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ON A GENERALIZATION OF MEHLER'S INVERSION
FORMULA AND SOME OF ITS APPLICATIONS

1. INTRODUCTION

It is proposed to generalize an inversion formulas
by Mehler (18) involving conical functions.

g(y) = [ Pog 4 1x(7) f(xax
(a) 0 oo
£(x) = x tanh(77x) f P..,hix(r) g(y)dy
| /
or, the equivalent pair
6() - f P(x) By, 40 (2) ax
(a.i) ! oo ‘
F(x) = [ v tanh(77y) g(y) Py, 4,(x) dy
0

Here 1?:,,’,5 . ix(y) denotes the first Legendre function
of order =¥ +ix with an argument y > 1 (8, Ch. 3).
These "conical” function occur in certain boundary value
problems involving configurations of a conical shape.
The paper by Mehler referred to before deals with the
distribution of electrostatic charges on an infinite
conical shell. In a following paper, Neumann (19) ex~
tended Mehler's investigations to the case of the dis~

tribution of charges under the influence of an external
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field., The analysis for the derivation of (a) as used
by Mehler isyfursly formel., The first reliable investi-
gation as to the class of functions f(x) for which (a)
holds, seems to be due to Fock (13). In recent times
considerable interest in inversion formulas of the
type (a) has been displayed. For instance, Karp (&)
gave the charge distribution on a finite conical aball
(eup) employing the Wiener-Hopf technique; Cearslaw (5),
Buchholz (2, 3, 4),:Fals&g (11, 12), among others, in~
vestigates the propagation of (plane and spherical)
electromagnetic and acoustic waves in a (1n£1nit§1y ex-
tended) conical horm. |
It will be shown in section 2 that an inversion
formula similar to (a) can be given when, instead of
Py yix(@s P_’[:,(é +4x(¥) is used. This inversion formula
reduces to (a) for the special case U = 0. The proof
of this inversion theorem is based on the analysis em~
ployed by Fock (13). It may be mentioned in this con-
nection that a recent survey (14)1 concerning integral

transforms makesg no mention of Mehler's formula.

IShartly after writing this thesis, the author discovered
that a generaligzation of Mehler's inversion formula

for the case U= gﬁﬁ, where n = 1,2,3,~~etc. had been
treated before (21).
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Section 3 will represent the general addition
theorem for the me&ifiad,ﬂankel function of the Gegen—
bauer type (9, p. 43) in the form of such a generalized
Mehler transform (generalized spherical wave). yinallg
previously known results as integral expressions for t&t
eylindrical and spherical wave (9, p. 55) and certain
integral representations for the product of two modified
Hankel functions (6, 7) can be derived as special cases.



2. mvmsiﬁq FORMULA FOR THE FUNCTION
Potp 4 4x T)e T*1

The integral expression for the conical fmetigﬁ
(89 Pe l%)

f(y + cosh t)‘% + cos(xt)dt, y=0 |
0

(0.2) P'L’lé*ix (y) 3\/% r‘(% -U)
Mo potmd T e o] 2+ 02 = 14

f(y + cosh t)'u"’é cos(xt)dt, R¢M<ﬁ, y=1
0
suggest instead of (a) the inversion formula
oo .
g(y) = Pgé,,ix(y)t(x)&x‘
(0.3) \ 0 ' :

£(x) = E-oinn(7Tx) "0k AL +1x) Ll 1)

o=

| fsmx’.‘fmm(yw
/ _
or the equivalent pair



(o2

G(y)v - / F(x)Pf}té M.y(zr:)&h::
/

(004)

o0

F(x) « 771 [y sinh(7]y) [ (%~ LL+dy)+
O .
[ l=13)-Bhy,y (a7

Since by (8, p. 150)

Pﬁédx(c-osh a) u‘\/%— {sinh a)ﬁ cos(xa)
(0.5)
Pzgux(mah a) u‘\% (sinh a)"ﬁ x 1 gin(xa)

one obtains from (0.3) for the special case U= &%
respectively putting y = cosh a

o0

(sinh a)%g(coah a) ="\ /% f f(x)cos(xa)dx
0

(0.6)
£(x) n‘\/%—— [ (8inh a)%g(wsh a)cos(xa)da
0
and oo
(sinh a)%g(eeah a) =\ /;]gT— f x’lt(x)ain(xa)dx
0

(0.7)
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o0

x te(x) -‘\/—7—%—- f (sinh a)”g(aush a)sin(xa)da
0
These [(0.6) and (oi.?)] sre the Fourier cosine
and the Pourier sine transform formula. Therefore
Fourler's inversion formulas are a special case of the
generalized Mehler transform.

Equation (0.3) will now be proved,

heorem 1.

If a function glf(x) given in the interval
(1 =x<o00) is such that d}(tz) = (amwwa)/'” l/f(wah %)
has its first derivative integrable ovex an infinite
interval (0 =< ¢ < oo ) while its second derivative is
absolutely integrable over any finite interval, and if
%&g ¢(1:)=-€3, Ref=0, ¢(t)h® be integrable for Rep=0,

and lim QS{‘!:)-:Q, then W(x) is representable in the form

of the integral

o0

(1) lﬂ(eeah)@) - ngu ~p(cosh ey L)all
0

where (/L) is

(@) £(U) » TN sinn 7T [(smpai ) [ Ohp=a Ll )+
[Pfu -y(cosh )1/ (cosh®) sinh & ae.
0



Theorem 2. ,

) If a function £([[) is absolutely integrable
over any finite interval and £(U) = 9( ,LL"%"'a €) for
L =00 haa its derivative &bsolutzaly im:cgrnble mmx-
any fin:ita interval, and if £(0) = O, then f(u) is
representable in the form of the integral (2), where

Y(cosh @) is defined by (1). The proof of theorems 1

and 2 will now be given. ’mm precf af theorems 1 md 2
Eonsists in examining the course of ao&;&utatiana which
formally led to the form of the inversion integral (2)
when given integral (1).
Starting with =

co
(1.1) W{aash 8) = [Pﬁ’é‘,iu (cosh G)t(‘uv)d‘,u

0 o

where

(1.2) % (cosh &) = 1)# [Fa=)] ™ (oo )%
f@oa ¥yt (cosh a=~cosh i)‘“u dt (8, p. 156)
0

let U ~% B, y=[l,a=6, cosh x = cosh t,

cosh a = cosh € so (1.2) becomes
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1.3) BBy (cosh 8) = (KT7)*(stnn 0)F [(-p)] =2
0
/;aa (Lt (cosh ©-cosh &) % Fag,

0
Rep < %.

Replacing Rhs (right hand side) of (1.3) into (1.1)
gives (1.ﬁ) which is

A o0
(1.4) Y(cosh 8) = f (77 /2)¥(stnn )P [(%-p)] 2

| 6 0 |
cos [t (cosh - cosh )™¥F ay £(1)all
0

Assume next f£(/[) is such that order of inte-
gration can be interchanged in (1.4), But the conditioms
stated in theorem 2 allow this since this gives rise to
absolute integrability of (1.4) so by Fubini's theorem
interchange is allowed. 8o (1.4) now becomes

g -
(1.5) Y(cosh®) = f(ﬂ’/Z) (sinh 0)P [F(ﬁ*ﬁ)] .
0 o0
(cosh & ~ cosh t:)"'%"‘3 [ cos LIt f£(Ll)allat

0
Next let 8 = cosh ©, v = cosh t 8o (1.5) now becomes



(1.6) Yi(s) = [ (77 /2)"¥(s2-1)P/2 [Miep)] 2
/ o0
(s*v)*ﬁﬁﬁ J[;os[(aosh“lvnl] IRl YIaE
5 | _
(v2-1)"%av

so (1.6) becomes

S

1.7) Ye)(a?-1)"P/2 . f av(s=v)"¥P(rr/2)% [ (g 2
o0 /
j;as [Ccosn™v)y] £¢L0)a L (v2-1)#
5 .
But (1.7) is in the form of an Abel integral equation.
The conditions of Theorem 1 are such that (1.7) can be

solved and (1.7) becomes

oo
(1.8) (%7T)_%[rk%-8j-l‘j(cosﬂcosh-ls»i] (32—1)-%f(ﬁi)'
9 s
all = 7L [sin (%+B)7T] adgf W(d)'
/

(S_O’)"%‘.’B(O’ 2_1)-8/2 dd

where =¥ < B< %,
With coshtls = 6 (1.8) becomes
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(1.9) cos(OLL)E(L AU = (2T7) ™% [(#=p)sin [(#ep)TT] *
0 cosh @
a%f w(d)(ccsh e-'()’)"%ﬁs(d 2__1).,,‘3./2 o
/

Since the conditions of Theorem 1 and 2 are such that
the inverse Fourier integral exists, it follows from
(1.9)
(e 2] .
(1.10)  £(U) = (2/17)3/2 [cosue F()é-ﬁ)ain[(}é-»g)ﬂ] .
cosh © 0 |

5 f YO ) (cosh 8~0) 74 21)"F 240 ae

/
Integrating (1.10) by parts (this is permittéd
since by Theorem 1 W(X ) is such that the operation

is valid) gives
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(1.11)  £(U) = (/)32 [(fep)sin [(hep)TT | »

cosh ©
[cos /,Le[ w(d)(cosh 8-—0’)”%‘"ﬁ .

| 8 - oo
(0’2_1)”b/2:| + u .

8 =0

fove) cosh ©

sin [le [ YO)(cosh 8-’ ) .

0 /
(T 2-1)"F"2 a0 ae

Let
cosh ©

(1.12)  g(®) = f Y(0 ) (eosh 6-0) (g 2-1)7F/2 a0
/

Then (1.11) becomes by Theorem 1 and fact that lower

limit is zero by definition of the improper integral
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(1.18) £ = /70372 [ep)sin[(oepyTT Lo
o0 cosh ©
‘/;in(uﬁ) fl/f(d)(cosh e-g )P % .
0 /
0 2-1)"F 30 ae

Integrating over a triangular domain and
observing that the conditions of Theorem 1 are such

that Fubini's theorem is valid, (l.14) becomes

(1.15)  £(U) = /T2 (-p)sin[(mepdTT] UL -

f‘,ﬁ(O’)(O’E*l)*B/E fsin Ue -
/ cosh—1

(cosh o~ ) ~"**F as ad
With d = cosh &

(1.16)  £(U) = /T2 [ (hg)sin[(repdTT] U

o0

fW(cosh t)(sinh ¢) P*? [sin e
I

t

(cosh © - cosh &) *F gt
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But

(1.17) Pﬁ:/_{é,(cosh a) [ (U+iy) [ (U-1iy) sinh Ty -

(simn ) Hm a1 -

.oo .

‘[;in xy (cosh x = cosh a)’L( dx.
0O<Rell = 1 (20, p. 165).

Let a=t,y5y=L,U=%B x=8,

Then

(1.18) Py 1y (cosh ) [T(Ohpeaf0) ["(=p=1/l) sianTTH -

(sinh @)P (T2 (ep) =
o0
J/;in L& (cosh © = cosh t)'%*a ase.

t
Also

(1.19) 0L sinfepd)r] = [Fep) Copd] 2

By (1.18) and (1.19), (1.16) becomes
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(1.20)  £(U) = ™YL sinh (T U T peifl)

o0

%-geifl) [P  (cosh 8)Y(cosh 8) -
[C(-peill fiu i cos ?ﬂcos
sinh © de.

Here { can be any complex number such that Rhs of
(1.20) is well defined.

It will be next shown how the conditions imposed
on yy of Theorem 1 came about.

From (1.12) the following lemma is used to meet
the condition that g(8) - 0 as 6 =00,

If 1lim ¢(cosh ©) = O, where ¢(cosh €) =
geco

Y(cosh ©)sinh 2Pe/2, then lim h(t) = O, where
o OO
¢

(1.21) h(t) = _/}ﬂ(sash 6)(sinh 9)1”B(cosh t -
0
cosh 8) #*F ge

Proof: By the following transformations
l. cosh 6 = Cf s COSh © = 8
2. 0= (s=1)w + 1
and use of hyperbolic identifies (1.21) becomes
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/
(1.22)  h(t) = 2172P(g-1)F [w[(s-l(ml] .

0
[(s-l)w+2] '6(1.,‘,)“%4*53 w7 aw

using next a mean value theorem for improper integrals

(1.22) becomes

(1.23)  n(t) = 2172 (s-1)F o[(s-1)p41] -
/

[[(a*l)w-o-a] “E1-w) B w8 aw

0
where 0 = 0 = 1. For (1.23) to exist % = p > -k
also if 0O < f < %.
1 (s-1)w+2 B < l(s-l)”Bw"B where s > 1 so (1.2%)

becomes
| /
(1.24) /n(v)/< 2172F /%/(s—l)/a l]//z-%-B(l-w)-%+B dw.
, o
But /v11/é_6(1--w)}é"B dw is the beta function B(+¥k-B,%+B)
4 ‘
and therefore the above is valid for all B such that

B(+¥~B,%+B) exists.

Thus h(t) =0 as t = @ Dby given in lemma.
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This gives rise to one of the conditions required of
is Theorem 1. Going from steps (1.9) to (1.10) required
that (/’ be such that this is permitted. This require’a
that dfj/dt is absolutelyintegrable in (0,® ) and a2h/at®
absolutely integrable in (0,a), O < a<w,

Equation (1.2%) can be written as follows!

(1.25) h(s) = 217%F (s-1)P ¢/(s-1)p +1] -

/
[(s-l)ﬁ -1427‘5/(1*'&)“%*3 w dw, 127> 0

0

where again a mean value theorem for improper integrals

is used, or

h(s) = 21“:28 ¢[(s~l)9 +1_7[Es-1}0 +2§]“E’ (a*l)BB/
Bz B 3’/%& #8)
So from (1.25) dh/dt, d°h/at® depends directly on
de¢/dt and d2¢/dt2 respectively. Hence assume de¢/dt
is absolutely integrable in L 0, ®> and dzw/dte
is absolutely integrable in . 0,a> a> 0, and
arbitrary. Going from steps (1.9) to (1.10) is now
valid.

The condition that lim ¢(t) = O, Re B= 0 results
t-0 :

from the following lemma:
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%(ccsh 8)(sinh 8/2)1"F = o(e) , © near 0

where @

%(cesh 8) = / %4-4// (cosh 8)£(& )d/(/

0

Using (1.2) and facts
(cosh @ - cosh t)'%”a < (cosh © - cosh t)'%

if p <
@ is such that cosh €<« 2, 82 0O, using also

(1.28) P_%(cosh 8) = (2/7 )%6 (cosh ® -~ cosh t)“%dt

o

(%7)"L cosh(8/2) "} K(tanh €/2)

(8y p. 173)
K(z) complete elliptic integral of first kind and

(cosh 6/2)"1 < 27lo(sinh 0/2)"1 gives
PE%H// (cosh 8)/4// (%-g) & (sinh 9/2)3‘3/

This proves the lemma.
The condition that f£(« ) = 0, / = O results
from observing formula (2). Reversing the steps to

obtain (1) requires that f(4 ) meet the conditions of

Fourier's inversion theorem (see steps (1.10) and (1.9)).
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The integrability condition for f(V )
is due to asymptotic behavior of the kernel (the Legendre
Function of the first kind) A . This completes
the proof of Theorems 1 and 2.

As an example for the transforms (1) and (2), the
transform of af will be computed to give a £, Then the
transform of this f will be computed to recover W .

Let
(2.1) W (cosh @) = sin a (cosh & + c¢os a)”vj/g'*s(sinh@)"ﬁ
where -7 ¢ a<#7, . Re BJL ¥%. (2.1) meets the

conditions of Theorem 1l.

Inserting (2.1) into (1) and using (1.3) gives
(2.3) £(u) = 7 Ly sinn( 7@ ) S Hmprip ) [ Gmpmip )
o @
/(/7'/2)”’é [/ ™ [cos u b
[+

o

(cosh ® ~ coen t:)“%"B sin a °

(cosh @ + cos _a)"?’/‘? +B gin & (sinh e)’B 4ae.

Rewriting (2.3)



(24) £ ) = T ""p sinh( 7y )/ (hpeip

[+4]
/(F/E)"%/f(%'ﬁy -l cos 4 t
° @
///sin a sinh © (cosh & -~ cosh
P
(cosh & + cos a )‘"3’/2 *Pae

Let cosh ©& ~ cosh t = (cosh t + cos a) z,

£ ) =7 "1 sinh( 7y ) [ (peiu
ey
(77/4) cos/l/ t) sin a (cosh t + cos

° ®

/z'%“B (1+z)‘3/2 *E o4z

(2]

Both integrals are known.

19

) [ Wmpmip ) +

)b
dat.

(2.4) becomes
) [ (epip ) -

a)™l ag -

(2.6) £(u) = 2473 [7 g L S Cmprip ) -

<3

/(?ﬁ"ﬁ"i// ) B (%~F,1)sinh a/

(2.6) is the transform oﬁ (2.1). For 70 1
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£(H )~ w e 4172877 | but since

/]f(// Y du<eo //f*(// Yap <=  for all e

)]

such that 0 < ¢ £®@ . So f(# ) meets requirements of
Theorem 2, Now taking (2.6) and computing the inverse
transform of (2.6), (2.1) will be obtained.

Using (1.1) and (1.17) gives

@.7) Y (comn 0) = [ (@7 /) (wep) /[ hrpess ) -

/'(3&-'(:3*:1// ) sinh(/f// )(sinh e)ﬁ]"’l .

oQ

//;inéa t) (cosh t - cosh o) b ag -
o

T T/ iy ) /iy YT 7207

[/ (#-8Y " B(#-p,1)sinh ay dp

Rewriting (2.7)
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(2.8) }A(ccsh 8) = 7(7/2) PB(tmp,1)

7/ (sinn 8)P(27 )%/ (#e8) /By "L -

o

/l(cosh t - cosh 6)'%*6 .

¢ ©

/ain/l t)// sinh (ay) (sinh /74 L dv at.

(%

But
o0

(2.9) /sin/// t) sinh/ag)p(sinh7y )t ay =
% sin a sinh t (cos a + cosh )72
Proof of (2.9) thus gives
2.10)  P(cosn 8) = 777 "L /2y FB(mB,1) -
[(sinn 8)F(27 )%/ (hr) /" hmpy "L«

oo
/(eoah t -~ cosh S)"%*B .
=}

% sin a einh t (cos a + cosh t) 27

With the substitution cosh t -~ cosh © = (cos a +cosh &)z
(2.10) becomes
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(2.11) %(cosh 8) = 7 N7 2y Ven(3mp,1) 7

[(s1mn @)F @7y /g /(impy 7
% /z}é“l"ﬂ(cos a + cosh 9)"%‘*E A

sin a (cos a + cosh @)(cos a + cosh 8)“2 .

(1+2)"2 az.

(2.11) may also be

(2‘12) %(COSh 6) = 77“1( 77//2)“%3(%_&’1)7‘ .
[(sinn 0)P(277 Y% /imep) /-6y 7L -

sin a (cos a + cosh 6)'"5/2‘*{3 *

¥% /zm%“"B (I!.-t-z)m2 dz.
0
But

(2.13) /Z’é.l+p (1'0'2)“2 dz = B()‘é“‘595/2"8)
[

and
(2.14)  B(ep,3/2-8) = 1/2) Y/ (hep) /(3726

(2.15)  B(#~p,1) = /(1) /(%=p) [/(3/2-) 71
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Then (2.12) becomes

(2.16) }b(COSh ©) = sin a (cos a + cosh 6)"3/2'+B .

(sinh ©)P

(2.16) is (2.1) as was to be shown.
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3. THE GENERALIZED SPHERICAL WAVE
REPRESENTED AS A GENERALIZED MEHLER TRANSFORM

A basic solution of the modified wave egquation
Af ~ ¢®f =« 0 in 2n + 2 dimensions is (17)

(3.1) £ =R K, (cR)

Here Kn(cﬁ) is the modified Hankel function of order n
(9, Ch, 7) where R is defined

(3.2) R = 'VQZ + ba - 2ab cos A

For the two or three dimensional space (n = 0O or n = %
respectively) f reduces to a cylindrical wave Kﬁ(cﬁ)
or to a spherical wave R % exp (~cR) respectively,

An expression for (3,1) has been given by Gegenbauer
(9, p. 43) in the form of a series representation known
as the (Gegenbauar) addition theorem of the modified
Hankel function

(3:3) EL ) « ()T ¢ ) (redG] (oom 4) -
n=0
Tyen @)Ky 5 (0
a<b

and for a=b the same formula with a and b interchanged,
It will be shown later that instead of (3.3) the

following relation can be proved.
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(3.4) (aa«b‘?-aab cos A)"%'xv[fa‘?*baﬂ'-aab cos 3)"“] =
2%77*3/?(“)"" (sim A)FY f x sinh (TTx)
[(v+ix) ["(v~ix) K (a) K (b) °
Ejfﬁi 4x (=cos A) ax

Re v= 0, O <Re A < 27T

Here PZ . (-cos A) is the Legendre function "on the

cut"' (see Appendix ¢) (8, p. 143) (note that (3.4) is
symmetrical in a and b which (3.3) is not). Put
A=Tl =B and get

(3.5) (a2 +1b2+2ab cos B) 4V Kv[(&a +b° + 2ab cos B)’é] "

27 3/2(ap)™V (sin B)fo sinh (7Tx) *
B
[((v+1x) [ (v-1x) K, (a) K; (b) *
| Eé;ézix (cos B) ax

Re v = =1, =TT = Re B=T(
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It follows from (8, p. 122, equation (7)) that
(2% Bl (2) - 7%7 P~ v, =L =v, 1=[L , %ts),

is a one valued fumction of 2 in the complex z plane
cut along the real z axis from +1 to -co, If therefore

we choose in (3.5) cos B = %, we ¢an write
-2 pH(a) o (21 pH(2)  1n case 3 - 1
We obtain then instead of (3.5)
(3.6) (a2¢b2+2abz)“%v Kv[(n2+b2+aabs)%] -
2%7T;3/2 (ab)™" (52~1)%”ﬁ”-/ﬁx sinh (77 x)-
0
[(veax) [ (v=ix) Ky (a) Ky (D)

Y () ax
~¥+ix
2 >1, Re v = =1
Obviously the integral in (3.6) is of the type of a

Mehler transform (0.3). But the integral in (3.6) can

also be regarded as a Lebedev transform (9. p. 795).
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Specisl Cases

The expression (3.4) can be used to obtain ex~
pressions for the cylindrical (v = O) and spherical wave
(v = %) in the form of an integral expression.

(a) Cylindrical wave (v = 0)
Since (8, p. 150)

| g& (eos 0) = (BT (s1n 0)™% cos [(w}é)@],
one obtains from (3.4)

(3.7) K, [(a?bP-2ab cos 4)%] -
£ [ Ky (a) Ky (b) cosh[x(TT -4)]ax
0
(b) Spherical wave (v = %)
Since (9, p. 10)

CKys) - TT/2)% 0E

one obtains

~ e el alihCedal %
(3.8) (a2+v2-2ab cos 4)7% o~(a7+b"-2ab cos A)

o0

%(ab)*% [ x K, (a) K (b) tanh (Tlx) «
3__%*“("*3%3 A)dx
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The expressions (3.7) and (3.8) were previously known

(9; Pe 55)0
If we apply the inversion formula (0.3) for (3.6)

we obtain

(3.9) Eyp(a) Ky (6) = (7 /2% (ab) / (21T

(a2+b2+2ahy)"%v Kv[Qa2+b2+2aby)%/ .
~ﬁ+ix(y) .

This formula is valid for Re v~ ~¥% (8, p. 163), and

gseems to be new. (Por formulas of this type see (6 and
7))

The special case v = O gives
o

(3.10) K; (a) K (b) = /{£v42a2¢b2+2ab cosh t)7cos(xt) dt

(o)

observing that (8, p. 150)

PE(cosh t) = (#7)%(sinh )% cosh /(vet)t/

The case Vv = % gives

(4.0) Ky (a) K, (b) = %7 (ab)® -
j/2a2+b2+2abt)“% exp/;(az+b2+2abt)%/'
/

P“%+ix(t) at.
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Equivalent with (3.4) is

(3.11) (a2+1°-2ab cos A)‘%" xv[(a2+b2~3ab cos A)’é] -
«2"1 /(v (ab)™" / x cosh (7 x=i7v) »
Cly.yfcos 4) Iy (a) Ky (b) ax,

a <b, Re v> 0O

Here CY (~cos A) is the Gegenbauer function (8,

-y
P. 175)

(3.12)  ¢¥ _, (-cos &) « 7 %/7 (Y "1 (atn 0)¥ .

Q}é:ix("'ﬁe‘s‘ ﬁ-)

Inserting this into (4.1) and using the relation (9, p. 5)

Igg(a) = I () = 1 2771 stnn (7x) Ky (a)

one finds (3.4).

Consider the integral in (3.11) taken over a
closed contour in the complex x plane consisting of
the real axis between <~R and +R and the semicirele
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of radius R in the upper halrgpléna.

Choose R such,; that the semicircle separates
the consecutive poles x, = i(v+s ) and
xﬁf+l = i(v+ys 41) of the integrand. The residue of
the integrand of (3.11) at a pole x, = 1(7{//) is
equal to

1137 77 (rap) 6 (-e0s ) T, () K, (8)
=0, 1, 2,.

The contribution of the integration along the
semicircle tends to zero whem R - .o, provided a > b
This follows from the behavior of the integrand in
(3.11) on the semicircle for large values of R (see
Appendix a). We obtain therefore by the residue theorem
from (3.11)

(a2+v2=2ab cos 4)~%Y Kv/iaaﬁbawaab cos A)%V =

2% (ab)™" /(v) '//2;(«-1)” (v+/) G (=o0s &)

foﬂ () va/,(ﬁ)

But (8, p. 176) gf (=cos A) = (~1)7 g} (cos 4).
The Rhs (:ight hand side) of the last expression is



equal to the Rhs of (3.3).
This proves (3.4) and (3.11).
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APPERDIX

(2) In order to show that the iﬁt&gral in (3.11) taken

along a semicircle of radius R in the upper
x-half plane tends to zero as R - oo, it is
necessary to investigate the integrand of (3.11)
for x = R o2/ s O£ 9p£/7

From Stirling's formula (8, p. 47) and the
definition of the modified Bessel functions (9,

P. 5) one obtains for fixed 3z and large (complex)

A
I, (2) = (27¢ ¥ (s/2" &40 V)1 0001/ 3]

I_, (2) = sin (70 )0k 72 ) H(a/2)7 o #1084 ~1),

J1+0(1 )]

both expressions velid in ~ 7 csarg #</7  and

in the second expression A mnot an integer. Since

. )
K, (&) =yt [l ) - 1, 0]

it follows that (after substituting x = i«
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I, (&) K, (b) = /¢ 2 (apm)™/
for large « in the right half plane (corres-
ponding to the upper x half plane),
Furthermore, from (8, p. 147, formula (5))
together with Stirling's formula
25 (cosy ) = (7 sinp )¥ AP .
sin/ (A +H)Z +%7 Bate 7 )// 1+0(1/a }J

for large)\ in =7 < arg) <7
Therefore, because of (3.12) with x = iy

l-v
A4 - 2 - vl
cw*/o (~cos A)sm(sm A U v

cos/ v A% 74/ /10 )
for large ¢ in -7 < argu< /7
The integrand in (3.11) is therefore equal to
o/r™ (a/w)™/
(b) Behavior of Pf%u(z) for x>> 1land z> 1.
It follows from (8, p. 129, formula (26)) that

Plpgn(®) = 0%
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(¢) Definition of the Legendre function (8).

Pé/ (z) = ___T%_m (:_:% % F(~v, v+l; 1=} l-s-i)

¢ not a point on the real 2z axis between 1 and o

Xﬁ(:x) - -—-(%;_—/-;—7 (%:—%)% P(~v, v4l3 1~ 3 l%!





