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Chapter 1 – Introduction

Games are useful subjects of Artificial Intelligence (AI) research, because they can

offer a high-level of intellectual challenge while having a well-defined structure.

The well-known Turing Test [26] of intelligence was itself proposed as a game, and

chess was a benchmark of AI progress [18] until computers began competing at an

expert level [6]. Chess, checkers, and backgammon are games in which AI agents

have won against expert human players [6], [21], [25]. These classic board games are

turn-based, they have a small number of possible actions, the effects of actions are

instantaneous and deterministic, and they have a small number of game objects

with fixed attributes. In the restricted environment of these games, agents can

search possible sequences of actions and select actions that lead to favorable states.

However, in environments in which actions are continuous, durative, or stochastic

in effect, and in which the number of agents and objects multiply, the search

algorithms applied to board games do not scale. Also, the restricted dynamics and

simple states of classic turn-based games are not much like complex real-world

problems. To find new challenges for AI research, and to push for new tools to

solve real-world problems, we need to test our agents in games that relax these

restrictions.

Real-Time Strategy (RTS) games are simple military simulations that require

players to build an economy, produce combat forces, and use those forces to defeat
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their opponents. A defining feature of RTS games is that action proceeds con-

tinuously. A player can initiate actions at any time, rather than being restricted

to turns, and the game continues whether a player takes action or not. An RTS

player must solve problems of resource management, decision making under un-

certainty, spatial and temporal reasoning, coordination, and adversarial real-time

planning [5] in order to play succesfully. Actions have duration, and their effects

are often randomized. Game objects have complex attributes that can vary over

the course of the game due to damage or strengthening actions. In these ways

RTS games are much more complex than classic board games, and come closer

to representing real life scenarios. AI systems have been developed to play RTS

games, but they still compete below the average level of human players in RTS

competitions [28], [29], and so RTS games pose difficult and relevant challenges for

AI researchers.

In this thesis we focus on strategic planning for the production and deployment

of combat forces. In an RTS game, there are many strategies that a player can

pursue. A player can try to build many cheap combat units and try to rush

into battle, they can try to build a few powerful combat units to create more

effective forces, they can deploy forces for defense or offense, they can concentrate

or disperse their groups for attack, and a player can change strategies throughout a

game. The problem of strategic planning is to define sequences of high-level actions

that direct the production and deployment of groups of combat units and lead to

defeating the opponent. One of the challenges of designing a strategic planning

system is finding a level of abstraction that limits choices to a manageable number,
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while providing enough detail to accurately model the dynamics of the game. The

design of our strategic planning system is based on a strategic level abstraction of

the game. In our game abstraction, territory is divided into regions, and units are

clustered into groups. This greatly reduces the number of choices to consider. In

our strategic plans, production actions specify the groups of units to produce and

the mix of unit types within groups, and combat actions specify regions to attack

or secure and what groups to deploy, rather than the paths or targets for individual

combat units. Given an abstract game state, a planner generates task networks

based on different strategies. Finally, we describe our game playing system. The

architecture of the system has a configurable hierarchy of managers that execute

a strategic plan.

The next section describes in detail the RTS scenarios we have choosen to

solve.
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Chapter 2 – Strategic Planning in Real-Time Strategy Games

The objective of an RTS game is usually to destroy all of the opponent’s forces. In

a typical scenario, a player begins a game with a single worker placed somewhere

on a bounded territory called a “map”. From the initial state the player must

build an economy to train and support combat forces. The game used for this

study is Wargus [3], a medieval fantasy combat game that runs on the Stratagus

game engine [1]. The human player’s view of the game is shown in figure 2.1. At

the upper left corner there is an overview of the game called the “minimap”. The

minimap shows the player’s forces in green and the opponent’s forces in blue. The

action bar on the left shows actions that can be assigned to the currently selected

unit. The status bar at the top shows the resources held by the player. The center

right shows a movable window on the game map. The map view shown has been

edited to label some of the game units. This player has several footmen, a town

hall, a barracks, and farms. Gold mines are not owned by players, but peasants

can mine them for gold.

In Wargus, the economy consists of peasant workers, gold, timber, and oil

resources, and the production from different types of buildings. Peasants mine

gold and harvest timber. Gold can be used to recruit and train new workers. Gold

and timber can be used to construct buildings. Some buildings are used to train

combat units such as footmen and archers. Other buildings, such as a blacksmiths,
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enhance the attack and defense strength of combat units. After a combat unit has

been trained, it can be sent on patrol, to a location, or to attack another unit.

The strategic planning problem that we address in this thesis is planning for the

training and deployment of combat units. We do not address resource production

and build order, so in the scenarios we test each player starts with enough resources

and buildings to train and support a large combat force. Given that a player has

the resources to train different types of combat units, a plan has to specify which

building groups are used to train combat units, how many of each type to train,

Figure 2.1: Wargus Game Interface
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how to organize them into groups, where to deploy them, how they should attack

or defend, and in what order these tasks should be executed. In section 4.2.2 we

describe the planning language we use for strategic planning in the Wargus RTS

game.
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Chapter 3 – Related Research

Commercial combat simulations have been used as AI testbeds since at least

2001 [13], and since 2003 RTS games have been used because of their challeng-

ing demands [5] on decision making. Commercial combat simulators often include

an AI player in order to provide an opponent when playing a game alone. So there

has been at least a decade of research in this area. Most RTS AI controllers are of

two types: they either use scripting or simulation. This section gives an overview

of these two approaches to RTS AI, and we compare and contrast our own AI

controller to these approaches.

Most RTS game playing controllers operate by some form of scripting. At its

simplest, an engineer codes a controller to recognize game states and trigger a re-

lated script that executes some human engineered tactic. Sophisticated versions of

scripting add the ability to learn or reason about which scripts should be executed

in which states. Examples of scripting with learning for game playing AI include

Case-Based Reasoning [27] and Dynamic Scripting [24]. Examples of scripting with

reasoning are Goal-Driven Autonomy (GDA) [28], and tactic selection by symbolic

reasoning [30]. The disadvantages of these techniques are that the AI has a lim-

ited number of scripts to choose from and the composition of the scripts is a labor

intensive and error-prone process. If we define “understanding” as the ability to

predict the outcomes of events, then scripted controllers have little to no under-
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standing of the domain that they act in. In contrast, our controller uses simulation

to predict outcomes, indicating that it has some understanding of its domain. Our

controller generates plans from parameterized strategies, so the number of possible

plans is large, and in principle new strategies could be generated by automatically

varying the strategy parameters. Though low-level modules could be implemented

by scripting, as we show with our combat controller 4.5, low-level modules can also

be trained, thereby avoiding a disadvantage of manual script creation.

Another class of controllers use game simulation to look ahead and evaluate

alternative actions. In Monte Carlo Planning [10], the AI player randomly gener-

ates high-level plans for all players, simulates the plans as many times as possible,

and then executes the plan that gives the best statistical result. But defining the

best result may not be straightforward. From Game Theory [15], we know that

the highest value result among pairs of strategy choices may not be the best choice

in an adversarial game, because an opponent who can predict a player’s strategy

choice may be able to exploit a weakness in that strategy. Choosing a strategy by

a Maximin or Nash equilibrium evaluation after plan simulation is a refinement

of Monte Carlo planning that has been used in RTS games. In the RTS planner

described by Sailer et. al. [20], the actions that are evaluated are actually high-level

strategies that are simulated to completion. However, the implementation of these

strategies is not described, so we do not know how they are defined, how they are

translated into unit actions, or how these strategies direct resource production. In

this study, we define an RTS strategy as a set of parameters, and we present an

algorithm that generates a plan as a high-level task network. An advantage of
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parameterized strategies is that it is clear what the strategy space is. By having

a high-level task network, it is clear how to incorporate production tasks into the

simulation and execution of a plan, and the high-level plan suggests how to assign

tasks to controllers. An additional feature of our architecture is that our simula-

tor uses a spatial abstraction that includes strategic paths, so path lengths in the

terrain are considerations when evaluating strategies, and our simulator includes

production time requirements.
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Chapter 4 – Architecture and Approach

In this section, we describe the abstraction we use for simulation, the plan gen-

eration algorithm, our hierarchical architecture, the simulator used to evaluate

strategy pairs, and the strategy switching algorithm which is our focus. In addi-

tion, we describe a low-level module, the combat controller, to show how different

modules can be plugged into the architecture to create a game player.

4.1 Game Abstraction

A Wargus game map is a grid of cells, typically 32x32 or 64x64. A common action

for combat units is the “MoveAttack”, which means to move to a cell of the map

and attack whatever is there. If we take a simple combat scenario of 10 footman on

a 32x32 map, there are approximately 1030 possible permutations of MoveAttack

commands that a player could issue to their units. Contrast this with chess, which

has an average 35 possible moves at each turn, and we see that deciding the actions

for just one Wargus update is a daunting challenge. Of course, it does not take

much game experience to see that many of these moves are equivalent, and that

the strategic difference between moves to nearby cells is negligible, so we can make

great reductions to the size of the action space by clustering map cells in a spatial

abstraction.
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Figure 4.1: Game Map Figure 4.2: Abstract Game Map

Figure 4.1 shows a map called one-way-in-one-way-out that we have chosen

for some of our experiments. This figure is a screenshot of the “minimap” overview

of the entire map. For the experiments, we start with two groups of production

units, called “bases”, for the player and the opponent. Green squares show the

player’s units, blue squares are the opponent’s units, and gold squares are gold

mines. This map configuration is called “2bases” in our experiments. Figure 4.2

shows a hand-coded abstraction of this map into 8 regions labeled R1 through R8

(R4 and R6 are small, and their labels do not show in the figure). The figure shows

the connectivity graph, and a region containing a chokepoint in red. A chokepoint

is a narrowing of a region that forces units to present a smaller front as they pass

through.

A map abstraction consists of regions and a connectivity graph showing ab-
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stract paths between regions. Regions can be marked as chokepoints to show

where passing units will be vulnerable and where units can prevent passage of

an opponent’s forces. Since the finest divisions of the map are square cells, we

abstract a region as a collection of contiguous rectangles, which are sufficient to

create any desired partition of a map. For games that use continuous coordinates,

it might be more appropriate to use a triangular mesh to allow us to approximate

any shape, but in Wargus shapes other than rectangular could create ambiguity

about which region border cells belong to, so there is no advantage in using more

flexible regions. The connectivity graph shows connections between a region’s cen-

ter and points on the border between regions. Each connection has a length which

is intended to quantify the difficulty of moving from region to region.

With this spatial abstraction, we greatly reduce the number of “MoveAttack”

actions that have to be considered. For our particular map, a unit starting in

region one can move to only seven other regions, and there is a unique path to

each region. We designed this abstract map so that these choices represent what

is strategically important - the choice of moving to occupy a chokepoint, moving

to defend allied units, or moving to attack enemy units. Tactical decisions can be

made in the game map after units have reached a strategic target.

Combat units have been organized into hierarchies since ancient times, and

reasoning about combat units as groups is part of the earliest formalizations of

military analysis [14], [16]. There are many approaches to modeling combat groups.

The SORTS system [30] motivates grouping by appealing to Gestalt theory. There

are different methods of aggregating unit speed, survivability, and attack strength.
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In our abstraction, units are classified into two types: combat and production.

Combat units are such things as footmen, archers, knights, and machines like

ballistas. Production units are peasants, town halls, barracks, and anything else

that produces other units. Given a state in an ongoing game, all units of the same

player, class, and region are grouped into an object called a UnitGroup.

Properties of UnitGroup G are calculated from the properties of the units g

assigned to them. The properties that are sums, minimums, or maximums of the

constituent unit properties are given in table 4.1.

Property Formula
MaxSpeed(G) = ming∈GMaxSpeed(g)
Armor(G) =

∑
g∈GArmor(g)

BasicDamage(G) =
∑

g∈GBasicDamage(g)

PiercingDamage(G) =
∑

g∈G PiercingDamage(g)

MinAttackRange(G) = ming∈GMinAttackRange(g)
MaxAttackRange(G) = maxg∈GMaxAttackRange(g)

Table 4.1: Properties of UnitGroup G

Given a game state, we can create an abstract game state as described above

that has all the features needed to make strategic decisions. We have created

a grammar for abstract game states, so that the strategic concepts are clearly

defined, and states can be saved and analyzed. The grammar for the abstract

game state and an example state are given in appendix A. The last abstraction we

need for taming complexity is a representation of the actions of groups of units.

We define high-level tasks to represent group actions in the next section.
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4.2 Strategies and Plans

No battle plan survives contact

with the enemy.

Helmuth von Moltke

Tasks are high-level actions assigned to unit groups. We implemented three

task types for our system: produce, secure, and attack. A “produce” task can be

assigned to a production group, and “secure” and “attack” tasks can be assigned

to combat groups. In our system, a plan is a directed graph of tasks and a set

of unit groups that execute those tasks. The graph nodes are tasks and edges

are “triggers”. Tasks can be started when prior tasks connected by a trigger have

ended or started, and these conditions are indicated by the type of the trigger. An

example plan is shown in figure 4.3.

Figure 4.3: A Strategic Plan

We describe plans using a planning language. A planning language constrains

the number of possible plans, and having a language means we can save plans
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plan : ’(’ ’:plan’ NAME ’:player’ INT group_spec* task* ’)’ ;

group_spec : ’(’ ’:group-spec’ INT ’:type’ NAME units_spec*

(’:initial-units’ ’(’ INT* ’)’)? ’)’;

units_spec : NAME INT;

task : ’(’ ’:task’ NAME task_args ’:type’ NAME (’:using’ INT)?

(’:start’ start_triggers)?

(’:end’ end_triggers)? ’)’ ;

task_args : ’(’ group_arg? region_arg? ’)’;

group_arg : ’(’ ’:group’ INT ’)’ ;

task_arg : ((NAME INT)|NAME);

region_arg : ’(’ ’:region’ INT ’)’;

start_triggers : ’(’ ’:trigger’ trigger* ’)’ ;

end_triggers : ’(’ ’:trigger’ trigger* ’)’ ;

trigger : ’(’ (’start’ | ’end’) NAME ’)’ ;

Figure 4.4: Plan Grammar

for analysis and testing. Figure 4.4 shows the grammar of our planning language

given in ANTLR [19] format. group_spec tells the composition of groups that

will execute the plan. tasks have a type, a region or group identifier given in the

task_args, and a :using property that tells which group to use to execute the

task. If the task is a combat task, then the argument is a region identifier. If the

task is a production task, then the argument is the identifier of a group to produce.

The text corresponding to the plan in figure 4.3 is shown in figure 4.5.

The types of tasks are not restricted by the grammar, but we defined produce,

attack, and secure types. The :using group of a production task will be a group

of buildings or workers (peasants in Wargus) that can be used to produce other

buildings, workers, or combat units. The argument to a produce task is the group

identifier referring to the group to produce. An attack task directs a combat
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(:plan plan_0 :player 0

(:group-spec 1 :type group-building

unit-town-hall 1 unit-elven-lumber-mill 1 unit-human-barracks 1

unit-farm 7 unit-peasant 1)

(:group-spec 2 :type group-combat unit-archer 2 unit-footman 3)

(:group-spec 3 :type group-combat unit-archer 2 unit-footman 3)

(:task init-group1 ((:group 1)) :type init-group

:end (:trigger (start produce1))

)

(:task produce1 ((:group 2)) :type produce :using 1

:end (:trigger (start attack2)(start produce4))

)

(:task attack2 ((:region 1)) :type attack :using 2)

(:task secure3 ((:region 1)) :type secure :using 2)

(:task produce4 ((:group 3)) :type produce :using 1

:end (:trigger (start secure5))

)

(:task secure5 ((:region 7)) :type secure :using 4)

)

Figure 4.5: Example Plan Text

group to go to a region and attack whatever enemy units are there. If enemies are

eliminated, the :using group is available for the next task. The secure task is the

same as the attack task except that it does not end. After enemies are eliminated

the securing group remains in place. The task can be ended explicitly by an “end”

trigger.

In a strategic combat game, the highest-level goals are to control territory.

Control of a region means that a player has the freedom to move about and use

the resources of that region without significant risk of attack from an opponent.

At the end of the game, one player will control all the regions of the map by
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having eliminated the enemy. In intermediate stages, a player can gain control of

a region and begin using the resources of that region. So a strategic plan consists

of sequences of production and combat tasks that extend a player’s control to all

regions of a map.

4.2.1 Parameterized Strategies

There are many tradeoffs to consider when creating a strategic plan, such as what

type of combat units to train and when and where to send them to battle. Players

organize different approaches to these tradeoffs into strategies. A typical RTS

strategy is a “rush”, in which a player tries to train a small number of combat

units quickly and send them to attack the enemy before the enemy has time to

build adequate defenses. A contrasting strategy is “turtling”, in which a player

tries to build a large defensive force to survive an initial attack. We have organized

strategies as sets of parameters called strategy templates. The strategy templates

encode strategic tradeoffs. A plan generation algorithm can then create a plan

when given a strategy template and a game state.

The first three parameters tell what size group to produce for different combat

goals. The planner recognizes three types of goals: secure a base, secure an enemy

base, and secure a chokepoint. A strategy that emphasizes defense will define

larger groups to secure a player’s bases. Another factor distinguishing offensive

from defensive strategies is the order in which goals are pursued. The “goal order”

parameter is an enumeration of different goal priorities, as given in table 4.3. For
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Parameter Range Definition
base force {1,...,9} size of groups that defend bases
enemy base force {1,...,9} size of groups that attack enemy bases
chokepoint force {1,...,5} size of groups that secure chokepoints
goal order {0,...,5} priority of bases, enemy bases, and chokepoints
MassAttack {false,true} groups attack jointly or separately
time to target [0,1] weight of time to target factor for goal assignment
enemy damage [-1,1] weight of damage that enemy in goal region can deliver
damage ratio [-1,1] weight of ratio of allied to enemy damage

Table 4.2: Strategy Template

ID Name Priority Order
0 defensive allied,chokepoint,enemy
1 defend-attack allied,enemy
2 attack-defend enemy,allied
3 chokepoint chokepoint,allied,enemy
4 offensive enemy,chokepoint,allied
5 offensive only enemy

Table 4.3: Definition of Goal Orders

example, if a plan is being generated for a strategy with a “defensive” goal order,

then the planner will prioritize production of combat groups to secure allied bases,

then chokepoints, and then enemy bases.

The use of the MassAttack, time to target, enemy damage, damage ratio pa-

rameters is discussed in 4.2.2.

4.2.2 Plan Generation

Our base plan generation algorithm is in the class GoalDrivenPlanner. To make a

plan, GoalDrivenPlanner is given a strategy template, a set of group definitions,
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makeP lan(strategy, state, groups)

1 plan← initialize plan with groups
2 goals← goals from state
3 sort goals according to strategy’s goal order
4 for goal in goals
5 do task, group← AssignGroup(plan, goal)
6 if group is not null
7 then addCombatTask(plan, task, group)
8 else group← defineGroup(goal)
9 addCombatTask(plan, task, group)

10 if MassAttack(strategy)
11 then patch plan to combine attacks on enemy bases.
12 return plan

Figure 4.6: Make Plan

and the current state. The planning function of the GoalDrivenPlanner creates

a set of goals for the current state. It then attempts to satisfy these goals in

priority order by assigning an available combat group to each goal. If no combat

group is available, the planner defines a potential combat group, and tries to find

a production group that can produce the combat group. The high-level algorithm

makeP lan() is given in figure 4.6.

The AssignGroup() function finds available combat groups in the current plan

and determines which group is most compatible with the given goal by calling

GetCompatibility() 4.7. Strategy parameters time to target, enemy damage, and

damage ratio are passed to the GetCompatibility() function as weights w. The

addCombatTask() function adds a combat task to the end of the plan if the group

already exists. If the group does not exist, the function looks for a free production
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group and adds a sequence of tasks to the plan to produce the combat group and

send it to secure the goal region.

GetCompatibility(w, group, goal)

1 t← time to target(group, goal)
2 s← enemy damage(goal)
3 r ← damage ratio(group, goal)
4 return wtt+ wss+ wrr � (high value is more compatible)

Figure 4.7: Get Compatibility

4.3 Simulator

To evaluate strategic plans, we need to approximate the outcome of the sequences

of actions defined by the plan, which we can do by simulating these actions in the

abstract game state described in 4.1. So we need to estimate the outcomes of our

produce, attack, and secure actions defined in 4.2.

The goal of a produce task is to create a new UnitGroup with a specified

number of units in it. The Wargus configuration files specify the prerequisites and

time needed to produce a unit. The produce task is implemented in the simulator

by an object that verifies that the game state has the prerequisite resources and

units, and tracks the completion progress. To estimate the time to completion, the

action loads a predefined graph of unit dependences along with the time need to

complete a unit. When the game cycle advances past the number of cycles needed

to create a unit, the action object adds a new UnitGroup to the abstract state or
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updates the UnitGroup attributes to indicate that it has the hitpoints, damage

potential, armor, etc. of an additional unit. For example, training a footman

requires a barracks and takes 360 game cycles. Given a goal to produce 10 footmen,

the action object will verify that there is a barracks available. After 350 game cycles

have passed, it will create a UnitGroup with the attributes of one footmen. After

each additional 360 cycles, the UnitGroup will be updated with the attributes of

another footman.

attack and secure are our two types of combat tasks. The goal of these

tasks is to secure a region by destroying all opponent units in the region. An

attack task completes when the opponent’s units are destroyed, while the secure

never finishes because it is an ongoing task of occupying a region. Combat tasks

are executed by a combat object in the simulator. Combat simulation works by

moving UnitGroups along paths in the abstract map’s connectivity graph until

an opponent group is encountered or the group reaches the target region. When

UnitGroups are in the same region, we assume that they can attack each other,

and as soon as a UnitGroup being used by a combat task meets an opponent group,

it will attack it. Combat proceeds by calculating damage points and subtracting

damage from the hitpoints of each group. Damage for UnitGroups in the simulator

is calculated the same way as it is for units in the engine. Damage to an opponent

inflicted by an ally is calculated as

damage = ally.getBasicDamage()− opponent.getArmor() (4.1)
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When UnitGroups are in combat, they stop motion and attack until one group

is destroyed (hitpoints drop to zero). The winning UnitGroup can proceed to its

target region.

A simulation is updated in a time increment. The game state is set forward by

the increment amount, then all the active actions are executed. Actions calculate a

set of attribute differences between the previous cycle and the new cycle. Attribute

differences are UnitGroup hitpoint changes and position changes along the edges of

the map connectivity graph. The attribute differences are collected from all active

actions, and then applied to update the game state. The purpose for delaying

attribute update is to simulate simultaneous actions. Without the delay, the order

of action execution would be significant. For example, a group might cause enough

damage to destroy an opponent group before the opponent had a chance to attack,

while in the engine the individual units of the opponent group might have many

opportunities to attack before the whole group was destroyed. It is necessary to

collect the attribute changes and apply them after all groups have had a chance

to act in an update.

Though visualization of the simulation is not needed for planning, it is useful

for debugging. The simulator application shown in figure 4.8 was used to debug

the simulator.

The details of how the simulator is used for game value estimation are described

in chapter 5.
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Figure 4.8: Simulator Application

4.4 Game System

The game playing system consists of a client application and a Stratagus engine,

which communicate through an internet socket. The client application runs one

or more controllers, each of which controls the game units for one player. The

controllers are run by a class called the GameRunner. Controllers are implemented

by the StrategyController class. Controllers are configurable, but for our ex-

periments they each have a planner and a hierarchy of managers. The system

structure is shown in figure 4.9. The hierarchy of managers structure is a common
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approach to multi-agent systems [12], and maps naturally to military command

structures. The approach was inspired by the hierarchy of managers used by Mc-

Coy and Mateas [17] for playing Wargus, though our implementation uses only

two sub-managers.

Figure 4.9: Controller Architecture

The GameRunner coordinates the interaction between the Stratagus engine and

the player’s controllers. At the beginning of a game (also called an episode), the

GameRunner passes the initial state to the StrategyControllers. The controllers

may create a plan and return unit commands to the runner, and the runner then

tells the engine to execute a fixed number of game cycles, and passes it any unit

commands it has received. After the specified game cycles, the runner receives the

updated state and passes it to the controllers. The controllers may replan when



25

they are updated. This interaction forms the planning cycle shown in figure 4.10.

Figure 4.10: Planning Cycle

The managers under the control of a StrategyController are responsible for

executing a plan. The StrategyManager, ProductionManager, and TacticalManager

are all sub-classes of an abstract Manager class. The Manager class defines the in-

terface for a task manager that performs a given task. It has several methods

that allow it to communicate state and task status with both its parent and child

Managers. The StrategyManager assigns tasks from a plan to its sub-managers,
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and tracks which tasks are active. When an updated game state is given to the

StrategyManager, it passes the state on to the sub-managers. If they detect that

their task is complete, they signal back to the StrategyManager which marks the

task as complete. When all the predecessors of an inactive task are complete, then

that task is marked as active and can be assigned to a sub-manager.

Groups may lose units when they are attacked, and re-planning may define new

groups, so as the game progresses, a player could be managing a large number of

small groups. There is no peer-level messaging in the manager hierarchy, so groups

in the same region can not be coordinated and may interfere with each other. To

prevent this, the StrategicController joins combat groups that are in one region

into a new group before re-planning. Joining and defining groups is done by the

GroupAnalysis class.

The ProductionManager is responsible for creating unit commands to execute

production tasks. A strategic plan may contain a high-level task such as “produce

a group of 5 footmen using production group 1”. The ProductionManager will

find a barracks in production group one and issue the commands needed for the

barracks to train the required footmen. The ProductionManager tracks events in

the state update and signals back to its parent manager when the task is complete.

The TacticalManager controls combat groups. Given a task to attack or secure

a region, it will create its own sub-manager, an instance of the CombatGroupManager

for the task that controls a combat group. The implementation of the CombatGroupManager

used for our experiments is described in section 4.5.
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4.5 Combat Group Manager

The game system can be configured with any implementations of the Manager

interface. In this section we describe an implementation that executes a combat

task, to give an example of a unit group manager.

4.5.1 Model

When securing an opponent region, a combat group must accomplish two tasks:

killing all opponent combat units, and disrupting the opponent’s production of

new combat units. To accomplish both tasks, the attacking units must trade off

attacks on existing combat units, buildings, and peasants. If we express the value of

assigning an allied combat unit to attack an opponent unit as a linear combination

of state features, then these tradeoffs can be expressed in a linear programming

model.

We write the combat group’s objective as a parameterized function of state

features and unit actions. The state features are given in table 4.4.

Kj,k indicator that opponent j is unit class k
pi,j proximity of ally i and opponent j
tj opponent j can attack allied combat group

Table 4.4: State Features

To limit the number of parameters Kj,k for unit types, we grouped the types

into a higher level of five classes, which are given in table 4.5.

Let xi,j be the action that ally unit i attacks opponent unit j, and let there be
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N allied units and M opponent units. Then objective function Q̂θ is

Q̂θ(x, p, t,K) =

N,M∑
i,j

(θ1pi,j + θ2tj + θ3Ki,1 + ...+ θ2+kKi,k)xi,j

Let opponent capacity Cj be the maximum number of allied units that can effec-

tively be assigned to opponent j (values are in table 4.6). The resulting linear

program (LP) is shown in figure 4.11.

Maximize Q̂θ(x, p, t,K)

subject to
∑M

j xi,j ≤ 1 for i = 1...N∑N
i xi,j ≤ Cj for j = 1...M

x ≥ 0

Figure 4.11: Combat Linear Program

A solution to this LP is a vector x that maximizes the value of a combat

group’s attacks. In the implementation, LP 4.11 is solved using the Gnu Linear

Programming Kit (GLPK). In the next section we show how to interpret the

solution.

Class Index
Peasant 1
Combat 2
Combat Bldg. 3
Production Bldg. 4
Support Bldg. 5

Table 4.5: Higher-level Unit Types
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4.5.2 Integer Solutions

LP 4.11 is a variation of the Assignment Problem [23, 7.1.3(2)] in which there

can be a different number of units in the two sets. The value of xi,j represents the

degree to which ally i attacks opponent j. xi,j is restricted to the range [0, 1] by the

constraints, but we cannot assign an attack fractionally, so we need to know that

an optimal solution will be integer. The LP has the form max{cx | Ax ≤ b, x ≥ 0}.

It has been shown that LP problems of this form have integer optimal solution if

constraint matrix A is totally unimodular and b is integer [23, Theorem 7.2]. Our

bounds vector b is integer because we have defined Cj to be integer, so we just

need to show that our constraint matrix is totally unimodular.

This assignment problem can be represented as an undirected bipartite graph

in which allied units form one set of nodes, opponent units form the other set,

and edges are the possible target assignments. Our constraint matrix A is the

node-edge incidence matrix corresponding to this graph. The node-edge incidence

matrix is the (0,1)-matrix in which row i corresponds to node i and column i, j to

edge i, j. If i, j is an edge of the graph, Ai,(i,j) = Aj,(i,j) = 1, otherwise the entries

of A are zero. An example graph for 2 allied units ui and 3 opponent units tj, and

the corresponding node-edge incidence matrix are shown in figures 4.12 and 4.13.

We can show that the constraint matrix for problem 4.11 is totally unimodular

using the following theorem:

Theorem (Sierksma [23, 7.3]) Sufficient condition for total unimodular-
ity. Any (-1,0,1)-matrix A is totally unimodular if

(1) each column of A contains not more than two nonzero entries, and
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Figure 4.12: Assignment Graph

A =

e0,0 e0,1 e0,2 e1,0 e1,1 e1,2


u0 1 1 1 0 0 0
u1 0 0 0 1 1 1
t0 1 0 0 1 0 0
t1 0 1 0 0 1 0
t2 0 0 1 0 0 1

Figure 4.13: Node-Edge Incidence Matrix

(2) the rows of A can be partitioned into two subsets such that:

(i) if a column contains two entries with the same signs, then the corre-
sponding rows belong to different subsets, and

(ii) if a column contains two entries with the opposite signs, then the corre-
sponding rows belong to the same subset

The rows of constraint matrix A of problem 4.11 can be partitioned into two

sets. The first set, shown in the upper half of figure 4.13, corresponds to constraints∑M
j xi,j ≤ 1 for i = 1...N . The second, shown in the lower half of the figure,

corresponds to constraints
∑N

i xi,j ≤ Cj for j = 1...M . In the first set, Ai,(i,j) = 1,

in the second set, Aj,(i,j) = 1, and all other entries are zero. Each column (i, j)

has exactly one nonzero entry from the first set, and exactly one from the second

set, so condition (1) is satisfied. The nonzero entries of each column have the

same sign and are from different row subsets, so condition (2) is satisfied. A is

totally unimodular, so an optimal solution to LP 4.11 gives an integer assignment

xi,j ∈ {0, 1}. A value of 1 means that ally i should attack opponent j, and the
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LP constraints assure that an ally will be assigned to at most one opponent, so an

optimal solution x is a valid multi-agent attack assignment.

4.5.3 Learning

There are many parameters to set in the model, so we would like the controller

to be able to learn these itself. The objective function of the LP is a parameter-

ized action-state value function (Q-function) with state features and multi-agent

actions xi,j. This suggests that Q-learning could be used to learn the parameters.

Unfortunately, when using gradient ascent to update parameters, they tended to

increase without converging, possibly because of the instability of the max function

in the Q-learning update rule, so this approach was abandoned.

Instead we used coordinate ascent to learn the parameters. Coordinate ascent

found a stable set of parameters that produced a successful controller. In coordi-

nate ascent, a range for each parameter is fixed, and each parameter is incremented

through its range in turn, and the parameter value that produces the highest re-

ward is kept. The learned parameters are given in table 4.7. The combat controller

using these parameters won consistently over the Stratagus built-in script and an

earlier controller trained using OLPOMDP in tactical combat scenarios.

The learned parameters show that proximity and whether an opponent unit

is able to attack a unit of the combat group are the most important factors for

deciding which unit to attack. Unsurprisingly, the second most important factor is

whether or not the opponent unit is a combat class unit (class 2). The third most
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important factor is whether the opponent unit is a peasant or a production build-

ing. The prioritization of attacks on peasants is a difficult decision, because of the

many roles they play in the game, and because of their unpredictable movement.

It is worth noting that the earlier OLPOMDP controller was successful in tac-

tical scenarios against combat units only, but it was unable to learn the tradeoffs

needed to pursue the dual tasks of killing existing units and disrupting opponent

production.

Unit Type Cj
FOOTMAN 3
PEASANT 2
BALLISTA 3
KNIGHT 3
ARCHER 3
FARM 3
BARRACKS 6
STABLES 6
LUMBER MILL 6
FOUNDRY 6
TOWN HALL 8
MAGE TOWER 4
BLACKSMITH 4

Table 4.6: Fixed Parameter Cj

Param. Value Feature Description
θ1 0.5 Proximity
θ2 0.5 Opponent unit can attack
θ3 0.3 Opponent unit is class 1
θ4 0.4 Opponent unit is class 2
θ5 0.1 Opponent unit is class 3
θ6 0.3 Opponent unit is class 4
θ7 0.1 Opponent unit is class 5

Table 4.7: Learned LP Parameters
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Chapter 5 – Strategy Switching

5.1 Strategies in Markov Games

In section 4.2.1 we defined a parameterized strategy template. Using the template,

it is a simple matter to generate sets of strategies. In Markov Decision Processes

(MDPs) it has been shown that an agent with a set of policies can perform at least

as well as any single policy by switching among policies in the set [9]. Sequential

decision problems such as our Wargus game can be formalized as MDPs, how-

ever MDPs have only one decision making agent, and we have to consider other

agents as random influences from the environment. Markov Games [11] (also called

Stochastic Games) extend MDPs to multi-agent decision problems by incorporat-

ing solution concepts from Game Theory.

The concepts that we need from Game Theory to begin understanding multi-

agent policy switching are the game matrix, the maximin (or minimax) strategy,

and Nash Equilibrium, where a “strategy” in Game Theory terminology corre-

sponds to an action in an MDP. Table 5.1 is an example of a game matrix. This

matrix represents a game in which the score is decided by the joint actions of a

player and an opponent. The scores are the values awarded to the row player, and

the negation of these scores are awarded to the opponent. Since the players’ scores

sum to zero, this is called a zero-sum game. The player attempts to maximize
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V φ1 φ2 min maximin
π1 1 -1 -1
π2 0 0 0 *

max 1 0
minimax *

Table 5.1: Simple Game Matrix

the score when choosing a row action, and the opponent attempts to minimize the

player’s score (and maximize their own) when choosing a column action. Knowing

the values, the player could be tempted to select action π1 to receive the winning

score of 1. But the opponent also knows the outcomes, and so would take action

φ2, resulting in the player receiving -1 and losing. The safe option for the player

is to choose action π2 and settle for a tie.

In a zero-sum game in which both players are rational and have perfect infor-

mation, a player has to assume that the best they can expect to do is to maximize

their worst-case. This can be done by choosing the action that returns the maxi-

mum of the minimum values of the possible choices. The value returned is called

the maximin value (or security level), and the action that guarantees it is called

a maximin strategy (also called “maxmin” or “security strategy” [15]). For game

matrix V (πi, φj), the maximin strategy is given by

arg max
πi

min
φj

V (πi, φj). (5.1)

In the game in table 5.1, both players have a security level of zero given by player

action π2 and opponent action φ2. The maximin-minimax actions are marked by
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V φ1 φ2 min maximin
π1 1 -1 -1 *
π2 -1 1 -1 *

max 1 1
minimax * *

Table 5.2: Matching Pennies Game

a “*”. No player can improve their security levels by changing their action, so the

action pair is said to be an equilibrium.

When security levels of two players differ, the players can improve their ex-

pected values by randomizing their choices. This is called a “mixed strategy” in

Game Theory, or a stochastic policy in an MDP. If we change the scores from table

5.1 to those in table 5.2, we get the Matching Pennies game. In this game the row

player wins when their action matches the opponent’s. Both actions are security

strategies for both players, the player’s maximin value is -1, and the opponent’s

minimax value is 1. In the Matching Pennies game, the optimal strategy is to

choose either action with 50% probability, which improves the security level for

both players to zero. There is always an optimal probability distribution over ac-

tions in a two-person, zero-sum game of finite actions, which is known as the Nash

Equilibrium [15]. Further, computing the Nash Equilibrium can be formulated as

a linear program [22, eq. 4.5-4.8]. Let V be an N ×M game matrix, and x be

the probability distribution over the row player’s strategies. The Nash equilibrium

distribution for the row player is the solution of the linear program 5.1, where z is

the expected score for the equilibrium solution.

As we saw in the game in table 5.1, it is necessary to take the reasoning of
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Maximize z

subject to
∑N

i=1 xi = 1

z −
∑N

i=1 Vi,jxi ≤ 0 for j = 1...M
x ≥ 0

Figure 5.1: Nash Equilibrium Linear Program

the opponent into account in a zero-sum game. So, to extend the analysis of

policy switching to multi-agent systems, we should analyze it in the Markov Game

framework. In the next section we review a Markov Game policy switching result

and show that it does not provide a strong performance guarantee comparable to

the MDP case.

5.2 Switching Theorem

Chang [8] defines a policy switching policy for a minimizing agent in a Markov

Game, and shows a bound on how badly the policy switcher can do compared

to following the minimax strategy, however this bound can be large. We give an

example below in which the policy switcher gets the worst value in the game, while

meeting the given bound.

The following is a description of the policy switcher and the error bound. Let

Π and Φ be finite sets of stationary policies of a minimizing and a maximizing

player in a 2-person Markov game with states s ∈ S. Minimax policy switching
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policy πps is defined as

πps(s) ∈
{

arg min
π∈Π

(
max
φ∈Φ

V (π, φ)(s)
)

(s)
}
, s ∈ S. (5.2)

πps(s) is a policy that achieves minπ∈Π maxφ∈Φ V (π, φ)(s). Chang shows that

max
φ∈Φ

V (πps, φ)(s) ≤ min
π∈Π

max
φ∈Φ

V (π, φ)(s) +
γε

1− γ
, s ∈ S (5.3)

where γε
1−γ is an error bound in terms of the discount γ and the “degree of local

equilibrium” ε. ε is defined as

ε = max
s∈S

(
min
π∈Π

max
φ∈Φ

V (π, φ)(s)−min
φ∈Φ

min
π∈Π

V (π, φ)(s)
)
. (5.4)

So ε is the maximum difference between the lowest cost the minimizer can expect

to secure and the maximizer’s worst case. ε cannot be made arbitrarily small, and

in many games it will be quite large. Next we give an example in which ε is as

large as possible.

Consider a Markov game with three states s1, s2, s3, deterministic transitions

s1 → s2 → s3, and action costs C given in tables 5.3,5.4.

C(s1) φ0 φ1

π0 5 -5
π1 -4 -4

Table 5.3: Costs at State s1

C(s2) φ0 φ1

π0 -5 5
π1 4 4

Table 5.4: Costs at State s2

Let player 1 (row player) be the minimizer, and player 2 (column player) be
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the maximizer. The game value matrix V (πi, φj)(s1) is C(s1) +C(s2), so the value

of state s1 is zero for all action pairs, as shown in table 5.5.

V (s1) φ0 φ1 minmax
π0 0 0 *
π1 0 0 *
maxmin * *

Table 5.5: Game Value at State s1

V (s2) φ0 φ1 minmax
π0 -5 5
π1 4 4 *
maxmin *

Table 5.6: Game Value at State s2

Since the first choice for the minimizer is arbitrary, assume it chooses π0, and

the maximizer chooses φ0. In state s2, the minimizer switches to π1, because this

gives the minimax value 4, while the maximizer stays committed to φ0. The final

game values for the possible choice combinations are given in table 5.7.

φ0,φ0 φ1,φ1 criteria
π0,π0 0 0
π0,π1 9 -1 policy switching
π1,π0 -9 1
π1,π1 0 0 policy switching

Table 5.7: Cost Sums for Action Sequence Pairs

In this example, the policy switching minimizer received its worst possible re-

sult, 9. This happened because the policy switcher made inconsistent assumptions

about the opponent. The policy switcher looks forward by assuming that the op-

ponent stays with a policy throughout the game, but in state 2 the policy switcher

avoids the threat of the opponent getting a reward of 5 by choosing φ1, even though

it could observe that the maximizer chose φ0 in state 1.
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For this game, the equilibrium term is

ε = max
s∈S

(min
π

max
φ

V (π, φ)(s)−min
φ

min
π
V (π, φ)(s)) (5.5)

= max{0− 0, 4− (−5)} (5.6)

= 9 (5.7)

So in this example, the equilibrium error term ε is as large as possible, and its

value is achieved by the switching policy. So in the Markov Game framework, a

policy switching agent can underperform the best single policy. In contrast, it has

been shown that policy switching in an MDP is guaranteed to do no worse than

any single policy.

5.3 Monotone Maximin Strategy Switching

To address the weakness in maximin strategy switching, we define monotone

switching. A monotone player switches strategies only when the maximin value

plus the reward to that point exceeds the largest maximin and reward previously

seen, so it should not be misled into a lower value choice. The minimax version of

the monotone selection algorithm is shown in figure 5.2.

Next, we compare the performance of monotone switching to minimax switching

using the game given in section 5.2. The monotone value at s1 is 0 (accumulated

cost plus minimax). The monotone values for different choices at state s2 are given

in table 5.8. The monotone player will choose the minimax policy at s2 only if
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v′ is smallest previous minimax plus accumulated cost
c← accumulated cost
v ← minπi maxφj V (πi, φj)
if v + c < v′

then v′ ← v + c
select arg minπi maxφj V (πi, φj)

else select previous strategy

Figure 5.2: Monotone Minimax Selection

φ0 φ1

π0 5 + 4 = 9 −5 + 4 = −1
π1 −4 + 4 = 0 −4 + 4 = 0

Table 5.8: Monotone Values at s2 Based on Choices at s1

the monotone value is less than 0. The possible action sequences and the maximin

and monotone player choices are shown in table 5.9

φ0,φ0 φ1,φ1 criteria
π0,π0 0† 0 †monotone
π0,π1 9 −1‡ policy switching, ‡monotone
π1,π0 -9 1
π1,π1 0 0 policy switching, monotone

Table 5.9: Cost Sums for Action Sequence Pairs

Monotone and minimax players choose the same strategies when they start by

choosing π1. If the first choice was π0, the minimax player switches to π1 and can

receive a cost of 9. But the monotone player only switches when the opponent

starts by choosing φ1. The monotone player outperforms the minimax player and

meets or exceeds the minimax value calculated at state s1.
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5.4 Strategy Switching Planners

The only requirement of an implementation of the planner interface is that given

a state it returns a strategic plan. Our basic planner, the GoalDrivenPlanner,

uses a single strategy to generate a plan. A planner might be able to improve on

the performance of any single strategy by switching among strategies in a set. We

developed three switching planners using maximin, Nash, and monotone strategy

selection to test planning by strategy switching. The first thing the switching

planner must do is build a game matrix of the estimated score for all pairs of

player-opponent strategies. We assume the player and the opponent both have

the same strategy choices, and we generate the game matrix as follows: for each

strategy pair, generate a plan from each strategy, simulate the plan for player

and opponent for a planning cycle, replan using the same strategies, and continue

simulation and replanning epochs to the end of the game. The final score from the

simulation becomes the game matrix entry for the strategy pair. After the matrix

has been completed, the planner selects a strategy. The switching planner returns

the plan generated from the selected strategy to the controller.

Assuming a strategy set of 10 strategies, there are 100 games to simulate to cal-

culate a game matrix. The simulator can complete 100 games in about 2 seconds.

The matrix simulation could be done concurrently with the game play, allowing

near real-time decisions, though currently the client is single-threaded, so there is

a short interruption to the game at each planning epoch.

The architecture of the switching planner is shown in figure 5.3. The switching
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planner uses a controller implemented by the SimController class that plays the

same role in the planner as the StrategyController does in the client. The

SimController has a pair of StrategyManagers that manage the execution of

generated player and opponent plans in the simulated game. An important feature

of our architecture is that plans can be executed in the simulator or the engine

with only small modifications to the StrategyManager. Since the plan generator

works with the abstract state as input, the same code is used to generate plans for

the engine state as for the simulated state.

Figure 5.3: Switching Planner and Simulator
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Chapter 6 – Results

6.1 Experimental Setup

6.1.1 Strategy Set

Switching planners work by simulating games between players who use strate-

gies from a given strategy set. The simulated games produce a matrix of player

vs. opponent game values which can be treated as a strategic form game. Using

a criterion such as Nash equilibrium or maximin, the switching planner selects a

strategy, generates a plan from the strategy, and returns the plan to the controller.

The strategy set used for the switching players is named “2012-02-05”, and its

parameters are given in table 6.1 (The “rush” strategies given here are not really

rushes, since they use large groups. It might be better to call them“aggressive”

strategies).

A goal is a type of region to attack or secure. The goal types are “base”,

“enemy”, and “chokepoint”. The plan generator creates tasks so that the higher

priority goals are pursued first. A priority zero goal is ignored. The “Units Per

Goal” parameter specifies the size of the group that the controller should produce

and send to the goal region.

As part of the experiment, switching planners compete against the Wargus

built-in AI script. Since complicated builds were not part of the strategies available
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Goal Priority Units Per Goal
base enemy chkpt. base enemy chkpt.

0. balanced 7 1 3 2 7 7 7
1. balanced 7 mass 1 3 2 7 7 7
2. balanced 9 1 3 2 9 9 9
3. balanced 9 mass 1 3 2 9 9 9
4. rush 7 1 3 2 5 7 3
5. rush 7 mass 1 3 2 5 7 3
6. rush 9 1 3 2 7 9 4
7. offensive 5 mass 0 1 0 0 5 0
8. offensive 7 mass 0 1 0 0 7 0
9. chokepoint 6 2 1 3 6 6 6

Table 6.1: Strategy Set 2012-02-05 Definition.

to planners, the scripts for the built-in Wargus AI player were adjusted by removing

the unit upgrades.

6.1.2 Data Sets

To evaluate the performance of the strategy switching planners, we gathered statis-

tics on strategy pairs playing against each other in simulation and in the Stratagus

engine. In simulated games, the plans returned by planners are executed in the

simulator. Strategy switching planners use an inner simulation to predict the re-

sults of games played by strategy pairs. In these games, switching planners make

perfect predictions. For the second data set, plans are executed by sending ac-

tions to the Stratagus engine. Switching planners still use simulation to make

predictions, but in this case the predictions are imperfect.

Games were played on two maps that were prepared to present different chal-
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lenges to the planners. Maps had two starting positions, and the planners played

games from both positions on the map, so for each pair there were four map

configurations to play. Because of randomness in Wargus game play, each combi-

nation of players and map were run multiple times to gather performance statistics.

These combinations are summarized in tables 6.2 and 6.3. Table 6.2 shows there

were 10,000 episodes (games) of fixed strategy versus fixed strategy games played.

For 10 fixed strategies there are 50 pairs, disregarding order. Each pair played

50 episodes in 4 configurations, giving a total of 10,000 episodes. In the switching

vs. switching games there was no self-play, so there were 3 pairs. These were played

for 30 episodes on each of 4 maps giving 360 episodes. For strategy pairs played

in the Wargus engine, we ran each pair until one player won, one player achieved

3 times the hitpoints of the opponent, or until 80,000 cycles were completed.

player opponent pairs episodes configs episodes
fixed fixed 50 50 4 10,000
switching fixed 30 50 4 6,000
switching other switching 3 30 4 360
switching built-in 3 30 4 360

Total 16,720

Table 6.2: Stratagus Data Sets

Since our simulations are deterministic, only one simulated game was played

for each pair and map combination. In simulation, we run the full 100 pairs of

fixed strategies, because they can be run in a few seconds.
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player opponent pairs configs episodes
fixed fixed 100 4 400
switching fixed 30 4 120

Total 520

Table 6.3: Simulation Data Sets

6.1.3 Map Design

We chose two maps from the set packaged with Wargus to present different prob-

lems to the planners. The 2bases map is the one-way-in-one-way-out map

packaged with Wargus and initialized with two production bases for each player.

This meant that there was a difference between a mass attack and a dispersed at-

tack on this map. The other map was the-right-strategy map initialized with

one base for each player. On this map there is no difference between mass attack

and dispersed attack strategies, but it has narrow passages between the opposing

bases, so this map was more of a challenge for tactical unit control. The War-

gus “minimap” view of 2bases and the strategic abstraction used by the planners

are shown in figures 6.1 and 6.2. The minimap for the-right-strategy and the

corresponding strategic map are shown in figures 6.3 and 6.4.

Each player starts with enough buildings to create combat groups capable of

destroying the opponent. We made the maps fair by adjusting the positions of

buildings until the maximin vs. maximin planner pair achieved a near 50% win

rate from both positions on the map.
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Figure 6.1: 2bases Minimap

R1 R2

R3

R5

R7

R8

0

10 10

20 20

30 30

40 40

50 50

60 60

10

10

20

20

30

30

40

40

50

50

60

60

Figure 6.2: 2bases Strategic Map

Figure 6.3: the-right-strategy Min-
imap
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Figure 6.4: the-right-strategy Strate-
gic Map
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6.2 Results

6.2.1 Maximin and Minimums

To evaluate the performance of the switching planners, we compare the minimum

scores achieved by switching planners to the maximin of the fixed strategy set.

To be worthwhile, a switching planner should do no worse than the fixed strategy

maximin value, though we saw in section 5.2 that it is possible for a switching agent

to get a worse value than a fixed strategy agent. Scores and win rates in tables in

this section are given from the column player’s perspective, so we can use space

at the bottom of the table for summarizing results. The maximin in simulation is

shown in tables 6.4 and 6.5. The maximin of the mean scores in the engine are

shown in tables 6.6 and 6.7. In these sets of games the maximin values are found

on the diagonals where the large group strategies are played against themselves.

The maximin strategies are 3 (balanced 9 mass) in simulation and in the engine,

and 2 (balanced 9) and 6 (rush 9) in simulation. These maximin strategies are

the best risk-averse strategies in the initial state. In simulation these values are

almost all zero, but scores vary in the engine due to randomness in game play. The

win rates for strategies in the strategy set are shown in tables 6.8 and 6.9. The

diagonal values are near 50% as expected.

To find the switching planner minimums, we calculate their scores against each

fixed strategy on each map. The scores in simulation are shown in tables 6.10

and 6.11. The mean scores in the engine are shown in tables 6.12 and 6.13. The

switching planners have similar performance in simulation although the monotone
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0. 1. 2. 3. 4. 5. 6. 7. 8. 9.
0. 0 0 8282 8200 -8251 -8251 8262 -8238 -8178 -7238
1. 0 0 8282 8200 -8289 -8289 8262 -8204 -8172 -7238
2. -8186 -8186 0 0 -6247 -6247 7541 -7546 -8338 -8335
3. -8200 -8200 0 0 -6199 -6199 7541 -7538 -8248 -8231
4. 5659 5460 8265 8494 3806 3806 8205 -8134 -8265 -4625
5. 5659 5460 8265 8494 3806 3806 8205 -8104 -8225 -4625
6. -8130 -8130 -6718 -6718 -8550 -8550 0 -7599 -8378 -7864
7. 8350 8288 7846 7846 8246 8188 7802 0 7812 7746
8. 8178 8182 8346 8256 8280 8159 8366 -7848 0 5189
9. 8281 8299 8320 8258 8137 8139 8292 -8478 7727 0
min. -8200 -8200 -6718 -6718 -8550 -8550 0 -8478 -8378 -8335
maxmin *

Table 6.4: Strategy Simulation Scores on 2bases

0. 1. 2. 3. 4. 5. 6. 7. 8. 9.
0. 0 0 5542 5542 -5294 -5294 5602 -5608 -6083 -5548
1. 0 0 5542 5542 -5294 -5294 5602 -5608 -6083 -5548
2. -5548 -5548 0 0 -5707 -5707 -5579 -5453 -5628 -5596
3. -5548 -5548 0 0 -5707 -5707 -5579 -5453 -5628 -5596
4. 5160 5160 5410 5410 0 0 5467 -5480 -5712 -5371
5. 5160 5160 5410 5410 0 0 5467 -5480 -5712 -5371
6. -5548 -5548 5737 5737 -5613 -5613 0 -5493 -5668 -5548
7. 5604 5604 5559 5559 5480 5480 5531 0 5296 5808
8. 6107 6107 5568 5568 5700 5700 5668 -5296 0 -5294
9. -5691 -5691 5541 5541 -5754 -5754 5581 -5764 -267 0
min. -5691 -5691 0 0 -5754 -5754 -5579 -5764 -6083 -5596
maxmin * *

Table 6.5: Strategy Simulation Scores on the-right-strategy

planner gets the highest score. The minimums on 2bases occur when the switch-

ing planners play against the balanced 9 and balanced 9 mass strategies. The

highest score is achieved by the Nash planner. On the-right-strategy map the

monotone planner does much better than the other two. Notably, the monotone



50

0. 1. 2. 3. 4. 5. 6. 7. 8. 9.
0. 18 267 5358 3730 -6687 -5451 3525 -8528 -7906 -7672
1. -267 2000 5010 4466 -6014 -5814 2909 -8457 -7925 -7773
2. -5358 -5010 127 780 -8238 -8014 -1023 -8647 -8403 -8443
3. -3730 -4466 -780 -630 -7646 -7738 -2142 -8633 -8484 -8335
4. 6687 6014 8238 7646 -142 -546 7585 -8347 -6868 -271
5. 5451 5814 8014 7738 546 -929 7026 -8220 -7279 -3111
6. -3525 -2909 1023 2142 -7585 -7026 -1001 -8460 -8440 -7637
7. 8528 8457 8647 8633 8347 8220 8460 -1526 7782 8115
8. 7906 7925 8403 8484 6868 7279 8440 -7782 356 1352
9. 7672 7773 8443 8335 271 3111 7637 -8115 -1352 638
min. -5358 -5010 -780 -630 -8238 -8014 -2142 -8647 -8484 -8443
maxmin *

Table 6.6: Strategy Mean Scores on 2bases

0. 1. 2. 3. 4. 5. 6. 7. 8. 9.
0. -44 545 4328 3387 -3404 -3862 2476 -5736 -5158 -4614
1. -545 -1250 4498 4123 -3235 -4009 1101 -5814 -5256 -5116
2. -4328 -4498 -502 663 -5701 -5834 -1524 -5987 -5878 -5755
3. -3387 -4123 -663 -86 -5883 -5376 -1667 -6000 -5867 -5953
4. 3404 3235 5701 5883 866 311 5525 -5664 -4913 1190
5. 3862 4009 5834 5376 -311 254 4824 -5681 -4847 1970
6. -2476 -1101 1524 1667 -5525 -4824 -360 -5866 -5629 -4219
7. 5736 5814 5987 6000 5664 5681 5866 -996 4833 4408
8. 5158 5256 5878 5867 4913 4847 5629 -4833 2 2795
9. 4614 5116 5755 5953 -1190 -1970 4219 -4408 -2795 -410
min. -4328 -4498 -663 -86 -5883 -5834 -1667 -6000 -5878 -5953
maxmin *

Table 6.7: Strategy Mean Scores on the-right-strategy

planner gets its highest score where the other two get their minimums, against

balanced 9.

The opponents that do best in simulation, balanced 9 and balanced 9 mass,

also do best in games in the engine. However the monotone planner does not do as
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0. 1. 2. 3. 4. 5. 6. 7. 8. 9.
0. 50% 52% 81% 73% 11% 17% 71% 0 2% 5%
1. 48% 62% 79% 77% 12% 15% 67% 0 2% 3%
2. 19% 21% 52% 56% 0 2% 43% 0 1% 1%
3. 27% 23% 44% 46% 3% 2% 35% 0 0 1%
4. 89% 88% 100% 97% 50% 48% 97% 0 8% 51%
5. 83% 85% 98% 98% 52% 44% 92% 0 4% 31%
6. 29% 33% 57% 65% 3% 8% 46% 0 0 4%
7. 100% 100% 100% 100% 100% 100% 100% 40% 100% 100%
8. 98% 98% 99% 100% 92% 96% 100% 0 52% 61%
9. 95% 97% 99% 99% 49% 69% 96% 0 39% 56%

Table 6.8: Strategy Win Rate on 2bases

0. 1. 2. 3. 4. 5. 6. 7. 8. 9.
0. 50% 54% 88% 78% 19% 16% 72% 1% 6% 10%
1. 46% 40% 91% 85% 21% 13% 58% 0 6% 5%
2. 12% 9% 46% 56% 2% 1% 36% 0 1% 1%
3. 22% 15% 44% 50% 0 5% 37% 0 1% 0
4. 81% 79% 98% 100% 58% 53% 98% 0 3% 60%
5. 84% 87% 99% 95% 47% 52% 92% 0 6% 67%
6. 28% 42% 64% 63% 2% 8% 50% 0 2% 13%
7. 99% 100% 100% 100% 100% 100% 100% 40% 96% 88%
8. 94% 94% 99% 99% 97% 94% 98% 4% 50% 74%
9. 90% 95% 99% 100% 40% 33% 87% 12% 26% 48%

Table 6.9: Strategy Win Rate on the-right-strategy

well as predicted on the-right-strategy map, and in fact performs worse than

the other two switching planners.
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Nash maximin monotone

0. balanced 7 8128 8128 8128
1. balanced 7 mass 8173 8128 8128
2. balanced 9 8122 8122 8122
3. balanced 9 mass 8122 8122 8122
4. rush 7 8486 8562 8562
5. rush 7 mass 8522 8562 8562
6. rush 9 8570 8256 8404
7. offensive 5 mass 8439 8439 8439
8. offensive 7 mass 8353 8353 8353
9. chokepoint 6 8260 8256 8256
mean 8317 8293 8307
minimum 8122 8122 8122

Table 6.10: Switching Planner Scores in Simulation on 2bases

Nash maximin monotone

0. balanced 7 5545 5525 5547
1. balanced 7 mass 5545 5547 5535
2. balanced 9 1770 2702 6066
3. balanced 9 mass 3818 4018 6066
4. rush 7 5634 5648 5594
5. rush 7 mass 5558 5594 5648
6. rush 9 5658 5375 5375
7. offensive 5 mass 5506 5506 5506
8. offensive 7 mass 5598 5598 5598
9. chokepoint 6 5568 5568 5568
mean 5020 5108 5650
minimum 1770 2702 5375

Table 6.11: Switching Planner Scores in Simulation on the-right-strategy
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Mean Scores Win Rates
Nash maximin monotone Nash maximin monotone

0. balanced 7 3767 4064 3120 72% 74% 67%
1. balanced 7 mass 2506 3750 3095 64% 72% 68%
2. balanced 9 -1018 -73 38 42% 50% 52%
3. balanced 9 mass -1436 -242 -749 41% 49% 45%
4. rush 7 7151 7262 7531 93% 94% 96%
5. rush 7 mass 7318 6932 7630 95% 91% 96%
6. rush 9 560 774 643 56% 54% 54%
7. offensive 5 mass 8508 8559 8476 100% 100% 100%
8. offensive 7 mass 8464 8325 8521 100% 99% 100%
9. chokepoint 6 7988 8031 7765 97% 97% 96%
mean 4381 4738 4607
minimum -1436 -242 -749

Table 6.12: Switching Planner Mean Scores on 2bases

Mean Scores Win Rates
Nash maximin monotone Nash maximin monotone

0. balanced 7 3451 2956 3395 79% 74% 79%
1. balanced 7 mass 3608 3945 4518 81% 85% 90%
2. balanced 9 -277 -588 -814 48% 45% 42%
3. balanced 9 mass -303 -387 -724 48% 46% 43%
4. rush 7 5649 5338 5505 98% 96% 97%
5. rush 7 mass 5035 4944 5621 93% 92% 99%
6. rush 9 437 1592 451 54% 65% 54%
7. offensive 5 mass 6005 5942 5975 100% 100% 100%
8. offensive 7 mass 5783 5668 5509 98% 97% 96%
9. chokepoint 6 5431 5747 5371 96% 99% 95%
mean 3482 3516 3481
minimum -303 -588 -814

Table 6.13: Switching Planner Mean Scores on the-right-strategy
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Next, we compare the fixed strategy maximin to the switching planner mini-

mums using results from the previous tables. The results in simulation are shown

in table 6.14. The results in the engine are shown in table 6.15.

Fixed Nash maximin monotone

2bases 0 8122 8122 8122
the-right-strategy 0 1770 2702 5375

Table 6.14: Fixed Strategy Maximin and Switching Planner Minimums in Simula-
tion

Fixed Nash maximin monotone

2bases -630 -1436 -242 -749
the-right-strategy -86 -303 -588 -814

Table 6.15: Switching Planner Minimum Means in Engine

The minimum values achieved by the switching planners in simulation are above

the fixed strategy maximin. In the engine, the maximin switching planner performs

better than the maximin value on the 2bases map, but no switching planner

achieves the maximin value on the-right-strategy.

Since there is some randomness in the effects of actions in Wargus, we should

consider confidence intervals for the results. In tables 6.16 and 6.17, we show the

95% confidence interval bounds given by the Wilson score interval around the win

rate. Here we take each game as a Bernoulli trial where the probability of success is

the win rate. The Wilson score confidence interval is widest at 50%, and with 100

samples we get interval bounds of about ±10%. Since the maximin value occurs

for a strategy vs. self game, the win rate is near 50% and the confidence interval
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is wide. The confidence intervals around the minimum means contain the fixed

strategy maximin mean.

Player Opponent Score Rate Confidence
maximin balanced 9 mass balanced 9 mass -630 46% (33%,60%)
minimums Nash balanced 9 mass -1436 41% (32%,51%)

maximin balanced 9 mass -242 49% (39%,59%)
monotone balanced 9 mass -749 45% (36%,55%)

Table 6.16: Strategy Pairs on 2bases

Player Opponent Score Rate Confidence
maximin balanced 9 mass balanced 9 mass -86 50% (37%,63%)
minimums Nash balanced 9 mass -303 48% (38%,58%)

maximin balanced 9 -588 45% (36%,55%)
monotone balanced 9 -814 42% (33%,52%)

Table 6.17: Strategy Pairs on the-right-strategy

6.2.2 Simulation Accuracy

Simulations must be accurate to be useful for strategy switching. Figures 6.5 and

6.6 compare scores achieved by strategies in simulation to the mean scores achieved

in the engine. The strategy simulations are accurate enough to predict wins or

losses and to closely predict average game scores, except strategies 0 (balanced

7) and 1 (balanced 7 mass) on the-right-strategy map. The simulator over-

estimates the strength of the wins for the strategy 6 (rush 9) on 2bases, and 2

(balanced 9) and 3 (balanced 9 mass) on the-right-strategy. These are the

strategies with the largest groups.
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Figure 6.5: Scores in Simulation and Engine on 2bases
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Figure 6.6: Scores in Simulation and Engine on the-right-strategy
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6.2.3 Switching Planner Choices

To help assess how effective the switching algorithms are, we should examine the

strategies being selected over time. Are the switching planners winning simply by

favoring a few strong strategies, and are the other strategies irrelevant? Table 6.18

show that about 65-75% of the switching planner choices are made from 3 strategies

that favor large groups, although the mixes are different, and the Nash planner uses

the balanced 7 strategy much more that the other two. But table 6.19 shows that

the mix of strategies chosen by the maximin planner changes as games progress.

In games that last longer than 20,000 cycles, the planner begins to favor smaller

groups. For example the rate of choosing offensive 5 increases from 0% to 6%

by cycle 80,000. The planner also begins to prioritize controlling chokepoints in

longer games. This shows that the planner is responding to differences in the game

state and that the strategy set does have a useful mix of strategies.

Nash maximin monotone

0. balanced 7 22% 6% 7%
1. balanced 7 mass 5% 5% 3%
2. balanced 9 34% 26% 30%
3. balanced 9 mass 3% 16% 17%
4. rush 7 3% 4% 2%
5. rush 7 mass 1% 4% 3%
6. rush 9 19% 25% 26%
7. offensive 5 mass 5% 4% 2%
8. offensive 7 mass 2% 4% 3%
9. chokepoint 6 7% 7% 6%

Table 6.18: Strategy Choices of Switching Planners

Another factor that may contribute to the lower scores of the switching planners
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6,030 12,060 18,090 24,120 80,000
0. balanced 7 0 8% 7% 7% 8%
1. balanced 7 mass 0 6% 6% 6% 9%
2. balanced 9 23% 33% 29% 28% 18%
3. balanced 9 mass 27% 15% 13% 12% 7%
4. rush 7 0 5% 5% 5% 5%
5. rush 7 mass 0 5% 4% 6% 6%
6. rush 9 50% 16% 12% 13% 17%
7. offensive 5 mass 0 3% 6% 5% 6%
8. offensive 7 mass 0 3% 8% 8% 6%
9. chokepoint 6 0 6% 9% 10% 17%

Table 6.19: maximin Choices by Epoch

on the the-right-strategy map are shown in tables 6.20 and 6.21. Table 6.20

shows that the maximin planner uses large groups in the early game (balanced 9,

balanced 9 mass, and rush 9), then quickly switches to prioritizing smaller offen-

sive groups and holding the chokepoints. This switching appears effective, because

no game lasts to 80,000 cycles. In contrast, in the engine the maximin planner con-

sistently favors the large group strategies, and games last to the maximum limit

of 80,000 cycles. By watching games in the engine, we have seen that the path

finding algorithms do poorly at managing large groups of units. The units get

stuck in cul-de-sacs, block each other in narrow passages, and get dispersed when

traveling long distances. This is particularly true on the the-right-strategy

map, because of the long, narrow passages by water. The simulator overestimates

the effectiveness of the large group strategies, and the switching planners persist in

using them. Figure 6.6 confirms this observation, because it shows that strategies

2 (balanced 9) and 3 (balanced 9 mass) are overestimated.
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6,030 12,060 18,090 24,120 80,000
0. balanced 7 0 0 0 0 0
1. balanced 7 mass 0 0 0 100% 0
2. balanced 9 50% 0 0 0 0
3. balanced 9 mass 50% 0 50% 0 0
4. rush 7 0 0 0 0 0
5. rush 7 mass 0 0 0 0 0
6. rush 9 0 0 0 0 0
7. offensive 5 mass 0 0 50% 0 0
8. offensive 7 mass 0 50% 0 0 0
9. chokepoint 6 0 50% 0 0 0

Table 6.20: maximin vs. balanced 9 Choices in Simulator

6,030 12,060 18,090 24,120 80,000
0. balanced 7 0 5% 9% 10% 12%
1. balanced 7 mass 0 2% 4% 5% 9%
2. balanced 9 47% 27% 15% 17% 12%
3. balanced 9 mass 53% 24% 24% 24% 15%
4. rush 7 0 4% 6% 7% 0
5. rush 7 mass 0 6% 3% 7% 12%
6. rush 9 0 16% 19% 19% 24%
7. offensive 5 mass 0 4% 9% 2% 9%
8. offensive 7 mass 0 5% 3% 7% 0
9. chokepoint 6 0 7% 7% 2% 9%

Table 6.21: maximin vs. balanced 9 Choices

In section 6.2.1 we saw that the monotone planner outperformed the fixed strat-

egy planners and the other switching planners in simulation on the the-right-strategy

map, but in the engine it did not reach the maximum value and performed worse

than the other switchers. In tables 6.22 and 6.23 we see the monotone planner

has the same problem as the maximin planner. The balanced 9 strategies appear

more effective in simulation than they are in the engine, so the monotone planner
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relies on them in the game, but they do not perform as expected. Because of the

monotone criteria, the monotone planner chooses the balanced 9 strategies even

more often than the maximin planner does.

6,030 12,060 18,090 24,120 80,000
0. balanced 7 0 0 0 0 0
1. balanced 7 mass 0 0 0 0 0
2. balanced 9 50% 0 0 0 0
3. balanced 9 mass 50% 50% 0 0 0
4. rush 7 0 0 0 0 0
5. rush 7 mass 0 0 0 0 50%
6. rush 9 0 0 50% 100% 0
7. offensive 5 mass 0 0 50% 0 0
8. offensive 7 mass 0 0 0 0 0
9. chokepoint 6 0 50% 0 0 50%

Table 6.22: monotone vs. balanced 9 Choices on the-right-strategy in Simu-
lation

6,030 12,060 18,090 24,120 80,000
0. balanced 7 0 5% 5% 2% 16%
1. balanced 7 mass 0 4% 3% 0 0
2. balanced 9 59% 28% 32% 33% 23%
3. balanced 9 mass 41% 28% 29% 36% 49%
4. rush 7 0 3% 2% 0 0
5. rush 7 mass 0 2% 5% 7% 2%
6. rush 9 0 12% 8% 7% 2%
7. offensive 5 mass 0 7% 5% 2% 5%
8. offensive 7 mass 0 1% 2% 2% 0
9. chokepoint 6 0 10% 12% 10% 3%

Table 6.23: monotone vs. balanced 9 Choices



61

6.2.4 Switching Planner Performance

Finally, we want to compare the performance of the three switching planners to

each other and to the Wargus built-in AI script. Tables 6.24 and 6.25 show the

win rates for switching planners on 2bases and the-right-strategy maps.

Nash maximin monotone
Nash 43% 50%
maximin 57% 48%
monotone 50% 52%
built-in 100% 100% 100%

Table 6.24: Switching vs. Switching Win Rates on 2bases

Nash maximin monotone
Nash 42% 53%
maximin 58% 42%
monotone 47% 58%
built-in 58% 57% 57%

Table 6.25: Switching vs. Switching Win Rates on the-right-strategy

The switching planners win all games against the built-in AI script on 2bases,

and 57-58% of games on the-right-strategy. The Nash planner does well

against the maximin planner on both maps. The monotone planner is a nearly

even match for the other two on 2bases, but loses to the maximin player on

the-right-strategy, which contrasts with how well it does in simulation.
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Chapter 7 – Summary and Future Work

If the art of war were nothing but

the art of avoiding risks, glory

would become the prey of

mediocre minds.

Napoléon Bonaparte

Our work has shown that a strategy switching planner can play a complete RTS

game that requires coordinating production and combat. The strategy switching

planners performed well against the Stratagus built-in AI, and they came close

to reaching the maximin value of the planner’s set of fixed strategies. There are

two main contributions from this work. The first contribution is the grammars

for game abstraction and strategic plans. There are several advantages to having

a grammar. The grammars define common strategic concepts for planning and

simulation. This allows us to have unified messaging throughout the levels of

the manager hierarchy, and the different modules share a common strategic view.

Using the grammar, the simulator and game controllers speak the same language,

so few changes are needed for using the top-level controller code in both contexts.

Having state and plan grammars also means we can save state and plan descriptions

in text files at decision points in the game, which greatly helps in analyzing planner

performance.
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The second contribution is to show the theoretical weaknesses of adversarial

planning by strategy switching. Strategy switching in a multi-player Markov Game

does not guarantee better performance than following the best single strategy in a

set. Although the strategy switching planners performed better than fixed strategy

planners in simulation, they did not reach the maximin value in the engine games,

and we have shown that strategy switching controllers can be misled into sub-

optimal choices.

Several different architectures have been used for incorporating AI players into

RTS games with some form of scripting being the most popular. In our system

there is no triggering of scripts from recognized states. Rather, an abstraction

of the current state leads to goal formation, plans are generated from a strategy

template, and tasks are distributed to a hierarchy of unit group managers. This

frees the developer to write code at a higher level of abstraction, and since the

controller does not rely on fixed action sequences, we believe it will perform well

in a wider range of game scenarios.

In future work we would like to extend the game system to cover all aspects of

the game. The division of the maps into regions was coded by hand, and it was a

process of trial and error to represent the symmetry of the maps. It would be better

if the process of map abstraction (division into regions, creating the connectivity

graph, and identifying chokepoints) were automated. Typically an RTS game

starts with a single worker per player, but our planners could not start from this

state because we have an incomplete implementation of the production manager.

We did some early experiments using the resource planner described in [7], but the
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main unresolved problem is building placement. As we saw in experiments, simply

scanning for empty spaces near a base is inadequate. Naive building placement can

result in long paths for workers and combat units, and worse, buildings can block

worker and combat unit paths. What is needed for building placement is a tactical

level of path analysis, so that buildings do not restrict combat groups, so that

buildings are placed as shields against possible enemy attacks, and so that building

placement is optimized to balance path lengths to resources and initial placement

of combat units. The need to balance various factors suggests an optimization

approach such as what was used in the linear programming combat controller.

The last capability we need for playing all aspects of the game is to be able to

plan with hidden state, known as “fog of war” in RTS games. In Game Theory,

games with hidden state are called games of imperfect information. We may be

able to extend our strategy switching planners to games of imperfect information

with some inspiration from work on poker-playing programs [4].

The switching planners relied on an engineered set of strategies. During this

project we made two attempts at developing an algorithm for automatically gener-

ating strategy sets, but the generated sets all performed worse than the engineered

set. An algorithm for finding better sets would be a powerful way to improve the

switching planners.

The Nash, maximin, and monotone selection criteria are all risk-averse ap-

proaches appropriate when assuming full observability, and an opponent who has

knowledge of the full strategy set and perfect rationality. In most games, state is

hidden through “fog of war ”, the opponent has no knowledge of a player’s strategy
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set, and the opponent does not have perfect rationality, so it may be better to use

less risk-averse selection criteria. Choosing by minimax regret [15], or incorporat-

ing a model of risk may make the controller less risk-averse, so that it can take

advantage of opportunity.

Our planner was misled by the simulator’s overestimates of scores for large

group strategies. It might be useful to characterize the effects of overestimates and

underestimates. Our planner plans at fixed intervals, so could miss opportunities.

It would be better if replanning were triggered by recognition of unexpected state,

and recognition of unexpected states could be used to adjust scores provided by the

simulator. We would like to overcome the lower performance found on the map

that presented tactical movement problems (the-right-strategy map). This

may come from customizing the tactical path finding algorithm used by units, or

by adjustments to the simulator to penalize large group movements. There may

be a need for peer-level communication between group managers. Combat groups

can block each other’s paths, and there has to be a way to resolve such tactical-

level conflicts. Rather than putting the burden of detecting group conflicts on the

high-level manager, it may be better to allow groups to communicate to resolve

such conflicts themselves. Finally, for a better assessment of the performance of

the strategy switching planners, we need to test them against human players.

The complete source code is availabe as open source [2].
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APPENDICES
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Appendix A – Game State Grammar

The ANTLR [19] grammar for the abstract game state is given in figure A.1. The

state describes the map, its division into regions, the connectivity graph for the

map, and the attributes of the units on the map. Figure A.2 shows a short example

state description.
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game_state : ’(’ ’:GameState’ ’:cycle’ INT player+ map units ’)’;

player : ’(’ ’:player’ ’:id’ INT pair+ ’)’;

map : ’(’ ’:GameMap’ cells? region+ cnx? ’)’

| ’(’ ’:GameMap’ ’:resource’ STRING ’)’;

cells : ’(’ ’:cells’ map_row+ ’)’;

map_row : STRING;

region : ’(’ ’:Region’ ’:id’ INT ’:center’ location chokepoint? rect+ ’)’;

chokepoint : ’:chokepoint’;

location : ’(’ INT INT ’)’;

rect : ’(’ INT INT INT INT ’)’;

cnx : ’(’ ’:connections’ pnode+ passage+ ’)’;

passage : ’(’ ’:Passage’ pair pair ’)’;

pnode : ’(’ ’:PassageNode’ ’:id’ INT location ’)’;

units : ’(’ ’:units’ unit* ’)’;

unit : ’(’ ’:Unit’ pair+ ’)’;

pair : LABEL (INT|NAME);

Figure A.1: Game State Grammar
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(:GameState :cycle 50

(:player :id 0 :gold 400 :oil 500 :wood 600 :supply 0 :demand 0)

(:GameMap

(:cells ...(omitted for space)...)

(:Region :id 1 :center (20 4) (0 0 39 7))

(:Region :id 2 :center (20 15) (0 10 39 19))

(:Region :id 3 :center (10 8) (7 8 12 9))

(:connections

(:PassageNode :id 1 (10 7))

(:PassageNode :id 2 (10 10))

(:Passage :regionNode 1 :passageNode 1)

(:Passage :regionNode 2 :passageNode 1)

(:Passage :regionNode 2 :passageNode 2)

(:Passage :regionNode 3 :passageNode 2)

)

)

(:units

(:Unit :unitId 1 :ownerId 0 :RAmount 40000 :CurrentTarget -2

:HitPoints 25500 :LocX 2 :LocY 2 :Status 3 :Armor 20

:Damage 3 :PiercingDmg 0 :StatusArg1 -2 :StatusArg2 0

:Type 11 :UnitTypeString unit-gold-mine)

)

)

Figure A.2: Game State Example
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