RADIO TRANSIISSION CHARACTERTSTICS IN OREGON OF HERDIUN AND VKRY-HIGH COMMWICATION FREQUENCTISS
 by
 CLARIMICE BLAIR STANLIEY

A THESIS
submittod to
ORgGON STATE COLTEGE
in partial fulfillment of the requirements for the degree of

BLECTRICAL ENGIIIEER
JUNE 1949

APPROVED:

Hoad of Dopartment of Electrical Inginoering

Dean of Graduate Sohool.

ACKOVOLLEDGEMASIS

The writer gratefully aclenowledges the assistance rendered by Sergeant Claude F. Cross of the Oregon State Police, Mr. Raymond W. Cumins, Commuieations Engineer for Motorola, Ince, Mr. John E, Balint, Development Engineer for Link Radio Corporation, and numerous personnel of the Oregon State Highway and Polioe Departments, each of whom made the very-high frequency survey possible.

TABLE OF CONTETTS

FOREWORD Page 1
IEDIUM FREQUENCY COIATUITCATION METWORK 6
RECEIVIVG EQUIPMATT 18
MOBTIE EQUIPIGINT 19
INTERPFERENCE 27
VERY-HIGH FREQUEWCY SURVEY 29
ASTORTA ARRA SURVEY 33
PORTIAND ARRA SURVEY 36
THB DALLEES ARRE SURVEY 40
ARLITIGTON ARRA SURVEY 42
PEINDLIETON ARFA SURVEY 44
IRACHAM ARRA SURVEY. 47
REPPATER SITE SELECTTON 47
LA GRANDE AREA SURVEX 47
BAKER AREA SURVEY 50
ONTARTO AREA SURVIEY 52
IMEDFORD AREA SURVEY 54
ROSEBURG AREA SUPVEY 55
EUGERE AREA SURVEY 56
SALEM AREA SURVEY 57
FTHAL SELECTION OF OPBRATIMG FREQUENCY 59
BIBLIOGRAPHY 61
Pigure 1. PRIMARX SERVICE AREAS OF RADIO MHWORX STAITONS III 1937 Page 15
Figure 2. PRIMARY SERVICE ARRAS OF RADIO NIITWORK STATIONS ITN 1941 Page 16
Figure 3. SERVICE ARRAS OF WETWORK EXPRECTED FOLLOWING PRO- POSED EXPANSION Page 17
Figure 4. AVERAGE DAYTINE FTELD STRRXGTLH COMMOURS PRODUCED B7 A 40 WATT MOBILE TRANSMITYTKR BNERGIZING A TOT-LOADES RADIATOR Page 24

RADIO TRANSIISSION CHARACTERISTICS IN OREGON
 OF MEDIUN AND VERY-HIGH COMNUNICATION FREQUEINCIES

FOREWORD. The use of radio as a medium of communication by police departments, fire departments and other emergeney services whose activities involve the protection of the public health, life, and property has become widespread. It has become such an important factor in the field operations of such services that their efficient functioning without radio communication would now be a virtual im possibility. In recognition of the importance and requirements of the various emergency services, the Federal Commuications Commission has alloated for their exolusive use a large number of channels in the medium and very-high frequency portions of the radio spectrum.

Early systems were established by municipal police departments for the purpose of rapidly dispatching mobile units to the scene of a crime or accident. Such systems usually comprised a central station transmitter, operating in the medium frequency portion of the spectrum between 1.6 and 2.5 megaeycles per second, over which information intended for the receiver-equipped cars was "broadcast". History records many instances of a criminal being caught in the act of comission of a orime because of the rapid response of a "prowi" car to the alarm. Prior to the installation of onewway radio dism patching systams, it was necessary for a patrolman "walking a beat" to call his headquarters for instructions at a prearranged time or in response to a visual call signal.

The users of oneway dispatching systems soon became aware of the fact that twoway communioation between the mobile units and their headquarters was necessary to make the system completely effective. It was found that the operator of the mobile unit sametires missed a call because he happened to be out of his car at the scene of an accident or because the oar was located in a noisy or weaksignal area when the call was transmitted. Frequently an ambulance or assistance was needed, making it nocessary for the officer to locate a telephone to call his headquarters.

Because of the necessarily restrioted antemna height available for mobile applications, mobile transmitting equipment was developed which operated in the very-high frequency portion of the spectrum between 30 and 40 megacycles per second. By locating the headquarters receiver at some elevated site overlooking the city, it was found possible to receive satisfactorily signals from mobile units operating within all, or a major portion of the area protected. The advantages of twoway radio commuication with mobile units were very evident to mary emergency services. Now systoms were instal led almost as rapidly as equipmert became available, until the assigned channels became fully occupied and finally overcrowded. Interference between adjacent areas became a serious problem, even when the interfering transmitters were operating on adjacent or alternate channels. The state of the art did not permit the design of receivers sufficiently selective to reject off-frequency signals of high intensity. Durixg iertain periods of the solar cyole,
partioularly during the sumer months, it was found that the refracted sky-wave interference between areas separated by a distance of 1500 to 2500 miles became very severe *

The introduction to the art of the technique of frequency modulation provided a partial solution to the interference problem because of the well-known "capturing" effect of a signal having an intensity exceeding that of another signal on the same frequency. The fact generally is conceded that it is possible to design a frequency modulation receiver having an inherently greater sensitivity than a comparable receiver of amplitude modulated waves * Because of this and other factors, it was found that the dependable service range of a mobile unit employing frequenoy modulated equipment frequently exceeded that of its headquarters station using medium frequency amplitude modulated equiment. Because of the differences in propagation characteristics of the medium and very-high frequency wewes, the range of the mobile units was more consistent throughout the diurnal and seasonal cyeles.

The headquarters station equipment, as well as the modium frequency mobile receivers operated by some ageneies had reached the state of obsolescence through years of use during the development of the art. It was an obvious and natural stop to replace the obsolete equipment with frequency modulated very-high frequency units. Following such replacement, the user usually found that he possessed an efficient communieation systarn. The interference problem due to the overcrowded condition of the available channels, however, became
generally worse, partially because of the installation of additional systems and partially because of the inereased severity of the slywave interference due to the refraction phenomena aecompanying the solar cycle during the years 1940 to 1948 inclusive.

Teohniques and components developed during World War II have made practicable the use of the very-high frequencios in the 150-160 megaoycle band of the radio spectrum. Mary systems have secured relief from interforence by replaeing their $30-40$ megacyole amplitude modulated equipment as it reached obsolescence with frequenoy modulated equipment operating in the 150-160 megacycle band. Often, more complete coverage of some areas is secured by the higher frequency systems due to the differences in propagation characteristics, which tend to eliminate or alleviate by operation in the 150 160 megacyele band the weak-signal areas encountered in the $30-40$ megaoyole band.

The Oregon State Highway Commission installed a oneway dispatching radio network in 1936 to provide commat aation with mobile units operated by its field engineors and maintenonce personnel and those operated by members of the Department of State Police. The system operates on the medium frequenoy chamel of 1706 kilocyoles. The majority of the approximately 200 mobile units are equipped only with receivers, however, 25 of them are equipped with transmitters operating on the medium frequency chamel and 10 with amplitude modilated transmitters operating in the $30-40$ megaoyele band. The experience gained through the use of the equipment since

1937 has indifated that very satisfeatory onoway serviee is provided over large areas by the medium frequency equipment. For reasons that will become apparent in the following discussion, the further attompt to use the mediun frequency chamel for mobile trangmitters has been abandoned.

The obligation to the travelling public of the Oregon State Highway Commission and the Department of State Police to provide safe highway travel demends that the field personnel and the administrative staffs coordinate thoir efforts during emergency situations. Such coordination is impossible without adequate and dependable com munication. To achieve this result, it is tentatively plannod to equip each mobile unit which now has only a receiver installed in it with a mobile transmitter.

The recent trend of thought of communication emineers has been directed toward the higher frequencies to such an extent that mary of thom have condemned the medium frequency bands as being useless and obsolete. The problem involved in providing dependable twoway radio communication between mobile units and their headquarters stations in a oity is quite different from that enoountered in covering a large state. Satisfactory statowide very-high frequency systems have been installed in several eastern states; however, the area involved in such systems is in many cases less than that of one of the counties in the state of Oregon. In addition to the greater areas over which communication must be effected, the terrain of the state of Oregon is generally unfavorable for the satisfaetory

propagation of very-high frequency energy.

It has been found that the propagation of waves in the verym high frequency portion of the spectrum over rugged terrain oan not be predioted with a reasonable degree of accuracy. A wide variation of service areas has been experienced with equipment operating in both the $30-40$ and $150-160$ megacycle bands in different sections of the United States. Each band has exhibited desirable and undesirable characteristies. In order that the proper choice of operating frem quency for the proposed mobile units could be made, it was decided that a survey of the state would be conducted, using equipment operating on each of the two available very-high frequency bends. The data thus obtained have been correlated with the known charaoteristios of the existing medium frequency system for the purpose of com parison and evaluation.

MEDIUM FREGUINCY COMMUTCATION HBTWORK. The nucleus of its present radio network was installed by the Oregon State Highwey Commission in 1936 and was placed in operation during the early part of 1937. It was proposed that the system be used jointly by the High way, Polioe and Forestry Departments, with partioular priority placed on the Police usage.

The contract for furnishing and installing the equipment meoting published specifications was awarded to the Collins Radio Company, Cedar Rapids, Iowa, Radiotelephone equipment ineluded in the contract were three Collins Iype 20 C 1000 watt transmitters, one each of which was installed at Klamath Falls, La Grande and Salem, and
seven Collins Type 150C 50 watt transmitters installed at Astoria, Bend, Burns, Coquille, Milwaukie, Roseburg and The Dalles, Four Collins Type 18F 10 watt transmitters were installed, one each at Baker, Bugene, Grants Pass and Pendleton. Ten Collins Type 18F 10 watt mobile transmitters, equipped with dynamotor power supplies and all accessories were furnished but not installed.

Antemna structures fumished by the contractor included eight 120 foot self-supporting steel tower radiators and associated ground radial systems, which were installed at Burns, Coquille, Klamath Falls, La Grande, Milwaukie, Roseburg, $S_{a l e m, ~ a n d ~ t h e ~} D_{a} l$ les, Other anternas erected comprised horizontal one-half wavelength current-fed wires, supported between wooden poles 65 to 90 feet high.

Roceiving equipment furnished by the contractor was manufactured by the Radio Corporation of Amorica for genoral and amateur commication usage, identified by the type number ACR-175, and was continuously tunable from 550 kilocycles through the higher "short wave" bands .

Service tests of the corapleted radiotelephone network were commenced early in January, 1937. It was evident very soon thereafter that satisfactory inter-station signals could not be received during daylight hours from mary of the stations. The signal intensity of the 50 watt stations was particularly low, indicating a need for greater transmitter output powers . The Federal Communications Commission authorized, upon application, the modification of the seven 50 watt transmitters to permit somewhat greater areas to be served by
the stations involved. The modifications required simply the replacement of the highovoltage power transformers with larger units, thereby increasing the output power to 100 watts.

A substantial improvement in signal strengths was noticed upon completion of the modifications in June, 1938; however, the continued use of the system indicated a need for higher-powered transmitters at several stations having large service areas in which the coverage to mobile units was found to be inadequate. Consistently dependable communications between even the 1000 watt stations at Salem, La Grande, and Klamath Falls was found to be fmpossible because of the variable factors affecting sly-wave propagation of energy at the operating frequeney.

The Rules and Regulations of the Federal Communications Commission prohibit the use of State Police radiotelephone stations primarily for the purpose of handling point-tompoint, or inter-station messages; however, such stations are permitted to intercomnunicate within their good service ranges provided that no interference is caused to the mobile service and, further, that messages requirimg radiotelephone relaying to reach the addressee are not handled. The Commission has allcoated a group of channels in the 2.8 and 5.2 megacycle portion of the spectrum for the use of state police radiotelegraph stations, by which means it is expectod that point-tompoint traffic will be handled. Interstate radiotelegraph notworles, oomprising one "Interzone" station in each cooperating state system, have been organized to facilitate the ooordination of the various agencies.

Intrastate radiotelegraph notworks cauprise two or more "Zone" tele" graph stations.

The successful operation of a State Police organization requires that all members in the field be kept informod of imnediately fmportant events. The further inorease in transmitter powers neeessary to provide consistent point-to-point commuioation was economically unsound. It was decided that Zone radjotelegraph equipment would be installed at those key stations having consistent radiotelephone contact with all other stations in thoir respective local areas. Federal Cammunications Commission regulations prescribed, at that time, that en operator holding a license of Second Class or higher be stationod at ach 1,000 watt transmitter. Bedause of thoir key looations, highpowered radiotelephone transmitters, and the presenee of qualified technical persornel who could readily obtain radiotelegraph operstor licenses, it was decided that the Salem, La Grande, and Klameth Falls stations would be equipped with auxiliary rediotelegraph transmitting and receiving equipmont.

The signal strength of the 100 watt transmitter installed at Miveukie was found to be insuffieient to override the high noise levels encountered in the metropolitan area of Portland by the mobile units. The Collins Radio Company ropresentatives were consulted rem garding the availability of a suitable replacement transmitter. It was deternined that the 500 watt Collins Type 202BA-10 transmitter would meet the specifications and, in addition, provide equipment necessary for use as an Interzone radiotelegraph station, since it
was designed for operation on any one of ten selected channels, with integral means for rapidly changing the operating frequency and type of emission. The 100 watt Collins Type 1500 transmitter originally installed at Milwaulcie was replaced with a Type 202BA-10 unit in February, 1939, resulting in complete coverage of the mobile service area and establishing the nueleus of a Zone/Interzone radiotelegraph notwork.

The 100 watt Collins Type 150 C transmitter installed at Bond was replaced with a 500 watt Collins Type 2023 transmitter in March, 1939. This equipment is similar to the Type 202BA-10 transmitter installed at Milwaukie except that it is designed for operation on a single frequency. The 100 watt transmitter removed fram the Bend station was then installed at Pendleton, replacing the 10 watt unit, which was moved to Meacham. A 120 foot self-supporting steel tower, identical to the eight towers furnished as a part of the original system, was ereoted at Medford and the 100 watt transmitter removed from Milwaulcie was instal led at Modiord in May, 1939.

Many inquiries were being redeived by the Highway Camnission from the travelling public regarding snow and road conditions over the Santiam and Wapinitia passes during the winter months. Reports of the field personnel stationed in these areas were usually received by mail, since direct commuication was effected by means of a Forest Service telephone system, which was often out of service during the stomy seasons. To provide reliable contact with these points, two 50 watt composite radiotelephone transmitters were designed and constructed in
the maintenance shop at the Salem hoadquarters station by department technicians. Because of the fact that commeroial power was not available at these remote locations, the transmitters were equipped with dynamotor power supplies. One of the transmitters was installed in January, 1940, at the Santiam Junction Maintenance Station, located at the junction between highways US-20 and Oregon 222 in the Cascade Mountains. The second unst was installed at Goverment Camp in May, 1940. Three radiotelegraph transmitters having rapidly-operating frequency changing meohanisms and output powers of 250 watts also were designed and constructed in the Salem shop. The transmitters were equipped to operate on any seleoted one of four frequenoies: 2804, 2808, 5140, or 5195 kilocyeles. One frequency in each of the two bands was designated as a "calling" channel and the other as a "working" ohannel. The use of the radiotelegraph equipment, which was placed in service in July, 1940, permitted reliable contact to be made between zones at all hours when radiotelephone signals were weak. Messages addressed to stations other than the Zone stations were relayed by radiotelegraph between the Zone stations and then re-transmitted to the designated addressee by radiotelephone.

Further changes were found to be necessary to provide more reliable coverage to the mobile units in scme areas. The Type 150 C 100 watt transmitter originally installed at Roseburg was replaced with a Type 150S-2 250 watt unit in July, 1940, and was moved to Bugene, where it replaced the Type 18F 10 watt equipment in September, 1940. A 500 watt General Eleotric Type 4G3A2 transmitter was purchased and
installed at Medford in December, 1940, replacing the Type 150 C 100 watt unit which was moved to John Day and placed in operation in January, 1941. The 10 watt Type 18F tronsmitter removed from the Eugene station was equipped for portable operation and installed at Austin, where it was used to communicate primarily with the John Day station. The Austin installation was originally intended to be of a temporary nature, but the need for reliable communioation during the stormy winter months has demonstrated the advisability of maintaining the station at that location.

Upon the completion of the Willarnette Highway, Route 58 , a third composite 50 watt transmitter was cons tructed and installed at Odell Lake in November, 1940, to provide a means of keeping the travelling public informed as to weather and road conditions in the vicinity of the Willamette Pass.

Further expansion and development of the radio network was halted by World War II, during which time the sys ten domonstrated its usefulness as a vital link in the national defense orgenization. Following the end of hostilities, nine composite 250 watt transmitters were purchased from the State of Maryland, which replaced its 1698 kilocycle amplitude modulated equipment with frequency modulated very-high frequency transmitters.

An extensive expansion program incorporating these units has been plamned and partially completed. The 10 watt Type 18 F transmitter st Baker was replaced with a composite 250 watt transmitter in November, 1947. A second 250 watt transmitter was installed at Ontario
and placed in operation in February, 1948. Application has been filled with the Federal Communications Commission for a Construction Permit authorizing the installation of the third composite 250 watt transmitter at Arrington,

It is proposed that five of the remaining six units will be used to replace the 100 watt transmitters presently installed at Astoria, Coquille, Bugene, The Dalles, and Pendleton. The sixth will be installed at Mewport. The 100 watt equipments removed from these stations will be placed in service at Tillamook, Grants Pass, Odell Lake, Blue Mountain Pass on Highway US -395 noar the Oregon-Nevada border, and Redmond. The 50 watt transmitter removed from Odell Lake will be installed at Corvallis and two portable stations incorporating the Iype 18F transmitters removed from the Balcer and Grants Pass stations will be disposed temporarily at Seneea and Chemult.

It is intended that the prinary service area, as referred to in the following discussion, sholl be interpreted as being that area in which consistently reliable signals can be received by mobile units having normal receiver sensitivity, as is encountered in practice. The primary service areas of all stations comprising the notwork have been determined by experience, obviating the necessity of comparing actual measured field intensities. The observed maximum sarvice ranges of stations having equal output power have been compared and found to be approximately the same in all cases, irrespective of the location of the station.

The primary service area data thus obtained have been reduced
to graphical form and are shown as areas concentric with the transmitter location on the maps of Figures 1,2 and 3.

The coverage obtained with the stations as originally installed is shown in Pigure 1. The incomplete degree of service is imnediately apparent by inspeotion.

The map of Figure 2 shows the primary service areas covered following the completion of the flurst period of expansion prior to the bogiming of World War II in 1943. It is evident that mumerous gaps existed between individual areas. Coverage of the heavily-travelled arterial highways US-30 and USm99 is shown to be very inadequate, as is service along the Oregon Coast Highway, US-101. As shown, a mobile unit operating along the Columbia River Highway, US-30, will be virtual Iy isolated from the radio commuication standpoint between Bonneville and a point near Pendleton, with the exception of the area in the vicinity of The Dalles. Likewise, dependable signals will not be received between a fow miles south of Beker and the Oregon-Idaho state line at Ontario.

Figure 3 is a map showing the expected coverage of the netu work after completion of the ourrent expansion progran. Coverage along the arterial highwas is indicated as being virtually complete. The shaded areas shown ropresent the service ranges obtained or predicted under the most unfavorable conditions experienced or anticipated. Average coverage is actually in excess of the primary service areas shown, providing substantially usable signals throughout a large part of the mobile service regions.

Figure 1. Primary seavice areas of radio network stations in 1937.

Figure 3. Service areas of network expected following proposed expansion.

RECEIVING EQUIPIIENT. The RCA Type ACR-175 receivers installed as original equipment in all stations of the network proved to be unsatisfactory in several respects, although they were reasonably well designed considering the state of the art. The selectivity was found to be insufficient to reject adjacent-channel signals during those hours of darkness when conditions were favorable for the good propagation of sky-wave signals. The variable-tuning feature was undesirable because of the frequent detuming by accidental mechanical shoeks and because of the inherent frequency drift due to thermal and humidity changes. As a means of partially solving the tuning problem, hourly equipment tests were scheduled to permit each operator to adjust his station receiver. Occasional bursts of noise would cause the operator to decrease the volume control setting to a point where a all could not be heard.

The Radio Manufacturing Engineers, Peoria, Illinois, announced in 1940 the development of a receiver designed expressly for fixed-frequency services . The RCA Type ACR-175 receivers were replaced with these nowly-announced units, modified to specifications and designated RUS Model SPD-13. They were found to be extremely selective and sensitive. Freedom from frequency drift was insured by the incorporation of a quartz crystal local oscillator frequency controlling element. A Carrier-operated "squelch" oircuit caused the receiver to remain quiet in the absence of a received signal.

Imediately after the installation of the new receivers the notwork acquired a high degree of reliability. It was found that
satisfactory point-to-point commnication could be maintained during the greater part of the average day and the use of the Zone radiotelem graph equipment was abandoned.

The high radio noise intensity characterized by the increasing use of electrical appliances and industrial machinery forced the removal of the station receivers at Salem, Bend, La Grande, Medford and Klamath Falls to remote locations having low ambient noise intensities. In such installations, the audio frequency output of the receiver is transmitted at a low power level by means of metallic circuits to the station, where it is amplified to the power level rem quired to operate a loudspeaker. A further improvement in the performance of the radio network was effected by these changes. It is expected that similar installations will be made at the majority of the stations within a period of several years. Further refinements in the receiver circuits have been introduced which tend to increase the overall effectiveness of the equipment.

One of the problems resulting from the removal of the receivers to remote locations was the adjustment of the operating threshold of the squelch circuits. Adjustment during periods of high ambient noise intensity resulted in loss of effeotive sensitivity during more quiet periods. An automatic squelch threshold circuit was designed and installed in the receivers which causes the loudspeaker to become operative only whon a signal having an intensity exceeding the noise level is received.

MOBILE EQUIPMBT. Ten Collins Iype 18F 10 watt transmitters,
equipped with dynamotor power supplies, were furnished under the original installation contract. These units were installed in snowplows and other maintenance vehicles, which were equipped with sectional antemas having a length of 25 feet. It was necessary for the operator to stop the vehicle, put the separate antenna sections together and fix the anterna in a heavy-duty socket provided on the vehicle before making a transmission. The range was very limited and, beeause of the inconvenience involved, the mobile units were seldom used and were subsequently removed from the heavy equipment.

It was evident that a more effieient and practical antema system would have to be designed before effective use could be made of the medium frequenoy mobile units. A series of experiments was undertaken, using a passenger car for a test vehicle, and the relative effectiveness of a number of antenna systems was determined.

A singlemturn loop, comprising an insulated wire extended longitudinal ly over the top of the car from the front to the back bumper, with the car body completing the circuit, was tried. $\mathrm{V}_{e} r y$ strong signals were received from the vehicle when it was in the vicinity of the receiver due to the strong induction field; however, the radiation field proved to be very weak and the signal intensity decreased rapidly as the vehicle moved away from the receiver. larked directional properties characteristic of loop antennas were observed and the systen was discarded as unsatisfactory.

A "top-loaded" anterma ${ }^{1}$ developed for mobile use by the United States National Parik Service and Stanford University was tested
and found to provide a comparatively efficient radiator, having a measured power gain of 12.2 decibels as compared to a base-loaded vertical whip antenna of the same length ($1, \mathrm{p}, 32$). This antenna comm prises an inductor and capacitor elevated above the vehicle by a vertical, tubular metal supporting member, which is insulated from the vehicle and energized by the transmitter. Construction and mode of operation is similar to that of a conventional sectionalized tower as used in broadcast engineering practice. The inductance of a coil, which is electrically comected in series between the supporting member and a short whip, is adjusted so that its reactance is very nearly equal, at the operating frequency, to that of the combined capacitive reactances of the short whip and a shielding tube placod coaxially around the coil. When the antemna is so adjusted, the current antinode appears along the supporting tubular momber, which is the prinoipal radiating element.

The tuning operation was found to be a very critical procedure, sinee it was necessary to adjust the inductance of the coil by removing wire one-half turn at a time in order to reach the optimum tuning point without deereasing the circuit Q by the addition of end-effect or eddy-current losses. The properly adjusted toploaded radiator was found to produce an effective service range of approximately 15 miles when energized by a 10 watt mobile transmitter.

It was felt that a more powerful mobile transmitter would be required to provide a satisfactory answer to the mobile oommnication
problem. An experimental mobile transmitter having an output power of 40 watts and incorporating "instant heating" filament tubes was designed and constructed in the Salem shop and was installed in the test vehicle. The effective service range produced by this wit was found to be 25 to 30 miles, as would be predicted by simple calculation. A series of measurements was made to secure data for plotting the relative field strengths produced by the mobile unit in the Salem area. A Hallicrafters Model $\mathrm{SX}-17$ receiver, installed at the Salem station, was used as the measuring instrument. The signal strength meter integral with the receiver and scaled in "S" units of 1 through 9, in accordance with amateur radio practice, was calibrated in terms of mierovolts input to the receiver antema terminals by the use of a General Radio Model 605 Standard Signal Generator. From oxperience, it had been determined that a signal producing a deflection of $S 5$, corresponding to an input voltage of 8.6 microvolts, represented a limit below which communication was not cons is tently reliable because of variable local noise conditions. The power ratio between S unit intervals in the range between $\$ 5$ and $\$ 9$ was found to be reasonably linear, averaging approximately 6 decibels. For the sake of convenience, the standard scale readings wore recorded during the tests.

The test vehiole, equipped with the 40 watt transmitter and top-loaded antenna, was driven over highways oxtending very nearly radially from Salem and a large number of test measurements were made. Identical routes were covered from three to five times during different
hours of the day and over a period of several weeles. The data secured were plotted for each radiel line and an average reading determined.

The average moasured relative field strengths proanced by the tost vehicle are shown on the contour map of Figure 4, in which the contour intervals represent a power ratio of approximately 6 decibels. Police patrols operating from the Salem headquarters station cover that area bounded by the towns of Aurora, Valley Junction near Grande Ronde, Corvallis, Albany, Mill City and Molalla. As can be seen, usable signels were received from all boundary locations with the exception of Mill City, a fact which contributed to the decision to install additional mobilo transmitters operating on the medium from quency chennel.

Furcther investigation of the anterna problem Ied to the development of an improved method of base-loading a vertical whip radiator ($2, \mathrm{pp}, 24-25$) which provided en antenna having a higher radiation efficiency than the top-loaded type with out the ne chanical disadvantages of the latter. It was found that the ontoma eurrent increased as the L/C ratio of tho parallel-resonant I umped-element circuit comected between the antenna and ground was increased, bow coming maximum when the only capacitance shuntirg the loading inductance was that of the anterna whip plus the stray capacitance of the circuit. The reason for the observed effect was obvious upon consideration, since the circulating ourrent in the parallel-resonant eircuit was being divided between the shunt loading capacitor and the distributed anterna and stray capacitances combined in inverse

FIGURE 4. Average Daytime Field Strength Contours Produced by a 40 watt Mobile Transmitter Energizirg a Top-loaded Radiator. Contour intervals approximately 6 db .
proportion to their respeotive oapacitive reaetanoes.
Coupling of the tyansmittor to the antomna was affoctod by means of a flaxible coaxial transmission 12 no having a noninal impedance of 72 olms and conneoted to the 1 owmimpodence end of the looding inductor, belwoen ground and a tap approximately 5\% of the total mum ber of turns from the grounded end of the coil. The position of the oxcitation tap wae deternined by exporizont, boinc that point which provided a resistivo tornination at the transmitter ond of the transmission 1 ine.

A 9 foot vertical whip antoman was base-loadod by moans of the inproved system, being tunod to resonance by adjusting the mumber of turns in the loading inductor, a mothod identiens to that used for adjustanont of the top-londed antema. The antemna current, measured at the bese of the vorticel whip, was found to be 2.2 amperos. The current at the base of the top-1ooded rediator wes found to be 0.5 amperes when energized by the same 40 watt tranmittor. Field tosts of the fnpzoved base-loaded systema indioated that a substantial inm provement in radiating effioioney hed been effectod, the field atrongth boing inoreased approxinately one S unit (equivalent to a power gain of 6 deeibels) throughout the area shown in Figure 4 .

In oreior to simplify the tuming procodure, whith was neoessary only at tho time of initial installation of an antonna, various types of powdorod-iron cores were inserted into the loading inductor, boing nechanicolly variable along the axds of the coil to ponmt adfustanent of the reluctance of the circuit. An adjustable, 2 2 亳 inch
diameter solid core of either Staolpole Type G2 or Aladdin Type 560 material 2 inches in longth was found to provide a satisfactory tuning medium when used with an inductor 2.25 inches in dirmeter and 3.1 inches long, olose-wound with 73 turns of \#18 enamelled copper wire and tapped for excitation 4 turns from the grounded end.

Experience had indicated that a whip length of 9 feet was too great to eliminate the frequent striking of overhead wires, trees and other objects. The antemna length was decreased to 7 feet wi thout appreciable difference in the radiated field strength and was adopted as a standard size.

The measured voltage gain of a 7 foot vertical whip, baseIoaded by means of a variablemreluctance inductor, was found to be 11:1, corresponding to a power ratio of 20.8 decihels, as compared to the same whip without the loading means.

The 40 watt experimental mobile transmitter was redesi gned to provide a model for the production of permanent units, and a total number of 19 identical transmitters were constructed and installed in patrol cars oprating in the Klamath Falls, Medford, Roseburg, Bugene, Coquille and Salem areas. The consistent cammication ranges of the units during daylight hours varied, according to the receiving conditions as affected by local noise in the respective areas, but were found to be comparable to that experienced in the Salem area.

During evening and nighttime hours, the mobile unit operators found that often they were unable to contact their base station beyond a distance of 10 or 12 miles from the station receiver. The increased
background noise in the station receiver due to the sky-wave propagation of distant atmospherio disturbances contributed to the difficulty. Interference effects between sky-wave and ground-wave components of the radiated signals were observed, causing severe fading. It was found that polarization effects becane very pronounced during this period; switching the station receiver input from a balanced-line horizontal doublet to an unbalanced "T" antenna permitted satisfactory reception of a signal that could not be heard when the doublet antema was used. It was found that the Medford and Roseburg units could cammunicate with the Salem or Bugene stations more easily at night than with their own base stations. Obviously, such effects are undesirable in an emergeney commaication system, which must be capable of proViding reliable commmication betwenn the headquarters stations and their mobile units at all hours of the day and night.

Difficulty is sometines experienced by those fixed stations separated by distances of 45 to 55 miles, such as Milwavkie and Salem, due to the "skip distance" effects which prevail under those conditions favorable for good skywave propogation. The higher power output of the transmitters at stations so separated reduces the difficulty to that of the amoyance factor caused by fading.

IWYIRRIMRINCE. The State of Oregon has been very fortunate in having had allocated for its use the 1706 kilocycle channel, since It is effectively a clear chamel oxcepting during some hours of the night. Adjacent-chamel interference was experienced with the initial equipment; however, the installation of the more selective RIS SPD-13
station recoivers has eampletely elimenated such dirficulty. Some signals of relatively low intensity are received during the night from other systems locatod in the eastorn part of the United States and operating on the same channel, but the interierence produced is insigniftioant.

The wartine installation and subsequent use of LORAM notworles in the 1800 to 1900 leilocyole band has resulted in some interferonce of a serious nature, being particularly troublesome at those stations situated west of the Cascade Mountains. Because of the inherentily steep wave-front characteristics of the emissions produced by LORAN transmitters, keying sidebands are ovident in the 1706 kilocycle chamel. The addition of highly effective peok-limiting noise silenoers to the station receivers affeoted has reduced the interference from this souree to a tolereble point, although the keying transionts oan be heard during night hours.

A rather unusual type of interference became ovident after the assignmext of the 1240 kilooyole channel for the operation of broadcast stations KFJI in Klamath Falls and KWIL in Albany. A moderm superhoterodyno recelver tunod to 1240 kilocycles has a local oseillator frequency in the vieinity of 1700 to 1710 kilocycles, depending upon the acouracy of aligrment and station selection. Tho signal strength radiated by a local oscillator is sometines very appreciable, having bean heard and identified at a distance of three miles from the station receiver at Selem. This type of interference proved to be particularly troublesome at Klamath Falls, where the noise level is
high and the only broadcast stations that can be recoivod satisfactorily during daylight hours are those opereting locally. The Mamath Falls station recoiver was rolocated to a site near the wartime Marine Barracks facilitty, several miles north of the oity, in order to solve simultaneously the local osoillator hete rodyne and noisy power trensmission line interference problems.

VERY-HIGH FREqUENCY SUEVEY. In order to determine the offectiveness of equipmont operating in the very-htgh frequenoy bands of $30-10$ and $150-160$ megacyelos per second, it was decided that the locations representeitive of terrain likely to be encountered in all parts of the atate would be surveyed with actual mobile equipme nt.

Mamufacturers ${ }^{\text { }}$ representativives were contacted to ascertain the availability of suitable equipment with which to conduct the tests. Two mobile transmitter-receiver combinations, adjusted for operation on a frequenoy of 154.49 megacycles, were made available for use through the courtesy of Motorela, Incorporated, whil le two mobile combinations operating on a frequency of 33.14 mogacycles were generously provided by the Link Radio Corporation. It was felt that these equipments were representative of the woll-ongineered types cormeroially available. The 154.49 megacycle equipment furmished comprised two Motorola Model MMRU-30D Transmitter-roceiver cambinations. The transmitter unit was rated to deliver 30 watts of narrow-band frequency modulated energy to the antemn, which omprised for mobile use a onequarter wavelength (19 inch) vortical spring stoel wire, mounted contrelly through and insulated from the top of the test vehicle. The
receiver unft was designed to have an overall sensitivity such that 20 decibels of noise quieting was produced by an input terminal voltage of 1 microvolt.

The equipment operated on a carrier frequency of 33.14 mogaoyoles comprised one Link Model 35 -UFM transmitter, one Link Model 50-UFM transmitter and two Link lodel 11-UF receivers. The transmitters were rated to deliver to the anterna 35 watts and 50 watts respectively of narrow-band frequency modulated energy.

The mobile antennas used on the frequency of 35.14 megacycles throughout the tests were of the one-quarter wavelength vertical whip type, supported along the left rear side of the test vehiele by means of a rugged tripod frome. A portable, knock-down "ground plane" antenna was tested and found to provide less signal strength than the mobile type, probably because of some difference between the operating frequency and the resonant frequency of the only available antenna of that type. For the sake of convenience, it was decided to use the mobile 35.14 megacycle antemas for surveying purposes, with the reservation that decided improvement in the results secured could be effected through the use of a properly designod antema of the coaxial or ground-plane type, either of which is urwieldy and difficult to install temporarily.

A coaxial antenna, comnected to the 154.49 megacyele trans-mitter-receiver combination by means of flexible coaxial transmission line was used at the fized or base station whenever possible. Because of its small physical dimensions, installation of such an antema on a

31.

high tree or other object was not usually difficult. It was felt that the results provided by the use of the extermal coexial antenna would be representative of those which might be expected with a permanent installation at the same location.

Since highways US-30 and US-99 consiitute the hoavily-travelled traffic arteries across the State of Oregon, it was felt that the installation of a new mobile commuication systom would logically be started along these routes. It was decided, therefore, that these highways would be surveyed throughout their lengths, so that an accurate appraisal of the station equipment requirements could be made.

The equipment was made available for several weeks during the months of Decomber, 1947, and January, 1948, and because of other committments of the manufacturers it was necessary to complete the tests at the earliest possible date. It was uniortunate that the survey was necessarily conducted during that part of the year when many of the sites selected as being desirable for receiving locations were not easily accessible by automobile. Considerable difficulty was experienced throughout the tests due to mud, snow and rain. The tests in the vicinity of The Dalles were conducted during the 24 -hour period having the heaviest total rainfall that had been recorded in the history of the Weather Bureau.

The survey procedure was practically identical for each location tested. One vehicle having both 33.14 megacyele and 154.49 megaoyele equipments installed in it was stationed at the location selected for the base station, which was usually an elevated and
reasonably accessible point. The other vehicle, also having equipment operating on both channols, was driven over the roads and high ways in the area to be surveyed. Test calls were made at one mile intervals by the mobile unit and verified by the base station. The actual test calls were of short duration so that the operation of both chamels could bo compared under identical conditions and from the same locations.

The base station receivers were each equipped with indicating instruments to measure the limiter grid currents produced by the received signals. At the beginning of the survey, limiter grid current readings, which are an index of the relative signal field intensities, were recorded. The frequency of the test calls, usually averaging one test call on each channel per minute, posed a difficult recording problem for the base station operator. After gaining experience, it was found that the receiving operator could describe the signal strength by estimating the signal-to-background noise ratio present in the receiver. Signal intensities were subsequently recorded in five degrees of quality; i. e., SATURATED, defined as having sufficient intensity to produce complete limiting and eliminate all except inherent receiver noise, SLIGHT NOISE, MODERATE NOISE, SEVERR NOISE, AND CLIPPING. The latter condition referred to the intermittent closure of the carrier-operatod squeloh oircuits due to lack of sufficiont received signal intensity.

ASTORTA AREA SURVEY. The survey was commenced at the western end of highway US-30, at Astoria, on December 19, 1947. Inspection of the topography in the vioinity of Astoria disolosed that the most logical choice for a receiving site was easily aceessible by automobile and also would be available for use as a permanent location if it should prove to be satisfactory. The site chosen was near the base of the Astor Colum, at an elevation of 595 feet above mean sea level. The momment area is the property of the City of Astoria, which of fered the use of the location for the survey and eventual permanent installation if desired. Power and telephone circuit facilities were available at the site.

The base station vehicle was parked near the earetaker's quarters, upon which the external antennas were erected. The 154.49 megacycle coaxial antema was fastened to a pole and raised to a height of 30 feet above the ground. A portable, knock-down "ground plane" anterna, resonant at a frequency somewhat higher than 33.14 megacycles but the only one available, was also erected on a pole and raised to a height of approximately 25 feet above the ground.

Two test vehicles were used in the survey at this locationg the $\mathbf{1 5 4 . 4 9}$ megacyele transmitter for the standard test vehicle had not been delivered when the test was conducted, so the Motorola representative furnished and operated his personal automobile, in which such equipment was installed. The 33.14 megacycle equipment had been installed in the standard test vehicle prior to the test.

Test calls were made at intervals of one mile, or whenever
an easily identified cheok point had been reached, the leading vehicle making the first test from a chosen location so that the following unit would be able to test from the same point without the necessity for stopping either vehicle.

Along highway US-101, solid signals were received on both frequencies from Astoria south to the tumel through Arch Cape, at Milepost 36.6 , slight noise appearing on 154.49 megacyoles in the
 cycles from the Arch Cape Tunnel to the Nehalem River Bridge, although contact was established intermittently, with moderate to severe noise and frequent olipping, on 33.14 megacyeles.

After reaching the Nehalem River bxidge, the vehicles rem turned north by way of Oregon Route 53 to the Necanicum Junction with Oregon Route 2. The 154.49 megacyole signals were hoard intermittently along this section, with severe noise and clipping generally, becoming saturated at the Coast Range Summit, 3 miles south of Necanicum Junction. The signal strength on 33.14 megacycles was sufficient to prom duce excellent signals, with slight to moderate noiso, from all lom cations along Route 53 with the exception of a short section between Mileposts 3 and 4, immediately south of the Coast Range Sumit, where the background noise became severe.

Upon reaching the Necanicum Junction, the vehicles turned east on Oregon Route 2. The 154. 49 megacyole unit was heard with solid signals to a point near Elsie, at Milepost 20 , beyond which olipping and severe noise became evident. Contact was lost at Milopost 23 ,

3 miles east of Blsie. The 33.14 megacycle unit was received with excellert signal strength and slight background noise to a point 7 miles east of Elsie. The vehicle encountered a severe snowstorra at that point, and, because of the late hour and inclement weather, it was decided to return to the base station at Astoria. The signal strength at tho turning point indicated that the limit of satisfactory comunication had not yet been reached.

After the vehiclos had returned to Necanicum Junction, the offectiveness of the 33.14 megacycle ground plane antenna was oheoked. The test vehiole stopped and made a test call, during which the limiter grid current reading at the base station receiver was reoorded. The ground plane antema at the base station was then, atiscomected from the 33.14 megacyele equipment and the mobile whip was comected in its place. Another test call was made and the antenna tuning of the base station receiver was readjusted, after which the grid current roading was again recorded. It was found that the mobile antenna produced a higher grid eurrent reading than the external ground plane antema that had been used throughout the test period previously described. The difforence between the resonant irequency of the antenna and the equipment operating frequency was thought to be the reason for the unoxpeoted results.

On the following day, the test vehicles travelled east on highway US-30. Tho signals on both channels were saturated from the base station east to Bradley State Park, beyond which noise appeared on each frequency. The 33.14 megacyele signals were moderately noisy
at Mershiand, acquiring severe noise and elipping beyond that point, while the 154.49 negacyele signals were understandable, with moderate to severe noise, to a point 2 miles west of Clatskanie, at Milepost 67. As a result of the tests in this area, it was felt that the coverage secured on either channel would be adequate to provide satisfactory servioe, but that the results obtained on 33.14 megacyeles indicated that nore complete coverage would be provided by the lower of the two frequency bands. Since good coverage was obtained from the site chosen, which was desirable for other reasons previously mentioned, it was felt that the permanent installation should be planned on the basis of these factors.

PORTLAND AREA SURVEY. The experience of sever al of the users of verymhigh frequency systems in the motropolitan area of Portland was considered in the search for the best receiver site. It was deoided that the top of $1 / t$. Scott, southeast of the City, offered the greatest possibilities as a base station location.

Prior to the undertaking of the general survey, the Link Radio Corporation representative had made a preliminary survey of highways US-30 and US-50 east from Portland on a frequency of 33.14 megacycles, using the equipmert which was later made available for use in the general survey. The tests were witnessed by the writer and the data secured are inoluded in the following discussion in the same man ner as if they had been made during the general survey. The conditions under which the preliminary tests were made wore identical to those following, with the exception of the fact that a permanently-installed
coaxial antenna, owned by the Fortiand General Blectric Company and a part of their $30-40$ megacycle system equipment, was used at the base station instead of the mobile whip antenna.

On December 20, 1947, the base station was set up on the northwest edge of the top of 胙. Scott, at an elevation of 1, 170 feet. The 154.49 megacycle coaxial antema was orected on a pole and raised to a height approximately 20 feet above the ground. The 33.24 megam oyole equipment was not available for use during this test, but the areas involved had been covered previously by the preliminary survey.

Along highway US -50 , the signals produced on both channels were solid with little noise from Portland east to Goverment Camp, at Milepost 54.6 .

A considerable anount of apprehension was felt concerning the possibility of adequately oovering the Columbia Gorge along high way US-30. All fears were dispelled, when it was found that the signals produced on either frequency were solid from Portland east to Milepost 55, becoming intermittent with severe noise and elipping between Milopost 55 and the 1 Itchell Point Tunnel at Milepost 61. No commanication was possible from along the highway east of Mitchell Points however, contact with the base station was established on 33.14 megacyclos from a hill top in Hood River.

As would be antioipated by inspection of the terrain, the area from Portland south to Salem along US-99S was covered with solid, saturating signals on both irequencies. The test vehicle was not driven farther south than Salem for the survey in this area, although
it ia expooted that satiefactory signals would bo woooivod on both Chamels to Albery.

On Decomber 22, 2047, the base atation was again set up at the some $200 a t 50 n$, but with the 33.14 megacyole equipment $i n-$ stalled. The 154 . 49 megacyele conxial antonna was again erectod at a hoight of 20 foot and the mobile anterva wes used on 33.14 mogam cyoles throughout the test.

Fron Porbland west on highway $0 S-5 \mathrm{O}_{2}$ solid signale were reoeived on 154,49 megncycles to the top of the $\mathbf{h i l l}$ immodiately west of Ratinier, at Millapost 52. Becanse of the fret that the elevation of the highway droppod very rapidly boyand that point, it wres oxpeoted that the signal strongth also would drop very rap $1.01 y$ and the tost vohicle roturned toward portland. The signals on 33.14 mogacyolea were solid to Littio Jacic Palls at MIopost 45 , boconing Internittont with sovere noise and olipping betweon Littlo Jeok Falls and Rajrder. Contact could not be ostrablished from tho business alstrict in Ratnier on 35.14 megaoyelos, although woak stgnals with moderate to sevore notse were experioneed whon the toat veincle was on the south epproach of the Longview Bridgo.

The best vohicle rotrumed towerd Powtland from Rainiers, turning southvest at St, Helens and taking a gravolled road toward Vernonit. Contnot was naintainod on both ohannols from St. Helens to a point 26 miles wost of $8 t$. Holom, beyond which 154.49 megreyole signals wore not reooived. The 35,14 mogeoyolo siguals were seturated Arom St. Melers to noar the Junotion with Orecon Rotto at at Pittsburge

Slight noise appeared at Pittsburg, rapidly becoming severe and olipm ping. Contact established intermittently between Pittsburg and Vernonia, with severe noise general ly throughout the section. Test calls were made from a 500 foot hilltop near Vernonia, the location being that selected by the local Power Utility for their station site. Contact with the base station on Mit. Scott was established on both channels, the 33.14 megacycle signal having slight noise and the 154.49 megacyele signal having moderate baokground noise. Intermittent commuication was maintained on 35.14 megacyoles from Vernonia to Glemwood Junction, at which point contact was again established on 154.49 megacyeles. The vehicle was driven west on Route 2, with solid signals being received on both chamels to the summit of the Goast Range at Milepost 27, 3 miles west of the ClatsopTillamook County Line, in Clatsop County. This was the turning point reached when the Astoria area was surveyed, indicating that a good coverage safety factor would be provided along Route 2. Slight to moderate noise was evident on each system, with the 33.14 megacycle signals having greater apparent strength. At Milepost 27, it was determined that the 154.49 megacyole signal strength dropped rapidly beyond the sumnit, while that of the 33.14 megacyele signal showed evidence of remaining usable for a somewhat greater distance. The test vehicle was turned around at Milepost 27 and the eturn trip to Portland was started. The signals becane quiet on both frequencies when the Sunset Tunnel was reached, becoming saturated between Forest Grove and Portland.

The results of the survey of the Portland area indicated that satisfaotory coverage could be secured on either frequency, with the 154.49 megacycle channel providing slightiy greater range along the western end of the district on Highway US-30 and the 33.14 megacyole channel having greater coverage in the mountains and valleys west of Portland alorg Route 2 e

The receiving site chosen was found to be excellent, providing greater coverage from a single location than is now provided by an existing $30-40$ megacyole systom in the same area with three widely separated receiver installations energizing loudspeakers at the central control point. Beoause of its ideal situation wi th respect to the surrounding terrain, including the motropolitan area, Mt. Seott may prove to be undesirable for a receiving site. Being a natural location for the installation of very-high frequency systems, partic cularly the commer cial frequency modulation broadcast and television services, the problem of spurious responses and receiver desensitizing by high intensity radio frequency fields may become so serious as to overcome the advantages of the site. Several very-high frequency systems are now installed theres the addition of others may prove to be mutually detrimental unless the systems are all well engineered.

THE DALLES ARRA SURVEY. The base station was installed Jenuary 5, 1948, on the top of Seufert Hill, noar the Civil Aeronautics Administration's radio range station east of The Dalles, at an elevation of 1,200 feet above mean sea level. The 154.49 megacycle coaxial antema was erected on a pole and raised to a hoight of 14 feet
above the ground. The mobile whip was used as the anterna for the 33.14 megacyele equipmente

The test vohicle was driven on highway US-30 from Portland to The Dalles after the base station had been set up, and test calls were commenced in the vieinity of Cascade Loeks, in accordanoe with a prearranged schedule. Contact was first established on 33.14 magacycles near Vianto, the signals becoming solid, with siight noise, at Milepost 55, The 154.49 megaoyole signal was first hoard at liflepost 55, where it imnediately became solid, with slight baokground noise.

The unit travelled east past The Dalles and the signals on both frequenies were solid to the John Day River at Milopost 122, on the Sherman-Gilliam County line, beyond whi oh no contaot was possible on either ohamel. A large amount of "swinging" was noticed on both Irequencies between Mileposts 108 and 118 -first one would becone completely quieted while the other developed noise, then the situation would be reversed suddeniy. Communioation quality signals were received generally along this 10 mile section, although some olipping was ovident on 154.49 megaoyoles.

In order to investigate the behavior of the very-high frequenoy waves in rolling terrain typioal of that found in central eastern Oregon, the mobile unit was driven south fram the D_{a} alles along highway Oregon 23 to Maupin, along US-50 to its junation with USm97, and north on US-97 to its junction wi th US-30 at Biggs . Both chamels provided solid, saturated signals from The Dalles to the Tygh Valley Ridge at Milepost 27. Communication was impossible on either frequency
in the 10 mile eanyon section between Miloposts 27 and 37, after which 33.14 megacyole signals were solid to Maupin Junction. The signals on 154.49 megacyeles were not heard until Milepost 38 had been reached. after which they were solid to Milepost 65. No further contact was made on 254.49 megacycles between Milepost 65 and US-97, or between US-97 and Biggs on US-30. Contact on 35.14 megaoyoles, however, was solid throughout the remainder of the route with the exception of some degree of olipping in the town of Maupin and a total absence of signal in a 2 mile canyon section between Mileposts 8 and 10 of US -97 near. Biggs .

The results of the survey in the area of The Dalles indicated that the most complete coverage would be secured by the use of the I wer frequency. The total lack of signal in the canyons near Biggs and Tygh Valley Ridge posed problems that could be solved by the use of automatic repeater stations, properly located; however, the use of such repeaters would not at the present time be economically justified.

ARLINGTON ARRA SURVEY. A study of the topography in the Arlington area indicated that the general region around the airport would be the highest and most readily accessible location for the base station. The airport elevation is approximately 850 feet above mean sea level and about 600 feet above the town and highway. The base station was set up noar the Administration Building on January 6, 1948, and the 154.49 megacycle coaxial antenna was fastened to the top of a 40 foot wooden antema pole.

Before the external 154.49 megacyele antenna was conneoted.
to the equipment, the tests were made on US-30 west of Arlington to compare the results secured when the mobile antemnas were used on both ohannols. The test vehicle was contacted at Rufus, near Milepost 116, on 33.14 megacycles, and intermittent commicati on was maintained from Rufus to the John Day River, Milepost 122, where the signals beoame solid and quiet. The 154.49 megacyele signals were not heard until the unit had travelled to Milepost 130,9 miles east of the John Day River, after which solid signals were received.

The area east and south of Arlington was covered by the test vehicle by following highway US-30 east to Ordnance, turning south on Oregon 207 and driving to Lexington, going from Lexington to Heppner via Oregon 74, then following highways Oregon 207 and Oregon 206 to Condon, returning to Arlington on Orogon 19. The 35.14 megacyele signals were solid from Arlington to 11 miles east of Boardman, after which they were not heard until the UmatillamMorrow County 1 ine, 17 miles north of Lexington, was reached. The 154.49 megacyele oontact was solid from Arlington to 11 miles ast of Arlington, at the junction of hi ghways US-30 and Oregon 74, after which none was made until the Umatillamllorrow County line was reached. Solid coverage was obtained on 33.14 megacyoles between the County line and a point 3 miles south of Lexington, beyond which intermittent contacts were made from selected points along the highway between Lexington and Condon, usually from those points having a high relative elevation with respect to nearby terrain. Solid, saturating signals were received from Condon to Arlington on 33.14 megacyoles, with the exception of a 2 mile
section in Olex canyon, between Mileposts 6 and 8 , from which contaot was impossible. The $\mathbf{1 5 4 .} 49$ megacyele signals were intermittent between the County line, 27 miles north of Lexington, and Condon, with contact being established from selected high points generally. Signal strength was excellent when contaet was possible--signals either were very strong or were entirely absent. Solid coverage was secured from Condon to Arlington, with the exception of the Olex eanyon, where a 3 mile seotion botween Mileposts 6 and 2 was found to be "dead". On the following day, a second test run was made from Ar-IIngton east on US-30, with the coaxial 154.49 megacyele antemna erected on the top of a 75 foot airway beacon tower, Iocated at the west end of the ai rport. Coverrage was found to be greatily improved and signals were received without breaks from Arlington to the Morrowe Unatilla County line, 3 miles east of Irrigon.

The decided improvement in coverage effected by the rem location of the 154.49 megaoyele antema indicated that a probable in provement would also be obtained on 33.14 megacyele, which provided substantially greater coverage under comparatively equal conditions. The beacon tower site is an excellent one for the location of equipment, since, in addition to its physical prominence, telephons and power facilities are available at the tower.

PIMDLETON AREA SURVEY. In order to secure adequate coverage of the section in the Blue Mountains, between Pondleton and La Grande, It was decided to loaate the Pondleton receiving site at the airway beacon on Finigrant Mil1, near MG1 Iqpost 250 on US-30. The base of the

75 foot beacon tower is elevated approxinately 3,550 feet above sea level. Because of the long distance from Pendloton, whith cen be seon easily in the valley below gmigrant Hill, it was plamod that automatio radio repeater circuits would be installed between the permanent terminal point in Pendleton and the remote equipment location.

The tests were commonced on Jenuary 8, 1948, according to a prearranged sohodule. The mobile unit used as the base station at Arlington delayed departure until the Pendleton base station could be established. Test calls were commenoed by the mobile unit at Boardman, where the 35.14 megacycle signals were excellent, having only slight background noise. The 154.49 megacyole signal was very intermittent and noisy from Boardman. The tost vehiole turned around and hoaded. west, testing every mile to cheok the signal strength. The 154.49 megacyele signals were hoard, although very noisy and intermittent, to 6 milles west of Boardman, while the 33.14 megacycle cormunication was solid with slight noise to lkilepost 162, 9 miles west of Boardmen, with the signal gaining background noise rapidly thereafter. Clipping becane evident at Milepost 159,12 miles west of Boardman, and the vehicle turned around and hoaded for Pendleton. On the return trips the 33.14 megacycle signals were solid with little noise from 9 miles west of Boardman to Pendleton, while those on 154.49 megacyoles became solid one mile east of Boardman, remaining quiet from that point to Pendleton.

The highway from Pendleton to Walla Walla, Oregon 11, was surveyed January 9 th, with the 33.14 megacyole channel providing solid
and near-saturation signals from Pendleton north to the WashingtonOregon state line. The higher frequency became intermittent and contaets were very noisy in the area between Weston and Freewater, with contact impossible from many locations. Contact was established with the base station from Freewater and from the state line, however,

A test was made along US-395 with a vehicle having only the 154.49 megacycle equipment installed in it. Solid signals were received from Pendleton to the sumait of Battle Mountain, at Milepost 39.8, approximately 30 airline miles south of Pendleton. Intermittent contact was maintained between Battle Mountain and Milepost 45.6, 4 miles north of Ukiah. On the return trip from noar Ukiah to Perdleton, the vehiele turned west on Oregon 74. Tests revealed that solid eoverage obtained from the junction of Oregon 74 and US-395 to 3 miles west of the junction, with intermittent contacts being made from that point to 11 miles west of the junotion. Solid signals, with occasional moderate noise, were obtained between 11 miles west of the junction and Lexington, with saturated si gnals from all points between Lexington and Pendleton. The 33.14 megacyole equipment was not available for use in surveying this route.

The survey unit was driven east on US-30 and solid signals were received on both channels from the base station site to a point 3 miles east of Kamela, at Milepost 270.8. A rapid decrease of the signal intensity on 33.14 megacyoles was noticed between the suranit of the Blue Moutains, Milepost 266.8 , and the end of the service radius, 3 miles east of Kamela. Contact was established from an
overpass at Milepost 274.7 , 7 miles east of Kamela, on 154.49 megacyoles, although the signal strength was very Iow. Communieation was again established on both chamels from a Highway Department rook stockpile site at Milepost $276.2,8.4$ miles east of Kamela. MEACHAM ARRA SURVEY. A Highway Dopartment maintenance seotion station, located at Mencham, was selected as the roxt base station site from which to corduct a survey. The mobile antemnas were used on both chamels at the base station, which was established on January 10, 1948. The coverage east from Meacham was found to be extremely limm ited, with signals on 35.14 megacyoles being solid only to the sumit and those on 154. 49 megacycles becoming intermittent at Kamela. Further tests from Meacham were abandoned thereafter, since a greater range was secured from the Pendleton remote site on Emigrant Hill.

RBPFATKR SITE SELECTION. It beoame apparent that a second autamatic radio repeater installation would be required to provide come munication with the Bmigrant Hill site, La Grande station, and mobile units operating in the area between them. The stookpile site at Milepost 276.2 , from which point commuioation with the Rmigrant Hill base station had been established on both channels, was a logical first ohoiee for a ropeater Location. The base station was established at that point, using mobile anternas on both frequencies, and it was found that solid commanication was secured between Meacham and La Grande on 33.14 megacyeles and betwoen the Blue Mountain sumit and La Grande on 154. 49 megacyeles.

IA GRAIIDE ARIEA SURVEX. The base station was transferred to
I_{a} Grande and set up in the yard of the Hifghray Department equipment shops, since a heavy snowiall made access to elevated points near the oity very difficult. The mobile unit was in commmication with the base station on 33.14 megaoyeles throughout the test run from La Grande to the proposed repeater si to at Milepost 276.2 on US-30, although moderate to severe background noise prevalled between Mlepost 280, 6 miles west of La Grande, and the repeater site, fran which strong signals were received. The 154.49 megacyole si gnals beceme very weak, with severe baokground noise in the region between 3 and 6 miles west of La Grande, between 䛧leposts 284 and 281, respectively. Contact was not established west of Milepost 281 until the proposed repeater site was reached, where signals with a moderate amount of baokground noise were received.

Inspection of the rim of mountains surrounding La Grande led to the detemination to continue the survey from the Dighway Department shop yard, where a 120 foot steel antenna tower, used as a radiating element for the existing medium frequenoy transmitter, was available for use as a permanent anterna support. Since it was felt to be undesirable to put the station out of service during the survey by using the tower as a temporary antenna support, the base station was estab1ished on a small hill located immediately west of the hospital and having an elevation of 2,750 feet, which is the approximate elevation of the top of the steel tower. The coaxial 154.49 megacyele antenna was erected on a wooden pole about 20 feet above the ground level, while the mobile anterna was used wi th the 35.14 megacyele equipment.

The tests were made January 11, 1948, using two separate mobile units, one of which was equipped for operation on only the higher frequancy. This vehicle travelled along Oregon 82, northeast from La Grande toward Minam. Solid signals, with very little noise were evident between La Grande and the summit of Minein Hini, beyond which contact was impossible. Upon returning to La Grande, the high frequency unit followed US-50 south from La Grande to Union, turming on Oregon 203 between Union and Baker. Signals were received between La Grande and the Bakor-Union County 1ine, beyond which point the tests were discontinued because of lack of time.

The mobile umit equipped for operation on both chamels folIowed US-30 between La Grande and Baker Froellent signal strength was observed on 154.49 megacyeles throughout the route with the exception of the aaryon section between Union and 4 miles south of Union. Contact was impossible in this canyong however, it was later discovered that the transmittor was improperiy adjusted, resulting in somewhat subnormal performance. The 33.14 megacyole signels were fully quieted between La Grande snd Mílepost 310,8 miles south of Union, but beceme intermittent and noisy betweon Milepost $\$ 10$ and Baker. Communioation was established from the business district of Baker, although severe background noise was present.

The results of the survey in the La Granie area indioated that satisfactory coverage could be obtained with either channel if the antemna wore to be mounted on the 120 foot steel antemna tower at the Highway Department shops, although the performance of the lower
frequency was definitely superior along US-30 north of the eity. As was shown proviously, an automatic radio repeater station would be required to provide complate coverage of the latter section. Since canmuni cation was established on both channols between the repeater site and the Inisgrant Hill and La Grande base stations, a repeater station would permit commaication to be maintained botwoen a mobile unit in the KamelamLa Grande section and efther the Pendleton or the La Grande base station. Because of the fact that this section is a partioularly important and dargerous part of the highway systom during the stormy winter months, it is probable that the expenditure of a sum sufficient to install a repeater station would be justified.

BAKRIR ARTEA SURVEY. The mobile unit arrived in the Baker area during a severe snowstorm January 11, 1948, making it neoessary to choose a site for the base station that was not optimum for a permanent station. It was found that the "Hillerest" residential distriot was the only reasonably elevated point accessible. The elevation of the base station, which utilized the mobile anternas on both frequencies, was 3,550 feet.

The mobile unit which was travelling along Oregon 203 between Uni on and Beker and which was oporating on 154.49 megacyeles only wes first heard at Pondosa, on the Union-Baker County line. Signals were very strong from that point to Bakor, with the exception of along a short section in the vioinity of Salt Creek, where the sigral becane very weak and noisy.

After the base station was established, the mobile unit which
had remained in La Grande and served as the La Grande base station started south along US-30. Solid communication was maintainod on 33.14 megacyeles between La Grande and $\mathrm{Ba}_{\text {a }}$ 正, although rapid variation of the signal intensity was observed. The 154.49 megacycle signals wore heard for the first time when the vehicle reached 118 lopost 295,5 miles south of La Grande, after which moderate to severe noise was oncountered until Union was reached. No comnuifation was possible betweon Unian end North Powder. Signals were again heard, with slight to moderate and occasionally severe background noise between the railroad overpass at Milepost 310.5 and North Powder, south of which the signal streangth increased and the noise disappeared.

Because of the severe weather, the tests wore discontinuod for the balance of the day. The following day, Jamuary 12th, an attempt was made to locate the base station near the Balcor reservoir, situated at an elevation of 3,800 foot on a hill immediately northeast of the Highway Dopartment office, where the modiun frequency trennmitter was located. After some difficulty had been experienced, the base station was established and US-30 south of Baker was surveyed. Mobile antemnas were used again on both chamels. It was found that solid si gnals were provided on both 154. 49 and 38.14 megaoyoles betwoen $\mathrm{B}_{\mathrm{a}} k e r$ and Pleasant V_{a} lley, which is 11 miles south of Baker, but that contact was impossible on either frequency beyond Pleasant Valley. The reason for obtaining such an extremely short range was difficult to understand until a topographical map was secured and studied, since the hill appeared to have visual coverage of the highway
for mary miles south of Baker. A rough plot of the profile of the ter rain between the base station si te and Pleasant Valley showed that very high intervening mountains proved to be a definite limitation to coverage south of Baker.

The base station was again established on "Hillerest" the following day, January $13 t h$, to determine the communioation range from Baker east on Oregon 86, toward Richland. It was found that the 154.49 megacycle signals extended from Baker to 17 miles east of the junction with Oregon 203, while the 33.14 megaoyole frequency provided communication from Baker to a point 19 miles east of the junotion, with intermittent contacts established for 3 miles thereafter.

The results of the $B_{a} k e r$ area survey revealed that further investigation of the site location problem is necessary. It is likely that the results secured by the use of medium frequency mobile equipment will be superior to those provided by that operating on a veryhigh frequency.

OMPARIO AREA SURVEY. The topography of the area in the Vioinity of Ontario is such that there are no natural sites suitable for the loeation of a very-high frequenoy antema. It was decided that a permanent installation would involve a high supporting mast located at the Highway Department maintenance seotion headquarters. The base station was set up in the headquarters yard, using mobile antennas on both frequencies.

Alorg USm30, from Ontario north toward Huntington, the 154.49 megacyele signals were solid from Ontario to a point 15 miles north of

Ontaxio, while the 33.14 megacyele signals extended to a point 20 miles north.

West of Ontario, the 33.14 megacyole signal intensity was sufficiently great to provide fully quieted reception between Ontario and $V_{a} l e$, with consi stent contacts being made botween $V_{a} l e$ and a point 14 miles west of V ale on US-20. The 254.49 megacycle signals were quiet from Ontario to 1 mile west of Vale, becoming intermittent and noisy thereafter and disappearing entirely 3 miles west of Vale. Contact was effected from the sumit of a hill 12 miles west of V_{a} le.

The signal intensity of both systems was very low along US-28 from Vale northwest toward John Day. Contact was lost on 154.49 megacycles only 2 miles northwest of Vale , while the 35.14 megaoyole signals were copied to a point 5 miles northwest, becoming intermi ttent and noisy thereafter.

Although somewhat groater ranges of communi cation would be expected if the antemna height were to be increased, it is doubtful that an extension would be appreeiable for any reasonable inorease in antenna height because of the 1 imiting terrain in the area surrounding Ontario. The use of the lower frequency definitely is indicated in this region by the superior results produced.

The Ontario area was the final section of highway US-30 to be surveyed. Following the completion of the tests in that area, further ooverage surveys were deferred for a few days because of previous committments on the part of the manufacturers for the use of their mobile equipment.

MEDFORD ARRA SURVEY. The tests were resuned January 21, 1948, with the objective being the survey of highway US-99 throughout its length.

The base station was established noar Medford, on a very prominent peak known as Roxy Ann. The city of ledford, which held the title to the property, had previously indicated that permission to install equipment permanently would undoubtedly be granted if the si to proved to be advantageous. The base station vehiole was driven almost to the top of the mountain and the 154.49 megacycle coaxial anterma was fastened in a tree top at a height of approximately 35 feet above the vehi.cle. The mobile antema was used with the 33.14 megacyele equipment.

The coverage along US-99 south of Nodford was excellent on both channels, with fully quieted reception being the usual case until the sumnit of the Siskiyou Mountains was reaohed. The 154.49 megacyole signals became intermittent south of the sumint, while the 33.14 megam eyele signal strength remained suffietently high to pemit excellent commanioation to be maintained as far south as the Califormia state ahecking station near Hilts. No attempt was made to continue farther south into the state of California, since there was neither any desire nor any reed to provide service into that area.

Along US-99 west of Medford and north of Grants Pass, solid contacts were made on both chamels as far north as the summit of Sexton Mountain, with the 33.14 megacyele si gnals being somewhat more consistent.

The resulis of the tests indicated that a permanent installation on Roxy Ann would be highly satisfactory, providing service not only to the Modford area, but also to the Grants Pass region. ROSEBURG AREA SURVEY. A hill situatod immediately east of the State 패ghway Dopartment's Roseburg office and having an elevation of approsdinatoly 800 feet above the highway was ohosen as the most logical location for a very-high frequency installation, since it would require only very short lines for power and audio frequency connections with the headquarters office. A road extending part of the way to the top of the hill was negotiated with diffiaulty, and It was found to be impossible to drive more than one-half of the way to the top. A secondary hill, jutting out from the selected point and roughly 400 foet above the highway became, of necessity, the base station site for survoying purposes. Mobile antennas were again used. on both frequencies.

Along US-99 south of Roseburg, the 33.14 megacyale signals were solid, with very slight noise, to a point noar liyrtle Creek, where severe baokground noise was encountered. The si gnal intensity Increased south of lyztle Creek for a distance of 4 miles, after which the sigral beoame noisy but understandable as far south as Caryonville. The range of the 154.49 megacyole equipment was limited approximately to 4 miles north of Myrtle Creek, with severe elipping and noise occurring beyond that point.

North of Roseburg, excelleat signals were received on both channels as far north as Sutherlin, beyond which moderate to severe
noise was evident. The range of the 154.49 megaoyole equipment was restrioted to Yoncalla, while communication was maintained on 33.14 megacyoles as far north as Drain.

Oregon 42 was travelled by one mobile unit which had 154.49 megacyole equipment only installed in tit. Completely quieted signals were received between Roseburg and near the sumnit of Camas Mountain. Communication was maintained to a point several miles west of Camas Valley, although the background noise beeane very severe noar the end of the sun.

It was felt that a permenont installation on the top of the 800 foot hill originally selected would provide adequate service for the Roseburg area, although some doubt remains about extension of the range south of Canyonville because of the deep oanyon in that area. The lower frequenoy provided decidedly superior communioation in the Roseburg area along those routes where comparative tests were conducted.

EUGGBIE ARRA SURVEY. The base station was installed January 23. 1948, on Judkins Point, immediately south of US-99 and approximately one-quarter mile southeast of the Highway Department Distriet Maintenance Office, where the medium frequency station equipment is 1ocated. The elevation of the vehicle, which used the mobile antennas on both frequencies for the test, was approximately 700 feet above mean sea level and 250 feet above average terrain.

Consistent commaication was maintained on 38.14 megacyoles along US-99 from Bugene to 3 miles south of Cottage Grove, while
contact with the mobile unit on 154.49 megacyolos was lost a short distance south of Cottage Grove.

It was desired to provide commaication along Oregon 58 in the direction of Oakridge. It was found that excellent si gnals were maintained on 33.14 megacyoles from all points between Bugene and near the steel bridge at West Fir junction, west of Oakridge. The 254.49 megacyele signal commenced to olip 5 miles east of Dester and became impossible to understand 9 miles east of that town.

Because of a limited amount of time, it was necessary to forego the survey north of Eugene on US-99; however, it was felt that the coverage would be adequate in that direction. Subsequent oxperience has confirmed that prediction. The lower frequency channel provided definitely superior results in the seotion east of Bugene and samewhat better results along US-99 south of Eugene.

SATEM AREA SURVEY. Because of the fact that the headquarters of the state departments involved is in the Salem area, the maximum amount of coverage that could be secured was desired. An inspection of topographical maps disclosed that the most elevated point near Salem was Prospeot Hill, looated approximately 8 miles southwest of the oity at an elevation of 1,250 feet above mean sea level. The exest of the hill was not accessible by automobiles however, construction of a veryhigh frequency station on a nearby hill by the American Telephone and Telegraph Campary was underway and the site was accessible. Permission was obtained to make use of one of the wrooden poles which had been erected, for the purpose of supporting the 154.49 megacyole ooaxial
antenna. The 35.14 megacycle mobile antema was used on the lower free quency. The elevation of the latter radiating alement was approximately 1,000 feet, while the 154.49 megacyole antema was mounted 60 feet higher.

The mobile unit was driven south along US-99E December 16, 1947, and test calls were made on both frequencies at intervals of one mile. The 154.49 megacycle signals were excellent, with fully quieted reception the usual case and with occassional slight noise, from S_{a} lem to Eugene. The 35.14 megacyele signals were quiet between Salem and Albary, beyond which the baokground noise became moderate to severe in intensity. Between Junction City and Bugene a considerable degree of clipping was experienced.

The vehicle returned to Salem via US-99W. Along that route, the 154.49 megacyele signals were consistently strong between Monroe and Junotion City, while sane noise was evideat on 33.14 megacyoles in the vieinity of Benton-Lane Park. North of Monroe, the conditions became reversed and the background noise on 154.49 megacyeles beame severe, while the 33.14 megacyele communieation was excellent. The higher frequenoy propogation inproved near the Naval Air Station south of Corvallis and the background noise disappeared.

December 17, 1947, the mobile unit began tests on 33.14 megacyoles at Milwaukie while driving toward Sslem on US-99E. Consistent contacts were effected along all parts of the route with the exception of a short section botween Fallview, near Oregon City, and Coalca railroad siding, where severe noise was introduced.

Upon arrival at Salem, the vehiele travelled west on Oregon Route 22, north at Ricreall on US-99W 3 miles north of MeMinnville, and north on Oregon 47 to Gaston. Signals on both frequencies were solid, with occasional slight noise, between Salem and MoMinnville. Severe noise was noticed when the nobile unit was driving through the business district of Molfinnville. Moderate to occasionally severe noise was present throughout the route from MoMinnville to Gaston; however, contacts were made each time the base station was called.

The roturn trip was made via Oregon 18 to Valley Junction and Oregon 22 to Salem. The signal intensity on both frequencies was high throughout the section.

The ohoice of frequencies to be used in the Salen area was definitely in favor of the 154.49 megacyole ohamel, since the coverage of the latter south of Salem was deoidedly superior. It is probable that a permanont installation on Prospeot Hill would require an automatic repeater station because of the long distance between the control point and the very-high frequenoy site.

FINAL SBLEGTION OF OPRRATING FREQUEANCY. A review of the results seoured by the use of 35.14 and 154.49 megacyele equipment in representative sections of the state of Oregon showed that the lower frequenoy provided generally superior coverage, wi th the higher frequency performing more satisfactorily in the Willamette valley south of Salem. The selection of a channel in the 30 to 44 megaoyole bend was definitely indicated to provide the degree of statemwide service required by the Oregon State Highway and Police Deparments.

It is a generally accopted fact that the amount of interferenoe due to anomelous propagation deoreases rapidly as the operating frequency is increased above 40 megacycles per second. An inspection of the Maximum Usable Frequency charts released by the National Bureau of Standards revealed that such interferonce is present very seldom, and then for anly short periods of tirne.

The Frequency Allocation Committee of the Associated Police Commanieation Officers, Ine., was contacted to determine their recom mendation. It was found that the 42.94 megacycle ohamel had beon tentatively reserved for use by the Oregon State Police under the national allosation plan formulated by that committoe. Accordingly, formal appliaation was submitted to the Federal Communications Camnission, which authorized the installation of mobile transmitters operating on that frequency.

Temporary receiver installations have been completed at Astori a (near the Astor Column), Portland (Ift. Scott), Salem (antemna mounted on top of the steel antemna tower at the medium frequenoy station), Fhagene (Skinner's Butte), Roseburg (steel antenna tower), and at the Marine Barracks near Glamath Falls. The operation of 75 mobile transmitters since Januery 1,1949 , has shown that the choice of operating frequency was proper. The ocmmonication range obtainod at each location has equalled or surpassed that indicated by the initial surveys.

It is expected that permenent installation of equipnent on a state-wide basis will be commenced at an early date.

61

BIBLIOGRAPFIX

1. Hilgedick, W. C. A Report on Mobile Antennas for the Intermediate Frequencies. San Franoisco. United States National Park Service, 1939. 38p.
2. Stanley, C. B. Tuning Short Radiators on Low Frequencies. RADIO, Number 263, November, 2941. 98p.
