CRITICAL BUCKLING STRENGTH OF STIFFENED FLAT PIYWOOD PLATES IN COMPRESSION AND SHEARCLOSELY SPACED STIFFENERS

February 1948

INFORMATION REVHENED AND REATTIRMER

March 1956
LOAN COPY
Please return to:
Wood Engineering Research
Forest Products Laboratory
Madison, Wisconsin 53705

> This Report is One of a Series Issued In Cooperation with the ARMY-NAVY-CIVIL COMMITTEE
> on
> AIRCRAFT DESIGN CRITERIA Under the Supervision of the AERONAUTECAL BOARD

No. 1800

UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE
FOREST PRODUCTS LABORATORY Madison 5 , Wisconsin
In Cooperation with the University of Wisconsin

CRITICAL BUCKKING STRENGTH OF STIFEENED FLAT PUYWOOD PLATES

 IN COMPRUSSION AND SHRAR - CLOSELY SPACED STIFFHNERS ${ }^{1}$
By

C. B. NORRIS, Engineer
W. J. KOMMERS, Ingineer
and

P. F. McKIMNON, Engineer

Summary and Conclusions.
The equations previously ${ }^{2}$ derived for the critical stresses in flat plywood plates subjected to edgewise compression or shear were applied to plywood stiffened with a multiplicity of parallelly placed stiffeners. It was found that these equations apply with reasonable accuracy if the overmall elastic properties of the stiffened plates are substituted in them. In the verification of the equations, the elastic properties used were determined for the plates tested by auxiliary tests.

Methods were derived for the computation of the over-all elastic properties of multiply stiffened plywood plates from the elastic properties of the plywood and the stiffeners and the dimensions and spacing of the stiffeners. These methods were verified by test and found to yield good approximations of the over-all properties.

Introduction

In the construction of wood aircraft structures plywood is sometimes stiffened with a maltiplicity of stiffeners. Identical stiffeners are arranged parallel to each other, uniformly spaced, and are cemented to the inner face of the plywood. The critical loads of such plates subjected to edgewise compression or shear are required for purposes of design.

If the spacings between the stiffeners are sufficiently small, the plate, as a whole, may be considered as a unit and the critical loads determined by means of the formulas developed for unstiffened plywood, $\underline{2}$ provided the

[^0]properties, such as stiffness in directions parallel and perpendicular to the direction of the stiffeners and flexural rigidity, are known. These properties can be determined by tests of the stiffened plates or computed by the methods described in this report.

The report is, therefore, divided into two major sections. The first is an experimental verification of the use of the formulas developed for plywood, for the determination of the critical loads of plywood stiffened with a multiplicity of stiffeners. For use in this section the properties of the stiffened plates were determined by test. The second section contains the derivations of the formulas required for computing the properties of multiply stiffened plates and the results of their experimental verifications.

Each of these sections is divided into parts. The first is divided into two parts, one dealing with edgewise compression and the other dealing with edgewise shear. The second is divided into four parts: (1) flexural stiffness in the direction of the stiffeners; (2) flexural stiffness perpendicular to the direction of the stiffeners; (3) shear stiffness; and (4) flexural Poissons ratio effect.

Section I. Verification of Formulas for Critical Loads

Part 1. Bdgewise Compression

Formula to be Verified

As shown in Forest Products Laboratory Report No. 1316, ${ }^{2}$ the following equation is that for the critical stress of a plywood plate simply supported at its edges and subjected to a uniformly distributed compressive stress over two opposite edges. It is: ${ }^{3}$

In dealing with two dimensional problems concerning an orthotropic material such as wood, the (x) and (y) axes are chosen in the directions of the natural axes of the material. Some of the elastic properties are associated with one or the other of these axes; others are associated with both. The subscripts used denote this association.
In dealing with plywood, over-all elastic properties are employed. These properties are divided into two groups; those associated with direct stress and those associated with flexure. For those associated with direct stress the subscripts (a) and (b) are employed in place of (x) and (y), and for those associated with flezure, the subscripts (1) and (2) are employed. For example, let any elastic property that applies to wood be denoted by (H). It may have the subscripts $(x),(y)$, or $(x y)$, depending upon its direction and the particular elastic property it represents. It also may have different values in the different plies of the plywood. The directions (x) and (y) are the same for all plies, thus (\bar{x}) may be with the grain in one ply and across it in another. The overmall elastic properties of the plywood can be computed by the following formulas:
(Continued on p .3)
Rept. No. 1800

$$
\begin{equation*}
p_{c r}=\frac{\pi^{2}}{12 \lambda}\left[E_{1} \frac{b^{2}}{n^{2} a^{2}}+2 A+E_{2} \frac{n^{2} a^{2}}{b^{2}}\right] \frac{\mathrm{h}^{2}}{a^{2}} \tag{1}
\end{equation*}
$$

in which:
$b=$ length of plate in the direction stress, in inches.
$a=$ width of plate in the direction perpendicular to the direction of stress, in inches.
$h=$ thickness of plate, in inches.
$\mathrm{n}=$ number of half waves into which the plate buckles. The integer is chosen that results in the least value of the critical stress.

$$
H_{a}=\frac{l}{h} \Sigma H_{x i} h_{x i}
$$

and similarly for $H_{b}, H_{a b}$, and $H_{b a}$.

$$
H_{I}=\frac{12}{3} \\left[\frac{h_{i}^{3}}{12}+h_{i} y_{i}^{2}\right] H_{x i}
$$

where

$$
\begin{aligned}
H_{x i} & =\text { the elastic property for the } i^{\text {th }} \text { ply of the plywood in the } \\
& \text { (x) direction. } \\
h & =\text { thickness of the plywood. } \\
h_{i} & =\text { thickness of the } i \text { th ply of the plywood. } \\
y_{i} & =\text { distance of the center of the } i{ }^{\text {th }} \text { ply from the neutral axis } \\
& \text { of the plywood }
\end{aligned}
$$

and similarly for H_{2}, H_{12}; and H_{21}. The position of the neutral axis of the plywood can be obtained by the following formula:

$$
c=\frac{\sum h_{i} H_{i} c_{i}}{\sum h_{i} H_{i}}
$$

where:
$c=$ the distance of the neutral axis from one face of the plywood.
$c_{i}=$ the distance of the center of the $i^{\text {th }} p l y$ to the same face of the plyrood.

The summations are taken over all of the plies of the plywood. If the plywodd is symmetrically constructed about its central plane both as to ply thickness and species, the neutral plane will be identical with its central plane. If the plywood is not so constructed, the neutral plane will not be identical with the central plane and may be located differently for different over-all elastic properties.
This matter is discussed more fully in Forest Products Laboratory Report No: 1312, the No. 1316 series, and others.
$E_{1}=$ the flexural modulus of elasticity of the plywood in the direction perpendicular to that of the stress.
$\mathrm{E}_{2}=$ the flexural modulus of elasticity of the plywood in the direcm tion of the stress.
$A=(E \sigma)_{12}+\mu_{12}$
$\lambda=1-\sigma_{12} \sigma_{21}$, approximately 0.99 for wood and plywood.
$\mu_{12}=$ the flexural modulus of rigidity of the plywood.
$(E \sigma)_{12}=$ the flexural modulus, including the Poisson's ratio effect.
$\sigma_{12}=$ Poisson's ratio, in flezure of the plywood, of the strain in the direction (1) of (b) to the strain in the direction (2) of (a) due to a stress in the direction (1).
$\sigma_{21}=$ is similarly defined.
In the application of equation (1) to stiffened plates, it is not clear what value to use for the over-all thickness of the combination. The same difficulty is encountered in the computation of the over-all elastic properties.

This difficulty can be avoided by setting up equation (1) in terms of the critical load per inch of width rather than in terms of stress. Thus the equation becomes:

$$
\begin{equation*}
P_{\mathrm{Cr}}=\frac{\pi^{2}}{\lambda \mathrm{a}^{2}}\left[E_{1} \frac{\mathrm{~h}^{3}}{12} \frac{b^{2}}{\mathrm{n}^{2} \mathrm{a}^{2}}+2 A \frac{h^{3}}{12}+E_{2} \frac{h^{3}}{12} \frac{n^{2} a^{2}}{\mathrm{~b}^{2}}\right] \tag{2}
\end{equation*}
$$

Let $D_{1}=\frac{E_{1} h^{3}}{12 \lambda}$

$$
\begin{align*}
& D_{2}=\frac{E_{2} h^{3}}{12 \lambda} \\
& D_{12}=\frac{A h^{3}}{12 \lambda} \tag{3}
\end{align*}
$$

Then $P_{c r}=\frac{\pi^{2}}{a^{2}}\left[D_{1} \frac{b^{2}}{n^{2} a^{2}}+2 D_{12}+D_{2} \frac{n^{2} a^{2}}{b^{2}}\right]$
in which the elastic properties of the stiffened plate are contained in the values of D_{1}, D_{12}, and D_{2} that are to be determined by auxiliary tests and $\mathrm{n}=1$ for a plate that breaks into a single buckle.

The values of D_{1} and D_{2} can be determined by bending tests of the plate in which two edges are supported and the lead applied along a central line parallel to the supported edges. The usual formula for a centrally loaded wide beam gields

$$
\begin{align*}
& D_{1}=\frac{\mathrm{L}}{\mathrm{~d}} \frac{\mathrm{a}^{3}}{48 \lambda} \tag{4}\\
& \mathrm{D}_{2}=\frac{\mathrm{L}}{\mathrm{~d}} \frac{\mathrm{~b}^{3}}{48 \lambda} \tag{5}
\end{align*}
$$

Rept. No. 1800
in which L and d are the loads applied and the deflections measured respectively, and λ, because wood is the material dealt with, can be considered to be unity.

The value of D_{12} is divided into two parts:

$$
\begin{equation*}
D_{12}=\frac{h^{3}(E \sigma)_{12}}{12 \lambda}+2 \frac{h^{3} \mu_{12}}{12}=I+2 B \tag{6}
\end{equation*}
$$

The first part will be represented by F and the second by $2 B$. Values of E can be experimentally obtained by supporting the plate at two diagonally oppesite corners, loading it on the other two corners, and measuring the amount of twist obtained by the method described in a previous report, 4 thus:

$$
\begin{equation*}
B=\frac{P}{W} \frac{u^{2}}{8} \tag{7}
\end{equation*}
$$

in which P and W are the lad applied and the deflection measured by the method described in report No. 1301, and u is the diagonal distance from the center of the plate to the position at which W is measured.

A methed of test is not available for the determination of F. The following approximate expression for its value, however, is derived in Section II, part 4: :

$$
\begin{equation*}
F=\sqrt{\sigma_{\mathrm{ML}}{ }^{\sigma_{L T} D_{1} D_{2}}} \tag{8}
\end{equation*}
$$

Description of Specimens

Five plates, approximately 24 inches square, were fabricated for the compression buckling tests. Three of these were made of five plies of 1/48inch yellow-pcplar veneepr, with grain directions of adjacent plies perpendicular to each other, and two of four plies of $1 / 20$ inch veneer, with grain directions of the two central plies parallel to each other and perpendicular to the remaining plies. One plate in each group had the length of the stiffeners oriented perpendicular to the grain of the outside plies of the plywood, while the others had the length of the stiffeners parallel to the face grain of the plywood. In all cases the plates were tested with the grain direction of outside plies of the plywood parallel to the direction of the load.

Bach plate had 13 stiffeners of quartermsawn Sitka spruce, 3/4 of an inch in width, and either $1 / 8$ or $1 / 4$ of an inch in thickness. The length of the stiffeners was equal to the length of the plywood plates, and the stiffenars were spaced 2 inches, center to center, and were glued to the plates with a resorcinol-resin adhesive.
4 Method for Measuring the Shearing Moduli of Wood. Forest Products Laboratory Report No. 1301. The nomenclature used here is that of report No. 1301.
Rept. No, 1800

After each plate was tested it was cut to a smaller size and retested. This procedure was repeated several times in some cases. Also, some of the tests were repeated. A total of 21 tests were made.

Methods of Test

The apparatus used in making the buckling tests is shown in figure 1. The tests were carried out in accordance with the method for unstiffened flat plywood panels described in Forest Products Labsratory Report No. 1554, "Methods of Conducting Buckling Tests of Plywood Panels in Compression." The panels were placed in the apparatus so that the neutral plane, computed by the usual method and assuming bending in the direction of the stiffeners, contained the axes of the cylindrical segments, described in report No.1554, through which the load was applied to the panel.

Figure 2 shows the test employed to determine values of D_{1} and D_{2}. The span of the beam is not quite the full length of the plate and the values of a and b used in formulas (4) and (5) were reduced accordingly.

Figure 3 shows the test employed in the determination of the second part of D_{12}. It is described in report No. 1301.

Results of Tests

The results of the tests are given in table l. The values of D_{1}, D_{2}, and B were obtained from tests according to formulas (4) to (7), inclusive. The computed critical loads were then obtained by use of formula (3). The observed critical load was obtained by means of the test previously described and illustrated in figure 1.

The computed critical loads can be conveniently compared with the observed critical loads by plotting one against the other. Figure 4 is such a plot in which both the computed and observed loads have been divided by the estimated ultimate load in compression. This estimate was made by adding the compressive streng th of the stiffeners to that of the plywood, with. the compressive strengths being computed from the results of compression tests on specimens cut from the plates. In figure 4, then, the points representing the various specimens are arranged in order according to the value of the stress associated with the critical load. It may be noted that the highest direct stress encountered was about 45 percent of the ultimate compressive stress and that the proportional limit of the material was not exceeded.

The straight line in figure 4 passes through points indicating absolute agreement between the computed and observed critical loads, It is evident from the grouping of the plotted points around this line that the formula yields a reasonable estimate of the critical loads obtained by test.

Rept. No. 1800

Part 2. Edgewise Shear

Formula to be Verified

Equation (20) in report No. $1316^{\underline{2}}$ is the formla used for determining the critical buckling stress in shear for a flat plywood plate. It is

$$
\begin{equation*}
q_{c r}=\frac{c_{a} h^{2}}{3 \lambda a^{2}}\left(\Xi_{1} 3 E_{2}\right)^{1 / 4} \tag{9}
\end{equation*}
$$

With a knowledge of the elastic properties of the plywood, it is a simple matter to compute the critical buckling stress in shear. For a plate stiffened with closely spaced stiffeners, however, the question arises as to what value to use for the over-all thickness of the combination; also, what method to use to compute the over-all elastic properties. As in the preceding discussion of compression buckling, this difficulty can be avoided. by setting up equation (9) in terms of the shearing load per inch of width and using the stiffness factors obtained from static tests.

In terms of shearing load per inch of width, equation (9) is:

$$
\begin{equation*}
Q_{c r}=4 \frac{c_{a}}{a^{2}}\left[\left(\frac{E_{1} h^{3}}{12 \lambda}\right)\left(\frac{E_{2} h^{3}}{12}\right)\right]^{1 / 4} \tag{10}
\end{equation*}
$$

and making the substitutions indicated in Part 1:

$$
\begin{equation*}
Q_{c r}=4 \frac{c_{a}}{a^{2}}\left(D_{1}^{3} D_{2}\right)^{1 / 4} \tag{11}
\end{equation*}
$$

in which the value of c_{a} is determined from figure 8 of report No, 1316 by use of the parameters α and β_{a}. It is evident from report No. 1316 that the values of these parameters are given by:

$$
\begin{align*}
a & =\frac{D_{12}}{\left(D_{1} D_{2}\right)^{1 / 2}} \tag{12}\\
\beta_{a} & =\frac{a}{b}\left(\frac{D_{2}}{D_{1}}\right)^{1 / 4} \tag{13}
\end{align*}
$$

The values of D_{1}, D_{2}, and D_{12} contain the elastic properties and can be obtained by tests of the plate as described in part 1 of this section.

Six stiffened plywood plates, similar to those described in part 1 of this section, approximately 18 inches square, were fabricated for the buckling tests in shear. Three plates were made of three-ply and three plates of five-ply $1 / 48$-inch yellow-poplar veneers. Each plate was provided with nine Sitka spruce stiffeners, $1 / 2$ by $3 / 4$ inch in cross section, running parallel to the grain of the face plies of the plywood and spaced 2 inches center to center.

Method of Test

The apparatus employed is shown in figure 5. It consists of eight steel channels, 3 inches deep and 18 inches in length; four sets of steel rollers and pins, and V-shaped, hardened-steel loading blocks. Each channel has a strip of fine sandpaper glued to its face to reduce the slippage between the plate and the channels when load is applied.

In preparation for test, the channels are grouped into four pairs. Each pair is fastened along one edge of the plate with the flat sides of the channel in contact with the faces of the plate. Gripping of the plate between each set of channels is secured by bolts inserted through holes in the channels and the plate.

Load is transmitted from the testing machine to the test plate through the V-shaped blocis to rollers attached to a steel plate welded to one end of each channel. When the apparatus is properly assembled, the rollers are located near the ends of one diagonal of the rectangle formed by the steel frame, and the ends of the other diagonal are restrained from moving under load except in the direction of the plane of the plate.

In preparation for test the channels were attached to the plate and the rollers placed in the proper location. Because of the weight of the apparatus, the plate had a tendency to bend along its horizontal diagonal when in an upright position and before it was subjected to the imposed loads. Consequently, it was necessary to attach metal straps in a vertical position across the ends of the channels on both sides of the frame as shown in figure 5. The plate was then placed in the testing machine and alined so that the plane of the plate was parallel to the applied load and a uniform bearing was obtained between the two " $\mathrm{\nabla}$ " blocks and the four rollers.

A lateral deflection gage was positioned at the center of the plate, and load-lateral deflection readings were recorded at uniform increments of load. Load-deflection curves were plotted and the critical load estimated by the position of the "knee" of the curve.

Values of D_{1}, D_{2}, and D_{12} were determined by the methods described in part 1 of this section.

Results of Tests

The results of the tests are given in taple 2. The values of D_{1}, D_{2}, and B were obtained from tests according to formulas (4) to (7), inclusive. The computed critical loads were then obtained by use of formula (11) with figure 8 of report No. 1316, with the values of the parameters being obtained from formulas (12) and (13). The observed critical loads were obtained by the method described above and illustrated in figure 5.

The computed critical loads are plotted aginst the observed critical loads in figure 6. The straight line in this figure passes through points indicating absolute agreement between the two. It is evident from the positions of the plotted points that formula (11) ylelds values that are reasonable estimates of the observed values.

Section II. Methois of Computing Elastic Properties of Multiply Stiffened Plywood Plates

Part 1. Flexural Stiffness in the Direction of the Stiffeners

Derivation of Formula

It is assumed that the stiffeners are closely spaced and that, therefore, the usual elementary method can be employed to determine the position of the neutral axis and then the stiffness. The formula obtained is:

$$
\begin{equation*}
D_{1}=D_{p}+\frac{W_{s} E_{s} h_{s}}{12 W_{p}}\left[h_{s}^{2}+\frac{3 h_{c}^{2}}{\frac{W_{s} E_{s} h_{s}}{W_{p} E_{a} h_{p}} 1}\right] \tag{14}
\end{equation*}
$$

in which $D_{1}=$ the effective stiffness of the stiffened plate per unit width $D_{p}=$ the stiffness of the plywood alone, in the direction of the stiffeners $=\frac{E_{1} h_{p}{ }^{3}}{12}$
$\mathrm{E}_{\mathrm{a}}=$ the direct-stress modulus of elasticity of the plywood alone, in the direction of the stiffeners
$E_{S}=$ the modulus of elasticity of the stiffeners in their longitudinal direction.

The remaining symbols have to do with the dimensions of the stiffened plate and are defined by figure 7 .

Description of Specimens

Twelve specimens were fabricated. Plywood made of nine plies of $1 / 16$-inch yellownpoplar veneers was used in five of these specimens, and four plies of $1 / 16$-inch yellow-poplar in the remaining seven. The grain directions of the two central plies of the four-ply plywood were parallel to each other, so that the construction was substantially three ply of $1: 2: 1$ type. The material used. for stiffeners was quarter-sawn Sitka spruce in thicknesses of $1 / 8,1 / 4$, $1 / 2,3 / 4$, and 1 inch. This material was edgenglued into slabs equal in size to the plywood plates, and one such slab was glued to one face of each plym wood plate.

The specimens were then tested for stiffness in the manner illustrated in figure 2, with the grain of the spruce stiffeners munning from support to support, and the values of loads limited so that the proportional-limit stress of the material was not exceeded. A series of grooves were then cut, by means of a rotary saw l/4-inch thick, in the spruce slabs down to the face of the plywood. These grooves were spaced 2 inches on center. This resulted in plywood panels stiffened with stiffeners 1-3/4 inches wide spaced on 2-inch centers. The specimens were then tested for stiffness again. The width of the stiffeners was reduced to about $1-1 / 2$ inches by means of the saw, and the specimens were retested. This process was repeated until the stiffener material was completely removed from the plates and the plates, alone, tested for stiffness.

Results of Tests

The results of the tests are tabulated in column 10 and 11 of table 3. The values in column 10 were obtained from the tests by means of formula (4). Those in column Il were computed by use of formula (14). The value of E_{a} substituted in this equation for each plate was chosen to be consistent with the flerural moduli of elasticity E_{1} and E_{2} obtained by the bending tests after the stiffeners were completely removed, and to be consistent with the constructions of the various plates. The value of \mathbb{E}_{s} was then computed by means of the results of the first tests, in which the stiffeners completely covered the plates, by use of equation (14) by substituting the values of D_{1} obtained from these tests, equating W_{s} to W_{p}, and solving for values of E_{s}. These values of E_{a} and E_{s} were then substituted in equation (14) and the values of D_{1} obtained, which are tabulated in column 11 of table 3 .

In figure 8 the computed values of D_{1} are plotted against the values obtained from test. The straight line in the figure passes through points indicating absolute agreement between the computed and observed values. The grouping of the plotted points around this line indicates that formula (14) yields values of D_{1} that are good estimates of the values obtained from tests.

Part 2. Fleaural Stiffness Perpendicular to the Direction of the Stiffeners

Derivation of Formula

A stiffened plywood plate subjected to a static-bending test simply supported at the ends, loaded at the center of the span, and oriented such that the stiffeners are perpendicular to the span, does not have a uniform elastic curve across the length of the specimen when under load. The curvature for the nonstiffened portion of the plate is greater than for the stiffened portion.

Also, stress concentrations occur at the edges of the stiffeners that cause sharp kinks in the elastic curve at these locations. Figure 9 is a sketch of a portion of the elastic curve that is indicated by line HBCDF. The arc CDF of radius $R_{\text {sp }}$ represents the elastic curve at one of the stiffeners. The arc $H B C$ of radius R_{p} represents the elastic curve of the plate alone between the stiffeners. The dotted arc $H B^{\prime} C D^{\prime} F$ of radius B_{a} represents the average elastic curve. The kink caused by stress concentrations is represented by the angle ϕ. Thus the two arcs $H B C$ and CDF are not quite tangent at point C. The width of the stiffener is represented by W, and the spacing of the stiffeners center to center by S.

From the geometry of the figure

$$
\begin{aligned}
& \text { Angle MCE }=\phi \\
& \text { Angle CME }=\frac{W}{2 R_{\text {sp }}}
\end{aligned}
$$

Considering triangle CME

$$
\text { Angle } \mathrm{PEA}=\text { angle } \mathrm{MCE}+\text { angle } \mathrm{CME}=\phi+\frac{W}{2 \mathrm{R}_{\mathrm{sp}}}
$$

Further, angle $E P A=\frac{S W}{2 R_{p}}$
and considering triangle FPA

$$
\text { Angle } B A D=\text { angle } P E A+\text { angle } B P A=\phi+\frac{W}{2 R_{S p}}+\frac{\operatorname{siniV}}{2 R_{p}}
$$

Now angle $B A D$ is approximately equal to $\frac{S}{2 R_{a}}$, therefore:

$$
\begin{array}{rlr}
\frac{S}{2 R_{a}} & =\phi+\frac{W}{2 R_{s p}}+\frac{S-W}{2 R_{p}} & \text { (approx) } \tag{approx}\\
\text { or } \quad 2 \phi & =\frac{S}{R_{a}}-\frac{W}{R_{s p}}-\frac{S-W}{R_{p}} & \text { (approx) } \\
& &
\end{array}
$$

Rept. No. 1800

Using the general equation

$$
\frac{I}{R}=\frac{M}{D}
$$

in which $R=$ radius of curvature
$M=$ bending moment
$D=$ stiffness of the section considered

$$
\begin{equation*}
2 \phi=M\left[\frac{S}{D_{2}}-\frac{W}{D_{S p}}-\frac{S-W}{D_{p}}\right] \quad \text { (approx) } \tag{15}
\end{equation*}
$$

It is now proposed to build up arbitrarily another expression for 2ϕ consistent with the assumption that this angle is due to stress concentrations. It is evident that ϕ must be small if $D_{s p}$ and D_{p} are very large; also, that it must be finite if $D_{s p}$ is very large and D_{p} is finite. These requirements are met if ϕ is proportional to $\left(\frac{1}{D_{s p}}+\frac{1}{D_{p}}\right)$. It is evident also that ϕ must be zero when $D_{s p}=D_{p}$, and finite when $D_{s p}$ is very large. These requirements are met if ϕ is proportional to $\left(1-\frac{D_{p}}{D_{s p}}\right)$. Further ϕ must be some function, z, of the stiffener width, W, and proportional to the bending moment M. The following expression satisfies all these conditions:

$$
\begin{equation*}
2 \phi=M\left(\frac{1}{D_{s p}}+\frac{1}{D_{p}}\right)\left(I-\frac{D_{p}}{D_{s p}}\right) z \tag{16}
\end{equation*}
$$

Eliminating 2ϕ from equations (15) and (16)

$$
\begin{equation*}
\frac{D_{p}}{D_{2}}=\frac{z}{S}\left[1-\left(\frac{D_{p}}{D_{s p}}\right)^{2}\right]-\frac{W}{S}\left[1-\frac{D_{p}}{D_{s p}}\right]+1 \tag{17}
\end{equation*}
$$

The relation between $\frac{Z}{S}$ and $\frac{W}{S}$ will be determined experimentally, and equation (17) be verified by test.

Method of Test

The methed of test used is illustrated by figure 2, except that the stiffeners were placed parallel to the supports. The specimens described in part 1 of this section were used. Each specimen was tested in this way immediately after the corresponding test described in part I was performed. The values of D_{a} were obtained by use of formula (5) and are tabulated in column 12 of table 3 .

Determination of the Relation Between $\frac{Z}{S}$ and $\frac{W}{S}$
Equation (17) was used in this determination. For each plate a value of $D_{s p}$ was obtained from the first test, and a value of D_{p} from the last test, by use of equation (5). Various values of. D_{a} were determined from the intermediate tests. These values were substituted in equation (17), and associated values of $\frac{V}{S}$ and $\frac{Z}{S}$ were obtained. These values are tabulated in columns 20 and 21 of table 3. Values for the first five plates of the table were not determined. These plates had a tencency to warp as the size of the stiffeners was reduced. The warpage of the plates was sufficient to mask the effect of the decrease in the size of the stiffeners.

Values of $\frac{Z}{S}$ are plotted against $\frac{W}{S}$ in figure 10. The plotted points scatter considerably due to the fact that it is necessary to take differences of numbers of the same order of magnitude in solving equation (17) for $\frac{Z}{S}$. It is evident, however, that the curve is roughly parabolic. The equation

$$
\begin{equation*}
\frac{Z}{S}=0.312\left[1-\left(1-\frac{W}{S}\right)^{2}\right] \tag{18}
\end{equation*}
$$

fits the data reasonably well. The proportionality factor 0.312 was obtained by the method of least squares.

Substituting the value of $\frac{Z}{S}$ given by equation (18) in equation (17), the complete formula becomes:

$$
\begin{equation*}
\frac{D_{p}}{D_{2}}=0.312\left[1-\left(1-\frac{W}{S}\right)^{2}\right]\left[1-\left(\frac{D_{p}}{D_{s p}}\right)^{2}\right]-\frac{W}{S}\left[1-\frac{D_{p}}{D_{s p}}\right]+1 \tag{19}
\end{equation*}
$$

This formula was verified by test.

Verification of Formula

Values of $D_{s p}$ and D_{p} obtained by means of formula (5), from the first and last test of each plate, were substituted in formula (19) with the appropriate values of $\frac{W}{S}$, and values of D_{2} were obtained. These values are tabulated in column 13 of table 3. They are plotted against the values obtained by test in figure 11. The straight line in this figure passes through points indicating absolute agreement between computed and observed values. The grouping of the plotted points around this line indicates that the formula gives reasonable approximations of the observed values.

Derivation of Formula

Consider a rectangular prism twisted by two couples at its ends. The value of the applied torque is: 5 .

$$
\begin{equation*}
T=\left(\frac{16}{3}-\lambda \frac{h}{w}\right) \frac{w h^{3}}{16} \mu \theta \tag{20}
\end{equation*}
$$

in which:

$$
\begin{aligned}
& T=\text { applied torque } \\
& h=\text { thickness of prism } \\
& w=\text { width of prism } \\
& \theta=\text { angle of twist per unit length of prism } \\
& \mu=\text { modulus of rigidity of the material } \\
& \lambda \text { is a function of } \frac{W}{h} \text { and is } 3.36133 \text { for } \frac{W}{h} \text { greater than } 4
\end{aligned}
$$

Equation (20) may be written:

$$
\begin{equation*}
\frac{3 T}{\theta}=w^{3}-\frac{3}{16} \lambda h^{4} \mu \tag{21}
\end{equation*}
$$

The term $\frac{3 T}{\theta}$ is proportional to the torsional stiffness of the prism. Equation (21) shows that the stiffness of a wide prism (w greater than 4 h) is a linear function of its width.
It is convenient to think of torsion in terms of the soap-film method. 6 If a soap film is stretched across an opening equal in size and shape to that of the cross section of the prism and a slight difference in air pressure is maintained across the film, it will assume a shape such that the slope of the film at any point in the cross section will be proportional to the shear stress at the corresponding point in the prism. Also, the volume enclosed by the film and the plane of the opening will be proportional to the torsional stiffness of the prism.

Such a film stretched across a narrow rectangular opening will assume the shape of a parabolic cylinder except at the ends of the opening. Here the film will be pulled down to meet the ends of the opening. Equation (2i) shows that the cross-sectional area of the parabolic cylinder formed by the film is μh^{3}, and that $\frac{3}{16} \lambda h^{4} \mu$ is the amount of volume lost from the parabolic cylinder due to the pulling down of the film at the ends of the

[^1]$\underline{G}_{\text {Ibid. Ot }}$ Other references given there.
Rept. No. 1800 $-14-$
rectangular opening. If the rectangular prism is so wide that this loss of volume can be neglected, the second term in the right-hand member of equation (21) can be omitted. The equation then becomes identical to that derived for a flat plate supported at two diagonal corners and loaded at the other two corners. 2

The torsional stiffness of a stiffened plywood plate may be analyzed in a similar manner. Figure 7 shows the cross section of such a plate and the nomenclature used. The stiffeners are all of equal widths and thicknesses. It is first necessary to determine the $\mu \frac{h^{3}}{12}$ values for the plywood plate alone and for the combination of the plate and the stiffener material. This value for the plate alone is determined in the usual way (see footnote 3). The value for the combination is obtained in the same manner except that the stiffener is assumed to be part of the plywood, 1.e., an extra ply, or a stiffener having a width equal to the width of the plate. The value for the plywood alone is represented by B_{p} and the value for the combination of plywood and stiffener material by B_{C}.

Consider a soap film stretched over an opening the shape of the cross section shown in figure 7. The value of B_{p} will be proportional to the crosssectional area of the parabolic cylinder formed by the film at section A-A if the stiffeners do not come too close to this section. The value B_{c} will be proportional to the similar area at section B-B provided that the stiffener is sufficiently wide. The film forms a continuous surface between the two sections. Figure 12 shows an estimate of the contours of such a surface and the crossmectional areas involved.

Following equation (2l), the over-all value of B of the stiffened plate is given by the formula:

$$
\begin{equation*}
B=\frac{1}{w_{p}}\left[\left(w_{p}-w_{s}\right) B_{p}+\left(w_{s}-n \in h_{c}\right) B_{c}\right] \tag{22}
\end{equation*}
$$

In which ϵ is a correction factor due to the "pulling down" of the soap film at the edges of the stiffeners. From equation (22), this correction factor is found to be:

$$
\begin{equation*}
\epsilon=\frac{1}{n_{c} B_{c}}\left[\left(w_{p}-w_{s}\right) B_{p}+w_{s} B_{c}-w_{p} B\right] \tag{23}
\end{equation*}
$$

It should be noted that the correction factor (equation 23) does not reduce to zero when the plate is completely covered by stiffeners. The reason for this is illustrated by figure 13, which is an estimate of the contours of the soap film surface at the functure of two stiffeners placed side by side.

The error ϵ affects only one term of the four of equation (22) and, therefore, if a reasonable approximation can be found for this error, accurate values of B can be obtained by use of this equation.

Rept. No. 1800

Method of Test

The method of test used is illustrated in figure 3 and described in report No. 1301. The specimens described in part 1 of this section were used. Each specimen was tested in this way immediately after the corresponding test described in part 2 was performed. Values of B were obtained by use of formula (7) and are tabulated in column 8 of table 3.

Evaluation of the Errore

Values of B_{c} and B_{p} were determined from the first and last tests of each plate and values of B from the intermediate tests. Values of ϵ were then obtained by use of equation (23) and are tabulated in column 14 of table 3 . These values are plotted against values of $\frac{W_{s}}{n h_{s}}$ in figure 14 . It will be noted that the curves obtained seem to mpproach horizontel asymptotes at various values of ϵ. The positions of these asymptotes were estimated by averaging the values of ϵ associated with a number of points at the right end of each curve and are tabulated in column 16 of table 3 . The asymptotic values of ϵ are designated by $\epsilon_{\max }$ and are plotted against the parameter $\left[\frac{B_{c} h_{c}}{B_{p} h_{p}}\right]^{1 / 4}$ in figure 15. The form of this parameter was suggested by the second term of the right-hand member of equation (21). It will be noted that a reasonably smooth curve can be drawn through the points.

The values of ϵ for each specimen were divided by the appropriate value of $\epsilon_{\max }$ and are tabulated in column 18 of table 3. These values are plotted against the parameter $\frac{w_{S}}{n h_{S}}\left[\frac{B_{p} b_{c}}{B_{p} h_{p}}\right]^{1 / 4}$ in figure 16 . It will be noted that they fall, roughly, on the curve drawn in this figure.

A reasonable estimate of the error ϵ can be obtaised for any particular stiffened plate by the use of the curves drawn in figures 15 and 16.

Verification of Formula (22)

Values of B_{c} and B_{p} were obtained by means of formula (7) applied to the results of the first and last tests of each plate. Values of $\frac{\epsilon}{\epsilon_{\max }}$ were obtained from the curve of figure 11 and multiplied by values of $\epsilon_{\text {max }}$ ob tained from the curve of figure 16 to determine estimates of values of ϵ, These values were substituted in equation (22) and estimates of B obtained. These estimates are tabulated in column 9 of table 3 and plotted against the corresponding observed values in figure 17. The straight line in this figure passes through points representing absolute agreement between computed and observed values. The grouping of the plotted points around this

Rept. No. 1800
line indicates that formula (22) yields reasonable estimates of the values obtained by test.

Part 4. Flexural Poisson's Ratio Effect

Values of the Poisson's ratio effect for plywood are given by the first term of the right-hand member of equation (6).

$$
\begin{equation*}
\frac{h^{3}(E \sigma)_{12}}{12 \lambda}=F=\left[\frac{h_{i}^{3}}{12}+h_{i y_{i}}^{2}\right] \frac{E_{x i} \sigma_{y x i}}{\lambda} \tag{24}
\end{equation*}
$$

in which $h_{i}=$ thickness of an individual ply

$$
\begin{aligned}
y_{i}= & \text { distance from the neutral axis of the plywood to the } \\
& \text { center of the individual ply } \\
\mathrm{E}_{\mathrm{xi}}= & \text { the modulus of elasticity of the individual ply in the } \mathrm{x} \\
& \text { direction (efther parallel or perpendicular to the grain) } \\
\sigma_{y x i}= & \text { Poisson's ratie of the individual ply (the ratio of the } \\
& \text { strain in the } x \text { direction to the strain in the y direction } \\
& \text { due to a stress in the y direction) } \\
\lambda= & 1-\sigma_{y x i} \sigma_{x y i} \text { (taken as unity for wood). }
\end{aligned}
$$

with the summation being taken over all the plies of the plywood.
Making use of Maxwell's relation

$$
E_{x i} \sigma_{y x i}=E_{y i} \sigma_{x y i}
$$

equation (24) becomes

$$
\begin{equation*}
F=\rangle\left[\frac{h_{i}{ }^{3}}{12}+h_{i} y_{i} z\right] \frac{\sqrt{E_{x i}{ }^{\sigma} y_{y i}{ }^{2}{ }_{y i}{ }^{\sigma} x_{y i}}}{\lambda} \tag{25}
\end{equation*}
$$

making use of the fact that

$$
\sigma_{\mathrm{yx}} \sigma_{\mathrm{xy}}=\sigma_{I \mathrm{I}} \sigma_{\mathrm{TI}}
$$

in which I and T refer to the longitudinal and tangential directions in each ply, and that this product has about the same value for various species of wood; also remembering that:

$$
\begin{aligned}
& D_{1}=\left[\left[\frac{h_{i}^{3}}{12}+h_{i} y_{i}^{2}\right] \frac{E_{x i}}{\lambda}\right. \\
& D_{2}=\sum\left[\frac{h_{i}^{3}}{12}+h_{i} y_{i}^{2}\right] \frac{E_{y i}}{\lambda}
\end{aligned}
$$

Rept. No. 1800
equation (25) becomes

$$
\begin{equation*}
F=\sqrt{\sigma_{I T} \sigma_{T L} D_{1} D_{2}} \tag{26}
\end{equation*}
$$

It is assumed that this expression can be used approximately in connection with multiply stiffened plywood as well as for plywood alone.

Tablo 3.-具erult" of tentil in boading and obear of atiffoned plymod plater and the computationg releted to then (cont.)

[^2]

Figure 2.--Yellow-poplar plywood plate stiffened with closely spaced sitka spruce
stiffeners supported in the static-bending apparatus for the determination of the
flexural stiffness in the direction of the stiffeners.
12 y 77416 장

Figure 3.--Yellow-poplar plywood plate stiffened with closely spaced Sitka spruce flexural rigidity in the plane of the plate.

Figure 5.--Plywood panel stiffened with closely spaced stiffeners and supported in the shear-buckling apparatus in preparation for test.

(\%Sa 001)
03INdWOD - aVO7 9NITMONA 7VO1L14O

Figure 7.-Cross section of etiffened plywood plate and dimenaional notation:
2 ㅍ 77390%

Figure 8.--Comparizon of compated values of flearal stiffneas with observed talues; length of otiffenere parallel to the span of the plate.
2×77391 F

Figure 9.--Sketch of a portion of the elagtic curve of a stiffened plate subjected to simple bonding perpendicular to the leagth of the etiffenera.

Figure 10.--Values of ratiog of Z to a obtained from teat plotted againat values of the retio W to s and the parabolic curve fitted to these ratios by the leatsquares method.

Figure 11.-Compariaon of computed valuee of flexural atifinesg to observed values; length of atiffensra perpendicular to the epen of the plate.

2137394

Figure 12. --Betimate of the contours of the surface of a boap film over a crosssectional opening similar to the crosa section of a stiffened plate; stiffeners separated.
2 H 37395 F

$2 \mathrm{Niti36F}$

Figure 15.*- $\epsilon_{\text {max }}$ va. parameter as determined from ohear tests of stiffened z×77398 F

Figure 17.--Comparison of observed values of shear atiffness with computed values.
2×77405

[^0]: I This progress report is one of a series prepared and distributed by the Forest Products Laboratory under U. S. Navy, Bureau of Aeronautics No. NBA-PO-NAer 00565 and U. S. Air Force No. AAF-PO-(33-038)46-1189. Results here reported are preliminary and may be revised as additional data become available.
 2Forest Products Laboratory Report No. 1316, "Buckling of Flat Plywood Plates in Compression, Shear, or Combined Compression and Shear."
 Rept. No. 1800

[^1]: 5"The Torsion of Members Having Sections Common in Aircraft Construction" by G. W. Trayer and H, W. March. National Advisory Committee for Aeronautics Report No. 334.

[^2]: 2. M 77402 \%
