

## OREGON STATE UNIVERSITY



Laboratory Techniques Used for Atomic Absorption Spectrophotometric Analysis of Geologic Samples
by

## Stan Fukui

School of Oceanography
Oregon State University
Corvallis, Oregon 97331

August 1976

## CONTENTS

INTRODUCTION ..... 1
THEORY OF ATOMIC ABSORPTION SPECTROPHOTOMETRY ..... 2
OPERA TION OF THE J. A. 82-820 AAS ..... 3
Preliminary Discussion ..... 4
General Stepwise Operating Procedure ..... 6
Shutdown of the AAS ..... 12
Maintenance of the AAS ..... 13
PREPARA TION OF REA GENTS AND S TANDARDS ..... 14
Introduction ..... 14
Cesium Chloride ..... 15
Aqua Regia ..... 17
Preparation of Stock Standards ..... 19
Ir on, Manganese Magnesium ..... 19
Calcium ..... 20
Aluminum, Barium, Potassium ..... 22
Copper, Nickel, Zinc ..... 23
Preparation of Working Standards ..... 24
$\mathrm{Ca}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}$ ..... 24
$\mathrm{Al}, \mathrm{Ba}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$ ..... 25
Preparation of Silicon Standards ..... 27
Preparation of Titanium Standards ..... 29
Preparation of Cobalt Standards ..... 30
SAMPLE PREPARATION ..... 31
Introduction ..... 31
Step-by-Step Sample Preparation Procedures ..... 34
SAMPLE DECOMPOSITION HARDWARE ..... 37
DA TA COLLECTION AND REDUCTION ..... 40
Introduction ..... 40
Procedures for Using the Wang 500 for AAS
Data Reduction ..... 42
Preliminary Discussion ..... 42
Ste pwise Operating Procedure ..... 43
Program Listing ..... 45
Sample Run ..... 47
Procedures for Using the CDC-3300
for AAS Data Reduction ..... 48
Preliminary Discussion ..... 48
Data Card Formats ..... 48
Running the Program ..... 50
Program Listing ..... 53
Sample of Data Input ..... 58
Sample Run ..... 59
Sample of Data Output ..... 63
The BCD-ASC II Converter - Teletype-System ..... 64
Introduction ..... 64
Operation ..... 64
Special Editing and Code Characters ..... 65
Tape Format ..... 67
Operation of the PDP-15 ..... 72
Introduction ..... 72
Stepwise Operating Procedure ..... 73
Program Listing ..... 77
Listing of Sample Data Tapes ..... 110
Sample Run ..... 115
Listing of Sample Data Output to Papertape ..... 121
Sample of Data Output to the Lineprinter ..... 122
CALCULATIONS ..... 123
ACKNOWLEDGEMENTS ..... 124
REFERENCES ..... 125
APPENDIX ABeer's Law Curves of the Most Frequently AnalyzedElements
APPENDIX BCold Vapor Atomic Absorption of Mercury
APPENDIX C
Pb Analysis by Carbon Rod

## LIS $T$ OF ILLUSTRATIONS AND TABLES

Tables
1 Instrument Settings 5

Figures
1 Preparation of $\mathrm{Ca}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn}$ Standards 18
2 Preparation of Al, Ba, Cu, K, Ni, Zn Standards 21
3 Preparation of Si Standards 26
4 Sample Decomposition Vessel 39
5 Data Collection Guide 41

## INTRODUCTION

Precise chemical analyses of geological samples continue to play an important role in geochemical research. During the past 10 years atomic absorption spectrophotometry has become increasingly prominent as an accurate and relatively simple analytical technique. The marine geochemistry group at OSIJ has used a Jarrel-Ash 82-820 atomic absorption spectrophotometer (AAS) for the past four years to determine the elemental composition of deep-sea sediments and oceanic rocks. This document is meant to serve as a summary of the procedures which have been developed and adopted during this time.

## THEORY OF ATOMIC ABSORPTION SPECTROMETRY

When light of a specific wavelength is incident upon a free ground state atom, that light will be absorbed causing excitation of the electrons. In the reverse process, light of the same wavelength is emitted.

Atomic absorption spectroscopy is based on the principle that the amount of light absorbed is exponentially related to the population of free atoms. The following equation describes this relationship:

$$
C=\log \frac{I_{o}}{I}
$$

where $\quad C$ is the concentration of free atoms,
$I_{0}$ is the incident radiation and
I is the transmitted light.
Since each element absorbs and emits light at its own characteristic wavelengths, it is possible to analyze for the concentration of one metal in a solution of many elements and eliminate the need for chemical separation.

The instrumental components which are required for analysis are: 1) a light source (a hollow- cathode tube); 2) a method of producing atomic vapor (a flame-aspirator system, carbon rod, tantalum ribbon, etc.); 3) a method of isolating the desired wavelength of light (a monochromator) 4) a detector (a photomultiplier); and 5) a d-c amplifier and read-out system.

OPERA TION OF THE J. A. 82-820 A.A.S.

## Introduction

The J. A. 82-820 is the same instrument as the J. A. 82-810 except for some minor electronic modifications. The 82-820 is a dual channel, double beam instrument. It is essentially two complete spectrophotometers sharing the same flame and fore-optics. The dual channel feature will allow the user to analyze for two elements simultaneously or to operate in one of two compensated modes; 1) background correction, or 2) an internal standard. It has been found, however, that only the background correction feature is useful in our application. Since both channels use the same set of fore-optics (mirrors, beam splitters, etc.), both monochromators will receive light from both lamps. Therefore, background correction can be done with a non-absorbing line of the analyzed element or a non-absorbing line of a second element.

For a more detailed explanation of the Jarrel Ash 82-810, the reader is referred to the instruction manual (11).

## Preliminary Discussion

Before beginning this section of the manual, the reader should be familiar with the JA 82-810 Instruction manual (11). Many of the instructions and precautions included in the instruction manual have not been duplicated here.

Some of the procedures described here are considerably different from those described in the instruction manual. In these cases, the procedure described in this manual should be used. In many cases the procedures described here were obtained orally from the manufacturer and supersede the direction described in the manual.

The reader is specifically directed to:

## Section

1 Theory of Operation
3 Controls and Indicators
4 Single Channel Operation
6 Background Correction

TABLE 1. INS TRUMENT SETTINGS

| Element | Sci. <br> Abbrev. | Wavelength | $\begin{array}{r} \text { Slit } \\ \text { Width } \\ \hline \end{array}$ | Slit <br> Setting | Lamp Current | $\begin{aligned} & \text { Oxidant/ Comments } \\ & \text { Fuel } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum | 1 | 3093 A | $4 \AA$ | 4 | 10 ma | $\mathrm{N}_{2} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{2}$ |
| Barium | Ba | 5536 | 2 | 3 | 15 | $\mathrm{N}_{2} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{2}$ |
| Calcium | Ca | 4227 | 10 | 5 | 10 | $\mathrm{N}_{2} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{2}$ |
| Cobalt | Co | 2407 | 2 | 3 | 12 | Air/C $\mathrm{C}^{\mathrm{H}} 2$ |
| Copper | Cu | 3247 | 4 | 4 | 7 | Air/C $\mathrm{C}_{2}$ |
| Iron | Fe | 2483 | 2 | 3 | 8 | $\mathrm{Air} / \mathrm{C}_{2} \mathrm{H}_{2}$ |
| Magnesium | Mg | 2852 | 10 | 5 | 10 | $\mathrm{N}_{2} \mathrm{O}_{2} \mathrm{C}_{2} \mathrm{H}_{2}$ |
| Manganese | Mn | 2795 | 4 | 4 | 10 | Air $/ \mathrm{C}_{2} \mathrm{H}_{2}$ |
| Nickel | Ni | 2320 | 1 | 2 | 10 | Air/C $\mathrm{C}_{2} \mathrm{H}_{2}$ Bkgd 2316 |
| Potassium | K | 7665 | 10 | 5 | 10 | Air/C $\mathrm{C}_{2} \mathrm{H}_{2}$ |
| Silicon | Si | 2516 | 2 | 3 | 12 | $\mathrm{N}_{2} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{2}$ |
| Titanium | Ti | 3653 | 10 | 5 | 12 | $\mathrm{N}_{2} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{2}$ |
| Zinc | Zn | 2139 | 10 | 5 | 7.5 | Air/C $\mathrm{C}_{2} \mathrm{H}_{2}$ Bkgd 2100 |

*This is a tabulation of the instrument settings found in the Fisher Scientific Company's Atomic Absorption Analytic Methods Manual (10). This list also includes any changes made by the geochemistry laboratory to the Analytic Methods manual.

## General Stepwise Operating Procedure

1. Turn on the instrument and allow it to warm-up for several minutes.
2. Plug it in the desired hollow cathode lamp, set the correct current and allow it to warm up.
3. Turn on the acetylene gas main cylinder valve.
4. Set the pressure to 14 psig . (The pressure should never be higher than this because acetone will become entrained in the acetylene and acetylene becomes unstable above 15 psig.)
5. Set the acetylene flow rate to approximately $5 \mathbf{s c f h}$.
6. If nitrous oxide is to be used:

Open the main supply tank valve fully.
Set the regulator to approximately 125 psig and plug in the heater cord.

Open the secondary tank valve fully.
Set the regulator to 50 psig .
7. Set the oxidant fuel rate to one or two marks below the maximum. This will insure a steadier flow rate.
8. Be sure you are using the correct burner head.

The air/acetylene burner head is slotted and approximately 10 cm long.

The nitrous oxide/acetylene burner head is slotted and approximately 5 cm long.
9. Switch on the air, then the acetylene and push the ignitor button.
10. Adjust the acetylene flow rate so that the flame is a clear blue. If the flame is uneven, the burner head and/or aspirator system must be cleaned.
11. Allow the burner to warm up for several minutes. This allows the adjacent electronic system to reach an equilibrium temperature and the burner head to expand to its operating configuration.
12. Adjust the slit width control to the proper setting.
13. Turn the monitor switch to HVA.
14. Move the wavelength control to the approximate setting and adjust until the digital voltmeter (DVM) indicates a minimum value.
15. If background correction is to be used, repeat steps 12-14 for Channel B. The monitor switch should be set to HVB. When setting the proper wavelength, care must be taken to avoid tuning into an emission peak which is adjacent to the correct value. This is important for ir on and nickel which have many emission peaks close together.
16. Turn the flame off and be sure that the burner head is below the light path.
17. Turn the monitor switch to RA. Push the (A) display button, the light should go on.
18. While holding the autozero button down adjust the lamps until the absolute value of the display is less than 2.00. This indicates that the measure and reference beams appear approximately equal in intensity to the detector.
19. If background correction is to be done, the same procedure must be done for Channel B. The monitor switch is turned to RB and the (B) button must be pushed. Remember to check RA if you must adjust the lamp. Repeat until the absolute value of both RA and RB is less than 2.00.
20. Turn the monitor switch to OPERATE.
21. Turn the mode switch to $\% \mathrm{~A}$ and be sure the (A) button light is on.
22. Turn the integrate switch to 1 sec.
23. Autozero channel A.
24. Now move the burner head up until it is in the light path. This will be indicated by an increase in the DVM readings.
25. Turn the burner head down until the DVM readings return to zero. The light will now pass through the most stable part of the flame.
26. Turn on the gases and ignite the flame.
27. Autozero aspirating the zero standard.
28. Aspirate a solution which will give an absorbency of between $30-60 \%$.
29. Adjust the burner horizontal and rotational positions until a maximum absorbency is reached.
30. Adjust the nebulizer for a maximum reading.
31. Finally adjust the acetylene flow rate for maximum readings on the DVM.
32. Turn the mode switch to $A B S$ and autozero, aspriating the zero standard.
33. If background correction is required, push the (B) button, turn the mode switch to ABS and autozero as above. Now push the ( $\mathrm{A}-\mathrm{B}$ ) button and autozerousing the channel $A$ autozero button, and while aspirating the zero standard.
34. Aspirate the samples and record an approximate absorbency value for each one.
35. Aspirate the $s t a n d a r d s$ and record an approximate absorbency value for each one.
36. Decide which standards are required to bracket each sample - one higher and one lower.
37. Turn the mode switch to CONC.
38. Set the THRESHOLD control to the approximate \% absorption value where the relationship between absorbency and concentration becomes nonlinear.

This value may be obtained from the curves in Appendix A. The absorbancy values must be converted to \% absorption. This process must be followed in any case since $\%$ absorption and concentration are not linearly related.
39. Autozero aspirating the zero standard.
40. Aspirate the lowest standard (not zero) and set the CONCENTRATION controls so that an appropriate value is displayed on the DVM. NOTE: The maximum number that can be displayed by the DVM is 1999.
41. Now aspirate the highest standard required and set the CURVATURE control until the appropriate value is displayed on the DVM.
42. Check all of the standards for the appropriate values and repeat steps 39-41 until the proper values are obtained.
43. The AAS is now ready to collect data.

NOTE: If the CURVATURE control has been turned to zero and the readout is still too high, the THRESHOLD control must be set to a higher value.

## Shutdown of the AAS

1. Turn off the lamps.
2. If nitrous oxide is being used, switch to air then turn down the acetylene flow rate. This is important to avoid flashback.
3. Aspirate distilled water for at least 15 minutes. This is done to remove any accumulated salts from the aspirator system.
4. Turn off the air.
5. Turn off the acetylene.
6. Close all main tank valves.
7. Unplug the nitrous oxide regulator heater.
8. Drain all of the gas lines except the air line.
9. Close all of the regulator valves except the air regulator.
10. Empty the bucket which catches the overflow from the aspirator chamber.
11. Turn off the power.

## Maintenance of the AAS

The only routine maintenance required on the AAS is the cleaning of the burner-aspirator system. A good description of this procedure is described in Section 4.2.4 Burner Cleaning, on page 40 of the Instruction Manual (ll).

An electronic checkout procedure has been obtained from Jarrel Ash and is available in the laboratory.

The only other maintenance required is the cleaning of the exterior windows and lenses. This should be done with optical glass cleaning tissue and never with regular laboratory wipes. These contain too many abrasives.

Introduction
Standard solution preparation techniques were developed with four major objectives in mind. These were:

1) To match the samples in reagent composition,
2) To compensate for any inter-elemental interferences,
3) Produce solutions which had utility for a large variety of samples with varying concentrations of minerals,
4) Ease of preparation.

To date the following procedure has proven to be very efficient and no systematic errors have been detected for this method.

This section will describe the procedures used in the preparation of the reagents and standards used in the analysis of geochemical samples.

## Cesium Chloride

## Introduction

Certain easily excitable elements, such as potassium and sodium, are readily ionized in the flame. This will reduce the population of ground state atoms of these elements and alter their absorption values. In addition if these elements are present in varying amounts in samples and standards, their ionization can affect the analysis of other elements.

To reduce these effects a standard amount of cesium chloride is added to each solution. Cesium is more easily ionized than the other elements which are present and the amount of cesium added is enough to mask out any naturally present cesium. Therefore, any ionization effects are approximately the same for all the solutions.

## Preparation

The Cesium Chloride ( CsCl ) solution contains $25,000 \mathrm{ppm}$ of Cs.

To make 1.0 liter:

1. Weigh out 31.66886 gms of CsCl .
2. Transfer to a 1.0 liter volumetric flask.
3. Partially fill with D. D. water.
4. Shake until CsCl dissolves.
5. Bring to volume with D. D. water. Shake well and transfer back to the poly bottles, rinsing once with a small amount of the solution.

For smaller quantities:

| 500 ml | 15.83443 gms CsCl |
| :--- | :--- |
| 250 | 7.91722 |
| 200 | 6.33377 |
| 100 | 3.16689 |
| 50 | 1.58344 |

Aqua Regia

Aqua regia is a highly oxidizing solution made from one part concentrated nitric acid and three parts concentrated hydrochloric acid.

The reaction of HCl and $\mathrm{HNO}_{3}$ forms three products, two gases, $\mathrm{Cl}_{2}$ and NOC1, which will eventually escape from solution and water. This reaction gives aqua regia its oxidizing characteristics. Therefore, for this solution to be most effective in dissolving the sample, it should be freshly prepared. In instances where a sample will not dissolve, a new solution of aqua regia may solve the problem.

In addition care should be exercised when handling aqua regia since one of the gases evolved is chlorine ( $\left(\mathrm{Cl}_{2}\right)$.


Figure 1. Preparation of $\mathrm{Ca}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn}$ Standards.

Iron, Manganese, Magnesium

1. Add 50 ml of Conc. HCl to 1.0 gm of ir on wire in a teflon beaker.
2. Let set until the wire dissolves (overnight).
3. Add 0.4 gm of Manganese chips (be careful - reaction is very violent).
4. Add 0.4 gm of Magnesium chips (be careful - reaction is very violent).
*5. Transfer the solution to a 1.0 liter flask. Rinse beaker several times with D. D. water.
*6. Fill the flask to just below the mark.
*7. Let set to equilibrate to room temp. (Room temp. should be $18-22^{\circ} \mathrm{C}$ ).
*8. Fill to mark.
*9. Shake well.
*10. Transfer to poly bottle.
*Do these steps for each stock standard.

## Calcium

1. Add 5 ml of conc. HCl to 50 ml D. D. water.
2. Slowly add to 2.49724 gm of $\mathrm{CaCO}_{3} *$ in a 1.0 liter vol. flask.
3. Go to step six of Ir on, Manganese, Magnesium stock preparation.
$* \mathrm{CaCO}_{3}$ (Calcium Carbonate) should be thoroughly dried in a drying oven at $110^{\circ} \mathrm{C}$ before weighing.


Figure 2. Preparation of Al, Ba, Cu, K, Ni, Zn Standards.

Aluminum, Barium, Potassium

1. Add 20 ml aqua regia and 5 ml D . D. $\mathrm{H}_{2} \mathrm{O}$ to 1.0 gm Aluminum wire in a teflon beaker.
2. Let set until Aluminum dissolves.
3. Pour into 1.0 liter volumetric flask which contains
*a) 0.19067 gm Potassium Chloride
*b) 0.60651 gm Barium Chloride
4. Go to step six of Ir on, Manganese, Magnesium stock preparation.
*Potassium Chloride and Barium Chloride should be thoroughly dried in a drying oven at $110^{\circ} \mathrm{C}$ before weighing.

## Copper, Nickel, Zinc

1. Add 20 ml of conc. HCl to 1.0 gm of Nickel wire in a teflon beaker.
2. Set on a hot plate at the 1 setting until nickel dissolves (overnight).
3. Add 1.0 gm Copper turnings.
4. Add 0.5 gm zinc shot.
5. Go to step five of Ir on, Manganese, Magnesium stock preparation.

## Preparation of Working Standards

$\mathrm{Ca}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}$

1. Pipette 25 ml of $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}$ stock solution into a 500 ml volumetric flask. Bring to volume with D. D. water.
2. Pipette 50 ml of Ca stock solution into a 500 ml volumetric flask. Bring to volume with D. D. water.
3. Into each of ten 1.0 -liter volumetric flasks add 20 ml of CsCl solution and 10 ml of the 0 standard or equivalent from the $\mathrm{Al}, \mathrm{Ba}$, etc. standard.
4. Add to the flask the following:

| Flask \# | ml of $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}$ <br> solution | ml of Ca solution |
| :---: | :---: | :---: |
| 0 | 0 | 90 |
| .5 | 5 | 80 |
| 1 | 10 | 70 |
| 2 | 20 | 60 |
| 3 | 30 | 50 |
| 4 | 40 | 40 |
| 5 | 50 | 30 |
| 6 | 60 | 20 |
| 7 | 70 | 10 |
| 8 | 80 | 0 |

5. Bring to volume and transfer to polyethelene bottles.

## $\mathrm{Al}, \mathrm{Ba}, \mathrm{Cu}, \mathrm{K}, \mathrm{Ni}, \mathrm{Zn}$

1. Pipette 20 ml of $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$ stock into a 500 ml volumetric flask.
2. Dilute with D. D. water.
3. Into ten 30-oz. polyethelene bottles, add:
28.0 gm Boric acid ( $\mathrm{H}_{3} \mathrm{BO}_{3}$ )
30.0 ml Hydrofluoric acid (HF)
10.0 ml Aqua regia
20.0 ml Cesium chloride (CsCl) solution
4. Shake well and transfer to ten 1.0-liter volumetric flasks.
5. To each of the flasks add the following amounts of the recently prepared $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$ solution and the $\mathrm{Al}, \mathrm{Ba}, \mathrm{K}$ stock solution.


| 0 | 0 | 0 |
| :--- | ---: | ---: |
| .5 | 5 | 5 |
| 1 | 10 | 10 |
| 2 | 20 | 20 |
| 3 | 30 | 30 |
| 4 | 40 | 40 |
| 5 | 50 | 50 |
| 6 | 60 | 60 |
| 7 | 70 | 70 |
| 8 | 80 | 80 |

6. Dilute with D. D. water and transfer back to the poly. bottles.


Figure 3. Preparation of Silicon Standards.

## Preparation of Silicon Standards

1. Weigh out 0.53488 gm of silicon dioxide into the Parr teflon bomb (14, 15).
2. Add 4 ml of aqua regia.
3. Add 12 ml of HF .
4. Cap and insert into metal body. Hand tighten.
5. Heat in a $110^{\circ} \mathrm{C}$ oven for 1.5 to 2 hours.
6. Remove bomb from oven and let cool to room temperature. This is very important because of dangerous fumes and the loss of silicon-fluoride compounds at higher temperatures.
7. Pour the slurry into a poly bottle containing 11.2 gm of boric acid.
8. Shake well and transfer to a 250 ml vol. flask.
9. Bring to volume with D. D. water.
10. Rinse the poly bottle with a small portion of the solution and transfer the remainder.
11. To each of five 8-oz. poly bottles add the following:

Bottle no. Stock sol'n. Aqua regia $\mathrm{HF} \quad \mathrm{H}_{3} \mathrm{BO}_{3} \mathrm{CsCl}$

| 0 | 00 ml | 2.0 ml | 6.0 ml | 5.6 gm | 4 ml |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| .5 | 5 | 1.9 | 5.7 | 5.38 | 4 |
| 1 | 10 | 1.8 | 5.5 | 5.15 | 4 |
| 2 | 20 | 1.7 | 5.0 | 4.70 | 4 |
| 3 | 30 | 1.5 | 4.6 | 4.26 | 4 |
| 4 | 40 | 1.4 | 4.1 | 3.81 | 4 |

12. Pour into 200 ml vol. flasks.
13. Rinse poly bottles with small amounts of D. D. water.
14. Bring to volume with D. D. water and transfer the solutions back to the appropriate poly bottle.

## Preparation of Titanium Standards

1. Pipette 50 ml of 1000 ppm Ti standard into a 250 ml volumetric flask. Bring to volume with D. D. water.
2. To each of six 8 -oz. poly bottles add:
5.6 gm Boric acid
2.0 ml Aqua regia
6.0 ml HF
4.0 ml CsCl solution
3. Shake well and transfer to six 200 ml vol. flasks. Rinse twice.
4. To each of the above vol. flasks add:

| Flask\# | mls. of Ti solution |
| :--- | :---: |
|  |  |
| . 5 | 5 |
| $\mathbf{l}$ | 10 |
| 2 | 20 |
| 3 | 30 |
| 4 | 40 |
| 5 | 50 |

5. Bring to volume with D. D. water. Shake well and transfer back to the poly bottles rinsing once with a small amount of the solution.
6. Pipette 5 ml of 1000 ppm Co standard into a 250 ml vol. flask. Bring to volume with D. D. water.
7. To each of six $8-0 z$. poly bottles add:
5.6 gm Boric acid
2.0 ml Aqua regia
6.0 ml HF
4.0 ml CsCl solution
8. Shake well and transfer to six 200 ml vol. flasks. Rinse twice.
9. To each of the above flasks add:

10. Bring to volume with D. D. water. Shake well and transfer back to the poly bottles rinsing once with a small amount of the solution.

## SAMPLE PREPARATION

## Introduction

Samples are dissolved in a teflon crucible using hydrofluoric acid and aqua regia. The technique is similar to that described by Bernas (1). This method has proven successful for the dissolution of sediments, basalts and manganese nodules.

Sediments are dryed at $100^{\circ} \mathrm{C}$ to remove absorbed water and insure a consistent weight of sample. A suitable amount of sample is weighed out; generally 400 mg . for sediments and basalts and 200 mg . for manganese nodules. The sample is then transferred to a teflon crucible and reweighed.

Two milliliters of aqua regia are then added to the sample in the teflon crucible. The aqua regia must be recently prepared to insure the dissolution of the sample. (See discussion on aqua regia.) Then 6 ml of HF are added.

A teflon lid is placed over the crucible and it is sealed into the stainless steel casing. The "bombs" are heated in a drying oven at $100^{\circ} \mathrm{C}$ for 1.5 to 2 hours. The longer heating time is recommended for the darker colored sediments containing larger amounts of iron and manganese oxides, which are more difficult to dissolve. Heating times of three hours are recommended for manganese nodules.

The decomposition vessel is then removed and allowed to cool to room temperature.

The sample is transferred to a polyethylene bottle containing 5.6 gms of boric acid. The boric acid performs two functions; one is to neutralize the excess HF so the solution can be accurately diluted in glass ressels and second to dissolve the fluorides which have precipitated in the crucible.

Bernas determined that in the presence of excess boric acid, the attack on glass vessels by HF was insignificant over a period of two hours (1). However, since the accuracy of a volumetric flask would be significantly changed over a period of several years, the solution should be transferred to polyethylene bottles as soon as possible and the glass vessels rinsed (see below).

Finally, four milliliters of 25000 ppm cesium solution is added and the mixture is diluted to 200 ml . The cesium is added to the sample to act as an ionization suppressant. (See discussion on cesium chloride solution.) All samples contain approximately 500 ppm of cesium.

From this solution other dilutions are made as necessary to analyze the desired elements.

Hydrofluoric acid is prevented from attacking glass by the formation of fluoroboric acid with boric acid in a two step reaction:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{HF} \quad \mathrm{HBF}_{3} \mathrm{OH}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HBF}_{3} \mathrm{OH}+\mathrm{HF} \quad \mathrm{HBF}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Fluor oboric acid will then hydrolyze to hydroxyfluor oborate ions and hydr ofluoric acid, hence the time limit the solution can remain in contact with the glass.

## Step-by-Step Sample Preparation Procedures

1. Pour out the entire sample onto a piece of weighing paper.
2. Weigh out approximately 400 mg of the sample ( 200 mg for manganese nodules). Small portions should be taken from different sections of the pile to prevent size particle fractionation.
a. Metalliferous sediments are transferred to a black capped vial and dried in a drying oven at $110^{\circ} \mathrm{C}$ overnight, then cooled in a dessicator to room temperature. b. 2-20 $\mu$ fractions must be sampled using a micro-splitter.
3. Brush the teflon portion of the dissolution bomb with the "Staticmaster" brush to remove some of the static charges which tend to accumulate on teflon.
4. Weigh the teflon liner.
5. Pour the sample into the teflon liner. Use a piece of rolled weighing paper as a cylindrical funnel to keep the sample from flying around and adhering to the side of the teflon crucible. (This is caused by the electrostatic charges.)
6. Weigh the sample and crucible.
7. Carefully add 2 ml of aqua regia. A light colored sample indicates high carbonate content and extreme care must be used to prevent
bubble formation and spattering. It is suggested in this case that the analyst wet the sample with approximately .5 ml of double distilled water (DDW) then add the aqua regia in .1 ml aliquots for the first. 5 mls , then add .5 ml and finally a full milliliter. (Use the pipette gun.)
8. Add 6 ml of HF .
9. Put on the teflon lid and insert into the metal bomb.
10. Tighten the metal cover to 250 in -lbs. of torque.
11. Put the bomb into a drying oven at $110^{\circ} \mathrm{C}$ for 1.5 to 2 hours. The longer times are suggested for the darker sediments. (Up to 3 hours are recommended for manganese nodules.)
12. Remove the bombs from the oven and allow to cool to room temperature. While the bombs are cooling, they must be retightened to 250 in-lbs. of torque every 10 minutes to reduce leakage. Leakage is caused by the cold-flowing of teflon under pressure and loss of the seal on cooling.
13. After cooling remove the teflon liners from the metal body and pour the dissolved sample into a polyethylene bottle containing 5.6 gms of boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$. Be sure to rinse the liner and the lid carefully with DDW.
14. Shake the mixture; the solution should be yellowish to clear. If brown or a dark color, the sample was not dissolved.
15. Pour the solution into a 200 ml volumetric flask. Rinse the poly bottle with a small amount of DDW and pour into the volumetric flask. NOTE: All flasks and pipettes must be Class A.
16. Repeat the rinsing.
17. Pipette 4 mls of cesium chloride ( CsCl ) solution into the vol. flask.
18. Bring to volume with DDW.
19. Rinse the poly bottle with a small amount of sample solution and transfer the remainder.
20. Pipette 10 mls of the solution into a one liter vol. flask.
21. Add 20 mls of CsCl solution.
22. Bring to volume with DDW.
23. Rinse a poly bottle with a portion of the solution and transfer the remainder.

## SAMPLE DECOMPOSITION HARDWARE

The acid decomposition vessels were machined from $13 / 4^{\prime \prime}$ dia. virgin teflon rods and the metal casings from 2 in. and $2 \frac{1}{4}$ in. dia. 304 stainless steel rods.

The teflon crucibles and caps were "roughed out" to the approximate size and shape. They were then annealed at $220^{\circ} \mathrm{C}$ overnight. This was done to relieve stresses caused in the teflon by the cutting and machining process (12).

The stainless steel shell was machined with a $1 / /^{\prime \prime}$ hexhead nut on the cap to facilitate tightening. It was felt that the use of a torque wrench to seal the vessles would insure more uniform results than 'hand tightening" which had been suggested by all of the other designers.

It was found that 250 in-lbs. of torque could be developed by "hand tightening" and this was the value that was decided as sufficient to seal the vessels.

The aluminum plate used to hold the "bombs" while they are being tightened and cooled has proven to be a very useful item. In addition to increasing the efficiency of the tightening operations. The holder will also act as a heat radiator to increase the rate of cooling.

There are several things which could be done to improve the design of the vessels. The most important would be to increase the depth of the
crucibles. This should be done to decrease the chance of losing the sample when it is being transferred to the vessel and when the acid is being added. Also a more acid-resistant grade of stainless-steel
( $316 \mathrm{~s} . \mathrm{s}$.) should be used for the metal casings.

## SAMPLE DECOMPOSITION VESSEL


2 STAINLESS STEEL CAP，WITH $11 / 8 "$ HEXHEAD NUT
囲 STAINLESS STEEL PRESSURE CASING，MAIN BODY
$\mathbb{N}$ STAINLESS STEEL REMOVABLE PLUG
田 ..... TEFLON CAP
圈 TEFLON CRUCIBLE

[^0]

Figure 5

## Introduction

Data may be collected manually by the operator or automatically using papertape produced by an ASR-33 teletype.

Data reduction procedures are related to the method of data collection. If the data are collected manually there are two devices for which programs have been developed to reduce the data. One is the Wang 500 programmable calculator and the other is the CDC 3300 computer. Using the teletype and papertape system for data collection, the operator must use the School of Oceanography's PDP-15 computer.

As shown in the schematic drawing, with the Wang 500 only noncomputer compatable hard copy is obtained, whereas the other two methods of reducing the AAS data result in a standard formatted, computer compatable data card.

All of the se systems are presently workable; however, the automatic system seems to be the most satisfactory. Using this system a larger amount of data can be collected more quickly than using the manual systems. The data are also collected on papertape which can be immediately fed into the computer without further preparation.

Proceedings for Using the Wang 500 for

AAS Data Reduction

## Preliminary Discussion

The program to reduce atomic absorption data on the Wang 500 is available on a magnetic tape cassette. The reader is referred to the Wang 500 reference manual (17) for operating instructions.

Utilizing this method of data reduction, the analyst may input any amount of data for each sample or standard. The procedure is fairly simple and reasonably fast.

The major drawback is that no computer compatable output is produced by the calculator and must be produced manually by the operator.

This process is probably best suited for check calculations and the stray analysis which must be performed occasionally.

The output is interpreted as follows:

> A - average

E - variance
D - standard deviation
J - percent metal in the sample
M - percent error

## Stepwise Operating Procedure

1. Be sure the PRINTER is OFF before turning the calculator on.
2. Turn the calculator on. The switch is on lower left, backside of the calculator.
3. Depress RUN.
4. Insert the tape, push REWIND.
5. Key PRIME.
6. Depress TAPE READY.
7. Key LOAD PROGRAM.
8. Key VERIFY PROGRAM (1738 should appear in the display, if not, repeat steps 5-8).
9. Depress $f(x)$.
10. Key PRIME.
11. Key 01.
12. Enter the LOW STANDARD READOUT VALUES.
13. Key GO.
14. Repeat steps $12 \& 13$ for all values.
15. Key 00 after entering all of the data.
16. Repeat steps 12 to 15 for all of the UNKNOWN READOUT VALUES.
17. Repeat steps 12 to 15 for all of the HIGH STANDARD READOUT VALUES.
18. Key in the LOW STANDARD CONCENTRATION VALUE in P.P.M., GO.
19. Key in the HIGH STANDARD CONCENTRATION VALUE in P.P. M., GO.
20. Key in the SAMPLE WGT in milligrams, GO.
21. Key in the DILUTION FACTOR, GO (the no. which would raise the actual dilution to 1000 ml , i. e. if the actual dilution is 500 ml the factor is 2).
22. For further tests begin at STEP 12 .
23. Be sure the PRINTER is OFF before turning the calculator off.
24. Switch the calculator OFF.

|  |  |  |  |  | 038 | 08 | 02 | * W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 09 | 00 | * | M | 039 | 02 | 10 | + 10 |
| 001 | 10 | 01 | $f 1$ |  | 040 | 10 | 02 | f 2 |
| 002 | 00 | 14 | E14 |  | 041 | 08 | 00 | * S |
| 003 | 00 | 02 | E 2 |  | 042 | 00 | 05 | E 5 |
| 004 | 02 | 15 | + ${ }^{5}$ |  | 043 | 09 | 00 | * M |
| 005 | 09 | 00 | * | M | 044 | 10 | 02 | f 2 |
| 006 | 00 | 01 | E1 |  | 045 | 06 | 14 | St14 |
| 007 | 09 | 03 | * | Sp | 046 | 02 | 00 | + 0 |
| 008 | 08 | 02 | * H |  | 047 | 01 | 14 | T14 |
| 009 | 00 | 10 | E 0 |  | 048 | 08 | 12 | * $x^{2}$ |
| 010 | 10 | 02 | f 2 |  | 049 | 02 | 01 | $+1$ |
| 011 | 08 | 00 | * S |  | 050 | 00 | 01 | E 1 |
| 012 | 00 | 01 | E 1 |  | 051 | 02 | 02 | +2 |
| 013 | 09 | 00 | * | M | 052 | 09 | 15 | * RT |
| 014 | 00 | 02 | E2 |  | 053 | 09 | 00 | * M |
| 015 | 01 | 00 | TO |  | 054 | 10 | 03 | f 3 |
| 016 | 03 | 10 | -10 |  | 055 | 06 | 04 | ST 4 |
| 017 | 02 | 11 | +11 |  | 056 | 05 | 10 | $+10$ |
| 018 | 01 | 01 | T 1 |  | 057 | 07 | 0.4 | 204 |
| 019 | 02 | 12 | $+12$ |  | 058 | 05 | 03 | $\pm 3$ |
| 020 | 02 | 13 | $+13$ |  | 059 | 01 | 04 | T4 |
| 021 | 09 | 00 | * | M | 060 | 05 | 00 | $\div 0$ |
| 022 | 00 | 03 | E 3 |  | 061 | 09 | 15 | * RI |
| 023 | 09 | 03 | * | SP | 062 | 09 | 00 | * M |
| 024 | 08 | 02 | * W |  | 063 | 10 | 04 | $f 4$ |
| 025 | 01 | 10 | Tio |  | 064 | 08 | 02 | * W |
| 026 | 10 | 02 | +2 |  | 065 | 00 | 15 | E15 |
| 027 | 08 | 00 | * 5 |  | 066 | 08 | 02 | * W |
| 028 | 00 | 03 | E 3 |  | 067 | 00 | 15 | E15 |
| 029 | 09 | 00 | * | M | 068 | 09 | 15 | * RT |
| 030 | 00 | 04 | E4 |  | 069 | 09 | 00 | M |
| 031 | 01 | 00 | TO |  | 070 | 10 | 00 | $f 0$ |
| 032 | 02 | 10 | +10 |  | 071 | 08 | 02 | * W |
| 033 | 01 | 01 | T 1 |  | 072 | 00 | 15 | E15 |
| 034 | 02 | 12 | +12 |  | 073 | 07 | 02 | RE 2 |
| 035 | 09 | 00 | * | M | 074 | 05 | 00 | $\pm 0$ |
| 036 | 00 | 05 | E 5 |  | 075 | 08 | 02 | * W |
| 037 | 09 | 03 | * | SP | 076 | 03 | 10 | - 10 |


| 077 | 08 | 12 | - $x^{2}$ | 121 | 08 | 02 | * W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 078 | 06 | 03 | ST 3 | 122 | 09 | 10 | * LS |
| 079 | 07 | 02 | KE2 | 123 | 10 | 03 | f 3 |
| 080 | 04 | 03 | $\times 3$ | 124 | 09 | 03 | * SP |
| 081 | 03 | 01 | -1 | 125 | 08 | 02 | * W |
| 0.82 | 00 | 01 | E1 | 126 | 08 | 10 | - ${ }^{\text {LH}}$ |
| 083 | 03 | 02 | -2 | 127 | 10 | 03 | $f 3$ |
| 084 | 01 | 02 | T2 | 128 | 10 | 04 | 14 |
| 085 | 05 | 01 | +1 | 129 | 07 | 11 | 成 11 |
| 086 | 08 | 02 | * 1 | 130 | 05 | 10 | $\pm 10$ |
| 087 | 07 | 10 | R10 | 131 | 02 | 03 | + 3 |
| 088 | 08 | 13 | * $\sqrt{6}$ | 132 | 00 | 01 | E 1 |
| 089 | 08 | 02 | * W | 133 | 00 | 00 | E 0 |
| 090 | 06 | 10 | 5110 | 134 | 00 | 00 | E 0 |
| 091 | 10 | 04 | $f 4$ | 135 | 04 | 03 | $\times 3$ |
| 092 | 00 | 01 | EI | 136 | 08 | 02 | * * |
| 093 | 03 | 15 | -15 | 137 | 12 | 10 | $A: 0$ |
| 094 | 08 | 0.5 | * ${ }_{4}$ | 138 | 07 | 11 | $\mathrm{k} \leqslant 11$ |
| 095 | 08 | 00 | * S | 139 | 05 | 10 | $\div 10$ |
| 096 | 00 | 06 | E 6 | 140 | 08 | 12 | * $x^{2}$ |
| 097 | 09 | 04 | * Jo | 141 | 04 | 13 | $\times 13$ |
| 098 | 08 | 00 | * S | 142 | 07 | 11 | \% 511 |
| 099 | 00 | 04 | $E 4$ | 143 | 05 | 00 | $\div 0$ |
| 100 | 08 | 00 | * S | 144 | 08 | 12 | * $r^{2}$ |
| 101 | 00 | 02 | E2 | 145 | 04 | 12 | $\times 12$ |
| 102 | 0.9 | 00 | * M | 146 | 02 | 13 | $+13$ |
| 103 | 00 | 06 | E6 | 147 | 08 | 13 | * $\sqrt{6}$ |
| 104 | 01 | 00 | TO | 148 | 06 | 13 | St13 |
| 105 | 02 | 11 | +11 | 149 | 00 | 01 | E 1 |
| 106 | 01 | 01 | T 1 | 150 | 00 | 00 | E 0 |
| 107 | 02 | 13 | +13 | 151 | 00 | 00 | E 0 |
| 108 | 08 | 02 | * W | 152 | 04 | 13 | $\times 13$ |
| 109 | 00 | 15 | E 15 | 153 | 08 | 02 | * W |
| 110 | 09 | 03 | * $P$ P | 154 | 15 | 10 | 010 |
| 111 | 08 | 02 | * H | 155 | 10 | 04 | $f 4$ |
| 112 | 14 | 10 | C 10 | 156 | 10 | 04 | $f 4$ |
| 113 | 06 | 03 | St 3 | 157 | 10 | 04 | $f 4$ |
| 114 | 03 | 00 | -0 | 158 | 10 | 04 | $f 4$ |
| 115 | 09 | 03 | * SP | 159 | 10 | 04 | $f 4$ |
| 116 | 08 | 02 | * ${ }^{*}$ | 160 | 10 | 04 | f 4 |
| 117 | 10 | 10 | $f 10$ | 161 | 08 | 00 | * S |
| 118 | 02 | 00 | + 0 | 162 | 10 | 01 | $f 1$ |
| 119 | 04 | 10 | $\times 10$ |  |  |  |  |
| 120 | 09 | 03 | * SP |  |  |  |  |


| 201.0000000 | $x$ |
| :---: | :---: |
| 202.0000000 | X |
| 199.000000 | $x$ |
| 197.000000 | X |
| 203.000000 | $x$ |
| 199.0000000 | $x$ |
| 200.1666666 | A |
| 4.966670800 | E |
| 2.228602880 | D |
| 231.0000000 | $Y$ |
| 233.0000000 | $Y$ |
| 235.0000000 | $Y$ |
| 231.0000000 | $Y$ |
| 232.0000000 | $Y$ |
| 236.0000000 | $Y$ |
| 233.0000000 | A |
| 4.400000000 | E |
| 2.097617696 | D |
| 410.0000000 | Z |
| 411.0000000 | 2 |
| 408.0000000 | 2 |
| 407.0000000 | 2 |
| 409.0000000 | 2 |
| 410.000000 | 2 |
| 409.1666666 | A |
| 2.166674000 | E |
| 1.471962635 | D |

1.020000000
2.040000000
397.5400000

G
5.000000000

F
.0593771310 .0007584712

## Procedures for Using the CDC-3300

## for AAS Data Reduction

## Preliminary Discussion

Atomic absorption data may be reduced using the Computer Center's CDC- 3300 computer operating under the OS-3 operating system.

Data must be taken manually then punched onto computer cards for processing.

This is an intermediate step between the Wang 500 and the PDP-15. The major disadvantage is that data must be punched onto computer cards manually. This offers no real advantage over the Wang. However, all results are punched onto computer cards which are immediately available for further work.

## Data Card Formats

The program used to reduce the data performs all of the calculations for one sample before proceeding to the next. Therefore, the data must be arranged to conform to the se requirements.

The formatting for each type of card is given and then a more detailed description of the order follows.

> Data Type

Columns (inclusive)
Card 1: Sample name 1-24
Card 2: Geochemistry Ascession no. 1-6 IDK Ascession no. 8-14 Subsampling typing code 16-18 Sample weight (in mg. with a decimal) $20-30$


* These three values are read by the computer using freeform input. They may be typed in any column of Card 3 (following the Element name) in the given order and must be separated by a space.

The data deck will consist of the above seven types of cards repeated in a specific sequence.

For the first sample the operator will punch cards 1 and 2. Then for each element analyzed for that sample, cards 3, 4, 5, and 6 must be repeated sequentially. After all of the data for sample one has been punched, a blank card is inserted into the deck. This signals the computer that calculations have been completed for sample one. For further samples the sequence is repeated.

It must be noted that if the decimal is forgotten in values for the sample weight or the readout values, the computer will interpret an erroneous value.

Most of the common typing errors can be corrected while running the data reduction program. However, care in typing the data deck will save a great deal of time.

The program cannot operate correctly if any of the cards are out of sequence or missing. If this type of error should occur, it may be corrected by fixing the data deck and re-entering the deck to the computer.

Alternately, the data file may be corrected using the OS-3 Editor (4).
To enter the data deck into the computer, the following cards must be added:

Card 1: Cover card (from Computer Center)
Card 2: $\begin{aligned} & 7 \\ & 8\end{aligned}$ JOB, ........card
Card 3: ${ }_{8}^{7}$ COPY, $0=($ datafile name $)$ (the data deck)

Card 4: $\begin{aligned} & 77 \\ & 88\end{aligned}$
Card 5: ${ }_{8}^{7}$ LOGOFF

Running the Program
Data is reduced on the CDC-3300 using a program called ATOMS and subprograms $A V E, V A R I$ and DEKODE plus routines from library files *CHEMLIB and *REGLIB. (16)

These programs have been compiled and an overlay program called *AAS has been produced. (For instructions on these and other procedures refer to the Control Mode Manual for OS-3 (13), the CDC FORTRAN reference manual (2) and Dayton and Massic (3).)

The procedure from this point will be described.

NOTE: When a name is in all capitals and enclosed by parenthesis, it denotes a single key.

1. After getting the I/O center to hook-up your teletype to the computer, type (CONTR)(A), the computer will respond with a \#.
2. Type in your user number and validity code and type (RETURN). The computer will respond by masking out your number and typing the date and a \#.
3. Type $\approx$ AAS, (RETURN).
4. The computer will begin by asking you for your name, then proceed with further queries and information. The operator must supply the correct answers (usually a YES or NO).
5. After you have completed the data reduction process you must type LOGOFF after the computer types a \#.

The results will be punched on computer cards in the correct format.
To correct typing errors on the teletype the following procedures may be used:

1. For a typing error in your name
a. Type (CONTR)(A), the computer will respond with a \#.
b. Type GO, (RETURN), (LINE FEED)
c. Type in your name
2. An error in the data input file name will cause the computer to ask you for the name again. (Unless the name also exists - in which case you must reinitialize the program)
3. For errors in other alphanumeric names type (SHIFT)(L) for each mistake. The computer will respond with a $\backslash$ for each character deleted counting from right to left.
4. For any numeric errors, type any letter except $E$. The computer will respond with ERR. Then type in the entire number.
```
            PROGRAY ATOMS
            OIMENSIUN X(1U),Y(10),Z(10),XA(10),YA(10),ZA(10),TOEN(3),
        TIERME゙S(6),CHANGE(2G),CJQRECT(10) OCOOS
            REAL IJEN,LOSTO,NAME,OJERATOR
            INTEG:= ELEM,CHANGE,ERRJR,ELEMNO
            DRINT 1
        1 FORMARIF GUTEN TAGUN - ASS JNS ZUSAMMEN RECHIEN.#/
            I& EXEEOT FOR YES-NO ANSNERS, ALWAYS ENO YOUR RESPONSESA/
            2: 3Y TYPING THE RETURN KEY.#//# PLEEASE TYPE YOUR LAST NAME,#)
                    READ(6i,C)OPERATOR,AODZESS
            2 FORMAT(2A5)
            9 PरINT 10
        IL FORMAI(% WHAT IS THE dATA fILE NAME a*)
            REAO(\sigma,.11)NAME
    il FURMAT(48)
            CALL UNEQUIP(5)
            IENEMJ[P(5,NAME,IERMES))3OTO 14
            P₹INT 15,IERMES
        15 F.S24, ((1x,6A4)
    GJ TJ G
        14 CALL UVEQUIP(62) 00021
            GHLL EZJIP(OZ,SHPUN ) 00022
            GHLL LA3ELP(62,JPERATOR) 00023
            \sigma:LL U*EQUIP(10)
GALL EZJIP(10,5HFILE ) &0025
C
c data inPut section
5:% O!TT !5
```



```
    &-401戸,FこいIUEV,ASCNO,ASNNIO,IFRAC,NGT
```



```
        I= EOF(弓))GO T0.2.
        PRITH LJ5,IOEN,ASCNO,ASCNLO,NGT,IFRAC
    00001
        00002
        00003
        C0004
        00005
        C0006
        00007
        00008
        00009
        00010
        C0011
        C0011
        00012
        00013
        C0014
        00015
        00016
        00017
        G0018
        G0019
            00024
COATA < <0026
C
O0027
G
5*) iO028
    00029
    00030
        00031
                            0032
```



```
    #F%.2,5x,*FRAC= t,A3)
```



```
    S036
    -0037
    1.5 = SRYAr(% WHICH VARIABLE IS INCORRECTA\not=) OCOB9
    1&% 2こAO(Oj,5)CHANGE* (%)
    j \vec{Fj24AT(2044)}
        O4LL. LANCEL(CHANGE) 00042
        EさRO2ここHANGE(1) COC43
        IFYERZJR.EQ.3HWJT.OR.ERZJR.EQ.3HGEO.OR.ERROR.EQ.BHIOK.OR. 40044
        IERROR.EQ.4HFRAC.ON.ERRJR.EQ.4HIGENIGOTO II7
            PशEyT 116
C0039
C0041
    115 = )RMAT(t WHAT^\not=)
    j.) 10 i14
```



```
    O天I|T 107
ij7 FJFMATG又 TYPE IV THË GJRRECT IOtiNTIFIER.f1
    I=(ER2OR.NE.4HFRAC)GOTJ 112 C0052
    マZAつ(5),5)CHANGE
    OALL CANCEL(CHANGE)
    IFRAこ=こMANGE(1)
    5: TJ 1う4
i&2 2E&)(0j,ivg) CORRECT
1.g=jरviT(1UGA&)
    O:LC GivGEL(CORRECT)
    IF(E2,02.cQ.3HGEO)ASCNJ=CORRECT(1)
    IF(ER2JR.t氏.3HIUKIASCHIJ=CORRECT(1)
    F(ER2)२.NE.4HIDENIGO IJ 104
G0044
```



```
00045
C0046
C0047
00048
C3049
<00050
```



```
00052
C005S
00054
C0055
00056
C0057
00053
00059
6.0064
C0061
00062
```

```
        0j1:3I=1,3 40063
    1,3 I)E:((I)=CORRECT(I)
        j) TJ 1C4
    1. う AJT=TELOS(\pmTHE CORRECT WGT=St)
        G10 1u4
    うu] I PUN=TE:OS(\not=TR[AL RUN=$ま)
    5,j <EAJ(j,iU1)ELEM
    1U1 F:JK^AT(42)
        IF(ELEY.EQ.2H )GOTO 310
        3ACKSPAこE 5
        LOSTJ=FF[N(5)
        &[JTJ=FFIN(5)
        OILJTE=FFIN(5)
        २もAJ(5,102)XA
        REA丁(5,102)YA
```



```
    1.2 FORMAT(1GA8)
        CHLL DEKOOE(XA,VX,X)
        CALL OEKOOE (YA,NY,Y)
        CALL JE<OOE(ZA,VZ,Z)
        0) i2: I=1,1u
        IF(X(I).GE.2UGO.,OR.Y(I).GE.2OCU.,OR.Z(I).GE.2ÜO.)GO TO 121
    12J CJNTINJE
    G) T0 14u
    12i P{I:T i22,ELE:1
    122 FJRMATIt ERROR IN DATA FOR A,A2,* CALCULATIONS.f)
        j: TJ 3Ju
C
    \becauseALGULATE AVERAGE VALUES JSING SUBPRDGRAM AVE
    iqu xave=ave(x,dx)
        Y & = =AV = (Y,itY)
        ZAリE= = AV (Z,NZ)
C SA_OULATE VGRIANCES UJING SUBPROGRAA VARI
        XJAPI=VARI(X,HX,XAVE)
        Y:AेरI=VARI (Y,NY,YAVE)
        Z,ARI=VARI(Z,IVL,ZAVE)
C
C =A_CULATÉ دER CCNT METAL INO ERROR
        FICTR=1しここ/OILUTE
        YA=`次V-xAVE
        Za=\angleAVE-XAVE
        H_=HISTO-LOSTO
        FS=FA:TR*RGT
        A:^THET=((LOSTJ+HL*YX/ZX)/FG)* 10U.
```



```
        1))**2*(xVARI+2VARI))
        Pミマ=(EZマ/AMTMET) * 1UG
C PREHIS RESULTS ANO ASKS OPERATOR TO CHECK THEM
    W`ITE(今1,150) 15S:10,ELE%,A&TMET,ERR
    1%u F:j%tir(1ג,A6,v人, A2,2(5x,F12,4))
    d"IrE(51,3.1)LUSTO,HISYO,OLLJTE
```



```
        G)TO(2J0,3うこ)!ELUS(\not=0<のbf)
C PRIITS OUT OATA IF ERROR IS SUSPECTEO ANO ALLOWS FOR CORRECTION
C
3.0 wPITE (51,363)
    30S FiJर|तT (2x,1H!:, 12X,1HX,13i,1HY,13X,1|Z/)
40063
ェ． 3 I）E：（I）＝CORRECT（I） JJ TJ 104
1LJ \(1 \mathrm{JT}=\mathrm{TELOS}( \pm T H E\) CORRECT WGT＝St） G1）TO 1 U4
```



```
5，う २ビAJ（う，iU1）ELEM
1u1 F：JズはオT（42）
IF（ELEY．EQ．2H ）GOTO 310
3ACKうPAJE 5
なTJ－FFIN（5）
OLLJTE＝FFIN（5）
マLAJ（5，102）XA
REAア（5，102）YA
```



```
CHLL DEKOUE（XA，VX，X）
\(C A L L D E K O O E(Y A, N Y, Y)\)
＝
```



```
Lこう Cont INJE
G）T0 140
12i P！I：T i22，ELEM
122 FJRMATIt ERROR IN DATA FOR \(\neq A 2, \neq\) CALCULATIONS．\({ }^{\prime}\)（）
；）TJ 3Ju
\(C\)
\(C\)
6
シALCJLATE AVERAGE VALUES JSING SUBPROGRAM AVE
```



```
\(Y+V=A V=(Y, i \forall Y)\)
ZAリE＝A：E（Z，NZ）
\(C\)
\(C\)
\(C\)
こA＿EULATE VARIANCE゙S USING JUJPRJGRA：A VARI
\(X \forall A P I=V A R I(X, H X, X A V E)\)
\(Y:\) ÀरI＝VARI（Y，HY，YAVE）
\(Z, A R I=V A F I(Z, I N L, Z A V E)\)
C こA＿CJLATÉ دER CCNT YETAL INO ERROR
C
FICTマ＝1 しこに／OILUTE
```



```
\(Z A=\angle A V E-X A V E\)
```






```
C PREIAS RESULTS ANO ASKS OPERATOR TO CHECK THEM
a
WみITE\｛51，190）ASO：1O，ELEY，AYTMET，ERR
```



```
00065
－0066
40067
00068 00069 00070 00071
00071
00072
00073
00074
00075
00076
C0077
00078 00079 00080 u0081
C 0082
00083
00084
LCO85
COL 86
C0C87
00488
00089
60090
00091
00092
530う3
くらもシ
CSG95
00096
015097
60098
40099
－5ivo
00101
00102
00103
し0 104
\(00: 05\)
60106
C 0107
40108
60109
i C \(11 i\)
C011：
GU112
C． 0113
00114
00115
06116
いう117
00118
00119
00126
00121
00122
40123
© 0124
40125
C 0126
```

```
    3) 3:, VI=i,15 C0127
    IF(NI.jT.NX)GO TO 303
    iF(:IF.JT.NY)GO TO 3u7
    FF(:+[.ST.NZ)GO TO 360
    d二ITE(51,364)NI,X(NI),Y(NI),Z(NI)
3o4 FOP.1AT(1X,I2,3(9X,FG.0))
    j) TO 31i
3u3 IF(NI.JT.NYIGO TO 3u5
    IF(NI.ST.NZ)GO TO S12
    O=INT 3U4,NI,Y(NI),Z(NI)
3,4 Fご:4AT(ix,I2,14x,2(8x,=5.J))
    こう TO 31u
3う5 IF(NL.ST.NZ)GOTO 314
    PQI:HT 3,G,NI,Z(YI)
3u5 F%रMAT(1X,IZ,36X,F6.0)
    GO TO 310
3u7 IF(NI.jT.NZIGO TO 309
    P=I:IT 3:8,NI,X(NI),Z(NI)
3,3 Fう२^A「(1x,I2,8x,F6.5,22x,F6.0)
    \square丁 T) 310
3-7 0<I:NT 3:1,NI,X(NI)
3:1 FこPM4T(1X,[2,8X,F6.3)
    Gu TJ 310
312 PQI:N 313,NI,Y(NIS
```



```
    GOTO 314
    30J PZINT 361,NI,X(NI),Y(NI)
30: = 3N14T(1X,I2,2(3X,F6.U))
3ay JOHT[HJE
3.4 PरINT 315
S&jFj*HAT(z wHA| vARIAULE IS IVISOREECT A#)
    <=的(ju,号CHANGE
    OALL CA&CEL(CHAYJF)
    ir (;HCNGE(D).EO.iHNONE)=0 TO 20u
    If(CHAHCE(I).EQ. 2HLO)GO TO 323
```



```
    IF(C:1AvGE(1) , EQ.4HOILU)}=0\mathrm{ TO 319
    I\ddot{r}(N,4i|GE(1).EQ. 1HX) GO ro 320
    IF(CHAVGE(1).ER. LHY)GO TO 321
    IF(itaiGGE(1).tQ.1HZ)GOTO 322
    G0 TU 3jj
    313 JILUTS=TELOS(zUILUTION=各ま)
    GOTO 350
    3LJ i =TELJS(FWHAT N EQUALS THE 3AD OATA POINTABF)
        x(I)=T=LOS(\not=THE SORRECT X=$ま)
        IF(I.jT.HA)NX=I
        30Tう S5u
    3&1 J=TELOS(\notFWHAT M EQUALS THE 3AO DATA POIHTAB%)
        Y(J)=TELDS( }\not=\mathrm{ TME CORRECT }Y=B\not=
        IF(J.r,T.NY)NY=J
        Эj TO 350
    3<Z <=TESOS(FrHAT N EWUALS YHE SAO OATA POINTAふま)
        Z(K)=rE-0S(*THE CORHECF Z=$&)
        If(K.ST.|Z)NZ=K
        j0 T丁行自
    3&3 LSSTJ=T:LOS(*LO=st)
        う) T) 306
    3<+ tiSTj=TELIO(B44II=,0GOJ)
```



```
C
C asSIGNS ATOMIC NO TO THE ELEMENT
C
2u」 ELENけ!O=u
        IF(ELEY.EO.2HCU)ELFHNO=29
```

C0127
© 1128
05129
U013：
CG13i
E0132
i． 0133
00134
00135
CO136
© 0137
00138
C0139
00140
00141
CO142
00143
00144
co145
cou 146
$\leftarrow 0147$
00148
00149
C 0150
00151
00152
00153
00154
f） 0155
00156
40157
！ 0158
© 0159
00160
00161
CU162
00163
00164
i 0165
40156
40167
i0168
00169
$\dot{C} 0170$
00171
00172
00173
ن0174
00175
00176
40177
00178
00179
60180
00181
00182
نि183
60184
00135
${ }_{6} 0186$
ن 0137
00188
00189
00190

```
        IFELEY.EQ.CHFEIELEMNO=?6 CO191
        IF(ELE:Y.EQ.ZHMN)ELEMNO=25 GU192
        IF(ELE1.EQ. 2HNI)ELEMNO=28 00193
        IF(EGEY.EO.ZHSI)ELEMNO=14 
        IF(ELEY.RO. 2HZN)ELEMNO=30 00195
        IF(ELEY.EQ.2HAG)ELEMNO=%7 UO196
```



```
        IF(ELEY.EQ.2HHG)ELEHNO=12 OO193
        FF(5Lに゙Y.EG.2HAL)ELEMNO=13
        IF(ELEY.tQ.1HK)ELEMNO=13
        IF(ELヒH.EQ. 2HBA)ELEMNO=50
        IF(ELEY.EQ.2HCO)ELEMINO=27
        If(ELEYNO.NE.J);O TO 900
        P饣INT 21u,ELEM
    21J FORIHAT( }\ddagger\mathrm{ WHAT IS THE ATOMIS NO. OF A,A2)
        २HAD(Fi, ट2う)ELEMNO
    22J FORMAT(I2)
C
C OJTPUT TJ CAROS
Gu方 AHTMET=ANTMET*10J0U
        EQR=E?R*10U00
        WRITE(S2,901)ASSNO,IFRA;,ELEM, ELEMNO,ANTMET,ERR,PER,IDEN,
        LIRUN,ASこNIO
    9.: FORMATI 4HAASU,X,A6,X,A3,X,A2,X,I2,X,F12.4,X,F10.4,X,F5.2,X,
        12AB,A1,X,I2,X,A7)
        3) TO 3u5
    9.U IFIIRUN.GT.IIGO TO }51
        N<ITE(1:G,911) IJEN,IFRAこ,ASこNID,ASCNO
    9i1 FORMAT( 2AB,A7,1 UX,A3, 二X,A7,5X,A6)
        GO TO 51u
C
C FIIAL UERECTIONS AVD OUTJJT OF CROSS REFERENCE GAROS.
    3-J PRINT 321,OPERATOR
```



```
    G.: FURMAT(A YOUR GARDS NI,L BE SAVEO FOR YOU UNDEQ THE NAME &,AS/ CO226
```



```
        L# REYEYEER IOLOGOFFF/I/X MERCI, NOUS SOMHES FINLSVOVA) LG228
        ENOFILE 1J
        २EWINO 10
    G&4 रEAD(:J,Gて5) IDEH, IFRAC,ASENIO,ASCNO
    00229
    00230
    9:5 FDRMAT(2AB,A7,10X,A3,5X,A7,5X,A5)
        IF(EOF(1C))GO TO G3u
        NZITE(今2,H11)IUEN,IFRA:,ASCYIO,ASCNO 0. 0233
        SOTO 924
    9jJ CONTINJE
        ENJ
        FUNCTION AVE(W,N)
        OLMENSION W(1)
        SUM=0
        OU }1L=1,
    1 SUM=SUM+W(L)
        AVE=SUY/M
        RETURN
        ENO
        FUNETIJN VARI{W,N,AVEHJ)
        OLMENSION W(1)
        SUM=0
        JU L L=1,N
    1 SUM=SU1+((W(L)-AVENO)*R2)
        VARI=SJM/(H-1)
        RETURN
        ENO
        SUBRDUTINE OEKODE (OATA,N,DAT)
        OIMENSION DATA(1),OAT(1)
\(\begin{array}{ll}I F(E L E Y \cdot E Q \cdot Z H F E) E L E M N O=26 & \text { CO } 191 \\ \text { IF（LLGY．EQ．ZHMN）ELEMNO }=25 & \text { OU192 }\end{array}\)
IF（ELE1．EQ．2HNI）ELEMNO＝2日－OU193
        IF(ELEY.EO.2HZN)ELEMNO=3U
        60199
        C020G
        4!<ul
        00202
        00202
        40204
        C0205
        0U206
    60207
    60208
    40
    40210
    C0211
    CU211
    C0212
    0.213
    60214
    00215
    0}021
    00217
    00217
    C0218
    00219
    0022i
    jucici
    * u<22
    C9223
    40224
    00225
    00231
    00232
    00234
    00235
    00236
    l0237
    C0238
    00239
    00240
    Cu241
    00242
    C0243
    C0243
    60244
    6.0245
C0246
40 247
C0248
00249
00250
00251
c0252
C0253
40254
```

BLANKS=8H 40 0255
$\mathrm{N}=\mathrm{O}$ ..... - 3256$001[=1,1 u$

$$
00257
$$IF (OATA(I).EQ•BLANKSIPETURN002582 FORMAT(F3.0)

1 continueRE TURN

| 0С73-3-17P 75-80 CM |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MS0812 AAA 375.41 |  |  |  |  |  |
| FF 1.50 | 2.00 | 20000 |  |  |  |
| 473. | 470. | 475. | 478. | 474. | 478. |
| 644. | 642. | 645. | 648. | 650. | 651. |
| 6t4. | 663. | 659. | $\epsilon \in \in$. | 665. | $66 \%$ |
| MN 3.04 .020000. |  |  |  |  |  |
| 585. | 584. | 584. | 686. | 569. | 592. |
| 627. | 62 5. | 631. | ¢2 6 | 632. | 627. |
| 784. | 783. | 782. | 788. | 788. | 785. |
| CU 0.480 .80200. |  |  |  |  |  |
| 139. | 138. | 137. | 137. | 138. | 139. |
| 252. | 254. | 257. | 254. | 257. | 255. |
| 264. | 263. | 265. | 264. | $26 t$. | 267. |
| NI 0.400 .80200. |  |  |  |  |  |
| 212. | 215. | 212. | 216 | 212. | 215 |
| 277. | 276. | 281. | 280. | 279. | 282. |
| 437. | 438. | 435. | 435. | 438. | 437 . |
| DSDP 34-319-8-5 114-11t |  |  |  |  |  |
| MS1214 AAA 401.32 |  |  |  |  |  |
| FE 0.250.5020000. |  |  |  |  |  |
| 106 | 108. | 107. | 108. | 108. | 109. |
| 187. | 185. | 187. | 188. | 189. | 187. |
| 288. | 289. | 213. | 207 . | 297. | 213. |
| Cい0.20 9.40200. |  |  |  |  |  |
| 102. | 104. | 102. | 101. | 105. | 104. |
| 1 (4. | 165 | 168. | 159. | 163. | 159. |
| 207. | 210. | 297. | 207. | 207. | 212. |
| SI A.0 5A.37 2nn. |  |  |  |  |  |
| -1. | 0. | $0 \cdot$ | 0. | 0. | 0. |
| 38. | 38. | 39. | 41. | 39. | 40. |
| 145. | 151. | 150. | 152. | 152. | 152. |
| MN 0.100 .2020000. |  |  |  |  |  |
| 106. | 008. | 108. | 110. | 111. | 106 |
| 127. | 131. | 131. | 129. | 131. | 131. |
| 221. | 223. | 222. | 221. | 222. | 219. |
| DDDP 34-319-10-2 86-88CM |  |  |  |  |  |
| MS1215 AAX 010.00 |  |  |  |  |  |
| MN 0.01 0.20 20000. |  |  |  |  |  |
| 121. | 120. | 121. | 125. | 122. | 121. |
| 152. | 149. | 121. | 154. | 148. | 151. |
| 228. | 229. | 231. | 233. | 232 . | 231. |
| FE 0.255 .00200000. |  |  |  |  |  |
| 106 | 108. | 107. | 108. | 108. | 109. |
| 187. | 185. | 187. | 188. | 189. | 187. |
| 208. | 209. | 213. | 207. | 207. | 213. |
| CA 6.07 .0 20000. |  |  |  |  |  |
| 634. | 648. | 647. | 6.40. | 636. | 638. |
| 744. | 735. | 742. | 737. | 743. | 740. |
| 745. | 749. | 745. | 751. | 7 97. | 744. |

## camenaceris

Allgust 20, 1975 11:04:07 AM TFRMINAL 073-045B
**AAS
GUTEN TAG!! LASS LNS ZUSAMMEN RECHNEN.
EXCEPT FOF YES-NO ANSWERS, ALWAYS END YOUR RESPONSES
BY TYPIVG THE RETURN KEY.
PLeASE TYPE YOLR LAST NAME.
FUKUI
WHAT IS THE DATA FILE NAME?
XXSDATA
NAME NOT FOUND
WHAT IS THE DATA FILE NAME ?
AASDATA


WHAT VARIABLE IS INCORRECT ?
$\times$
WHAT $V$ EQLALS THE BAD DATA POINT? 4
THE CORRECT $X=586$
ARE THERE AVY MORE ERRORS?NO


OK?YES

| MS0812 | Cu |  | . 0409 | . 0006 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LO $=$ | . 4000 | $\mathrm{HI}=$ | . 8000 | DILUTION = | 200.000 |
| OK?YES |  |  |  |  |  |
| MS0812 | $\cdots 1$ |  | .0276 | .0003 |  |
| LO $=$ | . 4800 | $\mathrm{HI}=$ | . 8000 | DILUTION= | 200.000 |

OK?YES

IDEN= DSDP 34-319-8-5 114-116
$G E O=M S 1214 \quad$ IDK $=\quad W G T=401.32 \quad F R A C=A A A$ OK?YES
TRIAL RUN=1
$\begin{array}{lcrrr}\text { MS1214 } & \text { FE } & 2.2185 & .0608 \\ \text { LO } & .2500 & H I= & .5000 & \text { DILUTION= }\end{array}$
OK?YES
$\begin{array}{lcccc}M S 1214 & C U & .0155 & .0004 & \\ L O= & .2000 & H I= & .4000 & \text { DILUTION=}\end{array}$
OK?YES
MS 1214
LO =
SI

- 6539
50.3700

DILUTION=
200.000
) OK?YES

| MS1214 | MN | .6461 | .1829 |  |
| :--- | :---: | :---: | :---: | :---: |
| LO $=$ | $\cdot 1000$ | $H I=$ | .2000 | DILUTION= |

OK?NO

| $N$ | $X$ | $Y$ | $Z$ |
| :---: | ---: | :---: | :---: |
| 1 | 106 | 127 | 221 |
| 2 | 8 | 131 | 223 |
| 3 | 108 | 131 | 222 |
| 4 | 110 | 129 | 221 |
| 5 | 111 | 131 | 222 |
| 6 | 106 | 131 | 219 |

WHAT VARIABLEIS INCORRECT? $X$
WHAT N EQUALS THE BAD DATA POINT? 3N ERR 2
THE CORRECT $X=108$
ARE THERE ANY MORE ERRORS?NO
MS1214 MN •5945
LO= $\cdot 1000 \quad \mathrm{HI}=\quad .20 日 \theta$
DILUTION= 20000.000

OK?YES

IDEN = DDDP 34-319-10-2 86-88CM
GEO= MS1215 $I D K=\quad W G T=10.00 \quad$ FRAC= AAX OK?NO
WHICH VARIABLE IS INCORRECT?
IDEN
TYPE IN THE CORRECT IDENTIFIER.
DSDP 34-319-10-2 86-38CM
OK?NO
WHICH VARIABLE IS INCORRECT?
WGT
THE CORRECT WGT $=410.98$
OK?YES
TRIAL RUN = 1
$\begin{array}{lccc}M S 1215 & M N & & .2537 \\ L O= & .0100 & H I= & .2000\end{array}$

- 1059


| MS1215 | CA | 33.7636 |  | 1.5787 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LO $=$ | 6.0000 | $\mathrm{HI}=$ | 7.0000 | DILUTION= | 20000.000 |
| OK?YES |  |  |  |  |  |

```
) YOUR CARDS WILL BE SAVED FOR YOU UNDER THE NAME FUKUI
    REMEMBER TO LOGOFF
)
    MERCI, NOUS SOMMES FINIS!!!
)
)
)
    END OF FORTRAN EXECUTION
) *LOGOFF
    CosT $1.30
    CPU TIME SEC. 9.6
) MFBLKS 2
        SFBLKS 255
        WC TIME MIN. 13.8
        PUN RECORDS 15
```

)
)
)
)
)
)
)
)

## A Listing of the Data Cards Output by the CDC-3300 Data Reduction Program

```
AASU 15:112 4AA FE 26
AASJ 45-31? 4AA MN 25
AASU 13-3:2 AAA CU 29
AASJ 45,312 AAA NI 28
AASJ YS:2:4 AAA FE ZÓ
A4SU 4j:2:'4 4AA CU 29
AASJ YS:2:4 AAA SI :4
GASJ YS:II%.AAA MN 25
AASS YS-2:5 4AX AN 25
AASU YSiこ1; AAX FE 26
AASU YSil:5 AAX CA 2u
0C75-3-17P 7j-3u Ci1
OSOF 34-314-3-5 114-116
OSUP 34-3:9-15-2 86-39%
        AAX
```

```
104129.5770 2222.6104
```

104129.5770 2222.6104
170927.0547 1457.5397
170927.0547 1457.5397
407.3991 1457.5397
407.3991 1457.5397
275.6925 3.122C
275.6925 3.122C
22185.3837 607.9628
22185.3837 607.9628
155.1841 4.6447
155.1841 4.6447
6533.7532 217.9448
6533.7532 217.9448
5943.6353 123.5305
5943.6353 123.5305
6153.5925 137.6410
6153.5925 137.6410
21563.9179 593.6727
21563.9179 593.6727
337635.9438 15787.0701
337635.9438 15787.0701
AAA
AAA
AAA

```
        AAA
```

```
2.63 DSDP 54-319-8-5 1
2.23 OSOP 34-319-10-2
2.74 DSOP 34-319-10-2
2.74 DSOP 34-319-14-2 
    MSJ312
    MS1214
    HS1215
```


## The BCD-ASCII Converter - Teletype System

## Introduction

The BCD-ASCII converter used to obtain teletype compatable output from the AAS was designed by Mike Cranford and assembled and installed by Ron Stillinger and Milo Clausen. It will take the parallel, BCD output signal from the spectrophotometer's digital voltmeter and convert it to a serial, ASCII signal which is teletype compatable.

The speed of the system is limited by the teletype which can handle approximately one six-character output every second.

This system of data handling has proven to be very efficient if the directions are followed completely. The operator should be thoroughly familiar with the following directions before attempting to use this system because the correction of errors must be done on the papertape before being introduced to the computer. If these types of errors are not corrected immediately following their occurrence, the process to remedy the situation will become long and tedious.

## Operation

The BCD-ASCII converter is switched on and off by the AAS on-off switch. Therefore, the converter is operable any time the AAS is on. Startup and shutdown of the system must be done in the following order to avoid miscellaneous characters on the tape. The characters are caused by electrical transients which occur when a switch is turned on or off.

## Startup

1. Turn on the AAS
2. Turn the teletype switch to (ONLINE)
3. Push the tape-punch (ON) button

## Shutdown

1. Push the tape punch (OFF) button
2. Turn the teletype switch to (OFF)
3. Turn off the AAS

In addition to the three switches above, an additional push button is located on the right side of the teletype keyboard. This will disable the converter so that data may be typed onto the paper tape from the keyboard.

As an added precaution the tape punch should be turned off before turning any switches on the AAS. The flame igniter in particular will produce transients which will cause the teletype to print miscellaneous characters.

## Special Editing and Code Characters

To give the analyst a data reduction program which is flexible enough to handle a variable number of samples and data points and allow him to easily correct typing errors, the following characters are used to indicate to the computer that it should perform the specified operation.

These characters should not be used as part of the sample name or subsample typing code. Their use in these instances would cause the
data reduction program to malfunction.
In addition to these special characters the computer will ignore rubouts, line feeds and nulls.

- Backslash ( $\backslash$ )

This character will delete the last character typed in a line. A series of backslashes will delete characters from right to left until a carriage return is encountered. The backslash is formed by typing (SHIFT)(L).

## - Commercial at sign ( ©)

This character will delete the entire line up to the previous carriage return.

NOTE: The automatic carriage return produced by the teletype is not punched onto the papertape and has no effect on the character or line delete symbols.

NOTE: The backslash and commercial at sign do not affect the following code characters except for the asterisk and the first pound sign in the two set series. To erase the other characters, the tape must be manually backspaced to the correct position then a (RUBOUT) must be typed.

- Asterisk (*)

Two asterisks typed in succession indicates the end of the sample identification data to the computer.

- Pound Sign (\#)

A single pound sign, when first encountered by the computer indicoses to it that all of the following data are numbers which originated from the AAS. The next pound sign encountered by the computer, signifies the end of the data from the AAS. The sequence is then repeated.

- Ampersand (\&)

The ampersand signals the end of the data for a particular element. It is used in place of the second pound sign after all data has been taken for a particular element.

- Dollar Sign (\$)

The dollar sign is used to indicate the physical end-of-tape to the computer. It must always be the last character on all tape segments. Any data following a dollar sign on a ta pe will be ignored by the computer.

## Tape Format

The formatting required on the paper tape is very restrictive and any deviations from the prescribed patterns will cause the data reduction program to malfunction.

Mistakes made in the tape format must be corrected by repunching the tape and editing out errors manually - a very tedious process. It cannot be performed on the computer as with the CDC- 3300 program. This is due to the lengths of some of the data lines and the internal programming of the PDP-15.

Since these types of errors do occur, even when great care is taken, it is strongly suggested that the data tape be divided into several segments. This is done by use of the dollar sign (\$) which is described later.

Tapes should be segmented between each element and in addition the sample identification data should be punched on a separate tape. NOTE: All tapes should have a long leader to make it easier to load into the computer. Leaders and trailers are made by typing (HERE IS).

The sample identification tape must be formated as follows:

DATA
LINE 1: Sample name
LINE 2: Ascession No. Subsample typing code Sample weight (in mg. with a decimal)

LINE 3: Trial Run number (right adjusted)

COLUMNS (inclusive)
1-24
1-6
8-1 0
12-20
1-2

The above sequence is repeated for all of the samples run in a particular experiment, up to a maximum of twenty samples. The last sample is followed by two asterisks ( $*$ ) and then a dollar sign ( $\$$ ) on the next line. The tape may then be removed from the teletype.

The order of the samples in the above list is very important since the first one is labeled unknown one (U01) by the computer, the second unknown two (U02), etc.

The description of the element - data tapes are more difficult since many different possibilities exist for the formating of each line.

## Line 1 :

- Line one must always contain the element name in its scientific abbreviation in columns 1 and 2.

Line 2 - (4 to 9):

- The next set of data will describe the first set of solutions to be run through the AAS and their sequence.
- In one group, two standards and from one to seven unknowns are run.
- Standards are identified with an "S'" and a two digit number to identify which standard. i.e. S02 would indicate standard number two to the computer. This data must be in columns 1-3. The number will normally match the number on the standard solution bottle.
- Unknowns are identified with a "U" and a two digit number which will coincide with its position on the sample identification tape. i.e. U01 would indicate the first sample in the list. This data must also be in columns l-3.
- Following all unknown listings and on the same line is the dilution number. This must include a decimal and be in columns 5-13.
- The standards and unknowns may be listed in any order, but they must be analyzed in that order.
- One of the standards should have a higher concentration of the element of interest and the other should have a lower
concentration than the sample being analyzed.
- After all samples and standards are listed for this group, a single pound sign (\#) should follow in column one.

The following data lines are automatically formated by the telype. The operator should begin aspirating the first solution listed above. Data are obtained by pressing the BCD-ASCII converter enabledisable button on the teletype keyboard.

A maximum of 125 data points ( $10+$ lines) are allowed at one time for one solution.

After enough data points have been obtained the operator will again push the BCD-ASCII converter enable-disable button.

Then he must type (RETURN)(LINE FEED). This signals the computer that the next number is for the next solution in the sequence.

NOTE: The automatic return - line feed is not punched onto the papertape and has no effect on the program.

The operator will then repeat the above sequence for all of the solutions in the first list.

He may then repeat the sequence starting with the first solution and obtain up to 125 more numbers.

The sequence may be repeated seven times for each group.
After the first set of data has been obtained, the operator may stop anywhere in the sequence.

After enough data have been collected, the operator must type a pound
sign (\#) in column one.

The next group of samples is listed and run as above. This sequence is repeated until all of the samples have been run for this element.

The ampersand (\&) is then typed in place of the pound sign (\#) at the end of the data. The ampersand is then followed by the dollar sign (\$) in column one of the next line.

This tape may now be removed and the entire process repeated for another element.

## Operation of the PDP-15

## Introduction

The PDP-15 computer utilizes a main program called AAS and fourteen subroutines to complete its tasks. Most of the routines, including AAS, have been written in DEC Fortran IV. (6) Subroutines Editor and Erase have been coded in Macro-15 assembly language.(7)

All of these programs have been compiled or assembled and the binary routines have been combined under the name AAS using the UPDATE utility program. (9)

For a more complete explanation of the DEC PDP-15 system the reader is referred to the Digital Equipment Corporation reference manuals (5, 6, 7, 8, 9).

## Stepwise Operating Procedure

NOTE: When a name is in capitals and enclosed by parenthesis, it denotes a single key or switch.

1. Mount the Dectape marked Geochem on to one of the drive units. Turn the cogwheel to 5 and move the two switches on the drive unit to WRITE LOCK and REMOTE.
2. Mount a scratch tape onto another drive unit. Turn the cogwheel to 4 and move the two switches to WRITE ENABLE and REMOTE.
3. Switch Dectape unit 0 to WRITE LOCK and REMOTE.

NOTE: If this tape is not marked B/F MONITOR (background/foreground), it must be removed and the proper tape must be mounted. The system then must be loaded into the computer. Directions for this procedure are located in the PDP-15 Operations Notebook.
4. Turn on the line printer. Push the (SELECT) button (the light should go on) and be sure the paper is mounted correctly.
5. Turn on the Tekscope. This is done with the key.
6. Push the (ASCII-TTY) button. The light should be off.
7. Push the (ONLINE-LOCAL) button. The light should be off.
8. Turn on teletype 0 and type (CTRL)(C). The computer should respond by typing a \$. If the computer does not respond, see the directions for reloading the system in the PDP-15 operations notebook.
9. After the computer responds properly, type BCONTROL 3 (CR). This transfers control of the background portion of the computer to the tekterminal.
10. Mount the paper tape with your sample identification data onto the high speed tape reader.
11. Push the Reader (FEED) button to clear the reader. Be sure that none of your data has passed by the read head.
12. On the tekterminal:

Push (ERASE) to clear the screen and type (ETX). This is equivalent to typing (CTRL)(C).
13. After the computer responds with a $\$$, type in the following information:

$$
\begin{aligned}
& \operatorname{ATT} \operatorname{TT} 4,5 / \operatorname{TT} 23 \text { (CR) } \\
& \text { GLOAD (CR) }
\end{aligned}
$$

The first statement assigns the tekterminal to logical units 4 and 5 and the line printer to unit 3. The second statement invokes the program loader. After the first line the computer will respond with \$. After the second line the computer will type BGLOAD V2A.
14. Now type
()AAS ( \})

This will load the data reduction program into the computer.
The papertape should be read in and the computer should ask MORE DATA?
15. Mount the next paper tape and then type YES(CR)

This should be repeated until all tapes have been read.
16. The rest of the program is operated by answering queries from the computer.
17. After you have finished, type BCONTROL 0 . The computer will respond as before.
18. Push the (TOP OF FORM) button on the line printer until you can remove your data.
19. Push the paper tape punch's (FEED) switch until you have a tail of blanks on the tape. Then remove the tape.
20. Turn off the line printer, tekterminal, teletype and all of the tape drives.
21. Remove the Geochem tape from the drive.
22. Record the time you used the computer into the log book.

The computer has output all of the final data onto the line printer and punched the same information in card image form onto the paper tape.

This tape must now be taken to the computer center and copied into their computer. This ASCII coded information is then converted to BCD code and punched onto cards.

# Program Listing For The PDP-15 Data Reduction Program 



```
E CEFG FLL GF THE ELEHEMTE GH FEFH'T COHO
C
        M 2 I=1,15
        [01,T=1, 20
        1 EONCI.J%-6
        2 EOtTTMHE
            PHC=OCOIET=0
E
E
C
C
    EH4.L SEEK&E, DAFFLE%
    FEHDGz, 301)ON|
    G91 FGFHET (F1)
        CHLL CLGGEG2%
        GHLL EFAGE
E
C
C
G
L
            CHLL THE MFRFO SNEFEOTEFG
        HFITE& 4. 855 5,\H
```




```
        CFLL 'rESPGAGHSO
        IFYHR& AE 'TESYAKL=1
        HEI|EC4.EGFOOHF
```



```
        GHLL 'TESPGOFIGO
        IFGARE VE T'ESOBOTOE
        GFRL EOITGE
E
C
    Z EFILG GEEFQ1,OT1%
```




```
            FEEN FOHN
        EFILL GFMFLE&KRTY
I
E
```




```
FGF: DUTFUT TO THE L.NEFFINTER
0
2.7 FEF[O1. GGOEMH
B-G FROM&TGHZ`
    IFGEMA EO [4]MO TO 1FE
    CFLL ELHEFTGESM, ERT,AEL, NGLIST:
```

```
    ELMCSRTM=ERH
C
E
E
C
C
C
4 0 0 0 6 ~ F - I = 1 . 9 \%
    FEFEG1,GZGETCIO,NEGTO,CILCI
    G% FOFMAT FI FO.FiQ Z)
    IFGETCI% EO.FOSO TD EQ
    EG EOMTINAE
    E2 NEN=1-1
            FEFHD IP THE GHLINES FFOM THE SFERTFOFHDTMMETER.
            Dg EG I=1.72
            EEFOC1, F-TOR
    G% FOFTHTCI4%
            IFCM GT SGQ;GO TO E2
```



```
    G40 FDFNFTGAESFS
!
C
E
C
C
```



```
    GHL=OFIFITO4B.FOL
    \Xi二=\Omega,
E
C
C
C
Fr-1+E!2
```



```
'%'S
TFG:=H\+UGO
    EPG=Fin'- -G
    [自 PE K-1.|
```



```
    \thereforeC\=5-99
    FE EOMTIMIIE
E
C
E
E
        H'NECI O=F:EFHGCHO
```



```
    GH ETQNIPdEE
    Q2FF=I-1
\square
F
```




```
C GfEFGTOE TO GHEOR THEF
C
C
    NET=PIER=1
    E4 EGl EFBGE
    BS GHLL EFFHETGET, NE. OIL NRF, MEM, FVE ELHCEFTO
        IFreTLO EG B yO TO EG
        CET=ETL
        GO TO 105
    SO DRTTEGH.94550MA
    G4S FOPHATGYH, EHOLOH1?
        CFLL 'EESHORNE%
        IFGFNE EQ TESSGO TO 132
c
C
E
C
C
C
C
```




```
        dELETE GR'r'mefrges whioh He FEELS free m&'flid
```




```
        1HTOM, F1, FE. ETS O
```



```
FEG FOFMATGAE
        IFGRT EQ ETL DR GET EQ DL DE GFT EQ
```




```
    GFकणGTO 10%
        मF:TEC4 Э1GTm&
```



```
    GOT
10% WE:TEG. SGOORK
```



```
        FEAOSE FESOINO
Beg FeFH5TCIN
        IFGET NE ETL,GO TG i&S
        WFITE:4 BEMGIR
```




```
    IFESTLOE ER 1. YOG TO 1ES
    IFETLGT EO 2 OM TO 15Q
    15 TG 12G
11E IFCOET. ME OIMO TO 1eg
    WFITEC4, EGEOHt
```



```
    FEAGS, STGO|GIRO;
GREFGiat:FIO -%
    \square% T0 10,
```









```
        F':E I INDO-GGG
```



```
        GALL 'tESNDGFMC%
        IF&Fif# ED 'TES\GOT TO B4
        G1] TO S
C
C
C
C
    1ZE [G1 125 I = L, WG|
        F4F='FFN=FEF=G
        [C124 J=1, NFF, NOM
        E=I+I-1
        IFGN GT, NFFOGOTO 1S&
        IF(H'GCK). DE 2GEE \GO TO 134
        FUF=F口F+FUECN
        OHM-UFIN+GHFCK
        FEF=EEF+1.
    1S4 「tM打INEE
        FEEI\=HCOFEF
```



```
C
E
E
C
        ETHPNDFPCPE
    F1;-0
    OETLHOD
    OLSNIMPGFNON
    }FF-I
```



```
    IFBFLG. EO 1. OB TG 1S%
    BLL HATGHGGEGIN,GS1, ETLIG,
    !F&TんにK゙, EO. 1. MOTO E!G
    FF%=I
    FLSj=1
    310150
```



```
        FGTLE& EU 1. TO HES
        !F゙こ=-
```




```
        BTF-ru=%
        Aこ=-NS1
        HE:-NTF
        BTF-HFE
        OF-rF|
        OT-%TF
        BTG 15G
```



```
0000
    15% ET&なK=6
```

```
        OQ 1T0 J=NET,NEM
        NET=I
        IFCETGIS EQ SOGD TO 17G
        GFLL LPNHNWCHECT%, HNAN ETLC&%
        IFCETLCK EO Z yOO TG ES
```



```
        T%=F'EESJ-FVECNF1)
        Z%=F'VECMF2,-HVECNF1>
        HL=ETCMES-ErOCHEL
```






```
C
C
C
C
            WFITE THE FESILIS ONTO FFFEEF TFFE
        LL=FH|N&%
        L=LL-1
```



```
        m-NTM-2
```






```
    1F1日 4, 1%FS 2. 1% H2, 2AS, 1%, I2%
17G EOMTINJE
        IFCH EN GOGOMGN TO 4%
```



```
F
C
C
E
C
C
175 GHLL LFLIETCKNT. ELHD
    GFLL CREFGNHT
egh romtarnue
    ETOF
    ENO
```

FUNETIOM PiMEFABCW

#  <br> $\stackrel{B}{C}$ <br> C：BYEFAG CHLGILFTES THE MEAD EF M <br>  <br>  <br> $\square$ NUMEEF FFDN THE THFFEL FEH BGG SFEGTFL－ <br> © FHOTOMETEF <br> C 


［IMENSION $\therefore 125$ ，［UM 19 ）
COHMUR［口Mt．$\therefore$

OH $1 I=1$ ， 1
IFGSIS GE EGEG YGO TO 1


1 GivTIREE

FETUFT：
END

EBEFOUTINE GFEFGKRT,

 E

$\square$
$E$


INTEGEF FOUH


1. Fuflce 5
$\therefore=\mathrm{B}=\mathrm{E}$
[4] $10 \mathrm{I}=1 . \mathrm{F}$
$\mathrm{H} R \mathrm{H}=\mathrm{N}+\mathrm{t}+1$
$\mathfrak{N}=1+1+5$
$1 \cdot 1 \cdot i=1+1$
$M=F \cdot T+1$
IFERUACI GT $1 \because G G T 10$


LS GiNTIME
FETIFM
EID

TITLE EDITOF:


ECIGIE

> GLEEL EOITGF:

FTF:E
ETF:
TTBH= 7
TrEI-G
$I \cdot i=1$
Bill-1
104 $5=2$
IMHISE=
EO! $=04$
ETHET IHIT FGE INEEETET
IRIT [TF, MHA FESTET
INIT TTATMUT FEETET
BHIT TTAI, IBAEEGFT

OXI FEFEFTH
ESMEFLBG\#



ELEM－GES8 CORAE＝CTITE

```
    LFC GOGHE SFIEST HEFLEFE WORD
    CFHLH EOLOEFT
    OFIC+ ITFFT
    OHR + ELEFTFT
    CHT+ ENOHEFT
    ISE ELEHFT
    ISE DUREFT
    ISZ ITFFT
    IEZ GOCEFT
    OEM* EDCEFT SEEOLG HEFCEF HOFEL
    CZM* ITEFT
    OEM& ELEMFT
    OEN* COTMEFT
    IS CODEFT
    LAC COSEG
    CMC+ GOQEFT
    ISこ EDCEFT
    LHOC <13442%
    CHE+ EOMEFT
    ISZ ELEMFT
    LF% &-2180%
    CFHOt ELEHFT
    こごビLEHFT
    LFi, <-rm-2
    OAT& ELEEUFT
    IES CUREEFT
    LFiG <42こET1
    CFIT [HPNEFT
    1G: [HTMEFT
    LFG &G4天&S
    OHL** [OGTEFT
    ISE ITEFT
    ISE iTFFT
    THS STFOM:M
    FEFE FTRE IHFGE, FCELIFF,SQ
    WHIT FTR:
```



```
    FEFC EGUPTEF GECNMTEO
    LFL FCELIFF
    GhiriA
    FRNE <2G7
    FCL
    TFIC :-1
```

6
6
6


```
        TGF
        [PFO FCMMTE##
        LHIC FLTGF'
        OFG FDFTEF
        ISZ FDFTEFH
i
HENT ISE FOFTER
    IEC FEIRNTE
    THF LDHE
    JNF FEGCME
i
LGFE: LFIF: FOGTEF
            GiNE <1>
            EHC: EHELEF
    EHOG
    JFF ErGOCE
        DZM FEFERT
        LHG: OFLFH
        BPG
        TFF EDIT
        LHG CHECK
        SH5, &4!
        INF TEこT
EOIT LHG EHE!K
        GFSG&
```



```
        [Z\ FEFTH
        SHG <DGM
        THF EAELN
        ENE <15
        IftersergT
        SFC G1%
        ITF NEST
        EFG &1F%
        ITF PEOT
        SHC :44
        THF FINISH
        5OC1%-1
        IMF EFEFOT
        SHC &G
        JMF TEET
        YIS THE CHFFSGTEF Ft #?
                        ,T'ES
                            FEMGWEG GFHLE DHEN
                                    AFLFHGIS SET
                                    IG THE SHMEGTEE H SFHEE
                                    ATE=
            GET A LHAFFLGTEF: FFOM THE FEHC ELFFEE FMME EHEOK IT.
```



```
                                    *TE=
                                    ME THE EHARGMTEE HN GG
                                    "TES
                                    IS THE LHAFHGTEF H [GF]%
                                    \therefore'二G
                                    &IS THE EHFAFHOTEE F [LF]?
                                    TEE
```



```
                                    "TES
                                    SE THE FHFFHCTEF A F%
                                    ~'ES
                                    AIS THE EHFEAOTEF F ध
                                    re=
                                    G THE GHARGATEF H PILLL
                                    V'TES
%
\because
```



```
%
FHOGE: LFIG FGIFT
    GriA rbmif
    TfF: こEFO
    GHO < 1
```

```
        TWF OREL
        GHO<Z
        THF TWH
        GMO
        INF THFEE
\\\\
    FACK IN LOCATION 4
        LFIG EHEGK FFAES IH LODHTIOA 4
        EHL
        FilD <STE
        THD FACK
        GFIC* EUFFFT DEFGEIT WORO IN STORAGE EUFFEE:
        ISZ WOFRDT#
        ISE E|FFFFT#
        DCM FFCEFT SEESET THE FFOEING FOINTEE
        IES ITEOTT
        LFG. WRIT
        SEH
        SHF EHCLR
        SHF PEST
Z
EEFJ LFGE EHEG:
            ONHF
            ETL.
            Find cratmga
            OAC FHLE#
            ISE FHLEFT
            LAO LEIT
            EEF
            IHF EHCLN1
            HGF RENT
Z
IPE LFGG EHECK
            ETL
            ETL
            FHD ¢TOED
            TFE FHCK
            DHC: FHOK
            ISZ FHEKFT
            LFIT WEIT
            =2葏
            HWF EFICMH1
            MHF REST
%
Fank in LOCHTIOM z
```

```
TWO LFO CHEOK
            FTE:
            EFR
            FrNO C17
            THO FFLEK
            GHIL E|FFFT
            IG2 BUFFFT
            LFC CHECK
            ETE
            ETE
            FHO 5TGEGEG
            LWO FHOK
            IS2 FHCKFT
            LFHC WEIT
            SZA
            THF ENOLTS
            THF HEXT
ל
THEEE LHIC EHECK
            CHHA
            EFF
            HNG ©TT4EQ
            THE FRCK
            Lnit FRCK
            IS Fatuff
            LHE WFIT
            =H
            HTF ENOLIE
            IHF NENT
%
ENHEE LAE FHOKFT
            ENA
            NTF FHOFTE
            EFO<1
            NF: FHEFTI
            SHOCD
            IHfF FACPTZ
            GBy:
                            THP FALFTS
%
` ERFGE LHABHLTEF: IN LOMATION S
LFOC<
CHC FFOKFT
LHO: FACK
FMO <T0040日G
```

```
    [HIC FFIIN:
    TMF PNENT
%
FFILFTE LFIL &4
    OHL FHEEFT
    LFIL: ELIFFFT
    TFiO <-1
    CFIC: EIIFFF'T
    LAC WLFFEGT
    THD <-1
    DFNC LADFFET
    JHF NENT
%
FHIFFTI OZM FHCLFT
    JTF= PEST
?
%
%
FHGFTE LHE OT
    CHIG FHCLFT
    GFD FFILK
    FRAC & Frame
    CHE FACK
    TMF NENT
%
<' EFAGE EHREFILTEF IN LOMHTIOHA Z
C
FFHFTS LFE <Z
    OHL FRAFFT
    LFIG: E!IFFFFT
    THO <-1
    [HIL E:IFFFT
    LHI:& EUFFFFT
```



```
    OHC FFICE
    INF NENT
\``人``人
```



```
    IT WJLL GET GFLFIG FHO FEFEGT TG MR EEFEFT NILL EABGE HLL
```




```
    WFITTEN. CFLFIG WILL EE GLEHFED FOH FEFEFT HILL EE
```



```
%
```

```
CFCDCE LFIL FFFEHT#
    EZH
    INF REST
    IS工 FEFEHT
    LFC EFLHIG
    \Xiご
    JFIF GUF:ITE
    ISZ RFLFH
    IMF FFLCKR
%
GKGFIT LAE FAEFFT
        EZF
        INF E&
        LFC TOFETF
        HFIN +2
        GFOL ELIFFF'T
        IMF NEST
EK LFIE EHECE
        SHC <1z4
        IMF EEFSE
        ISE WFITH
        JWF FHEEF
C
EHOLH THS GTFOME
    JHF MEST
i
```



```
GTEMF:
    LAC TOFETF
    OFIE TOFENF#
    FFIC +2
    CHIL: EISFFFT
    OZM ITFIMTA
    [ZM FFICKFTH
    DEM WEFFET
    ISZ WEFFOT ,FHET FOR HCNE SOFLD FHIR
    C口\ W&IT!
    IMF: ETFOME
C
EHMLNL LFE: FFOE:
    OHC: EIMFFFT
```

```
    ISE EIFFFFT
    DEMt EUHFFFT
    ISE WOFETT
    JMF ENDLAN
%
'/ COMFLETES THE SECOND WORO OF THE WORO FAIF:
ENCLNE LAE FACK
    OHC*: ELJFFFT
    ISE WOFFCT
ENCLIN JHS HDEE:
    LFIO OFLFIS
    SNH
    INF WEITR:
%
    FFRLGE THE dATA FT. GOMAT INTD EUFFEE ITEATE.
    GHD <2
    JHF EINGEC
    IEC EFLFiL
    JHF WF:ITR:
```



```
[AC, FHIK
LAC ITFCNT
LHO
OLH
ELL
Ms DIVIDE
SWHA
FiHE
FHE <7%469
THO FHCK
EAL FRCK
Clq
GLL
N4S LIUIDE
CHI: TEMF#
FTE:
FTF
FINE CTEGEGS
TFIL FFICK
OHC* ITFFT
LAIG ITFFT
THC <-1
GHE ITFFT
LFLE TEMP
ETF:
EFF:
HND <17
DFIS FFiCK
CLH
CLL
HE CIVIDE
Ficl
```

```
    F.TL
    AMO < STE日
    THC F&GK
    OHC FHCK
    CLA
    CLL
    JME DIVIOE
    SWHF
    FTL
    ANDE <TT4403B
    TAC FRICK
    CHC* ITEFT
    ISE I TEFT
    JNF IWRITR
i
QI?IDE 日
            DIV
            12
            FND <17
            THD <2Eb
            INF% DIVICE
;
```



```
\because
HESR G
            LAC WEFRET
            SWHM
            AND STCODD
            HFO:+2
            EHO: TGFEIG
            IER TOFE:UF
            CGM+ TOFEDF
            THF + HOEE
                    CLEITE WFITE DTF,IOFS, GOLE,G
            WFIT [VTF
            OZM IFLFIG
            SME MEST
HELM LFiG: FEFT
            EこH
            HF NENT
            IGZ REFT
                MFITE DTF, IOFGELEM, 4
            HAIT UTF
            QZHEFLFG
            THF NE:T
IWFITE , WFITE CTF,IGFS,ITEATE, 4
            WHIT OTF
WRITF: WEITE LTF,IOFSETOFE1, 254
            NBIT OTF
            THS E丁FG%%
            INF RE:T
```

```
CODEFT CODE
ITFFT ITFETE
ELEFFT ELEM
GORUET CDINE
FOTRIF RCEIIFF
TGF=TF: STOFEL
GOCE ELDLF}
ITFHTE , ELTIOK &
ELE|\ . ELGNG& a
OTHE . ELOMGK 4
MGH
    G
    HSCII "MGEE [HTH?"&15>
    \square
HNEMEFE ELILCK 4
FCEUJFF ELOCK B4
ETOFEL . ELOIIKK zTG
FESTF:T . GLOEE FTR
    CLDSE CTF
    THF STHF:T
NHME SINET "FAGCATAED"
<
C CHELWS TD SEE IF THE DFEFGTCR HAS FINISHEQ FEHOINA
* FLL DF THE FFFEE: THFES.
FINISH . WEITE TTEM, IOF"S,MEG.S4
        \thereforeOST TTEO
```



```
        WHIT TTEI
```




```
    GHC &4FO-GG OIS THE FHSNEE NO?
    TilF* FIHi ,'T'E=
    LFG: FINEWEF:Z
    FND GOFFG?
    SHO CE&ENE% &IS THE GHOWEF 'rES?
    ITF WO- FOG家IEL'T
    TMF FIHISH SH
    LFO FTNWHEF+
    Fi|D <-GMbug
```



```
    IHF FEFDE: V'E:
    MF FINJSH NNO
FINI WFITE [TTF, IGFE, OLNE.4
    LHIT [TF
    FTAFE UTF. EOF
        CLGEE [TF
        LLDEE FTF
        CLOEE TTEO
        CLOGE TT&I
        JNF:t ECITEF
        ENJD
```


-


IRTEZEF SFT




2FNDNる?














 З'SEA'E

CHiLL EFHEE
1 WEITE \& , TUY YELEM, DTK
GGG FDFMATG1H, ZHIE HE EGH THE EDFPEGT ELEMENT NFHE FI) CFLL 'TESNOGFNS: IFGAPE EG 'rESOGTO WFITEGみ =189 Tik


FEA［ME，51G）ELEM
915 FGFHATGAQ
ב FFGELET ME FIL MO TO S EFLL STAROMFLETO，ELEH： SFT $=1$ MOEL＝1 FETUFR
5 IFGELEH TEE EFGGO TO 19 CFLL STFRIOGEHGTO，ELEHS ECT＝Z MIEL $=$ GE FETURX
10 IFGELEN ME GH：GOTO 15 EFLL STFITECEAETD，ELEM二下T $=$ ？
$M E L=20$ FETURN
$\pm 5$ IFEELA．NE GODGTG zQ CFILL ETHTUMEOETO，ELEM） GFT＝4
ROEL $=27$ FETBFA
2G IFCELEM．NF，GIDGO TG 25 CHLL ETHMCUEUGTC，ELED $\Xi F T=5$
fOEL $=9$ FETIIFR
ES IF ELEH．NE，FEYGD TD 3 OGL ETRACCFESTE ELEM ST＝E PMEL＝E FETBFN
20 IFGELEH PE fUVGTO 5 GFL STHRDMHBOTC，ELEM $\square=T=$ ？
NDEL BM
FETUFN
בS IFCELEM RUE KOGTTO 49 CALL STFROESSTO，ELEMO SFT＝3
WEL＝13 FETUFR
49 IFELEH．RE WIGOTG 49 EALL SThNDGTHETE，ELEDT $B F T=9$ NEL $=12$ FETIER
45 IFCEIEM PE VNDGO TO 5日 EFLL STFRNGHASTO，ELEM： $E T=10$ ROEL＝2E FETIFH
50 IFCELEM NE，PAMGD TO 58 ETAK 三THREGMETC，ELEM？ $E T=11$
MOEL＝11 FETBER
SE IFGELEH WE RIVGIG TG EO

```
        GHLL STAPGGNISTO.ELENO
        EFT=12
        NHEL=こS
        FETUFPG
    Ej IFGELEM NE FE,GIG TO ES
        GFLL ETHPNOCFESTO, ELEMD
        EFT=1Z
        FOEL=E2
        FETI_FR
    ES IFCELEM. RE EIOTGTO TO
        GHLL STHNEGSISTC.ELEDD
        SFT=14
        AGEL=14
        FETIIF:N
    TG IFGELEM. NE TIOGG TG TS
        CFLL STHPNMTISTC, ELEFけ
        SFT=15
        POEL=22
        FETIFH
    FG IFGELEM. NE INVGO TO EG
        EFLL STHNLUZNETE. ELEM,
        SFT=1E
        NGEL=SG
        FETIFRN
    Ev WFITEC&.G5G\ELEN
```



```
    11H SHIT WILL EE HSSILNED THE FTOMIG NUG EG. )
        [0 506 I %=1,5006]
        GINTIPdJE
#gs rgIdTYNuE
        HOLST=PNGIST+1
        IFCROLIST. GT. 1%G TI ZGO
        EFLL ETANOGFNLDN ELEM
        GRT=17
        POEL=0
        FETIIPM
```



```
    GFLL ETFMDOEMLH. ELEWO
    ET=13
    MOEL:EG
    EETUEN
```



```
    SFLL ETF|ADOFW[M! ELEMS
    EFT=1G
    !DEL=E
    FETHFR
```



```
    EF:LL ETH*NGERMM, ELENけ
    FT=こも
    MEL=O
    FETHFR
zz% NTTE<+,gs5)
```






```
        CH T1 IO=1, SEGm,
    GTTIPIUE
```

50土 OONTIUAE
EFLL ETFMRMPAFO, ELEM.
$\therefore \mathrm{FT}=\mathrm{E}$
FOEL=0
FEETLFRA
ERDO


EHERGUTIME EFRWETCET, NB. DIL, HFF, HETH FWE, ELM

REPL PE:

c

C
CATA EASES
WFITEく4, Gug.ELM
309 FOEMAT $1 . H$, Her
WEITEC4. 310)
 $12 H E S, 4 \infty, 2 H F 4,4 \times, 2 H E 5,4 \%, Z H E E, 4 \%$ 2HET. $4 \times 2 H E G$
[0] $10 \mathrm{I}=1$. MEM
IFGETCI) EO SンOU TO 5

 GTV 10


1E ETMTINE
FETURN
Enco

```
O
C
C
C
C
C
C
C
F
C
C
C
C
    3 HEITEC4, %W@\5HF
```



```
    FEHOC5, 510)MOF
B1g FDEWHT:I1)
        IF\mp@code{NF E- E,GO - - %}
```



```
        r= F|=|
        [T 1G I-L, KNT
        N=N+L
        V=rj+5
```




```
        NW=F||+1
        M:1=}椋+1
```




```
        WFITECE,GEO%
```



```
        16% FHE EFFOF:
```






```
    E EONT [㕲E
    1G EONTIP|E
    Ea EGMTINHE
    SO WFITEC4, EPG%HFK
```



```
    EHLL 'rESPTMCFR&
    IF&FR:EO, \0%GO10
    FETLITN
    ENO
```

```
    SUEFOUTINE MATCH(NE,N, ETLEK)
C
cocococorococcocoracococucocococococoucococococo
        EEFL NE
    k=1
    IFCNE EQ ZEFODEETIFN
    N=こ
    IFCNE EQ. HALFOEETIER
    k=3
    IF\NE. EO. ONE\FETIEN
    k=4
    IFCNE EQ. TWGORETIEN
    K=5
    IFCNE EQ THFEESRETIEN
    k=5
    IFCNE EQ FOHROFETIIEN
    K=?
    IFCHE EQ FIVEDEETURN
    K=S
    IFCNE, EG. SINOETUFN
    k=3
    IFCNE EQ SEvEMPETURN
    K=19
    IFCNE EO EIDHT:RETUFN
    GFLL EFFSE
    LFITE:4, 360%
GGG FOFIHT&1% 4SHTHERE IS FR EFEOR IM THE ETL NOS, FEGHECK, 
    ETLICK-1
    FET!IFN
    Eid
```

```
    SUERODUTINE SAPFLESKHT \
```

```
        INTEGER FILPA
        REFHL PMME
```



```
        15TD(10), (<125)
C
C
```



```
            1FFC,SHFFMC &,NT,SHWGT }\because\mathrm{ FRN'SHFUUN
        rl= M 1 ! = KMT = = B
        00 こ@ I=1,20
        N=F+1
        r=N+5
        FEA[<1, 942)<SN|(J), J=PN, |>
    G6\Xi FOFMAT (Hこ. SHE)
```



```
        R|R:N\cdot|T\cdot1+1
        Min=NR+1
```



```
    505 FGFIHT (GE, H4, 1%, A2, 1?, F10. 2)
```



```
    GQE FORTHT&Iご)
            WF:ITES [HIT THE INFOFMATIDH JIST FEFIG IP& FRU AEKS THE DFEFATOR
            TG EHEIEK IT.
        4 EALL EFAEE
```




```
        15x, SHNGT=,FF, S, S%, 5HFUM= , I2)
        WFIITEC4, GGE,G!&
    GGE FORMAT (%1H , EHOK, H1)
        GHLL 'r'ESPMGFRSS
        IF(fir'S. EO.T'ES)GO Tig ZQ

C
E WFITEC4，ヨ1GンGNk
910 FOEMAT（1H ：ZGHWHEH ICENTIFIEF IG IH EFFOR，G1）
12 FEAOSS，512）CRT
Э12 FORMAT（AS）
IF\＆CRT．ED．PME．GR．ERT．EQ．GND OR ERT．EQ．FRC．GR．
1CRT．EQ．NT．DE．ERT．EG．FNDGO TG 14

915 FGIFMAT（1H， \(4 \mathrm{H} W H \mathrm{HT}, \mathrm{A} 1)\)
GO TO 12
14 WFITE（4，517）CFT，OMK
Э17 FORFAT《1H，2QHUHAT IS THE EOFEEET，HS，A1）


IF（CFT．ED FFLOREADGE，92こ）
IF（EFT．ED．WT ）RERCく5，G23）WIT（I）

G22 FDRMAT（A3）
Gここ FOFMATCF10． 2 ）

CHLL YESNOGFMS）
IFGANS．ER＇TESンGO TO 4
Gil \(\operatorname{TO}\)
\(2 \mathrm{kNT}=\mathrm{KNT}+1\)
24 CONTINUE
RETUFN
EHD

GUEGOHTINE STHNDGFILE，ELEM，


DIMEHSION FILEくご，STCく10》， \(6 \times(125)\)
CIMTHA STO，OK DWK，NFD
EHTH＇TESG＇SH＇T＇E，

EHLL FETHT《2，FILE．I）
IF（I．ER－ 1 ）GIOTO 40
3 EFLL EFFEE
んFITとく 4,16 ELEM










［1G \(29 \quad \mathrm{I}=1,16\)

ES FGFTAT：FE 2
以 \(20, I=1,10\)

35 FGFMAT（1H，FE，2）


EFLL＇TESNO（HNS）
IF（Fild NE．＇TESンGO TO 5
F：ETILFR
49 EFLL EEEKK（2，FILE）
［0］ \(5 \mathrm{I}=1,16\)
50 REFD（2，25）STCOI）
EALL CLOSEくご）
FETUFR
ETHO

EUEFDUTINE URKNOUCNE, K ETLEK
c
c
\begin{tabular}{|c|c|c|}
\hline C & & c \\
\hline c & & C \\
\hline C &  & THE EITTLE \\
\hline C &  & IHTEGER C \\
\hline C & HUHEER: & C \\
\hline C & & C \\
\hline C & & C \\
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

REFL NE, NINE





\[
x=1
\]
if CNE EQ DHEDRETUFN
\(\mathrm{N}=2\)
IFCNE ED TWDPETUEN
\(k=3\)
:FCRE EO THFESDESTBEN

GFCNE ED FOUFOFETUEN
\(\because=5\)
F-NE: EQ FIUEDEETIRN
k=6
:FCHE EQ SIWDFETUEM
\(\because=\)
IFCNE EO SEVENDRETIRA
\(\checkmark=5\)
IFONE EQ EIGHTORETUEN
\(\mathrm{C}=7\)
if ME EC NIMEDEETIRH
\(!=10\)
IF CRE EQ TENAFETUEN
\(\mathrm{r}=11\)
IC ME EQ. ELEVEMDEETUFI
\(\mathrm{K}=12\)
IFGE EQ THELGEDEETURN
\(t=13\)
IF RE EG TEENEDEETUFN
\(\hat{1}=14\)
IFOHE EQ TEEMAPETURN
\(k=15\)
IF RE EG TEEMGYETUFN
\(\because=15\)
IFTE ED TEEHEDEETUR
\(k=17\)
IFCRE ELE TEEMGPETIGN
\(\mathrm{h}=1 \mathrm{E}\)

IF AEE EG TEEMBYETURN
\(ト=13\)
IF CIRE EQ. TEENGORETLRN
\(\mathrm{K}=2 \mathrm{~g}\)
IFCHE EE THEPT'TAETURN
CFLL EFFEE
WFITE (4. 9019)
GEG FGFNFTG1\%, 4 STHEFE IS RN EFFOF IN THE ETL NOS, RECHEGK,
ETLCK \(=2\)
FETIPR
EHO
```

    FINNETION YFFIFINEN, FWE%
    ```

``` C
\(\because \quad \because H E L F R\) CFLCLLATES THE VREIFMCE
E. BF B GFOUF OF PUHEEFS FNW WILL ELIMINATE
```



```
\(\therefore\) FOESELE RUMEEE FFOM THE JHEEEL FEH SZQ
E SFEGTFTFHOTGNETEF?
\(\therefore\) E
E
```




```
Cumbrn bum, \(x\)
```



```
\(001 \quad I=1, N\)
```





```
1 CORTIPUE
VFFIFR=EUMACEOUNT-1.
FETUFN
EILC
```



C


FEFiL NO

Common Dum ace bek


319 FOFHAT（AZ）



GO TO 1
FETIEN
ERE：

A Listing of the Formatting Used on the Data Tapes for the PDP-15

```
Y7A-3-5BP 18-23CM
HN1422 AAA 4&8.41
OL
Y74-3-58P 18-23CM
HN1422 AAA 445.16
02
Y74-3-58P 118-123CM
HN1423 AAA 403.45
O1
Y74-3-58P 118-123CM
HN1423 AAA 396.97
02
Y74 3-5SP 218-223CM
HN1424 AAA 448.93
O1
Y74-3-58P 218-223CM
HN1424 AAA 427.67
02
**
$$
```


## Cu

501
U01 200.
502
102200. *
$+0194+0194+0197+0198+0194+0195+0199+0200+0191+0194+0190+0188$ $+0189+0190+0188+0189+0191+0187+0190+0189$
$+0305+0348+034 t+0345+8341+0340+0340+0342+0339+0345+0340+0336$ $+0338+8334+0340+0338+0336+0335+0339+0339$
$+0387+0389+0387+0387+0387+0390+0385+0385+0383+0384+0383+0385$ $+0382+0383+0382+0381+0380+0382+0383+0382$
$+0238+0331+0325+0327+0328+0326+0325+0328+0325+0327+0329+0326$ $+0325+0320+0320+0321+0325+0328+0326+0326$
\#
S0 1
103200.

502
104200.
\#
$+0183+0198+0198+0195+0197+0198+0194+0195+0199+0193+0196+0195$ $+0193+0195+2193+0195+0192+0194+0193+8195$
$+0371+3367+0371+0369+8365+0365+0363+0364+8361+0363+0367+0366$
$+0367+0365+0366+0363+0363+6367+0366+0367$
$+0354+0385+0385+0388+0384+0359+0393+8392+0390+0392+0390+0388$
$+0389+8329+0392+0359+0392+0388+0389+0387$
$+0299+3364+0358+0357+0359+0357+0360+0355+0356+0360+0353+0353$ $+0356+0359+0355+0354+0351+0349+0350+0346$
\#

502
105200.
S. 3
436200.
$\#$
$+0401+0399+0404+0401+0397+0406+0399+0403+0398+0400+0393+0402$
$+0394+0399+0399+0402+0392+0392+0397+0402+0395+0399$

$+0601+0$ +64 $+3598+0597+0598+0590+0593+0591$
$+0592+0601+0593+0598+0590+0585+0532+0575+0591+0571+0580+0578$
$+0581+0.575+0581+0574+0575+0582+0574+0578$
$+0584+0589+0592+0597+0588+0591+0593+0593+0594+0538+3587+0592$ $+0590+0535+0588+0591+0595+0594+0592+0595$

## 88

E $\$$

```
FE
S02
401 20000.
S03
4220000.
#
+0396+0402+0397+0398+0405+0397+0406+0394+0403+0402+0398+0401
+0401+0399+0406 +0395+0403+0395+0402+0394+0406+0396+0405 +0393
+0 509 +0 520 +0 510 +0 507 +0 518 +0 516 +0 514 +0 509 +0 517 +0 515 +0 542 +0 542
+0 537+0538+0532+0529+0510 +0515 +0513 +0 519 +0 518
+0 582+0595 +0 597+0598+0 600 +0593+0594+0601+0584+0595 +0 597+0599
+0593+0601+0592+0 599+0591+0 594 +0594+0592+0 596
+0483+0494+0490+0487+0495 +0495+0486+0488+0489+0482+0488+0485
+0490+0488+0490 +0469+0489+0488+0493+0490 +0488+0493+0493
S02
403 20000.
SO\03
10420000.
#
+0185+0401+0392+0400+0385+0394+0393+0395+0393+0400+0386+0399
+0396 +0397+0397+0393+0398+0402+0390+0389+0393
```



```
+0533+0540 +0 534+0 534+0540 +0 530 +0534 +5536+0537
+0 596+0 595+0 597+0 599+0 597+0600 +0 590 +0 597+0 605 +0594 +0 591+0 597
+0598+0595+0601+0596+0 588+0593+0 593+0 600 +0 586
+0436+0439+0438+0434+0434+0438+0431+0434+0433+0437+0433+0433
+0435+0432+0435+0440 +0428 +0436 +0442+0429 +0433
#
SE2
U05 20000.
Se }
10620000.
*
+0408+0402+0410 +0397+0412+0406+0404+0401+0403+0412+0408 +0406
+0405+0398+0412+0405+0403+0402+0408+0406+0408
+0564+0 554+0551+0551+0 538+0556+0550+0550+0554+0548 +0547+0 548
+0 547 +0 548+0 554+0 553+0 554+0 549 +0 545 +0 542 +0 542 +0 542
+0599+0604+0602+0603+0608+0599+0605+0605+0601+0595+0594+0590
+0579+0588+0583+0 583+0576+0582+0583+0581+0576+0582+0583+0583
+0451+0488+0495+0503 -04498+0497+0595+0494+0499+0504+0501+0500 +
+0493+0499+05079+0500+0499+0501+0497+0496+0503
```

88
5.5

M
S. 5
10120000.

501
し02 20000.
\#

```
+0098 +0098+0099+0097+0100 +0094+0099 +0099 +0102 +0096 +0103 +0099
+0100 +0093 +0102 +0096 +0100 +0096 +0102 +0096
+0210 +0203 +0208+0203 +0204 +0203 +0207 +0207+0209 +0208 +0205 +0203
+0204+0205 +0209 +0206+0207 +0206 +0208t+0204
+0202+0200 +0206+0204+0202 +0206 +0206 +0205 +0203 +0208 +0207 +0202
+0203 +0207 +0205 +0208 +0203 +0203 +0207 +0204
+0182+0192+0191+0187+0195+0196+0197+0197+0197+0200+0192+0196
+0195 +0197+0198+0199 +0201+0195 +0197+0198
```

$\#$
SO 1
10320000.
502
10420000.
\#
$+0197+0201+0195+0197+0200+0194+0800+0196+0197+0198+0198+0201$
$+0290+0195+0195+0199+0197+0198+6197+0199+0199$
$+0264+0263+0264+0264+0264+0262+0268+0269+0265+0272+0266+0266$
$+0266+0267+0263+0266+0270+0267+0275+0271+0265$
$+0433+0430+0425+0433+0436+0435+0433+0435+0432+0435+0430+0432+$
$+0433+0435+0436+0437+0434+0435+0436+0432+0435$
$+0263+0270+0267+0264+0260+0263+0265+0261+0264+0264+0263+0267$
$+0272+0270+0264+8266+0265+0267+8272+0272+0266$
$+0225+0222+0223+0230+0228+0224+0221+0222+0224+0224+0223+0223$
$+0223+0222+0222+0229+0228+0224+0226+0227+0227+0226+0230+0227+$
+0224 + 9220
$+0273+0275+0271+0270+0271+0271+0268+0270+0271+0268+0276+0275$
$+0275+0272+0273+0275+0275+0278+0270+0272+0276$
$+0439+0446+0440+0436+0445+0440+0437+0443+0443+0441+0438+0447$
$+0444+0438+0443+0444+0439+0443+0445+0442$
$+0280+0277+0285+0273+0272+0264+0268+0270+0267+0277+0275+0275$
$+0276+0273+0272+0269+0271+0270+0274+0278$

582
40520000.

S03
10620000.
*

114

```
+0399+0399+0413+0402+0398+0403+0395 +0404+0398+0411+0398 +0403
+0397+0404 +0399+0409+0405+0401+0400 +0399+0414+0398+0408 +0404
+0404+0405
+0431+0430+0429 +0431+0433+0434+0438+0433+0437+0436 +0437 +0430
+0429 +0429 +0427 +0432 +0430 +0428 +0434 +0433 +0435
+0610+0606+0615+0608+0606+0609+0609+0609+0605+0607+0610+0605
+0608 +0614 +0606+0612+0604 +0609 +0611+0606
+0413 +0416+0413+0420+0413+0418+0414+0409+0412+04111+0409 +0414
+0414 +0412+0409 +0415 +0399 +0398+0391+0393+0412+0404
```

\&\&
SS

## An Example for the Operation of the PDP-15 Program

```
    TC
MK1:15 V4D
$A TTS 4,5/TT& 3
SGLOND
BGLOAD vaA
>-Al,S
```




```
CO:CEDTRATION VALUEO ON FILO?
```

CO:CEDTRATION VALUEO ON FILO?
y-
y-
O YOU "JSH TO READ IN PAP:R TAPES?
O YOU "JSH TO READ IN PAP:R TAPES?
Y:S
Y:S
MCN: mATA?
MCN: mATA?
YZS
YZS
:OP: mATA?
:OP: mATA?
Y"S
Y"S
ARE If TH?
ARE If TH?
YC
YC
@c:O DATA?
@c:O DATA?
MO

```
MO
```

ज14. = $\because 74-3-58 D \quad 15-230!1$

GH?
JA!T: Y 74-3-5\{P 18-2.3C!

cre?
YES

GO!
ry?
y?

```
WAL!= Y74-3-5r% 115-123C:9
GFONO= 1:!483 GAC= AAA NOI= 3OF.97 FHW= ह
OK?
NO
MHICH JMFUTIFION IS I# TPPOR?
FRAC
MMAT IS THE CORE:CE FPAC ?
ABC
OK?
YTES
```

```
NAME= Y74-3-50P 11P-1?3C:4
GEC1O= U|LEZ FPAC= ASO
OK?
YES
#HL= Y74 3-58: S1:-223Cl
```



```
OK?
YES
MA:O=Y74-3-5EN:M-82?CO
OK?
MO
MHYCH IDRMTIPIOR IS IM PPOR?
1GT
MHAT IS THE COPFOCT MGT ?
42&.20
OK?
YOS
```




```
nK?
YES
```

IS ? IN THE CORFBOT LEMTHA WHE?
Yes
i! 4


Y:?
$\because 1$

or?
0
BiHCH VARIABL: Ir IU TPOPR (DTL, DJLHIIOH, P1, RE, TTC.)
P! 1
DHAT IS THE IUT. Vo.?
1
$0 \% ?$
YES
! !



```
OH?
:9!!
```



```
0k?
YES
IS CU THE CORDECT DLIMRUN NAME?
0u
```



```
    llll
    OH?
    YSS
```

01


C:


```
    150300
```



```
    \(\angle\) teg annore sni.
\(0 ?\)
\(Y\)
```

IE FE THE CCBFFCT ARMEUT WAE?
$\because$


2!?


?

n?

```
YOS
FE
```




```
    ov?
YAS
F:
IN)}3\mathrm{ 3TL DILUTICM 
0%?
YMS\\\!O
F%
```



```
    llocern
C'?
```



```
1
OK?
N
```



```
1
OE?
YCS
OTOP MOMAM
Ti,
*!品 w:)
```

A Sample of Data Output to the Papertape Punch by the PDP-15 Program


A Sample of Data Output to the Line Printer by the PDP-15 Program

```
174-3-5%F 11E-L2ELH
    HP142S FELE S9G.g7 NG
\begin{tabular}{|c|c|c|c|}
\hline ELETAENT & COPN CFFH) & ERFORE & \(\therefore\) EFROR \\
\hline [1] & 367.957 &  & 2. 01 \\
\hline FE & 5 SEE 864E & 841. \(41 \mathrm{H4}\) & 1. 52 \\
\hline WN & 12175 7854 &  & 1. ЭE \\
\hline
\end{tabular}
```


## CALCULATIONS

The algorithm used to calculate abundances is a simple linear interpolation:

$$
M=100\left[\frac{H-(H-L)\left(\frac{Z-Y}{Z-X}\right)}{F G}\right]
$$

where

The error is propagated with the assumption that the only variation is in the digital readout of the AAS. With this in mind, the following equation was used to calculate the total error for each calculation.

$$
R S D=S x^{2}\left(\frac{M}{X}\right)^{2}+S y^{2}\left(\frac{M}{Y}\right)^{2}+S z^{2}\left(\frac{M}{Z}\right)^{2}
$$

where RSD $=\%$ Relative Standard Deviation

$$
\begin{aligned}
& \mathrm{Sx}^{2}=\text { the sample variance of } X \\
& \mathrm{Sy}^{2}=\text { the sample variance of } Y \\
& \mathrm{Sz}^{2}=\text { the sample variance of } Z
\end{aligned}
$$

$$
\text { and } M \text { is the linear interpolation equation above. }
$$

$$
\begin{aligned}
& \mathrm{M}=\text { \% metal in sample } \\
& H=H i g h \text { standard value } \\
& L=\text { Low standard value } \\
& \mathrm{X}=\mathrm{Avg} \text { of AAS readouts for the low standard } \\
& \mathrm{Y}=\| \text { " } " \text { " " sample } \\
& \mathrm{Z}=1 \text { " " " " high standard } \\
& \mathrm{F}=\text { the dilution factor ( } 1000 / \text { dilution of sample) } \\
& G=\text { wgt of sample }
\end{aligned}
$$

Sample variance is calculated using the following formula:

$$
s^{2}=\frac{\sum(X i-x)}{n-1}
$$

where

> Xi is one of the data points, x is the mean of the sample n is the number of data points in the sample.

## Acknowledgments

The author would like to thank John Toth for his contribution in "Cold Vapor Atomic Absorption Techniques" and to Mitch Lyle for "Pb Analysis by Carbon Rod."

This work was supported by the National Science Foundation as a contribution of the International Decade of Ocean Exploration (Nazca Plate Project), Grant \# IDO 71-04208.

## REFERENCES

(1) Bernas, Bedrich, 1968, A new method for the decomposition and comprehensive analysis of silicates by atomic absorption spectrometry: Analytical Chemistry, v. 40, p. 1682-1686.
(2) Control Data Corporation, 1969, 3300 Computer Systems Fortran reference manual, Control Data Corporation Pub. No. 60057600, Rev. B, 116 p.
(3) Dayton, Fred and Massie, Walter, 1968, Free form input for OS-3 Fortran, Oregon State University Computer Center Pub. No. CC-68-27, 9 p.
(4) Dayton, Fred, 1970, OS-3 Editor manual, Oregon State University Computer Center Pub. No. CCM-70-7.
(5) Digital Equipment Corporation, l974, PDP-15 Edit Utility program reference manual, Digital Equipment Corporation Pub. No. DEC-15-YWZB-DN6.
(6) Digital Equipment Corporation, 1972, PDP-15 Fortran IV programmers reference manual, Digital Equipment Corporation Pub. No. DEC-15-KFZD-D.
(7) Digital Equipment Corporation, 1972, PDP-15 MACRO-15 assembler programmers reference manual, Digital Equipment Corporation Pub. No. DEC-15-APIZB-D.
(8) Digital Equipment Corporation, 1969, PDP-15 Systems reference manual, Digital Equipment Corporation Pub. No. DEC-15-BRZAD.
(9) Digital Equipment Corporation, 1972, PDP-15 UPDATE utility program reference manual, Digital Equipment Corporation Pub. No. DEC-15-YWZB-DN7.
(10) Fisher Scientific Company, 1972, Atomic absorption analytical methods, Fisher Scientific Company, Atomic Absorption Analytical Laboratory Publication.
(11) Fisher Scientific Company, 1971, JA82-810 instruction manul, Fisher Scientific Company, Jarrel Ash Division Engineering Pub. No. 82810, 54 p.
(12) Krogh, T. E., , A simplified technique for the dissolution of zircons and the isolation of uranium and lead, Carnegie Institution, Annual Report of the Director, Geophysical Laboratory, 1969-1970, p. 341-344.
(13) Massie, Walter, 1968, A control mode manual for OS-3 (vers. 2.0), Oregon State University Computer Center Publ. No. CC-68-2l.
(14) Parr Instrument Company, 1969, Acid digestion bomb, Parr Instrument Company Product Sheet 4745, 2 p.
(15) Parr Instrument Company, 1972, Instructions for Parr 4745 Acid Digestion Bomb, Parr Instrument Company, 4 p.
(16) Standley, David R., 1972, Digital recording and analysis of mass spectra, Master's degree thesis, Oregon State University, 84 p.
(17) Wang Laboratories, Inc., 1971, Wang Model 500 reference manual, Wang Laboratories Pub. No. 700-0352, 37 p.

## APPENDIX A

BEER'S LAW CURVES FOR THE MOST FREOUENTLY ANALYZED BT UMENTS

## ALUMINUM



## BARIUM



CALCIUM


A-4


COPPER


IRON


MAGNESIUM


MANGANESE



A-10
POTASSIU'M



## TITANIUM



ZINC


## APPENDIX B

COLD VAPOR ATOMIC
ABSOR PTION OF MERCURY

## COLD VAPOR ATOMIC ABSORPTION OF MERCURY

The reduction-aeration cold vapor technique for the determination of mercury involves the chemical reduction of Hg (II) ions in solution to neutral mercury atoms by a suitable reducing agent. The sample solution is then aerated with a carrier gas which carries the mercury atoms into an absorption cell where the absorbance is measured at the 2537 A mercury resonance line.

The reduction-aeration apparatus consists of a reduction vessel, an aeration device, a water mist vaporizer, and an absorption cell. The reduction vessel is made from a 10 mm diameter glass tube fitted with a porous glass frit near its base. (Fig. B-1). Aeration is from below up through the glass frit and the solution. The small volume of the vessel, efficient aeration, and large effective solution surface area created by the bubbling cause rapid diffusion of $\mathrm{Hg}(\mathrm{o})$ out of solution and into the carrier gas. This enables a very sharp peak absorbance to be observed. Peak absorbance is also related directly to the length of absorption cell and inversely to its diameter (within limits). A cell 60 cm in length and 2 mm in diameter was found to be optimum for the sample size and mercury concentrations used.

Light scattering by water mist in the absorption cell is the main source of spectral interference with this system. This water is vaporized


Figure B-1. Reduction vessel
by passing through a heating chamber, a glass tube filled with glass beads, at $200^{\circ} \mathrm{C}$, and by maintaining the absorption cell temperature above $100^{\circ} \mathrm{C}$.

The mercury absorbance is measured by a double beam system. The mercury lamp beam is split and partially reflected to a reference photomultiplier tube and compared to the absorbed beam through a log ratio amplifier. The resulting absorbance is recorded on a pen recorder. Mercury concentration is linearly related to peak absorbance height in the range $0-5 \mathrm{ppb}$. See Figure $\mathrm{B}-2$ for a diagram of the apparatus.

This cold-vapor atomic absorption apparatus was designed and built by Dr. Ingel of the O.S. U. chemistry department ${ }^{1}$ and is described in detail in the MS thesis of James Hawley ${ }^{2}$. It has a detection limit of $4 \times 10^{-12} \mathrm{gm} \mathrm{Hg}(4 \mathrm{ppt} \mathrm{Hg}$ in solution) and an effective range of $.004-$ 10 ppb in solution.

Hg ANALYSIS

Solution and Glassware Preparation

All solutions are prepared from reagent grade chemicals and doubledistilled water.

## Solutions

Reductant: $1 \mathrm{gm} \mathrm{SnCl}_{2} 1 \mathrm{mlHCl}$ (c) diluted to $100 \mathrm{ml}\left(1 \%\left(\frac{w}{v}\right) \mathrm{SnCl}_{2}\right)$
Oxidant: $0.2 \mathrm{gm} \mathrm{KMnO}_{4}$ dilute d to $100 \mathrm{ml}\left(0.2 \%\left(\frac{\mathrm{~W}}{\mathrm{~V}}\right) \mathrm{KMnO}_{4}\right)$

B-4


WF ureq otqnod - z-g emstial

$$
\begin{aligned}
\text { Mercury: } 0.1354 \mathrm{gm} \mathrm{Hg} \mathrm{Cl}
\end{aligned} \quad \begin{aligned}
& 50 \mathrm{ml} \mathrm{HNO}_{3} \text { (c) diluted to l liter } \\
& (100 \mathrm{ppm} \mathrm{Hg} \text { (II) stock sol.) }
\end{aligned}
$$

All standards are prepared by dilution of the 100 ppm Hg (II) stock solution and contain $1 \%\left(\frac{\mathrm{~V}}{\mathrm{v}}\right) \mathrm{HNO}_{3}(\mathrm{c})$ and $0.002 \%\left(\frac{\mathrm{~W}}{\mathrm{~V}}\right) \mathrm{KMnO}_{4}$ as a preservative. This acidic and oxidative solution is necessary to prevent loss of mercury by 1) reduction to $\mathrm{Hg}(\mathrm{o})$ or $\mathrm{Hg}(\mathrm{I})$, which readily dissociates to $\mathrm{Hg}(\mathrm{II})$ and $\mathrm{Hg}(\mathrm{o})$, or 2) cation-exchange type adsorption onto the walls of the container. Dilute mercury solutions should still be analyzed within eight hours after preparation since mercury loss is still significant over long periods of time.

All glassware must be stored for 24 hours with a $1 \% \mathrm{HNO}_{3}-0.002 \%$ $\mathrm{KMnO}_{4}$ solution to remove traces of mercury adhering to the glass surface. Afterwards the glassware must be washed with HCl (c), rinsed with double-distilled water, washed with $\mathrm{HNO}_{3}$ and rinsed with doubledistilled water. Beware mercury contamination is everywhere, so all flasks, beakers, pipets, etc., must be initially cleaned with the acid- permanganate solution and should be rinsed with nitric acid before each use.

## Sample Digestion and Analysis

Geologic samples are digested by the standard HF-pressure bomb technique and brought to a volume to contain less than 5 ppb Hg . Teflon liners are rinsed just prior to digestion with acid-permanganate solution.

Manganese nodules and crusts are digested using 50 mg samples that have been crushed in an agate mortar and dried in a dessicator at least 24 hours. A drying oven is not used because of the potential loss of mercury due to its high volatility. The material is weighed into the teflon liner and the following reagents are added:

1) 0.1 ml HNO 3 (c)
2) 0.3 ml HCl (c)
3) 2.0 ml HF (c)

After sealing, heating for $1 \frac{1}{2}-2$ hours at 110 C , and cooling, 1.9 gm $\mathrm{H}_{3} \quad \mathrm{BO}_{3}$ is carefully added directly into the Teflon liner. The solution is brought to a final volume of 25 ml and immediately analyzed. Standards are either prepared from the Hg (II) stock solution in a HF-boric acid matrix, or a known amount of Hg (II) solution is added to a duplicate digested sample as a standard addition. Blanks are determined by adding only the reagents to the Teflon liner and taking this through the digestion procedure.

Analysis of the solutions is carried out as follows. Instrument variables are adjusted to optimal conditions as shown in Table B-1 from the Hawley M.S. thesis). After carrier gas flow through the frit is initiated, 0.1 ml of the $\mathrm{SnCl}_{2}$ reductant solution is injected by syringe into the reduction vessel. After a baseline is established on the pen recorder, 1.0 ml of sample or standard solution is injected. The peak absorbance and return to baseline occur in less than 20 seconds. The solution is then

Table B-1. Optimal variables for analysis

| Variable | A. A. | A. F. |
| :---: | :---: | :---: |
| Flow rate | $140 \mathrm{ml} / \mathrm{mia}$ | $140 \mathrm{ml} / \mathrm{min}$ |
| Frit grade | medium | medium ${ }^{\text {- }}$ |
| Drying tube | $\begin{aligned} & 5 \mathrm{~cm} \text { long } \times 12 \mathrm{~mm} \\ & \text { dia } \mathrm{Mg}_{8}\left(\mathrm{ClO}_{4}\right)_{2} \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~cm} \text { long } \times 12 \mathrm{mam} \\ & \text { dia } \mathrm{Mg}^{\left(\mathrm{ClO}_{4}\right)_{2}} \end{aligned}$ |
| Cas carrier | air | argon |
| Volume of reductant | 0.1 ml | 0.1 ml |
| Volume of sample | 1.0 ml | 1.0 ml |
| Slit width | 1000 urn | 2000 um |
| Absorption cell | $20 \mathrm{~cm} \operatorname{long} \times 2 \mathrm{~mm}$ id $60 \mathrm{~cm} \operatorname{long} \times 2 \mathrm{~mm}$ id | -- |
| Fluorescence cell | -- | $1 \mathrm{~cm} \times 9 \mathrm{~mm} \times 6 \mathrm{~mm}$ |
| Radiation source | Hg pen lamp (DC) | Hg pen lamp (AC) |
| Lamp current | 9-10 min | 17 ma |
| RC time constant | 0.32 sec | 1 sec |
| Systera | Double beam | -- |
| Photoanodic current | $10^{-5} \mathrm{~A}$ | -- |
| Photomultiplier supply ${ }^{1}$ voltage | 500-600 V | 700-800 V |
| $R_{E}^{1}$ | -- | $10^{6} \Omega$ |

evacuated in preparation for the next analysis. The reduction vessel is cleaned after each day's use by flushing with $\mathrm{HNO}_{3}(\mathrm{c})$, rinsing with distilled water, flushing with $\mathrm{KMnO}_{4}$ solution, and rinsing with distilled water.

## REFERENCES

1 Hawley, J. E. and J. D. Ingle, Jr. (1975) Improvements in cold vapor atomic absorption determination of mercury, Anal. Chem., 47, 719.

2 Hawley, James E. (1975) Cold vapor atomic absorption and fluorescence analysis of mercury. Unpublished M. S. Thesis, Oregon State University, Dept. of Chemistry, 85 p.

## APPENDIX C

PB ANALYSIS BY CARBON ROD

## General Considerations

Pb tends to plate out of the dissolved sample. It should therefore be analyzed quickly after sample dissolution (within about a day). In the short testing I have done, it appears that the standards are more stable. They probably should be made up fresh for each analysis, however. Samples are dissolved by the standard HF-Aqua regia treatment. Because of the generally low Pb levels, we use 200 ml dilution for analysis. Standards are therefore made up using this matrix in $0,0.05,0.1,0.2$, and 0.3 ppm Pb concentrations.

## Setting Up For Carbon Rod Analysis

We generally use the carbon cup for Pb analysis. It has lower sensitivity, necessitating larger sample size, but seems to be more easily reproducible.
A) Mounting the Cup - See Varian Techtron Manual

1) One support block for the electrodes has a click stop built in. Slide rod in until one of the slots machined in the rod clicks into place.
2) Slide other rodin. Put cup in place. Align light path holes with hole in masking plate. It is best done with thin rod.
3) Make sure cam lever is down (spreads support blocks slightly.) Fit electrode snugly against cup.
4) Fasten electrodes in place by clamping screws. Put cam lever back up again
B) Preparation of Carbon Rod Assembly for AA Work
5) Mount carbon rod assembly in AA work head holder
6) Warm up Pb lamp and adjust for Pb wavelength. We use 2833A plus 2820A as background non-absorbing line.
7) Align carbon rod in light beam with the burner head controls.
8) With chart recorder on $5 \mathrm{~m}_{\mathrm{V}}$ scale, set A channel (2833A) and B channel (2820A) to cover same chart distance when light path is blocked. This should be done in per cent absorption. Switch to absorbance mode. Switch to $2 \mathrm{~m}_{\mathrm{v}}$ scale (expands scale of chart recorder 2.5 times.)
9) Turn on water supply to carbon rod assembly. (recommended is O. 5 liters/min.)
10) Turn on argon supply to carbon rod. Recommended is 10 psi gauge pressure at tank, and 7.0 setting on needle valve.
11) Set all power supply voltages to $O$. Set ash time to 20 , leave dry and atomize at $O$. Set hydrogen gauge pressure to 10 psi. Cycle through power sequence. While machine is in ash cycle, set hydrogen flow to 1.0 on needle gauge. (Must be done this way because solenoid controlling hydrogen flow will not turn on until ash stage).
12) Set power controls as follows:

Stage
dry 3.5
ash 2.5 atomize 9.0

Time (in seconds)
40
20
3.5

1) All operations run on a 90 second interval between firings to allow rod conditions to be as reproducible as possible. Timer is necessary.
2) Fire about 5 times in sequence with no analyte. This cleans the rod and warms it up.
3) Pipette 20 ml of first standard into cup. Be careful to wipe excess off pipette, and that you pipette into the bottom of the cup. Be sure to rinse tip 3 to 4 times with new solution when changing to new standard.
4) Cycle through power sequence. Wait 90 seconds after atomize stage to run again. Ast about 15 seconds before firing time, pipette in new 20 ml aliquot of standard. Cycle it through at 90 seconds. Measure peak height of channel $A$ and subtract from channel $B$ to get concentration peak height.
5) If they reproduce, change to new standard, repeat (4). Do this for all standards. If they do not reproduce, keep running standards until they agree.
6) Run lst sample four times.
7) Run through standards twice again. If you know all samples will fall within a small range, you can limit your standards to that range. 8) Repeat step 5 and 6 for all samples.
8) IF there is a systematic decrease in peak height of sample or

## $C-4$

standard, your rods have probably worn out. Check to make sure decrease is not measurement error. If not, replace rods, go through procedure again for samples not yet analyzed. If you think rods are getting old, disconnect $\mathrm{H}_{2}$, connect up lab gas (mainly $\mathrm{CH}_{4}$ ). Give the rods a few burns with the lab gas. This will increase their life by replacing some of the lost carbon.
10) Analysis time: 30 to 40 minutes per sample.


[^0]:    Figure 4．Sample Decomposition Vessel．

