### AN ABSTRACT OF THE THESIS OF

| James  | Richard Jewett for the degree of <u>DOCTOR OF PHILOSOPHY</u> |
|--------|--------------------------------------------------------------|
| in     | CHEMISTRY presented on August 12, 1976                       |
| Title: | A QUANTITATIVE DESCRIPTION OF THE SILVER/AQUEOUS             |
| TICIC. | CYANIDE ELECTROLYTE INTERFACE AND THE EFFECT                 |
|        | <del></del>                                                  |
|        | OF THE INTERFACE ON THE RATE OF ELECTRODEPOSI-               |
|        | Redacted for Privacy                                         |
| Abstra | ct approved:                                                 |

A computer-interfaced potentiostat was constructed to obtain measurements of double layer capacitance with a relative precision of 1% by means of a potential step technique. Minima in double layer capacitance vs. potential curves were observed with this instrument for a polycrystalline silver surface in dilute solutions of sodium fluoride. These measurements indicate that the potential of zero charge for silver in the absence of specific adsorption is about -0.94 V vs. SCE.

The amounts of specific adsorption at the silver surface were calculated over a range of potentials for the double layer capacitance curves for several solutions containing fluoride and cyanide. Cyanide is strongly adsorbed at attainable electrode potentials, but fluoride is adsorbed only weakly. The potentials of the inner and outer Helmholtz

planes were also calculated as functions of potential for these systems.

An equation based on absolute rate theory was developed to express the rate of metal deposition as a function of electrode potential and double layer parameters. This equation, which assumes that the reaction rate is limited only in the charge-transfer step, predicts a linear relation between  $\ln(i_F/a_{Ms})$  (where  $i_F$  is the partial faradaic current in the cathodic direction and  $a_{Ms}$  is the activity of the electroactive metal complex in the solution), the cell potential, the amount of specific adsorption, and the potential of the inner Helmholtz layer.

This prediction was confirmed by comparing the measured double layer quantities to exchange currents for the deposition of silver from cyanide solutions. These data provided a means for calculating a value of  $-350 \text{ Å}^2/\text{ion}$  for the coefficient of interaction  $B_{\ddagger}CN$  between the activated complex of the charge-transfer step and specifically adsorbed cyanide, and a value of 0.26 for the transfer coefficient  $\alpha$ . Ag(CN) $_4^{3-}$  was identified as the electroactive species.

The deposition rate of silver from cyanide solutions was measured at large overpotentials from cell current transients produced by potentiostatic steps. Comparison of these measurements to the double layer quantities was not as clear-cut as for the exchange current measurements because the deposition reaction becomes limited by mass transfer before the double layer attains a stable composition.

# A Quantitative Description of the Silver/Aqueous Cyanide Electrolyte Interface and the Effect of the Interface on the Rate of Electrodeposition of Silver

by

James Richard Jewett

### A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

June 1977

#### APPROVED:

# Redacted for Privacy

in charge of major

Redacted for Privacy

Chairman of Department of Chemistry

Redacted for Privacy

Dean of Graduate School

#### ACKNOWLEDGMENT

This work would not have been completed without the unfailing support of my wife Pat and my son Tim. I am extremely grateful to them for graciously enduring a period of personal hardship in which they often placed my ambitions ahead of their own needs. Many thanks are due to Pat's and my parents, who have given us encouragement during some very discouraging times.

I am very appreciative to Dr. Freund for his advice and constructive criticism. I also wish to thank other professors in the chemistry department, including Drs. Decius, Fredericks, Hawkes, Ingle, Piepmeier, and Scott, for their helpful discussions. The technical assistance provided by Gerald Allison and John Archibald through the chemistry department shops is gratefully acknowledged.

J. R. J.

# TABLE OF CONTENTS

| <u>Chapter</u> |              | Page                                              |     |
|----------------|--------------|---------------------------------------------------|-----|
| I.             | INTRODUCT    | TION                                              | 1   |
| II.            | THEORY       |                                                   | 3   |
|                |              | ture of the Metal/Electrolyte Interface           | 3   |
|                | 2.2. The Ra  | te Equation for a Metal Deposition Reaction       | 6   |
|                | 2.3. Determ  | nination of double layer quantities               | 21  |
|                | 2.4. Double  | layer capacitance measurements                    | 29  |
|                | 2.5. Silver  | deposition rate measurements                      | 50  |
| III.           | EXPERIME     | NTAL                                              | 60  |
|                | 3. l. Double | Layer Capacitance Measurements                    | 60  |
|                | 3.2. Deposi  | tion Rate Measurements                            | 99  |
| IV.            | RESULTS      |                                                   | 108 |
|                | 4. l. Estima | tion of the Potential of Zero Charge              | 108 |
|                | 4.2. Determ  | nination of Double Layer Quantities               | 115 |
|                | 4.3. Rate of | Silver Deposition                                 | 132 |
| v.             | DISCUSSION   |                                                   | 138 |
|                | 5. l. Compo  | sition of Silver-Containing Solutions             | 138 |
|                |              | of the Double Layer on Exchange Currents          | 151 |
|                | Polariz      | of the Double Layer on Currents at High<br>zation | 169 |
| VI.            | SUMMARY      |                                                   | 175 |
|                | BIBLIOGRA    | РНҮ                                               | 176 |
|                | APPENDICE    | ES                                                | 180 |
|                | Appendix 1.  | Definitions of Symbols                            | 180 |
|                | Appendix 2.  | Derivation of Equations for Potentiostat          | 188 |
|                | Appendix 3.  | Programs for Control and Interpretation           |     |
|                |              | of the Capacitance Measurements                   | 197 |
|                | Part 1.      | Program CAP                                       | 197 |
|                | Part 2.      | Program PLT                                       | 205 |
|                | Part 3.      | Program CCPVE                                     | 211 |
|                | Part 4.      | Subroutine Package for CAP                        | 218 |
|                | Part 5.      | Subroutine Package for PLT and CCPVE              | 235 |
|                | Appendix 4.  | Program CHARGE                                    | 255 |
|                | Appendix 5.  | Program Z2                                        | 259 |
|                | Appendix 6.  | Program COMPN                                     | 266 |

# LIST OF TABLES

| <u>Table</u> |                                                                                           | Page |
|--------------|-------------------------------------------------------------------------------------------|------|
| 3.1.1.       | Functions performed by the program modules.                                               | 8 l  |
| 4.1.1.       | Measurement parameters used for dilute sodium fluoride solutions.                         | 109  |
| 4.2.1.       | Crystallographic radii and inner layer capacities for some ions.                          | 124  |
| 5.1.1.       | Solution compositions calculated from different estimates of ${\rm K}_3$ and ${\rm K}_4.$ | 140  |
| 5. 1. 2.     | Equilibrium constant values determined by various authors.                                | 151  |
| 5.2.1.       | Composition of solutions in reference (48) calculated by program COMPN.                   | 156  |
| 5. 2. 2.     | Values of a and $B_{\ddagger CN}$ for various choices of z.                               | 167  |
| 5.3.1.       | Data summary for high polarization measurements.                                          | 170  |

# LIST OF FIGURES

|   | Figure   |                                                                                                             | Page       |
|---|----------|-------------------------------------------------------------------------------------------------------------|------------|
|   | 2.1.1.   | Diagram of the double layer.                                                                                | 4          |
|   | 2.2.1.   | A stylized plot of standard electrochemical free energy vs. reaction coordinate for a charge-transfer step. | 14         |
|   | 2. 2. 2. | The potentials of the phases in a typical measurement cell.                                                 | 18         |
|   | 2.4.1.   | Electrical analogs for a three-electrode cell.                                                              | 30         |
|   | 2.4.2.   | Scheme of the dependence of calculated quantities on the independently measured ones.                       | 41         |
|   | 2. 5. 1. | Model for the frequency-dependent behavior of the current-to-voltage converter.                             | 5 <b>6</b> |
|   | 3. 1. 1. | Block diagram of the double layer capacitance measurement system, detailing the grounding and shielding.    | 61         |
|   | 3.1.2.   | Cell potential vs. time and current vs. time plots for one capacitance measurement cycle.                   | 62         |
|   | 3.1.3.   | Potentiostat portion of the interface circuit.                                                              | 64         |
|   | 3.1.4.   | Current-to-voltage converter portion of the interface circuit.                                              | <b>6</b> 5 |
|   | 3.1.5.   | Transient buffer portion of the interface circuit.                                                          | 66         |
|   | 3. 1. 6. | Transient amplifier portion of the interface circuit.                                                       | 67         |
|   | 3. 1. 7. | DC amplifier portion of the interface circuit.                                                              | 68         |
|   | 3.1.8.   | Pictorial diagram of the electrode dropper.                                                                 | 77         |
|   | 3.1.9.   | Schematic diagram of the electrode dropper interface circuit.                                               | 78         |
| , | 3.1.10.  | A conversation with CAP.                                                                                    | 83         |
|   |          |                                                                                                             |            |

| Figure    |                                                                                                                                                            | <u>Page</u> |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3. 1. 11. | A typical plot of cell current vs. time produced by CCPVE.                                                                                                 | 91          |
| 3. 1. 12. | A typical plot of the least-squares residual vs. time produced by CCPVE.                                                                                   | 93          |
| 3. 1. 13. | A typical plot of specific double layer capacitance vs. cell potential produced by CCPVE.                                                                  | 94          |
| 3.2.1.    | Block diagram of the deposition transient measurement apparatus.                                                                                           | 100         |
| 3. 2. 2.  | Schematic diagram of the blanking circuit.                                                                                                                 | 102         |
| 3.2.3.    | Pictorial diagram of the deposition transient measurement cell.                                                                                            | 105         |
| 4.1.1.    | The potential of the capacitance minimum in 0.00500 M sodium fluoride solution vs. the time waited at -0.6 V for various times of polarization at -1.7 V.  | 110         |
| 4. 1. 2.  | The potential of the capacitance minimum in 0.0100 M sodium fluoride solution vs. the time waited at -0.48 V for various times of polarization at -1.69 V. | 111         |
| 4.1.3.    | The potential of the capacitance minimum in 0.0200 M sodium fluoride solutions vs. the time waited at -0.8 V for various times of polarization at -1.7 V.  | 112         |
| 4.2.1.    | Specific double layer capacitance vs. electrode potential for 0.942 M sodium fluoride solutions.                                                           | 117         |
| 4.2.2.    | Specific double layer capacitance vs. electrode potential for a solution containing 0.0162 M sodium cyanide and 0.926 M sodium fluoride.                   | 118         |
| 4.2.3.    | Specific double layer capacitance vs. electrode potential for a solution containing 0.1880 M sodium cyanide and 0.754 M sodium fluoride.                   | 119         |
| 4.2.4.    | Specific double layer capacitance vs. electrode potential for 0.942 M sodium cyanide solution.                                                             | 120         |

| Figure   |                                                                                                                             | Page |
|----------|-----------------------------------------------------------------------------------------------------------------------------|------|
| 4.2.5.   | Double layer charge vs. electrode potential for solutions of sodium fluoride and sodium cyanide.                            | 127  |
| 4.2.6.   | Amount of specific adsorption vs. cell potential for solutions of sodium fluoride and sodium cyanide.                       | 128  |
| 4.2.7.   | The potentials $\phi_l$ and $\phi_m$ plotted vs. electrode potential.                                                       | 13 1 |
| 4.3.1.   | Cell current vs. square root of time for silver deposition transients in solution A.                                        | 133  |
| 4.3.2.   | Cell current vs. square root of time for silver deposition transients in solutions B and C.                                 | 134  |
| 4.3.3.   | Cell current vs. square root of time for silver deposition transients in solution D.                                        | 135  |
| 4.3.4.   | Cell current vs. square root of time for silver deposition transients in solution E.                                        | 136  |
| 4.3.5.   | Real component of the frequency domain cell impedance measured during a silver deposition transient plotted vs. $1/\sigma.$ | 137  |
| 5.1.1.   | Cell potential vs. $\ln(c_{CN}^2/c_2)$ .                                                                                    | 144  |
| 5. 1. 2. | The simplex optimization of $K_3$ and $K_4$ .                                                                               | 147  |
| 5. 2. 1. | ${\rm Ln(i_{ex})}$ determined in reference (48) vs. ${\rm ln(c_{CN})}$ calculated by program COMPN.                         | 157  |
| 5. 2. 2. | Equilibrium potentials calculated for solutions in reference (48) vs. $\ln(c_{CN})$ calculated by program COMPN.            | 159  |
| 5.2.3.   | Potential of the inner Helmholtz layer vs. $\ln(c_{\mathrm{CN}})$ at constant cell potential.                               | 160  |
| 5.2.4.   | Specifically adsorbed charge vs. $ln(c_{\mbox{CN}})$ at constant cell potential.                                            | 161  |

| Figure           |                                                                                                                                | Page |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|------|
| 5 <b>. 2.</b> 5. | Variation of the potential of the inner Helmholtz layer with $\ln(c_{CN})$ holding the electrode at the equilibrium potential. | 162  |
| 5. <b>2. 6</b> . | Variation of the specifically adsorbed charge with $\ln(c_{CN})$ holding the electrode at the equilibrium potential.           | 163  |
| Append           | <u>ix</u>                                                                                                                      |      |
| A2. 1.           | Cell model to describe potentiostat operation.                                                                                 | 189  |

# A QUANTITATIVE DESCRIPTION OF THE SILVER/AQUEOUS CYANIDE ELECTROLYTE INTERFACE AND THE EFFECT OF THE INTERFACE ON THE RATE OF ELECTRODEPOSITION OF SILVER

#### I. INTRODUCTION

Although the practice of silver plating from cyanide baths dates from the mid-1800's (32, p. 7; 42, p. 180), and although silver has been used extensively as a reference electrode material in electrochemistry, surprisingly little work has been directed toward characterizing the reaction mechanism of silver deposition under conditions similar to those of commercial importance. Several papers (16, 17, 27, 33) from the 1950's discuss the mechanism of silver deposition, but those studies were carried out either in non-complexing media or at extremely low overvoltages, or both. The deposition rates at very low overvoltages were found to be largely determined by diffusion of deposited silver atoms into crystal sites on the silver surface. At reasonably high overvoltages (> 50 mV) the rate was found to be entirely controlled by the charge-transfer step.

The deposition of silver from cyanide electrolytes has been investigated by Vielstich and Gerischer (48) under conditions of moderate polarization (< 50 mV) and by Nechaev, et al. (1,2,36-39). The interpretations of Vielstich and Gerischer are questionable in the light of recently developed theory. This will be discussed later. The

studies by Nechaev, et al., were conducted in solutions and conditions similar to those used in commercial plating. These studies showed that the deposition rate varied in an unusual way which seemed to be related to the nature of the metal-solution interface. Although much information about the mechanism was obtained, their data were not sufficient to support a quantitative relationship of the rate of deposition to the composition of the interface. Through theory (44) developed since these papers, and by collection of accurate data concerning both the composition of the interface and the deposition rate of silver under the same (or similar) conditions, a quantitative relation may now be established.

#### II. THEORY

### 2. l. The Nature of the Metal/Electrolyte Interface

The first step in understanding the ways in which reaction rates can be influenced by the interface is to understand the nature of the interface itself. Therefore, a short description of the interface is included here.

The electrode/solution interface is a region of electrical and chemical discontinuity. The ions in the solution are distributed at the interface in a way that reflects the abrupt change in the electric potential and in their chemical environment. An ion near the surface may retain its sheath of hydration, maintaining an identity essentially the same as an ion in the bulk of the solution, or it may shed part of its hydration in exchange for a direct chemical bond with the electrode surface. These ions are said to be specifically adsorbed. It happens that the energies of bonding to the metal and the energy of hydration are sufficiently close, especially for anions, that there is a significant partitioning between the two states (6, pp. 742-744). The potential applied across the interface has a large effect on this partitioning.

Consideration of these electric and chemical forces has produced the generally accepted model of the interface (called a double layer because of the separation of charge across it) which is displayed in Figure 2.1.1. Points at distances less than x<sub>2</sub> from



Figure 2. 1. 1. Diagram of the double layer. Blank circles are water molecules.

the electrode are said to be in the Helmholtz, or compact, layer. Those at distances of  $x_2$  or greater are in the diffuse layer.

Giving rigorous definition to the planes at distances x<sub>1</sub> and the inner and outer Helmholtz planes, respectively, has been much discussed. The properties of the double layer can be explained via any of several definitions. The definitions proposed by Devanathan (13) are shown in Figure 2.1.1, and will be used here because they simplify the quantitative determination of the components of the double layer. In Devanathan's model,  $x_1$  is the distance at which the specifically adsorbed ions reside. The model allows only one type of ion to be specifically adsorbed under any given set of conditions, and  $x_1$  is taken to be its crystallographic radius. The distance x2 is considered to be the distance of closest approach for the ions which retain their waters of hydration. It is taken to be equal to the distance at which the second layer of water resides, assuming hexagonal close-packing of water molecules near the electrode. In other words, non-specifically adsorbed ions, positive or negative, are considered to occupy voids which would otherwise be filled with water molecules. Adoption of this view results in assigning  $x_2 = 3.72 \text{ Å}$  for all aqueous solutions.

The layering of the charge at the interface and the redistribution of the charge with changes in the interfacial potential give the double layer the characteristics of a capacitor. Unlike ordinary capacitors,

however, since the double layer charge is not fixed to just two sheets spaced at a constant distance, and since chemical as well as electrostatic forces are important, the capacitance of the double layer is strongly dependent on the applied potential. This capacitance is one of the more easily measured properties of the double layer, and studies of this property are responsible for much of the current knowledge of the structure of double layers.

## 2.2. The Rate Equation for a Metal Deposition Reaction

Application of the principles of absolute rate theory to electrochemical reaction rate studies has been practiced for many years (19) but the equations appropriate for a given circumstance are not often developed in a rigorous way. Many times the theory is developed with a simplified model reaction which is not readily adapted to more complicated reactions. Often certain potentially important aspects concerning the effects due to double layer structure have been omitted. As a result, in order to set the framework for this discussion, the rate law for deposition reactions will be developed here from the fundamental equations of absolute rate theory.

The reaction is considered to proceed according to the following steps:

$$\left(ML_{n-z}\right)_{s}^{z} \rightleftharpoons \left(ML_{n-z}\right)_{x}^{z} \tag{2.2.1}$$

$$(ML_{n-z})_x^z + ne^- \rightleftharpoons [\ddagger] \rightleftharpoons M + (n-z)(L^-)_y$$
 (2.2.2)

Step 2.2.1 represents the equilibrium adsorption of a metal complex in the solution (denoted by subscript s) onto a site at distance x from the electrode surface. The z-valent complex is composed of a metal atom in the n oxidation state and has n-z ligands, each bearing one negative charge. Step 2.2.2, the charge-transfer step, considered here to be rate-determining, shows the equilibrium of the adsorbed complex and the electrons on the metal with the activated complex, which decomposes irreversibly to the electrode metal and the ligands adsorbed at distance y from the electrode. These steps are preceded by preliminary homogeneous reactions in solution which might in some cases be rate-determining, but modification could be made for these later, if necessary. The reaction is assumed to be fast enough that the reverse rate can be ignored.

The premise of absolute rate theory that the step which forms the activated complex is in equilibrium (i.e., is microscopically reversible) permits equating the electrochemical potential of the activated complex with that of the reactants:

$$\overline{\mu}^{\dagger} = \overline{\mu}_{\mathbf{M}\mathbf{x}} + n\overline{\mu}_{\mathbf{e}} . \qquad (2.2.3)$$

In this equation the subscript Mx refers to the metal complex at distance x from the electrode. (A complete symbol table is included as Appendix 1.) Each of the electrochemical potentials may be separated into a standard electrochemical potential and a term expressing deviation from the standard chemical state:

$$\frac{\pi}{\mu}^{\dagger} = \frac{\pi}{\rho}^{0} + RT \ln a^{\dagger}, \qquad (2.2.4)$$

$$\overline{\mu}_{Mx} = \overline{\mu}_{Mx}^{O} + RT \ln a_{Mx}, \qquad (2.2.5)$$

and

$$\overline{\mu_e} = \overline{\mu_e^0} . \tag{2.2.6}$$

The two activities indicated are activities of surface species, and are defined in terms of surface concentrations (mol/cm<sup>2</sup>). The last relation indicates that the chemical state of the electrons is invariant; this is a reflection of the fact that the electrode is of a constant composition. Effects due to electric potential remain in the standard electrochemical potentials  $(\overline{\mu}^{0})$ .

Substitution of Equations 2.2.4 through 2.2.6 into 2.2.3, then solving for  $a^{\frac{1}{4}}$  gives

$$a^{\dagger} = a_{Mx} \exp[-\overline{\Delta G}_{c}^{o\dagger}/RT], \qquad (2.2.7)$$

whe re

$$\overline{\Delta G}_{C}^{O\dagger} = \overline{\mu}^{O\dagger} - \overline{\mu}_{Mx}^{O} - n\overline{\mu}_{e}^{O}$$
 (2.2.8)

is the standard electrochemical free energy of activation for the charge-transfer step.

Since, according to absolute rate theory, the reaction proceeds at a rate proportional to the concentration of the activated complex,  $c^{\dagger}$ , rather than activity, the activity coefficient is introduced (44):

$$y^{\dagger} \equiv a^{\dagger}/c^{\dagger}$$
 (2.2.9)

Just as the activity coefficient of a bulk species is affected by its chemical environment, e.g., ionic strength, so the activity coefficient of a surface species responds to the environment at the surface, e.g., the amount and types of other adsorbed species. Elimination of a between Equations 2.2.7 and 2.2.9 yields

$$c^{\dagger} = \frac{a_{Mx}}{\gamma^{\dagger}} \exp\left[\frac{-\overline{\Delta G}_{c}^{o\dagger}}{RT}\right]. \qquad (2.2.10)$$

It is convenient to express the surface activity  $a_{Mx}$  in terms of the bulk solution activity  $a_{Ms}$ . Because the adsorption step is considered to be in equilibrium,

$$\overline{\mu_{Mx}} = \overline{\mu_{Ms}} . \qquad (2.2.11)$$

Each of these quantities may be separated into a chemical and electrical contribution (24):

$$\mu_{Mx}^{O}$$
 + RT ln  $a_{Mx}$  + zF $\phi_{x}$  =  $\mu_{Ms}^{O}$  + RT ln  $a_{Ms}$ . (2.2.12)

In this equation the  $\mu^{O}$  quantities (without a bar) are standard chemical potentials. The reference for electric potential for the system is taken to be the potential of the bulk of the solution. Thus the electric contribution to the electrochemical potential of a species in the solution is zero, and  $\phi_{\mathbf{x}}$ , the potential of the layer at which the reacting species lie, is taken with respect to the solution. Defining the standard chemical free energy of adsorption for the reactant as

$$\Delta G_{Mx}^{O} \equiv \mu_{Mx}^{O} - \mu_{Ms}^{O}$$
, (2.2.13)

Equation 2.2.12 may be solved to yield

$$a_{Mx} = a_{Ms} \exp\left[\frac{-\Delta G_{Mx}^{o} - zF\phi_{x}}{RT}\right]. \qquad (2.2.14)$$

Thus, Equation 2.2.10 becomes

$$c^{\dagger} = \frac{a_{Ms}}{\sqrt{\dagger}} \exp\left[\frac{-\Delta G_c^{o\dagger} - \Delta G_{Mx}^{o}}{RT}\right] \exp\left[-zf\phi_x\right], \qquad (2.2.15)$$

where

$$f = F/RT$$
 . (2.2.16)

There are two steps in converting the terms in Equation 2.2.15 to experimentally measurable quantities. First, the concentration of activated complex  $c^{\dagger}$  (upon which the reaction rate depends) must be related to a faradaic current density; secondly,  $\overline{\Delta G}_{c}^{o\dagger}$  must be related to the cell potential and measurable properties of the double layer.

Absolute rate theory (19, pp. 187-190) asserts that the velocity of the chemical reaction

$$A + B + \dots \rightleftharpoons [\ddagger] \rightarrow products$$
 (2.2.17)

is

$$\mathbf{v} = \mathbf{k}_{\mathbf{r}} \mathbf{c}_{\mathbf{A}} \mathbf{c}_{\mathbf{B}} \dots , \qquad (2.2.18)$$

where

$$k_r = \tau \frac{kT}{h} K^{\dagger}$$
 (2. 2. 19)

and

$$K^{\dagger} = \frac{c^{\dagger}}{^{c}A^{c}B^{\cdots}}$$
 (2.2.20)

The transmission coefficient  $\tau$  is the probability that the activated complex decomposes into the products of interest rather than into other species;  $\tau$  is usually equal to unity. Combination of these equation leads to

$$v = \tau \frac{kT}{h} c^{\frac{1}{2}}$$
 (2.2.21)

Considering the units in this equation in the case that the activated complex is a surface species,  $c^{\frac{1}{2}}$  must be in mol cm<sup>-2</sup>. The units for v then work out to be mol cm<sup>-2</sup> sec<sup>-1</sup>, which are units of a material flux. Since each mole of reaction proceeds via nF coulombs of electricity, this material flux can be expressed in terms of an electric current density:

$$i_{F} = nFv$$
 (amp cm<sup>-2</sup>). (2.2.22)

Combining this with Equation 2.2.21 gives the desired relation of faradaic current density to  $c^{\ddagger}$ ,

$$i_{F} = nF\tau \frac{kT}{h} c^{\dagger}$$
, (2.2.23)

which may be substituted into 2.2.15 to give

$$i_{F} = nF\tau \frac{kT}{h} \frac{a_{Ms}}{\sqrt{\frac{1}{2}}} \exp\left[\frac{-\overline{\Delta G}_{c}^{o^{\frac{1}{2}}} - \Delta G_{Mx}^{o}}{RT}\right] \exp\left[-zf\phi_{x}\right]. \quad (2.2.24)$$

Thus, the current due to metal deposition is related to the activity of the electroactive species in solution, which may be experimentally determined. The other variables in the equation,  $\gamma^{\ddagger}$  and  $\overline{\Delta G}^{o\ddagger}_c$ , must now be related to measurable quantities.

The "electrical part" of  $\overline{\Delta G}_c^{o^{\frac{1}{2}}}$  may be isolated. A common method for doing this employs a stylized plot of standard

electrochemical free energy vs. reaction coordinate for the chargetransfer step 2.2.2 as is shown in Figure 2.2.1. In this figure, the lumped standard electrochemical free energy of the reactants, i.e.,

$$\bar{\mu}_{Mx}^{O} + n\bar{\mu}_{e}^{O}$$
, (2. 2. 25)

is represented by the level at the minimum of curve R. Curve R'
represents the energy of the reactants under a different set of electrical conditions (which would result from a change in potential across
the interface). Curve P represents a similar quantity for the
products of the reaction,

$$\overline{\mu}_{\rm m}^{\rm o} + ({\rm n-z})\overline{\mu}_{\rm Ly}^{\rm o}$$
 (2.2.26)

The standard electrochemical free energy of reaction is the difference between the energies of the products and reactants, which is

$$\overline{\Delta G}_{c}^{O} = \overline{\mu}_{m}^{O} + (n-z)\overline{\mu}_{Lv}^{O} - \overline{\mu}_{Mx}^{O} - n\overline{\mu}_{e}^{O} \qquad (2.2.27)$$

for curves P and R, or  $(\overline{\Delta G}_{c}^{O})'$  for curves P and R'. Thus a simple change in the free energy of the rate-determining step from  $\overline{\Delta G}_{c}^{O}$  to  $(\overline{\Delta G}_{c}^{O})'$  without a change in the essential nature of reactant or products is represented on the reaction plot by a relative shift in the energy levels of products and reactants without a change in



Figure 2.2.1. A stylized plot of standard electrochemical free energy vs. reaction coordinate for a charge-transfer step. Curve P is for the products; curves R and R' are for the reactants under two different electric conditions.

the shape of the curve. (This is shown in the figure by a change in levels for the reactants, but the change could be in either the reactants or products, or both.) Geometrical considerations (6, pp. 917-926; 9, pp. 98-99; 43, p. 30) show that only a fraction of this free energy change appears in the change in activation energy. Thus

$$(\overline{\Delta G_c^o}^{\dagger})' - \overline{\Delta G_c^o}^{\dagger} = \alpha [(\overline{\Delta G_c^o})' - \overline{\Delta G_c^o}], \qquad (2.2.28)$$

where

$$0 < \alpha < 1.$$
 (2. 2. 29)

The fraction a is called the transfer coefficient.

If the primed quantities are assumed to apply at some standard state of polarization, then a constant may be defined,

$$\Delta G_{c}^{o\dagger} \equiv (\overline{\Delta G}_{c}^{o\dagger})' - \alpha (\overline{\Delta G}_{c}^{o})', \qquad (2.2.30)$$

which permits the rewriting of Equation 2.2.28 as

$$\overline{\Delta G}_{c}^{o \dagger} = \Delta G_{c}^{o \dagger} + \alpha \overline{\Delta G}_{c}^{o} . \qquad (2.2.31)$$

The symbol for the constant is written without a bar because it is not variable with electrical conditions. For this reason it may be called the standard chemical free energy of activation, although the idea that it represents the standard free energy of activation in the absence of

electrical effects is fallacious, since the standard state of polarization may be chosen at will for its definition.

To separate the chemical and electric effects in  $\overline{\Delta G}_{c}^{o}$ , again taking the bulk of the solution as the reference point for electric potentials, the pertinent electrochemical potentials are given as

$$\overline{\mu}_{m}^{o} = \mu_{m}^{o}$$
, (2.2.32)

$$\overline{\mu}_{Ly}^{O} = \mu_{Ly}^{O} - F\phi_{y},$$
 (2.2.33)

$$\overline{\mu}_{Mx}^{O} = \mu_{Mx}^{O} + zF\phi_{x}$$
, (2.2.34)

and

$$\overline{\mu}_{e}^{O} = \mu_{e}^{O} - F\phi_{m}$$
 (2.2.35)

(Note that 2.2.34 is consistent with 2.2.12.) Then

$$\overline{\Delta G}_{c}^{O} = \Delta G_{c}^{O} - (n-z)F\phi_{v} - zF\phi_{x} + nF\phi_{m}, \qquad (2.2.36)$$

where

$$\Delta G_{c}^{o} = \mu_{m}^{o} + (n-z)\mu_{Ly}^{o} - \mu_{Mx}^{o} - n\mu_{e}^{o}. \qquad (2.2.37)$$

Equation 2.2.36 may be substituted into 2.2.31 and 2.2.31 into 2.2.24 to yield

$$i_{F} = nF\tau \frac{kT}{h} \frac{a_{Ms}}{\gamma^{\ddagger}} \exp\left[\frac{-\Delta G_{c}^{o^{\ddagger}} - \Delta G_{Mx}^{o} - \alpha \Delta G_{c}^{o}}{RT}\right]$$

$$\times \exp\left[-\alpha nf\phi_{m}\right] \exp\left[\alpha (n-z)f\phi_{v} - (1-\alpha)z f\phi_{x}\right], \qquad (2.2.38)$$

thus replacing  $\overline{\Delta G}_{c}^{o^{\dagger}}$  with constants and potentials at particular sites in the double layer.

In order to relate these potential differences to measurable potentials, the potentials of the various phases in a typical measurement cell should be considered. These are shown in Figure 2.2.2. The sum of the interfacial potentials in the figure is the externally measurable cell potential:

$$E_{cell} = \phi_{lead 1} - \phi_{lead 2}$$

$$= (\phi_{lead 1} - \phi_{m}) + \phi_{m} + I_{cell}^{R} u + (\phi_{s} - \phi_{KCl})$$

$$+ (\phi_{KCl} - \phi_{Hg}) + (\phi_{Hg} - \phi_{lead 2})$$
(2. 2. 39)

In this equation,  $\phi_m$  is referenced to the potential of the solution just outside the double layer. The term  $I_{cell}^R R_u$  is the ohmic potential drop through the solution resistance  $R_u$ .  $I_{cell}$  is taken to be positive for anodic current.

The metal/metal junctions are in pseudoequilibrium because of the high reversibility of the exchange of electrons between them. Thus  $\phi_{lead} = \phi_{lead} = \phi_{lead}$ 



Figure 2. 2. 2. The potentials of the phases in a typical measurement cell (using an SCE). The phases shown are, from left to right, the test electrode lead, the test electrode metal, the interface being studied, the test electrolyte, the reference electrode electrolyte, the reference electrode metal, and the reference electrode lead. The potential of the solution immediately next to the studied interface is taken as the zero reference potential. Note the ohmic drop through the solution resistance. (The directions and magnitudes of the interfacial potential differences shown in the figure are arbitrary; they are not meant to approximate the actual potentials which exist.)

nature of the reference electrode reaction and the fact that the measurement system allows virtually no current to pass at this interface. We therefore define a constant

$$\phi_{\text{ref}} = (\phi_{\text{lead }1} - \phi_{\text{m}}) + (\phi_{\text{s}} - \phi_{\text{KCl}}) + (\phi_{\text{KCl}} - \phi_{\text{Hg}}) + (\phi_{\text{Hg}} - \phi_{\text{lead }2}),$$
(2.2.40)

and rewrite 2.2.39 as

$$E_{\text{cell}} = \phi_{\text{m}} + I_{\text{cell}} + \phi_{\text{ref}}. \qquad (2.2.41)$$

It is convenient to define a symbol for the cell potential corrected for ohmic drop:

$$E = E_{cell} - I_{cell}R_u = \phi_m + \phi_{ref}. \qquad (2.2.42)$$

The quantity E will be referred to as the "electrode potential." Substitution of  $\phi_m$  from 2.2.42 into 2.2.38 gives

$$i_{F} = nF\tau \frac{kT}{h} \frac{a_{Ms}}{\gamma^{\ddagger}} \exp\left[\frac{-\Delta G_{c}^{o \ddagger} - \Delta G_{c}^{o} - \alpha \Delta G_{c}^{o \ddagger} + \alpha nF\phi_{ref}}{RT}\right]$$

$$\times \exp\left[-\alpha nfE\right] \exp\left[\alpha (n-z)f\phi_{y} - (1-\alpha)zf\phi_{x}\right]. \qquad (2.2.43)$$

This equation shows that the rate of reaction may be affected both chemically and electrically by quantities related to the double layer.

The chemical composition of the double layer may have an effect on

 $\gamma^{\dagger}$ , and the double layer potentials  $\phi_{\mathbf{x}}$  and  $\phi_{\mathbf{y}}$  modify the influence of the cell potential.

A quantitative relation between  $\gamma^{\ddagger}$  and the composition of the double layer was proposed by Parsons (44), who assumed that specifically adsorbed ions on an electrode behave as a virial gas bound to only two dimensions. The relation he established is

$$\gamma^{\dagger} = \exp \sum_{j} 2B_{\dagger j} \Gamma_{j},$$
 (2.2.44)

where  $\Gamma_j$  is the amount of specific adsorption of ionic species j in (e.g.) ions/cm<sup>2</sup>. The quantities  $B_{\dagger j}$  are second virial coefficients which are measures of the interactions between species j and the activated complex. Parsons states that the interparticle interactions should be largely coulombic in nature. Therefore the values of the  $B_{\dagger j}$  should be positive when the activated complex and species j have the same charge, and negative when they do not. Writing 2.2.43 in a logarithmic form and making substitution from 2.2.44 yields:

$$\ln\left(\frac{i_{F}}{a_{Ms}}\right) = \left[\ln\left(\frac{nF\tau kT}{h}\right) + \left(\frac{-\Delta G_{c}^{o^{\frac{1}{2}}} - \Delta G_{Mx}^{o} - \alpha \Delta G_{c}^{o} + \alpha nF\phi_{ref}}{RT}\right)\right]$$

$$-\sum_{j} 2B_{\frac{1}{2}j}\Gamma_{j} - \alpha nfE + \alpha (n-z)f\phi_{y} - (1-\alpha)zf\phi_{x} . \qquad (2.2.45)$$

Thus the faradaic current density  $i_F$  is related quantitatively to the experimentally measurable quantities  $a_{Ms}$ , E,  $\Gamma_j$ ,  $\phi_x$ , and  $\phi_y$ . An important objective of this work is to investigate the applicability of this equation to the silver deposition reaction in aqueous cyanidecontaining solutions. In the next section, the evaluation of the quantities in this equation which are related to the double layer, namely  $\Gamma_j$ ,  $\phi_x$ , and  $\phi_y$  is discussed.

### 2.3. Determination of Double Layer Quantities

By application of fundamental electrostatic theory to the model of the double layer previously discussed, Devanathan (13) developed a set of equations for determining the amount of specific adsorption at an interface. Although there are several sign errors in the development (Equations 2, 4, and 6 of ref. (13)) they do not affect the result for the double layer capacitance  $C_{d_i}$ :

$$\frac{1}{C_{d\ell}} = \frac{1}{K_{m-1}} + \left(\frac{1}{K_{1-2}} + \frac{1}{C_{2-s}}\right)\left(1 - \frac{dq_1}{dq}\right), \qquad (2.3.1)$$

where  $K_{m-1}$  is the electrostatic capacity for the region from the electrode to  $x_1$ ,  $K_{1-2}$  is the electrostatic capacity for the region from  $x_1$  to  $x_2$ ,  $C_{2-s}$  is the capacitance of the diffuse double layer, q is the total excess charge on the solution-side of the double layer, and  $q_1$  is the charge due to specifically adsorbed

ions. The specifically adsorbed charge is related to the amount of specific adsorption by

$$\Gamma_{j} = q_{1}/z_{j} e_{0}$$
, (2.3.2)

where z is the charge on the specifically adsorbed ion j, and the assumption that there is only one specifically adsorbed ion is invoked.

The inner layer capacities are given by the electrostatic formulae:

$$K_{m-1} = D_{m-2} \epsilon_0^{-1} / x_1$$
 (2.3.3)

and

$$K_{1-2} = D_{m-2} \epsilon_0' / (x_2 - x_1)$$
, (2.3.4)

where  $\epsilon_0^+$  is the rationalized permittivity of free space, equal to  $8.85 \times 10^{-14}$  farad cm<sup>-1</sup>, and D<sub>m-2</sub> is the dielectric constant of the inner layer (assumed to be constant throughout the layer). On the basis of the double layer model just described, D<sub>m-2</sub> is estimated to be 7.2.

Evaluation of the diffuse double layer capacitance is well-known; it is based upon the Boltzmann distribution of the ions in that layer. For an aqueous solution of a 1-1 electrolyte, the equation for the diffuse double layer capacitance is

$$C_{2-s} = (e_0 A/kT)[1+(q-q_1)^2/4A]^{1/2},$$
 (2.3.5)

where e is the charge of a proton,

$$A \equiv 2D_{2-s} \epsilon_{o}^{\prime} RTc , \qquad (2.3.6)$$

and c is the total electrolyte concentration. D<sub>2-s</sub> is equal to the dielectric constant of bulk water because the potential gradients in the diffuse double layer are not great enough to cause much electrostriction. Substitution of the appropriate constants into Equation 2.3.5 gives

$$C_{2-s} = (19.46 \frac{\mu F}{\mu C})[(137.8 \frac{(\mu C)^2 \ell}{cm^4 mol})c^+(q-q_1)^2]^{1/2}$$
(2.3.7)

Since all the other quantities in Equation 2.3.1 are known or are measurable, it can be solved for  $\frac{dq}{1}$ /dq:

$$\frac{dq_1}{dq} = 1 - \frac{(1/C_{d\ell}) - (1/K_{m-1})}{(1/K_{1-2}) + (1/C_{2-s})} . \tag{2.3.8}$$

Thus, in order to determine  $q_1$ , an integration with respect to q must be performed. This requires that q be known and that a constant of integration be established.

To determine q, it is first necessary to establish the potential of zero charge (E<sub>zc</sub>). This is easily done for dilute solutions of ions which are specifically adsorbed only weakly at this potential, since in these solutions, the double layer capacitance vs. electrode potential curve goes through a minimum at E. This is due to the fact that the diffuse double layer capacitance goes through a distinct minimum at E<sub>zc</sub>, becoming small enough that it dominates and determines the overall measured capacitance. (Refer to Equations 2.3.1 and 2.3.7, setting  $q_1 = 0$ .) A significant amount of specific adsorption will cause C<sub>2-s</sub> to reach its minimum at some potential other than  $E_{z,c}$ . If specific ionic adsorption occurs, the amount of it may logically be expected to depend on the concentration of the ion in the solution. Therefore, if the capacitance minima are the same for a range of electrolyte concentrations less than, e.g., 0.02 M, it is taken as proof that the minimum coincides with Ezc, and that specific adsorption occurs to only a small extent for that electrolyte.

The double layer charge at any electrode potential  $E_x$  for any concentration of that electrolyte may now be found by integrating the experimentally measured values of  $C_{d\ell}$  for that solution from  $E_{zc}$  to  $E_x$ :

$$q(E_{x}) = -\int_{E_{zc}}^{E_{x}} C_{d\ell} dE . \qquad (2.3.9)$$

This equation comes directly from the definition of  $C_{d\ell}$ 

Suppose that it is now desired to determine the double layer charge at given potentials in a solution containing anions which may be specifically adsorbed at the electrode. If the charge at a single potential in this solution may be established, then the charge at all other potentials can be found by integration of the double layer capacitance in a way similar to that indicated in Equation 2.3.9. In order to find this first point, the double layer of the solution with specific adsorption will be compared to the double layer of another solution. This second solution will be the same as the first with respect to concentration and cation, but the anion in the second must not be specifically adsorbed to any significant extent.

As Grahame and Soderberg (22) have pointed out, if the electrode potential is made sufficiently cathodic, all specifically adsorbed ions can be driven from the inner layer. If any ions are present in the inner layer at this very negative potential, they are cations, which are identical in the two solutions. The identity of anions present in the diffuse double layer is immaterial, since they act simply as point charges. Therefore, at this very negative potential,  $E_{neg}$ , the double layers of the two electrolytes should behave identically. That is, they have the same capacitance, double layer charge, and amount of specific adsorption. Since the double layer charge in the solution without specific adsorption may be determined at this potential (by

Equation 2.3.9), it is also known for the solution with specific adsorption.

The double layer charge at any potential  $E_{x}$  in the solution with specific adsorption can now be given by an equation of the same form as 2.3.9 but with different limits of integration:

$$q(E_x) = -\int_{E_{neg}}^{E_x} C_{d\ell} dE + q(E_{neg})$$
. (2.3.10)

(Of course, in this equation,  $C_{d\ell}$  is measured in the solution with specific adsorption.)

The purpose for evaluating the double layer charge q was to make calculation of the amount of specific adsorption possible. Basic rules of integral calculus give

$$q_1(E_x) = q_1(E_{start}) + \int_{q(E_{start})}^{q(E_x)} (\frac{dq_1}{dq})dq.$$
 (2.3.11)

The specifically adsorbed charge  $\ q_1$  must thus be determined if  $\ q_1(E_{start})$  and  $\ dq_1/dq$  are known. Evaluation of these will be discussed next.

The value of the derivative  $dq_1/dq$  may be taken from Equation 2.3.8. However, evaluation of  $C_{2-s}$  in that equation requires that  $q_1$  be known, (see Equation 2.3.7) thus forcing one to

estimate  $C_{2-s}$ . This estimate does not have to be very precise, since  $C_{2-s}$  has such a small effect; it is most easily performed by assuming  $q_1 = 0$ . After  $q_1$  is calculated for all the necessary potentials in this way, the process may be reiterated, calculating  $C_{2-s}$  from the values of  $q_1$  determined the first time. The iterations may be repeated until no further significant change occurs in the calculated values.

Evaluation of a constant of integration for 2.3.11 requires re-examination of Devanathan's concept of the double layer. His view permits only one species of ion to be specifically adsorbed at one time. Therefore, at the potential at which the specifically adsorbed charge goes through zero, no ions may be adsorbed. It is then reasonable to suppose that the amount of specific adsorption at this point does not change substantially with potential, i.e., that

$$dq_1/dq \approx 0$$
. (2.3.12)

Equation 2.3. 1 shows that for reasonably concentrated solutions, where  $C_{2-s}$  does not have a great effect, this condition produces a minimum in the  $C_{d\ell}$  vs. E curve which is independent of electrolyte type and concentration. (This minimum is not to be confused with the diffuse double layer capacitance minimum which occurs near  $E_{zc}$  in dilute solutions.) Since minima which meet these criteria occur in

the double layer capacitance curves for mercury/aqueous potassium halide interfaces, Devanathan chose the potential  $E_{\rm start}$  to be at these minima, and assigned  $q_1(E_{\rm start}) = 0$ .

Having determined q and  $q_1$ , the potential of the outer Helmholtz plane may be evaluated (13) as

$$\phi_2 = (2kT/e_0) \sinh^{-1}[(q_1-q)/2A],$$
 (2.3.13)

the potential of the inner Helmholtz plane as

$$\phi_1 = (q_1 - q) / K_{1-2} + \phi_2$$
, (2.3.14)

and the net potential difference across the interface as

$$\phi_{m} = \phi_{1} - q/K_{m-1}$$
 (2. 3. 15)

The procedures just described for calculating the double layer quantities q,  $q_1$ ,  $\phi_1$ ,  $\phi_2$ , and  $\phi_m$  were applied by Devanathan (13) to mercury/aqueous potassium halide interfaces. The results were in good agreement with previous data, which were based on electrocapillary (surface tension) measurements. Devanathan's method is inherently more precise than the electrocapillary method; it indicates that a slight amount of specific adsorption of cations does occur at highly cathodic potentials, whereas it had been generally assumed before that cationic adsorption for all but the larger cations (e.g.,

cerium and tetraalkylammonium ions) was immeasurably small.

### 2.4. Double Layer Capacitance Measurements

To measure the double layer capacitance, a potential step is applied to the interface using a three-electrode cell. A suitable electrical analog for studying electrical transients in such a cell is shown in Figure 2.4. la. This model shows the double layer capacitances, faradiac resistances, and solution resistances associated with each electrode. The batteries representing the interfacial potentials have been omitted, since the DC levels will not be of importance in these measurements.

The potential between the reference and test electrodes in a three-electrode cell is controlled electronically by passing an appropriate amount of current from the auxiliary to the test electrode. No current is passed through the reference electrode; its potential is sensed by a high-impedance device. This results in the fact that no transient potential differences develop between the reference electrode and the solution node. The components between these two points may then be omitted from the model. In addition, since the electronic potentiostat provides whatever current is necessary to maintain the desired potential difference between the reference electrode (or solution node) and the test electrode, the elements connecting the auxiliary electrode to the solution node do not affect the cell current



Figure 2.4. 1. Electrical analogs for a three-electrode cell. (a) The full model, showing the solution resistance, the faradaic resistance, and the double layer capacitance for each electrode. (b) The model which is simplified by elimination of components which do not affect the cell current.

and may be omitted. The simplified model which results is shown in Figure 2.4. lb.

Assuming an initial steady state, if the potential across this cell model were changed suddenly from  $V_1$  to  $V_1^+V_2$ , the current would change abruptly from

$$I_b = V_1/(R_u + R_F)$$
, (2.4.1)

and eventually settle to a value

$$I_b + I_s = (V_1 + V_2)/(R_u + R_F)$$
 (2.4.2)

The quantity  $I_s$  is thus defined to be the difference between the final and initial currents:

$$I_s = V_2/(R_u + R_F)$$
 (2.4.3)

Since  $R_F$ , which is due to various (often unknown) reactions, normally varies with electrode potential, there is not a direct correspondence between the potential  $V_1$  of the cell model from which the chemical batteries have been removed and the potential  $E_{cell}$  of an actual cell. However, for sufficiently small  $V_2$ ,  $R_F$  may be assumed to be nearly constant over the range of the potential step. Since  $V_2$  is a change in the potential across the model, it can be identified with a change of the same magnitude in the cell potential.

## The Cell Current as a Function of Time

Referring to Figure 2.4.1b, let  $I_{cell}$  be the current through  $R_u$ ,  $I_C$  the current through C, and  $I_F$  the current through  $R_F$ . Then

$$I_{\text{cell}} = I_{\text{C}} + I_{\text{F}}$$
 (2.4.4)

Letting V<sub>C</sub> be the potential across C,

$$I_{C} = C \frac{dV_{C}}{dt}. \qquad (2.4.5)$$

From the model, it can be seen that after the cell potential is changed from  $V_1$  to  $V_1 + V_2$ ,

$$I_{cell} = (V_1 + V_2 - V_C)/R_{ij}$$
, (2.4.6)

and

$$I_{\rm E} = V_{\rm C}/R_{\rm E}$$
 (2.4.7)

Substitution of 2.4.5 through 2.4.7 into 2.4.4 yields

$$\frac{V_1^{+}V_2^{-}V_C}{R_{_{11}}} = C \frac{dV_C}{dt} + \frac{V_C}{R_F}, \qquad (2.4.8)$$

which rearranges to

$$\frac{dV_C}{dt} = \frac{V_1^{+V}_2}{R_u^C} - \frac{V_C}{C} \left(\frac{1}{R_u} + \frac{1}{R_F}\right). \qquad (2.4.9)$$

Taking the Laplace transform,

$$\mathcal{L}(\frac{dV_{C}}{dt}) = \frac{V_{1}^{+}V_{2}}{k_{1}} \mathcal{L}(1) - \frac{1}{k_{2}} \mathcal{L}(V_{C}), \qquad (2.4.10)$$

where

$$k_1 = R_{11}C$$
, (2.4.11)

$$k_2 = R_1 R_F C / (R_1 + R_F)$$
, (2.4.12)

and  $\mathcal{L}$  is the Laplace operator. Using properties of the Laplace operator and the fact that at t=0

$$V_C = V_1 R_F / (R_u + R_F)$$
, (2.4.13)

the result is

$$s \mathcal{L}(V_C) - \frac{V_1 R_F}{R_1 + R_F} = \frac{V_1 + V_2}{k_1 s} - \frac{1}{k_2} \mathcal{L}(V_C),$$
 (2.4.14)

which may be rearranged to give

$$\mathcal{L}(V_C) = \frac{V_1 + V_2}{k_1 s(s+1/k_2)} + \frac{V_1 k_2}{k_1 (s+1/k_2)}.$$
 (2.4.15)

Taking the inverse Laplace transform yields

$$V_{C} = (V_{1} + V_{2})(\frac{k_{2}}{k_{1}})(1 - e^{-t/k_{2}}) + (\frac{k_{2}}{k_{1}})V_{1}. \qquad (2.4.16)$$

Substituting 2.4.16 into 2.4.6 gives

$$I_{cell} = \frac{V_1 + V_2}{R_u + R_F} + \frac{V_2 R_F^e}{R_u (R_u + R_F)}.$$
 (2.4.17)

Substitution of Equation 2.4.2 gives

$$I_{\text{cell}} = I_{\text{b}} + I_{\text{s}} + \frac{R_{\text{F}} V_{2} \exp(-t/k_{2})}{R_{\text{u}} (R_{\text{u}} + R_{\text{F}})}.$$
 (2.4.18)

If the electrode is practically ideally polarized, i.e., if  $R_{\overline{F}}$  is much greater than  $R_{\overline{u}}$ , then  $I_{\overline{b}}$  and  $I_{\overline{s}}$  are relatively small compared to the cell current for times on the order of a few half-lives of the transient, and Equation 2.4.18 reduces to

$$I_{\text{cell}} \approx \frac{V_2}{R_{11}} \exp(-t/k_1)$$
 (2.4.19)

### Evaluation of Cell Parameters from the Cell Current

 $R_F$ ,  $R_u$ , and C can all be evaluated from Equation 2.4.18 using a linear least-squares technique, if the currents before and after the step are measured at several times, and if the step potential  $V_2$  is known. Writing Equation 2.4.18 in the linear form,

$$\ln(I_{cell} - I_{b} - I_{s}) = \ln\left[\frac{V_{2}R_{F}}{R_{u}(R_{u} + R_{F})}\right] - \frac{t}{k_{2}}$$
 (2. 4. 20)

If  $I_b$  and  $I_s$  can be determined and  $I_{cell}$  measured at several times, the left-hand side may be plotted vs. t to yield an intercept

$$B = \ln \left[ \frac{V_2 R_F}{R_1 (R_1 + R_F)} \right]$$
 (2.4.21)

and slope

$$M = -\frac{R_u^{+}R_F^{-}}{R_u^{-}R_F^{-}C}.$$
 (2.4.22)

The values of  $I_b$  and  $I_{cell}$  may be measured directly; evaluation of  $I_s$  is discussed below.

 $\rm R_{F}, \ R_{u}$  and C may be determined from the values for  $\rm V_{2},$  M, B, and  $\rm I_{s}.$  From Equation 2.4.3,

$$V_2 = I_s(R_u + R_F)$$
 (2.4.23)

Substituting 2.4.23 into 2.4.21 and rearranging gives

$$R_{F} = R_{u}e^{B}/I_{s}$$
 (2.4.24)

Substituting 2.4.24 into 2.4.23 and rearranging gives

$$R_u = V_2/(I_s + e^B).$$
 (2.4.25)

Then, combining 2.4.24 and 2.4.25,

$$R_F = V_2 e^B / (I_s + e^B) / I_s$$
 (2.4.26)

From Equation 2.4.22

$$C = -M(R_u + R_F) / (R_u R_F)$$
 (2.4.27)

Combining with Equations 2.4.25 and 2.4.26 gives

$$C = -(I_s + e^B)^2 / (Me^B V_2)$$
 (2.4.28)

In our scheme, I is not found directly by observation at times much larger than the transient time constant, since other processes may supercede at longer times. Instead, it is estimated from three of the current measurements during the decay by the following method. For three data points of the form

$$[I_k, t_1 + (k-1)\Delta t], k = 1, 2, 3$$

taken at uniform intervals  $\Delta t$ , we may write three equations of the form

$$\ln(I_k - I_b - I_s) = B + M[t_1 + (k-1)\Delta t], \quad k = 1, 2, 3.$$
 (2.4.29)

By subtracting the second equation from the first, and the third from the second, one gets

$$\ln\left[\frac{I_1 - I_b - I_s}{I_2 - I_b - I_s}\right] = \ln\left[\frac{I_2 - I_b - I_s}{I_3 - I_b - I_s}\right] = M\Delta t.$$
(2.4.30)

The left-hand and center members of this equation yield

$$I_{s} = \frac{I_{1}I_{3} - I_{2}^{2}}{I_{1}I_{3} - 2I_{2}} - I_{b} . \qquad (2.4.31)$$

(A similar equation is given in (11, p. 12).)

The evaluation of B and M is carried out with a numerical, weighted least-squares method. The ordinate values are weighted unequally because they do not all have equal uncertainties. Letting the ordinate values be

$$Y_{j} \equiv \ln(I_{j} - I_{b} - I_{s})$$
, (2.4.32)

and assuming all the current measurements to have the same uncertainty  $\sigma_{\tilde{I}}$ , application of the equation for propagation of errors (discussed more fully in the next subsection) gives

$$\sigma_{Y_{j}}^{2} = \sigma_{I}^{2} \left(\frac{\partial Y_{j}}{\partial I_{j}}\right)^{2} + \sigma_{I_{b}}^{2} \left(\frac{\partial Y_{j}}{\partial I_{b}}\right)^{2} + \sigma_{I_{s}}^{2} \left(\frac{\partial Y_{j}}{\partial I_{s}}\right)^{2} + \sigma_{I_{b}I_{s}}^{2} \left(\frac{\partial Y_{j}}{\partial I_{b}}\right) \left(\frac{\partial Y_{j}}{\partial I_{s}}\right)$$

$$+ 2\sigma_{I_{j}I_{s}}^{2} \left(\frac{\partial Y_{j}}{\partial I_{j}}\right) \left(\frac{\partial Y_{j}}{\partial I_{s}}\right) . \tag{2.4.33}$$

After using 2.4.32 to evaluate the partial derivatives, 2.4.33 becomes

$$\sigma_{Y_{j}}^{2} = \left[\frac{1}{I_{j} - I_{b} - I_{s}}\right]^{2} \left[\sigma_{I}^{2} + \sigma_{I_{b}}^{2} + \sigma_{I_{b}}^{2} + 2\sigma_{I_{b}}^{2} I_{s}^{2} - 2\sigma_{I_{j}}^{2}\right]. \quad (2.4.34)$$

Statistical considerations dictate that the weights be in inverse proportion to the variances, (23, p. 98) so for each data point  $(I_j, t_j)$ , the weight for the corresponding  $Y_j$  may be expressed as

$$w_{j} = \frac{(I_{j} - I_{b} - I_{s})^{2}}{\sigma_{I}^{2} + \sigma_{I}^{2} + 2\sigma_{I}^{2} + 2\sigma_{I}^{2} I_{s}^{2}}.$$
 (2.4.35)

The denominator of this equation consists of constants except for the last term. It was shown on several real data sets that the last term was considerably smaller than the others. This fact makes it possible to estimate the weights more simply as

$$w_j = (I_j - I_b - I_s)^2$$
 (2.4.36)

This simplification normally has an effect of only a percent or two on the relative weights, and the effect on the calculated capacitance is imperceptible.

The equations for the intercept and slope are standard statistical formulae (23, p. 96):

$$B = \left[ \sum_{j} w_{j} t_{j}^{2} \sum_{j} w_{j} Y_{j} - \sum_{j} w_{j} t_{j} \sum_{j} w_{j} t_{j} Y_{j} \right] / D$$
 (2.4.37)

and

$$M = \left[ \sum_{j} w_{j} \sum_{j} w_{j} t_{j} Y_{j} - \sum_{j} w_{j} t_{j} \sum_{j} w_{j} Y_{j} \right] / D, \qquad (2.4.38)$$

where

$$D = \sum_{j} w_{j} \sum_{j} w_{j} t_{j}^{2} - \left[ \sum_{j} w_{j} t_{j} \right]^{2}.$$
 (2.4.39)

Thus, from the  $(I_j, t_j)$  data,  $I_s$  can be determined, then the slope B and intercept M of  $\ln(I_j - I_b - I_s)$  vs.  $t_j$  may be found.  $R_u$ ,  $R_F$ , and C are given as functions of  $V_2$ ,  $I_s$ , B, and M by Equations 2.4.25, 2.4.26, and 2.4.28, respectively.

# The Variances in the Measurements of Ru, RF, and C

Since the calculations are quite complex, the variances to be expected in the calculated quantities are not readily apparent. Equations have therefore been developed using the ideas of "propagation of errors" to provide estimates of the errors involved in assigning values to  $R_u$ ,  $R_F$ , and C.

In one experiment, measurements of the current are made before the step is applied  $(I_{bj})$  and after the step  $(I_j)$  at known times  $t_j$ . The value of the step potential  $V_2$  is established in

another experiment. Thus, all the just-named quantities are independently evaluated, i.e., there is no basis to relate their "indeterminate" errors (46, pp. 43-49) to one another. Figure 2.4.2 shows the dependence among these quantities and the other quantities of concern. When a quantity y is functionally dependent on other quantities x<sub>j</sub>, its variance may be expressed as a function of the variances of the others (3, p. 59):

$$\sigma_{y}^{2} = \sum_{j} \left(\frac{\partial y}{\partial x_{j}}\right)^{2} \sigma_{x_{j}}^{2}. \qquad (2.4.40)$$

If the x are not all independently acquired, then covariance terms of the form

$$2(\frac{\partial y}{\partial x_{j}})(\frac{\partial y}{\partial x_{k}})\sigma_{x_{j}}^{2}$$

must be added into the summation.

Equation 2.4.28 shows that  $\,C\,$  is a function of  $\,I_{_{\rm S}},\,\,B,\,\,M\,$  and  $\,V_{_{\rm Z}}.\,\,$  Since  $\,I_{_{\rm S}},\,\,B,\,\,$  and  $\,M\,$  are derived from the same data, propagation of errors for  $\,C\,$  will involve covariances between these.

$$I_{\Omega} \equiv e^{B} , \qquad (2.4.41)$$

one can write



Figure 2.4.2. Scheme of the dependence of calculated quantities on the independently measured ones. Braces indicate a set of values.

$$\sigma_{C}^{2} = \sigma_{I_{s}}^{2} \left(\frac{\partial C}{\partial I_{s}}\right)^{2} + \sigma_{I_{o}}^{2} \left(\frac{\partial C}{\partial I_{o}}\right)^{2} + \sigma_{M}^{2} \left(\frac{\partial C}{\partial M}\right)^{2} + \sigma_{V_{2}}^{2} \left(\frac{\partial C}{\partial V_{2}}\right)^{2}$$

$$+ 2\sigma_{I_{s}I_{o}}^{2} \left(\frac{\partial C}{\partial I_{s}}\right) \left(\frac{\partial C}{\partial I_{o}}\right) + 2\sigma_{I_{s}M}^{2} \left(\frac{\partial C}{\partial I_{s}}\right) \left(\frac{\partial C}{\partial M}\right)$$

$$+ 2\sigma_{I_{o}M}^{2} \left(\frac{\partial C}{\partial I_{o}}\right) \left(\frac{\partial C}{\partial M}\right) . \qquad (2.4.42)$$

The partial derivatives may be evaluated from Equation 2.4.28:

$$\frac{\partial C}{\partial I_s} = \frac{-2(I_s + I_o)}{MI_o V_2}, \qquad (2.4.43)$$

$$\frac{\partial C}{\partial I} = [(I_s/I_o)^2 - 1]/(MV_2), \qquad (2.4.44)$$

$$\frac{\partial C}{\partial M} = -C/M , \qquad (2.4.45)$$

$$\frac{\partial C}{\partial V_2} = -C/V_2. \qquad (2.4.46)$$

The variances and covariances in Equation 2.4.42 may be determined ultimately from the noise in the current measurements.

Each will be taken in turn.

1. From a propagation of errors on Equation 2.4.31,

$$\sigma_{I_{\mathbf{s}}}^{2} = \sigma_{I_{\mathbf{b}}}^{2} \left(\frac{\partial I_{\mathbf{s}}}{\partial I_{\mathbf{b}}}\right)^{2} + \sum_{k=1}^{3} \sigma_{I}^{2} \left(\frac{\partial I_{\mathbf{s}}}{\partial I_{k}}\right)^{2}.$$
 (2.4.47)

The partial derivatives are, from Equation 2.4.31,

$$\frac{\partial I}{\partial I_b} = -1 , \qquad (2.4.48)$$

$$\frac{\partial I_{s}}{\partial I_{1}} = \frac{I_{3}^{-1}I_{s}}{I_{1}^{+1}I_{3}^{-2}I_{2}},$$
 (2.4.49)

$$\frac{\partial I_{s}}{\partial I_{2}} = 2\left[\frac{I_{s}^{-1}2}{I_{1}^{+1}3^{-2}I_{2}}\right], \qquad (2.4.50)$$

and

$$\frac{\partial I_{s}}{\partial I_{3}} = \frac{I_{1}^{-1} I_{s}}{I_{1}^{+1} I_{3}^{-2} I_{2}}.$$
 (2.4.51)

In the experimental scheme to be employed, several measurements of the current are made immediately before application of the step. These measurements are averaged to yield  $I_b$ . If it is assumed that all currents are to be measured with the same uncertainty, the usual equation for the variance in each measurement (23, pp. 9-10) is

$$\sigma_{I}^{2} \equiv \sigma_{I_{j}}^{2} = \sigma_{I_{bj}}^{2} = \left[\sum_{j=1}^{N} I_{bj}^{2} - \left(\sum_{j=1}^{N} I_{bj}\right)^{2} / N\right] / (N-1), \quad (2.4.52)$$

where I refers to the individual measurements made before application of the step and N is the number of these measurements.

This equation is based on the premise that each measurement may take any value which can be represented on a number line. However, these measurements are to be made with an analog-to-digital converter, the resolution of which is finite, i.e., it may assume only a finite number of values. This situation results in the fact that the minimum uncertainty possible corresponds to one-half of the least significant bit of the converter. A convenient, though not strictly correct, method to deal with the limitation is to consider the resolution d of the analog-to-digital converter as another source of noise in the measurement, then write

$$\sigma_{I}^{2} = \left[ \sum_{j=1}^{N} I_{bj}^{2} - \left( \sum_{j=1}^{N} I_{bj} \right)^{2} / N \right] / (N-1) + d^{2}. \qquad (2.4.53)$$

The value of d can be estimated to be the amount of current corresponding to one-half the least significant bit.

Since the residual current is evaluated as a function of the N measurements before the step:

$$I_{b} = \left[\sum_{j=1}^{N} I_{bj}\right] / N , \qquad (2.4.54)$$

propagation of errors gives

$$\sigma_{I_b}^2 = \sum_{j=1}^{N} \sigma_{I}^2 (\frac{\partial I_b}{\partial I_{bj}})^2 = \frac{\sigma_{I}^2}{N}$$
 (2.4.55)

But since the uncertainty must be at least one-half the least significant bit, the variance due to resolution is added back in:

$$\sigma_{I_b}^2 = \sigma_{I}^2/N + d^2$$
 (2.4.56)

Substituting 2.4.48 through 2.4.51 and 2.4.55 into 2.4.47,

$$\sigma_{I_{s}} = \sigma_{I}^{2} \left[ \frac{1}{N} + \frac{(I_{1} - I_{s})^{2} + 4(I_{2} - I_{s})^{2} + (I_{3} - I_{s})^{2}}{(I_{1} + I_{3} - 2I_{2})^{2}} \right] + d^{2}. \quad (2.4.57)$$

2. From the definition of I<sub>o</sub>, Equation 2.4.41,

$$\sigma_{\rm I_{\rm O}}^2 = {\rm I_{\rm O}^2 \sigma_{\rm B}^2} \ .$$
 (2.4.58)

It can be shown (23, pp. 99-100) that

$$\sigma_{\rm B}^2 = \frac{\rm S^2}{\Sigma_{\rm W_j}} \left[ 1 + \left( \sum_{j} w_j t_j \right)^2 / D \right], \qquad (2.4.59)$$

where the summations are over all the points obtained for the decay and

$$s^{2} = \left[ \sum_{i} w_{j} Y_{j}^{2} - \frac{(\sum_{i} w_{j} Y_{j})^{2}}{\sum_{i} w_{j}} - \frac{M^{2}D}{\sum_{i} w_{j}} \right] / (N-2) . \qquad (2.4.60)$$

Substitution of Equations 2.4.59 and 2.4.60 into 2.4.58 provides the means for evaluating  $\sigma_{L_0}^2$  .

3. The value of  $\sigma_{M}^{2}$  can be estimated by (23, p. 98)

$$\sigma_{\mathbf{M}}^{2} = \left[ \mathbf{S}^{2} \sum_{\mathbf{w}_{j}} \right] / \mathbf{D} . \qquad (2.4.61)$$

4. The uncertainty in  $\ V_2$  originates in the potentiostat calibration procedure (discussed in the experimental section). The relative standard error given from this procedure is

$$\sigma_{V_2}/V_2 = 2 \times 10^{-4}$$
 (2.4.62)

5. The values of  $I_s$  and  $I_o$  are both dependent on the three currents used for  $I_s$ . The covariance between  $I_s$  and  $I_o$  can be estimated as (3, p. 161)

$$\sigma_{I_{s}I_{o}}^{2} = \sum_{k=1}^{3} \sigma_{I}^{2} \left(\frac{\partial I_{s}}{\partial I_{k}}\right) \left(\frac{\partial I_{o}}{\partial I_{k}}\right). \tag{2.4.63}$$

Using the chain rule,

$$\sigma_{I_{s}I_{o}}^{2} = \sum_{k=1}^{3} \sigma_{I}^{2} \left(\frac{\partial I_{s}}{\partial I_{k}}\right) \left(\frac{\partial I_{o}}{\partial B}\right) \left(\frac{\partial B}{\partial Y_{k}}\right) \left(\frac{\partial Y_{k}}{\partial I_{k}}\right). \tag{2.4.64}$$

The partials  $\partial I_s/\partial I_k$  are given by Equations 2.4.49 through 2.4.51. From Equation 2.4.41

$$\frac{\partial I}{\partial B} = I_{O}, \qquad (2.4.65)$$

from Equation 2.4.37

$$\frac{\partial B}{\partial Y_{k}} = w_{k} \left[ \sum_{j=1}^{N} w_{j} t_{j}^{2} - t_{k} \sum_{j=1}^{N} w_{j} t_{j} \right] / D, \qquad (2.4.66)$$

and from Equation 2.4.32

$$\frac{\partial Y}{\partial I_{k}} = 1/(I_{k} - I_{b} - I_{s}). \qquad (2.4.67)$$

The result is

$$\sigma_{I_{s_0}}^2 = \frac{\sigma_{I_0}^2 I_{o}}{D(I_1 - 2I_2 + I_3)} [Z_1 - 2Z_2 + Z_3], \qquad (2.4.68)$$

where

$$Z_{k} = \left[\frac{(I_{4-k}^{-1}s)w_{k}}{I_{k}^{-1}b^{-1}s}\right] \left[\sum_{j=1}^{N}w_{j}t_{j}^{2} - t_{k}\sum_{j=1}^{N}w_{j}t_{j}\right].$$
 (2.4.69)

6. The values of  $I_s$  and M are dependent on the same three current measurements, so

$$\sigma_{\mathbf{I}_{\mathbf{S}}\mathbf{M}}^{2} = \sum_{k=1}^{3} \left(\frac{\partial \mathbf{I}_{\mathbf{S}}}{\partial \mathbf{I}_{k}}\right) \left(\frac{\partial \mathbf{M}}{\partial \mathbf{I}_{k}}\right) \sigma_{\mathbf{I}}^{2}, \qquad (2.4.70)$$

or, expanding on the chain rule,

$$\sigma_{I_{s}M}^{2} = \sigma_{I}^{2} \sum_{k=1}^{3} \left(\frac{\partial I_{s}}{\partial I_{k}}\right) \left(\frac{\partial M}{\partial Y_{k}}\right) \left(\frac{\partial Y_{k}}{\partial I_{k}}\right). \tag{2.4.71}$$

The center partial may be evaluated from Equation 2.4.38 to be

$$\frac{\partial \mathbf{M}}{\partial \mathbf{Y}_{\mathbf{k}}} = \mathbf{w}_{\mathbf{k}} \begin{bmatrix} \mathbf{t}_{\mathbf{k}} & \sum_{j=1}^{N} \mathbf{w}_{j} - \sum_{j=1}^{N} \mathbf{w}_{j} \mathbf{t}_{j} \\ \mathbf{t}_{\mathbf{k}} & \sum_{j=1}^{N} \mathbf{w}_{j} - \sum_{j=1}^{N} \mathbf{w}_{j} \mathbf{t}_{j} \end{bmatrix} / \mathbf{D} . \tag{2.4.72}$$

Combining Equations 2.4.49 through 2.4.51, 2.4.67, 2.4.71, and 2.4.72 yields

$$\sigma_{I_{s}M}^{2} = \left[\frac{\sigma_{I}^{2}}{D(I_{1}^{-2I_{2}^{-1}3})}\right] \left[Z_{1}^{*-2}Z_{2}^{*+}Z_{3}^{*}\right], \qquad (2.4.73)$$

where

$$Z_{k}^{*} = \left[ \frac{(I_{4-k}^{-1} - I_{s}) w_{k}}{I_{k}^{-1} - I_{s}} \right] \left[ t_{k} \sum_{j=1}^{N} w_{j} - \sum_{j=1}^{N} w_{j} t_{j} \right].$$
 (2.4.74)

7. The values estimated for  $I_{0}$  and M are dependent on all the current measurements, so

$$\sigma_{I_{O}M}^{2} = \sigma_{I}^{2} \sum_{j=1}^{N} \left(\frac{\partial I_{O}}{\partial I_{j}}\right) \left(\frac{\partial M}{\partial I_{j}}\right). \qquad (2.4.75)$$

Combining Equations 2.4.65 through 2.4.67 and 2.4.72 with 2.4.75 yields the result

$$\sigma_{I_o M}^2 = -I_o \sigma_I^2 \left[ \sum_j w_j t_j \right] / D^2$$
 (2.4.76)

Now  $\sigma_C^2$  may be estimated by substituting Equations 2.4.43 through 2.4.46, 2.4.57 through 2.4.62, 2.4.68, 2.4.69, 2.4.73, 2.4.74, and 2.4.76 into 2.4.42. In practice, it was found that the covariance terms were entirely negligible, so they were not included in the routine error calculations.

By applying the propagation of errors formula to Equation 2.4.25, the variance in  $R_u$  is found to be

$$\sigma_{R_{u}}^{2} = \left(\frac{\partial R_{u}}{\partial V_{2}}\right)^{2} \sigma_{V_{2}}^{2} + \left(\frac{\partial R_{u}}{\partial I_{s}}\right)^{2} \sigma_{I_{s}}^{2} + \left(\frac{\partial R_{u}}{\partial B}\right)^{2} \sigma_{B}^{2}. \quad (2.4.77)$$

Evaluation of the partial derivatives gives

$$\sigma_{R_{u}}^{2} = \frac{\sigma_{V_{2}}^{2}}{(I_{s} + I_{o})^{2}} + \left[ \frac{V_{2}^{2} (\sigma_{I_{s} + \sigma_{o}}^{2})}{(I_{s} + I_{o})^{4}} \right]$$
 (2.4.78)

If the approximation  $I_s \ll I_o$  is made, then

$$\left(\frac{\sigma_{R_u}}{R_u}\right)^2 \approx \left(\frac{\sigma_{V_2}}{V_2}\right)^2 + \left(\frac{\sigma_{I_s}}{I_o}\right)^2 + \left(\frac{\sigma_{I_o}}{I_o}\right)^2.$$
 (2.4.79)

If  $I_s$  is significant with respect to  $I_o$ , then this equation is an overapproximation.

Application of propagation of errors to Equation 2.4.24 yields

$$\left(\frac{\sigma_{R_{F}}}{R_{E}}\right)^{2} = \left(\frac{\sigma_{u}}{R_{u}}\right)^{2} + \left(\frac{\sigma_{o}}{I_{o}}\right)^{2} + \left(\frac{\sigma_{s}}{I_{s}}\right)^{2}.$$
 (2.4.80)

This completes the equations necessary to estimate the uncertainties in  $C_{d\ell}$ ,  $R_{ij}$ , and  $R_{F}$ .

### 2.5. Silver Deposition Rate Measurements

Silver deposition in cyanide solution is quite a fast reaction (48), and the steady-state reaction rate is entirely controlled by diffusion of the silver species to the electrode at overpotentials where the partial current due to the reverse reaction (dissolution) can be ignored (i.e., at overpotentials greater than 100 mV). Since it is

desired to establish the reaction rate in the absence of any significant reverse reaction or diffusion control, a transient method was selected. As a compromise between simplicity of experiment and ease of interpretation, the potential-step method was chosen.

In this method the cell potential is controlled. The potential is initially adjusted to the equilibrium value, i.e., so that the current is zero. The experiment is initiated by changing the cell potential in a single step to a new value cathodic of the equilibrium potential. The cell current is then measured as a function of time. Thus, the experiment is quite similar to the double layer capacitance measurement experiment, except that the object is to obtain the faradaic current with accuracy, rather than the capacitative current.

In order to minimize the time when the capacitance current is significant, the uncompensated resistance is made as small as possible. This can be accomplished by placing the reference electrode in a Luggin capillary whose tip is close to the electrode.

Gerischer and Vielstich (18) developed the equation describing the change of the faradaic current with time where the rise time of the electrode potential is negligible:

$$i_{F}(t) = i_{F}(0) \exp(\lambda^{2} t) \operatorname{erfc}(\lambda t^{1/2}),$$
 (2.5.1)

where

$$\lambda = \frac{i_{ex}}{nF} \left\{ \frac{exp[a nf \eta]}{C_R D_R^{1/2}} + \frac{exp[-(1-a)nf \eta]}{C_O D_O^{1/2}} \right\}$$
 (2.5.2)

and

$$\eta = E - E_{eq}.$$
(2.5.3)

At short times where  $\lambda t^{1/2} \ll 1$ , this reduces to

$$i_{F}(t) \approx i_{F}(0)[1-2\lambda\pi^{-1/2}t^{1/2}]$$
 (2.5.4)

Thus, a plot of  $i_{cell}$  vs.  $t^{1/2}$  at sufficiently short times (but long enough that  $i_C \ll i_F$ ) is a straight line, the intercept of which is  $i_F(0)$ , the faradaic current density in the absence of diffusion control.

Of course, in an actual experiment, the electrode potential rises at a finite rate, so the true faradaic current at time zero is really zero. The meaning of  $i_F(0)$ , as used here is the value obtained for the faradaic current by extrapolation to t=0 from times when the electrode potential has reached a constant value.

Equation 2.5.4 has been examined closely by several authors. They point out that mere observation of a linear segment in an  $i_{cell}$  vs.  $t^{1/2}$  curve does not necessarily mean that extrapolation of that segment to t=0 will yield the correct value of  $i_F(0)$ . Oldham and Osteryoung (41) showed that in order to keep the error in the intercept within 1%, the currents from which the extrapolation is

made must be at least 0.9 of the value at the intercept. Steeper extrapolations will produce values less than  $i_F(0)$ . They have provided a graphical method for correction of the intercept values to get  $i_F(0)$ . Lingane and Christie (30) and Niki, et al. (40), have proposed more complex procedures to evaluate the initial faradaic current without restricting the data to small times.

A small, but significant, potential error occurs during the passage of these large currents through the uncompensated cell resistance. This error can be corrected using values of  $R_u$  based on the high-frequency behavior of the cell. The data for this determination can be collected during the early part of the transient, where the cell current is mainly due to double layer charging. At these short times, the cell model shown in Figure 2.4. Ib roughly applies, and the impedance of the double layer capacitance is low enough that its effect dominates over  $R_{\rm F}$ .

Since the potentiostat rise time is significant in this time frame, a rather complicated form of the cell current occurs. However, as Pilla (45) has shown, Laplace transformation permits a relatively simple solution. For short times or high frequencies (fast changes in signal) the real component of the Laplace transform of the cell impedance is

$$Z(\sigma) = \mathcal{L}(E_{cell}) / \mathcal{L}(I_{cell}) = R_u + 1/\sigma C$$
, (2.5.5)

where  $\sigma$  is the real component of the Laplace variable s. Thus, a plot of  $Z(\sigma)$  vs.  $1/\sigma$  has the value  $R_u$  at the intercept. The slope is 1/C; thus, if C changes significantly with the change in  $E_{cell}$ , the line may not be quite straight; however,  $R_u$  is normally a constant and should be given by the intercept.

The real components of the transforms of the cell potential and cell current in Equation 2.5.5 may be determined from  $(E_{\text{cell}}, I_{\text{cell}})$  data points and the definition of the real Laplace transform,

$$\mathcal{L}(X) = \int_0^\infty X \exp(-\sigma t) dt , \qquad (2.5.6)$$

where X is a time function. Pilla carried out the integration via a summation formula

$$\mathcal{L}(X) = \frac{X(t_1)}{\sigma t_1} [1 - (1 + \sigma t_1) \exp(-\sigma t_1)]$$

$$+ \sum_{j=2}^{N} \frac{[X(t_j) \exp(-\sigma t_j) - X(t_{j-1}) \exp(-\sigma t_{j-1})][t_j - t_{j-1}]}{\ln[X(t_j) \exp(-\sigma t_j) / X(t_{j-1}) / \exp(-\sigma t_{j-1})]}$$

$$+ \frac{X(t_N) \exp(-\sigma t_N)}{\sigma}, \qquad (2.5.7)$$

in which the function is assumed to be exponential in form over each interval. In this formula, the t are times, not necessarily at

uniform intervals, at which the function is measured; by the time  $t_N$  the function must be essentially constant.

The response time of the current-to-voltage converter is appreciable at these short times, so its output voltage must be corrected to obtain a true measure of the cell current. The current-to-voltage converter amplifier may be considered to have the input characteristic of a parallel resistor and capacitor between the two inputs, and the voltage transfer characteristic of a low-pass filter with high gain. Figure 2.5.1 diagrams this model of the amplifier.

The cell current divides into three paths at the amplifier input according to

$$I_{cell} = \frac{V_{in} - V_{out}}{R_{f}} + \frac{V_{in}}{R_{in}} + C_{in} \frac{dV_{in}}{dt}, \qquad (2.5.8)$$

where the meanings of the symbols are shown in the figure. The output current of the amplifier is

$$\frac{V_{\text{out}}-V_{\text{in}}}{R_{\text{f}}} = \frac{-GV_{\text{in}}-V_{\text{out}}}{R_{\text{out}}} - C_{\text{out}} \frac{dV_{\text{out}}}{dt}.$$
 (2.5.9)

These two equations may be converted to the Laplace frequency domain to give



Figure 2.5.1. Model for the frequency-dependent behavior of the current-to-voltage converter. G is the DC open-loop gain of the operational amplifier.

$$R_{in}R_{f} \mathcal{L}(I_{cell}) = -R_{in} \mathcal{L}(V_{out}) + (R_{in} + R_{f} + sR_{f}R_{in}C_{in}) \mathcal{L}(V_{in})$$

$$- R_{f}R_{in}C_{in}V_{in}(0^{+})$$
(2. 5. 10)

and

$$(R_{out}^{+}R_{f}^{+}R_{f}^{R}_{out}C_{out}) \mathcal{L}(V_{out}) = (R_{out}^{-}R_{f}^{G}) \mathcal{L}(V_{in})$$
 (2.5.11)  
  $+ R_{f}^{R}_{out}C_{out}^{V}_{out}(0^{+})$ .

Since both  $V_{in}$  and  $V_{out}$  are zero before the cell potential is stepped, and because  $C_{in}$  and  $C_{out}$  prevent  $V_{in}$  and  $V_{out}$  from changing instantaneously, the last term in each of the last two equations may be dropped.  $V_{in}$  may be eliminated between the two equations to give the transfer function of the current-to-voltage converter,

$$T(s) = \mathcal{L}(V_{out}) / \mathcal{L}(I_{cell})$$

$$= \frac{R_{in}R_{f}(R_{out}-GR_{f})}{(R_{out}+R_{f}+sR_{f}R_{out}C_{out})(R_{in}+R_{f}+sR_{f}R_{in}C_{in})+R_{in}(R_{f}G-R_{out})}.$$
(2.5.12)

When s is small enough, the DC transfer function is given to be

$$T(\sim 0) = -R_f / (1 + \frac{1}{G} + \frac{R_f}{R_{in}G} + \frac{R_{out}}{R_fG} + \frac{R_{out}}{R_{in}G}). \qquad (2.5.13)$$

When reasonable limitations are placed on R, R, and R, this

reduces to simply

$$T(\sim 0) = -R_f$$
 (2. 5. 14)

Comparison of Equations 2.5.12 and 2.5.14 show that

$$T(s) = T(\sim 0)/D(s)$$
, (2.5.15)

where D(s) represents the modification of the DC transfer function due to the frequency response characteristics of the operational amplifier.

D(s) may be calculated from the  $(E_{cell}(t), I_{cell}(t))$  data collected for a step potential applied to a dummy cell composed of just a known resistor (for  $R_u$ ). For this cell, the current transform is

$$\mathcal{L}(I_{cell}) = -\mathcal{L}(E_{cell})/R_{u}$$
, (2.5.16)

so

$$D(s) = \frac{T(\sim 0)}{T(s)} = \frac{-R_f \mathcal{L}(I_{cell})}{\mathcal{L}(V_{out})} = \frac{R_f \mathcal{L}(E_{cell})}{R_u \mathcal{L}(V_{out})}.$$
 (2. 5. 17)

D(s) depends on  $R_f$ , so D(s) must be calculated for each of the current-to-voltage converter sensitivities used in the deposition rate measurements.

Combination of Equations 2.5.12, 2.5.14, and 2.5.15 shows that  $\mathcal{L}(I_{cell})$  may be calculated as

$$f(I_{cell}) = -D(s) f(V_{out})/R_f$$
 (2.5.18)

The method for determination of the uncompensated cell resistance may now be summarized. Measurements of the current-to-voltage converter output and of the cell potential down to very small times after application of the step potential are transformed to the real Laplace domain using Equation 2.5.7 for several values of  $\sigma$ . These transforms are used to calculate the frequency domain cell impedance  $Z(\sigma)$  by Equations 2.5.5 and 2.5.18.  $Z(\sigma)$  is plotted against  $1/\sigma$ , the plot is extrapolated linearly to  $1/\sigma = 0$ , and the value of  $R_u$  is taken from the intercept.

#### III. EXPERIMENTAL

## 3.1. Double Layer Capacitance Measurements

The double layer capacitance measurements were controlled by a computer, which was interfaced to the test cell via an instrument consisting of a potentiostat and a special-purpose current-to-voltage converter. This system is block diagrammed in Figure 3.1.1. The computer is programmed to perform the experiment described as follows. The initial potential is set, and a predetermined length of time is passed to ensure a constant-current condition. The residual current is measured a selectable number of times at a selectable rate, a small step potential is added to the initial potential, and the resulting decay-current is monitored the same number of times and at the same rate as for the residual current. The step potential is then removed. A typical data-acquisition cycle is shown in Figure 3.1.2. The cycle may be repeated up to 32 times with a delay between each iteration (usually set to 10 to 20 times the decay-current measuring period) so that the current becomes constant before each step. The current measurements for each iteration are added to the corresponding measurements for the previous ones. The accumulated values are each divided by the number of iterations before performing any calculations with them. The effect of this "ensemble averaging" is to reduce the effect of high- and mid-range-frequency noise.



Figure 3.1.1. Block diagram of the double layer capacitance measurement system, detailing the grounding and shielding.





Figure 3.1.2. Cell potential vs. time and current vs. time plots for one capacitance measurement cycle. The circles indicate the points at which the current is measured.

The computer program allows for several of these measurements to be executed in sequence. The timing and potentials involved in each measurement are independent of the other measurements. Before the sequence of measurements is started, the test electrode is automatically immersed into the electrolyte; it is removed at the end of the sequence.

#### Instrumentation

The circuits of the potentiostatic interface are diagrammed in Figures 3.1.3 through 3.1.7. The potentiostat and current-to-voltage converter sections (Figures 3.1.3 and 3.1.4) are of conventional design. The input signals, one for the initial potential and one for the step, are taken from the two digital-to-analog converters (DACs) of the computer. The cell selector switch permits the instrument to control either a dummy cell consisting of electrical components mounted on the front of the instrument with dual banana plugs or the chemical test cell which is connected at the rear of the instrument. The DC potential offset error of this system can easily be set to  $0 \pm 100~\mu V$  with the two ten-turn balancing potentiometers. The maximum current output for the potentiostat is 20 mA; the current-to-voltage converter will handle up to 5 mA.

The speed with which successive capacitance measurements can be made is improved considerably by the way in which the



Figure 3.1.3. Potentiostat portion of the interface circuit.

Amplifier A: Fairchild 741EHC. Amplifier B: Burr-Brown 3522K.



Figure 3.1.4. Current-to-voltage converter portion of the interface circuit. Amplifier C: Fairchild LM108H.



Figure 3.1.5. Transient buffer portion of the interface circuit.

Amplifier D: Burr-Brown 3522L. Optocoupler:

Texas Instruments TIL 111.



Figure 3.1.6. Transient amplifier portion of the interface circuit. Amplifier E: Analog Devices AD 505K.



Figure 3.1.7. DC amplifier portion of the interface circuit. Amplifier F: Fairchild 741EHC.

current-to-voltage converter output is handled. This voltage is fed through a capacitor (Figure 3.1.5) to the input of a high impedance buffer amplifier (input current less than 2 pA), the output of which is amplified further (Figure 3.1.6), then sent to the analog-to-digital converter (ADC) of the computer. Normally, the input of the buffer amplifier is connected to a source of about +20 mV. Just before the residual current measurements are made, this source is disconnected by means of an FET switch which is controlled by the computer via an optocoupler. The input of the buffer amplifier is then free to rise and fall with the output of the current-to-voltage converter, but always offset by whatever potential difference was across the capacitor when the switching occurred. The switch is returned to the normal state after the last measurement is made on each transient. The transient amplifier is designed to amplify only the difference between the buffer output and the +20 mV initial level. By selecting the various feedback resistors on the current-to-voltage amplifier and the transient amplifier, the output sensitivity for the transient current can be changed from 0.05  $\mu A/V$  to 1 mA/V with three sensitivities available in each decade.

This design permits a considerable amount of residual cell current to flow without driving the transient signal offscale. The level of the residual current has no effect on the capacitance measurements, although it cannot change appreciably during each iteration of the step

voltage. Thus, measurements at different cell potentials can be made in quick succession without having to make any adjustment for the different residual currents which may flow.

Since the transient system does not display the full cell current, another amplifier (Figure 3.1.7) was included for this purpose. This amplifier permits a limited amount of gain adjustment and includes a DC shift network to permit the display of anodic current on a positive scale. The output of this amplifier was connected to a strip chart recorder (Model SR-255 A/B, Heath Company, Benton Harbor, Mich.) to obtain a record of cell current during the capacitance measurements. Both the DC and transient amplifier have  $10~\mu s$  filters at their outputs to reduce high-frequency noise.

Power for the operational amplifiers in this instrument was taken from a variable-voltage dual power supply (Model 1500, Spar Electronics, Inc., San Diego, Calif.) set to  $\pm 15$  V. In order to reduce "cross-talk" between sections, 1.0  $\mu f$  "decoupling" capacitors were placed between each power lead and the zero reference conductor (signal ground) at the point where power was brought into each section of the instrument.

The computer was a PDP-11/20 (Digital Equipment Corporation (DEC), Maynard, Mass.) equipped with a DEC AAll-D digital-to-analog converter (DAC), a DEC AD01-D analog-to-digital converter (ADC), a DEC KW11-P programmable interval clock, and two DEC

DR11-A general device interfaces for input and output of digital information. Other features of the computing system are 8K words of core memory, high-speed paper tape reader and punch, and a graphics terminal (Model T-4002, Tektronix, Inc., Beaverton, Ore.) equipped with a hard-copy unit (Model 4601, Tektronix).

The DAC has two outputs, each with a range of ±10 V, and output impedance specified at less than one ohm. The 12-bit buffer (including sign bit) yields a resolution of 5 mV.

The ADC is a ten-bit unipolar serial-approximations converter with a range of 10 V and a rated accuracy of 0.1%. Conversion time is specified to be 22 µs including addressing time; input impedance is 1000 megohms in parallel with 20 pf.

The interval clock employs a crystal oscillator and operates under program control; count rates of 100 KHz, 10 KHz, and line frequency may be established. The clock has interrupt capability, i.e., it may interrupt a running program to initiate another process (for instance, the acquisition of data) after a given number of counts.

Since this general purpose computer was used in several other research projects, being wheeled between laboratories as necessary, an interface panel was designed for it, so that electrical connections could be made quickly and easily. The panel uses BNC jacks for the analog signals so that connections could be made with coaxial cables;

the digital signals are presented at multi-pin jacks for connecting flat multi-conductor cables.

The two channels of the DAC, connected to the two inputs to the potentiostat, provide a DC bias potential (initial potential) and the step potential required for the capacitance measurement. The DC equation describing the potentiostat control, developed in Appendix 2, is

$$E_{cell} = R_6 \left[ \frac{V_{DA0}}{R_0} + \frac{V_{DA1}}{R_1} \right]$$
 (3.3.1)

where the meanings of the symbols are indicated in Figure 3.1.3.

(This equation applies only for signals which change much more slowly than the time constants of the potentiostat circuits.)

Since the initial potentials and the step potentials desired will always be within the ranges  $\pm 5$  V and  $\pm 100$  mV, respectively, and the DAC outputs have a  $\pm 10$  V range, the resistor ratios  $R_6/R_0$  and  $R_6/R_1$  were chosen to be about 0.5 and 0.01, respectively. This design allows the potentials to be set as precisely as possible, while maintaining adequate range.

It was not necessary to know the individual resistances for  $R_0$ ,  $R_1$ , and  $R_6$ , as calibration was easily handled by insertion of appropriate calibration factors in the controlling program. These calibration factors were determined by placing randomly chosen

numbers in the 12-bit DAC output registers and carefully measuring the potential produced at the cell potential test point (Figure 3. 1.3).

These potential measurements were made with a voltage reference source (VRS Model EU-80A, Heath Co., Bentor Harbor, Mich.) and a digital microvoltmeter (Model 8200A, John Fluke Manufacturing Co., Inc., Seattle, Wash.). The VRS input was connected between the cell potential test point and the zero reference conductor; the microvoltmeter was connected to the VRS output. With the VRS in the difference mode, and adjusting its dials to obtain zero output, the cell potential is displayed on its face. This procedure was used to take advantage of the 0.1% stability of the VRS voltage. (This degree of stability could not be obtained with the microvoltmeter.)

Ten of these measurements were made for each channel of the DAC, keeping the channel not being tested set to zero.

The data for each channel was fitted to a linear least-squares line. The calibration factors were determined from the slopes of the lines to be 452. 1 ± 0. 1 DAC counts/volt for the initial potential and 22.282 ± 0.005 DAC counts/millivolt for the step potential, where the tolerances given are the standard deviations in the slopes calculated in the least-squares computation. The intercepts were close enough to zero (< 0.5 mV) to be ignored.

The measurements were made with only negative potentials for  $V_{\mathrm{DA0}}$  and only positive potentials for  $V_{\mathrm{DA1}}$  because it was found that there was a significant non-linearity at the zero-crossing in the outputs of both DACs. This was satisfactory for the experiments being conducted, since only negative cell potentials and positive-going steps were used. A few of these measurements were repeated each day that the system was used; the calibration did not change over the several months of use.

A major problem in interfacing the potentiostat was in eliminating various types of noise introduced into the potentiostat by the computer. Analog noise in the computer ground conductors may easily be a tenth of a volt without impairing the operation of the computer; however, if this noise is allowed into the potentiostat circuit, the low-level signals there may easily be obscured. Accordingly, the grounding and shielding of the system (Figure 3.1.1) is important. To prevent unnecessary currents through the zero reference conductor, it was connected to the shield at the DAC ground terminal in the computer. The instrument shield was "segmented" from the shields of the cell and of the cables going to the computer (35, pp. 48-49), i.e., it was connected not to the cable shields, but to the shielded zero reference conductor from the DAC where the conductor enters the potentiostat shield. This technique provides the potentiostat with the best approximation of the zero reference potential, thus reducing

capacitative coupling of the shield potentials into the highly sensitive feedback elements. The cell lead was a shielded three-conductor cable. The shield of the lead was connected to the potentiostat shield to protect the high-impedance input to amplifier B from picking up ambient electric fields.

Provided that the interface power supply was turned on for several hours in advance, and the computer for at least five minutes, the four balance potentiometers were found to need adjustment very infrequently; nevertheless, the power supply voltages were checked and corrected to 15 V (±0.01 V) every few weeks, and the DC balance of the instrument was normally checked with the Fluke microvoltmeter within a few hours before the capacitance measurements were conducted. The balancing procedure is as follows:

- 1) The instrument was connected to a dummy cell or to the reference and auxiliary electrodes of a real cell.
- 2) The DAC outputs of the computer were set to zero volts.
- 3) The transient buffer switch (Figure 3.1.5) was set to the normal state (bit #1 of the DR11-A set to 1).
- 4) The test point in the potentiostat circuit (Figure 3.1.3) was monitored and adjusted to 0  $\pm$  100  $\mu V$  if necessary with the balance potentiometer of amplifier A.
- 5) The current-to-voltage converter test point (Figure 3. 1. 4) was monitored and adjusted to  $0 \pm 100 \ \mu V$  if necessary with

- the balance potentiometer for amplifier C.
- 6) The transient amplifier test point (Figure 3. 1. 6) was monitored. With the transient sensitivity set to 0.05  $\mu$ A/V, the test point was set to +20 ± 1 mV.
- 7) The DC amplifier test point (Figure 3.1.7) was monitored and adjusted if necessary to  $0 \pm 100 \, \mu V$  with the balance potentiometer of amplifier F.

The one part of the cell-to-computer interface which remains to be discussed is the electrode dropper, a device for automatically immersing the test electrode at the beginning of the series of measurements and removing it at the end. This device employs a solenoid under computer control. Figure 3.1.8 is a pictorial diagram of the device. The electrode body (a 3/8" diameter Teflon rod) is mounted on the lower end of the Teflon rod of the dropper with a small piece of rubber tubing. When the solenoid is activated, the electrode is lifted from the solution; when deactivated, the electrode is dropped into the solution.

Figure 3. 1. 9 shows the circuit for switching the solenoid current. A TTL low at bit #0 of the DR11-A forward-biases Q1, cutting off the base current to Q2. Thus, the solenoid is deactivated and the electrode is down. A logic high at the input to this circuit causes the emitter of Q1 to have a higher potential than that of the collector. This results in reverse operation of Q1, which provides



Figure 3.1.8. Pictorial diagram of the electrode dropper.



Figure 3.1.9. Schematic diagram of the electrode dropper interface circuit. Q1: SE8541. Q2: 2N4237. D1, D2, D3, D4, D5: silicon signal diodes. Sol.: Deltrol Model D30 solenoid, 80 ohm.

base current for Q2. In this condition the solenoid is on, and the electrode is up. Power for this circuit is obtained from another Spar deluxe dual power supply with the two outputs connected in series to make a total of 24 V.

## Programming

Programs were written to enable the PDP-11 to control the potential-step measurement, to acquire the data, and to calculate desired quantities from the data. Functions such as punching the data onto paper tape and plotting the data on the Tektronix graphic terminal were also included in the programs.

Programs were written in two languages, BASIC and PAL-11.

BASIC is a relatively high-level language designed to facilitate computations with floating-point numbers on small computers. Input and output routines for the teletype (or Tektronix terminal) are part of the BASIC program. The BASIC language is similar in level to FORTRAN; many statements in BASIC have analogous statements in FORTRAN.

However, there are fundamental differences in their operation. A FORTRAN program is compiled in its entirety before execution; a BASIC program is compiled and executed line-by-line. An object program cannot be obtained. The BASIC package contains a run-time editing feature. The result of these differences is that FORTRAN is

quicker in execution, but that BASIC makes program changes much easier.

PAL-11 is the DEC assembly language for the PDP-11. After a PAL-11 program is written it is compiled by the PAL-11 compiler which produces a paper tape containing the equivalent binary instructions (machine language). This binary (object) program is loaded into core memory and executed.

Both types of programming were used since it was desired to have both the convenient computational capability of BASIC and the capability of assembly language for accessing particular computer addresses. Whereas BASIC automatically chooses arbitrary locations for storing numbers, experimental control and the taking of data necessitate that particular locations, such as control and status registers and data buffers of the input-output devices, be accessed individually.

Three program packages, named CAP, PLT, and CCPVE, were written to obtain and interpret the capacitance data. All are quite similar in construction; each consists of a BASIC program with subroutines written in PAL. The functions performed by these packages are contained in program modules, which are indicated in Table 3.1.1. The operator may indicate which module is to be performed by typing the corresponding module number. Generally speaking, CAP contains the modules necessary to specify how the measurements are

Table 3.1.1. Functions performed by the program modules.

| Module<br>Number | Program | Function                                                                                                                            |
|------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0                | CAP     | Make a series of capacitance measurements.                                                                                          |
| 1                | CAP     | Print the sequence numbers of capacitance measurements containing offscale data.                                                    |
| 2                | all     | List the data on the graphics terminal.                                                                                             |
| 3                | CAP     | Punch the parameters for the measurement onto paper tape.                                                                           |
| 4                | PLT     | Plot current vs. time.                                                                                                              |
| 5                | PLT     | Plot ln(I; -I; -Ib) vs. t;                                                                                                          |
| 6                | PLT     | Plot residuals of the current measurements from the least-squares line vs. time.                                                    |
| 7                | all     | Calculate C, $R_u$ , and $R_F$ . (In CCPVE, the                                                                                     |
|                  |         | printing of results is optional.)                                                                                                   |
| 8                | CAP     | Punch the data onto paper tape.                                                                                                     |
| 9                | all     | Input the measurement parameters from the keyboard and/or from paper tape. (Abbreviated in PLT and CCPVE for input from tape only.) |
| 11               | all     | Input old data from paper tape.                                                                                                     |
| 12               | all     | List the measurement parameters.                                                                                                    |
| 13               | all     | Input the value of the effective overall feedback resistor for the current-to-voltage converter.                                    |
| 14               | all     | Input the maximum and minimum times for the data to be used in the calculation of module 7.                                         |
| 15               | CCPVE   | Calculate, list, and plot the specific capacitances and standard errors of the specific capacitances.                               |
| 16               | CCPVE   | Input the electrode area and its uncertainty.                                                                                       |

to be made, to take the data, to list it, and to calculate the capacitances according to the method previously discussed, PLT contains the modules necessary to make diagnostic plots of the data points for a capacitance measurement, and CCPVE calculates the specific double layer capacitances for a series of measurements and plots them vs. cell potential. Appendix 3 contains listings of each of these program packages.

### Operation of the Programs

Figure 3. 1. 10 is a demonstration of the use of CAP. The parts typed in by the operator have been underscored. The following remarks are keyed to the labelled points on Figure 3. 1. 10.

A. The BASIC program is loaded into the computer memory using the high-speed paper-tape reader and the program announces itself.

- B. BASIC is instructed to halt so that the machine-language subroutines may be loaded using the high-speed paper-tape reader.

  After the loading, BASIC is automatically restarted and announces that it is "ready."
- C. This command causes the BASIC-language program CAP to be loaded from the high-speed paper-tape reader.
- D. The line containing the potentiostat calibration factors is listed to assure that the most recent calibration factors are present.

Figure 3.1.10. A conversation with CAP.

```
A PDP-11 BASIC, VERSION ØØ7A
В
    *0 H
    READY
C
    OLD
    READY
D
   LIST3300
    3300LETK1=452.1:IFM>4THENLETK1=22.282
    READY
E
    RUN
    SUPERVERSION(11-6-73)
   CHOOSE?9
  NO. SETS TO READ?
   DONE, DELETE, CHANGE, ADD; 0, 1, 2, 373
    5E0?1
    ?<u>-1</u>
?7
    ?1
    ?.015
    210
    2.0015
    ?10
    71
K ERROR AT PARAM +?-6
    SEQ?
M NO. SETS TO READ?
N DONE, DELETE, CHANGE, ADD; Ø, 1, 2, 3?
O CH005E?3
   BEGIN, END SEG +21.8
Q CHOOSE?
R GO, LIFT WHEN DONE?
   CHOOSE?2
```

```
BEGIN, END SEG #21,1
                                TIME IN SEC
RUN .
                1
INIT.
               -.3997788 U
                              START
                                              1
                7.001167 MU
                              ITER
                                               .015
STEP
MAX OUT
                1.25 V
                              DECAY
                                               .0015
RF
        123 AT LINE 1420
ERROR
 Ø OHM
NO. ITER.
                10
                              NO. PTS.
                                              10
TIME
               UOLTS
 .00015
                .3027344E-1
 .0003
                .2990723E-1
 .00045
                .2905273E-1
                .2893066E-1
 .0006
 .00075
                .0279541
                .0279541
 .0009
 .00105
                .2807617E-1
 .0012
                .2746582E-1
                .2819824E-1
 .00135
 .0015
                .2868652E-1
 .00015
                .8479004
 .0003
                .6987305
 .00045
                .576416
                .4769287
 .0006
 .00075
                .394843
 .0009
                .3278809
 .00105
                .2735596
 .0012
                .2301025
 .00135
                .1923828
 .0015
                .1621094
```

```
T CH005E713
    7200100
   CHOOSE 914
U
    ?,9
    CH005E28
V
    CHOOSE?7
    BEGIN, END SEG . ?1,1
                                   TIME IN SEC
                    1
    RUN .
                                 START
                   -.9997788 V
    INIT.
                                                 .015
                                 ITER
                    7.001167 MU
    STEP
                                                 .0015
                                 DECAY
                    1.25 V
    MAX OUT
                    200100 OHM
    RF
                                                 10
                                 NO. PTS.
                    10
    NO. ITER.
    FOR DATA BETHEEN Ø AND 9 SEC
                                                  10
                                  GAMMA
                   RES CURR
                                                 .5000873E-5
                                   .124Ø826E-7
                    .1431779E-6
                                                  .3112523E-1 *
                                   194.3703 %
                    2.352695 %
     STD. DEVS.
         TAU= .740607E-3 SEC
         RUNC= 1396.524 OHMS +/- .4836922 $
         RFAR= 562837.9 OHMS +/- 194.3709 %
         CAP = .5316376E-6 UF +/- .9662633 %
  Y CHOOSE?
```

If re-calibration is required, this line could be changed by simply retyping it, including the line number, at this point.

- E. The program is started and announces itself (the "super-version" of CAP).
- F. Module #9 is selected to input the parameters for a measurement.
- G. Since no parameters are to be read from paper tape, a zero is indicated by typing a "carriage return."
- H. Typing a "0" (a carriage return has the effect of a zero)
  here would terminate the execution of module #9. A "1" would indicate that the next parameter set(s) on the tape being read are to be skipped. A following question would ask for the number of sets to skip. A "2" would cause the next parameter set(s) to be read in with changes. Questions would follow to determine which parameters are to be changed, and in how many sets they are to be changed. The "3" which is entered requires that all the parameters in the set be entered from the keyboard.
- I. The sequence number of the current parameter set is entered.
- J. The measurement control parameters are entered in the following order:
  - 1) Initial cell potential (volts),
  - 2) Step potential (mV),

- 3) Initial delay time before the first step (sec),
- 4) Time to wait between iterations of the measurement cycle (sec),
- 5) Number of iterations of the measurement cycle,
- 6) The length of time that the data is to be taken after application of the step potential (sec),
- 7) The number of current measurements to be obtained both before and after application of the step potential,
- 8) Maximum allowable output to the ADC in volts. This causes the full scale sensitivity of the ADC to be set to 1.25 V, 2.5 V, 5.0 V, or 10.0 V, whichever is smallest but larger than the number entered. (In this case, the 1.25 V scale would be selected.)
- K. A negative number indicates that no errors have been committed in entering the parameters. Entering a (positive) parameter number allows that parameter to be changed.
- L. Another set of measurement parameters is requested, but entering a sequence number of zero terminates this request.
  - M. No parameter sets are to be read from paper tape.
- N. All desired parameters have been entered, so execution of module #9 is terminated. (Up to 25 sets of parameters could have been entered.)
  - O. Module #3 causes the parameters to be saved on paper tape.

- P. The sequence numbers of the parameter sets to be punched are requested. The numbers are inclusive. Entering "1,8" would cause the first through the eighth sets to be punched, if there were that many. If not, it punches all the sets. In this case, only one set is punched, since only one had been entered.
- Q. Choosing module #0 indicates that double layer capacitance measurements are to be executed according to the parameters entered in module #9.
- R. Any response causes the measurements to be executed. A "'l" would cause the electrode to be raised out of the solution upon completion of all the capacitance measurements. A "carriage return" causes the electrode to remain in the solution at the potential for the last measurement. The data are stored in place of the parameters, so module #9 must be re-executed before more measurements can be made.
  - S. Module #2 lists the data.
- T. The error in the data heading above indicates that the feedback resistance had not been entered. Module #13 allows this to be done.
- U. Module #14 allows the operator to specify the time range (after application of the step) over which the data are to be considered valid. Thus, any offscale data may be omitted from the calculations. In this case, the entry permits data from zero to nine seconds after

the step to be used (i.e., all the data).

- V. Module #8 causes all the data taken in the last execution of module #0 to be punched onto paper tape.
- X. Module #7 calculates the double layer capacitance and other quantities relating to the measurement. ("Res curr" refers to  $I_b$ , "gamma" to  $I_s$ , "IØ" to  $I_o$ , and "tau" to  $k_2$ . The other abbreviations should be self-evident.)
- Y. Program CAP does not terminate by itself. However, its operation may be interrupted at any time by hitting the "DLE" key on the Tektronix terminal or the "control P" if the teletype is being used. Following the interruption with the statement "GO TO 185" causes the program to print "CHOOSE?" so that another module may be executed. Stored variables are not lost in this interrupt-and-restart procedure.

A paper tape containing the appropriate parameters must be placed in the tape reader before execution of modules #1, 2, 7, 8, and 12. A parameter tape is required for module #9 as well, unless input is entirely from the keyboard. If a tape is not in the reader, the computer halts; it may be restarted by placing the proper tape in the reader and pressing the "continue" switch on the computer console.

The programs PLT and CCPVE operate in much the same way as CAP. PLT contains only the segments necessary for the plotting (vs. time) of the current,  $\ln(I_j - I_s - I_b)$ , or the residuals from the linear least-squares fit. Figure 3.1.11 is a sample of the current vs.



Figure 3.1.11. A typical plot of cell current vs. time produced by CCPVE.

time plot produced by PLT, and Figure 3.1.12 shows a least-squares residual plot. CCPVE contains only the segments necessary to plot  $C_{d\ell}$  vs.  $E_{cell}$ ; Figure 3.1.13 is an example of this type of plot.

# The Cell and Electrodes

The cell used for the capacitance measurements was a three-chamber type made of Pyrex glass; the chambers are connected via medium-porosity glass frits. The reference and auxiliary electrodes were placed together in one of the outer arms when concentrated electrolytes were studied, and in opposite arms for dilute electrolytes. The working electrode was inserted into the center chamber. (The different placement of the reference electrode was to make  $R_{u}$  of a size to produce a cell time constant of one millisecond or so in the solutions used.) The solution levels in the arms were kept lower than in the center chamber to prevent contamination of the electrolyte in the center chamber.

The cell was water-jacketed by means of a Plexiglas box through the top of which each arm of the cell was sealed. Water from a bath maintained at  $25.0 \pm 0.2$  C by a Cole-Parmer "Tempunit" and a cold-water coil was circulated through the jacket at about three liters per minute by a centrifugal pump with a magnetically driven impeller. A Delrin cover with holes for the test electrode and deaerating capillary reduced the likelihood of foreign material falling



Figure 3. 1. 12. A typical plot of the least-squares residual vs. time produced by CCPVE.



Figure 3.1.13. A typical plot of specific double layer capacitance vs. cell potential produced by CCPVE.

into the center chamber of the cell and lowered the rate at which air might mix with the nitrogen atmosphere over the solution.

Electrostatic shielding for the cell was provided by placing the cell and its water-jacket in a shield consisting of a box lined with copper wire screen. The shield was connected to the computer interface as shown in Figure 3. 1. 1. Sixty-hertz noise introduced through the water bath was eliminated by adding a large amount of sodium sulfate to the bath and connecting the bath to the cell shield by means of a one-foot piece of 1/8" diameter copper rod sealed through the Plexiglas water-jacket.

The working electrode used for the capacitance measurements was designed for use in the deposition transient measurements as well. It consisted of the cross-section of a 1/8-inch diameter silver wire (0.0792 cm<sup>2</sup> area) surrounded at a distance of about 0.005 inch by a copper ring, the purpose of the ring being to prevent non-perpendicular diffusion at the edges of the electrode in the deposition transient measurements. The ring was insulated from the disc by means of a Teflon sleeve. The ring and the disc were press-fitted together into a Teflon-rod body to form a flush, water-tight mount. The surfaces of both metals were ground to a rough finish with sand-paper, then with wet 500-mesh alumina first on smooth glass, then on cotton gauze. The final polishing stage was with "Gamal" (Fisher Scientific Company) gamma alumina particles of less than 0.1 micron

diameter in water on cotton felt.

Before the capacitance measurements were obtained, both the ring and disc were silver-plated at a current density of about 5 mA/cm<sup>2</sup> using vigorous bubbling of nitrogen in a plating bath consisting of approximately 0.25 M AgCN, 0.35 M NaCN, 0.5 M Na<sub>2</sub>CO<sub>3</sub>, and 1.0 M NaCl. Under these conditions, the plating cell potential oscillated between about -0.87 V and -0.67 V vs. SCE with a period of about 30 sec. The reason for this oscillation was not investigated.

The measurements were performed on an electrode which had been cycled repeatedly through this plating and polishing on Gamal. (The rough grinding operations were performed only infrequently, when the electrode was new, and when the repeatedly plated surfaces of the ring and disc had nearly grown together.) After several cycles, a moderately reflective surface was formed. The final step of the electrode preparation was always the plating step, followed by a rinse with the glass-distilled water. The electrode was then immersed in the test solution, and the measurements were started.

The reference electrode was a ceramic-tip saturated calomel electrode (SCE) made by A.H. Thomas Company. Its lead was replaced with a phono jack mounted on top of the electrode so that the shielded cell lead from the potentiostat could be connected close to the electrode. This modification reduced the noise in the current

measurements considerably. A coil of platinum wire served as the auxiliary electrode.

#### Solutions

Capacitance measurements were conducted in solutions containing amounts of sodium cyanide ranging from 0.0162 M to 0.942 M. In each of these solutions, an amount of sodium fluoride was included to bring the total electrolyte strength to 0.942 M. Measurements were also conducted in dilute sodium fluoride solutions (0.00500 M. 0.0100 M, and 0.0200 M). The concentrated solutions were prepared from reagent grade salts (sodium cyanide, Mallinckrodt #7616: sodium fluoride, B & A #2250) and water distilled in a Corning AG-3 all-glass still. The dilute solutions were prepared from "ultrapure" sodium fluoride (Alfa #87629) and water freshly distilled in the Corning still, then redistilled in a two-stage still made from standard taper glassware (joints assembled without lubricant). Each stage of this still employed a 50-cm Vigreaux column; potassium permanganate was added to the first stage still pot. The solutions were filtered through a bed of powdered alumina (B & A #1236) which had been fired to 400 C for a few hours. All solutions were stored in Pyrex; they were usually used within a few days of preparation.

## Procedure

The cell was cleaned with chromic acid cleaning solution and rinsed thoroughly with the glass-distilled water. Then the center compartment was filled with the solution in which the measurements were to be made. The solution was then thermostatted and sparged for at least one hour with "prepure" nitrogen (Grade 4.5, Airco, Inc., Murray Hill, N.J.). The nitrogen was passed through a column of activated charcoal and introduced into the electrolyte by means of a disposable capillary pipet.

The potentiostat system was balanced, the program CAP was started, and the parameters were read in from a previously prepared paper tape using module #9. All the double layer capacitance measurements were conducted using ten iterations of the step potential, making ten measurements of the cell current during each step. The 1.25 V ADC sensitivity was used for all measurements. The values of the other parameters will be given in the results.

The auxiliary and reference electrodes were placed into the cell and connected to the potentiostat. The sparging was stopped. The test electrode was repolished and replated, rinsed, placed into the electrode dropper, and connected to the potentiostat. The computer-controlled measurement sequence and the strip-chart recorder for recording the cell current were then started simultaneously. The

measurement parameters invariably started with a waiting period at -1.7 V followed by another period at a potential anodic of the potential of zero charge. A stream of nitrogen bubbles was directed against the electrode at each of these potentials to wash away any small bubbles which might be present on the electrode surface. After the series was completed, the current measurements were checked to see if all were on scale (module #1), then stored on punched paper tape (module #8).

Several series of measurements were usually collected in one session. Sparging with nitrogen was resumed between the series.

Before each series the electrode was repolished and replated.

#### 3.2. Deposition Rate Measurements

### Measurement Apparatus

The apparatus for making the deposition rate measurements is block diagrammed in Figure 3.2.1. The cell potential was controlled by means of a potentiostat (Model 173, Princeton Applied Research Corp., Princeton, N.J.) with a plug-in module (Model 179, Princeton Applied Research) to monitor the cell current. This potentiostat contains two potential sources, either one of which may be selected to be applied to the cell.



Figure 3.2.1. Block diagram of the deposition transient measurement apparatus.

The voltage at the point labelled "Iout" on the Model 179 is proportional to the cell current, and is monitored with the Fluke digital microvoltmeter mentioned before. The voltage at "Iout" out is fed through a blanking circuit to the inverting input of a transient recorder (Model 610, Biomation Corporation, Cupertino, Cal.).

The blanking circuit was necessary to prevent the transient recorder input amplifier from becoming saturated by the large capacitance spike when attempting to observe the relatively small signal later in the transient. The output of the blanking circuit normally is the same as the input. However, when the input rises above a set level, the output drops to nearly zero. Figure 3.2.2 is a schematic of the blanking circuit. The ±12.4 V supply voltage for this circuit is obtained by using four Zener diodes to reduce the ±24 V supply which is available at the accessory socket of the potentiostat.

The transient recorder, when triggered, records the input signal into a 128 word x 6 bit digital memory. The time interval over which the first 100 words of the memory are filled can be varied from 10 µs to 5 sec by factors of 1, 2, and 5. The contents of the memory are repetitively displayed on the oscilloscope. When the "plot" button on the transient recorder is pushed, the memory is played out onto the X-Y recorder (Model F-80, Hewlett-Packard, Palo Alto, Cal.) at a rate of ten words per second. The trigger input of the transient recorder was connected to an output on the potentiostat which changes



Figure 3.2.2. Schematic diagram of the blanking circuit. Comp.: 1/4 of a Fairchild LM399. D: 1N456. FET: 2N5457. Z: 1N4735.

state when the potentiostat is switched from one of its potential sources to the other. Thus, when the step potential was applied by switching between the two sources, the transient was recorded.

# Cell and Electrodes

The measurement cell was the same as for the double layer capacitance measurements, although only the center compartment was used. The cell was maintained at  $25.0 \pm 0.2$  C in the same way as described previously.

The working electrode was the same as for the other measurements and was prepared in the same way. Again, only the disc part of the electrode was connected to the test electrode lead of the potentiostat. The ring, however, was connected to the ground clip of the potentiostat. Since the potentiostat holds the test electrode at a virtual ground, the ring has the same potential as the disc. Thus, diffusion of solution species to the ring is the same as that to the disc, thereby eliminating any non-perpendicular diffusion which might otherwise occur at the edge of the disc. The auxiliary electrode supplies current for both the disc and the ring, but only the current drawn by the disc is measured, the rest being drawn to ground through the ring.

The reference electrode was the same commercial ceramic-tip SCE as described before. For the deposition rate measurements,

however, the reference electrode was placed in a tube drawn out to a fine J-shaped capillary, (a "Luggin" capillary) the end of which was placed within a millimeter or so of the surface of the disc. The tube was filled with the test electrolyte.

The auxiliary electrode was made of a 19-gauge platinum wire wound into a one-centimeter helix which was placed around the Luggin capillary tip. This close placement of the auxiliary electrode produced a low total cell resistance, which enhanced the rise-time of the potentiostat. The slight amount of product (presumably oxygen) produced at the auxiliary electrode has no effect on the measurements.

All three electrodes were held in the cell in a fixed geometric arrangement by means of a specially designed cell lid made of Delrin plastic. Figure 3.2.3 shows this. The auxiliary electrode passes through a notch in the cell lid next to the Luggin capillary. Both the Luggin capillary and the auxiliary electrode are prevented from moving by two tight-fitting notched Teflon rings (parts F in the figure). The test electrode is held in a snug Delrin collar which may be moved horizontally in a slot in the cell lid and fixed into position with screws. Vertical positioning of the working electrode is provided by slipping the tight-fitting Teflon ring (part G in the figure) to the desired position.



Figure 3.2.3. Pictorial diagram of the deposition transient measurement cell. A: Pyrex cell. B: Delrin cell lid.

C: Pyrex Luggin capillary. D: Platinum auxiliary electrode. E: Ring-disc working electrode with Teflon body. F: Notched Teflon retaining rings.

G: Teflon ring. H: Movable Delrin collar.

### Solutions

The deposition current transients were measured in solutions containing 0.03 M AgCN and amounts of NaCN ranging from 0.05 M to 1.0 M. The ionic strength was adjusted to 1.0 by addition of NaF. The solutions were prepared from pure AgCN (B & A #2182), reagent grade NaCN (Mallinckrodt #7616), reagent grade NaF (B & A #2250), and water distilled in the Corning AG-3 all-glass still. Some solutions were filtered through alumina as for the capacitance measurement solutions, but it is doubtful that this has any effect. All solutions were stored in glass; they were usually used within a few days of preparation. Immediately before the measurements the solutions were sparged for at least one hour with prepure nitrogen which was first passed through activated charcoal.

### Procedure

After sparging the test solution, the electrode was prepared and positioned in the solution close to the Luggin capillary. The disc electrode was connected to the working lead of the potentiostat, and the ring to the ground lead.

The potentiostat was switched to the "external cell" position and the cell potential was adjusted to make the voltage at "I " equal to zero. Then a stream of the nitrogen was directed across the face

of the electrode to clear it of any tiny bubbles which might be present.

Immediately afterwards, the potentiostat potential sources were switched momentarily to produce the cathodic potential step, and the transient signal was played out onto the recorder. Measurements of the current transient were carried out repeatedly, using recording spans of 10 µs, 20 µs, 50 µs, 100 µs, etc. to about 1.0 sec. after which time the signal was nearly constant. The electrode was bubbled with nitrogen before each transient was recorded. The transient recorder sensitivity was adjusted to display the last half of each scan as a deflection of at least half scale (insofar as possible). For measurements of the currents after the signal peak, the level of the blanking circuit was set to coincide with the full-scale sensitivity of the transient recorder. For signals before the peak, the blanking circuit was set to the "pass" position. After about every eight scans, the electrode was repolished and replated.

After the current transients were recorded, the input to the transient recorder was disconnected, and the " $E_{\rm cell}$ " output of the potentiostat was connected to the non-inverting input. Transient recordings of the cell potential were then made, using successive time spans from 10  $\mu s$  to a time at which the signal became constant.

#### IV. RESULTS

## 4.1. Estimation of the Potential of Zero Charge

The double layer capacitance of the silver electrode was measured over a range of potentials in dilute sodium fluoride solutions in order to estimate the potential of zero charge in the absence of specific adsorption. After the electrode was prepared for these measurements, it was prepolarized at -1.7 V vs. SCE for a measured period of time, then at a "waiting" potential which ranged from -0.48 V in some experiments to -0.8 V in others for another period of time. The prepolarization scheme was followed by a cathodic "scan" of measurements, i.e., the measurements were collected at uniform time intervals over a series of uniformly spaced cell potentials, each potential being a few millivolts cathodic of the previous one. More information about the measurement parameters is given in Table 4.1.1.

The standard errors reported by program CCPVE for the capacitances in these measurements were between 1% and 2%. Plots constructed by program PLT of the least-squares residuals for randomly selected capacitance measurements revealed a sinusoidal variation with the time after the step, indicating that the major source of the standard error is a lack of fit of the measurements to the model, rather than random noise. A minimum in the capacitance vs. cell

potential curve always occurred in these measurements. The potentials of the minima could be determined to within ±10 mV from the plots.

Table 4.1.1. Measurement parameters used for dilute sodium fluoride solutions.

|                                       | Concentration |          |                  |
|---------------------------------------|---------------|----------|------------------|
| Parameter                             | 0.00500 M     | 0.0100 M | 0.0200 M         |
| Waiting potential                     | -0.6 V        | -0.48 V  | -0.8 V           |
| Step potential                        | 10.0 mV       | 8.0 mV   | 5.0 mV<br>5.4 mV |
| Time between measurements             | 2 sec         | 2 sec    | l sec            |
| Potential change between measurements | 20 mV         | 35 mV    | 10 mV            |
| Approximate cell time constant        | 7.5 ms        | 5.5 ms   | 2.5 ms           |

As stated in Section 2.3 the potential of zero charge may be identified with the potential of the capacitance minimum obtained for a dilute solution of a non-specifically adsorbed electrolyte. The potential of zero charge of a clean polycrystalline silver surface has been measured by others in this way (25, 29, 47); those workers obtained values ranging from -0.94 V to -0.97 V vs. SCE. However, in this work, as shown in Figures 4.1.1 through 4.1.3, the potential of the minimum was found to depend greatly on the prepolarization history of the electrode. The plots show that the potential of the minimum always drifts to more anodic potentials as the electrode stands in the



Figure 4.1.1. The potential of the capacitance minimum in 0.00500 M sodium fluoride solution vs. the time waited at -0.6 V for various times of polarization at -1.7 V.



Figure 4.1.2. The potential of the capacitance minimum in 0.0100 M sodium fluoride solution vs. the time waited at -0.48 V for various times of polarization at -1.69 V.



Figure 4.1.3. The potential of the capacitance minimum in 0.0200 M sodium fluoride solution vs. the time waited at -0.8 V for various times of polarization at -1.7 V.

solution at moderate potentials anodic of the minimum. This drift is reduced substantially, but not eliminated, by prepolarization at -1.7 V for at least 100 sec.

Other workers have also reported cathodic electrode pretreatment to be necessary for obtaining reproducible capacitance measurements (29, 47). This cathodic prepolarization is thought to drive off or chemically reduce specifically adsorbed impurities (which might be anions, uncharged organic molecules, or adsorbed oxygen). The generated hydrogen, which is adsorbed at the electrode, is evidently desorbed quite rapidly as the electrode is returned to more moderate values. This premise is supported experimentally by the fact that if capacitance measurements are made in an anodic scan from -1.7 V, the measured values are much higher than measured on a cathodic scan, but quickly descend toward the values usually obtained. Adsorption and desorption of neutral substances are normally accompanied by high electrode capacitances (9, p. 70-71).

The anodic drift of the potential of the minimum may be due to adsorption of organic impurities from the solution. Impurities have been suggested as the cause of instability in similar measurements at mercury electrodes (12, 20, 21). The adsorption of a variety of substituted aliphatic substances has been shown to cause anodic shifts in the potential of zero charge by as much as 0.2 to 0.3 V (4).

However, some of the minima recorded in our experiments occurred at potentials too anodic to be explained in this way. These minima may involve surfaces containing adsorbed oxygen. The early measurements (8, 28) of the potential of zero charge of silver produced various values much more anodic than those already mentioned; in a more recent paper (5) a value of -0.69 V vs. SCE was reported, and it was mentioned that the surface may have contained adsorbed oxygen. In our experiments, the most rapid changes of the potential of the minima (Figure 4. 1. 2) occurred after the shortest cathodic polarizations (5 sec and 30 sec). These measurements were conducted with the most anodic "rest" potential used in any of the experiments; this may have resulted in the adsorption of additional oxygen, which would account for the large anodic drift in those measurements.

In light of the foregoing suppositions, it would be reasonable to believe that the t = 0 intercepts of the curves in Figures 4. 1. 1 through 4. 1. 3 should be the best estimates of the potential of zero charge of a clean silver surface, and that the curves obtained with the larger cathodic polarization times are the more reliable. For these reasons, the value of the potential of zero charge was assigned to be -0. 94 V, based on the six series of measurements for which the polarization times were at least 100 sec. The intercepts of these curves range from -0. 93 V to -0. 98 V. Since the difference between the results for the 0.00500 M solution and for the 0.0200 M solution

is quite small, and may be due just to the uncertainty of the measurements, fluoride may be assumed to be only weakly adsorbed. An error of a few tens of millivolts in the potential of zero charge will not produce any serious error in the double layer quantities to be calculated, because they are based mainly on <a href="charge">charge</a> in the double layer charge, rather than the actual value of charge.

# 4.2. Determination of Double Layer Quantities

## Capacitance in Sodium Fluoride-Sodium Cyanide Solutions

The double layer capacitance was measured in four solutions containing 0.00 M, 0.0162 M, 0.1880 M, and 0.942 M, respectively, of sodium cyanide and an amount of sodium fluoride sufficient to make the total electrolyte concentration equal to 0.942 M in each case. The capacitance was measured over as wide a range of cell potentials as possible, the anodic end of the range being determined by the onset of anodic dissolution of the electrode, and the cathodic end by the onset of hydrogen evolution. An increase in the rate of hydrogen evolution results in a decrease of  $R_F$ . When  $R_F$  becomes too small, it effectively short-circuits the double layer capacitance, making measurements of the latter impossible.

The measurements in these solutions were also executed in a cathodic "scan." The successive cell potentials were 65 mV apart;

the delay between measurements was 2.5 sec. Two different sets of parameters were used, with their cell bias potentials offset from each other by 30 mV, so that in two runs, the capacitances would be measured at intervals of no more than 35 mV apart. Each "scan" of measurements was preceded by a prepolarization at -1.7 V for 30 sec, then at a potential anodic of  $E_{zc}$  for another 30 sec. This latter potential was -0.8 V for the 0.942 M sodium fluoride solution, -0.95 V for the 0.942 M sodium cyanide solution, and -0.90 V for the other two. The step potentials were in the range of 5 to 8 mV; the measurement periods were maintained at about three to four times the cell time constants, which varied from about 0.2 ms to 0.9 ms.

Figures 4.2.1 through 4.2.4 show the results of these measurements. The potentials on this plot are electrode potentials, i.e., the cell potentials have been corrected for ohmic drop (which is appreciable at highly cathodic potentials) according to Equation 2.2.42. The standard errors calculated for the capacitance measurements are with few exceptions, less than 1%. The points on these plots represent several repetitions of the measurement sequence, replating the electrode before each run. The good repeatability which occurred in most cases indicates that the plating procedure produces an electrode of the same roughness (same microscopic area) each time, and that the composition of the double layer is well-defined. The most variability between repeated runs occurred in the region of



Figure 4.2.1. Specific double layer capacitance (referred to the macroscopic electrode area) vs. electrode potential for 0.942 M sodium fluoride solution.



Figure 4.2.2. Specific double layer capacitance (referred to the macroscopic electrode area) vs. electrode potential for a solution containing 0.0162 M sodium cyanide and 0.926 M sodium fluoride.



Figure 4.2.3. Specific double layer capacitance (referred to the macroscopic electrode area) vs. electrode potential for a solution containing 0.1880 M sodium cyanide and 0.754 M sodium fluoride.



Figure 4. 2. 4. Specific double layer capacitance (referred to the macroscopic electrode area) vs. electrode potential for 0.942 M sodium cyanide solution.

the cathodic hump in the solutions containing 0.1880 M and 0.942 M sodium cyanide.

## Calculation of Double Layer Quantities

As stated before, Devanathan's assumption holds that  $dq_1/dq$  is zero at the minima of the  $C_{d\ell}$  vs. E curves. Accordingly, for this point, Equation 2.3.1 becomes

$$\frac{1}{C_{dl}} = \frac{1}{K_{m-1}} + \frac{1}{K_{1-2}} + \frac{1}{C_{2-s}}$$
 (4.2.1)

Combining this with Equations 2.3.2 and 2.3.4 gives

$$\frac{1}{C_{d\ell}} = \frac{X_2}{D_{m-2}\epsilon_0'} + \frac{1}{C_{2-s}} = \frac{1}{17.1 \, \mu f/cm^2} + \frac{1}{C_{2-s}}$$
 (4. 2. 2)

If the double layer at silver is anything like that at mercury, the double layer charge will be fairly positive, making  $C_{2-s}$  quite large compared to  $(1/K_{m-1}) + (1/K_{1-2})$ . In this case the diffuse layer capacitance will be of only secondary importance. In light of this, the electrode charge at the capacitance minimum in the sodium fluoride solution was tentatively assigned to be  $13~\mu\text{C/cm}^2$ , the same as Devanathan's estimate for mercury. Then, using the assumption that  $q_1 = 0$  at the minimum, Equation 2.3.7 gives  $C_{2-s} = 336~\mu\text{f/cm}^2$ . Thus  $C_{d\ell}$  can be estimated from Equation

4. 2. 2 to be 16. 3  $\mu f/cm^2$ .

The measured minimum of 32.6  $\mu f/cm^2$  for the sodium fluoride solution is not unreasonable compared to the calculated value, if it is remembered that the solid silver electrode, unlike mercury, is likely to be microscopically rough. The electrode roughness factor may be defined as

 $\rho = \frac{\text{microscopic area of electrode}}{\text{macroscopic area of electrode}}$ 

$$= \frac{\text{microscopic area of electrode}}{C} \cdot \frac{C}{\text{macroscopic area of electrode}}$$

$$= \frac{C_{d\ell} \text{ (with respect to measured area)}}{C_{d\ell} \text{ (with respect to actual area)}}.$$

Therefore, it is estimated that

$$\rho \approx \frac{32.6}{16.3} = 2.00$$
.

This value compares favorably with other estimates of the roughness of a similarly prepared silver electrde (33, 47).

The double layer charge density q (with respect to the microscopic area) was calculated at 20-mV intervals for the 0.942 M sodium fluoride solution according to Equation 2.3.9. The capacitances for this calculation were taken at 20-mV intervals along the line drawn in Figure 4.2.1. (Ten-mV intervals were used at points

along the plot where curvature was most extreme.) Each value of capacitance along this curve was divided by the roughness factor to convert it to terms of microscopic area. The integration of Equation 2.3.9 was performed by summation, assuming the  $C_{\rm d}\ell$  vs. E curve to be linear in each 20-mV interval. As discussed previously, the potential of zero charge for this solution, at which potential the integration is begun, was assumed to be -0.94 V vs. SCE. This calculation produced a value of 14.2  $\mu$ C/cm<sup>2</sup> (in terms of microscopic area) for the double layer charge at the capacitance minimum. For this charge, Equation 2.3.7 gives  $C_{2-s} = 354 \, \mu$ f/cm<sup>2</sup>. Substitution of this value into Equation 4.2.1 does not change the previously estimated value of 16.3  $\mu$ f/cm<sup>2</sup> for the true specific double layer capacitance at this point.

Now,  $q_1$  may be determined <u>via</u> Equation 2.3.11. Program CHARGE was written to perform the calculations for q and  $q_1$  simultaneously. The integrals of Equations 2.3.10 and 2.3.11 were evaluated by summation. Input to the program includes  $\rho$ ,  $K_{m-1}$ , and  $K_{1-2}$  for both the cation and anion, the total electrolyte concentration, and a list of ordered pairs  $(E, C_{d\ell})$ . The list itself must be ordered according to potential. The values of q and  $q_1$  (in  $\mu$ C/cm<sup>2</sup> of microscopic area) for the first potential in the list must also be included in the input data to initiate the integrations. The program uses values of the inner layer capacities corresponding to

the cation when q<sub>1</sub> is positive; otherwise, those for the anion are used. When both fluoride and cyanide were present, the value for cyanide was used, assuming that it was more strongly adsorbed than fluoride. Table 4.2.1 gives these values and the ionic radii upon which they are based. A listing of program CHARGE is included as Appendix 4.

Table 4.2.1. Crystallographic radii and inner layer capacities for some ions.

| Ion             | Crystallographic<br>Radius (A) | K <sub>m-1</sub> (μf/cm <sup>2</sup> ) | K <sub>1-2</sub> (μf/cm <sup>2</sup> ) |
|-----------------|--------------------------------|----------------------------------------|----------------------------------------|
| Na <sup>†</sup> | 0.95 <sup>(1)</sup>            | 67. 1                                  | 23.0                                   |
| F               | 1.36 <sup>(1)</sup>            | 46.9                                   | 27.0                                   |
| CN -            | 1.8 (2)                        | 35.4                                   | 33.2                                   |

<sup>(1)</sup> From ref. (10, p. 45).

The results of program CHARGE for the sodium fluoride solution, assuming  $q_1$  to be zero at the minimum (-1.56 V), are given in Figures 4.2.5 and 4.2.6. The latter figure shows that there is a slight amount of sodium ion adsorption at very cathodic potentials and a small but significant amount of fluoride adsorption at the anodic extreme. The rather wide region about -1.56 V in which  $q_1$  is

From ref. (26). This is the effective length of the ion. It may also be considered to be the effective radius when the ion is freely rotating.

essentially zero indicates that the assumption of  $dq_1/dq = 0$  was a good one.

Unlike the data handled by Devanathan (13) for the mercury interfaces, the cathodic minima in Figures 4.2.1 through 4.2.4 do not all have the same capacitance value. Instead, the capacitance at the minimum rises with cyanide concentration. Therefore, Equation 4.2.1 cannot apply at the minima of all the curves; Equation 2.3.1 implies that the value of  $dq_1/dq$  at the minimum must become larger as the cyanide concentration is increased. Thus, in order to get the constants of integration from Equations 2.3.10 and 2.3.11, it was necessary to find a potential  $E_{neg}$  which was cathodic enough to dispel all adsorbed anions, making the double layers of all the solutions identical.

Although the onset of hydrogen evolution prevented measurement of the double layer capacitance out to a potential at which the capacitance values were the same in all solutions, measurements could be taken close enough to this point that a reasonable extrapolation could be performed. As shown in Figures 4.2.1 through 4.2.4 all of the capacitance vs. cell potential curves were extrapolated to (-2.2 V, 43.0  $\mu$ f/cm<sup>2</sup>). At this point, the values of q and q<sub>1</sub> in the 0.942 M solution of sodium fluoride, and therefore in the other solutions, were found to be 26.2  $\mu$ C/cm<sup>2</sup> and 2.06  $\mu$ C/cm<sup>2</sup>, respectively. (As a check on the criticality of the extrapolation, the curves

were also extended to (-2.0 V, 42.4  $\mu f/cm^2$ ). The amounts of specific adsorption calculated from the two different assignments were virtually identical.) The sharp rise in capacitance at potentials more cathodic than -1.9 V for the 0.942 M sodium fluoride solution is probably due to hydrogen adsorption. The measurements on this sharp rise were therefore ignored when the extrapolation was made.

Program CHARGE was then used to calculate  $\,q\,$  and  $\,q_{\,l}\,$  at 20-mV intervals for the cyanide-containing solutions. Figures 4.2.5 and 4.2.6 show the results of these calculations.

The fractional surface coverage can be calculated from the  $\ q_1$  values if the effective area covered by a single ion is known. Assuming that cyanide ions have freedom to rotate at the surface (i.e., they are not oriented) and that at complete coverage they are hexagonally close packed, the radius of cyanide ion given in Table 4.2.1 leads to an effective area for each ion of 11.2  ${\mbox{A}}^2$ . On this basis, complete coverage with cyanide ions corresponds to  $\mbox{q}_1 = 143 \mbox{ } \mu\mbox{C/cm}^2$ . Thus the data plotted in Figure 4.2.1 correspond to surface coverages of as high as 40%.

The microscopic basis for the double hump in the capacitance curves (Figures 4.2.2 through 4.2.4) is not certain. The implication of this feature, according to Equation 2.3.8, is that there is a slackening of the rate of adsorption as the electrode potential is changed. This may be due to the tendency of the cyanide dipoles to



Figure 4.2.5. Double layer charge vs. electrode potential for solutions of sodium fluoride and sodium cyanide. Total electrolyte strength is 0.942 M for each solution. Sodium cyanide concentration is marked on each curve.



Figure 4.2.6. Amount of specific adsorption vs. electrode potential for solutions of sodium fluoride and sodium cyanide. Total electrolyte strength is 0.942 M for each solution. Sodium cyanide concentration is marked on each curve.

invert as the double layer charge passes through a critical value. (Comparison of Figures 4.2.2 through 4.2.4 to Figure 4.2.5 shows that the measured double layer charge is +2 to +5  $\mu$ C/cm<sup>2</sup> at the dips.) The inability to orient in any particular direction at this value of charge would result in a lesser amount of attraction than would occur otherwise.

The electric dipole moment of the cyanide ion is not known, but it can be compared to carbon monoxide, for which the dipole moment is very small, about 0.1 Debye (31). Cyanide has the same number of electrons as carbon monoxide; the only formal difference in charge between the two is that the nitrogen in cyanide has one less proton than the oxygen in carbon monoxide. However, this difference in charge distribution causes the electrons to be farther away from nitrogen in cyanide than they are from oxygen in carbon monoxide, so that the total difference in dipole moments between the two species should be quite small. Thus, if there is a tendency of the cyanide to orient, it is slight. However, the observed effect is quite small, too; the inflections produced in the  $q_1$  vs. E curves (Figure 4.2.6) are hardly noticeable.

Only one other study has been found in which the specific adsorption of cyanide has been determined. In that work (49) the adsorption of cyanide on mercury was calculated from surface tension data. As mentioned in Section 2.3, this method is inherently less

precise than the double layer capacitance method, so that, if a small irregularity did occur in the specific adsorption curve, it would not have been observed.

The potentials  $\phi_2$  and  $\phi_1$  of the outer and inner Helmholtz layers, respectively, were calculated by Equations 2.3.13 and 2.3.14 at intervals of cell potential for each of the solutions. Values of  $\phi_2$  were small and negative (about -70 mV), as expected, varying no more than 25 mV over the entire range of cell potentials studied in the cyanide solutions (about 1.5 V). The values of  $\phi_1$ , shown in Figure 4.2.7 followed the general trends shown by Devanathan (13) for halides at mercury. All values were negative. The curves all coincide at their cathodic ends, representing the region of sodium ion adsorption. The values in the cyanide adsorption region were more negative for higher cyanide concentration. A discontinuity exists at potentials corresponding to  $\phi_1 = 0$ ; this is a reflection of the fact that the inner Helmholtz plane is not defined when there is no specific adsorption.

Values of  $\phi_m$ , calculated with Equation 2.3.15, are also shown in Figure 4.2.7. The points for all the solutions adhere very closely to a single straight line with unity slope. Devanathan states that this is good evidence that his double layer model is valid, since no direct potential measurements are used to determine  $\phi_m$ . If substantial deviations did occur, it would mean that there was an



Figure 4.2.7. The potentials  $\phi_l$  and  $\phi_m$  vs. electrode potential. The cyanide concentration is marked on each of the  $\phi_l$  curves. The straight line drawn through the  $\phi_m$  points has unity slope.

error in the model, or that changes in the cell potential affect potentials at interfaces other than the one being studied.

# 4.3. Rate of Silver Deposition

Fourteen cell current transients were measured for solutions of five different cyanide concentrations (solutions labelled A through E) using potentiostatic steps from the equilibrium potential large enough to permit the reverse reaction rate to be ignored. In Figures 4.3.1 through 4.3.4 the cell currents taken from the X-Y recordings are plotted vs. the square root of the time after the step. Only the measurements necessary to show the linear part of the curves are shown in these figures; the points immediately after the step, which contain mostly capacitative current are not included.

The electrode potential was corrected for ohmic drop in the solution by the procedure described in Section 2.5. Program Z2 (listed in Appendix 5) was written to perform the calculations required to evaluate  $Z(\sigma)$ . Data points  $(E_{cell}, V_{out})$  for input to this program were obtained for the chemical cell from the X-Y chart recordings at 1  $\mu$ s intervals for the first 12  $\mu$ s, then at 18 points per decade of time up to one sec, or until the signal became constant. Data points for the potentiostat response to the resistor dummy cell were measured at the same points in time as for the chemical cell. Figure 4.3.5 is a typical plot of  $Z(\sigma)$  vs.  $1/\sigma$ .



Figure 4.3.1. Cell current vs. square root of time for silver deposition transients in solution A. Cathodic step potential indicated on each curve.



Figure 4.3.2. Cell current vs. square root of time for silver deposition transients in solutions B and C. Cathodic step potential indicated on each curve.



Figure 4.3.3. Cell current vs. square root of time for silver deposition transients in solution D. Cathodic step potential indicated on each curve.



Figure 4.3.4. Cell current vs. square root of time for silver deposition transients in solution E. Cathodic step potential indicated on each curve.



Figure 4.3.5. Real component of the frequency domain cell impedance measured during a silver deposition transient plotted vs.  $1/\sigma$ .

## V. DISCUSSION

## 5. 1. Composition of Silver-Containing Solutions

In this chapter, the information concerning the double layer composition will be related to the deposition rate of silver through Equation 2.2.45. This equation states that  $\ln[i_F/a_{Ms}]$  is proportional to the cell potential and various double layer parameters. Thus, it is necessary to know the activity of the electroactive species in the silver-bearing solutions. Actually, since constant ionic strength has been employed, knowledge of the concentration of the electroactive species is sufficient, and the activity coefficient may be lumped into the constant term in Equation 2.2.45. The cyanide concentration must also be known so that the amount of specific adsorption can be determined.

Jones and Penneman (26) have reported values for the stepwise formation constants of tricyanoargentate and tetracyanoargentate:

$$Ag(CN)_{2}^{-} + CN^{-} \rightleftharpoons Ag(CN)_{3}^{2} \qquad K_{3} = 5 \pm 1$$
 (5.1.1)

$$Ag(CN)_3^{2-} + CN^- \rightleftharpoons Ag(CN)_4^{3-} \quad K_4 = 0.075 \pm 0.02 \quad (5.1.2)$$

These constants were calculated on the basis of concentrations determined by infrared adsorption spectroscopy over a range of

solution compositions and ionic strengths. The stated uncertainties are the average deviations in the values determined for the various solutions. In order to calculate the ionic activities, activity coefficients were assumed to follow the Debye-Hueckel equation, even though the ionic strengths of the solutions were quite high, exceeding 5.0 in some cases. The usefulness of the constants is diminished by this fact, and by the large reported uncertainties. However, if the Debye-Hueckel equation is used to evaluate concentrations from these values of the equilibrium constants, much of the effect due to the wrong choice of activity coefficients should be reversed, resulting in reasonable values for the concentrations.

The determination of concentrations from the equilibrium constants was accomplished via an iterative calculation. Program COMPN (listed in Appendix 6) was written to perform the calculations. The program uses estimated values of the concentrations as input, and revises the concentrations by trial and error, maintaining mass balance, until the concentrations satisfy the values of the equilibrium constants. The solution compositions determined in this way are given in Table 5.1.1.

The concentrations determined from Jones and Penneman's equilibrium constants were improved by relating them to the experimentally determined equilibrium potentials observed during the deposition rate experiments. A Nernst equation for the (arbitrarily

Table 5.1.1. Solution compositions calculated from different estimates of  $K_3$  and  $K_4$ .

| Solution | <sup>c</sup> CN         | c <sub>2</sub>            | c <sub>3</sub>          |                                                 |
|----------|-------------------------|---------------------------|-------------------------|-------------------------------------------------|
| A        | . 01619<br>. 01465      | <u>. 0262</u><br>. 0247   | . 00378<br>. 00534      | $\frac{1.7 \times 10^{-5}}{7.4 \times 10^{-6}}$ |
| В        | <u>. 1907</u><br>. 1893 | <u>. 01072</u><br>. 00780 | . 01828<br>. 0219       | $\frac{9.9 \times 10^{-4}}{4.0 \times 10^{-4}}$ |
| С        | . 2543<br>. 2524        | .00874                    | . 01983<br>. 0232       | $\frac{.00143}{5.6 \times 10^{-4}}$             |
| D        | <u>. 3376</u><br>. 3367 | . 00710<br>. 00496        | .0214<br>.0247          | $\frac{.00204}{7.9 \times 10^{-4}}$             |
| E        | <u>. 9368</u><br>. 9426 | .00259<br>.001864         | <u>. 0217</u><br>. 0260 | . 00579<br>. 00234                              |

<sup>\*</sup>Entries in the table are in the form:

value calculated from  $K_3$  and  $K_4$  found in ref. (26)

[

value calculated from  $K_3^c$  and  $K_4^c$  found in this work

Units are mol/1.

assumed) half-reaction,

$$Ag(CN)_{2}^{-} + e^{-} \rightleftharpoons Ag^{0} + 2CN^{-},$$
 (5.1.3)

can be written as

$$E_{eq} = E_2^o - \frac{1}{f} ln \left[ \frac{c_{CN}^2}{c_2} \right] - \frac{1}{f} ln \left[ \frac{\gamma_{CN}^2}{\gamma_2} \right],$$
 (5.1.4)

where the subscript 2 indicates  $\operatorname{Ag(CN)}_2^-$ .  $(\operatorname{E}_2^o)$  is the standard electrode potential for Reaction 5.1.3 which is written in terms of  $\operatorname{Ag(CN)}_2^-$ .) Since all solutions used for the deposition rate measurements had the same ionic strength, the activity coefficients for each ion should be the same in all of them. It is then possible to lump the activity coefficients and the standard electrode potential into a formal electrode potential,  $\operatorname{E}_2^f$ , such that

$$E_{eq} = E_2^f - \frac{1}{f} \ln(\frac{c_{CN}^2}{c_2})$$
 (5.1.5)

Thus, if correct assignments have been made for  $c_{\rm CN}$  and  $c_{\rm 2}$ , a plot of  $E_{\rm eq}$  vs.  $\ln(c_{\rm CN}^2/c_{\rm 2})$  should be a straight line with a slope of -1/f.

The residual current which flows without any silver present in the solution is a possible source of bias in the measurement of  $\mathbf{E}_{\mathrm{eq}}$ .

The residual currents at E cannot be measured directly because, in the absence of silver in solution, the electrode would dissolve at the equilibrium potential for the silver-bearing solution. However, residual currents measured in solutions without silver at more cathodic potentials than the equilibrium potentials were cathodic, and decreased with decreasing cyanide concentration and with increasing electrode potential. Thus, solution E, which has the highest cyanide concentration and the most negative equilibrium potential, is presumed to have the highest residual current flowing at its equilibrium potential. This presumption is supported by the fact that  $\mathbf{E}_{\mathbf{eq}}$  for this solution was the most unstable. During the deposition transient measurements for this solution composition, the first electrode surface used in each portion of the solution was the most anodic, and drifted cathodically 3 to 4 mV during the several minutes that it was used. Successive replatings of the electrode each gave more cathodic potentials and showed less drift.

If a cathodic residual current is flowing while an equilibrium potential measurement is attempted, the observed potential will be anodic of the true equilibrium potential, since the reaction of interest is required to supply anodic current to offset the residual current.

Thus, an interpretation of the observed behavior is that the residual current decreases over the time that the experiments were conducted, and approaches some constant value. This could be due to depletion

of the substances in the solution responsible for the residual current.

The drift cannot be explained by a change in silver concentration,

since an anodic current would increase the silver concentration,

causing an anodic drift of potential, according to Equation 5.1.5.

This interpretation of the drift indicates that the later, more cathodic, measurements are nearest to the true equilibrium potential values. In Figure 5.1.1, this assumption was used to plot the equilibrium potentials against values of  $\ln(c_{CN}^2/c_2)$  determined on the basis of Jones and Penneman's estimates for the equilibrium constants. The points on this plot (circles on Figure 5. 1. 1) are nearly on a straight line, but there is a definite concave upward curvature. To remove the curvature, an attempt was made to home in on a better value of  $K_3$  by trial and error. For each trial value of  $K_3$ , solution compositions were calculated by program COMPN, the deviations of the  $E_{eq}$  vs.  $ln(c_{CN}^2/c_2)$  points about a straight line were found, and a new value of  $K_3$  was chosen to reduce the amount of curvature of the line. Since, for the last few trials, the curvature could not be easily seen on a graph, it was necessary to use leastsquares programming to determine the line and the deviations of the points from the line.

It became apparent that adjustment of the  $K_3$  value alone would not produce a straight line of the correct slope. A value of  $K_3 = 7.6$  gave the best value for the slope, but curvature was still



Figure 5.1.1. Cell potential vs.  $\ln(c_{\rm CN}^2/c_2)$ . Circles are based on  $K_3$  and  $K_4$  given in ref. (26). Squares are based on  $K_3$  = 7.6 and  $K_4$  = 0.0746. Solid curve goes through circles. Dashed line has slope of 1/f. Concentrations in mol/1.

somewhat apparent from examination of the residuals of the data points from the least-squares straight line.

The values of  $K_3$  and  $K_4$  were further improved using a simplex method. From Equation 5.1.5, it may be stated that

$$(E_{eq})_{j} = E_{2}^{f} - L_{j}/f + \epsilon_{j},$$
 (5.1.6)

where the subscripts j identify a particular solution composition, the last term on the RHS represents the deviation of the measured value of  $(E_q)$  from the value predicted by Equation 5. 1. 5, and

$$L_{j} = \ln[(c_{CN})_{j}^{2}/(c_{2})_{j}]. \qquad (5.1.7)$$

For a series of N measurements of  $E_{\rm eq}$  at N different solution compositions, the degree to which the measurements diverge from the predictions may be expressed as

$$S = \sum_{j=1}^{N} \epsilon_{j}^{2}, \qquad (5.1.8)$$

which, from Equation 5. l. 6, can be written as

$$S = \sum_{j=1}^{N} [(E_{eq})_{j} - E_{2}^{f} + L_{j}/f]^{2}. \qquad (5.1.9)$$

The object of the simplex method is to find values for the adjustable parameters in this equation,  $E_2^f$ ,  $K_3$ , and  $K_4$ , for which S is a minimum.

The  $L_i$  may be calculated on the basis of a given estimate of  $K_3$  and  $K_4$ , and a value of  $E_2^f$  may be chosen to minimize S by setting the partial derivative of Equation 5.1.9 with respect to  $E_2^f$  equal to zero,

$$\partial S/\partial E_2^f = -2 \sum_{j=1}^{N} [(E_{eq})_j - E_2^f + L_j/f] = 0 ,$$
 (5.1.10)

and solving:

$$E_2^f = \frac{1}{N} \left[ \sum_{j=1}^{N} (E_{eq})_j + \frac{1}{f} \sum_{j=1}^{N} L_j \right].$$
 (5. 1. 11)

This value for  $E_2^f$  may be used to calculate S <u>via</u> Equation 5. 1. 9.

The simplex method, detailed in Figure 5.1.2, was implemented to find values for  $K_3$  and  $K_4$  which give the smallest S value. For each of several choices of  $K_3$  and  $K_4$ , S was evaluated in the manner just described. The three initial choices are at the corners of the simplex labelled #1. Where a back-reflection was indicated, reflection of the second highest point was used (#3, #9, #11). Succeeding simplexes were formed by reflecting the point with the highest S value through the opposite side of the current simplex.



Figure 5. 1. 2. The simplex optimization of  $K_3$  and  $K_4$ . The numbers printed in the centers of the simplexes indicate the order in which they were constructed. The number next to each point is the S value in volts  $^2 \times 10^6$ . The dashed lines are "iso-S" contours and are labelled with the corresponding S values.

At one point in the procedure (simplex #8) the distance of the reflection was doubled in order to approach the minimum S value more quickly. The values of  $K_3$  and  $K_4$  which produced the smallest value of S were 8.2 and 0.025, respectively.

The uncertainty in these values may be derived from the uncertainty in the potential measurements. The potential can be read from the potentiostat to 1 mV, i.e., to  $\pm 0.5$  mV. Since repetitive measurements of the equilibrium potentials were nearly all the same (except for the one solution mentioned previously) this error is estimated to be two or three standard deviations. Thus, a generous estimate of  $\sigma_{E}$  is about 0.25 mV. According to Equation 5.1.5, this would correspond to an error in the concentration quotients of about 1%.

The usual estimate of standard deviation gives

$$\sigma_{\rm E}^2 \approx S/(N-1).$$
 (5.1.12)

Thus, a reasonable estimate of S for the group of five measure-ments, based on the standard deviation in  $E_{\rm eq}$  is

$$S = (N-1)\sigma_{E_{eq}}^2 = 0.25 \times 10^{-6} \text{ volt}^2.$$
 (5.1.13)

The value of S corresponding to two standard deviations is

$$S = (N-1)(2\sigma_{E_{eq}})^2 = 1.00 \times 10^{-6} \text{ volt}^2.$$
 (5.1.14)

The "iso-S" line for S=1 on Figure 5.1.2 therefore encompasses the values of  $K_3$  and  $K_4$  which correspond to an error of  $\pm 0.5$  mV in the potential measurements. On the basis of this perimeter, the values of  $K_3$  and  $K_4$  may be established to be  $8.3 \pm 0.3$  and  $0.025 \pm 0.015$ , respectively.

As stated before, these values are based on the assumption that the Debye-Hueckel equation applies for these solutions. Since this assumption is probably a poor one, and since the measurements were made at only one ionic strength, the determined values of  $K_3$  and  $K_4$  probably apply only at this ionic strength, and should be expressed in terms of concentrations, rather than the inaccurately assumed activities. We thus write the concentration equilibrium constants as

$$K_3^c = \frac{c_3}{c_2 c_{CN}} = K_3 \cdot \frac{\gamma_2 \gamma_{CN}}{\gamma_3}$$

$$= 8. 3 \left[ \frac{(.685)(.573)}{.220} \right] = 14.8 \pm 0.5$$
 (5.1.15)

and

$$K_{4}^{c} = \frac{c_{4}}{c_{3}c_{CN}} = K_{4} \cdot \frac{\gamma_{3}\gamma_{CN}}{\gamma_{4}}$$
$$= 0.025 \left[ \frac{(.220)(.573)}{.0332} \right] = 0.10 \pm 0.06$$
 (5.1.16)

where values of the activity coefficients have been calculated and used in program COMPN.

In Table 5. 1.2, the equilibrium constants calculated in this work are compared with the results of other workers. Direct comparisons of the values in the table are difficult because of differences in conditions. However, it is interesting to note that none of Jones and Penneman's experimental determinations of  $K_3^c$  (from which the average value reported in Table 5. 1.2 is taken) were as high as the one determined in this work. Our determination of  $K_3^c$  is also higher than that found by Bodlander and Eberlein (7). On the other hand, our values for  $K_4$  and  $K_4^c$  are lower than Jones and Penneman's. The values for K3 determined here and by Zsaka and Petri (50) compare quite well. Because of rather large variations in these results, and because the values calculated in this work apply specifically to the solutions of interest, the values reported by others were not considered in determination of the solution compositions. To demonstrate the effect of proper choice of the equilibrium constants, the solution compositions calculated on the basis of the constants determined here are compared with those determined from the values of Jones and Penneman in Table 5. l. l.

| Table 5.1.2. | Equilibrium | constant | values | determined | by | various |
|--------------|-------------|----------|--------|------------|----|---------|
|              | authors.    |          |        |            |    |         |

| Source    | К <sub>3</sub> | K <sub>4</sub> | к°   | к <sup>с</sup> | Т      | Medium   | Method    |
|-----------|----------------|----------------|------|----------------|--------|----------|-----------|
| This work | 8.3            | 0.025          | 14.8 | 0.10           | 25 C   | μ= 1.0   | equ. ptl. |
| Ref. (26) | 5.0            | 0.075          | 9.3  | 0.28           | 21 C   | variable | I.R.      |
| Ref. (7)  | -              | -              | 7.8  | -              | -      | variable | equ. ptl. |
| Ref. (50) | 8. 9           | -              | -    | ••             | 20.5 C | -        | equ. ptl. |

## 5.2. Effect of the Double Layer on Exchange Currents

There are two separate sets of data available which concern the rate of deposition of silver from cyanide solution. These are the group of 14 current transients collected in this work and the data collected by Vielstich and Gerischer (48), mentioned on page 1. In addition, there is the large body of information collected by Nechaev, et al. (1, 2, 36-39), but in those papers other surface-active agents (CO<sub>3</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup>, HCN) were present, and the reaction rates were partially limited by mass transport. Because of these complications, the results of that investigation will not be examined further.

Of these three sets, the data obtained by Vielstich and Gerischer proved to be the most amenable to treatment via Equation 2.2.45. In that work the deposition rate was measured in much the same way as was done here. Their instrumentation was relatively primitive, however, (by today's standards) limiting their studies to

small-to-moderate over-potentials (up to about 40 mV). From their measurements of initial currents resulting from various potentiostatic steps, both anodic and cathodic, the exchange current was determined. A series of ten exchange current determinations were performed in which the total silver content was held at 0.005 M and the cyanide concentration was varied from about 0.03 M to 0.7 M. The ionic strength was held to 1.0 by adding potassium chloride. Their published plot of exchange current vs. In c<sub>CN</sub> consisted of two fairly straight branches, one at each end of the range of cyanide concentrations. The transition from one branch to the other occurred in the region between 0.1 M and 0.2 M cyanide.

Vielstich and Gerischer explained this behavior in terms of a change in electroactive species from Ag(CN)<sub>2</sub> to AgCN as the cyanide concentration is decreased. Double layer effects were not considered. It is the intent of the following to show (via Equation 2.2.45) how changes in the double layer may also explain the observations of Vielstich and Gerischer.

In both the present work and that of Vielstich and Gerischer, the assumption is made that the electrode reaction rate is determined by the electron transfer step. On the other hand, Mehl and Bockris (33) have found that the rate of silver deposition from perchlorate solution, a non-complexing medium, is limited by diffusion of adsorbed silver atoms across the surface into crystalline growth sites. This surface

diffusion rate was determined to be about 10 mA/cm<sup>2</sup> at the equilibrium potential, independent of silver concentration, with its effect becoming less significant as the electrode diverges from the equilibrium potential. Since surface diffusion should not be affected by solution parameters, it should be about the same when cyanide solutions are used. Since the exchange currents measured by Vielstich and Gerischer are around 1 mA/cm<sup>2</sup>, considerably lower than found for perchlorate solutions, and since most of their measurements were made at appreciable displacements from equilibrium, the effect of surface diffusion should be minimal. The deposition currents measured in this work should be unaffected by surface diffusion because of the high polarizations employed. Thus, the reaction rate should be entirely controlled by the electron transfer step, and Equation 2.2.45 should apply.

In that equation the potential  $\phi_y$  of the layer of adsorbed ligands may be identified with  $\phi_1$ , since the silver concentration is quite small in these solutions, and its effect on the double layer should therefore be minimal. The potential  $\phi_x$  of the region in which the discharging species resides is assigned to be zero, since the silver complexes have radii (26) of about 4.8 Å, well into the diffuse layer. Making these substitutions, and realizing that the exchange current is equal to the cathodic partial current at the equilibrium potential, Equation 2.2.45 may be written as

$$\ln(i_{ex}/c_{Ms}) = const_1 - \alpha f E_{eq} + \alpha (1-z) f \phi_1 + 2(B_{\dagger CN}/e_o) q_1$$
, (5.2.1)

where it has been recognized that n=1 for the silver deposition reaction, and that the use of constant ionic strength makes it possible to use  $c_{Ms}$  for  $a_{Ms}$  if the constant activity coefficient is included with the other constants in the equation. The specifically adsorbed charge  $q_1$  (due to cyanide) is substituted for  $\Gamma_{CN}$  via Equation 2.3.2. The Nernst equation for the electrode reaction, written in terms of the electroactive species, is

$$E_{eq} = E_{M}^{f} - \frac{1}{f} \ln[(c_{CN})^{1-z}/c_{Ms}]$$
 (5.2.2)

(In accordance with Reaction 2.2.2, the electroactive species has 1-z ligands.) This equation may be solved for c<sub>Ms</sub> and substituted into Equation 5.2.1 to yield

$$\ln i_{ex} = \operatorname{const}_{2} + (1-z) \ln c_{CN} + (1-\alpha)fE_{eq} + \alpha(1-z)f\phi_{1} + (2B_{\dagger CN}/e_{o})q_{1}$$
 (5.2.3)

where  $E_{M}^{f}$  has been absorbed into the constant. Differentiation gives

$$\frac{d \ln i_{ex}}{d \ln c_{CN}} = (1-z) + (1-\alpha)f \frac{dE_{eq}}{d \ln c_{CN}} + \alpha(1-z)f \frac{d\phi_{l}}{d \ln c_{CN}} + \frac{2B_{\dagger CN}}{e_{o}} \cdot \frac{dq_{l}}{d \ln c_{CN}} .$$
(5.2.4)

Gerischer (15) derived a similar equation, but the aspects of the double layer influence (the last two terms of the RHS) were not included. It should be possible to evaluate from experimental data all of the derivatives in this equation. The validity of Equations 5.2.4 and 2.2.45 may be investigated on the basis of these values.

Vielstich and Gerischer have constructed a plot of  $\ln i_{\rm ex}$  vs.  $\ln c_{\rm CN}$  from which they evaluated d  $\ln i_{\rm ex}/d \ln c_{\rm CN}$ . However, in that work it was assumed that  ${\rm Ag(CN)}_3^{2-}$  was the only silver species present in the solution; it has been shown in the previous chapter that this assumption is incorrect. For this reason, the coordinates of the ten  $\ln i_{\rm ex}$  vs.  $\ln c_{\rm CN}$  points were carefully obtained with a measuring magnifier from the published figure, and the solution compositions were re-determined using the program COMPN and the equilibrium constants determined in the previous chapter. It was assumed that the silver was added to these solutions as silver chloride, and that the plotted values of  $c_{\rm CN}$  in the published figure were based on the assumption that all the silver was present as  ${\rm Ag(CN)}_3^{2-}$ . The calculated solution compositions are

listed in Table 5.2.1. The resulting  $\ln i_{ex}$  vs.  $\ln c_{CN}$  graph is shown in Figure 5.2.1. The slope of this curve at low cyanide concentrations was determined to be -0.30, based on the five data points in that region; the slope at high cyanide concentration is +0.49, based on four points.

Table 5.2.1. Composition of solutions in reference (48) calculated by program COMPN.\*

| Solution<br>I. D. | <sup>c</sup> CN | <sup>c</sup> 2 | c <sub>3</sub> | °4                       |
|-------------------|-----------------|----------------|----------------|--------------------------|
| 1                 | . 0324          | . 00339        | . 001608       | 4.78 x 10 <sup>-6</sup>  |
| 2                 | .0421           | . 00309        | . 001905       | $7.36 \times 10^{-6}$    |
| 3                 | . 0596          | . 00266        | . 00233        | 1.274 x 10 <sup>-5</sup> |
| 4                 | . 0763          | . 00235        | . 00263        | 1.845 x 10 <sup>-5</sup> |
| 5                 | . 1079          | .001924        | . 00305        | $3.02 \times 10^{-5}$    |
| 6                 | . 1614          | .001470        | . 00348        | 5.16 x 10 <sup>-5</sup>  |
| 7                 | . 231           | . 00 1 12 1    | . 00380        | $8.06 \times 10^{-5}$    |
| 8                 | . 370           | . 000762       | . 00412        | . 000 139 1              |
| 9                 | . 590           | . 000495       | . 00425        | . 000232                 |
| 10                | .720            | . 00426        | .00434         | . 000289                 |

 $<sup>\</sup>overline{*}$ Entries in mol/1.

The equilibrium potentials were calculated for each point from a Nernst equation. For this purpose a value for the formal potential  $E_2^f$  was determined from other data in reference (48) to be about -0.65 V vs. normal calomel electrode. The equilibrium potentials



Figure 5.2.1.  $\text{Ln(i}_{ex})$  determined in reference (48) vs.  $\text{ln (c}_{CN})$  calculated by program COMPN. Units of  $\text{i}_{ex}$  are mA/cm<sup>2</sup>; units for  $\text{c}_{CN}$  are mol/1.

are plotted against  $\ln c_{CN}$  in Figure 5.2.2.

The double layer data obtained in the present work were used to determine  $\phi_1$  and  $q_1$  for each of Vielstich and Gerischer's ten points. In order to find these quantities at various cyanide concentrations, graphs of  $\phi_1$  and  $q_1$  vs.  $\ln c_{CN}$  were constructed by reading values of  $\phi_1$  and  $q_1$  from each curve in Figures 4.2.6 and 4.2.7 at each of the equilibrium potentials for Vielstich and Gerischer's solutions. These values were then replotted against  $\ln c_{CN}$  at constant potential. Some extrapolation was necessary in these operations, but the error incurred should not be large.

Representative curves for  $\phi_1$  vs.  $\ln c_{CN}$  and for  $q_1$  vs.  $\ln c_{CN}$  at various potentials are shown in Figures 5.2.3 and 5.2.4. The values of  $\phi_1$  and  $q_1$  were read from these curves for each of the ten points. These values are plotted against the logarithm of the cyanide concentration in the silver-containing solutions in Figures 5.2.5 and 5.2.6. The difference between these figures and Figures 5.2.3 and 5.2.4 is, of course, that the cell potential is held constant in the former but is allowed to follow the equilibrium potential in the latter.

Values of  $d\phi_1/d \ln c_{CN}$  and  $dq_1/d \ln c_{CN}$  were determined for high and low cyanide concentrations from the fairly straight portions on these graphs. In each case, five points were used to estimate the values at low cyanide concentration, and four points for high



Figure 5.2.2. Equilibrium potentials calculated for solutions in reference (48) vs.  $\ln(c_{CN})$  calculated by program COMPN. Units of  $c_{CN}$  are mol/1.



Figure 5.2.3. Potential of the inner Helmholtz layer vs.  $ln(c_{\begin{subarray}{c}CN\end{subarray}})$  at constant cell potential. Units of  $c_{\begin{subarray}{c}CN\end{subarray}}$  are mol/1. Cell potential indicated on each curve.



Figure 5.2.4. Specifically adsorbed charge vs.  $ln(c_{\mbox{CN}})$  at constant cell potential. Units of  $c_{\mbox{CN}}$  are mol/l. Cell potential indicated on each curve.



Figure 5.2.5. Variation of the potential of the inner Helmholtz layer with  $\ln(c_{CN})$ , holding the electrode at the equilibrium potential. Units of  $c_{CN}$  are mol/1.



Figure 5.2.6. Variation of the specifically adsorbed charge with  $\ln(c_{CN})$ , holding the electrode at the equilibrium potential. Units of  $c_{CN}$  are mol/1.

cyanide concentration. The values of the slopes are indicated on the graphs.

There are two differences which must be considered between Vielstich and Gerischer's solutions and the ones used for the double layer measurements. Vielstich and Gerischer used potassium for the cations, whereas sodium was used in this work; Vielstich and Gerischer used chloride to maintain ionic strength, whereas fluoride was used in this work. The first difference should be of no concern, since there are no specifically adsorbed cations in either case. However, the replacement of chloride with fluoride makes it necessary to assume that chloride adsorbs only to a very small extent (compared to cyanide) or that the effect of adsorbed chloride on the reaction rate is small. Evidence to support this assumption is cited at the end of this section.

Instead of using the slope measured from Figure 5.2.2 to estimate  ${\rm dE_{eq}}/{\rm d} \ln {\rm c_{CN}}$  directly, an algebraic method was used. The method is based on the fact that the total amount of silver was the same throughout the series of solutions, i.e.,

$$0 = \frac{dc_2}{dc_{CN}} + \frac{dc_3}{dc_{CN}} + \frac{dc_4}{dc_{CN}},$$
 (5.2.5)

and on the fact that the ionic strength was held constant. This last fact permits concentration equilibrium constants to be employed,

so that

$$c_4 = K_4^c c_{CN}^c c_3$$
 (5.2.6)

and

$$c_3 = K_3^c c_{N}^c c_2$$
 (5.2.7)

These two equations may be differentiated, and the equilibrium constants eliminated by substitution to give

$$\frac{dc_4}{dc_{CN}} = \frac{c_4}{c_{CN}} + \frac{c_4}{c_3} \cdot \frac{dc_3}{dc_{CN}}$$
 (5.2.8)

and

$$\frac{dc_3}{dc_{CN}} = \frac{c_3}{c_{CN}} + \frac{c_3}{c_2} \cdot \frac{dc_2}{dc_{CN}}.$$
 (5.2.9)

Substitution of these into Equation 5.2.5 and rearrangement gives

$$\frac{dc_2}{dc_{CN}} = -\frac{c_2}{c_{CN}} \cdot \frac{c_3^{+2c_4}}{(Ag)_T}, \qquad (5.2.10)$$

where  $(Ag)_T$  has been substituted for  $c_2 + c_3 + c_4$ .

To relate this derivative to equilibrium potentials, the Nernst Equation 5. 1.5 may be differentiated to give

$$f \frac{dE_{eq}}{d \ln c_{CN}} = -2 + \frac{c_{CN}}{c_2} \cdot \frac{dc_2}{dc_{CN}}$$
 (5. 2. 11)

Substituting Equation 5.2.10 into this results in

$$f \frac{dE_{eq}}{d \ln c_{CN}} = -2 - \frac{c_3^{+2c_4}}{(Ag)_T}$$
 (5. 2. 12)

The concentrations calculated for the solutions (Table 5.2.1) were put into this equation. The average values of  $f(dE_{eq}/d \ln c_{CN})$  for the four highest and the five lowest cyanide concentrations are indicated in Figure 5.2.2.

The values of the derivatives given in Figures 5.2.1, 5.2.2, 5.2.5, and 5.2.6 may now be substituted into Equation 5.2.4 to give two equations which may be arranged in the form:

1. 
$$16 + z = (3.55z - 1.09)a - (5.6 \mu C/cm^2)(B_{\dagger CN}/e_o)$$
 (5.2. 13a)

for low cyanide concentration, and

2.39 + z = 
$$(0.47z+2.43)a + (4.0 \mu C/cm^2)(B_{\dagger CN}/e_o)$$
 (5.2.13b)

for high cyanide concentration. These equations can be solved simultaneously for a and  $B_{\mbox{$\frac{1}{2}$}CN}$  if various values of z are assumed.

Table 5.2.2 shows that, for the three choices of z corresponding to species present in the solution (-1, -2, and -3), both -2 and -3 give values for a between zero and one. Thus either of these choices would reasonably explain the data of Vielstich and Gerischer. However, since the a value for z = -2 is so close to zero, representing a very extreme geometry in the reaction curve

(Figure 2.2.1), it is not likely that  $\operatorname{Ag}(\operatorname{CN})_3^{2-}$  is the electroactive species. One might also consider values of z more negative than -3, since these also give a values between zero and one; however, it is quite unlikely that silver would coordinate with more than four ligands, even briefly at the interface. This leaves  $\operatorname{Ag}(\operatorname{CN})_4^{3-}$  (with z=-3) as the only likely electroactive species. Thus, a is taken (from Table 5.2.2) to be 0.26. The fact that this value is much lower than the values reported by Vielstich and Gerischer for both high and low cyanide concentrations is of no consequence, since those experimental observations are confounded by the effects of simultaneous changes in the electrode potential and specific adsorption.

Table 5.2.2. Values of  $\alpha$  and  $B_{\ddagger CN}$  for various choices of z.

| z   | a     | B <sub>‡CN</sub> /e ο (cm <sup>2</sup> /μC) | B <sub>‡CN</sub><br>(Å <sup>2</sup> /ion) |
|-----|-------|---------------------------------------------|-------------------------------------------|
| - 1 | -1.11 | +0.891                                      | +1430                                     |
| -2  | +0.05 | +0.079                                      | + 126                                     |
| -3  | +0.26 | -0.219                                      | - 350                                     |
| -4  | +0.35 | -0.451                                      | - 722                                     |

The value of  $B_{\dagger CN}$  which results from Equations 5.2.13 with z=-3 is  $-350~\text{Å}^2/\text{ion}$ . The magnitude of this number is certainly reasonable when compared to values reported by Parsons (44) for the effects of halides on hydrogen evolution and by Eriksrud (14) for the

effects of halides on cobalt reduction; however, the sign of the number is surprising. Parsons (44) has suggested that the major type of interaction between the adsorbed ions and the activated complex should be electrostatic in nature, and that, on this basis, a negative value for the interaction coefficient indicates that the interacting particles are of opposite signs. This line of reasoning thus implies that the activated complex in silver deposition has a positive charge. One way of interpreting this is that there is very little cyanide associated with the activated complex, i.e., that the activated complex is very much like a naked adsorbed silver ion.

The fact that each of the curves in Figures 5.2.1, 5.2.5, and 5.2.6 have two straight portions corresponding to the same ranges of cyanide concentration, coupled with the reasonable values obtained for a and B<sub>‡CN</sub>, is very convincing evidence that Equations 5.2.4 and 2.2.45 are appropriate descriptors of the rate of silver deposition in cyanide solution. This fact also supports the assumption previously made that chloride is not specifically adsorbed in the presence of cyanide or does not affect the reaction rate. In addition, the use of these equations does not require that the extremely dilute species AgCN be identified as the electroactive species, as the interpretation of Vielstich and Gerischer did require.

## 5.3. Effect of the Double Layer on Currents at High Polarization

By using the same reasoning employed in writing Equation 5.2.1, Equation 2.2.45 may be written for the deposition currents obtained at high polarization in solutions A through E as:

$$ln[i_{\mathbf{F}}(0)/c_{\mathbf{Ms}}] = const_{1} - \alpha f[\mathbf{E} - (1-\mathbf{z})\phi_{1}] + 2(\mathbf{B}_{\dagger \mathbf{C} \mathbf{N}}/e_{0})q_{1}. \quad (5.3.1)$$

All but one of the constants in this equation have been determined from the analysis of the data of Vielstich and Gerischer. Substitution of these yields

$$\ln[i_{F}(0)/c_{4}] = const_{1} - (10.13 \text{ volt}^{-1})(E-4\phi_{1})$$

$$+ (-0.438 \text{ cm}^{2}/\mu\text{C})q_{1}.$$
(5.3.2)

The quantities associated with the 14 measurements at high polarization which are pertinent to this equation are given in Table 5.3.1. The values of  $c_4$  used to calculate  $\ln[i_F(0)/c_4]$  are based on the equilibrium constants determined in this work. (See Table 5.1.1.)

The double layer quantities  $\phi_1$  and  $q_1$  were determined in the same way as for the solutions of Vielstich and Gerischer, i.e., by using curves similar to Figures 5.2.3 and 5.2.4 of  $\phi_1$  and  $q_1$  vs.  $\ln c_{CN}$  at constant electrode potential. For the solutions of lower cyanide concentration in this series, the amount of silver is not

Table 5.3.1. Data summary for high polarization measurements.

| Sol'n.<br>I. D.      | -i <sub>F</sub> (0)<br>mA/cm <sup>2</sup> | E <sub>eq</sub> -E <sub>cell</sub> | -E<br>cell<br>volt<br>vs.SCE      | -E<br>volt<br>vs.SCE             | ln[i <sub>F</sub> (0)/c <sub>4</sub> ] Arg. in: A cm/mol | -q <sub>1</sub><br>μC/cm <sup>2</sup> | -  olimitation like the second content of th | E-4¢ l volt                          | € (a)                                    | (b)                                      |
|----------------------|-------------------------------------------|------------------------------------|-----------------------------------|----------------------------------|----------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|
| Al<br>A2             | 3.71<br>4.99                              | . 150                              | . 680                             | . 668<br>. 714                   | 13. 125<br>13. 421                                       | 55.6<br>53.8                          | . 811<br>. 822<br>. 831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2. 576<br>2. 574<br>2. 574           | -1. 189<br>-0. 036<br>+0. 788            | +0. 926<br>+1. 990<br>+2. 742            |
| A3<br>B1<br>B2       | 6.25<br>2.79<br>9.17                      | . 240<br>. 100<br>. 250            | . 770<br>. 791<br>. 941           | . 750<br>. 784<br>. 919          | 13.647<br>8.850<br>10.040                                | 52.6<br>58.0<br>50.2                  | . 930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. 936<br>2. 673                     | +0.654<br>+0.389                         | -0. 754<br>+1. 189                       |
| С                    | 4.65                                      | . 150                              | . 861                             | . 848                            | 9.024                                                    | 54.8                                  | . 929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.868                                | +1.042                                   | +0.133                                   |
| D1<br>D2<br>D3<br>D4 | 2.05<br>4.08<br>8.5<br>12.0               | . 100<br>. 150<br>. 200<br>. 250   | . 832<br>. 882<br>. 932<br>. 982  | . 827<br>. 872<br>. 913<br>. 953 | 7.861<br>8.550<br>9.284<br>9.628                         | 56.3<br>54.2<br>52.0<br>49.4          | .940<br>.931<br>.921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2. 933<br>2. 852<br>2. 771<br>2. 679 | +0.452<br>+0.542<br>+0.727<br>+0.498     | -1.028<br>-0.240<br>+0.637<br>+1.188     |
| E1<br>E2<br>E3<br>E4 | . 503<br>1. 174<br>2. 15<br>4. 24         | . 050<br>. 100<br>. 150<br>. 189   | . 859<br>. 906<br>. 957<br>1. 000 | . 858<br>. 904<br>. 953<br>. 994 | 5.370<br>6.218<br>6.823<br>7.502                         | 56.2<br>54.1<br>51.6<br>49.2          | . 957<br>. 950<br>. 939<br>. 926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.970<br>2.896<br>2.803<br>2.710     | -1. 238<br>-0. 846<br>-0. 884<br>-0. 898 | -3. 101<br>-2. 083<br>-1. 325<br>+0. 537 |

<sup>(</sup>a) Deviation from the least squares plane through the points.

<sup>(</sup>b) Deviation from the prediction based on the values of  $\alpha$  and  $B_{\ddagger CN}$  for the data of ref. (48).

negligible in computing the double layer quantities. However, since the outer spheres of the silver complexes consist of cyanide, it seems reasonable to suppose that the adsorption of these species is somewhat the same as for cyanide itself. For these reasons the values on the abscissas of the  $\phi_1$  vs.  $\ln c_{CN}$  and  $q_1$  vs.  $\ln c_{CN}$  plots were taken to be  $\ln[c_{CN}^{+}(Ag)_T]$  rather than  $\ln c_{CN}$ . Whereas this is probably not a very accurate approximation for the effect of adsorbed silver species, it is certainly better than completely ignoring it.

Adherence of the high polarization data to Equations 5.3.1 and 5.3.2 was tested in two ways. The first method involved the construction of a three-dimensional model in which  $\ln[i_F(0)/c_4]$  was plotted against  $q_1$  and  $E - 4\phi_1$ . If the data follow the equations, all the points must fall into a plane. The second method involved the use of linear least squares regression analysis of the same three quantities.

The deviations of the  $\ln[i_F(0)/c_4]$  values from the least squares plane are given in Table 5.3.1. Their magnitudes are disconcertingly large, producing a multiple correlation coefficient squared of only 0.90, i.e., only 0.90 of the variations (34, p. 91) in the  $\ln[i_F(0)/c_4]$  values is due to the variations of  $q_1$  and  $E - 4 \phi_1$ . The partial slopes of the least squares plane yield  $\alpha = 0.52 \pm 0.05$  and  $B_{\ddagger CN}/e_0 = -0.25 \pm 0.05$  where the indicated tolerances are one standard deviation. Because the adherence of this data to Equation 5.3.1 is not nearly as good as that of Vielstich and Gerischer's data

to Equation 5.2.4, the  $\alpha$  and  $B_{\ddagger CN}$  values found from Vielstich and Gerischer's data should be regarded as more correct.

To investigate the reasons for the poor adherence of the high polarization data, it was compared to predictions based on the results of the previous section. This comparison was performed by determining the deviations of the points from a plane which passes through the mean of the  $\{\ln[i_F(0)/c_4], q_1, E-4\phi_1\}$  points and having a slope corresponding to the previously determined  $\alpha = 0.26$  and  $B_{\ddagger CN}/e_0 = -0.219$ . These deviations, given in Table 5.3.1, follow two clearly defined trends. (1) In each solution, as the polarization is increased, the deviation becomes more positive, and, (2) from one solution to the next, the deviations become more positive as the cyanide concentration is decreased.

These deviations can be explained as results of the fact that the double layer does not reach equilibrium within the times involved in the experiments. When the electrode is suddenly made more cathodic, a considerable amount of cyanide is dispelled into the adjacent solution, producing a local excess which dissipates through processes which are at least partly diffusive in nature, and, therefore, occur over a time which is significant within the time frame of the experiment. In addition, faradaic production of cyanide tends to maintain the local excess.

The sudden reduction of the amount of specific adsorption, (increase in  $q_1$ ) does not affect the total double layer charge q immediately, since the expelled charge remains in the diffuse double layer for a while. The local excess of cyanide will have the same effect on the specific adsorption as a high bulk cyanide concentration would have. Thus,  $q_1$  will be more negative than for an equilibrium double layer. The diffuse double layer potential  $\phi_2$  will become less because of the excess cyanide, but this should not be too great an effect at times when  $i_{cell} \approx i_F$ , because the high field will quickly spread the charge. (Equation 2.3.13 for  $\phi_2$  becomes inoperative in this situation because it is based on an assumption of equilibrium in the double layer structure.)

The effect on  $\phi_1$  may be judged through examination of Equation 2.3.14. Immediately after the step, both the total double layer charge q and the specifically adsorbed charge  $q_1$  will be more negative than for a stable double layer at the same potential. These effects tend to cancel, so the difference in the expected and actual values of  $\phi_1$  is probably not too large.

Thus, the only major difference between the calculated values of the double layer (Table 5.3.1) and those which are actually likely to exist during the deposition current measurements is that  $\ q_1$  is more negative than expected. Equation 5.3.2 shows that this would produce a higher current than predicted. This deduction is consistent

with the observations that for each solution the deviations from the predictions based on Vielstich and Gerischer's data are more positive as the step is made larger. These non-equilibrium double layer effects are not present in the data of Vielstich and Gerischer because small step potentials were used, and the results were extrapolated to zero overvoltage to get the exchange currents.

The other observation regarding the deviations from the Vielstich-and-Gerischer-based predictions, that of a general positive trend as the cyanide concentration is decreased, may be attributed to the much greater effect of the desorbed cyanide in the dilute cyanide solutions. As the surface cyanide concentration is increased through possibly several orders of magnitude, the amount of the electroactive species  $\operatorname{Ag(CN)}_4^{3-}$  is also increased. Thus, the calculated  $\ln[i_F(0)/c_4]$  values are larger than actually exist in all cases, but more so in the solutions of lower cyanide concentration.

This discussion demonstrates that any method developed to calculate  $q_1$ ,  $\phi_1$ , and the concentrations of the various solution species adjacent to the double layer at times soon after a large potential step would necessarily be quite complex. It would require simultaneous consideration of the mass transport of all solution species under the influences of both electric and concentration gradients, homogeneous reaction rates among the silver complexes, as well as the detailed considerations of the double layer structure which have already been discussed. Such a treatment is probably possible, but is beyond the scope of the present work.

#### VI. SUMMARY

Several characteristic quantities of the double layer at a silver electrode in cyanide and fluoride solutions, namely the amount of specific adsorption and the potentials of the inner and outer Helmholtz layers, have been determined from double layer capacitance data obtained by means of a specially constructed, computer-controlled potentiostat. The calculations are based on a method proposed by Devanathan (13) for investigating aqueous interfaces at mercury. It was found that the silver interface is qualitatively similar to that of mercury.

An equation based on absolute rate theory (19) and on a detailed model of the double layer (13) was developed to relate the double layer structure to the rate of electrodeposition of silver from cyanide electrolytes. The equation was found to provide quite acceptable correlation between the structure of the double layer and the exchange current data of Vielstich and Gerischer (48). Deposition currents obtained at high polarization in this work did not correlate to the calculated double layer quantities nearly as well as the data of Vielstich and Gerischer did. This was explained in terms of slow mass transport processes connected with the sudden changes in the double layer which are produced by the applied potentiostatic step.

#### BIBLIOGRAPHY

- 1. Bek, R. Yu., E.A. Nechaev, and N.T. Kudryavtsev, Soviet Electrochem., 3, 999-1001 (1967).
- 2. Bek, R. Yu., E. A. Nechaev, and N. T. Kudryavtsev, Soviet Electrochem., 3, 1316-1318 (1967).
- 3. Bevington, Philip R., "Data Reduction and Error Analysis for the Physical Sciences," McGraw-Hill, New York, 1969.
- 4. Blomgren, E., J. O'M. Bockris, and C. Jesch, J. Phys. Chem., 65, 2000-2010 (1961).
- 5. Bockris, J. O'M., S.D. Argade, and E. Gileadi, Electrochim. Acta, 14, 1259-1283 (1969).
- 6. Bockris, J. O'M., and A. K. N. Reddy, "Modern Electrochemistry," Vol. 2, Plenum Press, New York, 1970.
- 7. Bodlander, G., and W. Eberlein, Z. anorg. Chem., <u>41</u>, 193 (1904). Cited in: "Stability Constants of Metal-Ion Complexes, with Solubility Products of Inorganic Substances," Special publication No. 7, Chemical Society, London, 1958. P. 35.
- 8. Borisova, T.I., in "Transactions of the Conference on Electro-chemistry," Moscow, 1953, p. 386. Cited in: D.I. Leikis, Proceedings of the Academy of the USSR, Physical Chemistry Section, 135, 1199-1201 (1960).
- 9. Conway, B.E., "Theory and Principles of Electrode Processes," Ronald Press, New York, 1965.
- Cotton, F. Albert, and Geoffrey Wilkinson, "Advanced Inorganic Chemistry. A Comprehensive Text," 2nd ed., Wiley, New York, 1966.
- 11. Davis, Dale Stroble, "Nomography and Empirical Equations," Reinhold, New York, 1962.
- 12. Delahay, P., R. deLevie, and A.-M. Giuliani, Electrochim. Acta, 11, 1141-1146 (1966).

- 13. Devanathan, M. A. V., Trans. Faraday Soc., <u>50</u>, 373-385 (1954).
- Eriksrud, Elisabeth, J. Electroanal. Chem., <u>45</u>, 411-418 (1973).
- Gerischer, H., Z. phys. Chem., <u>202</u>, 292 (1953). Cited in:
   W. Vielstich and H. Gerischer, Z. phys. Chem., N. F., <u>4</u>, 10 (1955).
- 16. Gerischer, Heinz, and Ragnar P. Tischer, Z. Elektrochem., 58, 819-827 (1954).
- 17. Gerischer, Heinz, and Wolf Vielstich, Z. Electrochem., <u>56</u>, 380-386 (1952).
- 18. Gerischer, H., and W. Vielstich, Z. phys. Chem., N. F., <u>3</u>, 16-33 (1955).
- 19. Glasstone, S., K.J. Laidler, and H. Eyring, "The Theory of Rate Processes," McGraw-Hill, New York, 1946.
- 20. Grahame, David C., J. Am. Chem. Soc., 68, 301-310 (1946).
- 21. Grahame, David C., "Thermodynamic Properties of the Electrical Double Layer. I. Differential Capacity of Mercury in Aqueous Sodium Fluoride Solutions at 25°C," Technical Report Number 14 to the Office of Naval Research, Feb. 18, 1954.
- 22. Grahame, David C., and Barbara A. Soderberg, J. Chem. Phys., 22, 449-460 (1954).
- 23. Guest, P.G., "Numerical Methods of Curve-Fitting," Cambridge Press, London, 1961.
- 24. Gugenheim, E.A., J. Phys. Chem., 33, 842-849 (1929).
- 25. Hampson, N. A., D. Larkin, and J. R. Morley, J. Electrochem. Soc., <u>114</u>, 817-818 (1967).
- Jones, Llewellyn H., and Robert A. Penneman, J. Chem. Phys.,
   965-970 (1954).
- 27. Kaischew, R., B. Mutaftshiew, and D. Nenow, Z. phys. Chem., 205, 341-348 (1956).

- Kheifets, V. L., and B.S. Krasikov, Dokl. Akad. Nauk SSSR, 109, 586 (1956). Cited in D.I. Leikis, Proceedings of the Academy of Sciences of the USSR, Physical Chemistry Section, 135, 1199-1201 (1960).
- 29. Leikis, D.I., Proceedings of the Academy of Sciences of the USSR, Physical Chemistry Section, <u>135</u>, 1199-1201 (1960).
- 30. Lingane, Peter James, and Joseph H. Christie, J. Electroanal. Chem., 10, 284-294 (1965).
- 31. McClellan, A.L., "Tables of Experimental Dipole Moments," Freeman, San Francisco, 1963.
- 32. McDonald, Donald, in "Silver: Economics, Metallurgy and Use," Allison Butts, ed., with the collaboration of Charles D. Coxe, Van Nostrand, Princeton, 1967. Pp. 1-15.
- 33. Mehl, Wolfgang, and John O'M. Bockris, Can. J. Chem., <u>37</u>, 190-204 (1959).
- 34. Morrison, Donald F., "Multivariate Statistical Methods," McGraw-Hill, New York, 1967.
- 35. Morrison, Ralph, "Grounding and Shielding Techniques in Instrumentation," Wiley, New York, 1967.
- 36. Nechaev, E.A., and R. Yu. Bek, Soviet Electrochem., <u>2</u>, 138-142 (1966).
- 37. Nechaev, E.A., R. Yu. Bek, and N.T. Kudryavtsev, Soviet Electrochem., <u>1</u>, 1187-1192 (1965).
- 38. Nechaev, E.A., R. Yu. Bek, and N.T. Kudryavtsev, Soviet Electrochem., 1, 1296-1301 (1965).
- 39. Nechaev, E.A., R. Yu. Bek, and N.T. Kudryavtsev, Soviet Electrochem., 4, 483-486 (1968).
- 40. Niki, K., et al., Electrochim. Acta, 16, 487-493 (1971).
- 41. Oldham, K.B., and R.A. Osteryoung, J. Electroanal. Chem., <u>10</u>, 397-405 (1965).

- 42. Orr, M.A., in "Silver: Economics, Metallurgy and Use," Allison Butts, ed., with the collaboration of Charles D. Coxe, Van Nostrand, Princeton, 1967. Pp. 180-189.
- 43. Parsons, Roger, in "Advances in Electrochemistry and Electrochemical Engineering," Vol. 1, Paul Delahay, ed., Interscience, New York, 1961. Pp. 1-64.
- 44. Parsons, Roger, J. Electroanal. Chem., <u>21</u>, 35-43 (1969).
- 45. Pilla, Arthur A., J. Electrochem. Soc., <u>117</u>, 467-477 (1970).
- 46. Skoog, Douglas A., and Donald M. West, "Fundamentals of Analytical Chemistry," Holt, Rinehart, and Winston, New York, 1963.
- 47. Valette, Georges, C.R. Acad. Sci., Paris, 275, 167-170 (1972).
- 48. Vielstich, W., and H. Gerischer, Z. phys. Chem., N.F.,  $\underline{4}$ , 10-23 (1955).
- 49. Wroblowa, H., Z. Kovac, and J. O'M. Bockris, Trans. Faraday Soc., <u>61</u>, 1523-1548 (1965).
- 50. Zsako, J., and E. Petri, Rev. Roumaine Chim., <u>10</u>, 571 (1965). Cited in: "Stability Constants of Metal-Ion Complexes," Special publication No. 25, Chemical Society, London, 1971. P. 55.

#### APPENDIX 1

## <u>Definitions</u> of Symbols

a activity

 $A = 2D_{2-s} \in {}^{\prime}RTc$ 

 $(Ag)_T$  total silver concentration

B intercept of the linearized form of the capacitative current transient

 $B_{\mbox{$\frac{1}{2}$}}j$  constant of interaction between species  $\mbox{$j$}$  and the activated complex

c with subscript--concentration; without subscript--electrolyte concentration

C measured capacitance of the double layer (µf)

C see Figure A2.1

C<sub>dℓ</sub> specific double layer capacitance (µf/cm<sup>2</sup>)

C input capacitance of current-to-voltage converter

C effective output capacitance of current-to-voltage converter out

 $C_{2-s}$  diffuse double layer capacitance

d the uncertainty in the current measurement due to the resolution of the ADC

D without subscript--the denominator in determining the leastsquares slope and intercept for the linearized capacitative current transient; with subscript--diffusion coefficient

D(s) ratio of the DC transfer function for the current-to-voltage converter to the transfer function at frequency s

D<sub>m-2</sub> dielectric constant of inner layer

```
D_{2-s}
           dielectric constant of diffuse layer
           base of natural logarithms
е
           protonic charge (1.602 x 10^{-19} coul)
e
           electrode potential; i.e., cell potential corrected for ohmic
E
           loss
\mathbf{E}_{\texttt{cell}}
           externally measured cell potential
Eeq
           equilibrium potential
\mathbf{E}_{\mathbf{M}}^{\mathbf{f}}
           formal electrode potential for silver deposition written in
           terms of the electroactive species
Eneg
           a value of the electrode potential at which the double layers of
           several solutions behave identically
\mathbf{E}_{\mathtt{start}}
           electrode potential at the beginning of an integration
E
           some arbitrary value of the electrode potential
Ezc
          potential of zero charge
E_2^f
          formal electrode potential for silver deposition written in
          terms of Ag(CN)2
E_2^0
           standard electrode potential for silver deposition written in
          terms of Ag(CN)2-
          = F/RT (38.96 \text{ volt}^{-1} \text{ at } 25 \text{ C})
f
F
          the Faraday (96487 coul/equ)
G
          gain of an operational amplifier
G_{\mathbf{A}}
          gain of amplifier A, Figure 3.1.3
          gain of amplifier B, Figure 3.1.3
G_{R}
          Planck's constant
h
^{\mathbf{i}}_{\texttt{cell}}
          cell current density
```

```
exchange current density
i_{F}
          faradaic current density
          background (residual) current
L
Lbj
          the jth measurement of the residual current
I_{C}
           capacitative cell current
_{\rm cell}^{\rm I}
          cell current
          faradaic current
I<sub>F</sub>
I or I cell current at t or t k
          cell current evaluated at t = 0 in a capacitative current
Io
          transient
I
          additional residual current due to a potential step
I<sub>0</sub>, I<sub>1</sub>, I<sub>6</sub> see Figure 3.1.3
          integer identifier
j
          Boltzmann's constant or an integer identifier
k
k,
          rate constant for a reaction
          cell time constant for capacitance measurement when
k,
          R_F \gg R_u
          cell time constant for capacitance measurement
k<sub>2</sub>
_{m-1}^{K}
          electrostatic capacity of the space between the metal surface
          and the inner Helmholtz layer
K<sub>1-2</sub>
          electrostatic capacity between the inner and outer Helmholtz
          planes
          stepwise formation constant for Ag(CN)<sub>2</sub><sup>2</sup>-
K_{2}
          concentration formation constant for Ag(CN)<sub>3</sub><sup>2</sup>-
K_3^c
```

K<sub>4</sub> stepwise formation constant for Ag(CN)<sub>4</sub> 3-

 $K_4^c$  concentration formation constant for  $Ag(CN)_4^{3}$ 

K equilibrium constant for the microscopically reversible activation step

 $L_{j} = \ln[(c_{CN})_{j}^{2}/(c_{2})_{j}]$ 

Laplace operator

M slope of the linearized form of the capacitative current transient

n number of electrons involved in the charge-transfer step

N number of times a measurement is made

q net charge density on the solution-side of the double layer

q charge density due to specifically adsorbed ions

R gas constant (8.31 joule/deg/mol)

R see Figure A2.1

 $R_{cell} = R_A + R_v + R_u + R_F$ 

 $R_D^2 = R_0 R_1 + R_0 R_6 + R_1 R_6$ 

R<sub>f</sub> feedback resistance

R<sub>r</sub> faradaic resistance

R<sub>in</sub> input resistance of current-to-voltage converter

R out effective output resistance of the current-to-voltage converter

 $R_{u}$  uncompensated solution resistance

R see Figure A2. 1

R<sub>0</sub>, R<sub>1</sub> input resistors to the potentiostat control amplifier

- R<sub>6</sub> feedback resistor for the control loop of the potentiostat
- s Laplace domain variable
- S sum of the deviations  $\epsilon_1$
- S<sup>2</sup> least squares variance
- t time after application of step potential
- T absolute temperature
- T(s) transfer function of the current-to-voltage converter
- v velocity of a chemical reaction
- $V_{\Delta}, V_{R}$  see Figure A2.1
- ${f V}_{C}$  the potential across the double layer capacitance
- $^{
  m V}_{
  m DA0}$  input potential to the potentiostat to control the cell bias potential
- $V_{\text{DAl}}$  input potential to the potentiostat to control the step potential
- $V_{in}$  input voltage to the current-to-voltage converter
- V out output potential of the current-to-voltage converter
- V<sub>0</sub> see Figure 3.1.3
- V, potential across the cell model before the step
- V<sub>2</sub> the step potential
- V<sub>3</sub> see Figure 3.1.3
- w. weighting factor in the least squares analysis of the linearized capacitative current transient
- x, distance of inner Helmholtz plane from the metal surface
- x<sub>2</sub> distance of outer Helmholtz plane from the metal surface

- y value of the ordinate in the linearized capacitative current transient at t.
- z charge of the electroactive metal complex
- $Z(\sigma)$  the Laplace-domain cell impedance
- z charge on ion j
- $Z_k, Z_1, Z_2, Z_3$  variables used to calculate  $\sigma_{I_{slo}}^2$
- $Z_k^*, Z_1^*, Z_2^*, Z_3^*$  variables used to calculate  $\sigma_{I_sM}^2$
- a symmetry factor for the charge-transfer step
- γ activity coefficient
- Γ amount of specific adsorption (mol/cm<sup>2</sup>) of species j
- $\Delta G_c^0$  standard free energy of the charge-transfer step
- $\overline{\Delta G}^{O}_{c}$  standard electrochemical free energy of the charge-transfer step
- $\Delta G_c^{o^{\frac{1}{2}}}$  standard free energy of activation for the charge-transfer step
- standard electrochemical free energy of activation for the charge-transfer step
- $\Delta G_{\mathbf{Mx}}^{\mathbf{O}}$  standard free energy for adsorption of the electroactive metal complex from the solution to a distance x from the metal surface
- Δt time interval between current measurements
- deviation of a measured value of  $(E_{eq})$  from the predicted value
- rationalized permittivity of free space  $(8.85 \times 10^{-14} \text{ farad/cm})$
- η overvoltage; = E E

- λ time-independent function for determining the faradaic current after a step from equilibrium
- μ chemical potential
- μ electrochemical potential
- ρ electrode roughness factor
- without a subscript--real component of the Laplace-domain variable s; with a subscript--standard deviation of the variable in the subscript
- τ transmission coefficient
- φ electric potential of a chemical phase with respect to the solution
- φ<sub>1</sub> potential of inner Helmholtz plane with respect to the solution
- φ<sub>2</sub> potential of outer Helmholtz plane with respect to the solution

### Subscripts and Superscripts

CN for cyanide

e for electrons in the metal

Hg for the metal of the reference electrode

j integer identifier

k integer identifier

KCl for the reference electrode filling solution

L for the ligand

m for the electrode metal

M for the electroactive metal complex

- O for the oxidized species
- R for the reduced species
- s for the bulk of the solution
- x at distance x from the metal, where the electroactive species is adsorbed
- y at distance y from the metal, where the ligand is adsorbed
- 2,3,4 (used with a,  $\gamma$ , and c) for  $Ag(CN)_2^-$ ,  $Ag(CN)_3^{2-}$ ,  $Ag(CN)_4^{3-}$ , respectively
- o at standard chemical conditions
- for activated complex

#### APPENDIX 2

### Derivation of Equations for Potentiostat

To describe the manner in which the potentiostat controls the cell potential, it is necessary to consider the nature of the cell itself. The cell model shown in Figure A2. I will be employed. This model was obtained from Figure 2. 4. Ia by omitting the components connecting the reference electrode to the solution node for the reasons cited on p. 29. In contrast to Figure 2. 4. Ib the components connecting the auxiliary electrode to the solution node are retained, since it is of interest here to understand how the potentiostat control works when these are present. Thus the circuit which will be described here is that of the cell model diagrammed in Figure A2. I connected to the potentiostat circuit shown in Figure 3. 1. 3. The symbols used in this appendix are given in those figures. The test electrode may be considered to be tied to ground, since it is connected to the summing point of the current-to-voltage converter.

To derive an equation for E cell as a function of the potentio-stat (and cell) components and the input voltages, ten equations are written which relate the potentials and currents in the circuit:

$$I_{cell} = \frac{V_C}{R_F} + C \frac{dV_C}{dt}, \qquad (A2.1)$$



Figure A2.1. Cell model to describe potentiostat operation.

$$I_{cell} = -(E_{cell} + V_C)/R_u, \qquad (A2. 2)$$

$$I_{cell} = (V_B + E_{cell})/R_v, \qquad (A2.3)$$

$$I_{cell} = (V_A - V_B)/R_A + C_A \frac{d(V_A - V_B)}{dt},$$
 (A2.4)

$$V_{\mathbf{A}} = -G_{\mathbf{A}}V_{\mathbf{0}}, \qquad (A2.5)$$

$$I_6 = I_0 + I_1$$
, (A2. 6)

$$I_0 = \frac{V_{DA0}^{-V_0}}{R_0}, \qquad (A2.7)$$

$$I_1 = \frac{V_{DA1}^{-V_0}}{R_1}$$
, (A2.8)

$$I_6 = \frac{V_0 - V_3}{R_6}$$
, (A2. 9)

and

$$V_3 = -G_B(E_{cell} + V_3)$$
 (A2.10)

 ${\bf V}_{\bf C}$  may be eliminated between Equations A2.1 and A2.2 to give

$$E_{cell} = -(R_u + R_F)I_{cell} + R_F C \frac{dV_C}{dt}$$
 (A2.11)

Equation A2.4 may be substituted for I to give

$$E_{ce!!} = \frac{(R_u + R_F)(V_B - V_A)}{R_A} + (R_u + R_F)C_A \frac{d(V_B - V_A)}{dt} + R_F C \frac{dV_C}{dt}.$$
(A2. 12)

 $V_{\mbox{\footnotesize B}}$  may be eliminated from this equation by combining Equations A2. 3 and A2. 4 and rearranging to give

$$V_{B} = \frac{R_{v}V_{A}}{R_{A}^{+}R_{v}} + \frac{R_{A}^{R}_{v}C_{A}}{R_{A}^{+}R_{v}} \frac{d(V_{A}^{-}V_{B})}{dt} - \frac{R_{A}^{E}_{cell}}{R_{A}^{+}R_{v}}, \quad (A2.13)$$

which may be substituted into A2.12 to give

$$E_{cell} = \frac{(R_{u}^{+}R_{F}^{-})R_{v}^{V}A}{R_{A}^{(R_{A}^{+}R_{v}^{-})}} + \frac{(R_{u}^{+}R_{F}^{-})R_{v}^{C}A}{R_{A}^{+}R_{v}} \frac{d(V_{A}^{-}V_{B}^{-})}{dt}$$

$$- \frac{(R_{u}^{+}R_{F}^{-})E_{cell}}{R_{A}^{+}R_{v}} - \frac{(R_{u}^{+}R_{F}^{-})V_{A}}{R_{A}} + (R_{u}^{+}R_{F}^{-})C_{A} \frac{d(V_{B}^{-}V_{A}^{-})}{dt}$$

$$+ R_{F}^{-}C \frac{dV_{C}^{-}}{dt}. \qquad (A2. 14)$$

 $E_{\mbox{cell}}$  may be extracted from the right-hand side and Equation A2.5 used for  $V_{\mbox{A}}$  to yield

$$E_{cell} = \frac{(R_u + R_F)G_A V_0}{R_{cell}} - \frac{R_A C_A (R_u + R_F)}{R_{cell}} \frac{d(V_A - V_B)}{dt} + \frac{R_F C (R_A + R_v)}{R_{cell}} \frac{dV_C}{dt},$$
(A2. 15)

where

$$R_{cell} = R_A + R_v + R_u + R_F$$
 (A2. 16)

By combining Equations A2.6 through A2.9,  $V_0$  may be expressed as

$$V_0 = \frac{R_6}{R_D^2} (R_1 V_{DA0} + R_0 V_{DA1}) + \frac{R_0 R_1}{R_D^2} V_3, \qquad (A2. 17)$$

where

$$R_D^2 = R_0 R_1 + R_0 R_6 + R_1 R_6 . \tag{A2.18}$$

Equation A2.10 may be rearranged to

$$V_3 = -\frac{G_B E_{cell}}{G_B + 1}$$
 (A2. 19)

Substitution of A2. 19 into A2. 17 and the result into A2. 15 produces, upon rearrangement,

$$E_{cell} = \left[ \frac{1+G_{B}}{R_{cell}R_{D}^{2}(1+G_{B})+(R_{u}+R_{F})R_{0}R_{1}G_{A}G_{B}} \right]$$

$$\times \left[ G_{A}(R_{u}+R_{F})R_{6}(R_{1}V_{DA0}+R_{0}V_{DA1})-R_{D}^{2}R_{A}G_{A}(R_{u}+R_{F}) \right]$$

$$\times \frac{d(V_{A}-V_{B})}{dt} + R_{D}^{2}R_{F}G(R_{A}+R_{v})\frac{dV_{C}}{dt} \right]. \tag{A2.20}$$

Since  $G_B \gg 1$ , the quantity in the first set of brackets on the right-hand side of this equation reduces to

$$\left[\frac{1}{R_{cell}R_{D}^{2}+(R_{u}+R_{F})R_{0}R_{1}G_{A}}\right].$$

Under normal circumstances, GA is sufficiently large that it is possible to ignore the first term in the denominator of this fraction as well as the terms containing derivatives in Equation A2.20. The criterion for simplifying the fraction in this way is

$$G_A \gg \left[1 + \frac{R_A^{+R_v}}{R_u^{+R_F}}\right] \left[1 + \frac{R_6}{R_0} + \frac{R_6}{R_1}\right].$$
 (A2. 21)

Substituting known values for the potentiostat resistors and a typical value of  $2 \times 10^5$  for  $G_A$ , this becomes

$$\frac{R_A^{+R}_v}{R_u^{+R}_F} \ll 1.3 \times 10^5 . \tag{A2.22}$$

Assuming an allowed error of 1%, this is

$$\frac{R_A^{+R}v}{R_u^{+R}F} < 1300. (A2.23)$$

The fraction on the left-hand side of this inequality may reasonably be assumed to be less than unity because of the comparative sizes of the

auxiliary and test electrodes and their placement in the cell. Thus, this criterion is easily met, and Equation A2.20 becomes

$$E_{cell} = \frac{R_6}{R_0 R_1} (R_1 V_{DA0} + R_0 V_{DA1}) + \frac{1}{G_A} \left[ 1 + \frac{R_6}{R_0} + \frac{R_6}{R_1} \right]$$

$$\times \left[ \frac{(R_A + R_v) R_F^C}{R_u + R_F} \frac{dV_C}{dt} - R_A C_A \frac{d(V_A - V_B)}{dt} \right]. \quad (A2.24)$$

In order to drop the last term of this equation it must be shown that it is insignificant with respect to the step potential. Assuming that it can be neglected, the step potential is given by

$$v_2 = \frac{R_6}{R_1} v_{DA1}$$
 (A2. 25)

Using Equation A2.4, the quantity in the last brackets of A2.24 may be written

$$\left[ \frac{(R_A^{+R}v)^R_F^C}{R_u^{+R}_F} \frac{dV_C}{dt} - R_A^I_{cell}^{+}(V_A^{-}V_B^{-}) \right]. \tag{A2.26}$$

The worst case (where  $dV_C/dt$  and  $I_{cell}$  are largest) is immediately after the step, when (referring to equations in Section 2.4)

$$I_{cell} = I_b + I_s + I_o = I_b + \frac{V_2}{R_u} = I_b + C \frac{dV_C}{dt}$$
 (A2.27)

Then, recognizing that  $V_A - V_B$  is essentially the same as before the step, A2.26 is

$$\left[\frac{(R_{A}^{+}R_{v}^{})R_{F}}{R_{u}^{+}R_{F}} \frac{V_{2}}{R_{u}} - R_{A}^{I}_{cell} + R_{A}^{I}_{b}\right]. \tag{A2.28}$$

Combining the last two terms by using A2.27, the limiting criterion may be stated as

$$v_2 \gg \frac{1.5}{2 \times 10^5} \left[ \frac{(R_A^{+R_v})R_F^{-}(R_u^{+R_F})R_A}{R_u^{+R_F}} \right] \frac{v_2}{R_u},$$
 (A2. 29)

which may be rearranged to

$$\frac{R_{\rm v}}{R_{\rm u}(R_{\rm u}/R_{\rm F}+1)} \ll 1.3 \times 10^5 \ . \tag{A2.30}$$

The left-hand side is largest when its denominator is smallest, i.e., when  $R_u \ll R_F$ . It may then be seen that the limiting criterion (for 1% error) is

$$R_{v} < 1300 R_{u}$$
 (A2.31)

This is actually easier to achieve than the previously discussed limit A2. 23. Thus for any sensible arrangement of the test cell,

$$E_{cell} = R_6 \left( \frac{V_{DA0}}{R_0} + \frac{V_{DA1}}{R_1} \right)$$
 (A2.32)

A limitation which has not been touched on here is that due to the response time of the potentiostat amplifiers. This is not a real problem, though, since the amplifiers are connected in configurations of unity gain or less, where their responses are rated at 1 MHz, which is much faster than the time constants of any cells studied.

## APPENDIX 3

Programs for Control and Interpretation of the Capacitance Measurements

Part 1

Program CAP

(written in BASIC language)

```
10DATA0, 3, 9, 1, 5, 10, 7, 11, 4
20DIMA(25),T(2),Z(11),U(1,2)
25LETL0=0:LETL1=0:LETK=16176
30PRINT"SUPERVERSION(11-6-73)"
185PRINT"CHOOSE";: INPUT B1
1901FB1=OTHENGOSUB210
1911FB1=1THENGOSUB240
1921FB1=2THENGOSUB240
1931FB1=3THENGOSUB1440
197 IFB1=7 THENGOSUB3100
1981FB1=8THENGOSUB1470
1991FB1=9THENGOSUB1490
201 I FB1 = 11 THE VGO SUB 3000
2021FB1=12THENG0SUB240
2031FB1=13THENINPUTR
2041FB1=14THENINPUTLO, L1
205G0T0185
210PRINT"GO, LIFT WHEN DONE";: INPUTT: LETA = EXF(O, M)
2201FT=1THEVLETA=EXF(1,E)
230RETURV
240G05UB3030
250F0BV=T(1)T0T(2)
260G0SUB3060
300 I FB1 > 1 THE VG O SUB 1 400
3101FB1=12G0T0420
320LETA=A(N): IFB1=2THENPRINT"TIME", "VOLTS"
330LETB2=0
340F0RM1=1T02
350F0RM=1T0Z(11):LETA=A-2:LETT=EXF(A,R)
3601F81=2THENPRINTZ(8)*M, T/Z(10)*Z(4)/1024:G0T0390
3701FT=0THEVPRINTN:GOTO430
3801FT=1023*Z(10)THEVPRINTN:G0T0430
390VEXTM
400VEXTM1
405IFB1=1G0T0430
```

420FORM=1T08:PRIVT:VEXTM

430VEXTV 435RETURV 440PRINT"BEGIN, EVD SEG #"::INPUTT(1), T(2) 4501FT(2)>V1THEVLETT(2)=V1 460RETURA 47CLETM=1:GOSUB530 480LETM=3:G0SUB950 490LETZ(4)=1.25\*2\*(3-7(4)/8):LETM=5:GOSUB530 500LETM=7:LETZ(8)=Z(8)-8:G0SUB530 510LETZ(7)=Z(7)\*Z(11):LETM=9:GOSUB950 520LET&(8)=Z(7)/Z(11):RETURN 530LETT=Z(M):LETZ(M)=T/1E5540IFZ(M+1)=67THENLETZ(M)=T/1E4550IFZ(M+1)=69THEVLETZ(M)=T/60560RETURY 615LETY2=(Y1+Y3)/2 6201FABS(Y2-INT(Y2+1E-6))>3E-6THENLETY3=Y3-1:G0T0615 625LETM=Y1:G0SUB3280 630LETY1=T:LETM=Y2:G0SUB3280 635LETY2=T:LETM=Y3:GOSUB3280 640LETY3=T:LETG1=Y1+Y3-2\*Y2 645LETG=(Y1\*Y3-Y2+2)/G1 650LETS2=(Z(4)/2048)+2 655LETI2=(R1/Z(11)+S2)/R/R 665LETGO=((Y3-G)+2+(Y1-G)+2+4\*(Y2-G)+2)/G1/G1 667LETGO=12+(R1+S2)/R/R\*GO 67 OPRINT: PRINT, "RES CURR", "GAMMA", " 10" 675LETP2=0:LETT6=0:LETT7=0:LETY6=0:LETY7=0:LETT(2)=0:LETT5=0:LETT(1)=0

```
710F0RM=1T0Z(11)
 720G0SUB3280
 730LETT(1)=T(1)+Z(8):IFT(1)<L0G0T0790
 7401FT(1)>L1G0T0800
 745G0SUB3280
 750LETT5=T5+1:LETY=T-G:LETW=Y*Y:LETY=LOG(Y)
 760LETT6=T6+W*T(1):LETY6=Y6+W*Y:LETP2=P2+W*T(1)*Y
 770LETT7=T7+W*T(1)+2:LETY7=Y7+Y*Y*W:LETT(2)=T(2)+W
 790NEXTM
 800LETD=T(2)*T7-T6*T6:LETM1=(T(2)*P2-Y6*T6)/D:LETB=(T7*Y6-T6*P2)/D
 810LETIO=EXP(B):PRINT,S/R,G,IO
 8201FT5<6THENLETS2=0:G0T0840
 830LETS2=(Y7-Y6*Y6/T(2)-M1*M1*D/T(2))*(T5-3)/T5/(T5-5)
 835IFS2<OTHENLETS2=0
 840LETS3=I0+2*S2*(1+T6+2/D)/T(2)
 845IFS=OTHENLETS=1
 850PRINT"STD. DEVS.", SQR(12)/S*R*100;"%",
 855PRINTSQR(GO)/G*100;"%", SQR(S3)/IO*100;"%"
                    TAU=";-1/M1;"SEC":LETC=(Z(9)/1E3)/(G+IO)
 860PRINT: PRINT"
 870LETV1=4E-8:LETS3=S3/I0+2
 880LETB3=SQR(V1+GO/IO+2+S3)
 890PRINT"
              RUNC=";C;"OHMS +/-";B3*100;"%"
 900LETC3=I0*C/G:LETB3=SQR(S3+B3*B3+G0/G/G)*100
              RFAR=";C3;"OHMS +/-";B3;"%"\
 910PRIVT"
 920LETC3=-(G+IO)+2/M1/IO/Z(9)*1E3
 925LETT=SQR(4*GQ/IO+2+S3+S2*T(2)/D/M1/M1+V1)*100
 930PRINT" CAP =";C3"UF +/~"T"%":NEXTN
 940RETURV
 950G0SUB3300
 960LETZ(M)=Z(M)/K1:RETURN
 1400PRINT"RUN #",N," TIME IN SEC"
 1-405PRINT"INIT.", Z(3); "V", "START", Z(1)
 1410PRINT"STEP", Z(9); "MV", "ITER", Z(5)
 1415PRINT"MAX OUT", Z(4); "V", "DECAY", Z(7)
. 1420PRINT"RF",R;"0HM":PRINT"NO. ITER,",Z(10),"NO. PTS.",Z(11)
```

```
1430RETURV
1440G05UB440
1450FORN=T(1)TOT(2):LETT=EXF(A(N),T,11): NEXTN
1460RETURN
1470FORN=1TON1:LETT=EXF(K,T,O)
1480LETT=EXF(A(N), T, 2*EXF(16154, R)): NEXTN
1485RETURN
1490LETT=EXF(0, I):LETV1=0
1500PRINT"NO. SETS TO READ";:INPUTT:IFT=OGOTO1550
1510LETT(1)=N1+1:LETT(2)=T(1)+T-1
1520F0RV1=T(1)TOT(2); LETT=EXF(K, T, 0)
1530LETA(N1)=EXF(K,R):LETA=K:GOSUB2080
1535G0SUB2050
1540NEXTN1
1550PRINT"DONE, DELETE, CHANGE, ADD; 0, 1, 2, 3"; : INPUTT
1560IFT=1G0T01610
15701FT=2G0T01632
1580'IFT<>3THENRETURN
1590G0SUB1700 ·
1600G0T01500
1610PRINT"HOW, MANY";: INPUTY
1620LETT(1)=N+1:GOSUB3040
1630G0T01500
1632PRINT"HOW MANY";: INPUTY
1634LETT(1)=N1+1:LETT(2)=N1+V;PRINT"PARAM, VALUE"
1636FORP2=0T02: INPUTU(0,P2),U(1,P2)
1637 IFU(0,P2)=0G0T01639
1638VEXTP2
1639FORV1=T(1)TOT(2)
1640LETT=EXF(K,T,0):LETA=K:GOSUB2080
1650G0SUB470
1660FORV=OTOP2:LETM=U(0,N)
1663G0SUB1800
1665LETZ(A)=U(1,N):NEXTN
1670GOSUB1830
```

1680LETA(N1)=EXF(K,R):GOSUB2050

```
1685NEXTNI
1690G0T01500
1700RESTORE: PRINT"SEQ";
1710FORM=0T08: READT: INPUTZ(T): IFZ=OTHENRETURN
1720VEXTM
 1730LETN1=V1+1:GOSUB1770
1740G0SUB1830
1750LETA(N1)=EXF(K,R):G0SUB2050
1760G0T01700
177 OPRINT"ERROR AT PARAM #";:INPUTM:IFM<OTHENRETURN
 1780G0SUB1800
1790INPUTZ(A):GOT01770
 1800RESTORE
 1810FORM1=OTOM: READA: VEXTM1
 1820RETURN
 1830LETM=1:GOSUB1930 \( \)
1840LETM=3:GOSUB2020
 18501FZ(4)<0G0T01880 (
1860FORM1=0T03: IFZ(4)<1.25*2+M1+3E-6G0T01890
 1870NEXTM1
 1880LETM=4:G0SUB2000
 1890LETZ(4)=24-8*M1:LETM=5:GOSUB1930
 1900LETZ(7)=Z(7)/Z(11):LETM=7:GOSUB1930
 1910LETZ(8)=Z(8)+8:LETM=9:GOSUB2020
 1920RETURN
 1930LETT=Z(M): IFT<0G0T01980
 1940LETZ(M)=T*1E5+.1:LETZ(M+1)=65
 1950IFT> • 327THENLETZ(M)=T*1E4+ • 1:LETZ(M+1)=67
 1960IFT>3.27THEVLETZ(M)=T*60+.1:LETZ(M+1)=69
 1970IFZ(M)<32700THENRETURN
 1980G0SUB2000
 1990G0T01930
 2000RESTORE
 2003FORM1=OTO8: READA: IFA=MGOTO2005
 S0047EXIMI
```

2005PRINT"Z#"M1"OUT OF RANGE"

```
, 2010PRINT"NEW #";: INPUTZ (M): RETURN
2020G0SUB3300
2025LETZ(M)=INT(Z(M)*K1+.5)
20301FABS(Z(M))>2047THENGOSUB2000
2040RETURN
2050LETT=EXF(Z(1),C,Z(2),Z(3),Z(4),Z(5),Z(6),Z(7),Z(8),Z(9),Z(10),Z(11))
2060RETURN
2070LETA=A(N)
2080FORM=1T011:LETA=A-2:LETZ(M)=EXF(A,R):NEXTM
2090RETURN
3000PRINT"PARAM OK"::INPUTT:IFT=OTHENGOSUB1490
3010FORN=1TON1:LETT=EXF(A(N),T,O):NEXTN
3020RETURY
3030G0SUB440
3040FORN=1TOT(1)-1:LETT=EXF(K, T, 0): NEXTN
3050RETURN
3060LETT=EXF(K,T,0):LETA=K:GOSUB2080
3070G0SUB470
3080RETURN
3100G0SUB3030 /
3110FORV=T(1)TOT(2)
3120G0SUB3060
31301FL0>Z(7)G0T03150
31401FU1>0G0T03160
3150PRINT"LO, L1"; : INPUTLO, L1
3160G0SUB1400
317 OPRINT"FOR DATA BETWEEN"; LO; "AND"; L1; "SEC": GOSUB3250
3175LETR1 = (R1 - S*S*M)/(M-1)
3180LETY1=0:LETT=0
3190F0RM=1T0Z(11):LETT=T+Z(8):IFY1>0G0T03220
32001FT>=LOTHENLETY1=M
32201FT>L1THENLETY3=M-1:G0T0615
3830/JEXTW
3240LETY3=Z(11):G0T0615
3250LE[S=0:LETR1=0:LETA=A(N)
3260FORM=1TOZ(11):LEfA=A-2:LETT=EXF(A,R)/Z(10)/1024*Z(4)
```

3270LETS=S+T:LETR1=R1+T\*T:NEXTM
3275LETS=S/Z(11):RETURN
3280LETA=A(N)-2\*Z(11)-2\*M
3290LETT=(EXF(A,R)/Z(10)\*Z(4)/1024-S)/R:RETURN
3300LETK1=452.1:IFM>4THENLETK1=22.282
3310RETURN

# Part 2

Program PLT

(written in BASIC language)

```
10DATA0, 3, 9, 1, 5, 10, 7, 11, 4
20DIMA(25), T(2), Z(11)
25LETL0=0:LETL1=0:LETK=16176
30PRINT"PLOT (3-14-74)"
185PRINT"CHOOSE";: INPUT B1
1921FB1=2THENGOSUB240
1941FB1>3THEN1FB1<7THENGOSUB1000
197 IFB1=7THENGOSUB3100
1991FB1=9THENGOSUB1490
201 IFB1=11 THENGOSUB3000
2021FB1=12THENGOSUB240
2031FB1=13THENINPUTR
204IFB1=14THENINPUTLO,L1
205G0T0185
240G0SUB3030
250F0RV=T(1)T0T(2)
260G0SUB3060
3001FB1>1THENGOSUB1400
3101FB1=12G0T0420
320LETA=A(N): IFB1=2THENPRINT"TIME", "VOLTS"
330LETB2=0 .
340F0RM1=1T02
350F0RM=1T0Z(11):LETA=A-2:LETT=EXF(A,R)
3601FB1=2THENPRINTZ(8)*M.T/Z(10)*Z(4)/1024:G0T0390
390VEXTM
400VEXTM1
420FORM=1T08:PRINT:NEXTM
430NEXTN
435RETURN
440PRINT"BEGIN, END SEG #";: INPUTT(1), T(2)
4501FT(2)>V1THENLETT(2)=N1
460RETURV
470LETM=1:GOSUB530
480LETM=3:GOSUB950
490LETZ(4)=1.25*21(3-Z(4)/8):LETM=5:GOSUB530
```

500LETM=7:LETZ(8)=Z(8)-8:G0SUB530

```
510LETZ(7)=Z(7)*Z(11):LETM=9:GOSUB950
520LETZ(8)=Z(7)/Z(11): RETURN
530LETT=Z(M):LETZ(M)=T/1E5
540IFZ(M+1)=67THENLETZ(M)=T/1E4
550IFZ(M+1)=69THENLETZ(M)=T/60
560RETURN *
615LETY2=(Y1+Y3)/2
6201FABS(Y2-INT(Y2+1E-6))>3E-6THENLETY3=Y3-1:GOT0615
625LETM=Y1:G0SUB3280
630LETY1=T:LETM=Y2:GOSUB3280
635LETY2=T:LETM=Y3:GOSUB3280
640LETY3=T:LETG1=Y1+Y3-2*Y2
645LETG=(Y1*Y3-Y2+2)/G1
650LETS2=(Z(4)/2048)+2
655LET12=(R1/Z(11)+S2)/R/R
665LETGO=((Y3-G)+2+(Y1-G)+2+4*(Y2-G)+2)/G1/G1
667LETGO=12+(R1+S2)/R/R*GO
670PRINT: PRINT, "RES CURR", "GAMMA", " 10"
675LETP2=0:LETT6=0:LETT7=0:LETY6=0:LETY7=0:LETT(2)=0:LETT5=0:LETT(1)=0
710FORM=ITOZ(11)
720G0SUB3280
730LETT(1)=T(1)+Z(8): IFT(1)<L0G0T0790
7401FT(1)>L1G0T0800
745G0SUB3280
750LETT5=T5+1:LETY=T-G:LETW=Y*Y:LETY=LOG(Y)
760LETT6=T6+W*T(1):LETY6=Y6+W*Y:LETP2=P2+W*T(1)*Y
770LETT7=T7+W*T(1):2:LETY7=Y7+Y*Y*W:LETT(2)=T(2)+W
790VEXTM
800LETD=T(2)*T7-T6*T6:LETM1=(T(2)*P2-Y6*T6)/D:LETB=(T7*Y6-T6*P2)/D
810LETIO=EXP(B):PRINT,S/R,G,IO
8201FT5<6THENLETS2=0:G0T0840
830LETS2=(Y7-Y6*Y6/T(2)-M1*M1*D/T(2))*(T5-3)/T5/(T5-5)
835IFS2<0THEVLETS2=0
840LETS3=10+2*S2*(1+T6+2/D)/T(2)
845IFS=OTHENLETS=1
```

```
850PRINT"STD. DEVS.", SQR(12)/S*R*100;"%",
855PRINTSQR(GO)/G*100;"%",SQR(S3)/IO*100;"%"
                  TAU=";-1/M1;"SEC":LETC=(Z(9)/1E3)/(G+IO)
860PRINT:PRINT"
870LETV1=4E-8:LETS3=S3/IO+2
880LETB3=SQR(V1+G0/I0+2+S3)
            RUNC=";C;"OHMS +/-";B3*100;"%"
890PRINT"
900LETC3=I0*C/G:LETB3=SQR(S3+B3*B3+G0/G/G)*100
            RFAR=";C3;"OHMS +/-";B3;"%"
910PRINT"
920LETC3=-(G+IO)+2/M1/IO/Z(9)*1E3
925LETT=SQR(4*G0/IO+2+S3+S2*T(2)/D/M1/M1+V1)*100
            CAP =";C3"UF +/-"T"%":NEXTN
930PRINT"
940RETURN
950G0SUB3300 F
960LETZ(M)=Z(M)/K1:RETURN
1000IFB1=4THENLETT=EXF(0,G,CURRENT IN UA,TIME IN MS)
10101FB1=5THENLETT=EXF(0,G,LOG I,TIME IN MS)
1020IFB1=6THENLETT=EXF(0,G,RESIDUAL,TIME IN MS)
1024LETY0=0:LETY1=Z(7)*1E3:LETP=0:G0SUB1110
1026FORM=1T0Z(11)
1028G0SUB3320
1030IFM=1THENLETY0=T:LETY1=T
1055IFT<YOTHENLETYO=T
1058IFT>Y1THENLETY1=T
1060NEXTM
1062LETP=1:GOSUB1110
1065FORM=1TOZ(11)
1067G0SUB3320 ** \
1070LETT(1)=M*Z(8)
1075LETD=EXF(INT(T(1)/X3*924*1E3),P,INT((T-Y2)/(Y3-Y2)*680))
1080NEXTM
1090LETY=EXF(0,0):RETURN
11101FY1-Y0>ABS(Y0+Y1)/1E4G0T01118
11141FY1>OTHENLETYO=O
1116IFY1<OTHENLETY1=0
1118LETS2=Y1-Y0:LETM=0
```

11201FS2>1G0T01180

```
1130LETM=M+1:LETS2=S2*10:LETY0=Y0*10:LETY1=Y1*10:G0T01120
  1180IFS2<=10G0T01240
  1190LETM=M-1:LETS2=S2/10:LETY0=Y0/10:LETY1=Y1/10:GOT01180
  1240LETS1=1:IFS2<=4THENLETS1=.5
  1260IFS2<=1.5THENLETS1=.2
  1270LETY0=INT(Y0/S1+1E-6)*S1:LETY1=INT(Y1/S1+1-1E-6)*S1:LETY=Y0
  1325LETP2=924: IFP=1THENLETP2=680
  1330LETS2=INT((Y-Y0)/(Y1-Y0)*P2+.5)
1340LETS0=Y/10<sup>†</sup>M
  1350IFP=1THEVLETD=EXF(S2,Y,S0):G0T01370
  1360LETD=EXF(S2, X, S0)
  1370LETY=Y+S1: IFY<=Y1G0T01330
  1380LETY1=Y1/10+M:LETY0=Y0/10+M:IFP=OTHENLETX3=Y1:LETX2=Y0
  13901FP=1THENLETY3=Y1:LETY2=Y0
  1395RETURN
  1400PRINT"RUN #",N," TIME IN SEC"
  1405PRINT"INIT.",Z(3);"V","START",Z(1)
  1410PRINT"STEP", Z(9); "MV", "ITER", Z(5)
  1415PRINT"MAX OUT", Z(4); "V", "DECAY", Z(7)
  1420PRINT"RF",R;"OHM":PRINT"NO. ITER.",Z(10),"NO. PTS.",Z(11)
  1430RETURN
  1490PRINT"NO. SETS TO READ";: INPUTT(2)
  1500LETA(1)=16154
  1510FORN1=1TOT(2):LETT=EXF(K,T,0)
  1520LETA(N1+1)=A(N1)-4*EXF(16154,R)
  1530VEXTV1
  1540RETURN /
  2080FORM=1T011:LETA=A-2:LETZ(M)=EXF(A,R):NEXTM
  2090RETURN
  3000PRINT"PARAM OK";: INPUTT: IFT=OTHENGOSUB1490
  3010FORN=1TON1:LETT=EXF(A(V),T,O):NEXTV
  3020RETURN ...
  3030G0SUB440
  3040FORN=1TOT(1)-1:LETT=EXF(K,T,O):NEXTN
  3050RETURY
```

3060LETT=EXF(K,T,0):LETA=K:GOSUB2080

```
3070G0SUB470
 3080RETURN
 3100G0SUB3030
 3110FORN=T(1)TOT(2)
 3120G0SUB3060
 31301FL0>Z(7)G0T03150
 31401FL1>0G0T03160
 3150PRINT"LO,L1";:INPUTLO,L1
 31 60G0SUB1 400
 3170PRINT"FOR DATA BETWEEN"; LO; "AND"; L1; "SEC": GOSUB3250
 3175LETR1=(R1-S*S*M)/(M-1)
 3180LETY1=0:LETT=0
 3190F0RM=1T0Z(11):LETT=T+Z(8):IFY1>0G0T03220
 32001FT>=LOTHEVLETY1=M
 32201FT>L1THENLETY3=M-1:G0T0615
3230NEXTM
 3240LETY3=Z(11):GOTO615
 3250LETS=0:LETR1=0:LETA=A(N)
 3260F0RM=1T0Z(11):LETA=A-2:LETT=EXF(A,R)/Z(10)/1024*Z(4)
 3270LETS=S+T:LETR1=R1+T*T:NEXTM
 3275LETS=S/Z(11):RETURN
 3280LETA=A(N)-2*Z(11)-2*M
 3290LETT=(EXF(A,R)/Z(10)*Z(4)/1024-S)/R: RETURN
 3300LETK1=464.2446: IFM>4THENLETK1=23.206
 3310RETURN
 3320G0SUB3280
3330IFB1=4THENLETT=T*1E6:RETURN
 3320G0SUB3280
 3340LETT=LOG(T-G): IFB1=5THEVRETURN
 3350LETT=T-B-M1*M*Z(8):RETURN '
```

## Part 3

Program CCPVE

(written in BASIC language)

```
10DATA0, 3, 9, 1, 5, 10, 7, 11, 4
20DIMA(25),T(2),Z(11)
22DIME(4,25)
25LETL0=0:LETL1=0:LETK=16176
30PRINT"PLOT (3-14-74)"
185PRINT"CHOOSE";: INPUT B1
1921FB1=2THENGOSUB240
1971FB1=7THENGOSUB3100
1991FB1=9THENGOSUB1490 /
201 IFB1=11 THENGOSUB3000
2021FB1=12THEVG0SUB240
2031FB1=13THENINPUTR
2041FB1=14THENINPUTLO,L1
2051FB1=15THENG0SUB3400
2061FB1=16THENPRINT"AREA, ERR";: INPUTW2, W1:LETW1=W1*W1/W2/W2
207G0T0185
240G0SUB3030
250FORN=T(1)TOT(2)
260G0SUB3060
3001FB1>1THEVGOSUB1400
310IFB1=12G0T0420
320LETA=A(N):IFB1=2THENPRINT"TIME", "VOLTS"
330LETB2=0
340F0RM1=1T02
350F0RM=1T0Z(11):LETA=A-2:LETT=EXF(A,R)
3601FB1=2THENPRINTZ(8)*M, T/Z(10)*Z(4)/1024:G0T0390
390NEXTM
400NEXTM1
420F0RM=1T08:PRINT:NEXTM
430NEXTN
435RETURN
440PRINT"BEGIN, END SEG #"::INPUTT(1), T(2)
4501FT(2)>N1THENLETT(2)=N1
460RETURN
470LETM=1:GOSUB530
```

480LETM=3:G0SUB950

```
490LETZ(4)=1.25*2*(3-Z(4)/8):LETM=5:GOSUB530
500LETM=7:LETZ(8)=Z(8)-8:GOSUB530
510LETZ(7)=Z(7)*Z(11):LETM=9:G0SUB950
520LETZ(8)=Z(7)/Z(11):RETURN
530LETT=Z(M):LETZ(M)=T/1E5
540IFZ(M+1)=67THENLETZ(M)=T/1E4
550IFZ(M+1)=69THENLETZ(M)=T/60
560RETURN
615LETY2=(Y1+Y3)/2
6201FABS(Y2-INT(Y2+1E-6))>3E-6THENLETY3=Y3-1:GOT0615
625LETM=Y1:GOSUB3280
630LETY1=T:LETM=Y2:G0SUB3280
635LETY2=T:LETM=Y3:GOSUB3280
640LETY3=T:LETG1=Y1+Y3-2*Y2
645LETG=(Y1*Y3-Y2+2)/G1
650LETS2=(Z(4)/2048)+2
655LETI2=(R1/Z(11)+S2)/R/R
665LETG0 = ((Y3-G)+2+(Y1-G)+2+4*(Y2-G)+2)/G1/G1
667LETGO=12+(R1+S2)/R/R*GO
675LETP2=0:LETT6=0:LETT7=0:LETY6=0:LETY7=0:LETT(2)=0:LETT5=0:LETT(1)=
710FORM=1TOZ(11)
720G0SUB3280
730LETT(1)=T(1)+Z(8):IFT(1)<L0G0T0790
7401FT(1)>L1G0T0800
745G0SUB3280
750LETT5=T5+1:LETY=T-G:LETW=Y*Y:LETY=LOG(Y)
760LETT6=T6+W*T(1):LETY6=Y6+W*Y:LETP2=P2+W*T(1)*Y
770LETT7=T7+W*T(1)+2:LETY7=Y7+Y*Y*W:LETT(2)=T(2)+W
790NEXTM
800LETD=T(2)*T7-T6*T6:LETM1=(T(2)*P2-Y6*T6)/D:LETB=(T7*Y6-T6*P2)/D
810LETIO=EXP(B)
8201FT5<6THENLETS2=0:G0T0840
830LETS2=(Y7-Y6*Y6/T(2)-M1*M1*D/T(2))*(T5-3)/T5/(T5-5)
835IFS2<0THENLETS2=0
840LETS3=10+2*S2*(1+T6+2/D)/T(2)
```

```
845IFS=OTHENLETS=1
847 IFB1=0G0T0870
848PRINT: PRINT, "RES CURR", "GAMMA", "IO": PRINT, S/R, G, IO
850PRINT"STD. DEVS.", SQR(12)/S*R*100;"%",
855PRINTSQR(GO)/G*100;"%",SQR(S3)/IO*100;"%"
860PRINT: PRINT" TAU="-1/M1"SEC"
870LETC=(Z(9)/1E3)/(G+I0):LETV1=4E-8:LETS3=S3/IO+2
880LETB3=SQR(V1+GO/IO+2+S3)
                     RUNC="C"OHMS +/-"B3*100"%"
890IFB1>OTHENPRINT"
900LETC3=I0*C/G:LETB3=SQR(S3+B3+B0/G/G)*100
920LETE(3,N)=-(G+10)+2/M1/I0/Z(9)*1E9
925LETE(4,N)=4*G0/I0+2+S3+S2*T(2)/D/M1/M1+V1
927 IFB1 = 0G0T0935
928PRINT"
            RFAR="C3"OHMS +/-"B3"%"
            CAP ="E(3,N)"UF +/-"SQR(E(4,N))*100"%".
930PRINT"
935NEXTN
940RETURN
950G0SUB3300
960LETZ(M)=Z(M)/K1:RETURN
1110IFY1-Y0>ABS(Y0+Y1)/1E4G0T01118
1114IFY1>OTHENLETYO=O
11161FY1<0THENLETY1=0
1118LETS2=Y1-Y0:LETM=0
1120IFS2>1GOT01180
1130LETM=M+1:LETS2=S2*10:LETY0=Y0*10:LETY1=Y1*10:GOTO1120
11801FS2<=10G0T01240
1190LETM=M-1:LETS2=S2/10:LETY0=Y0/10:LETY1=Y1/10:GOT01180
1240LETS1=1:IFS2<=4THENLETS1=•5
12601FS2<=1.5THENLETS1=.2
1270LETY0=INT(Y0/S1+1E-6)*S1:LETY1=INT(Y1/S1+1-1E-6)*S1:LETY=Y0
1325LETP2=924: IFP=1THENLETP2=680
1330LETS2=INT((Y-Y0)/(Y1-Y0)*P2+.5)
1340LETS0=Y/10+M
1350IFP=1THENLETD=EXF(S2,Y,S0):GOT01370
1360LETD=EXF(S2,X,S0)
1370LETY=Y+S1: IFY<=Y1G0T01330
```

```
1380LETY1=Y1/10:M:LETY0=Y0/10:M:IFP=OTHEVLETX3=Y1:LETX2=Y0
 1390IFP=1THENLETY3=Y1:LETY2=Y0
 1395RETURN
 1400PRINT"RUN #", N," TIME IN SEC"
 1405PRINT"INIT.",Z(3);"V","START",Z(1)
 1410PRINT"STEP", Z(9); "MV", "ITER", Z(5)
 1415PRINT"MAX OUT", Z(4); "V", "DECAY", Z(7)
 1420PRINT"RF", R; "OHM": PRINT"NO. ITER.", Z(10), "NO. PTS.", Z(11)
1430RETURN
1490PRINT"NO. SETS TO READ";: INPUTT(2)
 1500LETA(1)=16154
1510FORN1=1TOT(2):LETT=EXF(K,T,0)
 1515LETE(3,N1)=0
 1520LETA(N1+1)=A(N1)-4*EXF(16154,R)
 1530 VEXTN1
 1540RETURN
 2080FORM=1T011:LETA=A-2:LETZ(M)=EXF(A,R):NEXTM
 2090RETURN
 3000PRINT"PARAM OK";: INPUTT: IFT=0THENGOSUB1490
 3010FORN=1TON1:LETT=EXF(A(N),T,0):NEXTN
 3020RETURN
 3030G0SUB440
 3040F0RN=1TOT(1)-1:LETT=EXF(K,T,0):NEXTN
 3050RETURN
 3060LETT=EXF(K,T,0):LETA=K:GOSUB2080
 3070G0SUB470
 3080RETURN
 3100G0SUB3030
 3105PRINT"PRINTOUT";: INPUTBL
 3110FORN=T(1)TOT(2)
 3120G0SUB3060
 3125LETE(1,N)=Z(3):LETE(2,N)=Z(9)/1000
 31301FL0>Z(7)G0T03150
 31401FL1>0G0T03155
 3150PRINT"LO, L1"; : INPUTLO, L1
```

3155IFB1=0G0T03172

```
3160G0SUB1400
 3170PRINT"FOR DATA BETWEEN"LO"AND"L1"SEC"
 3172G0SUB3250
 3175LETR1 = (R1 - S*S*M)/(M+1)
 3180LETY1=0:LETT=0
 3190F0RM=1T0Z(11):LETT=T+Z(8):IFY1>0G0T03220
 3200IFT>=LOTHENLETY1=M
 3220IFT>L1THENLETY3=M-1:GOT0615
1 3230NEXTM
 3240LETY3=Z(11):GOT0615
 3250LETS=0:LETR1=0:LETA=A(N)
 3260F0RM=1T0Z(11):LETA=A-2:LETT=EXF(A,R)/Z(10)/1024*Z(4)
 327OLETS=S+T:LETR1=R1+T*T:NEXTM
 3275LETS=S/Z(11): RETURN
 3280LETA=A(N)-2*Z(11)-2*M
 3290LETT=(EXF(A,R)/Z(10)*Z(4)/1024-S)/R: RETURN
 3300LETK1=452.1:IFM>4THEVLETK1=22.282
 3310RETURN
 3320G0SUB3280
 33301FB1=4THENLETT=T*1E6:RETURV
 3340LETT=LOG(T-G): IFB1=5THENRETURN
 3350LETT=T-B-M1*M*Z(8): RETURV
 3400PRINT"COPY";: INPUTB2: IFB2=1THENLETD=EXF(-1,0)
 3405PRINT, "POT", "UF/CM2", "% ERR": PRINT: LETT(1)=0
 3410F0RV=1T0N1:TFE(3,N)=0G0T03475
 3420IFT(1)=0THENLETT(1)=N
 3430LETT(2)=N
 3440LETE(4,N)=SQR(E(4,N)+W1):LETE(3,N)=E(3,N)/W2
 3450PRINTN, E(1,N), E(3,N), E(4,N)*100: LETD=E(4,N)*E(3,N)
 3460LETE(4,N)=E(3,N)+D:LETE(3,N)=E(3,N)-D
 3470LETE(2.N) = E(1.N) + E(2.N)
 3475NEXTN
 34801FB2=1THENLETD=EXF(23,0)+EXF(-1,0):GOTO3487
 3485INPUTD
 3487LETD=EXF(0,G,UF/SQ.CM.,E CELL)
 3490LETY1=E(2,T(1)):LETY0=E(1,T(1))
```

```
3500FORN=T(1)+1TOT(2): IFE(3,N)=0G0T03530 \
35101FE(2,N)>Y1THENLETY1=E(2,N)
3520IFE(1,N)<YOTHENLETYO=E(1,N)
3530NEXTN
3540LETP=0:GOSUB1110
3560LETY1=E(4,T(1)):LETY0=E(3,T(1))
3570F0RN=T(1)+1T0T(2): IFE(3,N)=0G0T03600
35801FE(3,N)<Y0THENLETY0=E(3,N)
3590IFE(4,N)>Y1THENLETY1=E(4,N)
3600NEXTN
3610LETP=1:GOSUB1110
3620LETE=X3-X2:LETD=Y3-Y2
3630F0RN=T(1)TOT(2):IFE(3,N)=0G0T03700
3640LETE(2,N)=INT((E(2,N)-X2)/E*924):LETE(1,N)=INT((E(1,N)-X2)/E*924)
3650LETE(3,N)=INT((E(3,N)-Y2)/D*680):LETE(4,N)=INT((E(4,N)-Y2)/D*680)
3660LETY=EXF(E(1,N),L,E(3,N),E(1,N),E(4,N))
3670LETY=EXF(E(1,N),L,E(4,N),E(2,N),E(4,N))
3680LETY=EXF(E(2,N),L,E(4,N),E(2,N),E(3,N))
3690LETY=EXF(E(2,N),L,E(3,N),E(1,N),E(3,N))
3700NEXTN
37101FB2=1THENLETD=EXF(23,0):PRINT:LETD=EXF(-1,0):RETURN
3720LETD=EXF(0,0):RETURN
```

## Part 4

Subroutine Package for CAP

(written in PAL-11 assembly language)

```
*CAP--MAY 1975
                     IDEFINE REGISTERS
                    R0=%0
                    R1=%1
                    R2 = 1/2
                    R3=13
                    R4=%4
                    R5=%5
                    SP = %6
                    R7=%7
12
13
                    R6 = SP
                    PC = R7
                    R4CT=R4
                                 R2VRS=R2
16
17
                    OFFINE PERIPHERALS
                    ADS=176770
                    ADB=ADS+2
                    CSR=172540
                    CBR=CSR+2
                    CTR=CSR+4
                    DA 0=176760
                    DA1=0A0+2
                    PS=177776
                    GDIOUT=167772
                    TK8=177562
                    DEFINE STORAGE
                    LEAVE=37462; ADDRESS OF EXIT ROUTINE
NSAVE=24.
3334567
333337
                    LSTPTR=LEAVE-2
                    CONDAT=LSTATR-2
                    IWCBR=LSTPTR-10.
IWCSR=LSTPTR-12.
                    DRCBR=LSTPTR-14.
                    DROSR=ISTPTR-16.
38
                    .=50;BASIC USES THIS ACCRESS TO FIND EXF.
.WORD 33400; STARTING HERE SHOULD ALLOW AT
    000050
            033400
40
                    .=33400; LEAST 30 TEN-POINT MEASUREMENTS
41243
                    ;HEAD
                    SELECTS ROUTINE
                    DETERMINES INTEGER VALUE OF FIRST PARAMETER MAKES R1 FT. TO NEXT PARAMETER
44
```

```
45
                     HE AD
                            MOV (RO)+,R2; GET 1ST VARIABLE INTO R2-R4
46
    033400 012002
                            MOV (R0)+,R3
    033402 012003
47
                            MCV (RO)+ R4
TRAF 40; INTEGEROF FIRST VARIABLE IN RO
48
    033404 012004
    033406 104440
                            INC R1; PT. TO NEXT VARIABLE
50
    033410
            005201
                            MOV 2000ES, R2; THE ACDRESS FOR FUNCTION DESIGNATORS
    033412 012702
            033436
                            MOV ≥FUNCT-2.R3: THE ADERESS LIST FOR THE FUNCTIONS
52
    033416 012703
            033442
                     HEAD1: TST (R3)+; POINT TO NEXT ACDRESS
    033422
            005723
53
                            CMPB (R1), (R2)+; DO CODES MATCHA
    033424
            121122
                            BNE HEAD1; IF NOT, TRY NEW CODE AND ACCRESS
55
    033426
           001375
                            CMPE (R1)+, (R1)+; PT. TO NEXT VARIABLE
56
    033430 122121
                            JMP + (R3): IF SG, START FUNCTION
57
    033432 000173
            000000
58
59
                     CODES: . ASCII /CEIMRT/
    033436
            042503
            046511
            052122
                             .EVEN
60
                     FUNCT: CLKSET
6.1
    033444
            033516
                            ELECT
62
    033446
            034476
                            INIT
63
    033450
            033460
    033452
                            MEAS
64
            033626
    333454
                            RETVAL
65
            034526
                            TAPE
    033456
66
            034554
67
                     .EGT
68
69
79
                     ;INIT (10-26-73)
71
```

```
72
                        TO INITIATE THE LIST POINTER FOR CLKSET AND TO CLEAR DATA AREA
 73
                        CALLED FROM BASIC THROUGH HEAD BY EXF(0.1)
 74
                        :USES RO
 75
76
                        REQUIRES ENDERG TO BE DEFINED AS END OF MAIN SEG OF PROGRAMS NSAVE=NO. OF SAVED BYTES BETWEEN LEAVE AND DATA AREA
 77
                                   ADDRESS LSTPIR BE DEFINED
 78
 79
      033460 012700
                               MOV ≥LEAVE-NSAVE, RO; ADDR. BEFORE LIST
                        INIT:
              037432
 80
      033464 010037
                               MOV RO, +≥LSTPTR; SAVE FOR CLKSET
              037460
 81
      033470 005040
                        INIT1: CLR - (RO); CLEAR A DATA WORD
 82
      033472 020027
                               CMP RG. ≥ENDPRG: DCNEA
              035134
 83
      033476 003374
                               BET INIT1
 84
      033500 052737
                               BIS ≥3, +≥GDIOUT; LEVEL-SHIFTER DISAELED; ELECTRODE UP
              000003
              167772
 85
      033506 005037
                               CLR +≥DA1; NO STEP YET
              176762
      033512 000137
 86
                               JMP ↓≥LEAVE
              037462
 87
                        .ECT
 88
 89
 90
 91
                        CLKSET (10-26-73)
CALLED ONCE FOR EACH CAP. TO BE MEASURED
 93
                        PUTS CONTROL DATA IN DATA SPACES FOR ACCESS BY EXPT.
 94
                       DATA IS STOREC AT BEGINNING OF BLOCK FOR EACH DATA SET
                        IN THE CREEK!
 96
                             CER CONTENTS FOR TIME TO START
                                                                               (C5)
9ž
                             CSR
                                                                               (C6)
98
                             DAG
                                                 INIT POT.
                                                                               (Z)
99
                                                 SENSITIVITY
                             ADS
                                                                               (A0)
                             COR CONTENTS FOR TIME BETWEEN ITERATIONS
100
                                                                               (C3)
101
                        ;6.
                             CSR
                                                                               (C4)
102
                             CBR
                                                 DATA RATE
                                                                               (C1)
103
                             CSR
                        :8.
                                                                               (CO)
104
                        ;9.
                             DA1
                                                 STEP POT.
                                                                               (02)
105
                            NO. OF ITERATIONS
                        ;10.
                                                                               (0)
106
                             NC. OF PIS. IN DECAY
                                                                               (T4)
                       112. NOT STOREC; IF PRESENT IN STRING, MEANS TO
SAVE JUST TWO WORDS TO STORE RESIDUALS
107
108
                                                                               (N)
```

```
109
                     THE BLOCK SIZE IS DETERMINED AS 2*NO. PTS. IN DECAY
                     WITH A MINIMUM OF 11 WORDS
CALLED EY EXF(C5,C,C6,Z,A0,C3,C4,C1,C0,Q2,C,T4,N)
110
111
                     USES: RO,R1,R2,SP
112
113
                     ;AT END: R1 PTS. TO 1 PAST RT. PAREN.; SP RESET
114
                     REQUIRES ADDR. LSTPTR DE DEFINED
                               NSAVE TO BE DEFINED AS NO. WORDS SAVED BEFORE LEAVE
115
116
117
     033516 012746
                     CLKSET:MCV 211.,-(SP); NO. OF NUMBERS TO LCAD
            000013
                            DEC R1; PT. TO CHAR. BEFORE NEXT VARIABLE
118
     033522 005301
119
     033524 013702
                     CLKST4*MCV →≥LSTPTR,R2; PLACE TO LOAD
            037460
120
     033530 010042
                            MOV RO, - (R2); ONE NO. LOADED
121
                            MOV R2, +≥LSTPTR; DON≠T LOSE IT IN TRAPS
     033532 010237
            037460
     033536 005316
                            DEC (SP); DONEA
122
123
     033540 003404
                            BLE CLKST2; QUIT
                            INC R1; PICK UP NEXT VARIABLE
124
     033542 005291
125
                            TRAP 136; EVAL
     033544 104536
126
     033546 104440
                            TRAP 43; FIX
                            BR CLKST4; LOAD IT
     033550 000765
127
     033552 013737
                     CLKST2:MCV +≥LEAVE-NSAVE-6,+≥DAO; SET THE FIRST INITIAL FOT.
            037424
            176760
                     SET LSTPIR FOR NEXT SET OF CONTROLLERS
130
     033560 126127
                            CMPB -1 (R1),≥≠); DID WE REACH THE END OF STRINGA
            177777
            000051
131
     033566 001405
                            BEQ CLKST3; IF YES, WE WANT RESIDUALS
     033570 122127
132
                     CLKST5:CMP8 (R1)+.≥≠); ARE WE AT ENC OF STRING+1∧
            000051
     033574 001375
133
                            BNE CLKST5: IF NC, GET THERE
                            CMPB (RO)+, (RO)+; SAVE THO WCRDS FOR THE RESIDUAL
     033576 122020
134
135
     033600 000401
                            BR CLKST3+2
                    CLKST3 (ASL RO; INCLUDE RESIDUALS
136
     033602 006300
137
     033604 162700
                            SUB ≥11..RO; THIS MANY WORDS TO SKIP
            000013
138
     033610 003403
                            BLE .+8.; IF NEG., LSTPTR IS OK
139
     033612 006300
                            ASL RO; BYTES TO SKIP
```

```
140
     033614 160037
                          SUB RO, +≥LSTPTR; SKIP, PT. TO WORD BEFORE NEXT LIST
            037460
141
     033620 005726
                          TST (SP)+; RESET FOR BASIC
                          JMP +≥LEAVE; GO TO BASIC; R1 IS CK
142
     033622 000137
                   143
144
145
146
                    MEAS (10-27-73)
147
                    DOES A SERIES OF CAPACITANCE EXPIS.
148
149
                    REAL-TIME-CONTROLLED BY NUMBERS IN DATA SPACE
150
                    (SEE CLESET FOR ORDER OF NUMBERS)
                PROGRAM IS TTY INTERRUPTIBLE (CNTRL/F)
151
                    JUSES ALL REGISTERS
152
153
                    RESETS SP. SAVES R1, R5
154
                    CALLED BY EXF (N.M)
155
                    WHERE N=O TO STORE RESIDUALS SEPARATELY
                          N=1 TO STORE THEM IN A DOUBLE WORD INTEGER
156
157
                    REQUIRES NSAVE BE DEFINED AS NO. OF BYTES TO SAVE BEFORE LEAVE
158
159
     033626 010037
                   MEAS: MOV RO. +≥LEAVE+NSAVE; RESIDUAL MODE IN LAST SAVED WORD
           037432
                          BEQ MEASO; FOR GROINARY MOV 25725, WAIT1+2; TIST (R5)+7
160
     033632 001412
    033634 012767
161
            005725
            000212
162
     033642 012767
                          MCV 2776, WAIT1+4: TER .-27
            000776
            000206
163
     033650 012767
                          MOV ≥4,STOP+2; 7ACO ≥4,(SF)7
            000004
            000452
164
    033656 000411
                          BR MEASZ
    033660 012767
                   MEASO: MCV ≥776, WAIT1+2; "BR .-2"
165
            000776
            000166
166
     033666 012767
                          MCV 2400. WAIT1+4; 78R .+27
            000400
            000162
167
    033674 012767
                        MCV ≥2,STOP+2; "ADD ≥2,(SP)"
            000002
            000426
```

```
MEAS21 CLR ↓≥PS: PRIORITY 0
     033702 005037
168
             177776
     033706 010146
                             MOV R1, - (SP); SAVE THESE FOR BASIC
169
170
     033710 010546
                             MOV R5, - (SP)
                             MOV ≥6. R2; SAVE 6 LCCS. FOR BASIC AND REP. CONTENTS
171
     033712 012702
             0000036
172
     033716 012793
                             MOV ≥VECADD,R3; PT. TO LCC. ADDR.
             034426
                             MOV ≥ VECCON, R4; PT. TC NEW CONTENTS
173
     033722 012704
             034442
     033726 017346
                     MEAS3: MOV +O(R3),-(SP); SAVE IT
174
             000000
175
     033732 012433
                             MOV (R4)+, \downarrow (R3)+; REPLACE IT
176
     033734 005302
                             DEC R2: ANOTHERA
     033736 003373
                             BGT MEAS3
177
178
     033740 012705
                             MCV ≥LEAVE-NSAVE,R5; SET FOR FIRST SET, FIRST DATUM
             037432
                             BIC ≥1, +≥GDIOUT; DROP THE ELECTRODE IF NCT ALREADY
     033744 842737
             000001
             167772
     033752 052737
                             BIS ≥340, +≥PS: PRIORITY 7
180
             000340
             177776
                     NEWP:
                             MOV R5, R2; PT TC START OF DATA
181
     033760 010502
182
     033762 005765
                             TST - 2(R5): IF A ZERC
             177776
183
     033766 001500
                             BEQ FINISH: IT & THE END
                             MCV ZEDADO, R3; ADDRESS LIST
     033770 012703
184
             034456
185
     033774 012704
                             MCV ≥8..R4: NO. TO LOAD
             000010
                     MEAS4: MCV -(R5), +(R3)+; LCAO IT
CLR (R5); COVER UP
186
     034000 014533
187
     034002 005015
                             DEC R4; DONEA
188
    -034004 005304
                             BGT MEAS4; NO
     034006 003374
189
190
     034010 014500
                             MCV - (R5) , RO; SAVE STEP POT.
191
     034012 005015
                             CLR (R5)
                             MOV - (R5) .R1; NC. ITERATIONS
192
     034014 014501
     034016 005015
                             CLR (R5)
193
194
     034020 014504
                             MOV - (R5), R4; NO. PTS.
195
     034022 605015
                             CLR (R5)
```

```
196
     034024 012737
                      NEWITRIMOV ≥CLK1, +≥104; RESET THE VECTOR
              034236
              000104
197
     034032 005737
                              TST ↓≥LEAVE-NSAVE: RESIDUAL MODE
              037432
198
     034036 001401
                              BEQ. .+4; IF O. IGNORE
199
     034040 005742
                              TST -(R2); IF NCT 0, INC PTR. TO LOW WORD OF RESIDUAL MCV R2,R5; PT. TO START OF DATA
200
     034042 010205
201
     034044 010403
                              MCV R4, R3; SAVE THE COUNT
202
     034046 005037
                              CLR +>PS; PRIORITY 0
              177776
     034052 000001
203
                      WAIT1: WAIT; FCR CLOCK
BR .-2; WAIT SOME MORE
     034054 000776
204
     034056
205
                              BR .+2; CONTINUE
MCV ENEWCLK,+2104; TO START EXPT.
             000400
     034060
206
             012737
              034334
              000104
     034366 030031
207
                              WAIT: TO PUT ON STEP
208
     034070 010403
                              MOV R4, R3; RESET COUNT WAIT; TO TAKE DATA
     034672 000001
209
210
     034074 000776
                              BR .- 2; SOME MORE
211
                              BR .+2: NO-OP TO MAKE LIKE WAIT1
     034076 000400
212
     034100
             005037
                              CLR +≥CSR; STOP CLOCK QUICK
              172540
213
     034104 052737
                              BIS ≥2,+≥GDIOUT; DISABLE LEVEL-SHIFTING CUTPUT
              000002
             167772
214
     034112 005037
                              CLR ↓≥DA1; END EXPT.
             176762
215
     034116 052737
                              BIS 2340, +>PS; PRIORITY 7
             000340
             177776
216
     034124 005331
                              DEC R1; IF THIS IS LAST ITERATION
     034126 003407
217
                              BLE NEWPOT: START NEW MEASUREMENT
218
                              MCV +≥IkCBR, +≥CBR; OTHERWISE, WAIT FOR NEW ITERATION
     034130 013737
             037446
             172542
219
     034136 813737
                              MCV +2IkCSR, +2CSR; GG, SINGLE INT.
             037444
             172540
220
     034144 000727
                              BR NEWITR: GET SET FOR RERUN
```

```
221
     034146 020427
                    NEWPOTICMP R4, 25; ONLY 10 PTS USEDA
            000005
222
     034152 003302
                            BOT NEWP: MORE THAN 10
     034154 006304
                           ASL R4; NO. PTS USEC WITH RESIDUAL
224
     034156 162704
                           SUB ≥11.,R4; NEG. OF FTS TO SKIP
            000013
                           ASL R4; NEG. OF BYTES TO SKIP
     034162 006304
                            ACD R4. R5; SKIP DOWN TO NEW SET
226
     034164 060405
227
     034166 000674
                           BR NEWP; À NEW MEASUREMENT
228
     034170 005037
                    FINISH:CLR →≥CSR; STOP CLOCK
            172540
229
     034174 005037
                           CLR ↓≥PS: PRIORITY 0
            177776
     034200 012702
230
                           MCV ≥6.R2: REPLACE 6 LOCS. IN BASIC
            000006
     034204 012703
                           MCV ≥VECCON.R3: ACDRESSES IN VECADO BACKWARD
231
            034442
     034210 012653
232
                    FIN1: MCV (SP)+,+-(R3); MCVE ONE BACK
                           DEC R2; DONEA
233
     034212 005302
                           BCT FIN1
234
     034214 003375
235
                          MOV ≥7,RO; FING BELL WHEN DONE
     034216 012700
            000007
236
     034222 004567
                            JSR R5.CHOUT
            000672
     034226 012605
                           MCV (SP)+,R5; PUT THESE BACK,
237
238
     034230 012601
                           MCV (SP)+,R1; TCO
239
     034232 006137
                            JMP +≥LEAVE; DONE >
            037462
240
                     CLOCK INTERRUPT ROUTINES
     034236 012737
                    CLK1: MCV 2CLK2, + 2104; START DATA NEXT TIPE
            034270
            000104
     034244 042737
                           BIC ≥2. +≥GDIOUT: ENABLE LEVEL-SHIFTING OUTPUT
242
            000002
            167772
     034252 013737
                           MCV +20RCBR,+2CBR; DATA RATE
243
            037442
            172542
                           MCV +≥DRCSR,+≥CSR; GG, RPT. INT.
244
     034260 013737
            637448
            172540
245
     934266 600002
                            RTI; AND WAIT
246
     034270 005737
                    CLK2: TST +≥ACB; CLEAR DONE BIT
```

```
176772
247
     034274 005237
                            INC +≥AES: START EATUM
            176770
248
     034300
            005303
                            DEC R3; LAST PTA
249
     034302 002411
                            BLT STOF; YES, STOP
                           TSTB +≥ADS; CONVERSION READY^
     034304 105737
            176770
25 1
25 2
     034310 100375
                            BPL .-4; NO
                            ACO +≥ACB,-(R5); TAKE IT
     034312 063745
            176772
253
     034316 103002
                            BCC .+6; IF NO CARRY, SKIP
254
     034320 005265
                            INC +2(R5): CARRY TO HIGH WORD
            000002
     034324 000002
                            RII: AND WAIT FOR NEXT
256
     034326 062716
                     STOP :
                            ACD ≥4. (SP); GET PAST THE BRANCH BACK
             000004
257
     034332 000002
258
     034334 012737
                     NEWCLK:MCV ≥CLK2, +≥104; TAKE DATA SOME MORE
            034270
            000104
     034342 010037
                            MCV RO, +≥DA1; SET IN STEP
            176762
260
     034346 000002
                            RII
261
                     THERE CAN BE CNLY ONE INTERRUPT ON
262
                     THE STACK HERE, SINCE THE INTERRUPT
263
                     ROUTINES CANNOT BE INTERRUPTED
264
     034350 005037
                     CLERR: CLR +>CSR: STOP VV
            172540
     034354 012702
265
                            MCV ≥100.,R2; CTR.
            000144
     034360 012700
266
                            MOV ≥7,R0; BELL TO WARN OPERATOR
            006007
267
     034364 004567
                            JSR R5, CHOUT; RING
            000530
268
     034370 005302
                            DEC R2; DONEA
     034372
                            BGT .-6; IF NO, DC AGAIN
269
            003374
     034374 012716
                            MCV ≥FINISH, (SP); QUIT
            034170
271
     034400 000002
                            RII
```

```
272
273
                      TTY INTERRUPT ROUTINE
                      TTYINT: MCV +≥TKB, - (SP);GET THE BYTE
     034402 013746
             177562
274
      034406 042716
                             BIC ≥177200, (SP); CLEAR OFF EXTRA
275
      034412 022627
                             CMP (SP)+,≥20; CONTRCL/PA
             000020
276
277
     034416 001002
                             BNE TTY2; NO, GO BACK
      334420 012716
                             MCV ≥FINISH, (SP); QUIT WHATEVER
             034170
278
     034424 000002
                      TTY2: RTI
279
                      STORAGE
280
     034426
                      VECADD: NORD 4,6,60,62,104,106; THE VECTOR ACCRESSES
             0000034
             000006
             000060
             000062
             000104
             000106
     034442
281
                      VECCON: WORD CLERR, 300, TTYINT, 240, CLK1, 300; INTERRUPT CATA
             034350
             000300
             034402
             000240
             034236
             000300
282
     034456
                      LDADO: CBR: CLCCK COUNT
             172542
283
     034460
                             CSR; CLCCK RATE, MODE, STARTS CLCCK IF ODD
             172540
     034462
284
                             DAD: THE LARGE PCT.
             176760
     034464
285
                             ACS; SENSITIVITY
             176770
236
     034466
                             INCER: STORE FOR WAIT BETWEEN ITERATIONS
             037446
287
     034470
                             IWCSR;
             037444
288
     034472
                             DRCER;
                                                              DATA FIS.
             637442
289
     034474
                             DRCSR;
             037440
290
291
                      .EOT
292
```

```
293
294
                      ELECT
295
                       TO RAISE OR LOWER ELECTRODE
                       CALLED FROM BASIC THROUGH HEAD BY: EXF (N.E)
296
297
                      WHERE N=1 FOR RAISE, O FOR LOWER
298
                       ; FOR CTHER N. NO ACTION
299
                       USES RO
300
                       REQUIRES GDIOUT BE DEFINED AS DR11 CUIPUT REG.
301
302
     034476 005700
                      ELECT: TST RG; U OR 14
303
     034500 001003
                              BNE ELD: MAYBE A RAISE
     034502 042737
304
                              BIC ≥1, +≥GDIOUT; LOWER IT
             000001
             167772
                              DEC RO
305
     034510 005300
                      EL 01
306
     034512 001003
                              BNE EL1; NOT 0 OR 1
BIS ≥1,+≥GDIOUT; RAISE IT
307
     034514 052737
             000001
             167772
308
     034522 000137
                      EL11
                              JMP →≥LEAVE; R1 WAS SET BY HEAD; R5.SP UNTOUCHED
             037462
309
                      .EOT
310
311
312
313
                       :RETVAL
                      MOVES BATUM WHOSE ADDR. IS SPECIFIED TO BASIC CALLEC FROM BASIC THROUGH HEAD BY
314
315
316
                               EXF(ADCRESS,R)
                       :USES RO,R1,R6
317
318
                       RESTORES RI
319
                      R6 IS DECREASED BY 6
320
                      RETVAL *MCV R1, ≥0; SAVE PTR. HERE
     034526 010127
             000000
     034532 011001
                              MCV (R0), R1; INT(DATA) TG R1
     034534 162706
                              SUB 26, SP; LEAVE RCCM FOR RETURN VAL
             000006
323
324
     034540 010600
                              MCV SP.RU; SET RO TO STACK
     034542 104436
                              TRAP 36: FLOAT (CATA) TO STACK
     934544 016751
                              MOV RETVAL+2,R1; RESET R1
             177760
326
     034550 000167
                              JMP 52
             143276
327
                      .EGT
```

```
330
                      TAPE 110-30-73)
331
                      READS AND PUNCHES PAPER TAPE TO AND FROM THE
333
                      DATA LOCATIONS (ADDR-1 AND DOWN)
334
                       CALLED FROM BASIC THROUGH HEAD BY
335
                             EXF(ADDR,T,X)
                      WHERE X=0 FOR READ OR NO. OF DATA TO FUNCH
336
                      SUSES EASIC TRAPS: 40,136
337
338
                      JUSES ALL REGISTERS
339
                      RI ADVANCED TO CHAR. PAST RT. PAREN.
340
                      R5, R6 ARE RESTORED
                      SPECIAL DEFINITIONS
341
                      PPS=177554
342
                      PPB=PPS+2
343
                      TAPE: MCV RO, - (SP); SAVE ACOR.
344
     034554 010046
                              TRAP 136; GET
TRAP 40; NO. OF DATA WORES
345
     034556 104536
346
     J34560 104440
                              MCV (SP)+,R3; GET ADDR.
MOV R1,-(SP); SAVE REGS.
347
     034562 012603
348
     034564 010146
349
     034566 010546
                              MCV R5.-(SP)
     034570 010346
                              MCV R3, - (SP); ACCR. ON STACK LAST
350
     034572 005700
                              TST RO: READ OR PUNCHA
351
352
     034574 001457
                              BEQ TAPR; 0 TO READ
                             ASL RO; BYTES OF DATA TO PUN

MCV RO; -(SP); BYTES ON STACK

ACD 26, RO; PLUS BYTES IN HEADING
     034576
35 3
             006300
     jā4ēbō
354
             010046
     034602 062700
             000006
356
     034606 010067
                              MOV RO, TAPHED+2: STORE FOR PUNCHING
             000116
     034612 005003
357
                              CLR R3; FCR CKSUM
358
     034614 012702
                              MOV ≥TAPHEO, R2; START OF PUN LIST FOR HEADEP
             034726
359
     034620 012700
                              MCV ≥6.RO; NO TO PUN IN HEADER
             000006
                              JSR PC. TAPPO: PUNCH HEADER
360
     034624 004767
             000052
     034630 012600
361
                              MCV (SP)+, RO; BYTES OF DATA TO PUN
362
     034632 012602
                              MOV (SP)+,R2; ADDR. AFTER DATA
```

```
SUB RO, R2; START OF DATA
363
     034634 160002
364
     034636 004767
                            JSR PC. TAPPO: PUNCH CATA
             000040
     034642 005403
                            NEG R3; PREP CKSUM
365
                            MOV R3. TAPHED+2: DATA TO FUN
     034644 010367
             000060
367
     034650 012702
                            MCV ≥TAPHED+2.R2; PT TO IT
             034730
368
     034654 004767
                            JSR PC, TAPPO; PUN CKSUM
             000022
369
     034660 012704
                            MCV ≥20.R4; NEED 16 NULLS
             000020
370
     034664 105042
                     TAPTRL:CLRE - (R2); O IN TAPHED+3 AND PT TO DATA
371
     034666 004767
                            JSR PC. TAPPO: PUN A NULL
             000016
372
     034672 005304
                            DEC R4: DONEA
                            BGT TAPTRL; IF NO, REPEAT
373
     034674 003373
374
     034676 000167
                            JMP TAPR5; ALL CONE
             000112
375
     034702 111205
                     TAPPO: MOVB (R2), R5: ACCUMULATE FOR SUM
                            ACD R5, R3
376
     034704 060503
377
     034706 105737
                            TSTB +≥PPS; READYA
             177554
                            BPL .-4; IF NO, LOOP
378
     034712 100375
379
     034714 112237
                            MOVB (R2)+,+≥PPB; PUNCH
             177556
380
     034720 005300
                            DEC RO; DONE WITH LISTA
381
     034722 003367
                            BGT TAPPO; NO, REPEAT
382
     034724 000207
                            RTS PC; RO<=0
     034726
                     TAPHED: . EYTE 1,0,0,0,0,0,0
383
             000001
             000000
             000000
384
                      THIS IS A TAKEOFF ON ABS LOADER
385
     034734 012795
                     TAPR: MOV ≥TAPRO, R5; PT TO SUBROUTINE
             035024
387
                     ;LOOK FOR BEGINNING OF BLOCK
                     TAPRI: CLR RO; CKSUM
388
     934740 605000
389
     034742 004715
                            JSR PC, (R5); READ FRAME
390
     034744 105303
                            DECE R3: IS IT A CNEA
391
     034746 001374
                            BNE TAPR1; NO, LOOK MORE
     034750 034715
392
                            JSR PC. (R5): READ THE NULL BYTE
```

```
393
                    ; INPUT BYTE CT. AND LOAD ACCRESS
394
     034752 004767
                           JSR PC. TAPR2; GET BYTE CT WORD
            000126
395
     034756 010402
                           MCV R4, R2; SAVE IT
396
     034766 162702
                           SUB 24.R2; 4 BYTES ALREADY READ
            000004
397
     034764 004767
                           JSR PC. TAPR2: GET LCAD ACCRESS
            000114
     034770 011601
                           MCV (SP),R1; END ACCRESS, SAVE FOR READ-I ERROR
399
                           SUB R2.R1; MAKE THE START ACCR.
     034772 160201
                    TAPR3: JSR PC, (R5); READ DATA BYTE
BLT TAPR4; IF DCNE, BR OUT
400
     034774 004715
     034776 002402
401
                           MOVE R3, (R1)+; STORE BYTE
402
     035000 110321
                   TAPR4: TST (SP)+; REMOVE THE SAVED ACOR
TSTB RO; CKSUM
BEG TAPR5; OK
     035002 000774
403
404
     035004 005726
405
     035006 105700
406
     035010 001401
407
     035012 000000
                           HALT; ERROR IN CKSUM, CONTINUE WILL RESTART
                    TAPRS: MCV (SP)+,R5; RESTORE REGS.
408
     035014 012605
409
     035016 012601
                           MCV (SP) + R1
410
     035020 000137
                           JMP +≥LEAVE; THIS SHOULD BE ALL
            037462
     035024 013703
411
                   TAPRO: MOV →≥37776,R3; DEVICE ADDRESS
            037776
     035030 005213
412
                           INC (R3); START READER
413
     035032 005713
                           TST (R3); ERRORA
    035034 100411
414
                           BMI TAPRER
                           TSTB (R3); DONEA
     035036 105713
415
416
     035040 100374
                           BPL .-6; NO
                          MOVE 2(R3), R3; GET BYTE
417
    035042 116303
            000002
418
     035046 060300
                           ACD R3, RG; CKSUM
                           BIC≥177400, R3; MASK OFF JUNK
419
     035050 042703
            177400
420
     035054 005302
                           DEC R2; BYTE CT
421
    035056 000207
                           RTS PC
                    TAPRER: HALT; PLACE TAPE AND PRESS CONT.
     035060 000000
                          CMP (SP), ETAPRE: IS TAPRO CALLED FROM TAFREA
     035062 021627
            035104
424
     035066 001403
                           BEQ TAPR6; IF SO, TAKE 2 WORES OFF STACK
425
     035070 021627
                           CMP (SP), 2TAPR2+4
```

```
035110
                           BAE TAPR6+2; IF NOT, JUST ONE WORD OFF
TAPR6: TST (SP)+; ONE WORD OFF
TST (SP)+; AND ANOTHER
BR TAPR; THEN START OVER
TAPR2: JSR PC, (R5); GET ONE BYTE
MCV R3, R4; SAVE
JSR PC, (R5); GET ANOTHER
SHAE R3; PUT LAST IN HI BYTE
BIS R3; PUT LAST IN HI BYTE
426
       035074 001001
       035076 005726
427
428
429
       035100
                005726
       035102
                 000714
430
       035104
                 004715
431
       035106
                010304
432
433
       035110
                004715
       035112
                000303
434
                                     BIS R3, R4; MAKE A WORD
       035114 050304
435
       035116 000207
                                     RTS PC
436
                            .EOT
437
438
439
440
                            ŤTKS=
                                        177560
441
                            TTKB=
                                       177562
442
                                        177564
                           TTPS=
443
                            TIPB=
                                        177566
444
445
                                        CHOUT
446
                                        THIS ROUTINE IS CALLED TO CUTPUT AN ASCII CHARACTER TO THE 4002A
447
448
449
                                        GRAPHIC COMPUTER TERMINAL
450
451
                                                    PUT THE CHARACTER IN REG 0
                                        TC CALL
452
                                        AND EXECUTE A
454
                                        JSR
                                                     R5, CHOUT
455
456
                                       WILL RETURN WITH REG O UNCHANGED
457
458
459
      035120 135767
                                                      TIPS
                           CHOUT:
                                        TSTB
                                                                                 CHECK FOR PUNCH READY
                 142440
      035124 100375
460
                                        BFL
                                                      CHOUT
                                                                                 ;WAIT FOR READY
      035126 110067
                                                     RO, TTPB
461
                                       MCVB
                                                                                 MOVE IN BYTE
                142434
      035132 000205
462
                                        RIS
                                                                                 :RETURN
463
                           .ECT
```

```
464
465
466
467
                               ENOPRG=.: LABEL THE END OF THE MAIN PROGRAM
                               ; THE EXIT ROUTINE
468
469
                                        GLR -(SP); DUMMY VARIABLE
GLR -(SP); ON BASIC
GLR -(SP); STACK
JMP +252; TO BASIC
       037462 005046'
037464 005046
470
471
       037466 005046
472
       037470 000137
473
                  000052
                               .END 52
474
```

## Part 5

Subroutine Package for PLT and CCPVE (written in PAL-11 assembly language)

<sup>1/</sup>Subroutines CHOUT and TPLOT in this package are from Tektronix Document #062-1402-00, copyright Tektronix, Inc., Beaverton, Oregon, 1971. Used with permission.

```
*DEFINE REGISTERS
                                 R0 = %0
                                 R1 = %1
                                 R2 = %2
R3 = %3
                                 R4 = %4
                                 R5 = 1/5
                                 SP = \%6
                                 R7=17
                                 R6 = SP
                                 PC=R7
12
13
14
                                 R4CT=R4
                                 R2 VRS=R2
DEFINE PERIPHERALS ADS=176770
                                 ADB=ADS+2
                                 CSR=172540
CBR=CSR+2
CTR=CSR+4
DA0=176760
                                 DA 1=0A0+2
PS=177776
GDIOUT=177522
TK 8=177562
                                 DEFINE STORAGE
LEAVE=37462; ADDRESS OF EXIT ROUTINE
                                 NSAVE=24.
LSTPTR=LEAVE-2
CONDAT=LSTPTR-2
                                 IWCBR=LSTPTR-10.
IWCSR=LSTPTR-12.
DRCBR=LSTPTR-14.
                                 DRCSR=LSTPTR-16.
                                 .=50:BASIC USES THIS ACDRESS TO FIND EXF
.WORD 33602
      000050
                   033602
```

```
-33602
39
41
43
                     ;HEAD
                     SELECTS ROUTINE
                     DETERMINES INTEGER VALUE OF FIRST PARAMETER
                     MAKES R1 PT. TO NEXT PARAMETER
                            MOV (RO)+, R2; GET 1ST VARIABLE INTO R2-R4
                    HEAD:
    033602 012002
45
                            MOV (R0)+,R3
    033604
           012003
                            MOV (RO)+,R4
TRAP 40; INTEGEROF FIRST VARIABLE IN RO
    033606 012004
47
    033610 104440
                            INC R1: PT. TO NEXT VARIABLE
48
    033612 005201
                            MOV ≥CODES,R2; THE ADDRESS FOR FUNCTION DESIGNATORS
    033614 012702
            033640
                            MOV ≥FUNCT-2.R3; THE ADDRESS LIST FOR THE FUNCTIONS
    033620 012703
            033646
                     HEAD1: TST (R3)+; POINT TO NEXT ADDRESS
51
52
53
    033624 005723
                            CMPB (R1), (R2)+; DO CODES MATCHA
    033626 121122
                            BNE HEAD1; IF NCT, TRY NEW CODE AND ADDRESS
    J33630 001375
                            CMPB (R1)+, (R1)+; PT. TO NEXT VARIABLE
    033632 122121
                            JMP + (R3); IF SC, START FUNCTION
55
    033634 000173
            000000
56
                     CODES: .ASCII /GLOPRTXY/
57
    033640
            046107
            050117
            052122
            054530
58
                            EVEN
59
    033650
                     FUNCT: LABAX
            034734
                            LINPLT
60
    033652
            034430
                            TEKCON
61
    033654
            035020
    033656
                            PTPLT
62
            034262
                            RETVAL
63
    033660
            033670
    033662
                            TAPE
64
            033716
                            XTIC
    033664
65
            034534
                            YTIC
66
    ũ 33 66 6
            034604
67
                     .EOT
68
                     RETVAL
```

```
*MOVES DATUM WHOSE ADDR. IS SPECIFIED TO BASIC CALLED FROM BASIC THROUGH HEAD BY
 70
71
72
73
                              EXF(ADDRESS,R)
                      SUSES RU, R1, R6
                      RESTORES RI
                      R6 IS DECREASED BY 6
                     RETVAL:MOV R1,≥0; SAVE PTR. HERE
     U33670 010127
             000000
                             MOV (RO), R1; INT(DATA) TO R1
     033674 011001
                            SUB 26, SF; LEAVE ROOM FOR RETURN VAL
     033676 162796
             000006
                            MOV SP,RO; SET RO TO STACK
     033702 010600
 78
                            TRAP 36; FLOAT (CATA) TO STACK
 79
     033704 104436
                            MOV RETVAL+2, R1: RESET R1
     033706 016701
 80
             177760
     033712 000167
                             JMP 52
             144134
82
83
                      .EOT
                      TAPE 110-30-73)
 84
                      READS AND PUNCHES PAPER TAPE TO AND FROM THE
                      DATA LOCATIONS (ADDR-1 AND DOWN)
 86
                      CALLED FROM BASIC THROUGH HEAD BY
 87
 88
                            EXF (ADDR, T, X)
                      *WHERE X=0 FOR READ OR NO. OF DATA TO PUNCH
 89
                      USES BASIC TRAPS: 40,136
 90
                      USES ALL REGISTERS
                      RI ADVANCED TO CHAR. PAST RT. PAREN.
                      R5.R6 ARE RESTCRED
 93
                      SPECIAL DEFINITIONS
                      PPS=177554
 95
                      PPB=PPS+2
 96
                      TAPE: MOV RO, - (SP); SAVE ADDR.
 97
     033716 010046
 98
     033720 104536
                             TRAP 136; GET
                             TRAP 40: NO. OF DATA HORES
     033722 104440
033724 012603
 99
                             MOV (SP)+,R3; GET ADDR.
100
                             MOV R1, - (SP); SAVE REGS.
     U33726 010146
101
                             MOV R5 - (SP)
     033730 010546
102
103
     033732 010346
                             MOV R3,- (SP); ACCR. ON STACK LAST
                             TST RO! READ OR PUNCHA
     033734 005700
104
                             BEQ TAPR; 0 TO READ
105
     033736 001457
                             ASL RO: BYTES OF DATA TO PUN
     U33740 006300
106
                             MOV RO. - (SP); BYTES ON STACK
107
     033742 010046
     033744 062700
                             ADD 26.RO: PLUS BYTES IN HEADING
108
             000306
```

```
109
     033750 010067
                              MOV RO, TAPHED+2; STORE FOR PUNCHING
              000116
     U33754 005003
110
                              CLR R3: FOR CKSUM
     033756 012702
111
                              MOV ≥TAPHED.R2: START OF PUN LIST FOR HEACER
             034070
      u33762 012700
112
                              MOV ≥6.RO; NO TO PUN IN HEADER
              000006
113
     033766 004767
                              JSR PC. TAPPO: PUNCH HEACER
              0 0 0 0 5 2
     033772 012600
114
                              MOV (SP)+, RO; BYTES OF DATA TO PUN
                              MOV (SP) +, R2; ACOR. AFTER DATA
SUB R0, R2; START OF DATA
115
     033774
             012602
     033776 160002
116
117
     034000 004767
                              JSR PC, TAPPO: PUNCH DATA
              000040
     034004 005403
118
                              NEG R3; PREP CKSUM
119
     034006 010367
                              MOV R3, TAPHED+2; DATA TO PUN
             0.00060
120
     U34012 012702
                              MOV ≥TAPHED+2,R2; PT TO IT
             034572
     034016 004767
121
                             JSR PC, TAPPO: PUN CKSUM
             000022
     034022 012704
122
                             MOV ≥20, R4; NEEC 16 NULLS
             000020
123
                      TAPTRLICLRB -(R2); 0 IN TAPHED+3 AND PT TO DATA
     034026 105042
124
     034030 004767
                             JSR PC, TAPPO; PUN A NULL
             0 6 0 0 1 0
125
     û34034 005304
                             DEC R4: DONEA
126
                             BGT TAPTRL; IF NC, REPEAT
     034036
             003373
127
     034040 000167
                             JMP TAPR5; ALL DONE
             000112
     034044 111205
128
                      TAPPO: MOVB (R2), R5; ACCUMULATE FOR SUM
129
130
     034046 060503
                             ADD RS.R3
     034050 105737
                             TSTB +≥PPS; REACYA
             177554
     034054 100375
131
                             BPL .-4: IF NO, LOOP
132
     634056
             112237
                             MOVB (R2)+,+≥PPB; PUNCH
             177556
133
     034062 005300
                             DEC RO: DONE WITH LISTA
134
     034064 003367
                             BGT TAPPO; NO, REPEAT
```

```
135
      034066 000207
                                RTS PC: RO<=0
136
      034070
                        TAPHED: . BYTE 1,0,0,0,0,0
               000001
               000000
               000000
137
138
                        THIS IS A TAKEOFF ON ABS LOADER
139
      034076 012705
                        TAPR: MOV ≥TAPRO, R5; PT TO SUBROUTINE
               034166
140
                        LOOK FOR BEGINNING OF BLOCK
                        TAPR1: CLR RO; CKSUM

JSR PC, (R5); READ FRAME

DECB_R3; IS IT A ONE^
141
      034102 005000
142
143
      034104 004715
      034106 105303
144
                                BNE TAPRI; NO. LOOK MORE
      034110 001374
145
      034112 004715
                                JSR PC, (R5); READ THE NULL BYTE
146
                        INPUT BYTE CT. AND LOAD ADDRESS
147
      034114 004767
                                JSR PC, TAPR2; GET BYTE CT WORD
               000126
      034120 010402
148
                                MOV R4, R2; SAVE IT
      034122 162702
149
                                SUB ≥4.R2; 4 BYTES ALREADY READ
               000004
150
      034126 004767
                                JSR PC. TAPR2: GET LOAD ADDRESS
               000114
      034132 011601
151
                                MOV (SP), R1; ENC ADDRESS, SAVE FCR REAC+I ERRCR SUB R2, R1; MAKE THE START ADDR.
      034134 160201
152
153
                        TAPR3: JSR PC, (R5); READ DATA BYTE
BLT TAPR4; IF DCNE, BR OUT
MOVB R3, (R1)+; STORE BYTE
      034136 004715
154
      034140 002402
155
      034142 110321
      034144 000774
156
                        BR TAPRS; GET ANOTHER
TAPR4: TST (SP)+; REMOVE THE SAVED ADDR
157
      034146 005726
158
      034150
                                TSTB RO; CKSUM
              105700
                                BEQ TAPRS; OK
HALT; ERROR IN CKSUM, CONTINUE WILL RESTART
159
      034152 001401
160
      034154
              000000
161
      034156 012605
                        TAPR5: MOV (SP)+,R5; RESTORE REGS.
162
      034160
              012601
                                MOV (SP) + R1
163
      034162 000137
                                JMP +≥LEAVE; THIS SHOULD BE ALL
              037462
```

```
034166 013703
                    TAPRO: MOV +≥37,776.R3: DEVICE ACDRESS
             037776
                             INC (R3); START READER TST (R3); ERROR
165
     034172 005213
166
     034174 005713
                             BMI TAPRÉR
167
     J34176 100411
     034200 105713
034202 100374
1.68
                             TSTB (R3); DONE A
                             BPL .-6; NO
169
                             MOVB 2(R3), R3; SET BYTE
170
     034204 116303
             000002
171
     034210 060300
                             ADD R3, R0; CKSUM
172
     034212 042703
                             BIC≥177400.R3: MASK OFF JUNK
             177400
173
     034216 005302
                             DEC R2; BYTE CT
     034220 000207
                             RTS PC
174
                     TAPRERIHALT: PLACE TAPE AND PRESS CONT.
175
     034222 600000
                             CMP (SP). ETAPR2: IS TAPRO CALLED FROM TAFR2A
176
     034224 021627
             034246
     034230 001403
177
                             BEQ TAPR6: IF SC, TAKE 2 WORDS OFF STACK
     034232 021627
                             CMP (SP), 2TAPR2+4
178
             0.34252
     034236 001001
                             BNE TAPR6+2; IF NOT, JUST ONE WORD OFF
179
                      TAPR6: TST (SP)+; ONE WORD OFF
180
     034240 005726
                     TST (SP) +; AND ANOTHER
BR TAPR; THEN START OVER
TAPR2: JSR PC, (R5); GET ONE BYTE
     034242 005726
181
     034244 000714
182
     034246 004715
183
                             MOV R3, R4; SAVE
JSR PC, (R5); GET ANOTHER
     034250 010304
184
185
     034252 004715
186
     034254 000303
                             SWAB R3; PUT LAST IN HI BYTE
187
     034256 050304
                             BIS R3, R4; MAKE A WORD
     034260 000207
                             RTS PC
188
189
                      .EOT
                      PTPLT

ORANS AN TXT AT PT (X,Y).

CALLED THROUGH HEAD FROM BASIC BY EXF(X,P,Y).
190
191
192
193
                      SUSES BASIC FUNCTIONS: EVAL.FIX.
194
                      JUSES SUBROUTINES: DRAW.
                      SUSES REGISTERS: RO-R6.
195
                      TAT END, RI PTS. TO CHAR. PAST RT. PAREN.
196
197
                       RESTORES R5.R6.
     034262 062700
                      PTPLT: 4DD ≥100..RO; ALLOW FOR THE MARGIN
             000144
199
     034266 010046
                             MOV RO, - (SP); SAVE X
200
     034270 104536
                             TRAP 136; EVAL(Y)
201
     034272 104440
                             TRAP 40; INT(Y) IN RO
     034274 062700
                             ADD ≥60..R0: ALLOW FOR MARGIN
             0 0 0 0 7 4
203
     034300 010046
                             MOV RO, - (SP); SAVE Y
```

```
MOV ≥COORD1.RO; FTR TO FIRST SET OF COCRCINATES
204
     034302 012700
             034370
                            MOV ≥COORD2,R2; PTR TO 2ND SET OF COORCINATES
205
     034306 012702
             034410
     034312 062726
206
                            ADD ≥4.(SP)+; INCREASE Y
             000004
                            ADD ≥4, (SP)+; INCREASE X
207
     034316 062726
             000004
     034322 014620
                            MOV - (SP), (RO) +; X1 COORC1
208
209
     034324 014620
                            MOV - (SP) . (R0) +; Y1 COOR01
210
     134326 162726
                            SUB ≥8., (SP)+; CHANGE Y, GO TO X
             000010
     034332 011622
                            MOV (SP), (R2)+; X1 COCRD2
211
212
     034334 014622
                            MOV - (SP), (R2) + ; Y1COORD2
213
     034336 005726
                            TST (SP)+; GO TC X
                            SUB 28., (SP); CHANGE X
     034340 162716
214
             000010
                            MOV (SP), (RO)+; X2 COCRO1
     034344 011620
215
216
     034346 014620
                            MOV = (SP) \cdot (R0) + ; Y2COORD1
                            ADD 28., (SP)+; CHANGE Y GO TO X
217
     U34350 062726
             000010
                            MOV (SP), (R2)+; X2 COORD2
218
     034354 011622
     034356 014622
                            MOV - (SP) , (R2)+; Y2 COORC2
219
220
     034360 005726
                            TST (SP)+
                            TST (SP)+: SP BACK TO ORIG. VALUE
221
     034362 005726
222
     034364 004567
                            JSR R5. DRAW: DRAW FIRST LINE
             000612
223
     034370
                     COORD1: WORD 0,0,0,0,0; DATA AND STOPFERS
             000000
             000000
             000000
             000000
             000000
             000000
                            JSR R5.DRAW: DRAW 2ND LINE
224
     034404 004567
             000572
                     COORD2: WORD 0.0,0,0,0,0; DATA AND STOPFERS
225
     034410
             000000
             000000
             000000
             000000
             000000
             000000
226
     034424 000167
                            JMP LEAVE
             003032
```

```
227
                       :LINPLT
                       DRAW A STR. LINE BETWEEN TWO SPECIFIED PTS
2289
2231
2331
2333
2334
56
                       ;(X0,Y0) AND (X1,Y1).
                       ADDS ON A MARSIN TO THE COORDINATES. CALLED FROM BASIC THROUGH HEAD BY:
                       EXF(X0,L,Y0,X1,Y1);
USES BASIC FUNCTIONS: EVAL, FIX.
                        USES SUBROUTINES: DRAW
                       :USES REGISTERS: RO-R5.
                       AT END RI PTS. TO CHAR. PAST RT. PAREN.
                       R5 RESTORED.
237
238
                       LINPLT:ADD ≥100.,RO; ALLOW FOR THE MARGIN
     034430 062700
              000144
                               MOV ROXXO
239
     034434 010067
              000054
                               TRAP 136; EVAL (YO)
TRAP 40; INT (YO)
240
     034440 104536
241
     034442 104440
                               ADD ≥60. RO; MARGIN FOR Y
242
     034444 062700
              000074
     034450 010067
243
                               MOV RO.YO
              000042
                               INC R1; PT. TO X1
244
      034454 005201
245
     034456 104536
                               TRAP 136; EVAL(X1)
246
     034460 104440
                               TRAP 40; INT(X1)
247
                               ADD ≥100. RO; ALLOW FOR THE MARGIN
     034462 062700
              000144
248
      034466 010067
                               MOV RO.X1
              000026
                               INC R1; PT. TO Y1
249
      034472 005201
250
                               TRAP 136; EVAL(Y1)
     034474 104536
                               TRAP 40; INT(Y1)
251
     334476 104440
                               ADD ≥60. RO; MARGIN FOR Y
252
      034500 062700
              000074
253
      034504 010067
                               MOV RO.Y1
              000012
254
      034510 004567
                               JSR R5.DRAW; DRAW LINE FROM (X0.Y0) TO (X1.Y1)
              000466
255
      034514
                               .WORD 0
                       X0 :
              000000
```

```
256
     034516
                      Y0 :
                             .WORD 0
             000000
257
     034520
                      X1 1
                             .WORD 0
             000000
258
     034522
                      Y1 :
                             .WORD 0
             000000
259
     034524
                             .WORD 0,0; STOPPERS
             000000
             000000
260
     034530
             000167
                             JMP LEAVE
             002726
261
                      .EOT
262
263
                      :XTIC
                      FILLS IN DATA IN TIC FOR A TIC ON X AXIS
264
265
                      CALLED THROUGH HEAD FROM BASIC BY EXF($2, X, Y)
                      *WHERE S2=DISTANCE FROM ORIGIN FOR TIC
266
                             Y= VALUE OF INDEX
267
268
                      USES REGISTER RO
269
                      FT 0 A 0 0 = 1 0 7 1 6
270
     034534 062700
                      XTIC: ADD ≥100.,RO; X MARGIN
             000144
271
     034540
             010067
                             MOV RU, XTIC1; TIC X COORES
             000150
272
273
     034544 010067
                             MOV RO, XTIC2
             000150
274
     834550 162760
                             SUB ≥28. ,RO; SET LABEL BACK
             000034
275
     034554 010867
                             MOV RO.XTICO: LABEL X CCCRO
             000070
276
     034560
             012767
                             MOV ≥39., YTICO; LABEL Y COORD
             000047
             000064
277
     034566 012767
                             MOV ≥60., YTIC1; TIC Y CCORDS
             000074
             000122
278
     034574 012767
                             MOV ≥72. YTIC2
             000110
             000120
279
     034602 000420
                             BR TIC
```

```
280
281
                     :YIIC
282
                     FILLS DATA IN TIC FOR A TIC ON Y AXIS
283
                     CALLED LIKE XTIC BY EXF (S2,Y,Y)
284
                     USES RO ONLY
285
     u34604 062700
                     YTIC: ADD ≥60. RO; Y MARGIN
286
             000074
287
                            MOV RO.YTICO: LABEL Y CCORD
     034610 010067
             000036
288
     U34614 010067
                            MOV RO.YIIC1: TIC Y COORDS
             000076
289
                            MOV RO.YTIC2
     034620 010067
             000076
290
     034624 005067
                            CLR XTICO: LABEL X COCRD
             000020
291
     034639 012767
                            MOV ≥100.,XTIC1; TIC X CCORDS
             000144
             000056
                            MOV ≥112.,XTIC2
     034636 012767
292
             000160
             000054
                     :TIC
293
                     ¡PŌSITIONS, DEVELOPS ASCII, AND PRINTS AN INDEX
294
295
                     DRAWS TIC
                     RI MUST PT. TO SO
296
                     USES BASIC FUNCTIONS: EVAL, FTCADO
297
298
                     USES SUBROUTINS: POSLAB, DRAW
                     USES REGISTERS + R1, R5, SP
299
                     AT END! R5, SP RESTORED, R1 PTS. TO CHAR. PAST RT. PAREN.
300
301
                     TIC:
                            JSR R5, DRAW; POSITION THE LABEL
302
     034644 004567
             000332
                     XTICO: 0: BY DARK VECTORING
303
     034650
             000000
     034652
                     YTICO: O: THEN BACK TO ASCII MCDE
304
             000000
     434654
                            0: STOP
305
             000000
     034656
                            B: STOP
306
             000000
                            TRAP 136; EVAL SO
307
     034660 104536
308
     034662 010146
                            MOV R1,-(SP); SAVE PTR
```

```
JSR PC.+≥FTOA00; S2 IS ASCII-ED
309
     034664 004737
             010716
                              ;R6 PTS TO ASCII STRING, IS 20. LESS THAN BEFORE MOV SP,R1; R1 PTS TO STRING DEC R1; R1 PTS TO BEFORE STRING
310
311
     034670 010601
312
     034672 005301
                              JSR R5, POSLAB; WRITE THE LABEL
     034674 004567
313
             000174
                              0: POSITIONING ALREADY DONE
314
     034700
             000000
     034702 062706
                              ADD ≥20., SP; PUT BACK AS BEFORE FTCAOD
315
             000024
                              MOV (SP) +,R1; RESTORE PTR
316
     034706 012601
                              JSR R5. DRAW; DRAW TIC
317
     034710 004567
             000266
318
     034714
                       XTIC1: 0
             000000
                       YTIC1: 0
319
     034716
             000000
320
     034720
                       XTIC2: 0
              000000
     034722
321
                       YTIC2: 0
              0 00 000
                              Ũ
322
     034724
              000000
323
                              0: STOP
     034726
              000000
324
     034730 000167
                              JMP LEAVE: BACK TO BASIC
             002526
                       .EOT
325
326
                       :LABAX
327
                       IDRAWS X AND Y AXES AND LABELS EACH
                       CALLED THROUGH HEAD FROM BASIC BY
328
                               EXF(0,5, LABEL FOR Y, LABEL FOR X)
329
                       :USES SUBROUTÍNÉS: POSLAB, DRAW.
330
                       USES REGISTERS: R1. R5.
331
                       AT END. RI PTS. TO CHAR. PAST RT. PAREN.
332
                       RESTORÉS R5.
333
```

```
334
     034734 005301
                     LABAX: DEC R1: GO BACK TO COMMA BEFORE LABEL
335
     ũ34736
            004567
                            JSR R5.POSLAB: POSITION AND WRITE Y LABEL
             000132
     034742
336
                             .WORD 30,1; ERASE, SOH,
             000030
             000001
                            .BYTE 40,9.; 9 SPACES
337
     U34746
             004440
338
     034750
                            .WORD 0: LABEL
             0 0 0 0 0 0
339
     034752 004567
                            JSR R5.DRAW: MAKE AXES
             000224
     034756
340
                            .WORD 100.,740.,100.,60.,1023.,60.,0,0
             000144
             001344
             000144
             000074
             001777
             000074
             000000
             00000
                            COORDINATES OF X, Y AXES AND STCPFERS
341
                            JSR R5, POSLAB; POSITION AND WRITE X LABEL
342
     034776 004567
             000072
343
     035002
                             .BYTE 1,0,12,38.,40,18.,0,0;SCH,38LF,18SF,LABEL
             000001
             023012
             011040
             000000
                            INC R1; SET TO CNE PAST RT PAREN JMP LEAVE
344
     035012 005201
345
     035014
            000167
             002442
346
                     -EOT
347
348
349
350
                      :TEKCON
                     FOR SENDING SPECIAL CHARACTERS TO TEK TERMINAL
351
352
                      CALLED FROM BASIC BY: EXF(N.O)
353
                      *WHERE IF N = 0 SENDS AN SOH AND 39 LINE FEEDS
354
                                N < 0 SENDS ERASE, SOH
355
                                N > 0 SENDS N
356
                      JUSES POSLAB, RO, R1, R5
357
                      *RESTORES R5
                     :AT END, R1 PTS TO CHAR PAST RT PAREN
358
                     TEKCON: CMPB -(R1),-(R1); PT TO BEFORE ")"
359
     U35020 124141
360
     035022 005700
                            TST RO
```

```
361
     035024 001405
                            BEQ OFFPAS: 0 MEANS OFFPAS
                           BMÎ ERASE; NEG ÎS ERASE, SOH
JSR R5, CHOUT; OTHERWISE JUST OUTPUT ASCII RÛ
362
     035026 100412
363
     035030 004567
            000226
364
     035034 005201
                            INC R1;PT TO ")"
365
     035 036
                            BR TEKC1: DONE
            000413
366
     035040 004567
                     OFFPAGIJSR R5, PÓSLAB; CUTPUT
            000030
367
     035 044
                            .BYTE 1,0,12,39.,0,0; SCH, 39 LF, NO LABEL
            000001
            023412
            000000
     035052 000405
368
                            BR TFKC1: DONF
     035 054 004567
369
                     ERASE: JSR R5. POSLAB: OUTPUT
            000014
370
     035 060
                            .WORD 30,1,0; ERASE, SOH, STOP
            000030
            000001
            000000
371
     035066 005201
                     TEKC1: INC R1; PT TO AFTER ")"
                           JMP LEAVE
372
     035070 000167
            002366
373
                     .EOT
374
                     *POSLAB
375
                     OUTPUTS A STRING OF ASCII INDICATED AS
                     CALLING STATEMENT OPERANDS, THEN WRITES
376
377
                     A LABEL INDICATED AS A BASIC EXF OPERAND.
378
                     R1 MUST PT. TO CHAR. BEFORE LABEL
379
                     LABEL MUST BE TERMINATED WITH COMMA
380
                     OR RT. PAREN.
                     THE CALLING SEQUENCE IS:
381
382
383
                            BYTE (TYPE OF CHAR.), (NO. OF CHAR.)
384
385
386
387
388
                             .BYTE 0,0; STOPPERS
389
                     USES SUBROUTINES: CHOUT.
                     USES REGISTERS | RO-R5
390
391
                     ;AT END, R1 PTS. TO CHAR. AFTER LABEL.
392
                     RESTORÉS R5.
```

```
393
     035074 005715
                      POSLABITST (R5); IF WORD ZERO
394
     035076 001422
                              BEQ CODE3; 30 TO LABELLING
395
                             MOVB (R5)+,R0; CCDE IN RO
MOVB (R5)+,R2; NO. OF TIMES
     035100
             112500
396
     035102 112502
                                                              IN R2
397
     U35 104 004567
                      CODE2: JSR R5, CHOUT; OUTPUT CHAR
             000152
398
     035 110 020027
                              CMP R0.≥30; IF ERASE
             000030
399
     035114 001010
                              BNE CODE1; NOT, NEXT CHAR
400
     035116 012703
                              MOV ≥3,R3; NO OF TIMES TO LCAD R4
             000003
401
     035122 012704
                      CODED: MOV 2077777, R4; CT. DOWN MCRE THAN 65000 TIMES
             077777
402
     035126 005304
                              DEC R4; ONE CT
BPL .-2; CT AGAIN
     035130
403
             100376
404
     035132
             005303
                              DEC R3: DONE CTINGA
405
     035134
             003372
                              BGT CODE Q: NO. RELOAD CTR.
     035136 005302
406
                      CODE1: DEC R2: MORE OF SAME CHARA
407
     035140 003361
                              BGT CODE2; YES, CUTPUT CHAR IN RO AGAIN
408
     035142 000754
                              BR POSLAB; NO. NEXT CHAR
409
                      ;LABELLING
410
     035144 005201
                      CODE3: INC R1: PT TO LABEL
     035146 121127
411
                              CMPB (R1),≥54; IF COMMA
             000054
     035152
412
             001411
                             BEQ CODE4; GO TO END
     335 154 1 21 1 27
413
                              CMPB (R1),≥51; IF RT PAREN
             000051
414
     035160 001406
                              BEQ CODE4; GO TO END
     035 162 105711
415
                             TSTB (R1): IF NULL
BEQ CODE4: GO TO END
416
     035164 001404
417
     035166 111100
                             MOVB (R1), RO; CHAR IN RO
418
     035170 004567
                              JSR R5. CHOUT: OUTPUT CHAR
             000066
     035174 000763
419
                              BR CODE3; NEXT CHAR
420
     035176 005725
                      CODE4: TST (R5)+: PT TC NEXT INSTRUCTION
421
     035200 000205
                             RTS R5
422
                      .EOT
423
                      :DRAW
424
                      CAUSE BRIGHT VECTOR BETWEEN COORD. INDICATED
425
                      AS CALLING STATEMENT OPERANDS.
426
                      ;CALLING SEQUENCE:
427
                               JSR R5, DRAW
```

```
.WORD (X COORD), (Y COORE)
428
429
                               . WORD (
                                              ),(
430
431
432
                               .WORD 0,0 ;STOPPERS
433
                      USES SUBROUTINES: TPLOT, CHOUT
434
                      USES REGISTERS: RO, R5.
435
                      RESTORES R5.
436
                             CLR RO; SET TPLCT INDICATOR FOR VECTOR INITIATE MODE
437
     035202 005000
                      DRAWS
438
     035204 005715
                      DRAWO: TST (R5); IF ZERC
                              BNE DRAW1; MISHT BE END
MOV (R5)+,X;LOAD TPLOT OPERAND
     035206 001005
439
     035 210 012567
440
             000022
                              TST (R5); IF ZERC
     635214 005715
441
                              BEQ DRAWS; IS END OF LIST
442
     035216 001413
443
     035220 000402
                              BR DRAWS; NOT END
     035222 012567
                      DRAW1: MOV (R5)+,X; LOAD TPLOT OPERAND
444
             000010
     035226 012567
                      DRAW2: MOV (R5)+,Y; LOAD TPLCT CPERAND
445
             000006
                              JSR R5, TPLOT; VECTOR TO X, Y
446
     035232 004567
             000040
     u 35 236
                              . WORD 0
447
                      X t
             000000
     035240
                      Y :
                              .WORD 0
448
             000000
                              INC RO; BE SURE IN BRIGHT VECTOR MCDE
449
     035242 005200
                              BR DRAWO; GET NEXT COORDS
450
     035244 000757
                      DRAWS: TST (R5) +: PT TO NEXT INSTRUCTION
451
     035246 005725
                              MOV ≥37. RÓ: US--ASCII MCDE
452
     035250 012700
             000037
453
     035254 004567
                              JSR R5.C FOUT
             000002
454
     035260 000205
                              RTS R5
455
456
```

```
REGISTER DEFINITIONS
457
458
459
                      R0 =
                                %1
%2
%3
460
                      R1 =
461
                      R2 =
                      R3 =
462
                                %4
463
                      R4 =
                      R5 =
                                %5
464
                                %6
465
                      STACK=
                      TTKS=
                                177560
466
                                177562
467
                      TTKB=
468
                      TTPS=
                                177564
                      TTPB=
                                177566
469
470
471
                                CHOUT
472
                                THIS ROUTINE IS CALLED TO OUTPUT
473
                                AN ASCII CHARACTER TO THE 4002A
474
475
                                GRAPHIC COMPUTER TERMINAL
476
477
                                TO CALL PUT THE CHARACTER IN REG 0
478
                                AND EXECUTE A
479
                                JSR
480
                                           R5, CHOUT
481
                                QILL RETURN WITH REG O UNCHANGED
482
483
484
     035262 105767
                      CHOUT:
                                TSTB
                                           TTPS
                                                                  CHECK FOR PUNCH READY
485
             142276
     035266 100375
486
                                BPL
                                           CHOUT
                                                                  WAIT FOR REACY
     035270 110067
                                                                 ; MOVE IN BYTE
487
                                MOVB
                                           RO.TTPB
             142272
     035274 000205
488
                                RTS
                                                                 ;RETURN
489
490
                                TPLOT
491
492
                                THIS ROUTINE IS CALLED TO PLOT
493
                                IN VECTOR, POINT, OR INCREMENTAL
494
495
                                PLOT MODE DEPENDING ON THE
                                VALUE OF REG O AS DESCRIBED BELOW.
496
497
                                ΙF
498
499
                                \Omega = \Omega
                                        INITIALIZE AND DARK VECTOR TO X,Y
500
501
                                \Delta > 0
                                        BRIGHT VECTOR TC X.Y
```

| 23456789011234<br>555555555555555555555555555555555555 |                                                                            |          | A <-1                    | POINT FLOT TO X,Y  INCREMENTAL PLOT X = Y = NUMBER OF POINT  SEQUENCE REG 0 = A JSR R5,TPLOT VALUE OF X VALUE OF Y RETURN POINT | DIRECTON                                                                    |
|--------------------------------------------------------|----------------------------------------------------------------------------|----------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 514<br>515<br>516<br>517<br>518<br>519                 | U35276 005700<br>035300 001476<br>035302 100002<br>035304 004567<br>177752 | TPLOT:   | TST<br>BEQ<br>BPL<br>JSR | RO<br>TPTCV<br>TPTNRM<br>R5,CHOUT                                                                                               | CHECK RES RO<br>JUMP IF INIT. AND DARK<br>JUMP IF NORMAL VECTOR<br>SET MODE |
| 520<br>521<br>522<br>523<br>524                        | 035310 012500<br>035312 100001<br>035314 005000<br>035316 020027<br>002000 | TPTNRH:  | MOV<br>BPL<br>CLR<br>CMP | (R5)+,R0<br>TPT10<br>R0<br>R0,≥1024.                                                                                            | MOVE X COCRD TO REG 0 JUMP IF GEG 0 IF NEG SET TC 0 CHECK FOR ON SCREEN     |
| 525<br>526                                             | 035322 100402<br>035324 012700<br>001777                                   |          | BMI<br>MOV               | TPT12<br>≥1023.,R0                                                                                                              | JUMP IF IN RANGE<br>SET TO EDGE IF TOO HISE                                 |
| 527<br>528                                             | 035330 010067<br>000152                                                    | TP T 12: | MOV                      | RO, TETX                                                                                                                        | \$SAVE X VALUE                                                              |
| 529<br>530<br>531<br>532                               | 035334 012500<br>035336 100001<br>035340 005000<br>035342 020027<br>001372 | TPT141   | MOV<br>BPL<br>CLR<br>CMP | (R5)+,R0<br>TPT14<br>R0<br>R0,≥762.                                                                                             | GET Y CCCRD<br>JUMP IF SEQ 0<br>CLEAR REG 0<br>CHECK FOR TOO LARGE Y        |
| 533<br>534                                             | 035346 100402<br>035350 012700<br>001371                                   |          | MOV                      | TPT16<br>≥761.,R0                                                                                                               | JUMP IF IN RANGE<br>MOVE TO EDGE OF SCREEN                                  |

| 535                      | 0 35 354                   | 010067<br>000130           | TP T 16: | MOV                | RO, TPTY               | SAVE Y VALUE                       |
|--------------------------|----------------------------|----------------------------|----------|--------------------|------------------------|------------------------------------|
| 536<br>537<br>538<br>539 | 035360<br>035362<br>035364 | 006100<br>006100<br>006100 |          | ROL<br>ROL<br>ROL  | RO<br>RO<br>RO         | MCVE UPFER 5 EITS<br>TC UPFER BYTE |
| 539<br>540               | 035366<br>035370           | 000300<br>042700<br>177740 |          | SWAB<br>BIC        | R0<br>≥177740,R0       | SWAP UPPER AND LOWER B'            |
| 541                      | 035374                     | 052700<br>000040           |          | BIS                | ≥000040,R0             | SET IN HI Y TAG                    |
| 542                      | 035400                     | 000040<br>004567<br>177656 |          | JSR                | R5, CHOUT              | ;OUTPUT HI Y                       |
| 543                      | J 35 40 4                  | 016700<br>000100           |          | MOV                | TPTY,R0                | GET Y CCCRC                        |
| 544                      | 035410                     | 042700<br>177740           |          | BIC                | ≥177740,R0             | MASK TO LOW 5 BITS                 |
| 545                      | 0 35 41 4                  | 052700<br>000140           |          | BIS                | ≥000140,R0             | AND SET LCK Y TAG                  |
| 546                      | 035420                     | 004567<br>177636           |          | JSR                | R5, CHOUT              | SHIP CUT LOW Y BYTE                |
| 547<br>548               | 035424                     |                            | <b>;</b> | MOV                | TPTX,R0                | GET X CCCRD                        |
| 549<br>550<br>551        | 035430<br>035432<br>035434 | 006100<br>006100           |          | ROL<br>ROL         | RO<br>RO               | ; AND ACJUST LIKE Y                |
| 552<br>553               | 035 436                    | 000300                     |          | ROL<br>SWAB<br>BIC | RÓ<br>RO<br>≥177740,RO | SWITCH BYTES<br>MASK CFF EXTRA     |
| 554                      | 035444                     | 052700                     |          | BIS                | ≥000040,R0             | SET HI X TAG                       |
| 555                      | 0 35 45 0                  | 004567<br>177606           |          | JSR                | R5, CHOUT              | ;OTTPUT HI X BYTE                  |
| 556                      | 035454                     |                            |          | MOV                | TPTX,R0                | GET X CCCRD                        |
| 557                      | U 35 46 0                  | 042700<br>177740           |          | BIC                | ≥177740,R0             | LEAVE CNLY LCH BITS                |
| 558                      | 035464                     | 052700<br>000100           |          | BIS                | ≥000100,R0             | SET IN LCW X EITS                  |
| 559                      | 035470                     | 0 0 4 5 6 7<br>1 7 7 5 6 6 |          | JSR                | R5, CHOUT              | COUTPUT LOW X EYTE                 |
| 560<br>561               | 0 35 47 4                  |                            | •        | RTS                | R5                     | ;RETURN                            |
| 562                      | 035476                     | 012700<br>000035           | iptov:   | MOV                | ≥035,R0                | COUTPUT A GS TO INITIAL:           |

```
563
                                   JMP
                                               TPTXY
      035502 000167
               177576
564
565
566
567
                        TPTX: .WORD 0
      035506
               000000
      035510
568
                        TPTY: .WORD 0
               000000
569
      035512
                        TPTCTR: .WORD 0
               000000
570
                        .EOT
571
                        ENDPRG=.; LABEL THE END OF THE MAIN PROGRAM; THE EXIT ROUTINE
572
573
                         .= LEAVE
574
      037462 005046
                                CLR - (SP); DUMMY VARIABLE
575
      037464 005046
                                CLR - (SP); ON BASIC
576
577
                                CLR - (SP); STACK
JMP +252; TO BASIC
      037466 005046
      037470 000137
               000052
578
                        •END 52
```

#### APPENDIX 4

# Program CHARGE

(written in FORTRAN for use on the CYBER 73

computer at the Oregon State University

Computer Center)

```
PROGRAM CHARGE (EC. QOUT, INPUT, OUTPUT, TAPE3=EC, TAPE4=QOUT,
                 1TAPE60=INPUT, TAPE61=OUTPUT)
                  DIMENSION ECELL(100), CDL(100), CAVG(100), DELQ(100), DQ10Q(100),
                 101(100),Q(100),C2S(100)
5
                INPUT FILE CONTAINS FOLLOWING CARDS:
                               NUMBER OF (E-CELL, C-OL) PAIRS
                                ROUGHNESS FACTOR
                                XKM1 FOR CATION AND XKM1 FOR ANION (UF/CM**2)
                                XK12 FOR CATION AND XK12 FOR ANION (UF/CH**2)
10
                                TOTAL ELECTROLYTE CONCENTRATION (MOL/L)
                                D. L. CHARGE AT INITIAL POTENTIAL (UC/CM**2)
                                SPECIFICALLY ADSORBED CHARGE AT INIT. POT.
                                IPRINT (=1 FOR INTERMEDIATE PRINTING, ELSE 0)
                                MAXITR, MAX. NO. ITERATIONS ALLOWED
15
                                (ALL IN FREE FORM)
                                (E-CELL (VOLTS), C-DL (UF/SM**2)) DATA PAIR
              2 THR/ NPTS+1:
                                IN 2F6.3
                                (E-CELL STARTS AT CAP. MIN. AND GOES POSITIVE)
            Ü
20
                READ INPUT FILE
                  READ (3,*) NPTS, R,XKMC,XKMA,XK1C,XK1A,CONG,QINIT,
                 101INIT, IPRINT, MAXITR
                  READ (3,100) (ECELL(I), COL(I), I=1, NPTS)
25
              100 FORMAT (2F5.3)
            C
                WRITE OUT HEADING.
```

```
WRITE (4,400) R, CONC, xKMC, XK1C, XKMA, XK1A
30
               499 FURNAT (#1ROUGHNESS= #,1+G10.3/# CONCENTRATION= #,
                  11PG10.3//13X, #KM1#, 7X, #K12#/# CATION = #, 2(1PG10.3)
                  2/\pm ANION \pm .2(1PG10.3)/)
             C
                 CALCULATE CAVG, DELQ, AND Q. INITIALIZE Q1LAST.
35
             C
                   CK=137.8*CONC
                   C2S(1)=19.46*SQRT(CK+(QINIT-Q1INIT)**2)
                   Q(1) = QINIT
40
                   Q1(1) = Q1INIT
                   CAVG(1) = DELQ(1) = DQ1DQ(1) = Q1LAST=0.
                   XKMCIN=1./XKMC
                   XKMAIN=1./XKMA
                   XK1CIN=1./XK1C
45
                   XK1AIN=1./\lambda K1A
                   DU 2 I=2, NPTS
                   CAVG(I) = 0.5*(COL(I-1)+COL(I))/R
                   Q1(I)=0.
                   DELQ(I) = CAVG(I) * (ECELL(I-1) - ECELL(I))
50
                   Q(I)=Q(I-1)+DELQ(I)
                 2 CONTINUE
                   DO 4 J=1.MAXITR
             C
                 CALCULATE ESTIMATES FOR C2S, DQ1DQ, AND Q1.
                 SELECT XKMC AND XK1C FOR Q1 .GT. 0., ELSE USE XKMA AND AK1A.
55
                   DO 3 I=2.NPTS
```

```
Q2S=0.5*(Q(I)+Q(I-1)-Q1(I)-Q1(I-1))
                   C2S(I) = 19.46*SQRT(CK+0.25**2)
50
                   IF (Q1(I).GT.0.) GO TO 6
                   DQ1DQ(I)=1.-(1./CAVG(I)-XKMAIN)/(1./C2S(I)+AK1AIN)
                   60 fo 7
                 5 DQ1JQ(I)=1.-(1./CAVG(I)-xKMCIN)/(1./C2S(I)+xK1CIN)
                7 Q1(I)=Q1(I-1)+UQ1DQ(I)*DELQ(I)
65
                3 CONTINUE
                   IF (IPRINT.NE.0) WRITE (4,200) (ECELL(I), CJL(I), CAVG(I), DELQ(I),
                 1C2S(I),Q(I),DQ1DQ(I),Q1(I), I=1,NPTS)
               201 FORMAT (#1E-CELL
                                       C-DL
                                                         DEL Q DIFFUSE CAP*,4X,1HQ,
                                                 C-AVG
                                  Q1#//(1X,F5.3,2F9.2,F8.2,1PG13.4,0PF8.2,F10.4,
                  16X, #DQ1/DQ
7.0
                  2F3.211
                   IF (ABS((Q1(NPTS)-Q1LAST)/Q1(NPTS)).LT.0.001) GO TO 5
                   Q1LAST=Q1(NPTS)
                 + CONTINUE
                   J=MAXITR
75
                5 IF (IPRINT. NE. 0) STOP
                   WRITE (4,200) (ECELL(I), COL(I), CAVG(I),
                 10ELQ(I),C2S(I),Q(I),DQ10Q(I),Q1(I), "I=1,NPTS)
                   WRITE (4.300) J
               30) FORMAT (#OAFTER#, 13, # ITERATIONS#)
80
                   STUP
                   END
```

### APPENDIX 5

## Program Z2

(written in FORTRAN for use on the CYBER 73 computer at the Oregon State University

Computer Center)

| PROGRAM Z2 | 73/74 | 0PT=1 | FTN 4.4+REL. |
|------------|-------|-------|--------------|
|------------|-------|-------|--------------|

| 1         | PROGRAM Z2 (PDATA, CDATA, INPUT, OUTPUT, ZOUT, TAPE61=OUTPUT, 1TAPE60=INPUT, TAPE2=PDATA, TAPE3=CDATA, TAPE4=ZOUT)                                                                                                                  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5         | C TO CALCULATE CELL CURRENT (CURRS) AND CELL IMPEDANCE (ZS) IN C THE FREQUENCY DOMAIN. CORRECTION IN THE CELL CURRENT IS MADE C FOR THE SLCW RESPONSE OF THE I-V CONVERTER                                                          |
| 19        | C C EQUIP, 2=FILE CONTAINING DATA FOR I-V CONVERTER C LUN 2 HAS: C (1) HEADER CARD IN FREE FORM CONTAINING: C                                                                                                                       |
| 15        | O NTP, THE NUMBER OF OUTPUT DATA POINTS C RMEAS, THE VALUE OF RU USED TO TEST THE CONVERTER C (2) NTP DATA CARDS IN E6.6,2(£4.4) CONTAINING TIME, OUTPUT C VOLTS, AND INPUT VOLTS. INPUT VOLTS MAY BE MISSING FOR C THE LAST CARDS. |
| <b>30</b> | C C FOUIP, 3=FILE CONTAINING DATA FOR TEST CELL. C LUN 3 HAS: C (1) HEADER CARD IN FREE FORM, CONTAINING: C NT, THE NUMBER OF DATA POINTS C SHI, THE HIGHEST FREQUENCY TO CONSIDER                                                  |
| 25        | C SLO, THE LOWEST C RF, THE EFFECTIVE FEEDBACK RESISTOR OF THE CONVERTER C (2) NT DATA CARDS OF THE SAME TYPE AS IN LUN 2. C C EOUIP, 4=OUTPUT FILE                                                                                 |
|           | C .                                                                                                                                                                                                                                 |

```
DIMENSION TP (150), CURP (150), VINP (150), VOUTP (150), CURPS (50),
30
                   1 VOUTPS (50), DS (50), T (150), VCELL (150), VOUTC (150), SIGMA (50),
                   2 VC ELLS (50), VOUTOS (50), CURCS (50), ZCS (50)
                    EQUIVALENCE (CURP, VINP)
             C
             C
                  READ IN POTENTIOSTAT DATA
35
             C
                    REWIND 2
                    READ (2,*) NTP, RMEAS
                    READ (2,100) (TP(I), VOUTP(I), VINP(I), I=1, NTP)
                100 FORMAT (3(6PF6.0))
40
             C
             C
                  FIND LAST VINP
             C
                    90 2 I=1.NTP
                    NCURP=NTP-I+1
45
                    IF (VINP(NCURP).NE.O.) GO TO 3
                  2 CONTINUE
             C
             C
                  CHANGE VINP TO CURP
50
                  3 00 4 I=1.NCURP
                    CURP(I) = VINP(I) / RMEAS
                  4 CONTINUE
             C
                  CALCULATE APPARENT RE FROM THIS DATA
55
                    REAPP= VOUTP (NTP) / CURP (NCURP)
             C
```

```
C
                 READ IN TEST CELL DATA
             C
61
                   REWIND 3
                   READ (3,*) NT, SHI, SLO, RF
                   READ (3,100) (T(I),VOUTG(I),VCELL(I),I=1,NT)
             C
             C
                 COMPUTE SIGMA VALUES
             C
65
                 5 WRITE (61,200)
               200 FORMAT (* INPUT NUMBER OF S PER DECADE*)
                   READ *, PD
                   NS=PD*ALOG10(SHI/SLO)+1.00001
                   IF (NS.LE.50) GO TO 6
70
                   WRITE (61,300)
               300 FORMAT (# TOO MANY S#)
                    GO TO 5
                 6 ESINT=10.**(-1./PD)
75
                    DO 7 I=1.NS
                    SIGMA(I) = SHI * ESINT * * (I-1)
                 7 CONTINUE
             C
                 ESTABLISH LAST VCELL VALUE
81
             C
                    DO 8 I=1.NT
                    NVCELL=NT-I+1
                    IF (VGELL(NVCELL).NE.O.) GO TO 9
                  3 CONTINUE
35
             C
             С
                 CALCULATE TRANSFORMS
                 9 CALL REPLAC (CURP, TP, NCURP, CURPS, SIGMA, NS)
                    CALL REPLACIVOUTP, TP, NTP, VOUTPS, SIGMA, NS)
                    CALL REPLACIVEELE, T, NVCFLE, VCELES, STGMA, NS)
91
                    CALL REPLACIVOUTC, T, NT, VOUTCS, SIGMA, NS)
```

```
C
              C
                  FIND DS, CURCS, ZCS
              C
 95
                    00 10 I=1,NS
                    DS(I)=CURPS(I)*RFAPP/VOUTPS(I)
                    CURCS(I)=VOUTCS(I)/RF*DS(I)
                    ZCS(I) = VCELLS(I) / CURCS(I)
                 10 CONTINUE
100
              C
              C
                  WRITE OUT RESULTS
              C
                    WRITE (4,400) (T(I), VCELL(I), VOUTC(I), I=1,NT)
                400 FORMAT (#1TIME DOMAIN:#/#0
                                                      TIME*,7X, *V-CELL*,6X, *VOUT*/
105
                   1(3(2X,E10.3)))
                    WRITE (4,500) (SIGMA(I), VCELLS(I), VOUTCS(I), DS(I), CURCS(I),
                   12CS(I), I=1, NS)
                500 FORMAT (#1FREQUENCY DOMAIN:#/#0 FREQUENCY#,4X,#V-CELL#,7X,
                   1 #V-OUT #, 7X, #D(S) #, 7X, #CURRENT
                                                       IMPEDANCE #/ (6(2X, 510.3)))
110
                    STOP
                    END
```

```
1
             C
             C
             C
                   SUBROUTINE REPLAC(FOFT, T, NT, FOFS, SIGMA, NS)
 5
             C
             0
                 TO CALCULATE LAPLACE TRANSFORM OF F(T) FOR NS VALUES OF SIGMA,
                 THE REAL COMPONENT OF THE LAPLACE OPERATOR S.
                   DIMENSION FOFT(NT), T(NT), FOFS(NS), SIGMA(NS)
10
                   00 3 J=1,NS
             C
             C
                 INITIALIZE AND MAKE THE FIRST TERM OF FOFS (J)
                   IC = 0
15
                   S=SIGMA(J)
                   ST1=S*T(1)
                   PRODIM1=EXP(-ST1)
                   FUNC=F0FT(1)/ST1/S*(1.-(1.+ST1)*PR00IM1)
                   PR00IM1=F0FI(1)*PR00IM1
20
             C
                 DO THE INTEGRAL SUMMATION FROM T=0 TO T=T(NT)
             C
                   17. S = I S 00
                   ST1=S*T(I)
25
            C
                 IF STI IS OUT OF RANGE, THE TERM IS NEGLIGIBLE.
                   IF (ST1.GT.675.) GO TO 13
                   PRODI=FOFT(I)*EXP(-ST1)
                   TERM = (PRODI-PRODIM1) * (I(I)-I(I-1))/ALOG(PRODI/PRODIM1)
```

```
C
                 IF TERM IS INSIGNIFICANT FOR 3 ITERATIONS, QUIT
            C
30
                   IF (TERM.LT.0.0001*FUNC) GO TO 10
                   IC = 0
                   GO TO 11
35
                10 IC=IC+1
                   IF (IC.GE.3) GO TO 12
                11 FUNC=FUNC+TERM
            C
                 SET UP FOR NEXT ITERATION
40
                   PRODIM1=PRODI
                 2 CONTINUE
            C
                 ADD ON FINAL TERM
45
                12 TERM = S *T (NT)
                   IF (TERM.LT.675.) FUNC=FUNC+FOFT(NT) *EXP(-TERM)/S
                13 FOFS(J)=FUNC
                 3 CONTINUE
                   RETURN
51
                   END
```

## APPENDIX 6

Program COMPN

(written in FORTRAN for use on the CYBER 73

computer at the Oregon State University

Computer Center)

| PROGRAM | COMPN | 73/74 | 0PT=1 | FTN 4.4+REL. |
|---------|-------|-------|-------|--------------|

| 1          | С | PROGRAM COMPN (RXNS, COUT, OUTPUT, TAPE3=RXNS, TAPE4=COUT, 1 TAFE61=OUTPUT, DEBUG=COUT)                                                 |
|------------|---|-----------------------------------------------------------------------------------------------------------------------------------------|
|            | ũ | TO CALCULATE EQUILIBRIUM COMPOSITION OF A SOLUTION IN WHICH A                                                                           |
| 5          | C | NUMBER OF HOMOGENEOUS REACTIONS ARE OCCURRING.                                                                                          |
|            | Ŭ | DIMENSION CONC(10), ID(2,10), NZ(10), D(10), F(10), XK(10), N(10,10), 1ACT(10) COMMON CONC, NZ, D, F, XK, N, NI, NJ, SPECZ2, STRENG, ID |
| 10         | С | COMMON CONCINCTON IXWININITANT 2 LEGSS 121 KENG 1 ID                                                                                    |
| 2.5        | Č | INPUT NUMBER OF SPECIES, NUMBER OF EQUATIONS, SUM OF (C*Z**2) FOR                                                                       |
|            | Č | SPECTATOR IONS, NOUM, AND MAX. NO. OF ITERATIONS IN FREE FORM.                                                                          |
|            | Ċ | (NOUM OTHER THAN ZERO CAUSES INTERMEDIATE RESULTS TO BE PRINTED.)                                                                       |
|            | С | INPUT CHARGE, ID, AND DESIGNATION EFE IF DESIRED TO FIX                                                                                 |
| <b>1</b> 5 | С | CONCENTRATION, OR EAE TO FIX ACTIVITY, FOR EACH SPECIES IN 12, A19, A                                                                   |
|            | c | THE CONCENTRATIONS OF SPECIES WITH FIXED ACTIVITIES ARE NOT                                                                             |
|            | С | USED TO CALCULATE IONIC STRENGTH. IF SUCH SPECIES ARE IONIC                                                                             |
|            | С | AND IN SOLUTION, THEY SHOULD BE INCLUDED IN SPECZZ.                                                                                     |
|            | С | INPUT DISTANCE OF CLOSEST APPROACH (ANGSTROMS) FOR EACH SPECIES                                                                         |
| 20         | С | IN FREE FORM.                                                                                                                           |
|            | C | INPUT ESTIMATES OF CONCS FOR EACH SPECIES IN FREE FORM.                                                                                 |
|            | С | INPUT MATRIX OF EQUATION COEFFICIENTS IN FREE FORM, ONE EQUATION                                                                        |
|            | С | PER LINE.                                                                                                                               |
|            | С | INPUT THERMODYNAMIC EQUILIBRIUM CONSTANT FOR EACH REACTION.                                                                             |

```
25
            C
                  READ (3,*) NI, NJ, SPECZ2, NOUM, NMAX
                  READ (3,100) (NZ(I), (ID(K,I), K=1,2), I=1,NI)
              100 FORMAT (12,2A10)
                   READ (3,*)(D(I), I=1,NI), (CONC(I), I=1,NI), ((N(I,J), I=1,NI),
                 1J=1,NJ), (XK(J), J=1,NJ)
30
                   WRITE (4,200) NI, ((ID(K,I), K=1,2), NZ(I),D(I),CONC(I), I=1,NI),
                 1SPECZ2, NJ, (XK(J), NI, (N(I,J), I=1,NI), J=1,NJ)
              200 FORMAT (1H1,9X,2HID,10X,2HNZ,4X,1HD,6X,4HCONC/=(/1X,2A10,13,0PF6.
                 1,1x,1PG11.4)/#0SUM OF C*Z**2 FOR SPECTATOR IONS =#,1PG11.4/1HG,
                  220(2H *)/1H0,5X,1HK,7X, \pm*** N(I,J) \pm,77(1H*)/=(/1X,1PG11.4,2X,=
35
                  31311
                   CALL EQUILIB (NOUM, NMAX), RETURNS (20)
                   00 2 I=1.NI
                   ACT(I) = CONC(I) * F(I)
                 2 CONTINUE
40
                   WRITE (4,300) NI, ((ID(K,I), K=1,2), F(I), CONC(I), ACT(I),
                  1 I=1, NI) . STRENG
               300 FORMAT (1H0,20(2H *)/1H0,9X,2HI0,16X,1HF,10X,4HCONC,10X,3HACT
                  1/=(/1X.
                  12A10,3(2X,1PG11.4))/#0 IONIC STRENGTH = #,1PG11.4)
45
                20 STOP
                   ENO
```

| 1   | С  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | С  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | _  | SUBROUTINE EQUILIB (NDUM, NMAX), RETURNS (QUIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5   | С  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | C  | TO CALCULATE EQUILIBRIUM COMPOSITION OF A SOLUTION IN WHICH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | Ċ  | SEVERAL HOMOGENEOUS REACTIONS ARE OCCURRING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | Č  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Č  | ALL PARAMETERS EXCEPT NOUM ARE PASSED THROUGH COMMON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10  | Č  | NOUM OTHER THAN ZERO CAUSES INTERMEDIATE RESULTS TO BE PRINTED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 0 | Č  | HOOH OFFICE THAT LEADS ONG LIFE THE MESSEL OF THE THE SELECTION OF THE PROPERTY OF THE PROPERT |
|     | () | DIMENSION CONC(10), NZ(10),NZ2(10),D(10),F(10),DELC(10),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |    | 1NORD(2,10),XK(10),N(10,10),IO(2,10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |    | COMMON CONC,NZ,D,F,XK,N, NI,NJ,SPECZ2,STRENG,IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15  | C  | COMMON CONCENTED AND ALTHOUGH ENTER OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19  | C  | CALCULATE NZ**2; PUT ZEROES IN NORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |    | CALCULATE NZ**Z) FOT ZEROES IN NORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | С  | DO 2 T-4 NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |    | 00 2 I=1,NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |    | NZ2(I) = NZ(I) * NZ(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20  |    | 2 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |    | 00 3 J=1,NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |    | NORD(2, J) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |    | 3 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | C  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

```
CALCULATE ICNIC STRENGTH AND F(I).
25
            C
                   DO 19 NTIMES=1, NMAX
                   STRENG=SPECZ2
                   00 4 I=1,NI
                   IF ((773.AND.ID(2,I)).EQ.1RA) GO TO 4
30
                   STRENG=STRENG+CONC(I)*NZ2(I)
                 4 CONTINUE
                   STRENG=0.5*STRENG
                   STR12=SQRT(STRENG)
                   00 5 I=1.NI
35
                   F(I)=1.
                   IF ((778.AND.ID(2,I)).EQ.1RA) GO TO 5
                   F(I)=10.**(-0.51*NZ2(I)*STR12/(1.+0.33*D(I)*STR12))
                 5 CONTINUE
                   IF (NDUM.NE.O) WRITE (4,100) STRENG, (F(I), I=1,NI)
40
               100 FORMAT (1H0,20(2H *)/1H0,1PG11.4,2(/5(3X,G11.4)))
             C
                 FIND AN EQUATION WITH JUST ONE UNKNOWN CONC.
             C
             C
                   00 13 K=1,NJ
45
                   IS=0
                   KLAST=K-1
                   00 \ 6 \ I = 1.NI
                   NVC=778.AND.ID(2,I)
                   IF (NVC.EC.1RF.OR.NVC.EQ.1RA) GO TO 6
50
                   IF (KLAST.EQ.0) GO TO 7
                   DO 8 L=1.KLAST
                   IF (NORD(1,L).EQ.I) GO TO 6
                 8 CONTINUE
                 7 IF (IS.EQ.0) GO TO 9
55
                   IF (CONC(I).GE.CS) GO TO 6
                 9 CS=CONC(I)
```

```
IS=I
                 6 CONTINUE
                   DO 33 LOOP=1.NI
60
                   00 30 J=1,NJ
                   IF (N(IS, J) .EQ.0) GO TO 30
                   IF (KLAST.EQ.O) GO TO 37
                   DO 31 L=1,KLAST
                   IF (J.EQ.NORD(2,L)) GO TO 30
65
                31 CONTINUE
                37 DO 32 I=1.NI
                   IF (I.NE.IS.AND.N(I,J).NE.O.AND.CONC(I).LE.O.) GO TO 30
                32 CONTINUE
                   GO TO 34
70
                30 CONTINUE
                   IF (IS.EQ.NI) GO TO 35
                   IT=IS+1
                   DO 36 I=IT,NI
                   IF (CONC(I).NE.CONC(IS)) GO TO 36
75
                   IS=I
                   60 TO 33
                36 CONTINUE
                33 CONTINUE
                35 WRITE (61,600) NTIMES, K, IS, J, I, LOOP, (CONC(I), I=1, NI)
80
               600 FORMAT (#0**** ALL EQUATIONS HAVE AT LEAST 2 CONCS .LE. 0#
                  1/1X,6I3,2(/5(2X,1PG11.4)))
                   RETURN
                34 \text{ NORD}(1,K)=IS
                   NORD(2,K)=J
35
```

```
C
                 CALCULATE CONC(IS) FROM XK(J) AND THE OTHER APPROXIMATE CONC(I)
             C
                   PRODCF=1.
                   DO 15 I=1,NI
90
                   IF (I.EQ.IS.OR.CONC(I).EQ.0..OR.N(I,J).EQ.0) GO TO 15
                   PRCOCF=PRODCF*(CONC(I)*F(I))**N(I,J)
                15 CONTINUE
                   CS=(XK(J)/PRODCF)**(1./N(IS,J))/F(IS)
                   DELC(IS)=CS-CONC(IS)
95
                   CONC(IS)=CS
                 CALCULATE THE NEW OTHER CONGS BASED ON THE CHANGE IN CONC(IS)
                    DO 12 I=1,NI
100
                    NVC=778.AND.ID(2,I)
                   IF (I.EQ.IS.OR.NVC.EQ.1RF.OR.NVC.EQ.1RA) GO TO 12
                    DELC(I) = N(I, J) * DELC(IS) / N(IS, J)
                    CONC(I)=CCNC(I)+DELC(I)
                12 CONTINUE
105
                    IF (NDUM.NE.0) WRITE (4,300) K, IS, J, PRODCF, NI, (DELC(I),
                   1CONC(I), I=1, NI)
               300 FORMAT (1H0,3I3,1X,1PG11.4,=(/2(1X,G11.4)))
                13 CONTINUE
                    DO 14 I=1,NI
110
                    IF (ABS(DELC(I)/CONC(I)).GT..001) GO TO 19
                14 CONTINUE
                    RETURN
                19 CONTINUE
                    WRITE (61,400) NMAX
115
               400 FORMAT ( #0**** TERMINATED AFTER #, 13, # ITERATIONS #)
                    RETURN
                    END
```