd*f+d*ix)f, 

where the last equality uses the fact that ixf-0. Furthermore 

W*$*f )(Y>=~*x(dJ(Y))-d~$(~*x(Y)) 

=~*,w.f )I-&f([X Yl,) 

=wYf )I-LX Yl*(f ) 

= Y(X(f ))+wcy)(f > 

= Y(S*J )+2d*J(X,Y) 

=d,(z+f )(Y)+(i&f l(Y). 

ThUS 

L5?.+.xd.J= d*(S*Xf ) + iXd!J = d,ixd,f + i,dif 

and the theorem is proven. n 

V. PARAMETRIC CONNECTIONS 

We will now introduce the notion of a connection on a parametric manifold. Although the 
following definition looks identical to the definition of a standard affine connection on a manifold, 
this is an illusion created by the choice of notation. Specifically, we have been using Xcf ) to 
denote the action of a parametric vector field on a parametric function. The underlying operator for 
such an action is not partial differentiation, but parametric differentiation via the operator d,i. In 
this sense, one can view a parametric connection as a generalized connection on a manifold. (In 
Ref. 6, Otsuki describes generalized connections which do not always reduce to partial differen- 
tiation on functions.) That is, we generalize the notion of a vector field acting on a function. 

Definition II: An (ajfine) parametric connection, V, on 2 is a mapping V,:x,(C)Xx,(~) 
--t x&c), denoted by V,( X, Y) = V,,Y, which satisjies the following properties: 

(i) linearity over y*(C): V*Cfx+gYjZ=fV*xY+gV*,Z, 
(ii) linearity: V& Y+Z) =V,xY+V,xZ, 
(iii) derivation: V,xCfY)=X(f )Y+fV,,Y for all X,Y,ZEX*(~), f,g EF.+(‘C), and X(f ) 

refers to the parametric action of X on f. 
As before, given X EX*(C) one can consider the &linear mapping V,, :X*(C) --+ X*(C). 

Condition (iii) above and Ref. 5 guarantee that V,, may be extended uniquely to a parametric 
tensor derivation on 2. Thus, we may treat V,, as a covariant derivative operator on any para- 
metric tensor. 

We next wish to show that given a parametric metric h on 2, then there exists a unique 
parametric connection on 2 which is compatible with h and torsion-free. Hence, we need to define 
these last two properties. 

Let h be a parametric metric on 2, denoted by (,). Metric compatibility is defined in the usual 
way. 

Definition 12: A parametric connection is said to be compatible with the parametric metric h 
provided 

DeJinition 13: The parametric torsion, T, , of V, is defined by 
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T,(X,Y)=V,xY-V*YX-[X, Y]*. 

Zf T,(X, Y) =O for all X, Y EX*(~), then V, is said to be torsion-free. 
The following result generalizes to parametric connections the standard existence and unique- 

ness theorem for the Levi-Civita connection. The proof is identical to the proof of the standard 
result.7 

Theorem 14: There exists a unique torsion-free parametric connection compatible with h. 
Proof: Suppose that such a V, exists. Then we have 

Adding the above equations yields 

x((y~z~)+y((z~x))-z((x,y))=-([z, X]*,Y)+([Y, Z]*,x)+([x, Y]*,Z) 

+2(ZV*Yx). 

Therefore, V,pX is uniquely determined by 

(z~v*Yx>=~t~x((y~z~)+y((z~x))-z((x,y))+([z, X]*,Y)-([Y, Z]*,X)-([X, Y]*,Z)). 
(4) 

One may also use this equation to define V,, thus proving its existence. n 
We can use Eq. (4) to write out the unique parametric connection V, in a coordinate basis. If 

we let hij=( di ,a,), we CCUI define the connection symbols by V *aidi = ~ijdk. Equation (4) now 
gives us 

or 

Therefore, the connection symbols associated with V, agree with the connection symbols associ- 
ated with the projected covariant derivative D constructed in Ref. 1, which in turn agrees with 
Perjds.3 

We now try to construct the curvature tensor associated with V, . The most obvious definition 
of a curvature operator would be the operator 

~(X,Y)Z=V*xV*yZ-V*rV*xZ-V*[x,r] z. * 
However, this turns out not to be function linear due to the fact that [X, Y] J # XYcf ) 
- YXcf ) . This can, however, be easily corrected, since we know why S is not function linear (the 
presence of deficiency). First, one must extend the action of 9(X, Y) to tensors of rank (p-q) by 
differentiating the components of an arbitrary tensor with respect to the parameter t. Since the 
action of a, on p-forms is covariant, the result is a (p-q) tensor. Therefore, we define 
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and it is easily checked that this is function linear as required. Such a definition makes use of the 
various derivative operators present in a parametric theory. Not only does the parametric manifold 
Z have the natural parametric derivative operator V, , but the covariant operation of differentia- 
tion with respect to the parameter is also present, since the deficiency operator is built out of this 
parametric derivative. 

Given coordinates xi, the components of Z may be computed as follows: 

Z'kij~~=Z(~ir~j)~k=V*diV*d,~k-v*~jv*,i~k-O-O 

=(Y’jk*i- ylik*jfylnri3Fjk-YImnymik)dr. 

Z is thus precisely the Zel’manov curvature reintroduced by Perjks3 and discussed in more detail 
in Ref. 1. 

Vi. DISCUSSION 

We have shown how to recapture the projective flavor of the Gauss-Codazzi formalism 
without introducing any projection operators. After defining the correct action of parametric vector 
fields on parametric functions, Eq. (2), and recapturing this action in the guise of an exterior 
derivative operator, the correct generalizations of Lie bracket, torsion, and affine connection natu- 
rally followed. Furthermore, in such an intrinsic setting the Zel’manov curvature tensor (used by 
Einstein, Bergmann, Zel’manov, and Perjes) is the most natural generalization of the Riemann 
curvature tensor. 

However, as pointed out in Ref. 1, the Zel’manov curvature does not seem to be the natural 
choice in the generalized Gauss-Codazzi setting. Rather, the Gauss-Codazzi formalism leads to 
the “projected” curvature tensor ‘R. Can one reproduce ‘R intrinsically? In terms of a coordinate 
basis, the difference between ‘R and Z is’ 

‘Rikij-Z’kij’(Mj*i-Mi*j)him M2M,,k-M2Mk*m+ ~ , 

which involves both the deficiency 9 and the threading lapse function M. As discussed in Ref. 1, 
the appearance of M is due to the presence of a parameter t whose relationship to proper “time” 
is arbitrary. While we have an intrinsic definition for the deficiency, we cannot recover the lapse 
function without explicitly introducing it. If one is willing to add this additional structure, then one 
can of course also define ‘R “intrinsically,” at least in terms of its components. 

Abandoning ‘R for Z results in a curvature operator that can be defined entirely in terms of 2 
and the parametric structure w. However, we know in advance that Z will not possess all of the 
symmetries of the Riemann curvature tensor. In Ref. 1 it was shown that ‘R is the unique 
curvature satisfying Gauss’s equation and, hence, enjoying all of the inherited symmetries of the 
Riemann tensor (where the first Bianchi identity for ‘R resembled the identity in the presence of 
torsion), whereas Z only enjoys some of these symmetries, namely,3 

(i) Z(X,Y)W=-Z(Y,X)W and 
(ii) Z(X,Y)W+Z(Y,W)X+Z(W,X)Y=O. 
In the absence of deficiency, a parametric manifold can be viewed as a one-parameter family 

of hypersurfaces embedded in xX.% orthogonal to w(t) - dt, i.e., such that o(t) - dt annihilates 
all vector fields tangent to the hypersurfaces. The metric on 2x3 is not fully determined, but 
requires a specification of the relationship between the parameter I and arclength along the or- 
thogonal curves, i.e., the lapse function M. Nevertheless, the notion of orthogonal curves is well 
defined. 

Another special case is when the physical fields, including both the parametric metric and the 
parametric structure, do not depend on the parameter t. In this case, the action of vector fields on 
(physical) functions reduces to ordinary partial differentiation, and the parametric connection 
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reduces to the Levi-Civita connection of the “parametric” metric, which is now a (usual) metric 
on the manifold of orbits. Parametric manifolds in this setting are thus equivalent to the formalism 
given by Ref. 8 for space-times with (not necessarily hypersurface-orthogonal) Killing vectors. 
Some of these notions are related to recent work by Harris and co-workers on orbit spaces’ and 
static space-times.” 

But even when only the parametric structure is independent of the parameter, in the sense that 
o(t) in fact has no t dependence, the structure described here reduces to something more familiar. 
Parametric exterior differentiation can be viewed as a connection on the fiber bundle xX.%? over 
c precisely when the horizontal subspaces defined by w-dt do not depend on t. This means that 
parametric manifolds can be viewed as a generalized$ber bundle. As Perjds has already pointed 
out,” this could lead to a generalization of Yang-Mills (gauge) theory. Work on these issues is 
continuing. 
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