Marsco

of of of of of of op. 2 CEANOGRAPHY

OREGON STATE UNIVERSITY

LABORATORY TECHNIQUES USED FOR ATOMIC ABSORPTION **SPECTROPHOTOMETRIC** ANALYSIS OF GEOLOGIC SAMPLES

> by Stan Fukui

Reference 76-10

August 1976

GC856 0735 no 76-109 cop 2 masc C

Laboratory Techniques Used for Atomic Absorption Spectrophotometric Analysis of Geologic Samples

by

Stan Fukui

School of Oceanography Oregon State University Corvallis, Oregon 97331

CONTENTS

INTRODUCTION	. 1
THEORY OF ATOMIC ABSORPTION SPECTROPHOTOMETRY	2
OPERATION OF THE J. A. 82-820 AAS	3
Preliminary Discussion	4
General Stepwise Operating Procedure	6
Shutdown of the AAS	12
Maintenance of the AAS	13
PREPARATION OF REAGENTS AND STANDARDS	14
Introduction	14
Cesium Chloride	15
Aqua Regia	17
Preparation of Stock Standards	19
Iron, Manganese Magnesium	19
Calcium	20
Aluminum, Barium, Potassium	22
Copper, Nickel, Zinc	23
Preparation of Working Standards	24
Ca, Fe, Mn, Mg	24
Al, Ba, Cu, Ni, Zn	25
Preparation of Silicon Standards	27
Preparation of Titanium Standards	29
Preparation of Cobalt Standards	30
SAMPLE PREPARATION	31
Introduction	31
Step-by-Step Sample Preparation Procedures	34
SAMPLE DECOMPOSITION HARDWARE	37
DATA COLLECTION AND REDUCTION	40
Introduction	40
Procedures for Using the Wang 500 for AAS	
Data Reduction	42
Preliminary Discussion	42
Stepwise Operating Procedure	43
Program Listing	45
Sample Run	47

Contents, continued:

Procedures for Using the CDC-3300	
for AAS Data Reduction	48
Preliminary Discussion	48
Data Card Formats	48
Running the Program	50
Program Listing	53
Sample of Data Input	58
Sample Run	59
Sample of Data Output	63
The BCD-ASC II Converter - Teletype-System	64
Introduction	64
Operation	64
Special Editing and Code Characters	65
Tape Format	67
Operation of the PDP-15	72
Introduction	72
Stepwise Operating Procedure	73
Program Listing	77
Listing of Sample Data Tapes	110
Sample Run	115
Listing of Sample Data Output to Papertape	121
Sample of Data Output to the Lineprinter	122
• • • • • • • • • • • • • • • • • • •	
CALCULATIONS	123
ACKNOWLEDGEMENTS	124
ACINO W DEDGEMENT IS	
REFERENCES	125
APPENDIX A	
Beer's Law Curves of the Most Frequently Analyzed	
Elements	
APPENDIX B	
Cold Vapor Atomic Absorption of Mercury	
APPENDIX C	

Pb Analysis by Carbon Rod

LIST OF ILLUSTRATIONS AND TABLES

Table s		
1	Instrument Settings	5
Figures		
1	Preparation of Ca, Fe, Mg, Mn Standards	18
2	Preparation of Al, Ba, Cu, K, Ni, Zn Standards	21
3	Preparation of Si Standards	26
4	Sample Decomposition Vessel	39
5	Data Collection Guide	41

INTRODUCTION

Precise chemical analyses of geological samples continue to play an important role in geochemical research. During the past 10 years atomic absorption spectrophotometry has become increasingly prominent as an accurate and relatively simple analytical technique. The marine geochemistry group at OSU has used a Jarrel-Ash 82-820 atomic absorption spectrophotometer (AAS) for the past four years to determine the elemental composition of deep-sea sediments and oceanic rocks. This document is meant to serve as a summary of the procedures which have been developed and adopted during this time.

THEORY OF ATOMIC ABSORPTION SPECTROMETRY

When light of a specific wavelength is incident upon a free ground state atom, that light will be absorbed causing excitation of the electrons. In the reverse process, light of the same wavelength is emitted.

Atomic absorption spectroscopy is based on the principle that the amount of light absorbed is exponentially related to the population of free atoms. The following equation describes this relationship:

where C is the concentration of free atoms,

I is the incident radiation and

I is the transmitted light.

Since each element absorbs and emits light at its own characteristic wavelengths, it is possible to analyze for the concentration of one metal in a solution of many elements and eliminate the need for chemical separation.

The instrumental components which are required for analysis are:

1) a light source (a hollow-cathode tube); 2) a method of producing atomic vapor (a flame-aspirator system, carbon rod, tantalum ribbon, etc.); 3) a method of isolating the desired wavelength of light (a monochromator)

4) a detector (a photomultiplier); and 5) a d-c amplifier and read-out system.

OPERATION OF THE J. A. 82-820 A.A.S.

Introduction

The J. A. 82-820 is the same instrument as the J. A. 82-810 except for some minor electronic modifications. The 82-820 is a dual channel, double beam instrument. It is essentially two complete spectrophotometers sharing the same flame and fore-optics. The dual channel feature will allow the user to analyze for two elements simultaneously or to operate in one of two compensated modes; 1) background correction, or 2) an internal standard. It has been found, however, that only the background correction feature is useful in our application. Since both channels use the same set of fore-optics (mirrors, beam splitters, etc.), both monochromators will receive light from both lamps. Therefore, background correction can be done with a non-absorbing line of the analyzed element or a non-absorbing line of a second element.

For a more detailed explanation of the Jarrel Ash 82-810, the reader is referred to the instruction manual (11).

Preliminary Discussion

Before beginning this section of the manual, the reader should be familiar with the JA 82-810 Instruction manual (11). Many of the instructions and precautions included in the instruction manual have not been duplicated here.

Some of the procedures described here are considerably different from those described in the instruction manual. In these cases, the procedure described in this manual should be used. In many cases the procedures described here were obtained orally from the manufacturer and supersede the direction described in the manual.

The reader is specifically directed to:

Section

1	Theory of Operation
3	Controls and Indicators
4	Single Channel Operation
6	Background Correction

TABLE 1. INSTRUMENT SETTINGS

Element	Sci. Abbrev.	Wave- length	Slit Width	Slit Setting	Lamp Current	Oxidant/ Comments Fuel
Aluminum	1	3093 Å	4 Å	4	10 ma	N ₂ O ₂ /C ₂ H ₂
Barium	Ва	5536	2	3	15	N ₂ O ₂ /C ₂ H ₂
Calcium	Ca	4227	10	5	10	N ₂ O ₂ /C ₂ H ₂
Cobalt	Со	2407	2	3	12	Air/C ₂ H ₂
Copper	Cu	3247	4	4	7	Air/C ₂ H ₂
Iron	Fe	2483	2	3	8	Air/C ₂ H ₂
Magnesium	Mg	2852	10	5	10	N2O2/C2H2
Manganese	Mn	2795	4	4	10	Air/C ₂ H ₂
Nickel	Ni	2320	1	2	10	Air/C ₂ H ₂ Bkgd 2316
Potassium	K	7665	10	5	10	Air/C ₂ H ₂
Silicon	Si	2516	2	3	12	N ₂ O ₂ /C ₂ H ₂
Titanium	Ti	3653	10	5 .	12	N ₂ O ₂ /C ₂ H ₂
Zinc	Zn	2139	10	5	7.5	Air/C ₂ H ₂ Bkgd 2100

^{*}This is a tabulation of the instrument settings found in the Fisher Scientific Company's Atomic Absorption Analytic Methods Manual (10). This list also includes any changes made by the geochemistry laboratory to the Analytic Methods manual.

General Stepwise Operating Procedure

- 1. Turn on the instrument and allow it to warm-up for several minutes.
- 2. Plug it in the desired hollow cathode lamp, set the correct current and allow it to warm up.
- 3. Turn on the acetylene gas main cylinder valve.
- 4. Set the pressure to 14 psig. (The pressure should never be higher than this because acetone will become entrained in the acetylene and acetylene becomes unstable above 15 psig.)
- 5. Set the acetylene flow rate to approximately 5 scfh.
- 6. If nitrous oxide is to be used:

Open the main supply tank valve fully.

Set the regulator to approximately 125 psig and plug in the heater cord.

Open the secondary tank valve fully.

Set the regulator to 50 psig.

- 7. Set the oxidant fuel rate to one or two marks below the maximum.

 This will insure a steadier flow rate.
- 8. Be sure you are using the correct burner head.

 The air/acetylene burner head is slotted and approximately 10 cm

long.

The nitrous oxide/acetylene burner head is slotted and approximately 5 cm long.

- 9. Switch on the air, then the acetylene and push the ignitor button.
- 10. Adjust the acetylene flow rate so that the flame is a clear blue.

 If the flame is uneven, the burner head and/or aspirator system must be cleaned.
- 11. Allow the burner to warm up for several minutes.

 This allows the adjacent electronic system to reach an equilibrium temperature and the burner head to expand to its operating configuration.
- 12. Adjust the slit width control to the proper setting.
- 13. Turn the monitor switch to HVA.
- 14. Move the wavelength control to the approximate setting and adjust until the digital voltmeter (DVM) indicates a minimum value.
- 15. If background correction is to be used, repeat steps 12-14 for Channel
 B. The monitor switch should be set to HVB.

 When setting the proper wavelength, care must be taken to avoid tuning into an emission peak which is adjacent to the correct value.

 This is important for iron and nickel which have many emission peaks close together.

- 16. Turn the flame off and be sure that the burner head is below the light path.
- 17. Turn the monitor switch to RA. Push the (A) display button, the light should go on.
- 18. While holding the autozero button down adjust the lamps until the absolute value of the display is less than 2.00.

 This indicates that the measure and reference beams appear approximately equal in intensity to the detector.
- 19. If background correction is to be done, the same procedure must be done for Channel B. The monitor switch is turned to RB and the (B) button must be pushed. Remember to check RA if you must adjust the lamp. Repeat until the absolute value of both RA and RB is less than 2.00.
- 20. Turn the monitor switch to OPERATE.
- 21. Turn the mode switch to %A and be sure the (A) button light is on.
- 22. Turn the integrate switch to 1 sec.
- 23. Autozero channel A.
- 24. Now move the burner head up until it is in the light path. This will be indicated by an increase in the DVM readings.

- 25. Turn the burner head down until the DVM readings return to zero.

 The light will now pass through the most stable part of the flame.
- 26. Turn on the gases and ignite the flame.
- 27. Autozero aspirating the zero standard.
- 28. Aspirate a solution which will give an absorbency of between 30-60%.
- 29. Adjust the burner horizontal and rotational positions until a maximum absorbency is reached.
- 30. Adjust the nebulizer for a maximum reading.
- 31. Finally adjust the acetylene flow rate for maximum readings on the DVM.
- 32. Turn the mode switch to ABS and autozero, aspriating the zero standard.
- 33. If background correction is required, push the (B) button, turn the mode switch to ABS and autozero as above.

 Now push the (A-B) button and autozero using the channel A autozero button, and while aspirating the zero standard.
- 34. Aspirate the samples and record an approximate absorbency value for each one.

- 35. Aspirate the standards and record an approximate absorbency value for each one.
- 36. Decide which standards are required to bracket each sample one higher and one lower.
- 37. Turn the mode switch to CONC.
- 38. Set the THRESHOLD control to the approximate % absorption value where the relationship between absorbency and concentration becomes nonlinear.

This value may be obtained from the curves in Appendix A. The absorbancy values must be converted to % absorption. This process must be followed in any case since % absorption and concentration are not linearly related.

- 39. Autozero aspirating the zero standard.
- 40. Aspirate the lowest standard (not zero) and set the CONCENTRATION controls so that an appropriate value is displayed on the DVM.

 NOTE: The maximum number that can be displayed by the DVM is 1999.
- 41. Now aspirate the highest standard required and set the CURVATURE control until the appropriate value is displayed on the DVM.
- 42. Check all of the standards for the appropriate values and repeat steps

 39-41 until the proper values are obtained.

43. The AAS is now ready to collect data.

NOTE: If the CURVATURE control has been turned to zero and the readout is still too high, the THRESHOLD control must be set to a higher value.

Shutdown of the AAS

- 1. Turn off the lamps.
- If nitrous oxide is being used, switch to air then turn down the acetylene flow rate. This is important to avoid flashback.
- 3. Aspirate distilled water for at least 15 minutes. This is done to remove any accumulated salts from the aspirator system.
- 4. Turn off the air.
- 5. Turn off the acetylene.
- 6. Close all main tank valves.
- 7. Unplug the nitrous oxide regulator heater.
- 8. Drain all of the gas lines except the air line.
- 9. Close all of the regulator valves except the air regulator.
- 10. Empty the bucket which catches the overflow from the aspirator chamber.
- 11. Turn off the power.

Maintenance of the AAS

The only routine maintenance required on the AAS is the cleaning of the burner-aspirator system. A good description of this procedure is described in Section 4.2.4 Burner Cleaning, on page 40 of the Instruction Manual (11).

An electronic checkout procedure has been obtained from Jarrel Ash and is available in the laboratory.

The only other maintenance required is the cleaning of the exterior windows and lenses. This should be done with optical glass cleaning tissue and never with regular laboratory wipes. These contain too many abrasives.

PREPARATION OF REAGENTS AND STANDARDS

Introduction

Standard solution preparation techniques were developed with four major objectives in mind. These were:

- 1) To match the samples in reagent composition,
- 2) To compensate for any inter-elemental interferences,
- 3) Produce solutions which had utility for a large variety of samples with varying concentrations of minerals,
- 4) Ease of preparation.

To date the following procedure has proven to be very efficient and no systematic errors have been detected for this method.

This section will describe the procedures used in the preparation of the reagents and standards used in the analysis of geochemical samples.

Cesium Chloride

Introduction

Certain easily excitable elements, such as potassium and sodium, are readily ionized in the flame. This will reduce the population of ground state atoms of these elements and alter their absorption values. In addition if these elements are present in varying amounts in samples and standards, their ionization can affect the analysis of other elements.

To reduce these effects a standard amount of cesium chloride is added to each solution. Cesium is more easily ionized than the other elements which are present and the amount of cesium added is enough to mask out any naturally present cesium. Therefore, any ionization effects are approximately the same for all the solutions.

Preparation

The Cesium Chloride (CsCl) solution contains 25,000 ppm of Cs.

To make 1.0 liter:

- 1. Weigh out 31.66886 gms of CsCl.
- 2. Transfer to a 1.0 liter volumetric flask.
- 3. Partially fill with D.D. water.
- 4. Shake until CsCl dissolves.
- 5. Bring to volume with D. D. water. Shake well and transfer back to the poly bottles, rinsing once with a small amount of the solution.

For smaller quantities:

500 ml	15.83443 gms CsCl
250	7.91722
200	6.33377
100	3.16689
50	1.58344

Aqua Regia

Aqua regia is a highly oxidizing solution made from one part concentrated nitric acid and three parts concentrated hydrochloric acid.

The reaction of HCl and HNO₃ forms three products, two gases, Cl₂ and NOCl, which will eventually escape from solution and water. This reaction gives aqua regia its oxidizing characteristics. Therefore, for this solution to be most effective in dissolving the sample, it should be freshly prepared. In instances where a sample will not dissolve, a new solution of aqua regia may solve the problem.

In addition care should be exercised when handling aqua regia since one of the gases evolved is chlorine (Cl_2) .

Figure 1. Preparation of Ca, Fe, Mg, Mn Standards.

Preparation of Stock Standards

Iron, Manganese, Magnesium

- 1. Add 50 ml of Conc. HCl to 1.0 gm of iron wire in a teflon beaker.
- 2. Let set until the wire dissolves (overnight).
- 3. Add 0.4 gm of Manganese chips (be careful reaction is very violent).
- 4. Add 0.4 gm of Magnesium chips (be careful reaction is very violent).
- *5. Transfer the solution to a 1.0 liter flask. Rinse beaker several times with D.D. water.
- *6. Fill the flask to just below the mark.
- *7. Let set to equilibrate to room temp. (Room temp. should be 18-22°C).
- *8. Fill to mark.
- *9. Shake well.
- *10. Transfer to poly bottle.
 - *Do these steps for each stock standard.

Calcium

- 1. Add 5 ml of conc. HCl to 50 ml D.D. water.
- 2. Slowly add to 2.49724 gm of $CaCO_3$ * in a 1.0 liter vol. flask.
- 3. Go to step six of Iron, Manganese, Magnesium stock preparation.
- * CaCO₃ (Calcium Carbonate) should be thoroughly dried in a drying oven at 110°C before weighing.

Figure 2. Preparation of Al, Ba, Cu, K, Ni, Zn Standards.

Aluminum, Barium, Potassium

- 1. Add 20 ml aqua regia and 5 ml D. D. H₂O to 1.0 gm Aluminum wire in a teflon beaker.
- 2. Let set until Aluminum dissolves.
- 3. Pour into 1.0 liter volumetric flask which contains
 - *a) 0.19067 gm Potassium Chloride
 - *b) 0.60651 gm Barium Chloride
- 4. Go to step six of Iron, Manganese, Magnesium stock preparation.
- *Potassium Chloride and Barium Chloride should be thoroughly dried in a drying oven at 110°C before weighing.

Copper, Nickel, Zinc

- 1. Add 20 ml of conc. HCl to 1.0 gm of Nickel wire in a teflon beaker.
- 2. Set on a hot plate at the 1 setting until nickel dissolves (overnight).
- 3. Add 1.0 gm Copper turnings.
- 4. Add 0.5 gm zinc shot.
- 5. Go to step five of Iron, Manganese, Magnesium stock preparation.

Preparation of Working Standards

Ca, Fe, Mn, Mg

- 1. Pipette 25 ml of Fe, Mn, Mg stock solution into a 500 ml volumetric flask. Bring to volume with D. D. water.
- 2. Pipette 50 ml of Ca stock solution into a 500 ml volumetric flask.

 Bring to volume with D. D. water.
- 3. Into each of ten 1.0-liter volumetric flasks add 20 ml of CsCl solution and 10 ml of the 0 standard or equivalent from the Al, Ba, etc. standard.
- 4. Add to the flask the following:

Flask #	ml of Fe, Mn, Mg solution	ml of Ca solution
0	0	90
• 5	5	80
1	10	70
2	20	60
3	30	50
4	40	40
5	50	30
6	60	20
7	70	10
8	80	0

5. Bring to volume and transfer to polyethelene bottles.

Al, Ba, Cu, K, Ni, Zn

- 1. Pipette 20 ml of Cu, Ni, Zn stock into a 500 ml volumetric flask.
- 2. Dilute with D. D. water.
- 3. Into ten 30-oz. polyethelene bottles, add:
 - 28.0 gm Boric acid (H₃BO₃)
 - 30.0 ml Hydrofluoric acid (HF)
 - 10.0 ml Aqua regia
 - 20.0 ml Cesium chloride (CsCl) solution
- 4. Shake well and transfer to ten1.0-liter volumetric flasks.
- 5. To each of the flasks add the following amounts of the recently prepared Cu, Ni, Zn solution and the Al, Ba, K stock solution.

Flask #	ml of Al, Ba, K stock solution	ml of Cu, Ni, Zn solutions
	^	^
0	0 .	U
. 5	5	5
1	10	10
2	20	20
3	30	30
4	40	40
5	50	50
6	60	60
7	70	70
8	80	80

6. Dilute with D.D. water and transfer back to the poly. bottles.

Figure 3. Preparation of Silicon Standards.

Preparation of Silicon Standards

- 1. Weigh out 0.53488 gm of silicon dioxide into the Parr teflon bomb (14, 15).
- 2. Add 4 ml of aqua regia.
- 3. Add 12 ml of HF.
- 4. Cap and insert into metal body. Hand tighten.
- 5. Heat in a 110°C oven for 1.5 to 2 hours.
- 6. Remove bomb from oven and let cool to room temperature. This is very important because of dangerous fumes and the loss of silicon-fluoride compounds at higher temperatures.
- 7. Pour the slurry into a poly bottle containing 11.2 gm of boric acid.
- 8. Shake well and transfer to a 250 ml vol. flask.
- 9. Bring to volume with D.D. water.
- 10. Rinse the poly bottle with a small portion of the solution and transfer the remainder.
- 11. To each of five 8-oz. poly bottles add the following:

Bottle no.	Stock sol'n.	Aqua regia	HF	H_3BO_3	CsCl
	·				
0	00 ml	2.0 ml	6.0 ml	5.6 gm	4 ml
. 5	5	1.9	5 . 7	5.38	4
1	10	1.8	5.5	5.15	4
2	20	1.7	5.0	4.70	4
3	30	1.5	4.6	4.26	4
4	40	1.4	4.1	3.81	4

- 12. Pour into 200 ml vol. flasks.
- 13. Rinse poly bottles with small amounts of D. D. water.
- 14. Bring to volume with D. D. water and transfer the solutions back to the appropriate poly bottle.

Preparation of Titanium Standards

- 1. Pipette 50 ml of 1000 ppm Ti standard into a 250 ml volumetric flask. Bring to volume with D. D. water.
- 2. To each of six 8-oz. poly bottles add:
 - 5.6 gm Boric acid
 - 2.0 ml Aqua regia
 - 6.0 ml HF
 - 4.0 ml CsCl solution
- 3. Shake well and transfer to six 200 ml vol. flasks. Rinse twice.
- 4. To each of the above vol. flasks add:

Flask #	-	mls. of Ti solution
• 5		5
1		10
2		20
3		30
4	4	40
5		50

5. Bring to volume with D.D. water. Shake well and transfer back to the poly bottles rinsing once with a small amount of the solution.

Preparation of Cobalt Standards

- Pipette 5 ml of 1000 ppm Co standard into a 250 ml vol. flask.
 Bring to volume with D. D. water.
- 2. To each of six 8-oz. poly bottles add:
 - 5.6 gm Boric acid
 - 2.0 ml Aqua regia
 - 6.0 ml HF
 - 4.0 ml CsCl solution
- 3. Shake well and transfer to six 200 ml vol. flasks. Rinse twice.
- 4. To each of the above flasks add:

Flask #	mls. of Co solution
	, ————————————————————————————————————
• 5	5
1	10
2	20
3	30
4	40
5	50

5. Bring to volume with D.D. water. Shake well and transfer back to the poly bottles rinsing once with a small amount of the solution.

SAMPLE PREPARATION

Introduction

Samples are dissolved in a teflon crucible using hydrofluoric acid and aqua regia. The technique is similar to that described by Bernas (1). This method has proven successful for the dissolution of sediments, basalts and manganese nodules.

Sediments are dryed at 100 °C to remove absorbed water and insure a consistent weight of sample. A suitable amount of sample is weighed out; generally 400 mg. for sediments and basalts and 200 mg. for manganese nodules. The sample is then transferred to a teflon crucible and reweighed.

Two milliliters of aqua regia are then added to the sample in the teflon crucible. The aqua regia must be recently prepared to insure the dissolution of the sample. (See discussion on aqua regia.) Then 6 ml of HF are added.

A teflon lid is placed over the crucible and it is sealed into the stainless steel casing. The "bombs" are heated in a drying oven at $100\,^{\circ}$ C for 1.5 to 2 hours. The longer heating time is recommended for the darker colored sediments containing larger amounts of iron and manganese oxides, which are more difficult to dissolve. Heating times of three hours are recommended for manganese nodules.

The decomposition vessel is then removed and allowed to cool to room temperature.

The sample is transferred to a polyethylene bottle containing 5.6 gms of boric acid. The boric acid performs two functions; one is to neutralize the excess HF so the solution can be accurately diluted in glass vessels and second to dissolve the fluorides which have precipitated in the crucible.

Bernas determined that in the presence of excess boric acid, the attack on glass vessels by HF was insignificant over a period of two hours (1). However, since the accuracy of a volumetric flask would be significantly changed over a period of several years, the solution should be transferred to polyethylene bottles as soon as possible and the glass vessels rinsed (see below).

Finally, four milliliters of 25000 ppm cesium solution is added and the mixture is diluted to 200 ml. The cesium is added to the sample to act as an ionization suppressant. (See discussion on cesium chloride solution.) All samples contain approximately 500 ppm of cesium.

From this solution other dilutions are made as necessary to analyze the desired elements.

Hydrofluoric acid is prevented from attacking glass by the formation of fluoroboric acid with boric acid in a two step reaction:

$$H_3BO_3 + 3HF$$
 $HBF_3OH + 2H_2O$
 $HBF_3OH + HF$ $HBF_4 + H_2O$

Fluoroboric acid will then hydrolyze to hydroxyfluoroborate ions and hydrofluoric acid, hence the time limit the solution can remain in contact with the glass.

Step-by-Step Sample Preparation Procedures

- 1. Pour out the entire sample onto a piece of weighing paper.
- 2. Weigh out approximately 400 mg of the sample (200 mg for manganese nodules). Small portions should be taken from different sections of the pile to prevent size particle fractionation.
 - a. Metalliferous sediments are transferred to a black capped vial and dried in a drying oven at 110°C overnight, then cooled in a dessicator to room temperature.
 - b. $2-20\,\mu$ fractions must be sampled using a micro-splitter.
- 3. Brush the teflon portion of the dissolution bomb with the "Static-master" brush to remove some of the static charges which tend to accumulate on teflon.
- 4. Weigh the teflon liner.
- 5. Pour the sample into the teflon liner. Use a piece of rolled weighing paper as a cylindrical funnel to keep the sample from flying around and adhering to the side of the teflon crucible. (This is caused by the electrostatic charges.)
- 6. Weigh the sample and crucible.
- 7. Carefully add 2 ml of aqua regia. A light colored sample indicates high carbonate content and extreme care must be used to prevent

bubble formation and spattering. It is suggested in this case that the analyst wet the sample with approximately .5 ml of double distilled water (DDW) then add the aqua regia in .1 ml aliquots for the first .5 mls, then add .5 ml and finally a full milliliter. (Use the pipette gun.)

- 8. Add 6 ml of HF.
- 9. Put on the teflon lid and insert into the metal bomb.
- 10. Tighten the metal cover to 250 in-lbs. of torque.
- 11. Put the bomb into a drying oven at 110°C for 1.5 to 2 hours. The longer times are suggested for the darker sediments. (Up to 3 hours are recommended for manganese nodules.)
- 12. Remove the bombs from the oven and allow to cool to room temperature. While the bombs are cooling, they must be retightened to 250 in-lbs. of torque every 10 minutes to reduce leakage. Leakage is caused by the cold-flowing of teflon under pressure and loss of the seal on cooling.
- 13. After cooling remove the teflon liners from the metal body and pour the dissolved sample into a polyethylene bottle containing 5.6 gms of boric acid (H₃BO₃). Be sure to rinse the liner and the lid carefully with DDW.

- 14. Shake the mixture; the solution should be yellowish to clear. If brown or a dark color, the sample was not dissolved.
- 15. Pour the solution into a 200 ml volumetric flask. Rinse the poly bottle with a small amount of DDW and pour into the volumetric flask. NOTE: All flasks and pipettes must be Class A.
- 16. Repeat the rinsing.
- 17. Pipette 4 mls of cesium chloride (CsCl) solution into the vol. flask.
- 18. Bring to volume with DDW.
- 19. Rinse the poly bottle with a small amount of sample solution and transfer the remainder.
- 20. Pipette 10 mls of the solution into a one liter vol. flask.
- 21. Add 20 mls of CsCl solution.
- 22. Bring to volume with DDW.
- 23. Rinse a poly bottle with a portion of the solution and transfer the remainder.

SAMPLE DECOMPOSITION HARDWARE

The acid decomposition vessels were machined from 1 3/4" dia. virgin teflon rods and the metal casings from 2 in. and $2\frac{1}{4}$ in. dia. 304 stainless steel rods.

The teflon crucibles and caps were "roughed out" to the approximate size and shape. They were then annealed at 220°C overnight. This was done to relieve stresses caused in the teflon by the cutting and machining process (12).

The stainless steel shell was machined with a 1 1/8" hexhead nut on the cap to facilitate tightening. It was felt that the use of a torque wrench to seal the vessles would insure more uniform results than "hand tightening" which had been suggested by all of the other designers.

It was found that 250 in-lbs. of torque could be developed by "hand tightening" and this was the value that was decided as sufficient to seal the vessels.

The aluminum plate used to hold the "bombs" while they are being tightened and cooled has proven to be a very useful item. In addition to increasing the efficiency of the tightening operations. The holder will also act as a heat radiator to increase the rate of cooling.

There are several things which could be done to improve the design of the vessels. The most important would be to increase the depth of the

crucibles. This should be done to decrease the chance of losing the sample when it is being transferred to the vessel and when the acid is being added. Also a more acid-resistant grade of stainless-steel (316 s.s.) should be used for the metal casings.

SAMPLE DECOMPOSITION VESSEL

- STAINLESS STEEL CAP, WITH 1/8" HEXHEAD NUT
- STAINLESS STEEL PRESSURE CASING, MAIN BODY
- STAINLESS STEEL REMOVABLE PLUG
- TEFLON CAP
- ₩ TEFLON CRUCIBLE

Figure 4. Sample Decomposition Vessel.

Figure 5

DATA COLLECTION AND REDUCTION

Introduction

Data may be collected manually by the operator or automatically using papertape produced by an ASR-33 teletype.

Data reduction procedures are related to the method of data collection. If the data are collected manually there are two devices for which programs have been developed to reduce the data. One is the Wang 500 programmable calculator and the other is the CDC 3300 computer. Using the teletype and papertape system for data collection, the operator must use the School of Oceanography's PDP-15 computer.

As shown in the schematic drawing, with the Wang 500 only non-computer compatable hard copy is obtained, whereas the other two methods of reducing the AAS data result in a standard formatted, computer compatable data card.

All of these systems are presently workable; however, the automatic system seems to be the most satisfactory. Using this system a larger amount of data can be collected more quickly than using the manual systems. The data are also collected on papertape which can be immediately fed into the computer without further preparation.

Proceedings for Using the Wang 500 for AAS Data Reduction

Preliminary Discussion

The program to reduce atomic absorption data on the Wang 500 is available on a magnetic tape cassette. The reader is referred to the Wang 500 reference manual (17) for operating instructions.

Utilizing this method of data reduction, the analyst may input any amount of data for each sample or standard. The procedure is fairly simple and reasonably fast.

The major drawback is that no computer compatable output is produced by the calculator and must be produced manually by the operator.

This process is probably best suited for check calculations and the stray analysis which must be performed occasionally.

The output is interpreted as follows:

- A average
- E variance
- D standard deviation
- J percent metal in the sample
- M percent error

Stepwise Operating Procedure

- 1. Be sure the PRINTER is OFF before turning the calculator on.
- 2. Turn the calculator on. The switch is on lower left, backside of the calculator.
- 3. Depress RUN.
- 4. Insert the tape, push REWIND.
- 5. Key PRIME.
- 6. Depress TAPE READY.
- 7. Key LOAD PROGRAM.
- 8. Key VERIFY PROGRAM (1738 should appear in the display, if not, repeat steps 5-8).
- 9. Depress f(x).
- 10. Key PRIME.
- 11. Key <u>01</u>.
- 12. Enter the LOW STANDARD READOUT VALUES.
- 13. Key GO.
- 14. Repeat steps 12 & 13 for all values.

- 15. Key 00 after entering all of the data.
- 16. Repeat steps 12 to 15 for all of the UNKNOWN READOUT VALUES.
- 17. Repeat steps 12 to 15 for all of the HIGH STANDARD READOUT VALUES.
- 18. Key in the LOW STANDARD CONCENTRATION VALUE in P. P. M.,
 GO.
- 19. Key in the HIGH STANDARD CONCENTRATION VALUE in P.P.M.,
 GO.
- 20. Key in the SAMPLE WGT in milligrams, GO.
- 21. Key in the DILUTION FACTOR, GO (the no. which would raise the actual dilution to 1000 ml, i.e. if the actual dilution is 500 ml the factor is 2).
- 22. For further tests begin at STEP 12.
- 23. Be sure the PRINTER is OFF before turning the calculator off.
- 24. Switch the calculator OFF.

					038	08	02	* W
000	09	00		A	039	02	10 02	+10 f 2
001	10	01	f 1		040	10 08	00	* S
002	00	14	E 14 E 2		041	00	05	E 5
003	00	02 15	+15		042	09	00	* M
004	09	00		A	044	10	02	f 2
006	00	01	Ë 1		045	06	14	ST 14
007	09	03		P	046	02	00	+0
008	08	02	* W		047	01	14	T 14
009	00	10	E 10		048	0.8	12	# x ²
010	10	02	f 2		049	02	01	+ 1
011	08	00	* S	•	050	00	01	Εl
012	00	0 1	E 1		051	02	02	+ 2
013	09	00		A	052	09	15	* RT
014	00	02	E 2		053	09	00	* M
015	0 1	00	ΤO		054	10	03	† 3
016	03	10	- 10		055	06	0 4	ST 4
017	02	11	+11.		056	05	10	+ 10
018	0 1	01	T 1		057	07	0.4	Æ 4
019	02	12	+12		058	05	03	+ 3
020	02	13	+13		059	01	0 4	T 4
021	09	00		VI.	060	05	00	÷ 0
022	00	03	E 3		061	09	15	₩ RT
023	09	03		P	062	09	00	* M
024	08	02	* W		063	10	0 4	f 4
025	0 1	10	T 10		064	08	02	* W
026	10	02	f.2		065	00	15	E 15
027	0.8	0 0	* S		066	08	02 15	* W E 15
028	0 0	03	E 3		067	00 09	15	* RT
029	09	0 0		M	068	09	00	* M
030	0.0	0 4	E4		069 070	10	00	f O
031	01	00	T 0		071	08	02	+ ₩
032	02	10	+10 T 1		072	00	15	E 15
033	01 02	0 1 1 2	+12		073	07	02	RE 2
034 035	02	00		M	074	05	00	÷ 0
036	00	05	Ē 5	IVI	075	08	02	* W
037	09	03		S P	076	03	10	- 10
5 - 1	J,						· -	

077 078 079 081 0882 0885 0888 0890 0993 0996 0990 1007 1007	08674303158788600388098080901212	123 023 1 1 2 2 0 1 3 2 0 0 1 1 5 5 0 6 4 0 4 0 2 0 6 0 1 1 1 3	* 3	121 123 123 123 123 123 123 133 133 133	09 109 08 107 000 000 000 000 000 000 000 000 000	02 03 03 03 01 03 03 03 03 03 03 03 03 03 03 03 03 03	* * * * * * * * * * * * * * * * * * *
0.92	00	01	E 1	136	0.8	0 2	* W
			- 15	137			A 10
104	0 1	00	T O				ST 13
					00	0 1	
107	0.2	13	+13	151		00	E O
108	0.8	02	# W E15	152		13	×13
109	00 09	15 03	# \$P	153		0 2 1 0	* W
111	08	02	* W	154 155		04	f 4
112	14	10	C 10	156		04	f 4
113	06	03	\$1.3	157	• -	0 4	f 4
114	03	00	- 0	158		0 4	f 4
115	09	03	* 25	159	10	0 4	f 4
116	08	02	* ₩	160		0 4	f 4
117	10	10	f 10	161		0 0	* \$
118	0.2	00	+0	162	10	0 1	f 1
119	0 4	10	×10				
120	09	03	* 25				

An Example of the Data Input to the Wang 500 and the Results from the Calculator

201.0000000 202.0000000 199.0000000 197.0000000 203.0000000	X X X X
200.1666666	A
4.966670800	E
2.228602880	D
231.0000000	Y
233.0000000	Y
235.0000000	Y
231.0000000	Y
232.0000000	Y
233.0000000	A
4.400000000	E
2.097617696	D
410.0000000	Z
411.0000000	Z
408.0000000	Z
407.0000000	Z
409.0000000	Z
409.1666666	A
2.166674000	E
1.471962635	D
1.020000000	L
2.040000000	H
397.540000	G
5.000000000	F
.0593771310 .0007584712	J

Procedures for Using the CDC-3300 for AAS Data Reduction

Preliminary Discussion

Atomic absorption data may be reduced using the Computer Center's CDC-3300 computer operating under the OS-3 operating system.

Data must be taken manually then punched onto computer cards for processing.

This is an intermediate step between the Wang 500 and the PDP-15. The major disadvantage is that data must be punched onto computer cards manually. This offers no real advantage over the Wang. However, all results are punched onto computer cards which are immediately available for further work.

Data Card Formats

The program used to reduce the data performs all of the calculations for one sample before proceeding to the next. Therefore, the data must be arranged to conform to these requirements.

The formatting for each type of card is given and then a more detailed description of the order follows.

· .	Data Type	Columns (inclusive)		
Card 1:	Sample name	1-24		
Card 2:	Geochemistry Ascession no. IDK Ascession no. Subsampling typing code Sample weight (in mg. with a decima	1-6 8-14 16-18 1) 20-30		

Card 3:	Element analyzed (scientific					
	abbreviation)	1-2				
	Low standard concentration (ppm)	*				
	High standard concentration (ppm)					
	Dilution (ml.)	*				
Card 4:	Low standard readout values					
	lst value (with decimal)	1 - 8				
	2nd value (with decimal)	9-16				
	3rd value (with decimal)	17-24				
	etc. to a maximum of ten values					

- Card 5: Sample readout values same format as card 4
- Card 6: High standard readout values same format as card 4
- Card 7: Blank card to separate samples

* These three values are read by the computer using freeform input.

They may be typed in any column of Card 3 (following the Element name) in the given order and must be separated by a space.

The data deck will consist of the above seven types of cards repeated in a specific sequence.

For the first sample the operator will punch cards 1 and 2. Then for each element analyzed for that sample, cards 3, 4, 5, and 6 must be repeated sequentially. After all of the data for sample one has been punched, a blank card is inserted into the deck. This signals the computer that calculations have been completed for sample one. For further samples the sequence is repeated.

It must be noted that if the decimal is forgotten in values for the sample weight or the readout values, the computer will interpret an erroneous value.

Most of the common typing errors can be corrected while running the data reduction program. However, care in typing the data deck will save a great deal of time.

The program <u>cannot</u> operate correctly if any of the cards are out of sequence or missing. If this type of error should occur, it may be corrected by fixing the data deck and re-entering the deck to the computer.

Alternately, the data file may be corrected using the OS-3 Editor (4).

To enter the data deck into the computer, the following cards must be added:

Card 1: Cover card (from Computer Center)

Card 2: 7/8 JOB,.....card

Card 3: $\frac{7}{8}$ COPY, 0 = (datafile name)

(the data deck)

Card 4: 77

Card 5: 7 LOGOFF

Running the Program

Data is reduced on the CDC-3300 using a program called ATOMS and subprograms AVE, VARI and DEKODE plus routines from library files *CHEMLIB and *REGLIB. (16)

These programs have been compiled and an overlay program called *AAS has been produced. (For instructions on these and other procedures refer to the Control Mode Manual for OS-3 (13), the CDC FORTRAN reference manual (2) and Dayton and Massic (3).)

The procedure from this point will be described.

- NOTE: When a name is in all capitals and enclosed by parenthesis, it denotes a single key.
- 1. After getting the I/O center to hook-up your teletype to the computer, type (CONTR)(A), the computer will respond with a #.
- 2. Type in your user number and validity code and type (RETURN).
 The computer will respond by masking out your number and typing the date and a #.
- 3. Type *AAS, (RETURN).
- 4. The computer will begin by asking you for your name, then proceed with further queries and information. The operator must supply the correct answers (usually a YES or NO).
- 5. After you have completed the data reduction process you must type LOGOFF after the computer types a #.

The results will be punched on computer cards in the correct format.

To correct typing errors on the teletype the following procedures may be used:

- 1. For a typing error in your name
 - a. Type (CONTR)(A), the computer will respond with a #.
 - b. Type GO, (RETURN), (LINE FEED)

- c. Type in your name
- 2. An error in the data input file name will cause the computer to ask
 you for the name again. (Unless the name also exists in which
 case you must reinitialize the program)
- 3. For errors in other alphanumeric names type (SHIFT)(L) for each mistake. The computer will respond with a \(\strice\) for each character deleted counting from right to left.
- 4. For any numeric errors, type any letter except E. The computer will respond with ERR. Then type in the entire number.

```
PROGRAM ATOMS
                                                                              00001
    OIMENSION X(10), Y(10), Z(10), XA(10), YA(10), ZA(10), IOEN(3),
                                                                              00002
    7IERMES(6), CHANGE(26), CORRECT(18)
                                                                              06003
    REAL IDEN, LOSTO, NAME, OPERATOR
                                                                              60004
     INTEGER ELEM, CHANGE, ERROR, ELEMNO
                                                                              06005
    PRINT 1
  1 FORMAT( # GUTEN TAGVV _ASS JNS ZUSAMMEN RECHNEN. #/
                                                                              66667
   1# EXCEPT FOR YES-NO ANSWERS, ALWAYS END YOUR RESPONSES#/
                                                                              80000
   2# 3Y TYPING THE RETURN KEY. #//# PLEASE TYPE YOUR LAST NAME. #)
                                                                              00009
    READ(60.2) OPERATOR, ADDRESS
  2 FORMAT(2A5)
                                                                              00011
  9 PRINT 10
                                                                              00012
 16 FORMAF( # WHAT IS THE DATA FILE NAME A#)
                                                                              00013
     RE40(6),11)NAME
 II FORMAT(48)
                                                                              00015
    CALL UNEQUIP(5)
                                                                              00016
     IF (NEOUIP(5, NAME, IERMES))30 TO 14
                                                                              00517
    PRINT 15, IERMES
                                                                              00018
 15 FORMAT(1X,6A4)
                                                                              60019
    GJ TJ 3
                                                                              00020
 14 CALL UNEQUIP (62)
                                                                              00021
    CALL EQUIP (62,5HPUN )
                                                                              00022
    CALL LABELP(62, )PERATOR)
                                                                              00023
    SALL UNEQUIP (10)
                                                                              66024
    CALL EQUIP(10,5HFILE)
                                                                             60025
                                                                             00026
 DATA INPUT SECTION
                                                                             00027
                                                                             00028
510 PYINT 15
                                                                             00029
 16 FORMAT(////)
                                                                             00030
    READ (5,180) IDEN, ASCNO, ASCNID, IFRAC, WGT
                                                                             00031
1.5 FURMAT(3A3/A6,1X,A7,1X,A3,F11.2)
                                                                             00032
    IF (EOF (5))GO T0920
    PRINT 195-IDEN, ASCHO, ASCHID, AGT, IFRAC
                                                                             0.0034
1.5 FURNAT(# IDEN= #,3A8/# GEO= #,A6,5X,#IDK= #,A7,5X,#WGT= #,
                                                                             00035
   2F7.2,5X, #FRAC= #, A3)
                                                                             66036
104 GO TJ (560, 111) TELOS (#0< 48#)
                                                                             00037
111 PRINT 186
                                                                             00038
1.6 FURMAR(# WHICH VARIABLE IS INCORRECTA#)
                                                                             00039
144 READ(01,5) CHANGE
                                                                             66046
  5 FORMAT(20A4)
    CALL CANCEL (CHANGE)
                                                                             00042
    ERROR=SHANGE(1)
    IF (ERROR.EQ. 3HWST.OR.ERROR.EQ. 3HGEO.OR. ERROR.EQ. 3HIDK.OR.
                                                                             60044
   iERROR.EQ.4HFRAC.OR.ERROR.EQ.4HIDEN)GO TO 117
   PRINT 116
                                                                             6.0546
115 FORMAT(# WHATA#)
                                                                             00047
    50 TO 114
                                                                             00048
117 IF (ERROR.EQ. 3HWGT) GO TO 110
                                                                             00049
    PRINT 107
                                                                             0.0050
137 FURMAT(# TYPE IN THE CORRECT IDENTIFIER.#).
                                                                             60051
    IF (ERROR-NE.4HFRAC)GO TO 112
                                                                             00052
    READ(63,5) CHANGE
                                                                             00053
    CALL CANCEL (CHANGE)
                                                                             00054
    IFRAG=CHANGE(1)
                                                                             00055
    GO TO 134
                                                                             00056
1.2 READ(63,109) CORRECT
                                                                             00057
1.9 FORMAT(10A8)
                                                                             60058
    CALL CANCEL (CORRECT)
                                                                             00059
    IF (ERROR.EQ. 3HGEO) ASCNO-CORRECT(1)
    IF (ERROR.EQ. 3HIUK) ASONID=CORRECT(1)
                                                                             00061
    1F (ERROR.NE.4HIDEN) GO 104
                                                                             00062
```

```
00 118 I=1,3
                                                                                00063
                                                                                00064
  1.8 I TEN(I) = CORRECT(I)
                                                                                00065
      30 TJ 104
                                                                                40166
  113 WGT=TELBS(#THE CORRECT WGT=$#)
                                                                                u 0 U 6 7
      60 TO 194
                                                                                00068
 500 IRUN=TELDS(#TRIAL RUN=8#)
 5.5 READ(5,101)ELEM
                                                                                60069
                                                                                00070
  101 FURMAT(A2)
                                                                                00071
      IF (ELEM.EQ.2H ) GO TO 910
                                                                                00072
      BACKSPACE 5
                                                                                00073
      LOSTD=FFIN(5)
                                                                                60074
      HISTO=FFIN(5)
                                                                                00075
      OILUTE=FFIN(5)
                                                                                60076
      READ(5,102)XA
                                                                                60077
      READ(5,102)YA
                                                                                00078
      READ(5,102)ZA
                                                                                60079
  102 FORMAT(1GA8)
                                                                                00080
      CALL DEKODE (XA, NX, X)
                                                                                50081
      CALL DEKODE (YA, NY, Y)
                                                                                00082
      CALL DEKODE (ZA,NZ,Z)
                                                                                00083
      00 121 [=1,10
      IF (X(I).GE.2000..OR.Y(I).GE.2000..OR.Z(I).GE.2000.)GO TO 121
 123 CONTINUE
                                                                                00085
                                                                                00686
      GO TO 140
                                                                                00087
  121 PRINT 122, ELEM
  122 FORMAT(# ERROR IN DATA FOR #, A2, # CALCULATIONS. #)
                                                                                00089
      SO TO 330
                                                                                6009V
                                                                                0.0091
  CALCULATE AVERAGE VALUES USING SUBPROGRAM AVE
                                                                                60092
                                                                                22003
  140 XAVE=AVE (X,NX)
                                                                                00094
      Y 4 42= A 4 = (Y , NY)
                                                                                00095
      ZAVE = AVE (Z,NZ)
                                                                                00096
                                                                                00097
  CALCULATE VARIANCES USING SUBPROGRAM VARI
                                                                                60698
                                                                                60099
      (AVARIEVARI(X, NX, XAVE)
                                                                                06164
      YVARI=VARI(Y,NY,YAVE)
                                                                                60101
      ZVARI=VARI(Z,NZ,ZAVE)
                                                                                00102
                                                                                00103
   SALGULATE PER GENT METAL AND ERROR
                                                                                60104
                                                                                00105
      FACTR=1600/DILUTE
                                                                                00106
      YX=YAVE-XAVE
                                                                                66107
      ZX=ZAVE-XAVE
                                                                                60103
      HL=HISTO-LOSTO
                                                                                66109
      FG=FACTR#WGT
                                                                                ű C 11 ù
      AMITMET= ((LOSTO+HL*YX/ZX)/FG)*100.
      ERR=1.0 *SORT ((HL/(FG*ZX))**2*(XVARI+YVARI)+(HISTO*YY/(FG*ZX**2
                                                                                66111
                                                                                00112
     1))**Z*(XVARI+ZVARI))
                                                                                60113
      PER=(ERK/AMTMET) #100
                                                                                00114
C
                                                                                00115
   PRINTS RESULTS AND ASKS OPERATOR TO CHECK THEM
                                                                                00116
C
                                                                                63117
      WRITE (61,150) ASCHO, ELEM, AMTMET, ERR
  190 FORHAT(1X,A6,9X,A2,2(9(,F12,4))
                                                                                00118
                                                                                00119
      APITE (51,301) LOSTO, HISTO, DILUTE
  3.1 FORMAT(1X,4HLO= ,Fi0.4, 5X,+HHI= ,F1J.4,5X,8H0ILUTION,2H= ,F11.3/)
                                                                                00120
                                                                                00121
      GO TO (200,300) TELOS(#0KAB#)
                                                                                00122
C
                                                                                00123
  PRINTS OUT DATA IF ERROR IS SUSPECTED AND ALLOWS FOR CORRECTION
                                                                                60124
                                                                                60125
  310 MPITE (61,363)
                                                                                60126
  303 FURMAT (2x,1HM,12X,1HX,13X,1HY,13X,1HZ/)
```

		3 2 7 1 NT-4 16			60127
		33 31, NI=1,10 IF(NI,GT,NX)GO TO 303			00128
		1F(H1.3T.NY) GO TO 307			00129
		IF (HI.ST.NZ) GO TO 360			00135
		ARITE (51,364) NI, X(NI), Y(NI), Z(NI)			00131
3		FORMAT(1X, I2, 3(3X, F6.0))			00132
Ī	_	30 TO 316			60133
3	. 3	IF (NI.GT.NY) GO TO 305			00134
		IF(NI.3T.NZ)GO TO 312			00135
		PRINT 304, NI, Y(NI), Z(NI)			00136
3	J 4	FORMAT(1X,12,14X,2(8X,F5.0))			00137 00138
		50 TO 31u			60139
3	35	IF (NI.3T.NZ) GO TO 314			00140
		PRINT 3.6,NI,Z(NI)			00141
3	6 د ا	FORMAT(1X, 12, 36X, F6.0)			60142
_	🛥	60 TO 310			00143
3	i i /	IF (NI.ST.NZ) GO TO 309 PRINT 318,NI,X(NI),Z(NI)			00144
7	, ,	FORMAT(1X,12,8X,F6.0,22X,F6.0)			00145
J	33	GO TO 310			00146
-3	· a	PRINT 311,NI,X(NI)			00147
3	31.1	FORMAT(1X, 12, 8X, F6.0)			00148
Ĭ		GU TO 310			00149
3	312	PRINT 313,NI,Y(NI)			00150
3	3 . 3	FORMAT(1X,12,22X,F6.0)			0 0 15 1
		60 TO 310			00152
3	Boû	PRINT 361,NI,X(NI),Y(NI)			00153
3	3 o î	FURMAT(1X,12,2(8X,F6.0))			00154 00155
		CONTINUE			00156
		PRINT 315			60157
٤	315	FURNATION WHAT VARIABLE IS INCORRECT	A#)		00158
		REAU(50,5) CHANGE			60159
		CALL CANCEL(CHANGE) 15 (CHANGE(1).EQ.4HNONE)30 TO 200			00160
		IF (CHANGE(1) . EQ. 2HLO) GO TO 323			00161
		IF (CHANGE (1) . EQ. 2 HHI) 60 TO 324			00162
		IF (CHANGE(1) .EQ. 4H0ILU) 30 TO 319			66163
		IF (DHA4GE(1) .EQ. 1HX)GO TO 320			00164
		IF (CHANGE(1).EQ. 1HY)GO TO 321			0165
		IF (CHANGE(1).EQ.1HZ)GO TO 322			00166
		GO TO 355			10167
	313	DILUTE=TELDS(#DILUTION=##)			00168 00169
		GO TO 350	DOTNIT (24)		00105
	3∠ ù	I = TELDS (# WHAT N EQUALS THE BAD DATA	POTUL V 2 %)		60171
		X(I)=TELDS(#THE CORRECT X=\$#)			00172
		IF (I.3T.NX) NX=I GO TO 350			00173
	71.4	J=TELDS (#WHAT N EQUALS THE BAD DATA	POINTAS#)		00174
	361	Y(J)=TELDS(#THE CORRECT Y=\$#)	. 02		00175
		IF (J.GI.NY)NY=J			00176
		GD TD 350			U 9 1 7 7
	322	K=TELDS (FWHAT N EQUALS THE SAD DATA	POINTAG#1		00178
		Z(K) = FELOS (+ THE GORRECT Z=\$ +)			00179
		IF (K.ST.MZ) NZ=K			60180
		30 T) 350			00181 00182
	3	LOSTO=1ELDS(#LO=3#)			û û 182
		30 10 350			00184
	32+	HISTOFICLIO(89HI=00000)	MADE DODOSARHI		00185
	ろりょ	GO TO (314,140)TELOS(74RE THERE ANY	HOKE EVECUTORS		00186
	. ~	SIGNS ATOMIC NO TO THE ELEMENT			00187
	4 5	STOWS ALOUTO NO TO THE TECHENT			00188
•	2. 1	ELENMO=v			00189
		IF (ELEM.EQ.2HOU) ELEMNO=29			00190
		- 10001100100100100			

CCC

```
00191
      IF (ELEM. EQ. 2HFE) ELEMNO= 26
                                                                                   Sú192
      IF (ELEM. EQ. 2HMN) ELEMNO=25
                                                                                   00193
      IF (ELE4.EQ.2HNI) ELEMNO=28
                                                                                   60194
      IF (ELEM.EG. 2HSI) ELEMNO= 14
                                                                                   00195
      IF (ELEM. EO. SHZN) ELEMNO= 30
                                                                                   60196
      IF (ELEM.EQ. 2HAG) ELEMNO=47
                                                                                   00197
      IF (ELEM.EQ. 2HCA) ELEMNO= 20
                                                                                    00198
       IF (ELEM. EQ. 2 HMG) ELEMNO=12
                                                                                   60199
      IF (ELEM.EQ. 2HAL) ELEMNO=13
                                                                                   60206
      IF (ELEM. LQ. 1HK) ELEMNO=19
                                                                                    trained 1
      IF (ELEM. EQ. 2HBA) ELEMNO=56
                                                                                    00202
       IF (ELEM. EQ. 2HCO) ELEMNO=27
                                                                                    60203
      IF (ELEANO.NE.3)30 TO 950
                                                                                    60204
      PRINT 210, ELEM
                                                                                   60205
  213 FORMAT( # WHAT IS THE ATOMIC NO. OF #,A2)
                                                                                    00206
       READ(60,220)ELEMNO
                                                                                    60207
  22J FORMAT(I2)
                                                                                    00208
С
                                                                                    00209
    OUTPUT TO CARDS
C
                                                                                    0.021.0
                                                                                    60211
  9.0 AMTMET=AMTMET*10300
                                                                                    60212
       ERR=ERR*10000
                                                                                    00213
       WRITE (52,901) ASONO, IFRAD, ELEM, ELEMNO, AMTMET, ERR, PER, IDEN,
                                                                                    66214
     LIRUN, ASSNID
                                                                                    00215
  9.1 FORMAT( 4HAASU, X, A6, X, 43, X, A2, X, I2, X, F12, 4, X, F10, 4, X, F5, 2, X,
                                                                                    60216
     12A8,A1,X,I2,X,A7)
       SU TO 505
                                                                                    00218
  9.0 IF (IRUN.GT.1)GO TO 518
                                                                                    00219
       WRITE (10,911) IDEN, IFRAC, ASON ID, ASONO
                                                                                    00224
  911 FORMAT( 2A8, A7, 10X, A3, 5X, A7, 5X, A6)
                                                                                    uu 221
       GO TO 510
                                                                                    i u 222
С
                                                                                    00223
    FINAL DIRECTIONS AND OUTPUT OF CROSS REFERENCE CARDS.
ſ.
                                                                                    00224
  324 PRINT 321,0PERATOR
  921 FORMAT(# YOUR CARDS WILL BE SAVED FOR YOU UNDER THE NAME
                                                                        #,A5/
                                                                                    00226
                                                                                    00227
      1# REMEMBER TO LOGOFF#///# MERCI, NOUS SOMMES FINIS ****
                                                                                    0.0228
       ENOFILE 13
       REWIND 10
                                                                                    0.0230
  924 READ(13,925) IDEN, IFRAC, ASCNID, ASCNO
                                                                                    00231
  925 FORMAT(2A8,A7,10X,A3,5X,A7,5X,A6)
                                                                                    00232
       IF (EOF (16)) GO TO 930
                                                                                    00233
       WRITE (52, 911) IDEN, IFRAC, ASCNIO, ASCNO
                                                                                    0.0234
       GO TO 924
                                                                                    60235
  935 CONTINUE
                                                                                    60236
       ENU
                                                                                    60237
       FUNCTION AVE (W.N.)
                                                                                    €0238
       DIMENSION W(1)
                                                                                    00239
       SUM=0
                                                                                    00240
       90 1 L=1,N
                                                                                    60241
     1 SUM=SUM+W(L)
                                                                                    00242
       AVE=SU4/N
                                                                                    00243
       RETURN
                                                                                    60244
       END
                                                                                    0.0245
       FUNCTION VARI(W, N, AVEND)
                                                                                    00246
       DIMENSION W(1)
                                                                                    66247
       SUM=3
                                                                                    00248
       00 1 L=1,N
                                                                                    00249
     1 SUM=SUM+((W(L)-AVENO)**2)
                                                                                    00250
       VARI=SJM/(N-1)
                                                                                    00251
       RETURN
                                                                                    0.0252
       END
                                                                                    00253
       SUBROUTINE DEKODE (DATA, N. DAT)
                                                                                    00254
       DIMENSION DATA(1), DAT(1)
```

BLANKS=8H	00255
N = 0	û J 256
00 1 E=1.1u	00257
IF (DATA (I) . EQ. BLANKS) RETU	12 N 5 0 2 5 8
N=N+1	60259
DECODE(8,2,DATA(I))DAT(I)	00260
2 FORMAT(F8.0)	00261
1 CONTINUE	00262
RETURN	00263
ENO	00264

An Example of the Data Input Format for the CDC 3300 Data Reduction Program

0073-3-	17P 75-	80 CM			
MS0812		AAA 375	- 41		
FF 1 . 50		0000			
473.	470 .	475.	470.	474.	478 •
644	642 •	645.	648 •	650 •	651 •
664.		659•	666.	665•	667.
MN 3.0	4.0 200	00•			
58 5.	584.	584.	68 6.	589•	592•
627•	625.	631 •	62 6•	632•	<i>6</i> 27•
784.	783.	782.	7 88•	788•	78 5•
CU 0 . 40	0.80 2	00.			
139•	138.	137.	137.	138.	139•
252•	254•	257•	254.	257.	2 5 5 •
264.	263.	265.	264.	266.	267.
NI 0 - 40	0.80 2	00•			
212.	215.	212.	21 6.	212.	215.
277.	276.	212. 281.	280.	279.	282•
437.			435.	438•	437.
DSDP 34	4-319-8-	5 114-11	6		
MS1214		AAA 401			
FE 0.25	5 0 - 50 2				
106.	108.	107.	108.	108.	109.
187.	185.		188.	189.	187.
208.	`		207.	207.	213.
	0.40 2				
102.		102.	101.	105.	104.
164.	165.	1 60 •	1 59 •	1 63.	1 59 •
207.	210.	207.	207•	207.	212.
	50.37 2				
-1 •	Ø•	0.	Ø•	0.	0.
38•	38•	39•	41 •	39•	40 .
148.	1 51 •	1 50 •	152.	1 52 •	152.
	0.20 2		•		
196.		108.	110.	111.	106.
127.	131 •		129•	131 •	131 •
221		222•		222•	219.
		222			
DDDP 3.	4-319-10	-2 86-88	CM		
MS1215			.00		
	1 0.20 2				
121.			125.	122.	121.
152.	149 •		1 54.	148.	151.
228•	229•	231 •	233•	232•	231 •
FE 0.2		200000	2500	LOL	
106.	108.	107.	108.	108.	109.
187.	185.	187.	188 •	189 •	187.
208	209.	213.	207	207.	213.
CA 6.0	7.0 200		LUI		
634.	648	647•	640 •	63 6•	638•
744•	735.	742•	737•	743.	740 •
745.	749.	745.	7 51 •	747.	744.

An Example of the Operation of the CDC-3300 Program

```
)
    ***********
    AUGUST 20, 1975 11:04:07 AM TERMINAL 073-0458
•
    #*AAS
    GUTEN TAG!! LASS UNS ZUSAMMEN RECHNEN.
)
    EXCEPT FOR YES-NO ANSWERS, ALWAYS END YOUR RESPONSES
    BY TYPING THE RETURN KEY.
)
    PLEASE TYPE YOUR LAST NAME.
    FUKUI
    WHAT IS THE DATA FILE NAME ?
•
    XXSDATA
    NAME NOT FOUND
    WHAT IS THE DATA FILE NAME ?
•
    AASDATA
)
)
    IDEN= 0C73-3-17P 75-80 CM
    GEO = MSØ812 IDK=
                                   WGT= 375.41 FRAC= AAA
)
    OK?YES
    TRIAL RUN=1
    MSØ812 FE
                      10.4129
                                              .2223
            FE 10.4129 .2223
1.5000 HI= 2.0000 DILUTION= 20000.000
)
    L0=
    OK?YES
                          1 6 • 70 59
    MSØ812
              MN
                                             1 • 3 588
                                        DILUTION= 20000.000
           3.0000
    L0 =
                     H I =
                             4.0000
    OK?NO
•
     1
                 58 5
                              627
                                             784
     2
                 584
                               62 5
                                             783
     3
                 584
                               631
                                             782
)
     4
                 68 6
                               62 6
                                             788
     5
                                             788
                 589
                               632
     6
                 592
                                             785
                               627
    WHAT VARIABLE IS INCORRECT ?
    WHAT N EQUALS THE BAD DATA POINT? 4
)
    THE CORRECT X=586
    ARE THERE ANY MORE ERRORS?NO
    MSØ812 MN 17.0928
                                              · 1 4 68
                           17.0928 .1468
4.0000 DILUTION= 20000.000
)
    L0 =
            3.0000
                       HI=
    OK?YES
                                        •0006
DILUTION=
    MSØ812
              CU
                            0 409
                               .8000
    L0 =
             • 4000
                     HI=
                                                        200.000
)
    OK?YES
    MSØ812
              NI
                             .0276
                                              •0003
                                        •0003
=DILUTION
             • 4000 HI =
    L0=
                                                        200.000
                           -8000
    OK?YES
```

```
IDEN= DSDP 34-319-8-5 114-116
    GEO = MS1214 IDK=
                                   WGT= 401.32 FRAC= AAA
    OK?YES
    TRIAL RUN=1
             FE
    MS1214
                          2.2185
                                            • Ø 608
            .2500
                    HI= • 5000
                                       DILUTION= 20000.000
    L0=
)
    OK?YES
           CU
    MS1214
                           •0155
                                            -0004
١.
    L0 =
            .2000
                     H I =
                              · 4000
                                       DILUTION=
                                                     200.000
  OK?YES
    MS1214
              SI
                           • 6539
                                            .0218
                    HI =
    L0=
               0
                           50 • 3700
                                       DILUTION=
                                                     200.000
    OK?YES
                                            .1829
    MS1214
             MN
                           • 6461
                                       DILUTION= 20000.000
                             .2000
    L0=
            -1000
                     HI =
    OK?NO
                              Y
                                            Z
    Ν
                X
                                           221
                106
                             127
     2
                 . 8
                             131
                                           223
     3
                108
                             131
                                           555
                             129
                                           221
     4
                110
                                           222
                111
                             131
)
                106
                             131
                                           219
    WHAT VARIABLE IS INCORRECT ?
)
    WHAT N EQUALS THE BAD DATA POINT? 3N ERR 2
    THE CORRECT X=108
    ARE THERE ANY MORE ERRORS?NO
)
    MS1214
            MN
                                            .0124
                             .2000 DILUTION= 20000.000
    L0=
            •1000 HI=
    OK?YES
    IDEN= DDDP 34-319-10-2 86-88CM
                                   WGT= 10.00 FRAC= AAX
    GEO = MS1215 IDK=
    OK?NO
    WHICH VARIABLE IS INCORRECT?
    TYPE IN THE CORRECT IDENTIFIER.
    DSDP 34-319-10-2 86-88CM
    OK?NO
    WHICH VARIABLE IS INCORRECT?
    WGT
    THE CORRECT WGT=410.98
    OK?YES
    TRIAL RUN=1
    MS1215
                                            • 10 59
             MN
                            · 2 537
                               .2000 DILUTION= 20000.000
    L0=
             -0100 HI=
```

```
OK?NO
              Х
                            Y
                                           Z
Ν
                                          228
             121
                           1 52
1
             120
                                          229
2
                           1 49
3
             121
                           121
                                          231
                                          233
             125
 4
                           1 54
             122
                                          232
 5
                           1 48
             121
                                          231
WHAT VARIABLE IS INCORRECT ?
L0= • 1
ARE THERE ANY MORE ERRORS?YES
WHAT VARIABLE IS INCORRECT ?
WHAT N EQUALS THE BAD DATA POINT?3
THE CORRECT Y=151.
ARE THERE ANY MORE ERRORS?NO
MS1215 MN
                         • 61 69
                                           .0138
                                      DILUTION=
                                                   20000.000
        •1000 HI=
                           • 2000
OK?YES
          FE
                                          6.7675
MS1215
                    192•6257
         •2500 HI= 5.0000 DILUTION= 200000.000
L0 =
OK?NO
             X
                            Υ
                                          208
             106
                           187
1
 2
                                          209
             108
                           185
 3
             107
                            187
                                          213
             108
                           188
                                          207
 5
             108
                                          207
                           189
             109
                           187
                                          213
WHAT VARIABLE IS INCORRECT ?
ΗI
HI = .5
ARE THERE ANY MORE ERRORS?NO
MS1215
          FE
                   21 • 6 6 3 9
                                           • 5937
                  21 · 6639 · 5937
HI = · 5000 DILUTION = 200000 · 000
         ·2 500
L0 =
OK?NO
Ν
             X
                                           Z
 1
             106
                           187
                                          208
 2
             108
                            185
                                          209
 3
             107
                           187
                                          213
 4
             108
                           188
                                          207
 5
             108
                                          207
                           189
             109
                           187
                                          213
WHAT VARIABLE IS INCORRECT ?
DILUTION
DILUTION=20000.
ARE THERE ANY MORE ERRORS?NO
                                           • 0 59 4
MS1215 FE
                        2.1664
L0 =
         · 2 50 0·
                  HI=
                            • 5000 DILUTION= 20000 • 000
```

OK?YES

)

)

)

)

)

)

)

)

)

)

)

62 33.7636 1 • 5787 MS1215 CA LO= 6.0000 HI= 7.0000 DILUTION= 20000.000 OK?YES YOUR CARDS WILL BE SAVED FOR YOU UNDER THE NAME FUKUI REMEMBER TO LOGOFF MERCI, NOUS SOMMES FINIS!!! END OF FORTRAN EXECUTION #LOGOFF COST \$1.30 CPU TIME SEC. 9.6 MFBLKS 2 SFBLKS 255 WC TIME MIN. 13.8 PUN RECORDS 15

A Listing of the Data Cards Output by the CDC-3300 Data Reduction Program

```
AASU HSIBLE AAA FE 26
                         104128.5770
                                        2222,6104 2.13 0073-3-17P 75-80
AASJ 45.312 AAA MN 25
AASU 43.312 AAA CU 29
                                                    .86 OC73-3-17P 75-80
                          170927.9547
                                        1467.5397
                                         6.4278 1.57 0C73-3-17P 75-80
3.122C 1.13 0C73-3-17P 75-80
607.9628 2.74 DSDP 34-319-8-5 1
                            409.3991
82 IN AAA SIBLEM LEAA
                             275.6925
AASU MS1214 AAA FE 26
                           22185.3837
AASU 431214 AAA CU 29
                            155.1841
                                          4.6467
                                                    C.60 DSDP 34-319-8-5 1
AASJ MS1214 AAA SI 14
                            6533.7532
                                                    3.33 OSOP 34-319-8-5 1
                                         217.9448
                                                                               1
25 NM AAA 41512M LZAA
                            5945.6353
                                         123.5006
                                                    2.03 DSDP 34-319-8-5 1
25 MM XAA CISLEF LEAA
                                                    2.23 OSOP 34-319-10-2
                            6153.5926
                                         137.6410
                                                                               1
AASU 451215 AAX FE 26
                           21663.9179
                                         593.6727
                                                    2.74 DSDP 34-319-10-2
                                                                               1
AASU MS1215 AAX CA 20
                         337635.9188 15787.0701 4.68 USDP 34-319-10-2
OC73-3-17P 75-80 CM
                                    AAA
                                                           MSJ812
DSDP 34-319-8-5 114-116
                                    AAA
                                                           MS1214
DSUP 34-319-13-2 86-880
                                    AAX
                                                           MS1215
```

The BCD-ASCII Converter - Teletype System

Introduction

The BCD-ASCII converter used to obtain teletype compatable output from the AAS was designed by Mike Cranford and assembled and installed by Ron Stillinger and Milo Clausen. It will take the parallel, BCD output signal from the spectrophotometer's digital voltmeter and convert it to a serial, ASCII signal which is teletype compatable.

The speed of the system is limited by the teletype which can handle approximately one six-character output every second.

This system of data handling has proven to be very efficient if the directions are followed completely. The operator should be thoroughly familiar with the following directions before attempting to use this system because the correction of errors must be done on the papertape before being introduced to the computer. If these types of errors are not corrected immediately following their occurrence, the process to remedy the situation will become long and tedious.

Operation

The BCD-ASCII converter is switched on and off by the AAS on-off switch. Therefore, the converter is operable any time the AAS is on.

Startup and shutdown of the system must be done in the following order to avoid miscellaneous characters on the tape. The characters are caused by electrical transients which occur when a switch is turned on or off.

Startup

- 1. Turn on the AAS
- 2. Turn the teletype switch to (ONLINE)
- 3. Push the tape-punch (ON) button

Shutdown

- 1. Push the tape punch (OFF) button
- 2. Turn the teletype switch to (OFF)
- 3. Turn off the AAS

In addition to the three switches above, an additional push button is located on the right side of the teletype keyboard. This will disable the converter so that data may be typed onto the paper tape from the keyboard.

As an added precaution the tape punch should be turned off before turning any switches on the AAS. The flame igniter in particular will produce transients which will cause the teletype to print miscellaneous characters.

Special Editing and Code Characters

To give the analyst a data reduction program which is flexible enough to handle a variable number of samples and data points and allow him to easily correct typing errors, the following characters are used to indicate to the computer that it should perform the specified operation.

These characters should not be used as part of the sample name or subsample typing code. Their use in these instances would cause the

data reduction program to malfunction.

In addition to these special characters the computer will ignore rubouts, line feeds and nulls.

• Backslash (∖)

This character will delete the last character typed in a line. A series of backslashes will delete characters from right to left until a carriage return is encountered. The backslash is formed by typing (SHIFT)(L).

• Commercial at sign (@)

This character will delete the entire line up to the previous carriage return.

NOTE: The automatic carriage return produced by the teletype is not punched onto the papertape and has no effect on the character or line delete symbols.

NOTE: The backslash and commercial at sign do not affect the following code characters except for the asterisk and the first pound sign in the two set series. To erase the other characters, the tape must be manually backspaced to the correct position then a (RUBOUT) must be typed.

• Asterisk (*)

Two asterisks typed in succession indicates the end of the sample identification data to the computer.

• Pound Sign (#)

A single pound sign, when first encountered by the computer indicates to it that all of the following data are <u>numbers</u> which originated from the AAS. The next pound sign encountered by the computer, signifies the end of the data from the AAS. The sequence is then repeated.

• Ampersand (&)

The ampersand signals the end of the data for a particular element.

It is used in place of the second pound sign after all data has been taken for a particular element.

• Dollar Sign (\$)

The dollar sign is used to indicate the physical end-of-tape to the computer. It must always be the last character on all tape segments.

Any data following a dollar sign on a tape will be ignored by the computer.

Tape Format

The formatting required on the paper tape is very restrictive and any deviations from the prescribed patterns will cause the data reduction program to malfunction.

Mistakes made in the tape format must be corrected by repunching the tape and editing out errors manually - a very tedious process. It cannot be performed on the computer as with the CDC-3300 program. This is due to the lengths of some of the data lines and the internal programming of the PDP-15.

Since these types of errors do occur, even when great care is taken, it is strongly suggested that the data tape be divided into several segments. This is done by use of the dollar sign (\$) which is described later.

Tapes should be segmented between each element and in addition the sample identification data should be punched on a separate tape.

NOTE: All tapes should have a long leader to make it easier to load into the computer. Leaders and trailers are made by typing (HERE IS).

The sample identification tape must be formated as follows:

	DATA	COLUMNS (inclusive)
LINE 1:	Sample name	1-24
LINE 2:	Ascession No. Subsample typing code Sample weight (in mg. with a decima	1-6 8-10 12-20
LINE 3:	Trial Run number (right adjusted)	1-2

The above sequence is repeated for all of the samples run in a particular experiment, up to a maximum of twenty samples. The last sample is followed by two asterisks (*) and then a dollar sign (\$) on the next line. The tape may then be removed from the teletype.

The order of the samples in the above list is very important since the first one is labeled unknown one (U01) by the computer, the second unknown two (U02), etc.

The description of the <u>element - data tapes</u> are more difficult since many different possibilities exist for the formating of each line.

Line 1:

- Line one must always contain the element name in its scientific abbreviation in columns 1 and 2.

Line 2 - (4 to 9):

- The next set of data will describe the first set of solutions to be run through the AAS and their sequence.
- In one group, two standards and from one to seven unknowns are run.
- Standards are identified with an "S" and a two digit number to identify which standard. i.e. S02 would indicate standard number two to the computer. This data must be in columns 1-3. The number will normally match the number on the standard solution bottle.
- Unknowns are identified with a "U" and a two digit number which will coincide with its position on the sample identification tape. i.e. U01 would indicate the first sample in the list.

 This data must also be in columns 1-3.
- Following all unknown listings and on the same line is the dilution number. This must include a decimal and be in columns 5-13.
- The standards and unknowns may be listed in any order, but they must be analyzed in that order.
- One of the standards should have a higher concentration of the element of interest and the other should have a lower

concentration than the sample being analyzed.

- After all samples and standards are listed for this group, a single pound sign (#) should follow in column one.

The following data lines are automatically formated by the teletype.

The operator should begin aspirating the first solution listed above.

Data are obtained by pressing the BCD-ASCII converter enabledisable button on the teletype keyboard.

A maximum of 125 data points (10+ lines) are allowed at one time for one solution.

After enough data points have been obtained the operator will again push the BCD-ASCII converter enable-disable button.

Then he <u>must</u> type (RETURN)(LINE FEED). This signals the computer that the next number is for the next solution in the sequence.

NOTE: The automatic return - line feed is <u>not</u> punched onto the papertape and has no effect on the program.

The operator will then repeat the above sequence for all of the solutions in the first list.

He may then repeat the sequence starting with the first solution and obtain up to 125 more numbers.

The sequence may be repeated seven times for each group.

After the first set of data has been obtained, the operator may stop anywhere in the sequence.

After enough data have been collected, the operator must type a pound

sign (#) in column one.

The next group of samples is listed and run as above. This sequence is repeated until all of the samples have been run for this element.

The ampersand (&) is then typed in place of the pound sign (#) at the end of the data. The ampersand is then followed by the dollar sign (\$) in column one of the next line.

This tape may now be removed and the entire process repeated for another element.

Operation of the PDP-15

Introduction

The PDP-15 computer utilizes a main program called AAS and fourteen subroutines to complete its tasks. Most of the routines, including AAS, have been written in DEC Fortran IV. (6) Subroutines Editor and Erase have been coded in Macro-15 assembly language. (7)

All of these programs have been compiled or assembled and the binary routines have been combined under the name AAS using the UPDATE utility program. (9)

For a more complete explanation of the DEC PDP-15 system the reader is referred to the Digital Equipment Corporation reference manuals (5, 6, 7, 8, 9).

Stepwise Operating Procedure

- NOTE: When a name is in capitals and enclosed by parenthesis, it denotes a single key or switch.
- Mount the Dectape marked <u>Geochem</u> on to one of the drive units. Turn
 the cogwheel to 5 and move the two switches on the drive unit to
 WRITE LOCK and REMOTE.
- 2. Mount a scratch tape onto another drive unit. Turn the cogwheel to
 4 and move the two switches to WRITE ENABLE and REMOTE.
- 3. Switch Dectape unit 0 to WRITE LOCK and REMOTE.
- NOTE: If this tape is not marked B/F MONITOR (background/fore-ground), it must be removed and the proper tape must be mounted.

 The system then must be loaded into the computer. Directions for this procedure are located in the PDP-15 Operations Note-book.
- 4. Turn on the line printer. Push the (SELECT) button (the light should go on) and be sure the paper is mounted correctly.
- 5. Turn on the Tekscope. This is done with the key.
- 6. Push the (ASCII-TTY) button. The light should be off.
- 7. Push the (ONLINE-LOCAL) button. The light should be off.

- 8. Turn on teletype 0 and type (CTRL)(C). The computer should respond by typing a \$. If the computer does not respond, see the directions for reloading the system in the PDP-15 operations notebook.
- 9. After the computer responds properly, type BCONTROL 3 (CR).

 This transfers control of the background portion of the computer to the tekterminal.
- 10. Mount the paper tape with your sample identification data onto the high speed tape reader.
- 11. Push the Reader (FEED) button to clear the reader. Be sure that none of your data has passed by the read head.
- 12. On the tekterminal:

Push (ERASE) to clear the screen and type (ETX). This is equivalent to typing (CTRL)(C).

13. After the computer responds with a \$, type in the following information:

A TT3 4,5/TT2 3 (CR) GLOAD (CR)

The first statement assigns the tekterminal to logical units 4 and 5 and the line printer to unit 3. The second statement invokes the program loader. After the first line the computer will respond with \$. After the second line the computer will type BGLOAD V2A.

14. Now type

(_)AAS(?)

This will load the data reduction program into the computer.

The papertape should be read in and the computer should ask

MORE DATA?

15. Mount the next paper tape and then type

YES(CR)

This should be repeated until all tapes have been read.

- 16. The rest of the program is operated by answering queries from the computer.
- 17. After you have finished, type BCONTROL 0. The computer will respond as before.
- 18. Push the (TOP OF FORM) button on the line printer until you can remove your data.
- 19. Push the paper tape punch's (FEED) switch until you have a tail of blanks on the tape. Then remove the tape.
- 20. Turn off the line printer, tekterminal, teletype and all of the tape drives.
- 21. Remove the Geochem tape from the drive.
- 22. Record the time you used the computer into the log book.

The computer has output all of the final data onto the line printer and punched the same information in card image form onto the paper tape.

This tape must now be taken to the computer center and copied into their computer. This ASCII coded information is then converted to BCD code and punched onto cards.

Program Listing For The PDP-15 Data Reduction Program

```
CC
\epsilon
林林林林水林 表杂本水林林林林林林林林林林林林林林林林 ( 肖科曼 ) 永春宗会永永永永永永春林林林林林林林林林林林林林林林
C:
C
C
        C
                                                                C
C
                                                                C
C
        Ľ.
                                                                C
C
        ŋ.
              AAS IS A PROGRAM WRITTEN EXPRESSLY FOR THE
           PURPOSE OF REDUCING DATA FROM THE JARREL-ASH 820
                                                                C
        C
C
                                                                C
           ATOMIC ABSORPTION SPECTROPHOTOMETER USING THE
C
           BCD-ASCII CONVERTER AND PAPER TAPE.
                                                                C
С
           AAS CALLS THE MACRO PROGRAM EDITOR TO READ IN THE
                                                                C
C
           PAPER TAPE AND TRANSFER IT TO DEKTAPE. THEN AAS PROCESSES THE DATA-OUTPUTS THE RESULTS TO THE PAPER
                                                                C
Ċ
C
                                                                C
           TAPE PUNCH IN CARD IMAGE FORM 50 THAT A COPY ON 053
C
                                           AAS WILL ALSO PRINT C
Ũ
           WILL PRODUCE THE DESIRED CARDS.
C
                                                                C
           ALL OF THE RESULTS ON THE LINEPRINTER FOR FILING.
                                                                С
C
                                                                C
Ċ
        C
                                                                C
              THE ASSIGNMENTS IN THE LOAT WHICH HAVE TO BE
Ü
                                                                C
C
        C
           MADE ARE:
        C
C
                                                                Ċ
C
        C
                DEVICE
                                 DAT
                                                                C
C
        Ľ:
                                                                C
C
        Ċ
            DENTAPE UNIT 4
                                 . 1
                                                                C
¢
           - DEKTAPE UNIT 5
                                 2
                                                                C
C
            LINEPRINTER (TT2)
                                 3.
        Ç:
                                                                C
0
            TERTEM (TT3) OUTPUT
                                 4
                                 5
                                                                C
        \Gamma
            TEKTRM (TT3) INPUT
                                                                C
C
            PAPERTAPE READER
        O
                                 6
ů
c
                                                                C
        Ċ
            PARERTAPE FUNCH
C:
        Ď.
        Ċ.
c
C
C
      INTEGER SRT, RUN
      REAL MS
Ċ.
      DIMENSION SNM(120), ASN(40), SSC(20), WGT(20), ELM(20), STD(10),
     18T(9),N8(9),DIL(9),X(125),AVE(72),VAR(72),FMT(24),RUN(20),
     200M(20,20), ERR(20,20), PC(20,20), DT1(2), DT2(2), GMKFLE(2)
Ċ
      COMMON SID, X, QMK, NRD, SNM, ASN, SSC, RUN, NGT, COM, ERR, FC
C
      DATA YES/38YES/, PD/1887, S/1857, BTL/388TL/, DI/38OIL/,
     1R1/3HR1 / R2/3HR2 / R3/3HR3 / R4/3HR4 / R5/3HR5 / R6/3HR6 /
     2R7/SHR7 // R8/SHR8 // DT1(1), DT1(3)/SHRASDA, KHTHED/, CA/2HCA/,
     3071H07, 0172H017, 0972H097, 0272H027, 9972H597, 9172HS17
     4, SPZ2HS. Z. QMKFLE(1), QHKFLE(2)ZSHQUEST, 4ENMERZ, DOZZHDOZ
00
```

```
ZERO ALL'OF THE ELEMENTS OF ARRAY CONC
\mathbb{C}
C
C
       DO 2 I=1,15
       00 1 J=1,20
     1 CON(I,J)=0
     2 CONTINUE
       NPD=NOLIST=0
C
C
C
         READ CODE FOR QUESTION MARK(?)
C
Ċ
       CALL SEEK(2, QMKFLE)
       READ(2,901)QMK
  901 FORMAT(A1)
       CALL CLOSE(2)
       CALL ERASE
C
Ċ
Č
C
         CALL THE MACRO SUBPROGRAM
Ċ
       WRITE(4,895)0MK
  895 FORMAT(1H , 31HDO YOU WISH TO USE THE STANDARD/
      11H JESHCONCENTRATION VALUES ON FILE AL)
       CALL YESNO(ANS)
       IF CANS. NE. YES >NRD=1
       WRITE(4,890)0MK
  390 FORMAT(1H ,34HOO YOU WISH TO READ IN PAREK (AFCS,A1)
       CALL YESMO(ANS)
       IF (ANS. NE. YES) GO TO 3
       CALL EDITOR
¢
C
C
         SEEK THE DATA FILE JUST CREATED BY EDITOR AND OPEN
Ċ
         IT SO THAT IT CAN BE USED.
C
C
    3 CALL SEEK(1, DT1)
C
C
         READ IN THE SAMPLE NAME, ACSESSION NUMBER, SUBSAMPLE CODE, MEIGHT OF THE SAMPLE AND THE NUMBER OF TIMES THE SAMPLE HAS
C.
C
         BEEN RUN.
O
C
      CALL SAMPLE(KNT)
C
C
Ε.
         READ IN THE ELEMENT NAME, READ IN THE STANDARD VALUES FOR THAT
         ELEMENT AND ASSIGN IT A PLACE IN THE CON, ERR, AND PC ARRAYS
C
C
         FOR OUTPUT TO THE LINEPRINTER.
C
   24 READ(1,930)ENM
  930 FORMAT(A2)
       IF (ENM. EQ. DO) GO TO 175
      CALL ELMSRT(ENM, SRT, NEL, NOLIST)
```

```
ELM(SRT)=ENM
C
000
        READ IN THE ORDER OF SAMPLES AND STANDARDS WHICH HAVE
        BEEN RUN, AND THE DILUTION OF THE UNKNOWNS.
С
č
   40 00 60 H=1,9
      READ(1,935)8T(1),NB(1),DIL(1)
  935 FORMAT(A1, A2, F10, 2)
      IF(BT(I), EQ. PD)GO TO 62
   60 CONTINUE
   62 NSM=I-1
C
C
č
        READ IN THE VALUES FROM THE SPECTROPHOTOMETER.
C
      00 80 I=1,72
      READ(1,937)N
  937 FORMAT([4)
      IF(N. GT. 590)G0 TO 82
      READ(1,940)(X(J),J=1,N)
  946 FORMAT(125F5, 0)
C
C
Ċ
        CALCULATE THE MEAN AND THE STANDARD DEVIATION.
C
C
      AV1=AVERNG(N)
      VA1=VARIAN(NUAVI)
      SG2=2. *SGRT(VA1)
C
Ċ
        ELIMINATE ALL VALUES GREATER THEN TWO STANDARD DEVIATIONS
Ċ
        AMAY FROM THE MEAN.
C
AV1+SG2
ES GREATER THEN TWO STANDARD DEVIATIONS
¥5
      TRG=AV1+562
      82G=AV1-5G2
      DO 76 K=1, N
      IF(X(K), GT, BRG, AND, X(K), LT, TRG)GO TO 76
      X(K)=9999.
   76 CONTINUE
C
         RECALCULATE THE MEAN AND CALCULATE THE VARIANCE.
C
C
      AVE(I)=AVERAG(N)
      VAR(I)=VARIAN(N. AVE(I))
   80 CONTINUE
   82 MRP=I-1
00
```

```
PRINTS THE SAMPLE OR STANDARD BOTTLE NUMBER, THE DILUTION,
         AND THE AVERAGE OF EACH OF THE GROUPS, THEN ASKS THE
         OPERATOR TO CHECK THEM.
C
C
      NST=NSR=1
   84 CALL ERASE
   85 CALL ERRURT(BT, NB, DIL, NRP, NSM, AVE, ELM(SRT))
       IF(8TLCK E0.0.)60 TO 90
      ORT=BTL
      GO TO 105
   90 WRITE(4,945)0MK
  945 FORMAT(2/1H ) 2HOK A1)
      CALL YESMO(ANS)
       IF(ANS. EQ. YES)GO TO 132
         THE PROGRAM NOW ALLOWS FOR THE CORRECTION OF A BOTTLE
C
         NUMBER OR DILUTION NUMBER AND ALLOWS THE OPERATOR TO
C
         DELETE ANY AVERAGES WHICH HE FEELS ARE INVALID.
Ċ
   95 MRITE(4,955)QMK
  955 FORMAT(1H ,26HWHICH VARIABLE IS IN ERROR, A1,31H (BTL, DIL 1UTION, R1, R2, ETC.))
   97 READ(5, 960) CRT
  960 FORMAT(AZ)
      IF(CRT. EQ. BTL. OR. CRT. EQ. D1. OR. CRT. EQ.
     IRL 37. CRT. EQ. R2. OR. CRT. EQ. R3. OR. CRT. 20. R4. OR.
     2057. EQ. 55. GR. CRT. EQ. RS. GR. CRT. EQ. RV. GR. CRT. EQ.
     383)60 TO 105
      HRITE(4, 915) 6MK
  915 FORMAT(1H > 4HWHAT, A1)
      GO TO 97
  195 WRITE(4,962)@MK
  962 FORMAT(1H , 20HNHAT IS THE IND. NO., AL)
      READ(5, 965) IND
  965 FORMAT(I1)
      IF(CRT NE. BTL)60 TO 115
      DEITE(4, 957) ONK
 967 FORMAT(1H / 30HWMAT IS THE CORRECT BTL NUMBER, A1)
      READ(5,935)8T(IND), NB(IND)
      IFKSTLCK. Ed. 1. 000 TO 136
      IF(BTLCK EQ. 2.)60 TO 152
      G0 T0 125
 1.15 IF (CRT. NE. DI) GO TO 120
      WRITE(4,972)ONK
 972 FORMAT(1H / 2SHWHAT IS THE CORRECT DILUTION, AL)
      READ(5, 975) DIL(IND)
  975 FORMAT(F10, 2)
      GO TO 125
  128 IF(CFT, EQ. R2) IND=IND+NSM
      IF (CRT. EQ. R3) IND=IND+2*NSM
      IF (CRT. EQ. RA) IND-IND+3+NSM
      IF (CRT. EG. R5) IND=IND+4+NSM
      IF (CRT. EQ. R6) IND=IND-5*NSM
      IF(CRT FO, P7) IND=IND+6*NSM
      IF (CRT, EQ. RS) IND=IND+7*NSM
```

```
AVE(IND)=9999,
   125 BRITE(4, 945)(MK
       CALL YESNO(ANS)
       IF(ANS. EQ. YES)GO TO 84
       GO TO 95
C
C
C
         AVERAGE THE MEAN OF THE GROUPS FOR EACH SAMPLE
C
C
   132 DO 135 I=L NSM
       AVR=VAN=REP=0.
       00 134 J=1, NRP, NSM
       K = I + J - 1
       IF(K. GT. NRP)GO TO 134
       IF(AVE(K), GE, 2000, )GO TO 134
       AVR=AVR+AVE(K)
       VBN=VBN+VBR(K)
       REPEREP+1.
  134 CONTINUE
       SVE(I)=SVR/REP
  135 VAR(1)=VANZREP
С
C
C
         ROUTINE TO DETERMINE WHICH BOTTLES IN THE LIST ARE
C
         STANDARDS.
С
      FLG=0.
  105 STLON#9.
       DO 150 IHMSR, NSM
       N5E-1
       IF(BT(I), E0, U)60 TO 150
       IF(FLG, EQ. 1, )G0 TO 137
       CALL MATCH(MB(I), MS1, BTLCK)
       IF(BTLCK, EQ. 1. 060 TO 85
       MP1=I
       FLG=1.
      60 10 150
  137 CALL MATCH(N8(I), NS2, BTLCK)
      IF(BTLCK, EQ. 1. )G0 TO 85
      MPREI
       IF (NS1, LT. NS2, AND, ELM(SRT), NE. CA)GO TO 102
       IF (NS1, GT, NS2, AND, ELM(SRT), EQ, CA)GO TO 152
      ATF-N52
      NSCHNS1
      NS1=NTP
      NTF=NF2
      NP2=NP1
      NP1-NTP
      60 TO 152
  156 CONTINUE
С
000
         CALCULATE THE CONCENTRATION, ERROR AND PERCENT ERROR
C
  152 STLCK=0.
```

```
DO 170 J=NST, NSM
        NST=J
        IF(8T(J), EQ. S)60 TO 170
        CALL UNKNOW(NB(J), NUN, BTLCK)
       IF(BTLCK, EQ. 2. )60 TO 85
       FG=WGT(NUN)*1000./DIL(J)
       YX=AVE(J)-AVE(NP1)
       ZX=AVE(NP2)-AVE(NP1)
       HL=STD(NS2)-STD(NS1)
       CON(SRT, NUN)=((STD(NS1)+HL*YX/ZX)/FG)*1.0E06
       ERR(SRT, NUN)=1. E06*SQRT((HLZ(FG*ZX))**2*(VAR(NP1)+
      1VAR(J))+(STD(NS2)*YX/(FG*ZX**2))**2*(VAR(NP1)+VAR(NP2)))
       PC(SRT, NUN)=ERR(SRT, NUN)/CON(SRT, NUN)*100.
0000
          WRITE THE RESULTS ONTO PAPER TAPE
       LL=NUN#2
       L≔LL-1
       MM=(NUN+6)-2
       M=MM-B
       \mathsf{WRITE}(7,985)(\mathsf{ASN}(\mathsf{K}),\mathsf{K=L},\mathsf{LL}),\mathsf{SSC}(\mathsf{NUN}),\mathsf{ELM}(\mathsf{SRT}),
      INEL, CON(SRT, NUN), ERR(SRT, NUN), PC(SRT, NUN),
      2(SNM(K), K=M, MM), RUN(NUN)
  985 FORMAT(1H ) 4HAAŞU,1%, A2, A4,1%, A3,1%, A2,1%, I2,1%, F12,4,1%,
      1F18. 4, 1%, F5. 2, 1%, 82, 385, 1%, I2)
  170 CONTINUE
       IF(N. ER. 9999)60 TO 48
       IF(N. EQ. 8888)GO TO 24
C
C
Ċ
         WRITE ALL OF THE FINAL RESULTS TO THE LINE PRINTER
         AND ALL OF THE CROSS REFERENCE INFORMATION TO THE
Ĉ
         PAPER TAPE PUNCH.
  175 CALL LPLIST(KNT, ELM)
       CALL CREF(KNT)
  800 CONTINUE
       STOP
       END
```

FUNCTION RIVERAGINE

0000	000000000000000000000000000000000000000	00000000000	0000	
C			C	
C :	AVERAG CALCULATES THE MEAN	OF N	C	
C	NUMBERS AND WILL ELIMINATE ANY	NUMBERS	C	
0	GREATER THAN 1999 (THE LARGEST	POSSIBLE	C	
C	NUMBER FROM THE JARREL ASH \$20	SPECTRO-	C	
C	PHOTOMETER,)		C	
C			С	
С			C	
000000000000000000000000000000000000000				

DIMENSION X(125), DUM(10)
COMMON DUM, X
SUM=COUNT=0
DO 1 I=1, N
IF(X(I), GE, 2000,)GO TO 1
COUNT=COUNT+1.
SUM=SUM+X(I)
1 CONTINUE
AVERAG=SUM/COUNT
RETURN
END

```
SUBROUTINE CREF(KNT)
000000000000
        C
                                                     C
                                                     Č
C
       C
       0000
               THIS SUBROUTINE WRITES THE CROSS REF-
           ERENCE INFORMATION ON THE PAPER PUNCH.
                                                     C
                                                     \mathbb{C}
       C
       C
      INTEGER, RUN
     DIMENSION DUM(10), DX(125), SNM(120), ASN(40), SSC(20)
     1, RUN(20)
C
     COMMON DUM, DX, DQ, NRD, SNM, ASA, SSC, RUN
C
     N=M=0
     60 10 I=1, KNT
     MN=N+1
     N=NN+5
     MH=M+1
     M=M1M+1
     IF(RUN(I), GT. 1)G0 TO 10
     \mathsf{WRITE}(7,980) (SNM(J), J=NM, N), SSC(I), (ASN(J), J=MM, M)
 900 FORMAT(1H , A2, 4A5, A1, 10%, A3, 17%, A2, A4)
  18 CONTINUE
     RETURN
     ÉND
```

. TITLE EDITOR

SUBROUTINE EDITOR WAS WRITTEN TO TRANSFER DATE FROM PAPERTAPE TO DEKTAPE IN A FORM WHICH COULD BE USED BY MAS.

IN THE PROCESS OF TRANSFERRING THE DATA EDITOR WILL DELETE INDIVIDUAL CHARACTERS OR ENTIRE LINES, REMOVE SPACES FROM THE DATA RECIEVED FROM THE BCD-ASCII CONVERTER, AND OUTPUT SPECIAL CODES WHICH WILL CONTROL ARS.

THE SPECIAL CHARACTERS USED BY EDITOR ARE:

DELETE THE PREVIOUS CHARACTER

DELETE THE ENTIRE LINE
 DENOTES THE REGINATING (

DENOTES THE BEGINNING AND END OF DATA FROM THE BCD-ASCII CONVERTER

DENOTES THE END OF DATA FOR THE PRESENT ELEMENT (USE IN PLACE OF THE #)

DENOTES THE END OF THE TAPE

EDITOR WILL IGNORE CAPRIAGE RETURNS AND BACKSLASHS (%) AT THE BEGINNING OF LINES, RUBOUTS, NULLS, AND LINEFEEDS.

GLOBE EDITOR

EDITOR PTR=6 DTP=1 TTBO=4 TTBI=5 IN=0 OUT=1 IOHS=2 IMHGE=3 EOH=64

START INT

Ð

. IODEV PTR. DTP. TT30, TT31

. INIT FTR. IN. RESTRT . INIT DTP. OUT, RESTRT . INIT TT20, OUT, RESTRT

. INIT TTBL IN RESTRI ENTER DIP NAME ZWRITE FILEMAME ON DECTAPE

DZM REPEAT# DZM CFLAG#

```
FILL THE BUFFERS CODE, ELEM, AND DONE WITH HEADER WORDS
         AND THE PROPER CODES:
                                       CODE=9999
                                       ELEM=8888
                                       DONE=DONE
         LAC (2002
                           ZFIRST HEADER WORD
         DAC* CODERT
         DAC* ITRPT.
         DAC* ELEMPT
         DAC* DONEPT
         ISZ ELEMPT
         ISZ DONEPT
ISZ ITRPT
ISZ CODEPT
         DZM* CODEPT
                           ZSECOND HEADER WORD
         DZM* ITRPT
         DZM# ELEMPT
         DZM* DONEPT
         ISZ CODERT
         LAC (345627
DAC* CODERT
         ISZ CODEPT
         LAC (134432
         DAC* CODERT
         ISZ ELEMPT
         LAC (341607
         DAC* ELEMPT
         152 ELEMPT
         LAC (34832
         DAC+ ELEMPT
         ISZ DONEPT
         LAC (422371
DAC* DOMEST
         ISZ DONEPT
         LAC (642432
         DAC* DOMERT
         ISZ ITEPT
         ISZ ITERT
         JMS STROVE
        READ FROM THE PAPER TAPE
READR
        . READ PTR, IMAGE, RDBUFF, 52
        . WAIT PTR
        GET THE WORD PAIR COUNT, MULTIPLY BY TWO AND SETUP THE
        READ COUNTER (RDCNTR).
        LAC RDBUFF
        SWHA
        AND (377
        ROL
        TAD (-1
```

```
TOA
        DAC ROCHTR#
         LAC ROTOR
        DAC ROPTER
         ISZ ROPTER#
        CHECK READ BUFFER TO SEE IF IT IS EMPTY.
NEXT
        ISZ ROPTER
        ISZ RDONTR
         JMP LOAD
         JMP READR
1111
        GET A CHARACTER FROM THE READ BUFFER AND CHECK IT.
LOAD
        LAC* ROPTER
        AND (177
        DAC CHECK#
        SB0 (43
                         ZIS THE CHARACTER A #?
        JMP CKCODE
                         ZYES
        DZM REPERT
        LAC CALAG
                         PREMOVES SPACE WHEN
        SMA
                         ZOFLAG IS SET
        JMS EDIT
        LAC CHECK
        SHD (40
                         ZIS THE CHARACTER A SPACE?
        JMP NEXT
                         ZYES
EDIT
        LAC CHECK
        SAD (45
                         ZIS THE CHARACTER A &?
        JHP NELM
                         ZYES
        DEM REPT#
        SAD (100
                         ZIS THE CHARACTER AN @?
        JMF BADLN
                         ZYES
        SAD (15
                         ZIS THE CHARACTER A [CR]?
        JMP CKSPOT
                         ZYES
        SAD (12
                         ZIS THE CHARACTER A (LF)?
        JMP NEXT
                         ZYES
        SA0 (177
                         ZIS THE CHARACTER A RUBOUT?
        JMP NEXT
                         ZYES
        SAD (44
                         ZIS THE CHARACTER A ≇?
        JMP FINISH
                         ZYES
        SAD (134
                         ZIS THE CHARACTER A N?
        JMP CKSPOT
                         ZYE5
                         ZIS THE CHARACTER A NULL?
        SAD (8
        JMP NEXT
                         CYES
        LOCATE THE POSITION WHERE THE NEXT WORD IS TO BE PACKED.
PHCKR
        LAC PACKET
        SNA
        JMP ZEPO
SAD Ki
```

```
JMP ONE
         SAD (2
         JMP TWO
         SAD (3
         JMP THREE
         PACK IN LOCATION 4
         LAC CHECK
                          ZPACK IN LOCATION 4
         RAL
         6ND (376
         TAD PACK
         DAC* BUFFPT
                          ZDEPOSIT WORD IN STORAGE BUFFER
         ISZ WOPROT#
         ISZ BUFFPT#
         DZM PACKPT
                          ZRESET THE PACKING POINTER
         ISZ ITRONT
        LAC WRIT
         SZA
         JMP ENDLM
         JMP NEXT
ノ
ノ
ノ
ノ
ZERO
        PACK IN LOCATION 0
        LAC CHECK
        SMHA
        RTL.
        AND (774000
        DAC PACK#
ISZ PACKPT
        LAC WRIT
        SZH
        JMP EMOLN1
        JMP NEXT
11111
        PACK IN LOCATION 1
ONE
        LAC CHECK
        RITL
        ETL
        AND (3760
        THO PHCK
        DAC PACK
        ISZ PHCKPT
        LAC WRIT
        SZA
        JMP ENDLM1
        JMP NEXT
        PACK IN LOCATION 2
```

```
TMO
         LAC CHECK
         RTR
         RAR
         AND (17
         THO PACK
         DAC* BUFFPT
         ISZ BUFFPT
LAC CHECK
         RTR
         RTR
         AND (700000
         DAC PACK
         ISZ PACKPT
         LAC WRIT
         SZA
         JMP ENDLN2
         JMP NEXT
         PACK IN LOCATION 3
THREE
        LHC CHECK
         SWHA
         RAR
        HND (77400
         TAD PACK
        DAC PACK
132 PACKPT
        LAC WRIT
         SZA
         JMP ENDLN2
        JMP NEXT
        FINDS THE LOCATION OF THE CHARACTER TO BE ERASED
        WHEN A N IS ENCOUNTERED.
ERASE
        LAC PACKET
        SNA
        JMP PACPT0
        SAD (1
        JMP PACPT1
        SAD (2
        JMP PACPT2
        SAD (3)
        JMP PACETS
        ERASE CHARACTER IN LOCATION 3
        LAC (3
DAC PACKET
        LAC PACK
        FIND (700000
```

```
DAC PACK :
         JMP NEXT
         ERASE CHARACTER IN LOCATION 4
PRICET®
        LAC (4
         DAC PACKET
LAC BUFFET
         TAD (-1
         DAC BUFFRT
         LAC WORRCT
         TAD (-1
         DAC WORRCT
         JMP NEXT
         ERASE CHARACTER IN LOCATION 0
PACPT1
        DZM PACKPT
         JMP NEXT
         ERASE CHARACTER IN LOCATION 1
PACET2
        LBC (1
         DAC PACKET
         LAC PACK
         AND (774650
         DAC PACK
         JMP NEXT
         ERASE CHARACTER IN LOCATION 2
PACETS
         LBC (2
         DAC PACKET
         LAC BUFFET
         TAD KH1
         DAC BUFFET
         LAC* BUFFRT
         AND (777760
         DAC PACK
         JMP NEXT
         CHECKS THE CODE CHARACTER #. IF IT IS THE FIRST # ENCOUNTERED IT WILL SET CFLAG AND REPEAT TO ONE REPEAT WILL CAUSE ALL
         SUCCESSIVE WAS TO BE IGNORED UNTIL ANOTHER CHARACTER IS ENCOUNTERED.
         THE SECOND SET OF #15 TO BE ENCOUNTERED WILL CAUSE 9999 TO BE
         WRITTEN, OFLAG WILL BE CLEARED, AND REPEAT WILL BE
         RESET UNTIL AMOTHER CHARACTER IS ENCOUNTERED.
```

```
CKCODE LAC REPEAT#
         SZH
         JMP NEXT
         ISZ REPEAT
         LAC CELAG
         SZA
         JMP CWRITE
         ISZ CFLAG
         JMP PACKR
         CAUSES (CR) AND (%) TO BE IGNORED IF THEY ARE AT THE BEGINNING
         OF A LINE.
CKSPOT
        LAC PACKET
         SZA
         JMP CK
         LAC TOPSTR
         AAC +2
         SAD BUFFET
         JMP NEXT
СK
        LAC CHECK
         SAD (134
         JMP ERASE
         ISZ WRIT#
         JMP PACKR
        ERRSES PN CHTIRC LINE.
BADLN
        JMS STROVE
        JMP NEXT
        INITIALIZES THE POINTERS AND COUNTERS.
STROVE
        0
                         ZGET ADDRESS OF STORAGE
        LAC TOPSTR
                         ZEUFFER
        DAC TOPBUF#
AAC +2
        DAC BUFFPT
        DZM ITRONT#
        DZM PACKET#
        DZM WDPRCT
        ISZ WOPECT
                         ZACCT FOR HDR WORD PAIR
        DZM WRITH
        JMP* STROVE
        COMPLETES THE WORD PAIR IF THE LAST CHARACTER OF THE LINE
        WAS PACKED IN THE FIRST WORD OF THE PAIR.
ENDENT LAC PROK
        DAC* BUFFPT
```

```
ISZ BUFFPT
        DZM* BUFFPT
        ISZ WDPRCT
JMP ENDLN
        COMPLETES THE SECOND WORD OF THE WORD PAIR.
ENDLN2
        LAC PACK
        DAC* BUFFPT
        ISZ WDPRCT
ENDLN
        JMS HDER
        LAC OFLAG
        SNA
        JMP WRITE
        PACKS THE DATA PT. COUNT INTO BUFFER ITRATE.
        SAD (2
        JMP BINDEC
        ISZ OFLAG
        JMP WRITE
BINDEC
        LAC (32
                         ZBIN TO DEC CONV.
        DAC PACK
        LAC ITRONT
        LidQ
        CLA
        CLL
        JMS DIVIDE
        SMHA
        RAR
        AND (77400
        TAD PACK
        DAC PACK
        CLA
        CLL
        JMS DIVIDE
        DAC TEMP#
        RTR
        RTR
        AND (788888
        TAD PACK
        DAC* ITRPT
        LAC ITERT
        TAD (-1
        DAC ITEMP
        RTR
        RAR
        AND <17
        DAC PACK
        CLA
        CLL
        JNS DIVIDE
        RTL
```

```
RTL
         AND (3760
          TAD PACK
         DAC PACK
         CLA
         CLL
         JMS DIVIDE
         SMHA
         RITL
         AND (774000
         TAD PACK
         DAC* ITEPT
         ISZ ITRPT
         JMP IWRITR
         DIVIDES A BINARY NUMBER BY OCTAL 12 (BINARY 1010) TO GET
         THE DECIMAL EQUIVALENT.
DIVIDE 0
         DIV
         12
         AND <17
         TAD (260
         JMP* DIVIDE
/
/
/
/
HDER
         FORMS THE HEADER WORDS FOR THE BUFFER STORB1
         Ø
         LAC MOPROT
         SMHA
         AND (377888
AAC +2
         DAC* TORBUR
         ISZ. TOPEUF
         DZM* TOPBUF
         JMF* HDER
        . WRITE DTP, IOPS, CODE, 4
CMRITE
         ATO TIMM.
         DZM CFLAG
         JMP NEXT
NELM
        LAC REPT
         SZA
         JMP NEXT
        ISZ REPT
        . WRITE DTP, IOPS, ELEM, 4
         .WAIT DTP
        DZM OFLAG
        JMP NEXT
DURITR
        . WRITE OTP, IOPS, ITERTE, 4
        .WAIT DTP
URITE
        . WRITE DTP, IOPS, STORE1, 254
        . WAIT DTP
        JMS STROVE
```

JMP NEXT

```
CODERT CODE
ITERT
         ITRATE
ELEMPT ELEM
DONERT DONE
ROTOR
         ROBUFF
TOPSTR
        STOR81
         . BLOCK 4
CODE
ITRATE
         BLOCK 4
ELEM
         . BLOCK 4
DOME
         BLOCK 4
MSG
         ANSWER-MSG/2*1000
         .ASCII "MORE DATA?"<15>
         ø
        . BLOCK 4
ANSWER
        . BLOCK 64
. BLOCK 376
ROBUFF
STORB1
RESTRIT
        CLOSE PTR
         . CLOSE DTP
         JMP START
NAME
         . SIXBT "AASDATAED"
         CHECKS TO SEE IF THE OPERATOR HAS FINISHED READING
         ALL OF THE PAPER TAPES.
FINISH . WRITE TT30, IOPS, MSG, 34
         . WAIT TIED
        . READ (TSI) TOPS, ANSWER, 4
         . WAIT TIBL
         LAC ANSWER+2
         AND (777760
         SAD (472360
                          ZIS THE ANSWER NO?
         JOH FINI
                          ZYES
         LHC HNSWER+2
        BND (777777
         SHD (546132
                          ZIS THE ANSWER YES?
         JMP MD2
                          ZPOSSIBLY
         JMP FINISH
                          21403
MOS
        LAC ANSWER+3
        AND (798888
                          ZIS THE ANSWER YES?
         SAD (300000
        JMP READR
                          ZYES
        JMP FINISH
                          ZNO
FINI
        WRITE DTF, LOPS, DONE, 4
        . WAIT DTP
        . MTAPE DTP/EOF
        . CLOSE DIP
        CLOSE PTR
        .CLOSE TT30
.CLOSE TT31
        JMP* EDITOR
        . END
```

```
SUBROUTINE ELMSRT(ELEM, SRT, NOEL, NOLIST)
C
С
        С
        C
                                                         C
С
        C
                THIS SUBROUTINE MATCHES THE ELEMENT
                                                         C
C
        C
            NAME TO THE ATOMIC NUMBER AND CALLS SUB-
                                                         C
C
        C
            ROUTINE STAND TO READ THE STANDARD VALUES
C
        C
            FROM A FILE.
                          ELMSRT ALSO ASSIGNS EACH
С
        C
            ELEMENT A UNIQUE NUMBER (SRT) SO THAT IT
                                                         С
C
            CAN BE RELOCATED.
                                                         C
C
        C
C
        C:
C
        С
                ELEM
                         ELEMENT NAME (ABREV)
С
        C
                         NUMBER ASSIGNED TO EACH
                SRIT
C
        C
                         ELEMENT
C
                NOEL
                         ATOMIC NUMBER
                                                         C
C
        C
C
        C
      INTEGER SRT
      REAL KJKSTD, MG, MGSTD, MN, MNSTD, NA, NASTD, NI, NISTO
С
      DIMENSION STD(10), HLSTD(2), BASTD(2), CASTD(2), COSTD(2),
     1CUSTD(2), FESTD(2), HGSTD(2), KSTD(2), MGSTD(2), MNSTD(2),
     2NASTD(2), NISTD(2), SISTD(2), TISTD(2), ZNSTD(2), PBSTD(2),
     3RNDM(2), DX(125)
С
      COMMON STD, DX, GMK, NRD
C
      DATA ALZZHALZ, BAZZHBAZ, CAZZHCAZ, COZZHCOZ, CUZZHCUZ,
     1K/2HK // FE/2HFE/, HG/2HHG/, MG/2HMG/, MM/2HMN/, MA/2HNA/,
     2NI/2HNI/, P8/2HP8/, SI/2HSI/, TI/2HTI/, ZN/2H2N/,
     BALSTD(1), ALSTD(2)/SHALSTD,4HFILE/,BASTD(1),BASTD(2)/
     45HBASTD, 4HFILEZ, CASTD(1), CASTD(2)/5HCASTD, 4HFILEZ
      DATA COSTO(1), COSTO(2)/SHCOSTD, 4HFILE/, CUSTO(1), CUSTO(2)/
     15HCUSTD, 4HFILE/, FESTD(1), FESTD(2)/5HFESTD, 4HFILE/
     2HGSTD(1),HGSTD(2)/5HHBSTD,4HFILE/,NGSTD(1),MGSTD(2)/
     35HMGSTD, 4HFILEZ, MNSTE(1), MNSTE(2)/SHMNSTD, 4HFILEZ,
     4MASTO(1), NASTD(2)/SHNASTD, 4HFILE/, MISTD(1), MISTD(2)/
     55HNISTO,4HFILEZ,PBSTD(1),PBSTD(2)/5HPBSTD,4HFILEZ
      DATA SISTD(1), SISTD(2)/5HSISTD, 4HFILE/, TISTD(1), TISTD(2)/
     15HTISTD, 4HFILE// ZMSTD(1), ZMSTD(2)/5HZMSTD, 4HFILE/,
     2KSTD(1), KSTD(2)/5HK_STD, 4HFILE/, RNOM(1), RNOM(2)/5HRNDMF, 4HFILE/,
     BYES/BHYES/
C
      CALL ERASE
    1 WRITE(4,900)ELEM, QMK
  900 FORMAT(1H ,3HIS ,A2,25H THE CORRECT ELEMENT NAME,A1)
      CALL YESNO(ANS)
      IF(ANS.EQ. YES)GO TO 3
      WRITE(4,910)0MK
  910 FORMAT(IH , 24HWHAT IS THE CORRECT NAME, A1)
```

READ(5,915)ELEM 915 FORMAT(A2) 3 IF(ELEM. NE. AL)GO TO 5 CALL STAND (ALSTD, ELEM) SRT=1 NGEL=13 RETURN 5 IF(ELEM. NE. BA) GO TO 10 CALL STAND(BASTD, ELEM) SRT=2 NOEL=56 RETURN 10 IF(ELEM. NE. CA)GO TO 15 CALL STAND(CASTD, ELEM) SRT=3 NOEL=28 RETURN 15 IF (ELEM. NE. CO) GO TO 20 CALL STAND (COSTD, ELEM) SRT=4 NOEL=27 RETURN 20 IF (ELEM. NE. CU) GO TO 25 CALL STAND(CUSTD/ELEM) SRT=5 MOEL=29 RETURN 25 IF(ELEM. NE, FE)GO TO 30 CALL STAND (FESTD, ELEM) SRTES NGEL=26 RETURN 30 IF(ELEM. NE. HG)GO TO 35 CALL STAND (HGSTD, ELEM) SRT=7 NOEL=80 PETURN 35 IFKELEM NE. KOGO TO 40 CALL STAND(KSTD, ELEM) 58T=8 NOEL=19 RETURN 40 IF (ELEM, NE. MG) GO TO 45 CALL STAND (MGSTD, ELEM) SRT=9 NOEL=12 RETURN 45 IF (ELEM. NE. MN) GO TO 50 CALL STAND(MNSTD, ELEM) SRT=10 NOEL=25 RETURN 50 IF (ELEM. NE. NA) GO TO 55 CALL STAND (NASTD) ELEM) SRT=11 NOEL=11 RETURN 55 IF(ELEM. NE. NI)GO TO 60

```
CALL STAND (NISTO, ELEM)
     SRT≈12
     NOEL=28
     RETURN
  60 IF(ELEM. NE. PB)GO TO 65
     CALL STAND (PBSTD, ELEM)
     SRT=13
     NOEL=82
     RETURN
  65 IF(ELEM. NE. SI)GO TO 70
     CALL STAND(SISTD, ELEM)
     SRT=14
     NOEL=14
     RETURN
  70 IF(ELEM. NE. TI)GO TO 75
     CALL STAND(TISTD, ELEM)
     SRT=15
     N0EL=22
     RETURN
  75 IF(ELEM. NE. ZN)GO TO 80
     CALL STAND(ZNSTD/ELEM)
     SRT≈16
     NOEL=30
    RETURN
 80 WRITE(4,950)ELEM
950 FORMAT(1H / A2,33H IS NOT ON THE PROGRAM FILE LIST./
    11H JBHIT WILL BE ASSIGNED THE ATOMIC NO. 00.)
    DO 500 IX=1,50000
    CONTINUE
598 CONTINUE
    NOLIST=NOLIST+1
    IF (NOLIST, GT, 1)GO TO 200
    CALL STAND (RNDM, ELEM)
    SRT=17
    NOEL=0
    RETURN
200 IF(NOLIST.GT.2)GO TO 210
    CALL STAND (RNDM, ELEM)
    SRT=18
    NOEL#8
    RETURN
210 IF(NOLIST.GT.3)GO TO 220
    CALL STAND (RNDM, ELEM)
    SRT=19
    NOEL=0
    RETURN
220 IF(NOLIST.GT.4)GO TO 230
    CALL STAND (RNOM, ELEM)
    SRT≃20
    HOEL=0
    RETURN
238 WRITE(4,955)
995 FORMATKIH JAGHYOU HAVE EXCEEDED THE LIMITS SET BY THISZ
   LIH , 43HPROGRAM. THE RESULTS OF YOUR LAST ELEMENT /
   SIH , 4SHNOT FOUND ON THE PROGRAM LIST WILL NOT APPEAR ON /
   31H J46HTHE LINEPRINTER OUTPUT, BUT ON PAPERTAPE ONLY.)
   00 501 IX=1,50000
    CONTINUE
```

581 CONTINUE
CALL STAND(RNMD)ELEM)
SRT=20
NOEL=0
RETURN
END

```
. TITLE ERASE
        uuummmmmmmmmmmm
                 SUBROUTINE ERASE WILL ERASE THE
              TEKTERMINAL SCREEN, DELAY FOR .5+
SECONDS, THEN HOME THE POINTER.
        uuummmmmmmi
         GLOBE ERASE
ERASE
        . IODEV 4
        . INIT 4, 1, RESTRT
. WRITE 4, 2, CLEAR, 4
START
        . NAIT 4
        LAC (501500
        DAC MASTE#
                        ZWASTE 5+ SECONDS
        ISZ WASTE
        JMP . -1
        . WRITE 4,2,HOME,4
        .WAIT 4
.CLOSE 4
        JMP* ERASE
CLEAR
        HOME-CLEAR/24:1000
        9
        .ASCII <30>
        . ASCII <15>
HOME
        RESTRI-HOME/2*1000
        . ASCII <1>
        .890II <15>
RESTRIT
        . CLOSE 4
        JMP START
        . END
```

```
SUBROUTINE ERRWRT(BT.NB.DIL.NRP.USM.AVE.ELM)
C
С
C
        C
        C
                                                         С
Ċ
Ĉ
        C
                THIS SUBROUTINE WRITES ALL OF THE
        C
            PRELIMINARY RESULTS TO THE CONTROL TTY
C
            FOR THE OPERATOR TO CHECK.
        C
                                                         Γ:
Č
        С
                                                         C
C
        C
        Ċ
C
Ċ
      REAL NR
      DIMENSION BT(9), NB(9), DIL(9), AVE(72)
C
      DATA SZ1HSZ
C
      WRITE(4,900)ELM
 988 FORMAT(1H , 82//)
     WRITE(4,910)
 910 FORMAT(1H0,16HIND BTL DILUTION,4%,2HR1,4%,2HR2,4%,
    12HR3, 4X, 2HR4, 4X, 2HR5, 4X, 2HR6, 4X, 2HR7, 4X, 2HR8)
     DO 10 I=1, NSM
      IF(BT(I), EQ. 5)GO TO 5
     \mathsf{MRITE}(4,920) I, \mathsf{BT}(1), \mathsf{NB}(1), \mathsf{DIL}(1), (\mathsf{AVE}(J),J{=}1,\mathsf{NRP},\mathsf{NSM})
 920 FORMAT(1H , [2, 2X, 81, 82, 1X, F9, 2, 1M, SF6, 8)
     60 TO 10
   5 WRITE(4,930)I,BT(I),ME(I),(AVE(J),J≃I,MRP,MSM)
 930 FORMAT(1H , I2,2X,A1,A2,11X,8F6.0)
 10 CONTINUE
     RETURN
     END
```

```
SUBROUTINE LPLIST(KNT, ELM)
C
C
C
        C
C
        С
C
        C
                THIS SUBROUTINE LISTS ALL OF THE FINAL
                                                       C
C
        C
           RESULTS ON THE LINEPRINTER.
                                                       C
С
        C
                                                       C
C
        \mathbf{C}
                                                       C
        C
      INTEGER RUN
      REAL NO
     DIMENSION DUM(10), DX(125), SNM(120), ASN(40),
     155C(20),WGT(20),CON(20,20),ERR(20,20),PC(20,20),
    2RUN(20), ELM(20)
C
     COMMON DUM, DX, GMK, NRD, SNM, ASN, SSC, RUN, WGT, CON, ERR, PC
C
     DATA NO/3HNO /
C
   3 WRITE(4,800)QMK
 800 FORMAT(1H /33HHOW MANY LP COPIES DO YOU REQUIRE, A1)
     READ(5,810)NOP
 $10 FORMAT(I1)
     IF(NOF, Ed. 0)60 TO 30
     DO 20 NT=1, NOP
     M=MM=0
     DO 18 I=1, KNT
     N=M+1
     M=N+5
     WRITE(3,910)(SNM(J),J=N,M)
 910 FORMAT(1H1////1H ,5%,A2,5A5)
     NN=HM+1
     国国主持日本主
     WRITE(3,920)(ASN(J), J≃NN,MM),SSC(I),WGT(I)
 920 FORMAT(1H0,7%, A2, A4, 5%, A3, 5%, F7, 2, 3H MG)
     WRITE(3,930)
 930 FORMAT(ZZZZ1H , ZZ. ZHELEMENT, 8%, 10HCONC (PPM), 10%, SHERROR,
    16% 7H% ERROR/)
     DO 5 K=1,20
     IF(CON(K, I), EQ. 9, 050 TO 5
     WRITE(3,940)ELM(K), CON(K, I), ERR(K, I), PC(K, I)
 940 FORMAT(1H ,9%,A2,9%,F12,4,6%,F10,4,6%,F5,2)
   5 CONTINUE
  10 CONTINUE
  20 CONTINUE
  30 WRITE(4,870)OMK
 870 FORMAT(1H / 2HOK/A1)
     CALL YESHO(ANS)
     IF(ANS.EQ.NO)60 TO 3
     RETURN
     END
```

```
SUBROUTINE MATCH(NB, K, BTLCK)
С
C
       С
C
       С
                                                      C
С
       С
               SUBROUTINE MATCH CONVERTS THE BOTTLE
                                                      C
                                                      C
0000
       C
           NUMBERS READ IN A FORMAT TO AN INTEGER
                                                      C
           NUMBER WHICH CAN BE USED IN AN ARRAY.
       С
                                                      C
       C
                                                      C
C
       Ċ
С
     REAL NB
С
     DATA ZERO/2H00/, HALF/2H, 5/, ONE/2H01/, TWO/2H02/, THREE
    1/2H03/, FOUR/2H04/, FIVE/2H05/, SIX/2H06/, SEVEN/2H07/,
    2EIGHT/2H08/
¢
     K=1
     TF (NB. EQ. ZERO) RETURN
     K=2
     IF (NB. EQ. HALF) RETURN
     K=3
     IF (NB. EQ. ONE) RETURN
     K≈4
     IF (NB. EQ. TWO) RETURN
     K=5
     IF (NB. EQ. THREE) RETURN
     K=6
     IF (NB, EQ, FOUR) RETURN
     K=7
     IF (NB. EQ. FIVE) RETURN
     IF (NB. EQ. SIX) RETURN
     K=9
     IF (NB. EQ. SEVEN) RETURN
     K=10
     IF (NB. EQ. EIGHT) RETURN
     CALL ERASE
     URITE(4,900)
 900 FORMAT(1%, 43HTHERE IS AN ERROR IN THE BTL NOS., RECHECK.)
     BTLCK=1.
     RETURN
     END
```

```
SUBROUTINE SAMPLE(KNT)
Ċ
        00000000
                                                        C
                                                        ¢
                THIS SUBROUTINE READS IN THE SAMPLE
            NAME, ASCESSION NO., SUBSAMPLE TYPING
                                                        C
        C
                                                        C
            CODE, WEIGHT, AND THE NO. OF TIMES THE
                                                        c
            SAMPLE HAS BEEN RUN AND THEN ALLOWS THE
                                                        С
            OPERATOR TO MAKE CORRECTIONS.
        C
Ċ
                                                        C
        С
        C
С
      INTEGER RUN
      REAL NME
C
      DIMENSION SNM(120), ASN(40), SSC(20), WGT(20), RUN(20),
     15TD(10), X(125)
C
      COMMON STD, X, QNK, NRD, SNM, ASN, SSC, RUN, WGT
С
      DATA AST/2H**/, YES/3HYES/, NME/5HNAME // GNO/5HGEONO/
     1FRC/5HFRAC //WT/5HWGT //RN/5HRUN /
      M=MM=KNT=0
      DO 20 I=1,20
      N=M+1
      M=N+5
      READ(1,902)(SNM(J), J=N, M)
  902 FORMAT(A2,5A5)
      IF(SNM(N), EQ. AST)60 TO 24
      NN=MM+1
      PHM=NN+1
      READ(1,905)(ASN(J), J=NN, MM), SSC(I), WGT(I)
  965 FORMAT(A2, A4, 1%, A3, 1%, F10, 2)
      READ(1,986)RUN(I)
  906 FORMAT(I2)
С
C
        WRITES OUT THE INFORMATION JUST READ IN AND ASKS THE OPERATOR
С
C
        TO CHECK IT.
C
C
    4 CALL ERASE
      WRITE(4,907)(SNM(J),J=N.M),(ASN(J),J=NN,MM),SSC(I),WGT(I),RUN(I)
  907 FORMAT(1H , 6HNAME= , A2, SA5/1H , 7HGEONO= , A2, A4, 5%, 6HFRAC= , A3,
     15%, 5HWGT= -, F7. 2, SX, 5HRUN= -, I2)
      WRITE(4,908)QMK
  908 FORMAT(//1H , 2HOK, A1)
      CALL YESNO(ANS)
      IF(ANS, EQ. YES)GO TO 20
C
С
CC
        THE PROGRAM NOW ALLOWS FOR THE CORRECTION OF ANY ERRORS FOUND.
```

```
C
    6 WRITE(4,910)0MK
  910 FORMAT(1H / 28HWHICH IDENTIFIER IS IN ERROR, A1)
   12 READ(5,912)CRT
  912 FORMAT(A5)
       IFCCRT, EQ. NME, OR, CRT, EQ. GNO, OR, CRT, EQ. FRC, OR,
      1CRT, EQ. WT. OR, CRT, EQ. RN>60 TO 14
      WRITE(4,915)@MK
  915 FORMAT(1H , 4HNHAT, A1)
       G0 TO 12
   14 WRITE(4,917)CRT, QMK
  917 FORMAT(1H , 20HWHAT IS THE CORRECT , A5, A1)
IF(CRT. EQ. NME)READ(5, 902)(SNM(J), J=N, M)
       IF(CRT. EQ. GNO)READ(5,905)(ASN(J), J=NN, MM)
       IF(CRT. EQ. FRC)READ(5, 922)SSC(I)
       IF(CRT. EQ. WT)READ(5, 923)WGT(I)
       IF(CRT.EQ.RN)READ(5,906)RUN(I)
  922 FORMAT(A3)
  923 FORMAT(F10.2)
       WRITE(4,908)QMK
       CALL YESNO(ANS)
       IF (ANS. EQ. YES) GO TO 4
       GO TO 6
   20 KNT=KNT+1
   24 CONTINUE
       RETURN
       END
```

```
SUBROUTINE STAND(FILE, ELEM)
Ċ
       000000
       C
       C
              SUBROUTINE STAND INPUTS THE CONCEN-
          TRATIONS OF THE STANDARDS FROM A FILE
                                                  C
          OR WILL ALLOW THE USER TO INPUT THE VALUES
          FROM THE TELETYPE IF NO FILE EXISTS
                                                  C
       C
          FOR THAT ELEMENT.
                                                  C
C
       C
                                                  C
       C
С
       С
     DIMENSION FILE(2), STD(10), DX(125)
     COMMON STD, DX, QMK, NRD
     DATA YES/3HYES/
     IF (NRD, EQ. 1)60 TO 5
     CALL FSTAT(2, FILE, I)
     IF(I, EQ. -1)60 TO 40
   5 CALL ERASE
     WRITE(4,10)ELEM
  1*******************/2H *,68%,1H*/2H *,8%,44HTHE STANDARD VALUES HAVE
    2 NOT BEEN FILED FOR JA2,1H.,13%,1H*/2H *,8%,22HPLEASE ENTER THEM
    3 NON. 38%, 1H*/2H *, 68%, 1H*/2H *, 4%, 58HYOU MUST ENTER VALUES FOR
    4 TEN STANDARDS BEGINNING WITH S00,6%,1H*/2H *,7%,57HAND INCLUDING
    5 5, 5,
           EACH VALUE MUST CONTAIN A DECIMAL PT.,4X,1H*/2H *,7X,54HAND
    6 BE TERMINATED WITH A CARRIAGE RETURN(CR).
                                             FOR ANY, 7%, 1H*/2H *, 7%
    7.58HSTANDARD WITHOUT A VALUE, A CARRIAGE RETURN IS SUFFICIENT.,3X,
    818+728 *, 68% 18+7718 ****************************
    9***********
     DO 20 I=1,10
  20 READ(5,25)STD(1)
  25 FORMAT(F6. 2)
     DO 30 I=1,10
  30 WRITE(4,35)STD(1)
  35 FORMAT(1H , F6, 2)
     URITE(4,900)@MK
 900 FORMAT(//1H /2HOK, A1)
     CALL YESNO(ANS)
     IF(6NS, NE, YES)60 TO 5
     RETURN
  40 CALL SEEK(2, FILE)
     DO 50 I=1,10
  50 READ(2,25)STD(1)
     CALL CLOSE(2)
     RETURN
     END
```

```
00000000000
        O
        C
                SUBROUTINE UNKNOW CONVERTS THE BOTTLE
                                                          C
        C
            NUMBERS READ IN A-FORMAT TO AN INTEGER
                                                          C
        C
            NUMBER.
                                                          C
        С
                                                          C
        C
                                                          C
        C
      REAL NB, NINE
С
      DATA ONE/2H01/, TWO/2H02/, THREE/2H03/, FOUR/2H04/,
     1FIVE/2H0S/, SIX/2H06/, SEVEN/2H07/, EIGHT/2H08/,
     2NINEZ2H09Z, TENZ2H10Z/ELEVENZ2H11Z, TNELVEZ2H12Z,
     3TEEN3/2H13/, TEEN4/2H14/, TEEN5/2H15/, TEEN6/2H16/,
     4TEEN7/2H17/, TEEN8/2H18/, TEEN9/2H19/, TWENTY/2H20/
C
      IF (NB. EQ. ONE) RETURN
      K=2
      IF (NB. EQ. TWO) RETURN
      K=3
      IF (NB. EO. THREE) RETURN
      1.=4
      IF (NB. EQ. FOUR) RETURN
      ∜,≂5
      IF (NO. EQ. FIVE) RETURN
      K=6
      IF (NB. EQ. SIX)RETURN
      £(≃7
      IF (NB. EQ. SEVEN) RETURN
      K=8
      IF (NB. EQ. &IGHT) RETURN
      K=9
      IF (NB. EQ. NINE) RETURN
      K=10
      IF (NB. EQ. TEN) RETURN
      K=11
      IF (NB. EQ. ELEVEN) RETURN
      K=12
      IF (NB. ÉQ. TWELVE) RETURN
      K=13
      IF (NB. EQ. TEENB) RETURN
      图=14
      IF (NB. EQ. TEEN4) RETURN
      K=15
      IF (NB. EQ. TEENS) RETURN
      4.=16
      IF (NB. EQ. TEENS) RETURN
      K=17
      IF (NB. EQ. TEEN7) RETURN
```

K = 18

SUBROUTINE UNKNOW(NB, K, BTLCK)

```
IF(N8.EQ.TEENS)RETURN
K=19
IF(N8.EQ.TEEN9)RETURN
K=28
IF(N8.EQ.TWENTY)RETURN
CALL ERASE
WRITE(4,900)
900 FORMAT(1X,43HTHERE IS AN ERROR IN THE BTL NOS., RECHECK.)
BTLCK=2.
RETURN
END
```

00000000000000000

FUNCTION VARIAN(N, AVE)

ċ Ċ Ċ C VARIAN CALCULATES THE VARIANCE OF A GROUP OF NUMBERS AND WILL ELIMINATE ANY NUMBERS GREATER THEN 1999 (THE LARGEST C Ċ C POSSIBLE NUMBER FROM THE JARREL ASH 820 Ċ C. SPECTROPHOTOMETER) Č C C Ċ

DIMENSION X(125), DUM(10) COMMON DUML X COUNT=SUM=9 DÓ 1 I=1, N IF(X(I), GE, 2000. >G0 TO 1 COUNT=COUNT+1. SUM=SUM+((X(I)-AVE)**2) 1 CONTINUE VARIAN=SUM/(COUNT-1.) RETURN END

```
SUBROUTINE YESNO(ANSWER)
0000000000000
       C
                                              Ċ
      C
             SUBROUTINE YESNO WAITS FOR A YES
                                              C
      C
          OR NO ANSWER.
                                              C
      č
                                              C
                                              С
      REAL NO
     DIMENSION DUM(10), DX(125)
     COMMON DUM, DM, QMK
     DATA YESZBHYESZ, NOZBHNO Z
   1 READ(5,910)ANSWER
 910 FORMAT(A3)
    IF (ANSWER, EQ. YES, OR, ANSWER, EQ. NO)RETURN
     WRITE(4,920)0MK
 920 FORMAT(1H ,4HWHAT,A1)
    GO TO 1
    RETURN
    END
```

A Listing of the Formatting Used on the Data Tapes for the PDP-15

Y74-3-58P 18-23CM HN1422 AAA 468-41 01

Y74-3-58P 18-23CM HN1422 AAA 445-16 02

Y74-3-58P 118-123CM HN1423 AAA 403.45 01

Y74-3-58P 118-123CM HN1423 AAA 396-97 02

Y74 3-58P 218-223CM HN1424 AAA 448.93 Ø1

Y74-3-58P 218-223CM HN1424 AAA 427.67 02

** \$\$

```
CU
SØ 1
U01 200 .
502
W2 200.
+0194 +0194 +0197 +0198 +0194 +0195 +0199 +0200 +0191 +0194 +0190 +0188
+0189 +0190 +0188 +0189 +0191 +0187 +0190 +0189
+0305 +0348 +0346 +0345 +0341 +0340 +0340 +0342 +0339 +0345 +0340 +0336
+0338 +0334 +0340 +0338 +0336 +0335 +0339 +0339
+0387 +0389 +0387 +0387 +0387 +0390 +0385 +0385 +0383 +0384 +0383 +0385
+0382 +0383 +0382 +0381 +0380 +0382 +0383 +0382
+0238 +0331 +0328 +0327 +0328 +0326 +0325 +0328 +0325 +0327 +0329 +0326
+0325 +0320 +0320 +0321 +0325 +0328 +0326 +0326
SØ 1
103 200.
SØ2
W4 200.
+0183 +0198 +0198 +0195 +0197 +0198 +0194 +0195 +0199 +0193 +0196 +0195
+0193 +0195 +0193 +0195 +0192 +0194 +0193 +0195
+0371 +0367 +0371 +0369 +0365 +0365 +0363 +0364 +0361 +0363 +0367 +0366
+0367 +0365 +0366 +0363 +0363 +6367 +0366 +0367
+0354 +0388 +0385 +0388 +0384 +0389 +0393 +0392 +0390 +0392 +0390 +0388
+0389 +0389 +0392 +0389 +0392 +0388 +0389 +0387
+0299 +3364 +0358 +0357 +0359 +0357 +0360 +0355 +0356 +0360 +0353 +0353
+0356 +0359 +0355 +0354 +0351 +0349 +0350 +0346
SØ2
UØ 5 200.
503
UØ 6 200.
+0401 +0399 +0404 +0401 +0397 +0406 +0399 +0403 +0398 +0400 +0393 +0402
+0394 +0399 +0399 +0402 +0392 +0398 +0397 +0402 +0395 +0399
+0589 +0605 +0608 +0606 +0603 +0602 +0602 +0601 +0601 +0604 +0603 +0605
+0601 +0604 +3598 +0597 +0598 +0590 +0593 +0591
+0 592 +0 601 +0 593 +0 598 +0 596 +0 585 +0 582 +0 575 +0 581 +0 571 +0 580 +0 578
+0 581 +0 575 +0 581 +0 574 +0 575 +0 582 +0 574 +0 578
+0584 +0589 +0592 +0537 +0588 +0591 +0593 +0593 +0594 +0588 +0587 +0592
+0 590 +0 588 +0 588 +0 591 +0 59 5 +0 594 +0 592 +0 59 5
88
55
```

55

```
FE
S02
U01 20000 ·
SØ 3
M35 50000.
+0396 +0402 +0397 +0398 +0405 +0397 +0406 +0394 +0403 +0402 +0398 +0401
+0401 +0399 +0406 +0395 +0403 +0395 +0402 +0394 +0406 +0396 +0405 +0393
+0 509 +0 520 +0 510 +0 507 +0 518 +0 516 +0 514 +0 509 +0 517 +0 515 +0 542 +0 542
+0537 +0538 +0532 +0529 +0510 +0515 +0513 +0519 +0518
+0 582 +0 59 5 +0 59 7 +0 59 8 +0 600 +0 59 3 +0 59 4 +0 601 +0 58 4 +0 59 5 +0 59 7 +0 59 9
+0 593 +0 601 +0 592 +0 589 +0 591 +0 594 +0 594 +0 592 +0 596
+0483 +0494 +0490 +0487 +0495 +0495 +0486 +0488 +0489 +0482 +0488 +0485
+0490 +0488 +0490 +0469 +0489 +0488 +0493 +0490 +0488 +0493 +0493
SØ2
U03 20000 ·
 50\03
 U04 20000 ·
+0185 +0401 +0392 +0400 +0385 +0394 +0393 +0395 +0393 +0400 +0386 +0399
 +0396 +0397 +0397 +0393 +0398 +0402 +0390 +0389 +0393
+0 530 +0 53 5 +0 537 +0 543 +3 532 +0 534 +0 529 +0 539 +0 540 +0 534 +0 539 +0 538
 +0 533 +0 540 +0 534 +0 534 +0 540 +0 530 +0 534 +0 536 +0 537
 +0 59 6 +0 59 5 +0 59 7 +0 59 9 +0 59 7 +0 60 0 +0 59 0 +0 59 7 +0 60 5 +0 59 4 +0 59 1 +0 59 7
 +0 598 +0 59 5 +0 601 +0 59 6 +0 588 +0 59 3 +0 59 3 +0 600 +0 58 6
 +0436 +0439 +0438 +0434 +0434 +0438 +0431 +0434 +0433 +0437 +0433 +0433
 +0435 +0432 +0435 +0440 +0428 +0436 +0442 +0429 +0433
 502
 U3 5 200000 ·
 SØ 3
 UD 6 20000 .
 +0408 +0402 +0410 +0397 +0412 +0406 +0404 +0401 +0403 +0412 +0408 +0406
 +0405 +0398 +0412 +0405 +0403 +0402 +0408 +0406 +0408
  +0 5 6 4 + 0 5 5 4 + 0 5 5 1 + 0 5 5 1 + 0 5 3 8 + 0 5 5 6 + 0 5 5 0 + 0 5 5 0 + 0 5 5 4 + 0 5 4 8 + 0 5 4 7 + 0 5 4 8
  +0 547 +0 548 +0 554 +0 553 +0 554 +0 549 +0 545 +0 542 +0 542 +0 542
  +0 599 +0 604 +0 602 +0 603 +0 608 +0 599 +0 60 5 +0 60 1 +0 59 5 +0 59 4 +0 590
  +0 579 +0 588 +0 583 +0 583 +0 576 +0 582 +0 583 +0 581 +0 576 +0 582 +0 583 +0 583
  +0451 +0488 +0495 +0503 +0498 +0497 +0505 +0494 +0499 +0504 +0501 +0500+
  +0493 +0499 +0509 +0500 +0499 +0501 +0497 +0496 +0503
  23
```

```
MN
S• 5
W1 20000.
SØ 1
U02 20000.
+0098 +0098 +0099 +0097 +0100 +0094 +0099 +0099 +0102 +0096 +0103 +0099
+0100 +0093 +0102 +0096 +0100 +0096 +0102 +0096
+0210 +0203 +0208 +0203 +0204 +0203 +0207 +0207 +0209 +0208 +0205 +0203
+0204 +0205 +0209 +0206 +0207 +0206 +0208 +0204
+0202 +0200 +0206 +0204 +0202 +0206 +0206 +0205 +0203 +0208 +0207 +0202
+0203 +0207 +0205 +0208 +0203 +0203 +0207 +0204
+0182 +0192 +0191 +0187 +0195 +0196 +0197 +0197 +0197 +0200 +0192 +0196
+0195 +0197 +0198 +0199 +0201 +0195 +0197 +0198
#
SØ 1
W3 20000.
SØ 2
U04 20000.
+0197 +0201 +0195 +0197 +0200 +0194 +0200 +0196 +0197 +0198 +0198 +0201
+0200 +0195 +0195 +0199 +0197 +0198 +0197 +0199 +0199
+0264 +0263 +0264 +0264 +0264 +0262 +0268 +0269 +0265 +0272 +0266 +0266
+0266 +0267 +0268 +0266 +0270 +0267 +0275 +0271 +0265
+0433 +0430 +0425 +0433 +0436 +0435 +0433 +0435 +0432 +0435 +0430 +0432+
+0433 +0435 +0436 +0437 +0434 +0435 +0436 +0432 +0435
+0263 +0270 +0267 +0264 +0260 +0263 +0265 +0261 +0264 +0264 +0263 +0267
+0272 +0270 +0264 +0266 +0265 +0267 +0272 +0272 +0266
+0225 +0222 +0228 +0230 +0228 +0224 +0221 +0222 +0224 +0224 +0223 +0223
+0223 +0222 +0222 +0229 +0228 +0224 +0226 +0227 +0227 +0226 +0230 +0227+
+0224 +0220
+0273 +0275 +0271 +0270 +0271 +0271 +0268 +0270 +0271 +0268 +0276 +0275
+0275 +0272 +0273 +0275 +0275 +0278 +0270 +0272 +0276
+0439 +0446 +0440 +0436 +0445 +0440 +0437 +0443 +0443 +0441 +0438 +0447
+0444 +0438 +0443 +0444 +0439 +0443 +0445 +0442
 +0280 +0277 +0285 +0273 +0272 +0264 +0268 +0270 +0267 +0277 +0275 +0275
 +0276 +0273 +0272 +0269 +0271 +0270 +0274 +0278
 SØ2
 UØ 5 200000 ·
 SØ3
 W6 20000.
```

```
+0399 +0399 +0413 +0402 +0398 +0403 +0395 +0404 +0398 +0411 +0398 +0403 +0397 +0404 +0399 +0409 +0405 +0401 +0400 +0399 +0414 +0398 +0408 +0404 +0405 +0404 +0405 +0401 +0400 +0399 +0414 +0398 +0408 +0404 +0404 +0405 +0405 +0401 +0400 +0399 +0414 +0398 +0408 +0404 +0429 +0429 +0427 +0432 +0433 +0434 +0433 +0437 +0436 +0437 +0430 +0429 +0429 +0427 +0432 +0430 +0428 +0434 +0433 +0435 +0435 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437 +0436 +0437
```

An Example for the Operation of the PDP-15 Program

1C BKH15 V4D \$A TT3 4,5/TT2 3 \$GLOAD

BGLOAD V2A

DO YOU WISH TO USE THE STANDARD CONCENTRATION VALUES ON FILE?

YES DO YOU WISH TO READ IN PAPER TAPES? YES

MORE DATA?
YES
MORE DATA?
YES
MORE DATA?
YES
MORE DATA?
YES
MORE DATA?

MAPT= Y74-3-58P 18-230H GEORG= HR1422 FRAC= AAA - UGT= 468.41 RUR= 1

GK? YES

MANUE Y74-3-58P 18-23CH GEONO: HNI 422 FRAC: AAA MGT: 445.16 PUN: 2

OK?

CF.3

MAME: Y74-3-55P 116-123 CH GEONO= HM 423

FRAC= AAA UGT= 396.97

RUU= 8

OK? WHICH IDENTIFIER IS IN EPROR? FRAC WHAT IS THE CORRECT FRAC ? ABC

OK? YES

MARIE - Y74-3-58P 118-123 CM FRAC= ABC GEQNO: HN1 423

VGT= 396.97 RUN= 2

OK? YES

MATE: Y74 3-587 217-223011 GE0 70= HM 424 FRAC= AAA

UGT= 448.93

T.U J= 1

OK? YES

MAMES Y74-3-58P 218-223CH GE010= HM 424 FRAC= AAA

UG T= 427.67

RUN= 2

0K? MO WHICH IDENTIFIER IS IN TRROR? UG T WHAT IS THE CORPECT WGT ? 428.28

OM? YES

R8

R7

I'C

1:5

```
WATER Y74-3-58P 218-2230M
GEONO= HNI 484 FRAC= AAA
                                428.00
                                                   RHU= 2
OK?
YES
IS UN THE CORFECT CLEHENT WAME?
YES
140
IND BIL DILUTION
                                              R5
                                                    RG
                                                           R7
                     P. 1
                           R2
                                 P.3
                                        PA
                                                                 PP
    5.5
                      .36
 1
    12.1
 2
                     206.
   231
                     205.
   1132
         20022.00
                     196.
OK?
11!!
IND BTL DILUTION
                           P2
                                 R3
                     R1
                                        P.Z
                                              F:5
                                                    RG
                                                           P.7
                                                                 BE.
    531
                     198.
                           225.
 1
                           273.
    933
                     266.
         20000.30
   505
                     434.
                           442.
   118.4
        22824.02
                     266.
                           273.
OK?
WHICH VARIABLE IS IN ERROR? (BTL, DILUTION, R1, R2, ETC.)
WHAT IS THE IND. VO.?
OK?
YES
```

111

IND BIL DIEUTION

R1

112

P.3

9999. 225. SØI 2 บคร 20000.00 266. 273. 442. 434. 3 SØS 266. 273. 1104 ଇମ୍ମଟ୍ଟ୍.ମ୍ଟ୍ 4

OK?

1411

R6 R7 RE. RA R5 IND BIL DILUTION P.1 R2 P3 432. 1 502 U25 20000.00 432. 2 608. 3 SØ3 22000.00 1126 411.

OK?

IS OUTHE CORPECT ELEMENT NAME?

cu / •

P7 PE R2 R3RA R5 R6 FOITUAID ATE CRI R1192. 1 SØI 2 UZ 1 3 SS2 202.20 340. 384. 122 200.00 326.

OK? YES $C_{i}I$

	3 TL 201	DILUTION	P.I 195.	ES.	F3	Ρ¢	P.5	EC	P.7	RE
		200.00								
3	େଅପ		389.		•					
4	172.4	200. 00	355.							

AES OKS

CU

1 45	LTL SG2	DILUTION	R1 399.	P.2.	ЕЗ	Γ4	P.5	FG	P7	RE.
		200.80	631.							
	503 106	200.00	582. 591.				•			

YES?

IS FE THE CORPECT ELEMENT WANTS

FI

IND	271	DILUTION	R1	E2	. F3	RΖ	P.5	P6	P.7	P.S
1	ଯମହ		403				• • • •	•	•	
2	U2 1	2 2326 .06	528							
3	503		595.							
Ą	ars.	26979.65	490.							

OY?

NO

MICH VARIABLE IS IN ERROR? (BTL, DILUTION, R1, R2, UTC.)

BIL

WHAT IS THE IND. NO.?

2

THEAT IS THE CORRECT BIL WINBER?

072

†C

37715 VAD

```
Y \mathbb{Z} S
FE
                                                                  F:7
IND BTL DILUTION
                                                    R5
                                                          EC
                                                                          F!\mathcal{E}
                                      R3
                                             PA
                        R1
                              P2
                        420.
520.
    202
 1
    U2:3
          20000.00
                        595.
 3
    533
    102
          20296.98
                        490.
AES
OKS
FE
                                                                   P.7
                               23
                                      P.3
                                             PZ
                                                    R5
                                                           P.6
IND BIL DILUTION
                       P. 1
                        395.
 2 3
    933
          20000.00
                        536.
                       596.
   $33
                        134.
    Ma V
          200000.20
AEB///40
OK3
FE
                                                                   P.7
                                                                          Eξ
                                             PA
                                                           E6
IND BIL DILUTION
                                      23
                                                    £5.
                        P.1
                              ES
                        426.
 1
 2
    112.5
          22020.00
                        549.
                        591.
    933
    1006
          20300.09
                        499.
04?
YES
HOW MARY LP COPIES DO YOU PECHIEE?
OK?
30
HOW MANY LP COPIES DO YOU PECHTPE?
AES
OKS
STOP GOODER
```

A Sample of Data Output to the Papertape Punch by the PDP-15 Program

```
AASU HML422 AAA MN 25
                                8595, 8674
                                               324.4747 3.77 Y74-3-58P 18-23CM 1
 AASU HN1422 AAA MN 25
                                8614, 5723
                                               332, 5441
                                                           3.86 Y74-3-58P 18-23CM 2
MASU HN1421 AAA MM 25
AASU HN1423 ABO MN 25
                               11988, 9543
                                                           1.65 Y74-3-58P 118-123
1.96 Y74-3-58P 118-123
                                               198, 3679
                               12176, 7864
                                               238, 2333
 CASU HALLAZY AAA MM 25
                               19132, 9849
                                               241.4360 1.26 Y74 3-38P 218-223
BASU HNIGEG BAA MN 25
                               19120, 0415
                                               313, 1579
                                                           1.64 Y74-3-58P 218-223
CASU HN1422 AAA CU 29
                               382, 3889
                                                8. 0218
7. 6034
                                                            2.65 Y74-3-58P 18-23CM
CASU HN1422 AAA CU 29
                                 364, 8522
                                                           2.49 Y74-3-58P 18-23CM
CCSU HN1423 AAA CU 29
                                                6, 5834
7, 3615
28, 1724
                                 372, 7051
                                                            1.77 Y74-3-58F 118-123
                               372, (901
367, 9527
553, 1872
570, 2504
AASU HN1423 ABC CU 29
                                                           2.00 Y74-3-5SP 118-123
CASU HM1424 AAA CU 29
                                                           5.09 Y74 3-58P 218-223
                                                                                          1
AASU HMI424 AAA CU 29
                                                           4.88 Y74-3-58P 218-223
                                                27, 8523
                                                                                          2
BHSU HN1423 AAA FE 26
                              64873, 4053
55247, 3263
                                              2002, 7383
8850 BM1922 BAA FE 26
MASU HM1921 BAA FE 26
MASU HM1923 BBC FE 26
MASU HM1923 BBC FE 26
MASU HM1924 BAA FE 26
                                                           3.09 Y74-3-58P 118-123
                                                           1,92 Y74-3-58P 18-230M 2
                                              1958, 9392
                              66957, 5695
                                             1711, 5405
                                                           2.56 Y74-3-58P 118-123
                                                                                         -1
                              55363, 8643
                                              841.4184 1,52 Y74-3-58P 118-123
                              61735.4678 3215.5471 5.21 Y74 3-56P 218-223 1
58483.8154 2273.3807 3.89 Y74-3-58P 218-223 2
ARSU HILLAZA ARA FE 26
Y74-3-588 18-236M
Y74-3-588 118-1236M
                                         ĤĤĤ
                                                                   HN1422"
                                          ÄÄÄ
                                                                   HN1423
474 3-58P 218-2230M
                                          BBB
                                                                   HN1424
```

A Sample of Data Output to the Line Printer by the PDP-15 Program

Y74-3-58P 118-123CM HN1423 ABC

396. 97 MG

ELEMENT	CONC (PPM)	ERROR	% EFROR
ຄນ	367, 9527	7, 3615	2, 00
FE	55363, 8643	841, 4104	1, 52
MN	12176, 7864	238, 2333	1, 96

CALCULATIONS

The algorithm used to calculate abundances is a simple linear interpolation:

$$M = 100 \left[\frac{H - (H-L) \left(\frac{Z - Y}{Z - X} \right)}{F G} \right]$$

where

M= % metal in sample

H= High standard value

L= Low standard value

X= Avg of AAS readouts for the low standard

Y = " " " sample

Z= " high standard

F = the dilution factor (1000/ dilution of sample)

G= wgt of sample

The error is propagated with the assumption that the only variation is in the digital readout of the AAS. With this in mind, the following equation was used to calculate the total error for each calculation.

$$RSD = Sx^{2} \left(\frac{M}{X} \right)^{2} + Sy^{2} \left(\frac{M}{Y} \right)^{2} + Sz^{2} \left(\frac{M}{Z} \right)^{2}$$

where RSD = % Relative Standard Deviation

 S_{x}^{2} = the sample variance of X

 S_y^2 = the sample variance of Y

 S_z^2 = the sample variance of Z

and M is the linear interpolation equation above.

Sample variance is calculated using the following formula:

$$S^2 = \frac{\sum_{n-1} (X_{i-x})}{n}$$

where Xi is one of the data points,

x is the mean of the sample

n is the number of data points in the sample.

Acknowledgments

The author would like to thank John Toth for his contribution in
"Cold Vapor Atomic Absorption Techniques" and to Mitch Lyle for "Pb
Analysis by Carbon Rod."

This work was supported by the National Science Foundation as a contribution of the International Decade of Ocean Exploration (Nazca Plate Project), Grant # IDO 71-04208.

REFERENCES

- (1) Bernas, Bedrich, 1968, A new method for the decomposition and comprehensive analysis of silicates by atomic absorption spectrometry: Analytical Chemistry, v. 40, p. 1682-1686.
- (2) Control Data Corporation, 1969, 3300 Computer Systems Fortran reference manual, Control Data Corporation Pub. No. 60057600, Rev. B, 116 p.
- (3) Dayton, Fred and Massie, Walter, 1968, Free form input for OS-3 Fortran, Oregon State University Computer Center Pub. No. CC-68-27, 9 p.
- (4) Dayton, Fred, 1970, OS-3 Editor manual, Oregon State University Computer Center Pub. No. CCM-70-7.
- (5) Digital Equipment Corporation, 1974, PDP-15 Edit Utility program reference manual, Digital Equipment Corporation Pub. No. DEC-15-YWZB-DN6.
- (6) Digital Equipment Corporation, 1972, PDP-15 Fortran IV programmers reference manual, Digital Equipment Corporation Pub. No. DEC-15-KFZD-D.
- (7) Digital Equipment Corporation, 1972, PDP-15 MACRO-15 assembler programmers reference manual, Digital Equipment Corporation Pub. No. DEC-15-APIZB-D.
- (8) Digital Equipment Corporation, 1969, PDP-15 Systems reference manual, Digital Equipment Corporation Pub. No. DEC-15-BRZA-D.
- (9) Digital Equipment Corporation, 1972, PDP-15 UPDATE utility program reference manual, Digital Equipment Corporation Pub. No. DEC-15-YWZB-DN7.
- (10) Fisher Scientific Company, 1972, Atomic absorption analytical methods, Fisher Scientific Company, Atomic Absorption Analytical Laboratory Publication.
- (11) Fisher Scientific Company, 1971, JA82-810 instruction manul, Fisher Scientific Company, Jarrel Ash Division Engineering Pub. No. 82-810, 54 p.

- (12) Krogh, T. E., A simplified technique for the dissolution of zircons and the isolation of uranium and lead, Carnegie Institution, Annual Report of the Director, Geophysical Laboratory, 1969-1970, p. 341-344.
- (13) Massie, Walter, 1968, A control mode manual for OS-3 (vers. 2.0), Oregon State University Computer Center Publ. No. CC-68-21.
- (14) Parr Instrument Company, 1969, Acid digestion bomb, Parr Instrument Company Product Sheet 4745, 2 p.
- (15) Parr Instrument Company, 1972, Instructions for Parr 4745 Acid Digestion Bomb, Parr Instrument Company, 4 p.
- (16) Standley, David R., 1972, Digital recording and analysis of mass spectra, Master's degree thesis, Oregon State University, 84 p.
- (17) Wang Laboratories, Inc., 1971, Wang Model 500 reference manual, Wang Laboratories Pub. No. 700-0352, 37 p.

APPENDIX A

BEER'S LAW CURVES FOR THE
MOST FREQUENTLY ANALYZED ELEMENTS

ALUMINUM

POTASSIUM

APPENDIX B COLD VAPOR ATOMIC ABSORPTION OF MERCURY

COLD VAPOR ATOMIC ABSORPTION OF MERCURY

The reduction-aeration cold vapor technique for the determination of mercury involves the chemical reduction of Hg (II) ions in solution to neutral mercury atoms by a suitable reducing agent. The sample solution is then aerated with a carrier gas which carries the mercury atoms into an absorption cell where the absorbance is measured at the 2537 A mercury resonance line.

The reduction-aeration apparatus consists of a reduction vessel, an aeration device, a water mist vaporizer, and an absorption cell. The reduction vessel is made from a 10mm diameter glass tube fitted with a porous glass frit near its base. (Fig.B-1). Aeration is from below up through the glass frit and the solution. The small volume of the vessel, efficient aeration, and large effective solution surface area created by the bubbling cause rapid diffusion of Hg (o) out of solution and into the carrier gas. This enables a very sharp peak absorbance to be observed. Peak absorbance is also related directly to the length of absorption cell and inversely to its diameter (within limits). A cell 60cm in length and 2mm in diameter was found to be optimum for the sample size and mercury concentrations used.

Light scattering by water mist in the absorption cell is the main source of spectral interference with this system. This water is vaporized

Figure 8-1. Reduction vessel

by passing through a heating chamber, a glass tube filled with glass beads, at 200°C, and by maintaining the absorption cell temperature above 100°C.

The mercury absorbance is measured by a double beam system.

The mercury lamp beam is split and partially reflected to a reference photomultiplier tube and compared to the absorbed beam through a log ratio amplifier. The resulting absorbance is recorded on a pen recorder. Mercury concentration is linearly related to peak absorbance height in the range 0-5 ppb. See Figure B-2 for a diagram of the apparatus.

This cold-vapor atomic absorption apparatus was designed and built by Dr. Ingel of the O.S. U. chemistry department 1 and is described in detail in the MS thesis of James Hawley 2 . It has a detection limit of 4×10^{-12} gm Hg (4 ppt Hg in solution) and an effective range of .004-10 ppb in solution.

Hg ANALYSIS

Solution and Glassware Preparation

All solutions are prepared from reagent grade chemicals and doubledistilled water.

Solutions

Reductant: 1 gm SnCl_2 $1 \text{ ml HCl}_{(c)}$ diluted to 100 ml $(1\% (\frac{w}{v}) \text{ SnCl}_2)$ Oxidant: 0.2 gm KMnO_4 diluted to 100 ml $(0.2\% (\frac{w}{v}) \text{ KMnO}_4)$

Figure B-2. Double beam AA

Mercury: 0.1354 gm Hg Cl₂ 50 ml HN0₃ (c) diluted to 1 liter (100 ppm Hg (II) stock sol.)

All standards are prepared by dilution of the 100 ppm Hg (II) stock solution and contain $1\% \left(\frac{v}{v}\right)$ HNO $_3$ (c) and 0.002% ($\frac{w}{v}$) KMnO $_4$ as a preservative. This acidic and oxidative solution is necessary to prevent loss of mercury by 1) reduction to Hg (o) or Hg (I), which readily dissociates to Hg (II) and Hg (o), or 2) cation-exchange type adsorption onto the walls of the container. Dilute mercury solutions should still be analyzed within eight hours after preparation since mercury loss is still significant over long periods of time.

All glassware must be stored for 24 hours with a 1% HNO₃-0.002% KMnO₄ solution to remove traces of mercury adhering to the glass surface. Afterwards the glassware must be washed with HCl (c), rinsed with double-distilled water, washed with HNO₃ and rinsed with double-distilled water. Beware mercury contamination is everywhere, so all flasks, beakers, pipets, etc., must be initially cleaned with the acid-permanganate solution and should be rinsed with nitric acid before each use.

Sample Digestion and Analysis

Geologic samples are digested by the standard HF-pressure bomb technique and brought to a volume to contain less than 5ppb Hg. Teflon liners are rinsed just prior to digestion with acid-permanganate solution.

Manganese nodules and crusts are digested using 50mg samples that have been crushed in an agate mortar and dried in a dessicator at least 24 hours. A drying oven is not used because of the potential loss of mercury due to its high volatility. The material is weighed into the teflon liner and the following reagents are added:

- 1) 0.1 ml HNO_3 (c)
- 2) 0.3 ml HCl (c)
- 3) 2.0 ml HF (c)

After sealing, heating for $1\frac{1}{2}$ -2 hours at 110 C, and cooling, 1.9 gm H_3 BO₃ is carefully added directly into the Teflon liner. The solution is brought to a final volume of 25ml and immediately analyzed. Standards are either prepared from the Hg (II) stock solution in a HF-boric acid matrix, or a known amount of Hg (II) solution is added to a duplicate digested sample as a standard addition. Blanks are determined by adding only the reagents to the Teflon liner and taking this through the digestion procedure.

Analysis of the solutions is carried out as follows. Instrument variables are adjusted to optimal conditions as shown in Table B-1 from the Hawley M.S. thesis). After carrier gas flow through the frit is initiated, 0. lml of the SnCl₂ reductant solution is injected by syringe into the reduction vessel. After a baseline is established on the pen recorder, 1.0 ml of sample or standard solution is injected. The peak absorbance and return to baseline occur in less than 20 seconds. The solution is then

Table B-1. Optimal variables for analysis

Variable	A. A.	A.F.
Flow rate	140 ml/min	140 ml/min
Frit grade	medium	medium '
Drying tube	5 cm long x 12 mm dia Mg(ClO ₄) ₂	5 cm long x 12 mm dia Mg (ClO ₄) ₂
Gas carrier	air .	argon
Volume of reductant	0.1 ml	0.1 ml
Volume of sample	1.0 ml	1.0 ml
Slit width	1000 um	2000 um
Absorption cell	20 cm long x 2 mm id 60 cm long x 2 mm id	
Fluorescence cell	••	1 cm x 9 mm x 6 mm
Radiation source	Hg pen lamp (DC)	Hg pen lamp (AC)
Lamp current	9-1 0 ma	17 ma
RC time constant	0.32 sec	1 sec
System	Double beam	
Photoanodic current	10 ⁻⁵ A	••
Photomultiplier supply voltage	500-600 V	700-800 V
R _f		10 ⁶ Ω

Adjusted as described in procedure

evacuated in preparation for the next analysis. The reduction vessel is cleaned after each day's use by flushing with HNO₃(c), rinsing with distilled water, flushing with KMnO₄ solution, and rinsing with distilled water.

REFERENCES

- 1 Hawley, J. E. and J. D. Ingle, Jr. (1975) Improvements in cold vapor atomic absorption determination of mercury, Anal. Chem., 47, 719.
- 2 Hawley, James E. (1975) Cold vapor atomic absorption and fluorescence analysis of mercury. Unpublished M.S. Thesis, Oregon State University, Dept. of Chemistry, 85 p.

APPENDIX C PB ANALYSIS BY CARBON ROD

Pb ANALYSIS BY CARBON ROD

General Considerations

Pb tends to plate out of the dissolved sample. It should therefore be analyzed quickly after sample dissolution (within about a day). In the short testing I have done, it appears that the standards are more stable. They probably should be made up fresh for each analysis, however. Samples are dissolved by the standard HF-Aqua regia treatment. Because of the generally low Pb levels, we use 200 ml dilution for analysis. Standards are therefore made up using this matrix in 0, 0.05, 0.1, 0.2, and 0.3 ppm Pb concentrations.

Setting Up For Carbon Rod Analysis

We generally use the carbon cup for Pb analysis. It has lower sensitivity, necessitating larger sample size, but seems to be more easily reproducible.

- A) Mounting the Cup See Varian Techtron Manual
- 1) One support block for the electrodes has a click stop built in.

 Slide rod in until one of the slots machined in the rod clicks into place.
- 2) Slide other rod in. Put cup in place. Align light path holes with hole in masking plate. It is best done with thin rod.
- 3) Make sure cam lever is down (spreads support blocks slightly.)
 Fit electrode snugly against cup.

- 4) Fasten electrodes in place by clamping screws. Put cam lever back up again
- B) Preparation of Carbon Rod Assembly for AA Work
 - 1) Mount carbon rod assembly in AA work head holder
- 2) Warm up Pb lamp and adjust for Pb wavelength. We use 2833A plus 2820A as background non-absorbing line.
 - 3) Align carbon rod in light beam with the burner head controls.
- 4) With chart recorder on 5 m_V scale, set A channel (2833A) and B channel (2820A) to cover same chart distance when light path is blocked. This should be done in per cent absorption. Switch to absorbance mode. Switch to 2m_V scale (expands scale of chart recorder 2.5 times.)
- 5) Turn on water supply to carbon rod assembly. (recommended is O. 5 liters/min.)
- 6) Turn on argon supply to carbon rod. Recommended is 10 psi gauge pressure at tank, and 7.0 setting on needle valve.
- 7) Set all power supply voltages to O. Set ash time to 20, leave dry and atomize at O. Set hydrogen gauge pressure to 10 psi. Cycle through power sequence. While machine is in ash cycle, set hydrogen flow to 1.0 on needle gauge. (Must be done this way because solenoid controlling hydrogen flow will not turn on until ash stage).
 - 8) Set power controls as follows:

Stage_	Voltage Setting	Time (in seconds)
dry	3.5	40
ash	2.5	20
atomize	9.0	3.5

Running the Carbon Rod:

- 1) All operations run on a 90 second interval between firings to allow rod conditions to be as reproducible as possible. Timer is necessary.
- 2) Fire about 5 times in sequence with no analyte. This cleans the rod and warms it up.
- 3) Pipette 20 ml of first standard into cup. Be careful to wipe excess off pipette, and that you pipette into the bottom of the cup. Be sure to rinse tip 3 to 4 times with new solution when changing to new standard.
- 4) Cycle through power sequence. Wait 90 seconds after atomize stage to run again. At about 15 seconds before firing time, pipette in new 20 ml aliquot of standard. Cycle it through at 90 seconds. Measure peak height of channel A and subtract from channel B to get concentration peak height.
- 5) If they reproduce, change to new standard, repeat (4). Do this for all standards. If they do not reproduce, keep running standards until they agree.
 - 6) Run 1st sample four times.
- 7) Run through standards twice again. If you know all samples will fall within a small range, you can limit your standards to that range.
 - 8) Repeat step 5 and 6 for all samples.
 - 9) IF there is a systematic decrease in peak height of sample or

standard, your rods have probably worn out. Check to make sure decrease is not measurement error. If not, replace rods, go through procedure again for samples not yet analyzed. If you think rods are getting old, disconnect H₂, connect up lab gas (mainly CH₄). Give the rods a few burns with the lab gas. This will increase their life by replacing some of the lost carbon.

10) Analysis time: 30 to 40 minutes per sample.