PACIFIC JOURNAL OF MATHEMATICS
Vol. 31, No. 3, 1969

PARTIAL DIFFERENTIAL EQUATIONS OF
SOBOLEV-GALPERN TYPE

R. E. SHOWALTER

A mixed initial and boundary value problem is considered for
a partial differential equation of the form Mu,(x, t)+ Lu(x, t)=0,
where M and L are elliptic differential operators of orders 2m
and 21, respectively, with m < [. The existence and uniqueness
of a strong solution of this equation in HYG) is proved by
semigroup methods.

We are concerned here with a mixed initial boundary value problem
for the equation

(1) Mu, + Lu =0

in which M and L are elliptic differential operators. Equations of this
type have been studied using various methods in [2, 3, 4, 6, 7, 10, 11,
13, 14,15,17,18]. We will make use of the L*-estimates and related
results on elliptic operators to obtain a generalized solution to this
problem similar to that obtained for the parabolic equation

u, + Lu =0

as in [7].

Let G be a bounded open domain in R™ whose boundary oG is
an (n — 1)-dimensional manifold with G lying on one side of 0G. By
H*G) = H* we mean the Hilbert space (of equivalence classes) of
functions in L*G) whose distributional derivatives through order & be-
long to L*G) with the inner product and norm given, respectively, by

(£, 00 = S{| DerDgdar || < e}

and

WS e = V(5 e -

k= H¥G) will denote the closure in H* of C7(G), the space of
infinitely differentiable functions with compact support in G.
The operators are of the form

M =3 {(—=1) "' D*m°(@)D’: | 0|, |0 | < m}
and
L =3 {(=1"*"D @D ol o] =1},
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and they are uniformly strongly elliptic in G. We shall investigate
the existence and uniqueness of solutions to (1) which coincide with the
initial function u, in H! where ¢ = 0 and vanish on 0G together with
all derivatives of order less than or equal to [ — 1.

If the order of M is as high as that of L (2m = 2[), then this
problem can be handled as in [10] by forming the exponential of the
bounded extension of M~L on H™ and thus obtaining a group of
operators on H™ and a corresponding solution for all ¢ in B. The case
we shall consider is that of m <, and this will include the parabolic
equation as a special case. We obtain a semi-group of operators on
H and, hence, a solution for all ¢ = 0.

2. In this section we shall formulate the problem. Assume tem-
porarily the following.

P/: The coefficients m*’ in M belong to H'*!, and D*m*° is in L=(G)
whenever | 0| < m. A similar statement is true for the coefficients in L.
From P; it follows that the sesqui-linear forms defined on Cy(G) by

By(p, ) = 2 A(m*D’p, D*y): | 0], |0 ] < m}
and

B.(p, ¥) = 2 Al D, D)o | 0], o] = 1}
satisfy the identities

(2) BM(@: ¥) = (Mqﬁnﬁ”)o
and
(27) B (®, ¥) = (Lp,¥),

for all @, ¥ in CZ(G). Since P/ implies that
K, = sup {[|m”|l.: 0], |o] = m}
and
K, =sup{[|[l”]l.: [0l |o] =1}
are finite, we see that
| Bu(@s ¥) | = K |l @ |l [ 9 |l
and
[ B, ¥) | = Kill @l v Il

for all @, ¥ in C(G). Hence these sesqui-linear forms may be extended
by continuity to all of H and H/, respectively.
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The final properties which we shall assume are the following. For
any @, v in C3(G) we have

P;: Re By(p, ) = k., H@Hin: kn,>0,
ReBi(p,p) =z ki liplll, ki >0,

and
P | By (p, ) P = (Re By(o, ?))(Re By (v, ¥)) .

These inequalities are valid for the respective extensions to H;" and
H}. The assumptions of P, are inequalities of the Garding type which
imply that M and L are uniformly strongly elliptic. Only the first of
these is essential in applications, for the usual change of dependent
variable % = ve* changes our equation to one with L replaced by L +
MM, and the Garding inequality is true for B,.,, if A\ is sufficiently
large and if the coefficients [*°(x), |©| = |¢| = | are uniformly continuous
in G. See [3, 8] for sufficient conditions that P, be true.

The assumption P; is a Cauchy-Schwarz inequality for the form B,,.
In view of the positivity of B,, a necessary and sufficient condition
for P, is that M be symmetric, that is, m®° = m° for all p,o. Such
is the case for the examples

(i) kuw, — 4du = 0 (m = 0) and

(il) —vdu, + ku, — du = 0,
where 4 is the Laplacian and v and % are positive. Example (i) is a
parabolic equation, and examples like (ii) appear in various problems
of fluid mechanics and soil mechanics, where a solution is sought which
satisfies an initial condition u(x, 0) = u,(x) on G and the Dirichlet con-
dition u(z, ¢) = 0 on the boundary of G. See [1, 11,12, 13].

We shall not need the full strength of P/ so we replace it with
the following weaker assumption.

P;: The coefficients m*° and l*° belong to L=(G) for all p, o.
We shall proceed under the assumptions P,, P, and P, and remark that
P! is needed only when we wish to interpret our weak solutions by
means of (2) and (2').

Under the hypotheses above there is by the theorem of Lax and
Milgram [7] a closed linear operator M, with domain D,, dense in H"
and range equal to H’ = L¥@G) such that

(3) Bﬂ[(@y "‘l") = (M()@! Q#)o

whenever ¢ belongs to D, and + to H;. Furthermore, M;* is a
bounded operator from H° into H;". Similarly, there is a closed linear
operator L, with domain D, dense in H! and range equal to H° with

(3") BL(§D, V) = (Loq” )
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whenever ¢ belongs to D, and + to H{. Also, L;* is bounded from
H° into H{.

Consider the bijection A = —M;'L, from D, onto D,. For any o
in D,, we have

ki |A7p i = ki || Li" Mo |3
= Re B(Ly'Myp, L' Myp) = Re (Myp, Li*Myp),
= Re By(p, Li'Mwp) < K, [l @l | A7 |n
= Kullellll A7l

which yields
(4) A7l = (Ku/k) || @ [lm

for all ¢ in D,. But D, is dense in H;” so A~ has a unique extension
by continuity from H;" onto the set D = A~'(H,") in H{, the domain
of the closed extension of A. The continuity of the injection of H}!
into H," implies that A~ is a bounded operator on H*, and this is
the space in which we formulate the Generalized Problem:

For a given initial function u, in D, find a differentiable map w(t)
of R* into H;" for which u(¢) belongs to H{ for all ¢ = 0, u(0) = u,, and

(5) B, (W' (t), p) + B (u(t), p) =0

for all  in C3(G) and ¢t = 0.
Sufficient conditions for a solution of this generalized problem to
be a classical solution will be discussed in [9].

3. The objective of this section is to prove the following results.
THEOREM. There exists a unique solution of the generalized pro-
blem. If w(t) is wn D, then u'(t) is wn D, and
(6) M/ (t) + Lou(t) = 0

in H°. The mapping of wu, to w(t) is continuous from H™ into itself
for each t = 0 and furthermore satisfies

(7) @) [l =V (Kl || %o |l €Xp (—Fit/Ky)

We first show that the operator A is the infinitesimal generator
of a semi-group of bounded operators on H,”; this semi-group will
provide a means of constructing a solution to the problem. From the
assumptions on B, it follows that the function defined by

| [x = V' (Re By(p, 9))

is a norm on H;" that is equivalent to the norm || - ||,,. In the following
we shall use | - |, as the norm on H;*, noting further that
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(8) El e =@l = K@ ]ln
for ¢ in H..

To obtain the necessary estimates we let A be a nonnegative number
and consider the operator AM, + L, = N from the domain D,, N D, into
H°. We can define a sesqui-linear form on D, N D, by

By(@, ¥) = (MM, 4+ Lo)@, ¥)o = MBy(@, ¥) + B(p, V)

and then note that B, is bounded as well as positive-definite with
respect to the norm of H!. We extend B, by continuity to all of Hj,
and then by the theorem of Lax and Milgram there is a closed linear
operator N, from a domain D, in H; onto H° for which

BN(@: V¥) = (N0<P; Vo

whenever ¢ is in D, and + in H{. Clearly N, is an extension of N
whose domain is D, N D,.
For all ¢ in D, we have

Re (N, ) = A Re By(p, ) + Re B, (@, ¢)
> (M + k/K,) Re By (o, @)
=N+ k/K,) |2k .

Thus, for any + in D, we see that N;'M, belongs to D, and from
above

(K =+ kl/Km) | N(TIMO“F |211 = Re (Mo"r"fy NEIMO";’)O

= Re By(v, Ni'"Myyr) = [V [ (N Moyr) [
by P., so we have cbtained the estimate
I NG Mopr |y = 0+ Ey/ K)o

for all v in D.,,.
Letting @ be an element of D, N D, we see

(NT'Mo)(~ + Mi'Lo)p = Ni'(MMp + Lop)
=Ni"Np =,
S0 A +— M;'L, is injective and satisfies
N+ M7'Ly)™ = N;'M,
on D, N D, Combining this with the estimate above we see that
[V + ML) 7Y [y = (M A+ Ko/ K) ™ [ [

for all v in D, N D,. It follows by continuity that » — A is invertible
on H™ and satisfies the estimate

[ =A™y = (A + k/K,)
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By the theorem of Hille and Yoshida [5, 16] on the characterization
of the infinitesimal generators of semi-groups of class C, we have the
following results: there exists a unique family of bounded operators
{S(t): t = 0} on H for which

( i) St + t,) = S(tl)S(t2)’

(ii) S(t)x is strongly continuous for each z in H",

(i) S0) =1 and |S(?) |x < exp (—k;t/K,,) for all t = 0,

(iv) lim,_, ~"*(S(h) — I)x, = Ax, for each x, in D, and

(v) S(t) commutes with (A, — A)~* for all » = 0.

The statement (v) implies in particular that D is invariant under each
S(t).
Having been given the initial function %, in D, we define

w(t) = St t = 0

and show that w(f) is a solution of the generalized problem. Clearly
we see u(t) belongs to H and u(0) = u,. Furthermore, since S(¢)
leaves D invariant and u, is in D, it follows that w(t) belongs to D
and thus to H{. The function u(t) is differentiable with

(9) w'(t) = Au(t)

for all ¢ = 0 by (i) and (iv), and hence #'(t) is in H,".

We shall verify that w(t) satisfies the equation (5). Since D,, is
dense in H," there is a sequence {p,} in D, for which || ¢, — %'(?)||,—0
as n— . Now {p,} is a Cauchy sequence in H and it follows by
(4) that v, = A~'p, is a Cauchy sequence in the complete space HY,
so there is a + in H{ such that ||+, — ¥ ||,—0 as n— . Since 4™
is continuous we have +» = u(t). Each +, belongs to D,, since ¢, is
in D,, and furthermore M p, + Ly, = 0. Now for each ¢ in C7(G)
we have by the continuity of B, and B,

B, (w'(t), @) + B(u(t), )
= lim By(p., @) + lim B (., P)
= lnl_rg {BM(¢m @) + B(V,, ‘P)} =n£1°£n {(Mo@m P) + (Lors, @)0} =0,
so the generalized problem does have a solution.
If w(t) is in D, then by (9) %'(¢) is in D,,. It follows from (5)
that for every ¢ in Cy(G)
(Mou,(t) + Lou(t)y @)o =0,

and this implies (6). The estimate (7) is a consequence of (iii) and (8).

To show that the generalized problem has at most one solution,
we let u(t) be a solution of the problem with %, = 0. By linearity
it suffices to show that w(t) = 0. The differentiability of w(¢) in H,"
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implies that the real valued function
a(t) = Re B, (u(t), u(t))
is differentiable and
a'(t) = 2 Re B, (v'(t), u(t)) .
Since (5) is true also for all ¢ in H{ by continuity, we have from P,
a'(t) = —2Re B (u(t), u(t)) < 0.

But «(0) = Re B, (u(0), #(0)) = 0, so a(t) =0 for all ¢ = 0. From P,
it follows that w(t) = 0 for ¢ = 0.
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