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GRAVITY INTERPRETATION USING THE FOURIER INTEGRAL 

INTRODUCTION 

For more than a hundred years the Fourier Integral has been used 

as a method of analysis. One of the earliest examples is the experi- 

ment by Fizeau (1862), in which he demonstrated that the sodium -D 

line was a doublet long before it had been observed directly. Other 

examples of its use are provided in nearly every area of science. 

Although the Fourier Integral method has usually been applied to 

data which exhibit wave characteristics, any function satisfying cer- 

tain conditions (see Appendix A) can be transformed into a compliment- 

ary function by use of the Fourier Transform. This complimentary func- 

tion contains all information about the event or data described by the 

original function. So the Fourier Integral has been used in the 

analysis of data not directly related to frequency defined phenomena. 

In particular it has been recognized that the earth acts as a low -pass 

filter with respect to gravitational and magnetic anomalies which 

originate at depth in the earth (Dean, 1958). These phenomena can be 

described by utilization of the Fourier Integral. 

Dean (1958) and Goldstein and Ward (Personal Communication) used 

Fourier analysis to determine the effects of filtering gravitational 

data. Other investigators (among which are Tsuboi and Fuchida (1938) 

and Tomoda and Aki (1955)) have used the Fourier Integral in the down- 

ward continuation of the gravitational field to describe sub -surface 

density distributions. The research presented in this thesis differs 

from the previous work in that the primary emphasis is on the 

analysis of the frequency spectrum to determine information about 
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the depths, sizes, and densities of disturbing bodies burried at 

depth. 

The object of this research was to determine the feasibility of 

using the Fourier Integral for the direct analysis of gravitational 

data. It has been pointed out by many authors that it is theoretically 

impossible to determine a unique density distribution beneath the 

surface of the earth from the potential field measured at the surface. 

However, if assumptions are made about the nature of the density 

distribution, a unique solution can be determined (Peters, 1949). In 

this research the density distributions were assumed to be in the 

shapes of regular bodies (cylinder, sphere, and fault). Integrations 

of the functional representations of the theoretical gravitational 

anomalies of these bodies were performed to obtain their Fourier 

Transforms. Exact integrals were obtained for each of the bodies used 

in the research. The Fourier Transforms were investigated to deter- 

mine possible relationships between slopes and intercepts of the 

amplitude versus frequency data and the depths, sizes, and density 

contrasts of the bodies. Methods were devised to determine these 

parameters from the transforms. 

Transforms of the anomalies of more complex structures composed 

of simple bodies were investigated to determine whether the method 

1After this research was completed, an article by Solov'yev (1962) 

was obtained and translated. Research of a nature similar to the 

research in this thesis was presented by Solov'yev. However, his 

analyses were performed using magnetic anomalies caused by dikes. 
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could resolve these complex structures into their simpler components. 

These cases were tested by doing numerical integrations of the digit- 

ized theoretical anomalies. At this time, techniques for handling the 

data were established. 
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METHOD OF ANALYSIS 

I. Transforms and Analysis of Simple Bodies 

In this section the functional representations of the transforms 

of the gravitational anomalies due to simple bodies are presented, and 

the methods are described by which the data were analyzed to determine 

the parameters that describe the bodies. The method of analysis for 

the (a) cylinder, (b) sphere, and (c) fault will be discussed in the 

order given. 

(a) Cylinder 

The vertical gravity at each point along a profile perpendicular 

to a buried cylinder2 (Figure la) is given by 

gz(X) = ßD /(D2 + X2) (1) 

where 

p = 271 óRc2Q 

r = universal gravitational constrant 

Rc= radius of cylinder 

Q = density contrast 

D = depth to center of cylinder 

X = horizontal surface distance 

2The formulas for the gravity field of the cylinder, sphere, and 

fault were taken from Nettleton (1940). 
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The vertical gravity for a cylinder is an even function 

[f:íx) = f( -x), , so the Fourier Transform is given by (see Appendix A) 

Fc() 
00 

2pD -1 
(D2 + 92) cos (w (p)d (2) 

j27t 

The integration tables (Dewight, 1961) give for this integral 

(3) 

Where co is the frequency in cycles per unit length. 

A plot of the exact integral, Fc(w), against frequency, W 

on a semilogarithmic scale is shown in Figure lb. This relationship 

ln[Fc(co)} = ln(V2 ß) - D W (4) 

is linear with the slope equal to the negative of the depth. The 

intercept 

I = 
1 2TCó'Rc26 (5) 

gives the relative size of the cylinder 

2 I 
\'j2 R 

c a 
VïC 

(b) Sphere 

(6) 

The vertical gravity at each point along a profile which passes 

over the center of a buried sphere (Figure 2a) is given by 

3/2 
gz(X) = OD/(D2 + X2) (7) 

_ 

Io 

Fc (w) =API- ße 
-D W 

= 

27< ?i 

, 
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Where a = 4 /31CóRs3o, Rs is the radius of the sphere. The other 

constants were defined previously. Since the vertical gravity for the 

sphere is an even function, the Fourier Transform is given by 

op 
-3/2 02 

+ cp2) cos(Wcp)d 

Integration yields (see Appendix B) 

(8) 

FS(W) __ /2w Kl(wo) (9) 

Where K (o)D), 
1 

is the first order, modified Bessel Function of the 

second kind. 

Although the Fourier Tránsform for the sphere is not the same as 

that for the cylinder, it is similar and does approach an exponential 

as to becomes large. A plot of the exact integral, Fs(w), versus 

frequency, co, on a semilogarithmic scale is shown in Figure 2b. 

Equation (9) could not be reduced to a simple formulation of 

the variables, so the function was approximated by 

(W) = exp(A0 + A1W + A2(.02) (10) 

Numerical values of Fs(w) were calculated for different frequencies, 

co, and for different depths of burial, D, for the sphere. This 

was done using the tables for modified Bessel Functions by Sibagaki 

(1955). A sequence of values of Fs((.0) for different frequencies but 

for the same depth of burial were fitted by the exponential in 

Equation (10) to determine the exponents. This was done using the 

method of least squares. The process was repeated for different 

depths of burial, thus determining the exponents as functions of 

8 

F(a) 
21 

o 
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depth of burial of the sphere. 

The evaluation of the exponents A0, Al, and A2 was divided 

into two cases: (1) depths less than 2 km, and (2) depths greater 

than i km. This was done on the basis of depth of burial and of 

maximum frequency used in the determination of values of >F 
s 

Fs(w) for 

the approximation. This is illustrated by Figure 3. If the depth of 

burial was less than two kilometers .(solid line in Figure 3), the 

maximum frequency used in the calculation of data points was ten 

radians per kilometer. If the depth of burial was greater than one 

kilometer (dashed line in Figure 3), the depth of burial times the 

maximum frequency was not allowed to exceed 25 radians. Although the 

above criteria seem to be arbitrary, actual data obtained by doing the 

transform numerically would, in general, have limits of reliability 

which correspond to the limits set above. 

Figures 4a and 4b give the constants Al and A2 for depths 

less than two kilometers, and Figures 4c and 4d give them for depths 

greater than one kilometer. 

The series expansion of Fs(W) was evaluated at 00= 0 to obtain 

F(0) = 2° 

27CD 

This intercept is approximated by 

eA0 
= FsA(0) °v Fs(0) (12) 

Figure 5 gives the ratio, ). of the approximate intercept, FsA(0), 

and the theoretical intercept, Fs(0). Ì\= Fs(0) /FsA(0). 

, 

(11) 

, 
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In order to use the intercept to determine size and density of a 

sphere, it is necessary to correct the intercept of the approximate 

relationship by using the ratios given in Figure 5. For example, if 

the transform of a sphere is approximated and it is found that 

A0 = -16.30, Al = -2.57, and A2 = -0.0364, then from Figures 4c and 4d 

it is found that the depth is 3..00, kilometers. Using the value of the 

ratio, A for this depth from Figure 5, the actual intercept is 

found to be 

Fs(0) = XeA0 = 1.20 x 8.33 x 10 -8 = 1.00 x 10 -1 km2 /sec2 

Substituting this value for Fs(0) into Equation (11), 

= 3.76 x 10 -7 km3 /sec2 

Using the definition of (DI given by Equation (7) 

aR3 = 1.34 x 1012 kg 

This gives the relative size of the sphere. (Units used in this 

research were the kilometer, kilogram, and second.) 

(c) Fault 

The vertical gravity at each point along a profile perpendicular 

to the strike of a fault (Figure 6a) is given by 

gz(X) = 2 6`a 
X 

In 
X2+D2 7rT -1 (X` 

+ 2 + D tan I +(D+T)2 D 

- (D +T) tan -1 X /(D +T 

i 

(13) 

Where T is the throw of the fault. The other variables were defined 

previously. 

0 

X2 

rr 
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The vertical gravity for the fault is an odd function 

[f(X) = -f( -X)) so the Fourier Transform is given by (see Appendix B) 

oo 
F(w) = 2 
f 1/2TC 

sin (wcp)dcp 
In Appendix B this integral is shown to be 

Ff(w) = V27't á`ß 

(14) 

1/02 [e_(T]+ T/w (15) 

A plot of the exact integral, Ff(w), versus frequency, w , on a 

logarithmic scale is shown in Figure 6b. 

Multiplying Equation (15) by w gives 

f(w) =wFf(w) = 21T óa (1/w[e -(D+T)cu -e-Dwl 
+ TI 

(16) 

The limit, lim f(w) =-V2Tr re, is approached rapidly (Figure 6c) 
w--0 co 

so it can be evaluated. If this limit is subtracted from Equation (16) 

and the difference multiplied by w , Equation (17) is derived. 

G(w) =27T iSQ [eT_e_u] (17) 

A plot of G(w) versus frequency on a semilogarithmic scale is shown 

in Figure 6d. The depth, D, and thrown, T, can be obtained by 

analyzing the reduced transform, G(w), in terms of the sum of two 

exponentials analogous to the analysis of multiple decay spectra. 

For a description of this method see Kaplan (1955). 

In essence, this method involves fitting an exponential to the 

linear portion of the curve plotted on a semilogarithmic scale 

(line A, Figure 6d). This exponential is subtracted from the total 

spectrum and the residue is replotted. An exponential is fitted to 



3x108 

2 x 108 

M 

E 

108 

1 i i 

f (w) = aiFf(w) 

2,.ycrT 
( lim ftw)) 

w-c 

1 4 5 6 7 

W in rad / km 
Figure 6c. Modified Fourier Transform, f(w), (f(w) = wFf(c.a) 1 vs frequency to 

determine fiTrItoT. 

10 

N u 
O 

N. 

Y 

C 

0 2 3 8 9 

3 



(i) in rad / km 
Figure 6d. Reduced Fourier Transform, 0.0), vs frequency,w, 

used to determine depth and throw of fault. 

20 

0 2 4 6 8 IO 12 



21 

the linear portion of the new set of data (line B, shown as a negative 

plot in Figure 6d). The slopes of lines A and B are equal to -D and 

-(D +T) respectively. Knowing the throw, the density contrast can be 

found from the limit of f((.0). 

II. Transforms and Analysis of More Complex Structures 

The anomaly due to two cylinders at different depths was analyzed 

for the size and depth information for each cylinder in order to test 

resolution and accuracy of the method with respect to depth. The 

anomaly due to a cylinder separated horizontally from, and deeper 

than, a fault located at depth was analyzed to test resolution with 

respect to the type of body. These cases were tested by doing 

numerical integrations of the digitized theoretical anomalies. The 

computer program used to do the numerical transform is described in 

Appendix C. 

(a) Multiple Cylinders 

Figure 7a shows the calculated gravity anomaly due to two 

cylinders in a vertical plane at different depths. The open circles 

in Figure 7b are values of the Fourier Transform, obtained by 

numerical integration, versus frequency on a semilogarithmic scale. 

Since the Fourier Transform is the sum of two exponentials (see 

Equation (3)), this spectrum was analyzed by using the method of 

multiple decay spectra analysis described in section Ic. Thus, the 

slopes of lines A and B shown in Figure 7b are the depths of the 

cylinders. The intercepts of these lines are related to the sizes 
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of the cylinders by Equation (6). 

This method has been used in resolving three cylinders success- 

fully. However, statistical methods of analysis will probably be 

needed to obtain maximum resolution with more than two cylinders, 

since numerical approximations used in the analysis begin to show as 

scatter of data points. 

(b) Cylinder -Fault 

Figure 8a shows the calculated gravity anomaly over a cylinder 

and a fault. The cylinder is located below the fault and offset from 

it by a distance Y as shown on the diagram. 

Since the anomaly due to the cylinder is even and that due to 

the fault is odd, the total transform can be written as (see 

Appendix A) 

F(w) = e F1(w) + iF2(w) 

= cos(wY)F1(w) + i [sin(wY)F1(w) 
(18) 

Where F1(w) (even function) is the transform for the anomaly of the 

cylinder and F2(w) (odd function) is the transform for the anomaly 

of the fault. The exponential term, e1WY, is due to the cylinder 

being offset horizontally a distance Y from the throw of the fault 

(Figure 8a): 

The Fourier transform of the total anomaly was obtained by 

numerical integration and separated into the real and imaginary parts. 

The horizontal separation distance, Y, was found by determining the 

zeros of the real part of the transform, cos(wY)F1(w). These zeros 

+ F2(W), 
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are at intervals of w = 7T/Y 

The real part of F(co) was divided by cos (wY) to obtain 

F1(w). Figure 8b shows F1(ca), derived from F(w), plotted versus 

frequency. That plot is similar to that of the cylinder shown in 

Figure lb. The curve was fitted to the data by the method of least 

squares which gives values for the slope (depth) and intercept (size 

and density), the parameters for the cylinder. 

Values of F1 (w) were calculated using the derived parameters. 

These values were multiplied by sin(wY) and subtracted from the 

imaginary part of F(w) to obtain F2(0)). Figure 8c shows F2(0), 

derived from F(c.u), plotted versus frequency. These data were 

analyzed by the methods described in Section Ic to find the parameters 

for the fault. 

III. Results and Accuracy of Analysis 

The results of the analysis of the two complex structures 

compared to the actual values of the parameters are shown in 

Tables I and II. Table I is this data for the multiple cylinders and 

Table II gives the data for the cylinder and fault. 
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RESULTS FOR FAULT 

DEPTH 1.02 km 

THROW 0.498 km 

DENSITY CONTRAST 0.302 pm /cm3 
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Table I. Computed and Actual Data for Multiple Cylinders 

Actual Cal. % Actual Calculated % 
Depths Depths Error Intercept Intercept Error 
(km) (km) (km2 /sec2) (km2 /sec2) 

2 2.008 0.4 1.751 x 10 -7 1.750 x`10-7 0.1 

4 4.013 0.4 1.751 x 10-7 1.762 x 10-7 0.6 

Table II. Computed and Actual Data for Cylinder and Fault 

Cylinder 

Actual Cal. % Actual Calculated 
Depths Depths Error Intercept Intercept Error 
(km) (km2 /sec2) (km2 /sec2) 

3.000 3.026 0.87 1.7514 x 10-7 

Fault 

1.7551 x 10-7 0.21 

Actual Cale. % Actual Calc. % Actual Cale. 
Depth Depth Error Throw Throw Error Density Density Error 
(km) (km) (km) (km) Contrast Contrast 

(gm /cc) (gm /cc) 

1.00 1.02 2.0 0.500 0.498 0.4 0.300 0.302 0.7 

In the cases of the simple structures, numerical analysis has 

also been performed and errors are on the order of one -tenth of one 

percent for the determination of the parameters of the bodies. 

% 

% 
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SUMMARY AND CONCLUSIONS 

It has been shown that a Fourier Integral method of analysis can 

be of value in the analysis of theoretical subsurface structures. 

the case of the cylinder and sphere the depth and relative size can 

be determined. For the fault the depth, throw, and density contrast 

can be determined uniquely. 

It has also been shown in sections II(a) and II(b) that this 

method is capable of separating more complex structures into their 

simpler components. 

In theory there is no limit to the accuracy, provided the 

anomalies are produced by perfect simple bodies. The limit on the 

accuracy of the analyses presented in this thesis was only dependent 

upon the accuracy of the method of integration to find the transform. 

These errors are discussed in Appendix C. 

The applicability of this method to the analysis of the gravity 

anomalies of actual geological structures remains to be demonstrated. 

Current research is being directed toward this end. 

In 
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APPENDIX A 

Some Properties of the Fourier Integral 

If a function f(x) is piecewise smooth in every finite interval 

and assumes the value of the mean of the left and right hand limits 
o 

r 
at all discontinuities, and further if the integral) 

00 

exists, then the Fourier Integral Theorem states that 

CO 

rw 
f(x) = f dco f(t)eiw(t -x)dt 

-CO 

For a real function this may also be written 

f oo r 
f(x) = J 

o 
dw1 f(t) cosw(t-x)dt 

dx 

This formula may be written as two reciprocal functions. Setting 

the n 

co 

= 2nf f(x)eldx 

co 

f(x) = 1 j( OD 
415T _co 

F(w) is called the Fourier Transform of f(x). Further, if f(x) is a 

real and even function, 

op 

F(w) f f(x) cos (wx)dx f(x) =7-T F(co) cos (wx)dx o o 

or if f(x) is a real and odd function 

op m 
F( ) 4E1 f(x) sin (wx)dx f(x) _f F(w) sin (wx)dx 

_aa 

F(w) 

F (to) F(w) i(4xdx 

0 
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Displacement Theorem 

For a function f(x) displaced by an amount z from the origin, 

the Fourier Transform is given by 

1 
OD 

G(co) 
=-V27 

f(x-z)elWxdx 

Changing the variable of integration to y = x -z, dy = dx, the 

transform becomes 

G( ) = 
1 

00 

_ 
ZTC 

iwz 
f( y)1WYdy 

So that for a function displaced by an amount z from the origin, the 

Fourier Transform is 

G(co) = eiwzF(w) 

where 

F(w) l f(x)elwxdx 
27T f 

is the Fourier Transform of f(X). 

r 

-co 

J (y)eic.(y+z)dy 
27L _09 

e 
-co 



APPENDIX B 

Integration of the Sphere and Fault Transforms 

(a) Sphere 

The Fourier Transform of the vertical gravity over a buried 

sphere is given by (Equation (6), Section Ib) 

Fs (co) = 

co 
(D2 

9 
2) -3/2 

cos (w(p)dcp 

o 

This is not readily integrable; however, the tables (Dewight, 1961) 

give 
co 

f(D2 
-1/2 

cos (co(p)dcp = K (con) 
0 

where K0(cvD) is the zero order, modified Bessel Function of the second 

kind. Using Leibnitz' rule this gives 

33 

or 

00 

24-jr (D2 + 

co 

-1/2 
cos (u.19)(39 = K(WD) 

D (D2 + 9 2)-3/2 cos(w)d9 = -wKl(wD) o 

Which gives for the transform 

Fs (w) = 2 Ki (co ) 

where K1(WD) is the first order, modified Bessel Function of the 

second kind. 

f + 

92) 

óD o 

a 
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(b) Fault 

The vertical gravity along a profile perpendicular to the strike 
of a vertical fault is given by (Equation (13), Section Ic) 

gz(x) = 2?Sv 2 ln 2x2 
+D2 

2 + 2 + D tan -l( D, -(D +T) tan 1 

x +(D +T) 

Using the transformation 

tan- i(x /a) = 

This Equation becomes 

- tan -1 (x 

2 
gz(x) = 2ó'v 

2 
ln X2 

+0DDT)2 
+ D tan -1 (31:1 - (D +T) tan -1 [(D+T)/x] 

So that the Fourier Transform of gz(x) is given by 
ao 

F 2ócr E ln [2:(D+T)2 
241)2 

f 
-cnll 

+ D tan -1 (D/) 

- (D +T) tan -1 [(DT)/] ) sin (( )dcp 

Integrating each term of the integral individually: Let 

2+D2 1 

ln r 
J 

2 I 2+(D+T)2 A = 2J wcp)dcp sin( 
P 

Integrating by parts 
co 

- A = 
w2 2+(D+T)2 

1 log WT24.0 
wcp cap cos wp) (sin ] 

o 

raD 
- cos wcp) -wcp J ln 2+D2 wcp (sin wcp c2 1 d 

( 2+(D+T)2 C J 

(1) 

In the first term the limit as p goes to infinity must be evaluated. 

(It is easy to see that the value of the limit at p = 0 is zero.) 

` 

2 

) =_17F 

rco 

, 

It 

I 

] 
L 

o 
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The only term that will give any trouble is 

Now 

2+D2 2+D2 lim in 2, D+T 2 coswcp lim w ln 2+(D+T)2 
(P-Pa, ( ) 

, 
(19->03 

(P2+D2 

(P2+(D+T)2 
in (D+T)2-D2 

1 - T2+(21+T)2 

which goes to zero as 1 /92 when cp becomes large. Therefore the limit 
will go to zero as cp approaches infinity. The derivative in the 

second term of A gives 

So tha t 

d 

( 

(1)2+02 

ep2+(D+T)2 

2 +D2 

(D +T)2 

p2+(D+T)2 (p2+02 2+D2 
_ 

T 2+D2 
d 

(p2+(D+T)2 

(D+T)2-D2 
= 2cp (p2+(D+T)2 dcp 

Upon substitution the integral becomes 
ao 

(D+T)2-D2 29(sinc09 -w9 coswcp) 
( D 2 2 ) 2+0)+T)2 dcp A = 

o 
From the integration tables (Dewight, 1961) 

(p + 
N 

X s in mX dX n e-mb-b- r (a2+X2)(b2+X2) 2 a2-b2 

and using Leibinitz' rule 
co 

áIa_ 
X sin mX dX emb -e-ma 

m (a2+X2)(b2+X2) 2 am ( a2-b2 o 
co 

X2 cos mXdX 7T ae -ma -be-mb 
(a2+X2)(b2+X2) 2 ( a2 -b2 

= ln 

ln ((p2+D2) 

n d ) 

I o 

[ J 

r 1 
[ 

J 

[ 

'w2 ( 

1 



Which gives upon substitution 

A = - W [i+i e-DG1 -[1+D+T] e-(D+T)W 

The next terms in Equation (1) are 
co 

B = 2 I tan 1 (D /)) sin W9df 

and 

C = 2 / tan 
o 

These are of the form 

c 

f D+T)/, s in Wpd 

sin mX dX 

The tables (Dewight, 1961) give for this integral 

1 = - m (1-e 

Upon substitution Equations (3) and (4) become 

Now 

B - W (1-e-D ) 

C = - [1-e -(D+T) 

Ff(w) = [ A + DB -.(D+T)C] 

Substituting A, B, and C into (5) and rationalizing yields 

36 

(2) 

(3) 

(4) 

(5) 

Ff(w) =2TC Q ( W2 
I e-(D+T)w-e-Dw 

oo 

-1 

I = tan 
-1 

(8/X) 

= 

227i 

T 
(6) 

o 

r 

o 

- 
1 



APPENDIX C 

Description of the Transform Program 

Numerical integrations to find the Fourier Transforms of the 

gravitational anomalies were performed on the IBM 1620 computer 

located at Oregon State University. The numerical method employed 

was that of using the Newton -Cotes Quadrature Formulas of the closed 

type (Milne, 1949). These formulas are of the type 

IxdX 
Xn n 

= 

o i=0 

The coefficients, Ai, are obtained by the method of undetermined 

coefficients. The interval h = (Xi Xi must be the same for 

each i. 

In the case of the Fourier Transform Equation (1) becomes 

F (c.)) = 

Xn 

Xo 
The computer program used in this research utilized Equation (2) with 

( cos WX 
f(X) dX = 

s inc,uX 

37 

(1) 

o Aif(Xi) ( 
cos 

(2) 
sin Xi 

n = 8. Data points along the profile were stored in the computer's 

memory, and Equation (2) was applied to successive intervals along 

the profile. This was done for different frequencies until the 

numerical representation of the transform was obtained. 

The maximum error inherent in this method is given by 

2368 y(10)hll 
E - 

467775 
(3) 

Af(Xi) 

) 
i -0 

) 
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where 
y(10) 

is the maximum value of the tenth derivative of f(X). 

This maximum value is in the interval of integration. However, there 

are two other errors which are associated with the above method of 

finding the Transform (Hurwitz and Zweifel, 1956). These are: 

(1) The Fourier Transform is an integral over an infinite interval, 

and the numerical integration must be terminated at some finite value. 

Thus, there is some "cut off" error. In this research the integration 

was terminated when the anomaly was 1 /100 of its maximum amplitude. 

This error is larger at the lower frequencies. (2) The magnitude of 

the term added to the transform by integration over one cycle is the 

difference between the value for successive half cycles. This is 

illustrated in Figure 9. The value of the integral from X = 0 to 

Figure 9. Magnification of error by subtraction of successive 
half cycles. 

9a(x) , 
UWA1 . 4 / xl B I / 
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X = X1 is the difference between the area A and the area B. At high 

frequencies the cosine or sine terms oscillate rapidly so that the 

difference between A and B may be much smaller than either A or B. 

When this happens the error given by Equation (3) will be magnified. 

In this research it was found that this type of error became 

appreciable when the value of the transform was less than 10 -3 of its 

maximum value. 


