Original Articles

Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness

Raphael Ligeiro\textsuperscript{a,\!*}, Robert M. Hughes\textsuperscript{b}, Philip R. Kaufmann\textsuperscript{c}, Diego R. Macedo\textsuperscript{a,d}, Kele R. Firmiano\textsuperscript{a}, Wander R. Ferreira\textsuperscript{a}, Déborah Oliveira\textsuperscript{a}, Adriano S. Melo\textsuperscript{c}, Marcos Callisto\textsuperscript{a}

\textsuperscript{a} Laboratório de Ecologia de Bacias, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CP 486, CEP 30161-970 Belo Horizonte, Minas Gerais, Brazil

\textsuperscript{b} Department of Fisheries & Wildlife, Oregon State University and Amnis Opes Institute, Nash Hall, 97331-4501 Corvallis, OR, USA

\textsuperscript{c} U.S. Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Lab., Western Ecology Division, 200 SW 35 Street, 97333 Corvallis, OR, USA

\textsuperscript{d} Instituto Brasileiro de Geografia e Estatística, Rua Oliveira 523, CEP 30310-150 Belo Horizonte, Minas Gerais, Brazil

\textsuperscript{e} Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II, Samambaia CP 131, CEP 74001-970 Goiânia, Goiás, Brazil

A R T I C L E  I N F O

Article history:
Received 14 June 2012
Received in revised form 6 September 2012
Accepted 9 September 2012

Keywords:
Reference condition approach
Local disturbances
Catchment disturbances
Disturbance indices
Stream habitats
EPT assemblages

A B S T R A C T

Most studies dealing with the use of ecological indicators and other applied ecological research rely on some definition or concept of what constitutes least-, intermediate- and most-disturbed condition. Currently, most rigorous methodologies designed to define those conditions are suited to large spatial extents (nations, ecoregions) and many sites (hundreds to thousands). The objective of this study was to describe a methodology to quantitatively define a disturbance gradient for 40 sites in each of two small south-eastern Brazil river basins. The assessment of anthropogenic disturbance experienced by each site was based solely on measurements strictly related to the intensity and extent of anthropogenic pressures. We calculated two indices: one concerned site-scale pressures and the other catchment-scale pressures. We combined those two indices into a single integrated disturbance index (IDI) because disturbances operating at both scales affect stream biota. The local- and catchment-scale disturbance indices were weakly correlated in the two basins ($r=0.21$ and $0.35$) and both significantly ($p<0.05$) reduced site EPT (insect orders Ephemeroptera, Plecoptera, Trichoptera) richness. The IDI also performed well in explaining EPT richness in the basin that presented the stronger disturbance gradient ($R^2=0.39$, $p<0.001$). Natural habitat variability was assessed as a second source of variation in EPT richness. Stream size and microhabitats were the key habitat characteristics not related to disturbances that enhanced the explanation of EPT richness over that attributed to the IDI. In both basins the IDI plus habitat metrics together explained around 50% of EPT richness variation. In the basin with the weaker disturbance gradient, natural habitat explained more variation in EPT richness than did the IDI, a result that has implications for biomonitoring studies. We conclude that quantitatively defined disturbance gradients offer a reliable and comprehensive characterization of anthropogenic pressure that integrates data from different spatial scales.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The development and maintenance of human societies rely on the conservation of freshwater resources and of the ecological services that streams and rivers provide (Karr, 1999). Monitoring the “ecosystem health” of streams (sensu Norris and Thoms, 1999) is a fundamental step for conscious and effective management of catchments (Boulton, 1999). Currently, biomonitoring is considered one of the most efficient ways to assess stream condition (Marchant et al., 2006). Macroinvertebrate assemblages are responsive to environmental condition and thus integrate physical, chemical and biological aspects of ecosystems. Accordingly, they are considered good biological indicators of stream ecological condition (Karr and Chu, 1999; Bonada et al., 2006; Hughes and Peck, 2008) and are extensively used in multimetric indices (MMIs) for such purposes (Reynoldson et al., 1997; Barbour et al., 1999; Klemm et al., 2003; Hering et al., 2006; Whittier et al., 2007a). The EPT assemblages (insect orders Ephemeroptera, Plecoptera and...
Trichoptera), particularly, have proven effective ecological indicators of human disturbances (Rosenberg and Resh, 1993; Stoddard et al., 2008).

A goal of many biomonitoring approaches is to report how test sites deviate from the “undisturbed” (natural) condition in terms of the structure and/or composition of the assemblages they support. This is typically accomplished by designating “reference sites”, that is, sites minimally affected by human activities and whose biological, physical and chemical features serve as reference condition for natural levels of patterns and processes (Hughes et al., 1986; Stoddard et al., 2006; Hawkins et al., 2010). A set of reference sites should be specific for a particular typology (e.g., altitude, stream size, and predominant substrate) and geographic domain (biome and ecoregion) because these are important natural drivers of stream characteristics, including their biota (Hughes et al., 1986, 1990; Gerritsen et al., 2000; Waite et al., 2000; Sánchez-Montoya et al., 2007). This framework has been established as the “reference condition approach” (RCA) (Bailey et al., 2004). In most cases it is not practical to seek sites that have truly undisturbed/minimally disturbed conditions because (1) human modifications are widespread in most landscapes worldwide, and (2) many places have been modified for hundreds (or even thousands) of years (Stoddard et al., 2006; Whittier et al., 2007b; Herlihy et al., 2008). Instead, sites in least-disturbed condition, i.e., the best set of sites available in a continuous gradient of disturbance, are typically used to represent “reference” conditions (Reynolds et al., 1997; Stoddard et al., 2006; Yates and Bailey, 2010).

It is explicitly stated in the RCA that the reference condition should be chosen based strictly on criteria concerning the minimal exposure of the sites to human disturbances (Bailey et al., 2004). Although human disturbances affect stream biological and habitat attributes (Maddock, 1999), reference site selection should not be based on either because it is difficult to distinguish between effects from human disturbance and natural variation (Dovciak and Perry, 2002; Moreno et al., 2006). In fact, a key aspect of the RCA is that natural variability is intrinsic in ecosystems and that this variability must be accounted for by using models to understand the effects of human disturbance on assemblage structure of fish (Obderoff et al., 2002; Tejerina-Garro et al., 2006; Pont et al., 2006, 2009) and macroinvertebrates (Clarke et al., 2003; Bailey et al., 2004; Hawkins et al., 2010; Moya et al., 2011).

A multitude of stressors have been identified and used as criteria for determining reference sites. As geographic information system (GIS) technology has become operationally simpler and widely available (King et al., 2005), disturbances identified at the catchment scale have been used for defining potential reference areas (Collier et al., 2007; Wang et al., 2008). However, human modifications acting at both large (catchment) and local (stream channel and riparian zone) scales should be investigated because pressures or stressors operating at both scales can impair the stream biota (Bryce et al., 1999; Whittier et al., 2007b; Hughes et al., 2010).

Increasingly, methods for defining and selecting reference sites are applied to large spatial extents (whole ecoregions, states, and countries), commonly involving hundreds or thousands of sites. The Environmental Protection Agency of the United States of America (US-EPA), in its national Wadeable Stream Assessment (WSA) program, screened a series of physical habitat and water quality data, setting thresholds for the selection of least-disturbed sites in different ecoregions (Herlihy et al., 2008). The same “filtering” approach was employed in regional assessments made by the same agency (Klemm et al., 2003; Whittier et al., 2007b). In a similar approach, a large set of criteria of human disturbances operating at both local and regional spatial scales were used to select least- and most-disturbed sites on European streams (Nijboer et al., 2004; Pont et al., 2006; Sánchez-Montoya et al., 2009).

However, methodologies employed at large spatial extents may be inappropriate for studies dealing with more restricted spatial extents and far fewer sites. First, for most ecosystems located in less studied regions of the world, such as in tropical developing countries, there is no reliable information about the physical and chemical thresholds that indicate substantial disturbance (Boyero et al., 2009). Second, the application of rigid filters to a small number of sites is likely to select too few sites, or none at all. Even in Europe, when hundreds of sites from 4 countries were analyzed, for many stream types it was not possible to find any single site that fulfilled all the criteria proposed for European reference conditions (Nijboer et al., 2004). Nevertheless, many monitoring initiatives are applied at more restricted geographic areas (small to medium-sized basins or sub-basins) and far fewer sites (dozens at best) (Baptista et al., 2007; Moreno et al., 2009; Oliveira et al., 2011; Suriano et al., 2011).

When working with few sites, instead of trying to allocate sites into ‘boxed’ categories from the onset of the project (e.g., least-, intermediate-, and most-disturbed sites), the use of a continuous disturbance gradient can be more advantageous for classifying the sites included in the study, enabling the definition a posteriori of the least-disturbed sites and the most-disturbed sites. This contrast is necessary for the development of MMIs (e.g., Stoddard et al., 2008; Oliveira et al., 2011). For instance, predictive models are first concerned with describing assemblage composition in reference conditions (Reynolds et al., 1995), i.e., the “good tail” of a disturbance gradient. In addition to biomonitoring studies, any applied ecological research concerned with changes in patterns and processes associated with the intensity of human modifications will benefit from the use of a disturbance gradient.

In this study we present a methodology to quantitatively define disturbance gradients in two basins sampled with a relatively small number of sites (40 each), each basin including a range of sites from relatively undisturbed to greatly altered. To this end, we worked with two hypotheses. (1) Disturbances taking place at both local (stream sites) and catchment spatial scales reduce the EPT assemblage richness of the sites. (2) The proportion of variation in EPT richness associated with natural variability among site habitats will be greater in the basin with the weaker anthropogenic disturbance gradient.

2. Methods

2.1. Study area

We sampled streams in two basins of the Cerrado biome in the state of Minas Gerais, southeastern Brazil: Upper Araguaí basin (in the Paraná river basin) and the Upper São Francisco basin (in the São Francisco river basin) (Fig. 1). Both study areas were demarcated upstream of the first big reservoir of each basin (Nova Ponte and Três Marias reservoirs, respectively). The Cerrado is the second-most extensive biome of the Neotropics (Wantzen, 2003), originally covering 20% of Brazilian territory, and one of the terrestrial biodiversity “hotspots” of the planet (Myers et al., 2000). It is also one of the most threatened due to ever-expanding pasture and agricultural activities (Wantzen et al., 2006). The Cerrado climate has two well defined annual seasons: a dry season from October to March, and a wet season from April to September, with 1200–1800 mm of precipitation per year. The vegetation is typically savannah-like, with denser forest formations along water courses and wet areas.

Most people living in the study areas dwell on farms and in small towns (up to 20,000 inhabitants), although a few small cities (up to 80,000 inhabitants) are present. The Upper Araguaí has a well developed system of irrigated agriculture, encompassing mainly
soy, coffee, corn, and sugar cane culture. Irrigated agriculture is less common in the Upper São Francisco, where pasture and small family farms predominate.

2.2. Site selection

Forty “wadeable” stream sites (that can be traversed by a person wading) ranging from 1st to 3rd order (sensu Strahler, 1957) were selected on 1:100,000 scale maps in each basin and sampled during the dry season. The site selection was performed through a probability-based design as described in Olsen and Peck (2008), the same procedure used by the US-EPA in the Environmental Monitoring and Assessment Program Western Pilot Study (EMAP-West, Stoddard et al., 2005) and its national Wadeable Stream Assessment (WSA, Paulsen et al., 2008). In this approach, a master sample frame (MS) is first established using a digitized drainage system map (1:100,000 scale), and then the sample sites are selected via a hierarchical, spatially weighted criteria (Stevens and Olsen, 2003). This procedure assures a balanced selection of sites across the range of stream orders and geographic location. The Upper Araguari sites were sampled in September 2009 and the Upper São Francisco sites were sampled in August/September 2010.

2.3. Site habitat measurements

The field physical habitat was measured as described in Peck et al. (2006). The site lengths were set at 40 times their mean wetted width, and a minimum of 150 m. Given their narrow widths, most sites were 150 m long. In each site, 11 equidistant cross-sectional transects were marked, defining 10 sections of the same length.

In each transect and along the sections, a large set of measurements were recorded, including site morphology (e.g., slope, sinuosity, wetted and bankfull width, depth, and incision height), habitat characteristics (e.g., substrate size and embeddedness, flow type, and large wood), riparian structure (e.g., mid-channel and margin shading, tree and herbaceous cover density) and human disturbance in the channel and riparian zone (e.g., presence of pasture, crops, pipes, and trash). Habitat metrics were then calculated following Kaufmann et al. (1999).

The following physical and chemical characteristics of the water column were also measured in the field for each site: pH, electrical conductivity, and total dissolved solids (TDS). Water samples were collected for further analysis in the laboratory, including dissolved oxygen, turbidity, total alkalinity, total nitrogen, and total phosphorus. Those analyses were conducted following APHA (1998).

The site nutrient concentrations of both basins were extremely low and not indicative of anthropogenic sources. In the Upper Araguari, the values were $0.06 \pm 0.01$ mg/L (mean ± SD) for total nitrogen and $0.03 \pm 0.01$ mg/L for total phosphorus. The concentrations in the Upper São Francisco were $0.08 \pm 0.06$ mg/L for total nitrogen and $0.02 \pm 0.01$ mg/L for total phosphorus.

2.4. Macroinvertebrate sampling and laboratory processing

The biological sampling also followed the protocol of Peck et al. (2006) and Hughes and Peck (2008). Eleven sample units were taken per stream site, one per transect, generating one composite sample for each site. Each sample unit was collected through use of a D-net (30 cm mouth width, 500 μm mesh), effectively sampling 1 m² of stream bottom area sampled per site. The sample units were obtained by following a systematic zigzag pattern along the sites to avoid bias in habitat selection. Immediately after collection, the composite samples were placed in individual plastic buckets and preserved with 10% formalin.

In the laboratory, the macroinvertebrates were sorted by eye, and the EPT individuals were identified to genus under a 100× magnification stereoscope microscope through use of taxonomic...
We assessed watershed land uses for each site through use of manual image interpretation. Watersheds were extracted from the terrain model from the Shuttle Radar Topographic Mission – SRTM (USGS, 2005). We manually interpreted high resolution multispectral images in conjunction with the Landsat TM sensor using Spring software (Camara et al., 1996). The high-resolution images provided information about the shape and texture of the elements, and the Landsat images showed spectral response for different targets. Our mapping identified three human-influenced land uses (pasture, agriculture, and urban). The catchment percentages of each land use were estimated for each site.

The catchment disturbance index (CDI) was based on the human land uses in the catchments and was calculated following Rawer-Jost et al. (2004), according to the formula:

\[
\text{catchment disturbance index (CDI)} = 4 \times \% \text{ urban areas} + 2 \times \% \text{ agricultural areas} + \% \text{ pasture areas}
\]

We evaluated the collinearity between local and catchment human disturbances in each basin through use of Pearson correlations between the LDI and the CDI values of the sites.

Because the local and the catchment disturbance indices do not share the same numerical scale, both were separately standardized to provide a similar scale in values. This transformation was necessary to reliably calculate an integrated disturbance index for each site, based on both the local and catchment indices (see below). The values of each index were divided by 75% of the maximum value that each can theoretically achieve. We did not use the maximum values of each index for these standardizations because those values are rarely achieved. Dividing by the maximum values would shrink greatly and unnecessarily the values in the standardized indices, shifting nearly all the sites very close to the origin of the disturbance plane.

The CDI values potentially range from 0 (no land use in the catchment) to 400 (entire catchment occupied by urban areas). So the values of this index were divided by 300. The LDI values (\(W1_{hall}\) metric) potentially range from 0 (no evidence of any type of disturbance in the channel or riparian zone) to 16.5 (all 11 types of disturbances observed inside the stream channel in all transects). But this theoretical upper value is highly unlikely because of spatial limitations and negative colinearities among the types of disturbance (listed above). The empirical maximum value of the \(W1_{hall}\) metric is around 7 (Kaufmann et al., 1999), so the values of this index were divided by 5.

To summarize the disturbances measured at both scales in a single index we calculated for each site an integrated disturbance index (IDI). It was measured as the Euclidian distance between the position of the site in the disturbance plane (axes standardized) to the origin of the plane (Fig. 2). This was performed through application of the Pythagorean theorem:

\[
\text{integrated disturbance index (IDI)} = \left[ \left( \frac{\text{LDI}}{5} \right)^2 + \left( \frac{\text{CDI}}{300} \right)^2 \right]^{1/2}
\]

The higher the IDI of a site, the more that site deviates from the ‘origin’, i.e., from the ‘ideal’ reference condition of no disturbance inside the stream channel, in the riparian zone, or in the catchment. Thus, we defined the disturbance gradient simply as the ascending ordination of the IDI’s in a pool of sites. The steeper the disturbance gradient in a pool of sites, the greater the difference in ecological condition between the least- and most-disturbed sites in the pool.

2.5.2. EPT richness associations with the disturbance indices

To evaluate how EPT assemblages responded to the degree of human disturbances at both local and catchment scales, we

2.5. Data analyses

2.5.1. Calculation of the disturbance gradient

To describe the total exposure of the sites to human pressures, we developed two separate indices: one reflecting disturbances at the site scale and one reflecting disturbances at the catchment scale, both having their origins (0 values) representing the absence of evidence of disturbances. In each index, the higher the site value, the greater the intensity of human modifications observed for that site, i.e., the greater the deviation from the pristine condition at that spatial scale. Thus, we positioned each site in a ‘disturbance bi-plane’ constructed with the two disturbance indices as axes. The ‘ideal’ reference sites should be those lacking evidence of human modifications at both near/in-stream and catchment scales (concept of minimally disturbed condition; Stoddard et al., 2006). Typically, however, reference sites are those with the least disturbances among the sites available (concept of least-disturbed condition; Stoddard et al., 2006). Through this conceptual model, the least and most–disturbed sites in a pool of sites can be visualized according to their positions in the disturbance plane, the least-disturbed sites being closer to the origin (lower left corner of the plane) and the most-disturbed sites being farthest from the origin (upper right corner of the plane) (Fig. 2).

For quantifying the local disturbance index (LDI) we used the metric \(W1_{hall}\), calculated as described in Kaufmann et al. (1999), a measure commonly used in the US-EPA stream assessments. This metric summarizes the amount of evidence observed in-channel and in the riparian zone for 11 types of disturbances (buildings, channel revetment, pavement, roads, pipes, trash and landfill, parks and lawns, row crop agriculture, pasture, logging and mining) along the eleven transects demarked at the stream site. The values are weighted according to the proximity of the observation from the stream channel (Kaufmann et al., 1999).
conducted multiple linear regressions between EPT richness and the standardized LDI and CDI of the sites for each basin. We also regressed EPT richness against the IDI to evaluate its performance relative to EPT richness variability.

2.5.3. Contribution of natural variability of site habitat characteristics to explaining the variation of EPT richness

Through the following methodology, we evaluated how much natural physical habitat variability added to the explanation of EPT richness provided by the disturbance gradient alone. The process was performed separately for each basin (Fig. 3).

We started with a set of 31 habitat metrics calculated from the raw field data (Table 1). With these metrics we aimed to represent key aspects of the habitats of the sites, such as morphology (e.g., mean wetted and bankfull width, mean depth, and mean slope), riparian condition (e.g., riparian vegetation extent and mean canopy cover), habitat heterogeneity (e.g., % fast water, % large substrates, % fine substrates, and mean substrate embeddedness) and water quality (e.g., dissolved oxygen, pH, and alkalinity). We obtained Pearson correlations between those metrics and all the disturbance descriptors we had available: the 3 land uses percentages, the 11 types of local site disturbances, the LDI, the CDI and the IDI. All metrics significantly correlated (p < 0.05) with any of the disturbance descriptors were disregarded for the next step of the analysis. In this way, we filtered all the habitat metrics that could be affected by human disturbances of any kind; the remaining metrics were considered as sources of natural variation in the sites. Next, a Pearson product–moment correlation matrix was calculated with all the metrics not correlated with disturbance evidence. The redundant metrics (r > 0.6) were removed and the choice of the metrics to be retained was based on ecological rationale.

Among the 31 initial habitat metrics, many were not significantly correlated with human disturbances (9 in the Upper Araguaí and 15 in the Upper São Francisco, Table 1). In both basins, some of the remaining metrics were removed because of high colinearities (r > 0.6). In the Upper Araguaí, mean depth and mean residual pool area were removed and mean wetted width × mean thalweg width was kept, because we believe the latter metric best summarized the stream channel size. In the Upper São Francisco, mean wetted width was removed and mean wetted width × mean thalweg depth was kept (same reason as above) and riparian canopy cover was removed and total riparian cover, a more embracing metric, was kept. Percentage of coarse substrates (>16 mm), percentage of fines (<0.06 mm: silt and clay), percentage of sand + fines (<2.0 mm), and log of the geometric mean substrate diameter had high correlations. We chose to include log of mean substrate diameter because it best represented the predominant substrate sizes of the sites.

We used the reduced set of habitat metrics to perform a hierarchical multiple regression, forcing the entrance of the integrated disturbance index (IDI) in the first block and allowing, in the second block, a best-subsets multiple regression procedure search for the combinations of habitat metrics that best explained the remaining variability in EPT richness. The $R^2$ values were considered as criteria for the selection of the best models. We restricted the number of predictor variables in the final models to a total of 4 (10% of 40 sites) to avoid model over-fitting (Harrell, 2001; Tabachnick and Fidell, 2007). Thus, in addition to the IDI in the first block, three habitat metrics were allowed to enter in the second block. Hierarchical multiple regression is an efficient way to isolate the contribution of some factor in a regression model because residual regressions can lead to biased estimations of the parameters of the models (see Freckleton,

### Table 1

Candidate site habitat metrics for explaining EPT richness variability in both studied basins.

<table>
<thead>
<tr>
<th>Metric name</th>
<th>Metric code</th>
<th>Not significantly correlated</th>
<th>Not strongly correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean width</td>
<td>xwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean depth</td>
<td>xdepth</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Mean slope</td>
<td>xslope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean bankfull width</td>
<td>XBF,W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean width × mean depth</td>
<td>XWXD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (width/depth)</td>
<td>xwd_cat</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Mean depth × mean slope</td>
<td>xdepth_xslope</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Bankfull (width/depth)</td>
<td>BKF_WDrat</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Mean residual pool area</td>
<td>rp100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean water volume/m²</td>
<td>vlw_msq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian canopy (&gt;5 m high)</td>
<td>xc</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Riparian canopy (all vegetation)layers</td>
<td>xcmamt</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Total riparian woody cover</td>
<td>xcmgw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean canopy density (mid-stream)</td>
<td>xdcmnmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural cover in the stream (all)</td>
<td>xfc_nat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural cover provided by large wood</td>
<td>xfc_lwd</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Percentage of fast water</td>
<td>pct_fast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of fines (silt and clay)</td>
<td>pct_fn</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Percentage of sand + fines</td>
<td>pct_sfgf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of cobble</td>
<td>pct_cb</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Percentage of coarse substrate (&gt;16 mm)</td>
<td>pct_bigr</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Mean substrate diameter</td>
<td>lsbs_dmmn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean substrate embeddedness</td>
<td>xembed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log of relative bed stability</td>
<td>LRBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity (μS/cm)</td>
<td>Cond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total dissolved solids (g/L)</td>
<td>TDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>Turb</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Dissolved oxygen (mg/L)</td>
<td>DO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity (mequiv./L)</td>
<td>Alk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3. Summary of the methodological design used to test statistically how site habitat metrics not subjected to human disturbances enhanced the explanation given by the integrated disturbance index (IDI) to EPT richness in each basin.
2002). Only predictor variables with individual F-values > 1 were allowed in the final models. The statistical significance of the hierarchical multiple regressions (block 1 vs block 1 + block 2) were tested through analysis of variance (ANOVA’s). In this way we tested whether the habitat metrics contributed significantly to the explanation of EPT richness derived from the LDI for each basin.

3. Results

3.1. Local and catchment disturbance indices and the disturbance plane

The two basins had similar patterns in most LDI values (Fig. 4A), although the Upper Araguari basin had a few higher values, resulting from urban sites. On the other hand, the patterns of CDI values varied considerably between the basins, the Upper Araguari had higher CDI values than the Upper São Francisco (Fig. 4B). In the Upper São Francisco, only one site had a CDI value >100. The differing patterns are explained by the land use patterns in both basins (Fig. 5A–C). In the Upper Araguari we observed a higher proportion of agriculture in the catchments, whereas in the Upper São Francisco pasture predominated. Proportions of urban areas were low in both basins, most catchments having none. The Pearson correlations between the LDI and CDI scores were weak (r = 0.21 in the Upper Araguari and r = 0.35 in the Upper São Francisco).

In both basins few sites were located close to the origin on the disturbance plane (Fig. 6), but because of higher CDI values, more Upper Araguari sites were located farther from the origin. This distribution pattern is summarized by the different slopes of the disturbance gradients of the basins, showing the IDI values in ascending order (Fig. 7). In the Upper Araguari we observed a much wider range in site IDI values (i.e., more sites nearer and farther from the origin), indicating a much stronger disturbance gradient in that basin.

3.2. Description of the EPT assemblages

A total of 5463 EPT individuals (61 genera) were identified in Upper Araguari sites, and 15,133 EPT individuals (65 genera) were identified in Upper São Francisco sites. In both basins Ephemeroptera comprised the majority of the EPT genera (30 in the Upper Araguari and 35 in the Upper São Francisco) and number of organisms (3291 in the Upper Araguari and 12,529 in the Upper São Francisco). In the Upper Araguari, the most abundant genera were Smicridea (Trichoptera), and the Ephemeroptera Thraulodes, Traverhyphes and Tricorythopsis. Those four genera represented 43% of the EPT individuals collected in the Upper Araguari. In the Upper São Francisco, the most abundant genera were Callibaetis, Cloeodes, Americabaetis, Caenis and Traverhyphes, all Ephemeroptera. Those five genera represented 54% of the EPT individuals collected in the Upper São Francisco. Around 25% of the taxa identified in the Upper Araguari, and 20% of the taxa identified in the Upper São Francisco, can be considered rare taxa, with just 5 or fewer individuals identified across all sites of each basin.

3.3. EPT richness versus disturbance indices

The variation of EPT richness explained by the LDI and CDI together was much higher in the Upper Araguari (R² = 0.40) than in the Upper São Francisco (R² = 0.18) (Table 2). In both basins, EPT richness was significantly related to the CDI, but only in the Upper Araguari did the LDI contribute significantly to explain EPT richness variation (Table 2). The slope between LDI and EPT richness in the Upper São Francisco approached zero (Table 2). As expected, all significant relationships were negative. In the Upper Araguari, the IDI explained a moderate amount of EPT richness (Simple linear regression, R² = 0.35, F₁,38 = 24.6, p < 0.001; Fig. 8A), nearly the same as the combined explanations given by the LDI and CDI in the multiple regression. In the Upper São Francisco, the IDI explained poorly, but significantly, EPT richness variation (simple linear regression, R² = 0.11, F₁,38 = 4.55, p = 0.039; Fig. 8B).

Table 2

<table>
<thead>
<tr>
<th></th>
<th>F-Value (2,37)</th>
<th>p-Value</th>
<th>R-Square</th>
<th>Beta</th>
<th>Std. err. of beta</th>
<th>t(37)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Araguari</td>
<td>12.5</td>
<td>&lt;0.001</td>
<td>0.403</td>
<td>-0.450</td>
<td>0.130</td>
<td>-3.467</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>-0.364</td>
<td>0.130</td>
<td>-2.802</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper São Francisco</td>
<td>4.005</td>
<td>0.027</td>
<td>0.178</td>
<td>-0.424</td>
<td>0.159</td>
<td>-2.671</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>0.007</td>
<td>0.159</td>
<td>0.043</td>
<td>0.966</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Distribution (medians and quartiles) of the values of the (A) local disturbance index and of the (B) catchment disturbance index in each studied basin.
by the addition of habitat metrics not related to human disturbances. In the Upper Araguari, the increment was low and just marginally significant (Table 3). In that basin, the $R^2$ value increased from 0.39 to 0.49, an increase of 0.1. On the other hand, in the Upper São Francisco the increment was much greater, the $R^2$ value rising from 0.11 to 0.50, an increment of 0.39. The amount of explanation given by the combined models (LDI + habitat metrics not correlated with disturbance) were similar in both basins, with $R^2$ values around 0.5, meaning that the final models explained only about half the variation.

The combined models generated from best-subsets multiple regressions had, in addition to the IDI, 2 habitat metrics in the Upper Araguari and 3 habitat metrics in the Upper São Francisco (all with $F$-values > 1, Table 3). In both basins, a site size metric (mean width $\times$ mean depth) was important in explaining EPT richness variation. In the Upper Araguari, another morphologic metric (bankfull width/depth) was incorporated in the model, whereas in the Upper São Francisco, microhabitat metrics (percent fast flows and log of mean substrate diameter) were included.

4. Discussion

4.1. Premises for comparisons between sites

It has been long recognized that some geographic (e.g., ecoregions) and non-geographic features (e.g., typologies) of stream sites exercise a strong influence on the composition and structure of their macroinvertebrate assemblages (Hughes, 1985, 1995; Gerritsen et al., 2000). Accordingly, it is important for the assigned reference sites and the test sites of a study to share these key biological drivers, allowing reliable comparisons between them (Herlihy et al., 2008). In the words of Gerritsen et al. (2000) it is important to “put like with like”.

Gradual changes in the habitat template, in the available food resources, and in the biological assemblages naturally occur along the longitudinal gradient of lotic ecosystems (from spring to mouth), resulting mainly from downstream changes in their morphological dimensions, catchment areas and discharges (Vannote et al., 1980; Poole, 2002; Hughes et al., 2011). We reduced such sources of variation by selecting streams with similar morphological dimensions. All sites can be classified as small streams, close to the headwaters.

There is no geographic classification formally designed for Brazil that is comparable in detail to the ecoregion classifications of the USA (Omernik, 1995) or Europe (e.g., Gustafsson and Ahlén, 1996). However, the basins studied are in the same biome.
(Cerrado) and in the same general terrestrial and aquatic ecoregions outlined by Olson et al. (2001), meaning that the sites share similar climatic, edaphic, vegetation, geological and biogeographic conditions (Olson et al., 2001; Wantzen, 2003). Moreover, the basins were analyzed separately, and their individual areas are much smaller than those of the US level IV ecoregions, the most detailed level of their classification. Thus, although lacking an official detailed classification, we consider all the sites in the same ecoregion.

4.2. The role of the disturbances measured at local and catchment spatial scales

As stated in the classical view of stream impairment, human disturbances operating at multiple scales can alter patterns and processes of the natural habitat, ultimately leading to modifications or impairment of biological assemblages (Karr, 1999; Norris and Thoms, 1999; Bryce et al., 1999; Feld and Hering, 2007). However, the exact mechanistic pathways among the origins of impairment, the habitat modifications, and the biological responses are not well known in most cases (Bedford and Preston, 1988; Karr, 1991). For this reason, rather than searching for all the individual sources of impairment, it is important to develop a group of disturbance metrics that can serve as general indicators of the total pressure to which an ecosystem may be subjected (Boulton, 1999).

Disturbances in the channel or riparian zone can impair the habitats and the biota (Bryce et al., 1999; Death and Joy, 2004; Kaufmann and Hughes, 2006). Because catchments drive the stream features in almost every aspect (Hynes, 1975; Wiens, 2002), human land uses are also usually linked with the ecological condition of streams (Bryce et al., 1999; Allan, 2004; Wang et al., 2008). Non-point sources in catchments commonly contribute excess sediments, nutrients and pollutants to streams and rivers (Allan and Castillo, 2007; Allan, 2004). Human activities in the catchment also influence the condition of stream riparian zones (Van Sickle et al., 2004; Sponseller et al., 2001; Miserendino et al., 2011). The ordering of “disturbance potential” used in this study (urban areas having more weight than row crop agriculture, which in turn has more weight than pasture), as well as the use of the whole catchment area as the “buffer” to estimate catchment human pressures, are corroborated by many previous studies (Sponseller et al., 2001; Mebane et al., 2003; Wang et al., 2008; Gucker et al., 2009; Trautwein et al., 2011). In our study, disturbances measured at local and catchment spatial scales both reduced EPT richness, corroborating our first hypothesis. In agreement with Kail et al. (2012), catchment disturbances had a greater effect than local disturbances in these basins. The latter were not even significantly related to macroinvertebrate richness in the Upper São Francisco sites.

Local disturbance was not correlated with catchment disturbance. This lack of association means that catchment land uses were not driving near or in-stream modifications, and what is observed at one scale can differ from what is observed at the other. For instance, in our study we observed catchments highly dominated by row crop agriculture but with undisturbed riparian vegetation and stream channels. Conversely, we also had catchments with mostly natural land cover but stream channels altered by livestock. Scenarios like these are likely to happen elsewhere (Nijboer et al., 2004). Consequently, relying on just one scale to describe the level of human pressure at a site can lead to misleading interpretations of biological responses (Bryce et al., 1999; Feld and Hering, 2007).

Table 3
Hierarchical multiple regression results contrasting the significance of the differences between the regression models in each basin. The first models (block 1) consisted of simple regressions with EPT richness as the response variable and the integrated disturbance index (IDI) as the predictor variable. The second models (block 1 + block 2) included as predictor variables the habitat metrics selected by the best subsets procedure as those which, together with the IDI, better explained EPT richness. Habitat metric codes are defined in Table 1.

<table>
<thead>
<tr>
<th>Basin</th>
<th>Model 1</th>
<th>F-Value</th>
<th>p-Value</th>
<th>R-Square</th>
<th>Metrics’ mean beta values</th>
<th>ANOVA test for hierarchical regression analysis [block 1 vs block 1 + block 2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-Value</td>
</tr>
<tr>
<td>Upper Araguari</td>
<td>Model 1</td>
<td>24.6</td>
<td>&lt;0.001</td>
<td>0.393</td>
<td>IDI: −0.627</td>
<td>3.194</td>
</tr>
<tr>
<td></td>
<td>Model 2</td>
<td>11.28</td>
<td>&lt;0.001</td>
<td>0.484</td>
<td>IDI: −0.523</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XWXD: 0.227</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BKF_WDrat: 0.299</td>
<td></td>
</tr>
<tr>
<td>Upper São Francisco</td>
<td>Model 1</td>
<td>4.548</td>
<td>0.04</td>
<td>0.107</td>
<td>IDI: −0.327</td>
<td>9.144</td>
</tr>
<tr>
<td></td>
<td>Model 2</td>
<td>8.726</td>
<td>&lt;0.001</td>
<td>0.499</td>
<td>IDI: −0.134</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XWXD: 0.245</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pct_fast: 0.414</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lsub_dmm: 0.276</td>
<td></td>
</tr>
</tbody>
</table>
The integrated disturbance index (IDI) proved to be a useful and accurate univariate descriptor of the totality of disturbances measured at different spatial scales. It explained the variability in EPT richness better than separate local and catchment indices, and almost as well as when those two indices were separately included in multiple regression. The existence of a single index to summarize the overall ecological condition, although never perfect, is a quick and practical way to describe the condition of individual sites and the relative condition of a site in comparison to others (Bryce et al., 1999; Wang et al., 2008). This is necessary to set disturbance thresholds and to present to society and stakeholders an objective and simple measurement of site conditions (Hughes and Peck, 2008). The range and distribution of IDI values across a representative pool of sites can indicate the strength of the disturbance gradient in a region. The greater the range and evenness of the distribution of sites across that range, the greater the strength of the disturbance gradient (shown in the ascending ordinations of Fig. 7), and the greater the expected differences in ecological condition between the least- and the most-disturbed sites.

4.3. The role of natural habitat variation

The importance of natural stream habitat variation has been long recognized in stream ecology (Karr and Dudley, 1981; Allan and Castillo, 2007). Metrics related to hydromorphology (percentage of fast flows, mean wetted width × mean thalweg depth, bankfull width/depth, log of geometric mean substrate diameter), which were not related to human disturbances in these basins, helped explain EPT richness variability, apart from the effects that could be attributed solely to human influences. Those factors are commonly reported as important for structuring stream macroinvertebrate assemblages (Schmera and Erös, 2004; Brooks et al., 2005; LeCraw and Mackereth, 2010). Consistent with our second hypothesis, the relative and absolute contribution of the natural habitat was much more pronounced in the Upper São Francisco basin, which had a weaker disturbance gradient.

One conclusion emerging from our results is that if the anthropogenic disturbance gradient is not strong, the deleterious effect of human activities on assemblage richness will be mostly eclipsed by variation associated with stream habitat natural variability. In other words, the disturbance “signal” will be buried by habitat variation “noise” (Parsons and Norris, 1996; Gerth and Herlihy, 2006). As can be observed in the Upper São Francisco Basin (Fig. 8B), sites that were slightly more perturbed frequently had higher EPT richness than others that were slightly less perturbed. Many of these divergences in relation to what would be expected from the disturbance-only model were probably driven by differences in stream hydromorphology. In the Upper Araguaí basin, which had a stronger disturbance gradient, those situations also occurred, but less frequently (Fig. 8A). A second conclusion is that the effort to control broad-scale drivers of biological assemblages through use of ecoregions and stream typologies does not eliminate the necessity to account for local habitat variability when comparing sites (Hughes et al., 1986; Waite et al., 2000; Pinto et al., 2009). Although we aimed to standardize the stream sizes, a size metric (mean width × mean depth) still explained significant differences in EPT richness. In addition, even neighboring sites may have highly dissimilar habitats and biological assemblages (Downes et al., 2000; Finn and Poff, 2005; Ligeiro et al., 2010), so that ecoregion standardization also is not enough.

The amount of EPT richness variability explained was similar in both basins (around 50%). This value can be considered high, given: (1) the intrinsic complexity and unpredictability of stream ecosystems and the difficulty of obtaining good models of them (Harris and Heathwaite, 2011), (2) the sources of variation not accounted for in this study, such as legacy effects (Allan, 2004) and conditions at upstream reaches (Kail and Hering, 2009) or at neighboring sites (Sanderson et al., 2005), and (3) the intrinsic unpredictability (“noise”) related to seasonal and sampling variability (Kaufmann et al., 1999; Kaufmann and Hughes, 2006). We emphasize that the stream habitat contribution to richness explanation was analyzed in a very conservative way. To reliably determine the degree that natural habitat variability can add explanation at varying levels of disturbance strength, we dealt only with the habitat metrics not significantly correlated with any of the disturbance measurements we had available. In this regard, we even discarded metrics significantly but weakly correlated to disturbance (e.g., r < 0.4). Thus, we believe that habitat variability has a greater role in structuring macroinvertebrate assemblages than shown in our results, because those rejected habitat metrics that were related to human disturbances were also driven by natural variability to some degree (King et al., 2005).

4.4. Importance of the construction of a disturbance gradient

The explicit, quantitative determination of a disturbance gradient is more advantageous than a set of disturbance categories because distinct separations in ecological conditions should be rare in any group of sites (Whittier et al., 2007b; Herlihy et al., 2008). This is true for all sites we call reference, least-disturbed,
most-disturbed, or impaired. Depending on the intensity and extent of human influences in the landscape, sometimes it is necessary to relax the stringency of the acceptance thresholds in order to find least-disturbed conditions (Stoddard et al., 2006; Whittier et al., 2007b; Herlihy et al., 2008). So it is important to recognize the relativity of terms like “least” or “most,” when describing ecological condition (Stoddard et al., 2006). Absolute, “boxed” designations, although comfortable and operationally easier to handle, can lead to misunderstandings or erroneous comparisons among studies simply because the true ecological conditions of the sites along the disturbance gradient continuum were not explicitly stated.

Often the designations of reference and most-disturbed sites are made prior to sampling (Bailey et al., 2004). GIS data and techniques have been widely applied when screening for reference sites (Collier et al., 2007; Yates and Bailey, 2010) and field reconnaissance is strongly recommended (Hughes et al., 1986; Yates and Bailey, 2010). Yet, even in those cases we encourage researchers to quantitatively re-assess the disturbance gradient after field sampling to check the validity of any previous classifications and the exact quantitative difference in the conditions between the “reference” and “test” sites.

4.5. The benefits, scope and further possibilities of the proposed methodology

The disturbance plane conceived in this work, visually describing the intensity of human disturbances at both local and catchment scales, established an easy and intuitive way to describe the total amount of pressure at sites. The disturbance plane facilitates comparisons of site conditions in a more straightforward and specific manner, quantitatively positioning each site along a disturbance continuum, rather than assigning labels to the sites. When necessary, labels such as “minimally,” “least,” and “most-disturbed” can be assigned to sites based on quantitative data versus subjective decisions. Objective criteria and quantitative approaches to select reference sites have been proven more efficient for selecting the “best” sites (Whittier et al., 2007b), and the same may be true for selecting the “worst” ones.

Because only direct observations of human activities were used to describe anthropogenic pressure, further characterization of the chemical and physical habitat of the least- and most-disturbed sites can be made without incurring any conceptual circularity. As addressed before, metrics like dissolved nutrient concentrations, riparian cover and sediment sizes, although commonly associated with human modifications, are also subject to natural variability (King et al., 2005; Miserendino et al., 2011). For example, in this study no land use measurement or local modification was correlated with nutrient concentrations (total phosphorous and total nitrogen). Low nutrient concentrations are common in11 cerrado streams because of naturally oligotrophic soils (Wantzen, 2003). In the Upper São Francisco, no evidence of disturbance was correlated with substrate sizes and riparian vegetation cover (Table 1). So, in accord with Bailey et al. (2004), natural patterns, not researchers’ opinions, should be used to characterize reference condition attributes.

The proposed methodology was well suited for describing the disturbance gradient of the 40 sites we studied in each basin. When necessary, sites from different regions can be incorporated in the same disturbance plane (as shown in Fig. 6). We believe that this methodology is also applicable to larger datasets, although further research is needed to confirm this assumption and to compare outputs generated through other approaches.

Depending on researcher preferences and the amount of data available, local and/or catchment disturbance indices can be calculated in different ways, perhaps using different disturbance measurements. For instance, other commonly used metrics to characterize human pressure include human population density, livestock density, number of dwellings and road density (Wang et al., 2008; Brown et al., 2009). If one desires further changes in this methodology, more disturbance axes can be added to the model, perhaps representing factors considered key stressors in particular studies (e.g., dams and toxic substances). This will generate n-dimensional disturbance polygons, rather than the bi-dimensional disturbance plane presented in this work. Although such refinements erode the simplicity and visual appeal of the model, they could improve the accuracy of the integrated disturbance quantifications of the sites (Danz et al., 2007).

In our study, the IDI was a reliable univariate measurement of site disturbance status. The IDI is also a good tool for describing the disturbance gradient strength in a pool of sites, via the range and distribution of its values. So, rather than a standardized and rigid methodology, we offer a flexible and adaptive framework for characterizing and quantifying disturbance in many situations.

5. Conclusions

We showed through our results that a reliable and comprehensive characterization of human pressures on streams relies on the use of different tools and should integrate data from different spatial scales. In our study, local and catchment disturbances were not correlated, and both independently affected site EPT assemblages. The proposed methodology quantified the human pressure on sites without resorting to naturally varying habitat metrics. We demonstrated that the strength of the disturbance gradient influenced the degree to which natural habitat variability explained EPT richness variation, a finding that has important implications for biomonitoring studies. Thus, the use of quantitative disturbance gradients is essential for efficient use of ecological indicators and we advise researchers to define quantitatively the disturbance status of their study sites. In this study we presented a framework for doing so.

Acknowledgements

We received funding and support for this research from CEMIG-Programa Peixe Vivo, CAPES, CNPq, FAPEMIG and Fulbright Brasil. We thank Tony Olsen, Marc Weber, and Phil Larsen of the Corvallis EPA Laboratory (Oregon, USA) for assistance in developing spatial sampling designs and selecting wadeable stream sample sites in our Brazilian basins. We thank Amanda Nahlik and Bob Oztetchik, from US-EPA, for further editorial changes. Juliana França and Ana Paula Eller were responsible for water quality analyses. Carlos B. M. Alves helped with general logistics and field work. Colleagues from the Laboratório de Ecologia de Bens (UFMG), CEFET-MG, Federal University of Lavras (UFLA) and Pontifical Catholic University of Minas Gerais (PUC-MG) assisted with field collections. Discussions held during the “Workshop on Ecological Assessment: the Foundation for Evaluating Biological Patterns” (October 3–7, 2011, US EPA Western Ecology Division, Corvallis, OR, USA) added concepts and ideas for this study. The manuscript was written while the first author was a guest researcher at the USEPA Corvallis Laboratory.

References


Hughes, R.M., 1985. Use of watershed characteristics to select control streams for estimating effects of metal mining wastes on extensively disturbed streams. Environ. Manage. 9, 253–262.