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ON A GENERALIZATION OF MERLER'S INVMRSION
FORMULA AND SOME OF ITS APPLICATIONS

INTRODUCTION

ie equivalent pair

G(y)

F(x) tauoh(Tr

roposed to generalize an inversion torsiula
involving conical functions.

g()9 + ) f(x)
00

f(x)z tanh(x) P (y) g(y)dy

g(y)

Here P.14(y) 4enot.s the first Legendre function
of order -*A + ix with y1 (8, Ch. ).
These conical function occur in certain boundary value
problems involving configurations of a conical shape.
The paper by Mohler referred to before deals with the
distribution of electrostatic charges on an infinite
conical shell. In a following paper, Neumann (19) ccs.

tended Mehler's investigations to the case of the dis-
tribution of charges under the influence of an external



field. The analysis for the derivation of (a) as used
by Mohler is purely formal. The first reliable investi-
gation as to the class of functions f( x) for which (a)
holds, seems to be due to Pock (13). In recent times
considerable interest in inversion formulas of the
type (a) has been displayed. For instance, Karp (4)
gave the charge distribution on a finite conical shell
(cup) employing the Wiener-Hopf technique; Carslaw (5),

Buchholz (2, 3, 4), Felsen (11, 12), among others, i
vestigates the propagation of (plane and spherical
electromagnetic and acoustic waves in a (infinitely
tended) conical horm.

It will be shown in section 2 that an inversion
formula similar to (a) can be given when, instead of
p..16+ix(y) p.,,16+ix(y) is used. This inversion formula
reduces to (a) for the special case /Is O. The proof

of this inversion theorem is based on the analysis emg*
ployed by Pock (13). It may be mentioned in this con-
nection that a recent survey (14)1 concerning integral
transforms makes no mention of Mehler's formula.

1Shortly after writing this thesis, the author discovered
that a generalization of Mehler's inversion formula
for the case itss qa, where n 1,2,3, etc. had been
treated before (21)



Section 3 will represent the general addition
theorem for the modified Henkel function of the Gegen-
bauer type (9, p. 43) in the form of such a generalized
Mohler transform (generalized spherical wave) Finally
previously known results as integral expressions for vhe
cylindrical and spherical wave (9, P. 55) and certain
integral representations for the product of two modified
Hankel functions (.0., 7) can be derived as special cases.



(0.2)

(0.3

The integral expression for the conical function
156)

fi7
cosh t)g cos(xt)d Rel-b=14 7='1-

0

suggest instead of (a) the nver o formula

g(Y)

INVERSIW FORMULA OR THE FUNCTION

P+ ix Jw 1

1"(31 -

09f( d

cos(xt)dt,

II

7ra- (7rx) fl*u+i flOILL+
00

fg _r241.

or the equivalent pa



(0.4)

(0.5)

(07)

00

fir(
2)/

i(x) . Tr-

by (8, p. 50)

a g cosh

(7 I-1( y)

one obtains from (0.3) for the special case
respectively putting y cosh a

00

(sinh a) g(cosh a) jrf(x)cos(xa)dx

(0.6
00

)1 (sinh cosh a)cos(xa)da

0

(a xa)



VIcosh

where (g)
(2) t(g) 7r-

inh a g cosh in

cosh 0 /1)d/I

nh A- /1

0

These k4.6) and (0 7)] are the Fourier eosin
and the Fourier sine transform formula. Therefore

Fouriert s inversion formulas are a special ease of the
generalized Mehler transform.

Equation (0.3) will now be proved.

Theorem

If a function Vgx) given in the interval
/-Q8

1 x-coo) is such that O(t) s (Binh t/2) (cash t)
has its first derivative integrable oven an infinite
interval (0= t 00 ) while its second derivative is
absolutely integrable over
Urn 95(t)mot Rz5.0, )(t)0 be integrable for Rep
t.4,0

and list cb(t):0, then Ox) is representable in the form
t-4.00

of the integral

r (Yr-

00

1 pig osh 0)9/(cosh0).sinh 0 d

0

te interval, and if



Theorem

a function f(4) is absolutely integrable
over any finite interval and f(4) 0(j/.42-13-(7)

/1-1.00 has its derivative absolutely integrable over
any finite interval, and if f(0) = 0, then f(g) is
representable in the form of the integral (2), where
Ocosh 0) is defined by 1) The proof of theorems 1

and 2 will now be given. The proof of theorems 1 and 2
konsists in examining the course of computations which
6ormally led to the fora of the inversion integral (2)
when given integral (1).

Starting with

where

(1.2)

g

y/(cosh 0)

cosh a 0 cosh e so (1.2) becomes

(cosh (g)41

-Y2+
cosh a (M) [1-10.-ki.

0

y a 6, cosh x is cosh



Replacing Rhs (right hand side

gives 1.4) which is

(1.4) cosh 0) (7/ ( 3111 {[Areq3).]4*

0 0

fee ILL
cosh 0- cosh dt 'Au

kt(cosh e) 06.7r sinh

0

"co
lit (coeb -cosh t)

0
Rep

0
Assume next f(g)

Er

such that order of ints-

) into (1 1)

gration can be interchanged in (1.4). But the conditions
stated in theorem 2 allow this since this gives rise to
absolute integrability of (1.4) so by Fubini's theorem
interchange is allowed. So (1.4) now becomes

(1.5) t1I(cosh0) p777 ) sinh e)1, r .)]

(cosh . cosh lit f(kOtttildt

0
Next let s cosh 0, Mr cosh t so (1.5) now becomes



so .6) become

(1.7)

0 [(cosh )j./.] ) (v2

0
But (1.7) is in the form of an Abel integral equation.

The conditions of Theorem 1 are such that (1.7) can be

solved and (1.7) becomes

(1.8) c-11'0h Q1-1 Icos[icosh-141] (s - )-hf( )*mI
dg Trikin (h+077]

vf(co.ir

_cr) -1h+p(cr2_1) -P/2 dCf

where -36 h.

With cosh-ls . 0 (1.8) becomes

or 2



(1.9)

00

1 )sin [0/2+07] ecos(eg)f(g )(VI (27r) r
0 cosh Q

OCr)(cosh eCf)

Since the conditions of Theorem 1 and 2 are such that
the inverse Fourier integral exists, it follows from
(1.9)

(1.10) f(il (2/7r)3 2 cos/Le r ye- -)sin [0i+fivr]
cosh 0

V.1(0' )(cosh 0 0'2 /2e0'de

Integrating (1.10) by parts (this is permitted
since by Theorem 1 9I(X) is such that the operation
is valid) gives

(0' 21)/2-0/2 dcf

10



(1.11) f(g) (2/7r)3/2 I"(
cosh G

[cos ge ()(cosh 8-Cr)

Let

cosh Q

1
( do,(1.12) g ) = Yi(Crgeosh Cr) 0' 2 P/2

/

Then (1.11) becomes by Theorem 1 and fact that lower

limit is zero by definition of the improper integral

]
(Cr2-1)/2 .4. g

19 . 0
00 cosh Q

Igsin e per) (cosh

0
(CI 2 --P/2 clGr de

sin [(iii+p)nl

a



14) f(g) (2/7)312 r(y2-osin 07T1g.
cosh

jisin(g ) ji.VACr ( osh 19-C

(0/ 2-1)3413 a de

Integrating over a triangular domain
observing that the conditions of Theorem I are such
that Fubini s theorem is valid, (1.14) becomes

15) f(g. (2/7r

Pliccf)

2 r(

cr2 13/2

cosh t dt

sin
cosh-1

ge

12

(cosh e-(1)-3/24.1j. de dCf

i h Cr 0, cosh t

(1.16) f g) (2/7r) / r Osin[(+)7r] g
00

sinh t -0+1 /sin AL

t



But

(1.17) iy osh a) r -s-iy) sinh 'Try

(sinh
00

sin xy cosh x - cosh a)

.= Re /I .=1 (20 p. 165).

Let a t, y = y2-p, = e.

Then

By (1.18) and (1.19), (1.16) becomes

13

(1.18) (ash ric fig) r0-p-ig ) sini2Trg

(sinn e) (27n F(413)
00

isin
ge (cosh 8 - cosh dO.

t
Also

(1.19) 7t [0407r [Fo64-o (r2-3)



(1.21) h(t) Ilfr(cosh e)(si

0

cosh d

Proof: By the following transformations
cosh 6 . cf cosh t s

Cr. (s-1)w + 1

and use of hyperbolic identifies (1.21) becomes

(1.20) 1.(11 7r g si I"( [34-ikt ) *

fg PP (cosh e)tif(cosh e)
ig -

0

sinh e de.

Here p can be any complex number such that Rhs of

(1.20) is well defined.
It will be next shown how the conditions imposed

on yr of Theorem I came about.

From (1.12) the following lemma is used to meet
the condition that g(e) 0 as e

If lim 0(cosh e) 0, where 0(cosh e)
a- 00

YAcosh 6)sinh1-241/2, then lim h(t) r 0, where



(1.22) h(t)
0

using next a mean value theorem or improper in a a

(1.22) becomes

(1.23) h(t)1-21.2 (s 1 1)+1]

2 w,

0

where 0 .= I) .= 1. For (1.23) tto exist 3i P

also if 033..=

1 (s-1)w+2 -f3 1(s-1)-k-13 where s 1 so 1.23)

becomes

(1.24) /h(t)/Z 21 213 /1(s-1)/9+ 1.7/1-a- -w5413 dw.

But (1- 36-13 dw is the beta function B(4-36-13 36.4.p)

and therefore the above is valid for all p such that

p(-0h-13,3+13) exists.

Thus h(t) -.. 0 as t co by given in lemma.



This gives rise to one of he conditions required of
is Theorem 1. Going from steps (1.9) to (1.10) required
that be such that this is permitted. This requires
that dit/dt is absolutelyintegrable in (0,co ) and d2h/dt2

absolutely integrable in (0,a) 0 L azco.
Equation (1.23) can be written as follows:

(1.25) h(s) 1-2p 0[( p +1]

dw, 17/0? 0

where again a mean value theorem for improper inte
is used, or

)7(s) . 21-4 01-(s-lr 1,7g )10 8-1) gj
5 ig)

So from (1.25) dh/dt d2h/dt2 depends directly on
dO/dt and d2 0/dt2 respectively. Hence assume dO/dt

is absolutely integrable in Z0,C0> and d 0/dt2
is absolutely integrable in 4'0,a? a> 0 and

arbitrary. Going from steps (1.9) to 1.10) is now

valid.
The condition that m 0( ) 0, Re B 0 res

t+0

from the following lemma:



where

.28)

0

Y(cosh e). [FP
0

Using 1.2) and fact

(cosh 0 cosh t (cosh e cosh t

p o.

e is such that cosh ez 2, tio4: ot using also

osh e) 2/fl-) jr cosh e - cosh t d

( cosh(9/2) li(tanh 2)

p. 173)

) complete elliptic integral of first kind and

(cosh 9/2)-1 sinh 9/2)-1 gives

(cosh)/Z/f(y2... 9 (si 9/2 ) 1/

This proves the lemma.

The condition that fca) 0, /1 m 0 results
from observing formula (2). Reversing the steps t
obtain (1) requires that f(fl) meet the conditions of
Fourie is inversion theorem (see steps (1.10) and (1.9)).

17

o h e 2) near



18

The integrability condition for f(//)
is due to asymptotic behavior of the kernel (the Legendre
Function of the first kind) This completes

the proof of Theorems 1 and 2.
As an example for the transforms (1) and (2), the

tranerormqab will be computed to give a f. Then the

transform of this f will be computed to recover
Let

(2.1)(cosh 09) sin a (cosh 0 + cos /2+P(sinh

where .--/Tz Etz17 Re P4,/_ 3. meets the

conditions of Theorem

Inserting (2.1) into (1) and using ) gives

(2.3) si /Tx/ ) 7-106p+i/i/ )

/(7T/20 /10
a

cosh 49 cosz).

o h cos 8.)-3/2+ an 9 (sinh 0) de.

Rewriting 2.3

co

s a



(cosh e - cosh t

(2.6) is the transform fr,17 1

13

a d

19

(2.4) (I/ 77- -1 Ili sinh( /7/i ) f(y2 )

co

(cosh 0 + cos 3/2 13 de dt.

Let cosh 0 - cosh t (cosh t + cos z, (2.4) becom

fcli) .71-1 Si /TA ) RY2-13+iA ) )

(772) a cos(// t) sin a (cosh t + cos
co

z (1+z)/2 4* dz.
0

Both integrals are known.

(2.6) fy 2 -3/2--/-70).7-1 /012.1.0., )

I(*i3-i/u ) B O).)sinh aA7



f(/// ) /a but since
a

r (I/ Y Pfsca )/dyt"- for all
0 0

such that 0 4 So fcif ) meets requirements of
Theorem 2. Now taking (2.6) and computing the inverse
transform of (2.6) (2.1) will be obtained.

Using (1.1) and (1.17) gives

(2.7) )b(cosh e)

0

/7( ) sinh(/7, sith

,/sinp t) cosh t cosh at

71-177,-////bi )(hr/2)

710/2'.` P,1)sinh,u dit

Rewriting 2.7)

20



0.0

f1(cosh t - cosh 6)
co

fsin(/'
t) /t/ ail :I1 :1Ian ( si dfi d

o

But

(2.9) fsia///t sinh(
0

sin a a cos a + cosh t)

Proof of (2.9) thus gives

(2.10) t(cosh )

e) (2/1) 71( f3)C (re-13)7.-

"(cosh t cosh e
0

s sinh t a + cosh 2 ay

With the substitution cosh t - cosh e (cos a cosh )z
(2.10) become

21

(2.8) cosh 6) r 77-/ 2) (-13,



gF

.10-Z/-101 (0,1T(5T'F)

deo] 04,0()ii = (ci

(d-a/V

t_go-501(1+0,./

.2Y(T41-)

AIM

BOO + V00)US

BOO + V SO

("za)(equTB)7

((eLisoo)

zp(Z+T)

+soo)(e IISOO +SOO) V uTe

0

Ta)

t-LI30 .1(.1/a)1(0T2TS);

//CC g-e7i)Evv.(e/iittsoo)



Then (2.12) becomes

(2.16) Y(cosh e) . sin a cos a co -3/2+

(2.16 is (21 as was to be shown.

23



3. THE GENERALIZED SPHERICAL WAVE
REPRESENTED AS A GENERALIZED MEHLER TRANSFORM

A basic solution of the modified wave equation
2Af -cfm.0 in 2n + 2 dimensions is 17)

3.1) f

Here Kn(oR) is the modified Hankel function of order
(9, Ch. 7) where R is defined

(3,2) B 14a2 + b2 2ab cos A

For the two or three dimensional space (o. a 0 or n
respectively) f reduces to a cylindrical wave Ko(

24

or to a spherical wave R exp (-cR) respectively.
An expression for (3.1) has been given by Gegenbauer
(9, p. 43) in the form of a series representation known
as the (Gegenbauer) addition theorem of the modified
Ranks], function

(3.3) K (R) ab) r(v)

ab
and for a b the same formula with a and b interchanged,

It will be shown later that instead of (3,3) the
owing relation can be proved.

riss0

cos A)



( .4)

(.5)

2ab cosA) + 240

00

si (Tr 4

0
r(v+ r(viix) K x )

-cos A) dx,

+2ab cos

(ab sin

fl(v+ix) ['(v .ix)

cos B) 41x,

xvka2

01 0 -= A 27r

Here .3444x -cos A) is the Legendre function n

cut" (see Appendix c) $ p 143) (note that (3.4) is
symmetrical in a and b which 3.3) is not). Put

A Tr B and get

Re B.:4111 7T

25

sinh (7Y )



t follows from p. 122 equation (7) that

))141()

(3.6)

F(v+ix) r( ix)

-A+ix

Re v

Obviously the integral3.6) is of the type of a
Mohler transform (0.3). But the integral in (3.6)
also be regarded as a Lebedev transform 9. p* 75)

obtain hen instead of 3.5)

+2abz)-* Xvka 4-b2+2abz

2)677-:"3/2 (

in case y

26

sinh (7rx)

s a one valued function of s in the complexz plane
cut along the real s axis from 4.1 *4.00 therefore
we choose in 3.5) cos B ss we can writ



Special Cases

The express on (3.4) can be used to obtain
pressions for the cylindrical (v * 0) and spherical wave

= in the form of an integral expression.
a) qy indrical xml Cv = 0)

Since (8. p 150)

(3.8) (a +

obtains from .4)

-2ab cos A

Coos 0) (,vr) 0 008 +3091

0

(b) herical wave v

Since (9, p. 10)

yro 7r/2)

one obtains

-2ab cos
00

) (a) b ath (gz)

-3+ix008 A)dx.

27



The expressions .7) and 8 were previously kno

(9, p. 55)
If we apply the inversion formula (0.3) for (3.6)

we obtain
00

(3.9) x(a) ix b (TT/2) ab)v )((72-

2aby) If1/4v/ia b2+2aby /61

P h+ix(7) 4Y

This formula is valid for Re (8, p. 163), and
seems to be new. (For formulas of his type see (6 and
7).)

The special case v 0 gives
c,0

(3.10) ( ) Kix(b)f K I-. a2
v. o

0

observing that (8, p, )

fia2

dt .

+2abt)

+2ab cosh

P/( osh t) (3671)(sinh t) cosh/r(vOi)t7

The case v r 14 gives

(4.0) Kix ) K( b) 14/7- Cab)

28



Equivalent with (3.4) is

(3,11) ( 2 b2-2ab cos

11(y)

12) -.v -1x

K4ka2 b2-2ab cos A)}

cos A

a b, Re irY a

Here dr -cos A) is the Gege bauer fction
175)

A

Inserting this into (4.1) and using the relation (9, p.5)

x(a) i 277 sinh ('Ti) (a)

one finds ( .4).

Proof of ( )0

Consider the integral in 1) taken o
closed contour in the complex x plane consisting of
the real axis between R and +R and the semicircle

29



of radius R in the upper half plane.
Choose R such, that the semicircle separates

consecutive poles xit, i(v+// ) and

/4/44 st i(v4v/ +1) of the integrand.. The residue of
the integrand of (3011) at a pole x/0 (v+// ) is
equal to

( 1) +// ) A) (a)

m 0, It 2).

The contribution of the integration along the
semicircle tends to zero when R , provided a>
This follows from the behavior of the integramd in
(3.11) on the semicircle for large values of R
Appendix a) We obtain therefore by the residue theorem
from (3.11)

a + -2ab 008 A) Xviia 2 b cos A %I *

2

p. 176) A) (-1)// C, (cos A).

(right band. side) of the last ezpresson is

30



equal to the Rhs of (3.3
This proves 3.4) and

31
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it follows that 
in (3.11)) 

(71/ )04 ria 

Zi+0(1./// 

both expressions valid in 71- erg /1/4/7- and 

in the second expression /a not an integer. ano. 

APP 

In order to show that the integral in (3.11) 

along a semicircle of radius R in the upper 
x'-halt plane tends to zero as R ' 1"°4D, it is 

necessary to investigate the integrand of (3,11) 

for x R 0_4 c,e/r 
From Stirling's formula (8, p. 47) and the 

definition of the modified Bessel functions (9, 

p. 5) one obtains for fixed s and large (complex) 

/1t 

or Yi+o(141/ 17 2) co**// lon-fi 

r substituting 

e/2 e 
//(log/' 1) 

34 



(cosy ) ()77 Bin,

inf

06v

for large/v in the alt plane (corre

-cos A). 7.6.77, (s ) //

c sZ-fi A+,6 /7 71+0(1P .)]

for argez\ in Zr arg), 4/7

Therefore, because of (3.12) with X la

+0 1./A

for large /(/ in -77- argfiz
The integrand in (3.11) is therefore equal to

Offi ***I ( 011))**1

(b) Behavior of 1)// (z) for x-Yr+ix

It follows from (8 p. 129, formula 6)) that

,ev oCe ))

7

35

ponding to the upper x half plane
Furthermore from 8, p. 147 ormu a (5))

together with Stirling's formula



Berinition of

(z)

$ not a o

e Legendre tunction (8),

1.-*/u

the a between

1-/./ I
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