PARTIAL DIFFERENTIAL EQUATIONS OF SOBOLEV-GALPERN TYPE

R. E. SHOWALTER

A mixed initial and boundary value problem is considered for a partial differential equation of the form $Mu_t(x,t)+Lu(x,t)=0$, where M and L are elliptic differential operators of orders $2\,m$ and $2\,l$, respectively, with $m\leq l$. The existence and uniqueness of a strong solution of this equation in $H_0^l(G)$ is proved by semigroup methods,

We are concerned here with a mixed initial boundary value problem for the equation

$$Mu_t + Lu = 0$$

in which M and L are elliptic differential operators. Equations of this type have been studied using various methods in [2, 3, 4, 6, 7, 10, 11, 13, 14, 15, 17, 18]. We will make use of the L^2 -estimates and related results on elliptic operators to obtain a generalized solution to this problem similar to that obtained for the parabolic equation

$$u_{\cdot} + Lu = 0$$

as in [7].

Let G be a bounded open domain in R^n whose boundary ∂G is an (n-1)-dimensional manifold with G lying on one side of ∂G . By $H^k(G) \equiv H^k$ we mean the Hilbert space (of equivalence classes) of functions in $L^2(G)$ whose distributional derivatives through order k belong to $L^2(G)$ with the inner product and norm given, respectively, by

$$(f,\,g)_k = \sum\Bigl\{ \int_{G}\!\! D^lpha f \overline{D^lpha g} dx \colon |lpha\,| \leqq k\Bigr\}$$

and

$$||f||_k = \sqrt{(f, f)_k}$$
.

 $H_0^k \equiv H_0^k(G)$ will denote the closure in H^k of $C_0^{\infty}(G)$, the space of infinitely differentiable functions with compact support in G.

The operators are of the form

$$M = \sum \left\{ (-1)^{\lceil
ho \rceil} D^{
ho} m^{
ho \sigma}(x) D^{\sigma} \colon \mid
ho \mid, \mid \sigma \mid \leqq m
ight\}$$

and

$$L = \sum \left\{ (-1)^{|
ho|} D^
ho l^{
ho\sigma}(x) D^\sigma$$
: $|
ho|$, $|\sigma| \leqq l
brace$,

and they are uniformly strongly elliptic in G. We shall investigate the existence and uniqueness of solutions to (1) which coincide with the initial function u_0 in H_0^l where t=0 and vanish on ∂G together with all derivatives of order less than or equal to l-1.

If the order of M is as high as that of $L(2m \ge 2l)$, then this problem can be handled as in [10] by forming the exponential of the bounded extension of $M^{-1}L$ on H_0^m and thus obtaining a group of operators on H_0^m and a corresponding solution for all t in R. The case we shall consider is that of $m \le l$, and this will include the parabolic equation as a special case. We obtain a semi-group of operators on H_0^m and, hence, a solution for all $t \ge 0$.

2. In this section we shall formulate the problem. Assume temporarily the following.

 P_1' : The coefficients $m^{\rho\sigma}$ in M belong to $H^{(\rho)}$, and $D^{\rho}m^{\rho\sigma}$ is in $L^{\infty}(G)$ whenever $|\rho| \leq m$. A similar statement is true for the coefficients in L. From P_1' it follows that the sesqui-linear forms defined on $C_0^{\infty}(G)$ by

$$B_{\scriptscriptstyle M}(\varphi,\,\psi)=\sum\left\{(m^{\scriptscriptstyle
ho\sigma}D^{\scriptscriptstyle \sigma}\varphi,\,D^{\scriptscriptstyle
ho}\psi)_{\scriptscriptstyle 0}:\,|\,\rho\,|,\,|\,\sigma\,|\leqq m
ight\}$$

and

$$B_{\scriptscriptstyle L}(arphi,\,\psi) = \sum \left\{ (l^{\scriptscriptstyle
ho\sigma}D^{\scriptscriptstyle \sigma}arphi,\,D^{\scriptscriptstyle
ho}\psi)_{\scriptscriptstyle 0} : |\,
ho\,|,\,|\,\sigma\,| \leqq l
ight\}$$

satisfy the identities

$$(2) B_{\scriptscriptstyle M}(\varphi, \psi) = (M\varphi, \psi)_{\scriptscriptstyle 0}$$

and

$$(2') B_{\iota}(\varphi, \psi) = (L\varphi, \psi)_{0}$$

for all φ , ψ in $C_0^{\infty}(G)$. Since P_1' implies that

$$K_m = \sup \{ || m^{\rho \sigma} ||_{\infty} : |\rho|, |\sigma| \leq m \}$$

and

$$K_l = \sup \{ || l^{\rho \sigma} ||_{\infty} : |\rho|, |\sigma| \leq l \}$$

are finite, we see that

$$|B_{\scriptscriptstyle M}(\varphi,\psi)| \leq K_{\scriptscriptstyle m} ||\varphi||_{\scriptscriptstyle m} ||\psi||_{\scriptscriptstyle m}$$

and

$$|B_{I}(\varphi, \psi)| \leq K_{I} ||\varphi||_{I} ||\psi||_{I}$$

for all φ , ψ in $C_0^{\infty}(G)$. Hence these sesqui-linear forms may be extended by continuity to all of H_0^m and H_0^l , respectively.

The final properties which we shall assume are the following. For any φ , ψ in $C_0^{\infty}(G)$ we have

$$egin{aligned} P_2 &: \operatorname{Re} B_{\scriptscriptstyle M}(arphi,\,arphi) \geqq k_{\scriptscriptstyle m} \,||\,arphi\,||_{\scriptscriptstyle m}^{\scriptscriptstyle 2},\,k_{\scriptscriptstyle m} > 0 \;, \ \operatorname{Re} B_{\scriptscriptstyle L}(arphi,\,arphi) \geqq k_{\scriptscriptstyle l} \,||\,arphi\,||_{\scriptscriptstyle l}^{\scriptscriptstyle 2},\,k_{\scriptscriptstyle l} > 0 \;, \end{aligned}$$

and

$$P_3$$
: $|B_M(\varphi, \psi)|^2 \leq (\operatorname{Re} B_M(\varphi, \varphi))(\operatorname{Re} B_M(\psi, \psi))$.

These inequalities are valid for the respective extensions to H_0^m and H_0^l . The assumptions of P_2 are inequalities of the Garding type which imply that M and L are uniformly strongly elliptic. Only the first of these is essential in applications, for the usual change of dependent variable $u = ve^{\lambda t}$ changes our equation to one with L replaced by $L + \lambda M$, and the Garding inequality is true for $B_{L+\lambda M}$ if λ is sufficiently large and if the coefficients $l^{\rho\sigma}(x)$, $|\rho| = |\sigma| = l$ are uniformly continuous in G. See [3, 8] for sufficient conditions that P_2 be true.

The assumption P_3 is a Cauchy-Schwarz inequality for the form B_M . In view of the positivity of B_M , a necessary and sufficient condition for P_3 is that M be symmetric, that is, $m^{\rho\sigma}=\overline{m^{\sigma\rho}}$ for all ρ , σ . Such is the case for the examples

- (i) $ku_t \Delta u = 0 (m = 0)$ and
- (ii) $-\gamma \Delta u_t + ku_t \Delta u = 0$,

where Δ is the Laplacian and γ and k are positive. Example (i) is a parabolic equation, and examples like (ii) appear in various problems of fluid mechanics and soil mechanics, where a solution is sought which satisfies an initial condition $u(x, 0) = u_0(x)$ on G and the Dirichlet condition u(x, t) = 0 on the boundary of G. See [1, 11, 12, 13].

We shall not need the full strength of P_1 so we replace it with the following weaker assumption.

 P_1 : The coefficients $m^{\rho\sigma}$ and $l^{\rho\sigma}$ belong to $L^{\infty}(G)$ for all ρ , σ . We shall proceed under the assumptions P_1 , P_2 and P_3 and remark that P_1' is needed only when we wish to interpret our weak solutions by means of (2) and (2').

Under the hypotheses above there is by the theorem of Lax and Milgram [7] a closed linear operator M_0 with domain D_m dense in H_0^m and range equal to $H^0 = L^2(G)$ such that

$$(3) B_{\scriptscriptstyle M}(\varphi,\,\psi) = (M_{\scriptscriptstyle 0}\varphi,\,\psi)_{\scriptscriptstyle 0}$$

whenever φ belongs to D_m and ψ to H_0^m . Furthermore, M_0^{-1} is a bounded operator from H^0 into H_0^m . Similarly, there is a closed linear operator L_0 with domain D_l dense in H_0^l and range equal to H^0 with

$$(3') B_{\scriptscriptstyle L}(\varphi, \psi) = (L_{\scriptscriptstyle 0}\varphi, \psi)_{\scriptscriptstyle 0}$$

whenever φ belongs to D_i and ψ to H_0^i . Also, L_0^{-1} is bounded from H^0 into H_0^i .

Consider the bijection $A=-M_{\scriptscriptstyle 0}^{\scriptscriptstyle -1}L_{\scriptscriptstyle 0}$ from $D_{\scriptscriptstyle l}$ onto $D_{\scriptscriptstyle m}.$ For any φ in $D_{\scriptscriptstyle m}$ we have

$$egin{aligned} k_l \mid\mid A^{-1}arphi\mid_l^2 &= k_l \mid\mid L_0^{-1}M_0arphi\mid_l^2 \ & \leq \operatorname{Re} B_L(L_0^{-1}M_0arphi, \ L_0^{-1}M_0arphi) = \operatorname{Re} \left(M_0arphi, \ L_0^{-1}M_0arphi
ight)_0 \ &= \operatorname{Re} B_M(arphi, \ L_0^{-1}M_0arphi) \leq K_m \mid\mid arphi\mid\mid_m \mid\mid A^{-1}arphi\mid\mid_m \ & \leq K_m \mid\mid arphi\mid\mid_m \mid\mid A^{-1}arphi\mid\mid_l \end{aligned}$$

which yields

$$||A^{-1}\varphi||_{l} \leq (K_{m}/k_{l}) ||\varphi||_{m}$$

for all φ in D_m . But D_m is dense in H_0^m so A^{-1} has a unique extension by continuity from H_0^m onto the set $D = A^{-1}(H_0^m)$ in H_0^l , the domain of the closed extension of A. The continuity of the injection of H_0^l into H_0^m implies that A^{-1} is a bounded operator on H_0^m , and this is the space in which we formulate the Generalized Problem:

For a given initial function u_0 in D, find a differentiable map u(t) of R^+ into H_0^m for which u(t) belongs to H_0^t for all $t \ge 0$, $u(0) = u_0$, and

(5)
$$B_{M}(u'(t), \varphi) + B_{L}(u(t), \varphi) = 0$$

for all φ in $C_0^{\infty}(G)$ and $t \geq 0$.

Sufficient conditions for a solution of this generalized problem to be a classical solution will be discussed in [9].

3. The objective of this section is to prove the following results.

THEOREM. There exists a unique solution of the generalized problem. If u(t) is in D_l then u'(t) is in D_m and

$$(6) M_0 u'(t) + L_0 u(t) = 0$$

in H° . The mapping of u_{\circ} to u(t) is continuous from H_{\circ}^{m} into itself for each $t \geq 0$ and furthermore satisfies

$$||u(t)||_{m} \leq \sqrt{(K_{m}/k_{m})} ||u_{0}||_{m} \exp(-k_{l}t/K_{m}).$$

We first show that the operator A is the infinitesimal generator of a semi-group of bounded operators on H_0^m ; this semi-group will provide a means of constructing a solution to the problem. From the assumptions on B_M , it follows that the function defined by

$$|\varphi|_{M} = \sqrt{(\operatorname{Re} B_{M}(\varphi, \varphi))}$$

is a norm on H_0^m that is equivalent to the norm $||\cdot||_m$. In the following we shall use $|\cdot|_M$ as the norm on H_0^m , noting further that

(8)
$$k_m^{1/2} \|\varphi\|_m \le |\varphi|_M \le K_m^{1/2} \|\varphi\|_m$$

for φ in H_0^m .

To obtain the necessary estimates we let λ be a nonnegative number and consider the operator $\lambda M_0 + L_0 = N$ from the domain $D_m \cap D_l$ into H^0 . We can define a sesqui-linear form on $D_m \cap D_l$ by

$$B_{\scriptscriptstyle N}(arphi,\,\psi)=((\lambda M_{\scriptscriptstyle 0}+L_{\scriptscriptstyle 0})arphi,\,\psi)_{\scriptscriptstyle 0}=\lambda B_{\scriptscriptstyle M}(arphi,\,\psi)+B_{\scriptscriptstyle L}(arphi,\,\psi)$$

and then note that B_N is bounded as well as positive-definite with respect to the norm of H_0^l . We extend B_N by continuity to all of H_0^l , and then by the theorem of Lax and Milgram there is a closed linear operator N_0 from a domain D_n in H_0^l onto H^0 for which

$$B_N(\varphi, \psi) = (N_0 \varphi, \psi)_0$$

whenever φ is in D_n and ψ in H_0^l . Clearly N_0 is an extension of N whose domain is $D_m \cap D_l$.

For all φ in D_n we have

$$egin{aligned} \operatorname{Re}\ (N_{\scriptscriptstyle 0}arphi,\,arphi)_{\scriptscriptstyle 0} &= \lambda \operatorname{Re}\ B_{\scriptscriptstyle M}(arphi,\,arphi) + \operatorname{Re}\ B_{\scriptscriptstyle L}(arphi,\,arphi) \ &\geq (\lambda + k_{\scriptscriptstyle l}/K_{\scriptscriptstyle m})\operatorname{Re}\ B_{\scriptscriptstyle M}(arphi,\,arphi) \ &= (\lambda + k_{\scriptscriptstyle l}/K_{\scriptscriptstyle m}) \mid arphi \mid_{\scriptscriptstyle M}^2. \end{aligned}$$

Thus, for any ψ in D_m we see that $N_0^{-1}M_0\psi$ belongs to D_n and from above

$$(\lambda + k_l/K_m) | N_0^{-1} M_0 \psi |_M^2 \le \operatorname{Re} (M_0 \psi, N_0^{-1} M_0 \psi)_0$$

= $\operatorname{Re} B_M(\psi, N_0^{-1} M_0 \psi) \le |\psi|_M |(N_0^{-1} M_0 \psi)|_M$

by P_3 , so we have obtained the estimate

$$|N_0^{-1}M_0\psi|_{W} \leq (\lambda + k_I/K_m)^{-1} |\psi|_{W}$$

for all ψ in D_m .

Letting φ be an element of $D_l \cap D_m$ we see

$$egin{align} (N_{_0}^{_{-1}}M_{_0})(\lambda+M_{_0}^{_{-1}}L_{_0})arphi&=N_{_0}^{_{-1}}(\lambda M_{_0}arphi+L_{_0}arphi)\ &=N_{_0}^{_{-1}}\!\cdot\! Narphi&=arphi\;, \end{split}$$

so $\lambda + M_0^{-1}L_0$ is injective and satisfies

$$(\lambda + M_0^{-1}L_0)^{-1} = N_0^{-1}M_0$$

on $D_m \cap D_l$. Combining this with the estimate above we see that

$$|(\lambda + M_0^{-1}L_0)^{-1}\psi|_W \le (\lambda + k_l/K_m)^{-1} |\psi|_W$$

for all ψ in $D_l \cap D_m$. It follows by continuity that $\lambda - A$ is invertible on H_0^m and satisfies the estimate

$$|(\lambda - A)^{-1}|_{M} \leq (\lambda + k_{l}/K_{m})^{-1}$$
.

By the theorem of Hille and Yoshida [5, 16] on the characterization of the infinitesimal generators of semi-groups of class C_0 we have the following results: there exists a unique family of bounded operators $\{S(t): t \geq 0\}$ on H_0^m for which

- (i) $S(t_1 + t_2) = S(t_1)S(t_2),$
- (ii) S(t)x is strongly continuous for each x in H_0^m ,
- (iii) S(0) = I and $|S(t)|_{M} \leq \exp(-k_{l}t/K_{m})$ for all $t \geq 0$,
- (iv) $\lim_{h\to 0} h^{-1}(S(h)-I)x_0=Ax_0$ for each x_0 in D, and
- (v) S(t) commutes with $(\lambda A)^{-1}$ for all $\lambda \ge 0$.

The statement (v) implies in particular that D is invariant under each S(t).

Having been given the initial function u_0 in D, we define

$$u(t) = S(t)u_0, t \ge 0$$

and show that u(t) is a solution of the generalized problem. Clearly we see u(t) belongs to H_0^m and $u(0) = u_0$. Furthermore, since S(t) leaves D invariant and u_0 is in D, it follows that u(t) belongs to D and thus to H_0^1 . The function u(t) is differentiable with

$$(9) u'(t) = Au(t)$$

for all $t \ge 0$ by (i) and (iv), and hence u'(t) is in H_0^m .

We shall verify that u(t) satisfies the equation (5). Since D_m is dense in H_0^m there is a sequence $\{\varphi_n\}$ in D_m for which $||\varphi_n - u'(t)||_m \to 0$ as $n \to \infty$. Now $\{\varphi_n\}$ is a Cauchy sequence in H_0^m and it follows by (4) that $\psi_n = A^{-1}\varphi_n$ is a Cauchy sequence in the complete space H_0^l , so there is a ψ in H_0^l such that $||\psi_n - \psi||_l \to 0$ as $n \to \infty$. Since A^{-1} is continuous we have $\psi = u(t)$. Each ψ_n belongs to D_l , since φ_n is in D_m , and furthermore $M_0\varphi_n + L_0\psi_n = 0$. Now for each φ in $C_0^\infty(G)$ we have by the continuity of B_M and B_L

$$egin{aligned} B_{\scriptscriptstyle M}(u'(t),\,arphi) &+ B_{\scriptscriptstyle L}(u(t),\,arphi) \ &= \lim_{a o\infty} B_{\scriptscriptstyle M}(arphi_n,\,arphi) &+ \lim_{n o\infty} B_{\scriptscriptstyle L}(\psi_n,\,arphi) \ &= \lim_{a o\infty} \{B_{\scriptscriptstyle M}(arphi_n,\,arphi) &+ B_{\scriptscriptstyle L}(\psi_n,\,arphi) \} &= \lim_{n o\infty} \{(M_{\scriptscriptstyle 0}arphi_n,\,arphi)_{\scriptscriptstyle 0} + (L_{\scriptscriptstyle 0}\psi_n,\,arphi)_{\scriptscriptstyle 0} \} &\equiv 0 \;, \end{aligned}$$

so the generalized problem does have a solution.

If u(t) is in D_i then by (9) u'(t) is in D_m . It follows from (5) that for every φ in $C_0^{\infty}(G)$

$$(M_{\scriptscriptstyle 0} u'(t) + L_{\scriptscriptstyle 0} u(t), \, arphi)_{\scriptscriptstyle 0} = 0$$
 ,

and this implies (6). The estimate (7) is a consequence of (iii) and (8). To show that the generalized problem has at most one solution, we let u(t) be a solution of the problem with $u_0 = 0$. By linearity it suffices to show that $u(t) \equiv 0$. The differentiability of u(t) in H_0^m

implies that the real valued function

$$\alpha(t) = \operatorname{Re} B_{\scriptscriptstyle M}(u(t), u(t))$$

is differentiable and

$$\alpha'(t) = 2 \operatorname{Re} B_{\scriptscriptstyle M}(u'(t), u(t))$$
.

Since (5) is true also for all φ in H_0^l by continuity, we have from P_2

$$\alpha'(t) = -2 \operatorname{Re} B_{\scriptscriptstyle L}(u(t), u(t)) \le 0$$
.

But $\alpha(0) = \operatorname{Re} B_{\mathcal{M}}(u(0), u(0)) = 0$, so $\alpha(t) = 0$ for all $t \ge 0$. From P_2 it follows that u(t) = 0 for $t \ge 0$.

References

- 1. G. Barenblat, I. Zheltov, and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. 24 (1960), 1286-1303.
- 2. R. Carroll, Partial differential equations (Harper and Row, to appear)
- 3. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, 1964.
- 4. C. A. Galpern, Docklady Akad. Nauk. SSSR 119 (1958), 640-643.
- 5. E. Hille and R. S. Phillips, Functional analysis and semi-groups, A.M.S. Colloquium Publications, vol. 31, New York, 1957.
- 6. A. G. Kostachenko and G. I. Eskin, Cauchy problem for an equation of Sobolev-Galpern type, Trudy Moscow Math. Obshch. 10 (1961), 273-284.
- 7. P. D. Lax and A. Milgram, *Parabolic equations*, Contributions to the Theory of Partial Differential Equations, Ann. Math. Studies, no. 33 Princeton University Press, 1954, 167-190.
- 8. J. L. Lions, Lectures on elliptic partial differential equations, Tata Institute, Bombay, 1957.
- 9. R. E. Showalter, Local regularity of solutions of pseudo-parabolic partial differential equations (to appear).
- 10. R. E. Showalter and T. W. Ting, Pseudo-parabolic partial differential equations, (to appear, SIAM Journal)
- 11. S. Sobolev Izv. Akad. Nauk. SSSR Ser. Mat. 18 (1954), 3.
- 12. D. W. Taylor, Research on consolidation of clays, Massachusetts Institute of Technology, 1942.
- 13. T. W. Ting, Certain non-steady flows of second order fluids, Arch. Rat. Mech. Anal. 14 (1963), 1-26.
- 14. _____, Parabolic and pseudo-parabolic partial differential equations (to appear, J. Math. Soc. Japan).
- 15. T. W. Ting and R. E. Showalter, Asymptotic behavior of solutions of pseudo-parabolic partial differential equations (to appear, Proc. Amer. Math. Soc.)
- 16. K. Yoshida, On the differentiability and representation of one-parameter semigroups of linear operators, J. Math. Soc. Japan 1 (1948), 15-21.
- 17. T. Zalenyak, The behavior for $t \to \infty$ of solutions of a problem of S. L. Sobolev, Soviet Math. 2 (1961), 956-958.
- 18. _____, A problem of Sobolev, Soviet Math. 3 (1962), 1756-1759.

Received February 14, 1969.

UNIVERSITY OF TEXAS AUSTIN, TEXAS