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Confidence Intervals on Variance Components 

Chapter 1
 

Introduction
 

Many statistical questions are concerned with identifying the source and magnitude 

of variation in data. Measuring this variability within a system has applications in 

environmental, industrial, and biological problems. To this end, researchers often 

require both point and interval estimates of the variance components that measure this 

variation. By modeling and estimating different components of variation researchers can 

determine which components are most important to their problem which will, in turn, 

help them improve the quality of industrial processes, identify important components of 

genetic variation, and improve the efficiency of sampling schemes. 

This thesis discusses problems with multiple sources of variation when the random 

effects arise from a Gaussian process. Specifically, we consider confidence interval 

estimation for unbalanced mixed models with two or more components of variance. We 

choose to focus on confidence intervals rather than statistical tests since they are almost 

always more informative than simple statistical tests. 

Many authors have considered the problem of constructing confidence intervals on 

variance components. Two of the earliest methods were proposed by Satterthwaite 

(1946) and Welch (1956). Although these methods were developed for balanced 

models, in practice they are often applied haphazardly to unbalanced models. Boardman 

(1974) and Wang (1990) reviewed several methods, including the Satterthwaite and 

Welch methods, for constructing confidence intervals on the among group variance 

component in the balanced random one-way model. Based on Monte Carlo simulations 
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they recommended three methods: the Tukey (1951)-Williams (1962), Moriguti (1954)-

Bulmer (1957), and Howe (1974) methods. All of these methods are based on the usual 

ANOVA mean squares. Thomas and Hultquist (1976) described a technique to extend 

these methods to the unbalanced random one-way model. Based on simulations and 

analytical properties, they recommended replacing the usual ANOVA mean squares in 

the balanced model procedures with mean squares from an unweighted means ANOVA. 

Ting, Burdick, Graybill, Jeyaratnam, and Lu (1990) proposed a method, referred to 

as the Modified Large Sample (MLS) method, for constructing confidence intervals on 

linear combinations of variance components for balanced mixed linear models with any 

number of variance components. The MLS method was extended to the unbalanced 

completely random nested model with any number of random effects and the unbalanced 

two-factor crossed model with or without interaction by Hernandez, Burdick and Birch 

(1992), Burdick and Graybill (1992), and Hernandez and Burdick (1993a, 1993b). 

Following the advice of Thomas and Hultquist, these authors recommended using 

unweighted mean squares, where an unweighted means ANOVA could be defined, in the 

MLS method to construct variance component confidence intervals for these models. 

However, as noted by Burdick and Graybill, intervals based on the unweighted mean 

squares can be very liberal for some unextremely unbalanced designs. 

Eubank, Seely, and Lee (1998) generalized the unweighted means ANOVA to the 

two variance component mixed linear model by defining mean squares with properties 

similar to the unweighted mean squares. They recommended using these mean squares 

to construct confidence intervals on variance components in two variance component 

mixed linear models. This method appears to work well in many cases; however, for 

some extremely unbalanced designs these intervals can very liberal. An alternative 

interval was proposed by Lee, Seely, and Purdy (1998). Simulation studies indicate that 
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this interval is generally consistent with the stated level and often narrower than intervals 

based on the generalized unweighted mean squares. 

In Chapter 2 we extend the definition of the generalized unweighted mean squares, 

developed by Eubank et al., to the general three variance component mixed linear model. 

For balanced designs these generalized unweighted mean squares coincide with the usual 

ANOVA mean squares and they generally agree with the unweighted mean squares that 

have been previously defined for particular unbalanced designs. However, our definition 

is not restricted to classification models or designs with no missing cells. We illustrate 

how these generalized unweighted mean squares can be used to construct confidence 

intervals on linear combinations of variance components and give simulation results 

demonstrating that the proposed procedure produces intervals that are generally 

consistent with the stated confidence level, except for some extremely unbalanced 

designs. Additionally, we show how one could extend this generalization of the 

unweighted mean squares to models with more than three variance components. 

The interval procedure proposed by Lee et al. is extended to the three variance 

component model in Chapter 3. Because intervals based on the unweighted mean 

squares can be liberal, this interval offers a good alternative to that approach. We 

present Monte Carlo simulations that compare the new interval to the MLS interval 

based on the unweighted mean squares for various designs. These simulations show that 

the new interval not only has better coverage probability but is also generally narrower 

than the interval constructed with unweighted mean squares. 
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Chapter 2 

Generalizing Unweighted Mean Squares for the General Mixed Linear
 
Model
 

Kathleen G. Purdy, Justus F. Seely, and Youngjo Lee 
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2.1 Abstract 

As summarized in Burdick and Graybill (1992), a number of ANOVA-type 

procedures are available for constructing confidence intervals on linear combinations of 

variance components for particular mixed linear models. The procedures for balanced 

designs are based on the usual ANOVA mean squares and some authors have suggested 

extending these procedures to unbalanced designs by replacing the usual ANOVA mean 

squares with mean squares from an unweighted means ANOVA. However, this 

technique of replacement is restricted to models and designs where the unweighted mean 

squares are defined. Eubank, Seely, and Lee (1998) removed this restriction for the two 

variance component mixed linear models and in this paper we extend their results to 

three variance component mixed linear models. For balanced designs, the mean squares 

from this new ANOVA coincide with the usual ANOVA mean squares and they 

generally agree with the unweighted mean squares that have been defined for particular 

unbalanced designs. We illustrate how the mean squares from this new ANOVA may be 

used to construct confidence intervals on linear combinations of variance components. 

Computer simulations indicate that the proposed procedure produces intervals that are 

generally consistent with the stated confidence level. 

2.2 Introduction 

In many biological and industrial applications, researchers require confidence 

intervals on functions of variance components. A number of methods have been 

developed for constructing confidence intervals on linear combinations of variance 

components in balanced models and some of these methods have been extended to 

particular unbalanced models. In this paper we propose a technique to construct 

confidence intervals for variance components in a very general three variance component 
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mixed linear model. This technique for constructing intervals can be easily extended to 

models with more than three variance components. 

As an illustration, consider the blood pH data presented in Box 10.4 of Sokal and 

Rohlf (1981). In the experiment 15 dams (female mice) were mated with either two or 

three sires. Each sire was mated to a different dam giving a total of 37 sires. The 

response variable is the blood pH of a female offspring from a given dam-sire pair. 

Sokal and Rohlf suggested the following random-effects model to analyze these data 

(2.1) yij 772 = p, + a + big + 

(i = 1, , 15, j = 1, , J and in = 1, , Mu) where it is an unknown constant 

and a2, the dam effect, bu, the sire effect, and ejjm are mutually independent normal 

random variables with zero means and variances aa2 , ab, and a2, respectively. A 

researcher may be interested in determining the variation due to the dam effect or the 

variation due to both the dam and sire effects. These questions of interest can be 

answered by constructing confidence intervals on the variance component as or the sum 

2 2
+ Ub, respectively. 

A review of the existing methods for constructing variance component confidence 

interval in three variance component mixed linear models is given in the next section. In 

Section 2.4 we develop a generalization of the unweighted mean squares for the three 

variance component mixed linear model and demonstrate how these mean squares can be 

used to construct confidence intervals. Section 2.5 gives properties that uniquely define 

the new mean squares. Simulation results are given in Section 2.6 and in Section 2.7 we 

give a SAS® routine that may be used to generate the generalized unweighted mean 

squares. Extensions to models with more than three variance components are given in 

Section 2.8. Concluding remarks are given in Section 2.9. 

Throughout this paper we will use the notation A+, C(A), and C(A)I to denote the 

Moore-Penrose inverse of a matrix A, the column space of A, and its orthogonal 
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complement, respectively. We will also use the notation PA to denote the orthogonal 

projection operator on the column space of A; that is, PA = A(A/A)+Ai. 

2.3 Review of Existing Methods 

Let Y be an n-dimensional multivariate normal (MVNn) random vector with mean 

and covariance matrix 

(3.1) E(Y) = X0 and Cov(Y) = o-a2VA + an2VB + a2I 

where 13, a2 > 0, a2a, ab2 > 0 are unknown parameters, X, VA, VB are known matrices 

such that VA and VB are nonnegative definite (n.n.d.), and r = n rank(X, VA,VB) is 

positive. Let sa = rank(X, VA ,VB) rank(X, VB), sb = rank(X, VA ,VB) rank(X, VA), 

to = rank(X, VA) rank(X), and tb = rank(X, VB) rank(X). 

Consider the problem of constructing a confidence interval on the parameter 

(3.2) -y = kao-2a + kbab2 + ka2 

where ka, kb, and k are known constants. Suppose i = c1S1 + c2S2 + c3S3 where S1, 

S2, and S3 are statistics and c1, c2, c3 are constants such that 

(3.3) (a) y is unbiased for -y; 

(b) qi S,/E(S,) x2(qi) for i = 1,2,3, where qi, q2, q3 are known integers; 

(c) Si, S2, and S3 are mutually independent. 

For example, consider model (2.1) and suppose Ji = J and Mu = M for all i, j. Let 

MSA, MSB, and MSE be the usual ANOVA mean squares for the dam effect, the sire 

effect, and the error, respectively. It is well known that Si = MSA with qi = 14, 

S2 = MSB with q2 = 15(J 1), and S3 = MSE with q3 = 15J(M 1) satisfy (b) and 

(c). Thus, for given ka, kb, and k, one may select c1, c2, and c3 so that (3.3) is satisfied. 

Methods for constructing confidence intervals on 'y under assumptions (3.3) have 

been proposed by Satterthwaite (1946), Welch (1956), Graybill and Wang (1980), and 

Ting, Burdick, Graybill, Jeyaratnam, and Lu (1990). These methods generally produce 
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approximate intervals. The word generally is used here because the methods are exact 

for special cases. Monte Carlo simulations performed by Graybill and Wang and Ting et 

al. indicate that of these four methods the Graybill-Wang method and the Ting et al. 

method can be recommended. In particular, the simulations indicated that the Graybill-

Wang interval is generally consistent with the stated confidence level when -y and all of 

the c, coefficients are nonnegative but that this interval procedure cannot be 

recommended otherwise. The method proposed by Ting et al., however, performs well 

for any choice of the c, with no restriction on the sign of 7. 

The Graybill-Wang two-sided 1 2a confidence interval for -y based on 

assumptions (3.3) is 

2 2 2 2 2

(3.4) c ; + H c Si2 , 

=1 =1 2 

and the two-sided 1 2a confidence interval on -y proposed by Ting et al. under 

assumptions (3.3) is 

(3.5) ['- vv,, vvu] 

where 

3 3 3 3 2 3
 
2 2 2 2 2


VL = > 2ci Si + ci + > E + E > uicicj 
i =1 j=1 i=1 j=1 i=1
 

Ci > 0 c, < 0 Ci > 0 C 0 Ci > 0 Ci > 0
 

3 3 3 3 2 3
 
2 2 2 2 2 2


Vu = E Hi ci Si + > G./ ci Si + E E + E E cic S 
i =1 =1 i =1 j =1 i =1 j> i
 

ci > 0 ci < 0 ci > 0 ci < 0 ci < 0 c < 0
 

Gi = 1 1 
, and Hi 1 

1, 

112 2T, 2 2(Fa 1)2 G (1 F 
\ 2 Ga.chq3 "3 Hi 1 ce:qi,qj 3

Gii Hip = 

2 2 

1 2 (qi +qj) qiGi qiGi
 
) qiqj qj qi
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1 )2 4+02 qiGi
2

qjG.i
2

= [ (1 
Fo,cii±q ) qiqj qj qi 

and F, n,in represents the upper x percentage point of the F distribution with n and m 

degrees of freedom. If it is known that 'y > 0 then any negative bounds in (3.4) or (3.5) 

are defined to be zero. Note that procedures (3.4) and (3.5) are often referred to in the 

literature as Modified Large Sample (MLS) procedures. 

If model (3.1) is unbalanced, then in most cases there does not exist a partitioning 

of the error space sum of squares, i.e., the sum of squares of the least squares residuals, 

that leads to three independent chi-squared random variables. That is, for most 

unbalanced designs based on model (3.1) we cannot find statistics SI, S2, and S3 that use 

all of the data and satisfy conditions (3.3b) and (3.3c). To circumvent this difficulty, 

Thomas and Hultquist (1978) suggested a technique to extend methods based on exact 

distributional assumptions to the unbalanced random one-way model. They 

recommended replacing the ANOVA mean squares in a balanced model procedure with 

statistics that are independent and distributed approximately chi-squared. Based on 

simulation results and analytical properties, Thomas and Hultquist recommended using 

mean squares from an unweighted means ANOVA. Hernandez and Burdick (1993a, 

1993b) and Hernandez, Burdick and Birch (1992) investigated using the Thomas-

Hultquist technique (i.e., replacing ANOVA mean squares with mean squares from an 

unweighted means ANOVA) for two classification models. They considered the 

completely random nested model with three variance components and the random two-

way additive model with interaction and no missing cells and, based on simulation 

results, recommended using the unweighted mean squares to construct confidence 

intervals on variance components for these models. The Thomas-Hultquist idea has 

been extended to other models where an unweighted means ANOVA is defined, as 

summarized in Burdick and Graybill (1992). A limitation of this technique of 

replacement is that it can only be used for models and designs where an unweighted 

http:qiGi2qjG.i2
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means ANOVA can be constructed. Eubank, Seely, and Lee (1998) showed how to 

remove this limitation in a general two variance component model by defining mean 

squares with properties similar to the unweighted mean squares. Unlike the definition of 

a unweighted means ANOVA, their definition does not require that all cell sample sizes 

are positive and may be used with covariates or continuous type design variables. 

Similar to previous authors, Eubank et al. recommended using these generalized 

unweighted mean squares in the MLS procedures to construct confidence intervals on 

variance components. In this paper we extend the Eubank et al. results. In particular, we 

define a generalization of the unweighted means ANOVA for the general three variance 

component mixed linear model and describe how this generalization can be extended to 

models with more than three variance components. For balanced designs the mean 

squares from this ANOVA coincide with the usual ANOVA mean squares and they 

generally agree with the unweighted mean squares that have been previously defined for 

particular unbalanced designs. (See Eubank et al. for an example of where these mean 

squares disagree). Our simulation results indicate that intervals constructed with these 

generalized unweighted mean squares are generally consistent with the stated confidence 

level. 

2.4 Development of the Generalized Unweighted Mean Squares 

In Section 2.4.1 we define the generalized unweighted mean squares for a 

completely nested model. These mean squares are developed so that they share 

properties of the unweighted mean squares in the completely random nested 

classification model considered by Hernandez, Burdick, and Birch (1992). Then in 

Section 2.4.2 we extend the definition to the general model (3.1) by transforming the 

data vector such that the resulting model is either a nested model, in which case the 

procedure in Section 2.4.1 can be employed to define the generalized unweighted mean 
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squares, or a two variance component model, in which case the definition given in 

Eubank et al. (1998) is applicable. 

2.4.1	 The Completely Nested Model 

Consider model (3.1) and suppose that 

(4.1) C(X) c C(VA) c C(VB).
 

Assume that sb and ta are both positive. Let A and B be any matrices of dimensions
 

n x a and n x b, respectively, such that VA = AA' and VB = BB' where a = rank(VA)
 

and b = rank(VB). Note that under condition (4.1), r = n b, sb = b a, and
 

ta = a rank(X).
 

In this section we define statistics MSA, MSB, and MSE for model (3.1) under 

condition (4.1) with properties similar to unweighted mean squares and demonstrate how 

these statistics can be used to construct a confidence interval for -y in (3.2). 

First consider the error mean square, say MSE. In the nested classification model 

of Hernandez et al. (1992), the MSE has the property that MSE /a2 ,-- x2(k)/k for some 

k. If we suppose that the MSE for model (3.1) has the chi-squared property with k as 

large as possible, then Proposition 3.3 in Seely and El-Bassiouni (1983), implies that 

k < r and that there exists only one quadratic form with k = r. For model (3.1), this 

unique quadratic form may be expressed as 

(4.2) MSE = Y'NY/r ,
 

where N is the orthogonal projection operator on the space orthogonal to the columns of
 

X, A, and B, i.e., N = I P(x,A,B)
 

Now let us turn to the mean square for B, say MSB. For the nested classification 

model of Hernandez et al., MSB is based on the cell means and has the property that 

MSB /o r X2(k)/k when a2 = 0. In the nested classification model the cell means are 

L'Y where L = B(B'B)-1. Thus, imitating this procedure for the general nested model, 
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we base MSB on U = L'Y. Note that U MVNb with E(U) = L'Xj3 and 

Cov(U) = o-a2A A) + abl + a2D where A = L'A and D = L'L. Hence, if a2 = 0 then 

using Proposition 3.3 in Seely and El-Bassiouni there exists, as above, a unique 

quadratic form in U, MSB, such that MSB/o-b2 ti x2(k)/k where 

k = b rank(L'X, A ) = sb. For model (4.1), this quadratic form may be expressed as 

(4.3) MSB =- U'NBU/sb 

where NB is the orthogonal projection operator on the space orthogonal to the columns 

of L'X and 76i) . Note that C(L'X) c ); hence, NB = I 

The mean square for A, say MSA, in the nested classification model of Hernandez 

et al. is based on the means of the cell means and has the property that 

2
MSA /a X2(k) /k when a2 = ab = 0. In the nested classification model the means 

N I ry
of the cell means are T = K'U where K = A (A A )-1. Again we imitate this procedure 

and base MSA on T. Note that T N MVNa with E(T) = X*0 where X* = K'L'X and 

Cov(T) = o-2aI + ab2K'K + a2K'DK. Thus, if a2 = 0-,2,= 0 then there is a unique 

quadratic form in T, MSA, such that MSA/o-2a r x2(k)/k where k = a rank(X*) = ta 

For model (4.1), this quadratic form may be expressed as 

(4.4) MSA = VNAT/ta 

where NA is the is the orthogonal projection operator on the space orthogonal to the 

columns of X*, i.e., NA = I Px.. 

We have now described three mean squares MSA, MSB, and MSE that are defined 

for the completely nested model with three variance components. These mean squares 

are a generalization of the unweighted mean squares defined in Hernandez et al. (1992). 

However, mean squares (4.2)-(4.4) are not restricted to classification models as is the 

definition of the unweighted mean squares given in Hernandez et al. For example, 

covariates can be accommodated by definitions (4.2)-(4.4). 
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Next we illustrate how these mean squares can be used to construct confidence 

intervals for 'y in (3.2). Let 

(4.5) w = trace(NBD)/sb 

and 

(4.6) vb = trace(NAK'K)/ta and v = trace(NAK'DK)/ta. 
aa2 vbab2

Then E(MSE) = a2, E(MSB) = 0-,2 + wa2, and E(MSA) = + + vu2. An 

unbiased estimator of 7 based on MSE, MSB, and MSA is given by 

(4.7) -3 = eimsA + c2MSB + c3N4sE , 

where 

(4.8) ci = ka, c2 = kb kavb, and c3 = W(kavb kb) kav + k. 

Hence, one can construct a confidence interval for y by replacing S1, S2, S3, qi, q2, and 

q3 in either (3.4) or (3.5), whichever is appropriate, with MSA, MSB, MSE, ta, sb, and r, 

respectively. 

Example 2.4.9. Consider the blood pH data given in Box 10.4 of Sokal and Rohlf 

(1981) and the suggested model given by (2.1). We can express model (2.1) in matrix 

form as 

Y= 1p,+Aa+Bb+e. 

Then 

E(Y) = 1,u, and Cov(Y) = Gra2VA + ab2VB + u21 

where VA = AN and VB = BB'. There are 160 offspring, 15 dams, and 37 sires in the 

study; hence, r = 123, sb = 22, and ta = 14. Using definitions (4.2)-(4.6), we obtain 

MSE = 24.74, MSB = 8.68, MSA = 12.97, w = 0.237, vb = 0.422, and v = 0.101. An 

approximate two-sided confidence interval on -y = as can be obtained by replacing Si, 

S2, S3, qi, q2, and q3 with MSA, MSB, MSE, ta, sb, and r, respectively, and setting 

ci = 1, c2 = 0.422, and c3 = 0.001 in interval (3.5). This procedure yields the 

approximate 95% confidence interval [2.30; 28.5]. Similarly, setting ci = 1, 
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-
2
C2 = 0.578, and c3 = 0.762, an unbiased estimate of -y = a + ab ± a

2 
is -y = 36.84 

and an approximate 95% confidence interval on 'y using (3.4) is [29.4; 57.6]. 

It is important to note that for model (2.1) the means squares (4.3) and (4.4) are not 

defined exactly as in Hernandez et al. (1992). The resulting estimators and confidence 

limits, however, are identical. The unweighted mean squares in Hernandez et al. are 

scaled so that the coefficient of the random error variance component a2 in the expected 

mean squares is one, while mean squares (4.3) and (4.4) are scaled so that the coefficient 

of ab
2 

in E(MSB) is one and the coefficient of aa
2 

in E(MSA) is one. 

2.4.2 The General Model 

Consider the general three variance component model (3.1) and let 

m = n rank(X). In this section we define mean squares MSE, MSB, and MSA for the 

general model that have properties similar to the mean squares in an unweighted means 

ANOVA. In particular, in defining MSE, MSB, and MSA we will incorporate two 

general properties of the unweighted mean squares. The first property, which is 

described more fully below, is that the mean squares are translation invariant. The 

second property that we incorporate is that the distribution of the mean squares be 

dependent upon as few parameters as possible. For example, this means that the 

distribution of MSB should depend on a and as few other parameters as possible. 

Goodnight (1976) refers to quadratic estimators with these two properties as maximally 

invariant quadratic estimators. 

The property of translation invariance is equivalent to reducing to the least squares 

residuals, that is, transforming Y so that the resulting model has mean zero. To this end, 

let Q be any matrix such that C(Q) = C(X)1 and Q'Q = I, and let Z = Q'Y. Then Z is a 

one-to-one linear transformation of the least squares residuals. Furthermore, Z , MVN,,, 

with zero mean and covariance matrix 
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2 2
(4.10) Cov(Z) = o-a WA + 0-b Wg + 0-21 

where WA = Q'VBQ and WB = Q'VBQ. Note that the distribution of Z does not depend 

on the parameter 0 so that trying to get a quadratic forms in Z that depend on as few 

parameters as possible we need only be concerned with the variance component 

parameters a2, a2, and aa2 . 

To obtain the error mean square MSE for model (3.1) we use the procedure from 

Section 2.4.1. That is, the MSE is defined so that MSE/o-2 (,-, x2(r)/r. Again, using the 

Seely-El-Bassiouni result, there exists only one quadratic form with this property, in 

particular, MSE = Z' (1 PovA,w0)Z/r = Y' (1 P(x,vA,vo)Y/r. Note that the 

distribution of MSE depends only on a2 so that it has the property that its distribution 

depends on as few parameters as possible. 

Next consider the mean square for the effect corresponding a, namely MSA. Now 

we want the distribution of MSA to depend on aa2 , but as few other parameters as 

possible. First note that it is impossible to define a quadratic form in Z whose 

distribution depends on aa
2 

but not on a2. So the only other parameter that we need to be 

2
concerned with is ab. Suppose that 5, > 0. Let U = K'Z where K is any matrix such 

that C(K) = C(WA,WB) 1-1 C(WB)-L. Then E(U) = 0 and Cov(U) = o-a2KAVAK + o-2K'K. 

Thus, when 5, > 0 we can define a quadratic form in U whose distribution does not 

depend on ab. Furthermore, since U is a two variance component model, we can employ 

the method described in Eubank et al. to obtain MSA. This gives 

(4.11) MSA = U1(K'WAK)+U/5.
 

Note that the resulting mean square has the property MSA/o-a
2 x2(s)/s, when
 

0.2 0. 

Now suppose sa = 0, sb > 0, and to > 0 then model (4.10) is completely nested 

and, hence, we can apply the procedure described in the previous section to the 
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transformed data vector Z to obtain MSA for the general model (3.1). Let G and H be 

any full column rank matrices such that GG' = WA and HH' = WB. Then 

(4.12) MSA = Z'TT'Z/ta 

where T = H(H111)-16 (rG )-1 and G = (H/11)-1H/G. Notice that the resulting 

mean square has the property MSA/o-2a ti X2(ta)/ta when a2 = ab2 = 0. Finally, if both 

Sa and ta are zero then MSA is undefined. 

2
To obtain, MSB, the mean square for the effect corresponding to a b, we simply 

interchange the roles of VA and VB in this section and follow the procedure used to 

obtain MSA. That is, one examines whether sb is positive or sb = 0, sa > 0, and tb > 0. 

A confidence interval for 7 = kaa
2 

kbab
2 

ka2 based on MSE, MSB, and MSA and 

their associated degrees of freedom can then be constructed as described in Section 

2.4.1. 

Example 2.4.13. Harville and Fenech (1985) presented some data consisting of the 

weights at birth of 62 single-birth male lambs in Table 1 of their paper. The lambs 

represented in these data came from five distinct population lines. Each lamb was the 

offspring of one of 23 rams, and each lamb had a different dam. The age of the dam was 

recorded for each lamb. A possible model for these data is the mixed linear model 

Yijkd = p, oz + + aik + but, + eijkd 

(i = 1, 2, 3, j = 1, , 5, k = 1, . . . , mi, and d = 1,. . . , niik) where 6 the age effect, 

and irk, the line effect, are fixed, and ask, the random sire (within line) effect, bijk, the 

interaction of sire and age, and eiikd are normal and independent with zero means and 

2
variances a, ab, and a2, respectively. This model can be expressed in matrix form as 

Y = X0 Aa Bb + e 

where X includes all fixed effects. Then E(Y) = X,3 and Cov(Y) ga2VA + 0-NB + a2I 

where VA = AA' and VB = BB'. The mean squares are MSE = 2.36, MSB = 2.56, and 

MSA = 3.03 with degrees of freedom r = 24, sb = 13, and ta = 18, respectively. An 
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approximate two-sided confidence interval on 7 = aa
2 

can be constructed by replacing 

S,, S2, S3, qi, q2, and q3 with MSA, MSB, MSE, ta, sb, and r, respectively, and setting 

c1 = 1, c2 = 0.756, and c3 = 0.058 in (3.5). The resulting 95% confidence 

interval is [0; 4.65]. 

2.5 Properties of the Mean Squares 

Consider the general mixed linear model (3.1). Recall that r = n rank(X, 

VA,VB), sa = rank(X, VA,VB) rank(X, VB), sb = rank(X, VA,VB) rank(X, VA), and 

ta = rank(X, VA) rank(X). The following propositions uniquely characterize mean 

squares MSE and MSA defined in Section 2.4.2. Note that in each proposition the 

distribution statements refer to model (3.1). 

Proposition 2.5.1. Suppose r > 0 and Q is a symmetric matrix such that for all 0, 
2 2aa, ab, and a2, Y'QY /a2 ti x2(r). Then Y'QY = rMSE. 

See Seely and El-Bassiouni (1983) for a proof of Proposition 2.5.1. 

Proposition 2.5.2. Assume sa > 0 and suppose M is a symmetric matrix such that 

(a) Y'MY/o-a2 ti x2(sa) for all /3, ab2, 
> 0, and o-2 = 0; 

(b) Cov(MY, (I P(x,v,,,v8))Y) = 0 for all 0, ca, ab2, and 0-2. 

Then M is unique and Y'MY = saMSA in (4.11). 

Note that part (b) ensures that MSA and MSE are independent. A proof of this 

proposition is given in Section 2.10. 

Proposition 2.5.3. Assume sa = 0, sb > 0, and ta > 0. Suppose M is a 

nonnegative definite matrix such that 

(a) Y'MY/o-a2 ti X2(ta) for all 0, as > 0, and a2 = ab = 0; 

(b) Cov(MY, (I P(x,v,,vB))Y) = 0 for all /3, 0-a2, ab2, and o-2; 

(c) Cov (MY, (P(x,v,vo P(x,v,o) = 0 for all 0, aa2, ab2, and a2 = . 

Then M is unique and Y'MY = taMSA in (4.12). 



18 

A proof of Proposition 2.5.3 is given in Section 2.10. Note that the assumption 

sa = 0 implies that C(VA) C C(X, VB). Also note that part (b) of this proposition 

ensures that MSA is independent of MSE and part (c) implies that MSA and MSB are 

independent when a-2 = 0. 

Using the above propositions, we can obtain alternative expressions for MSA. First 

consider the case when sa > 0. Let L be any matrix such that 

C(L) = C(X, VA,VB) n C(X, VB)-L and set 

M1 = L(LIVAL)+L'. 

It can be shown that M1 is symmetric and M1 substituted for M in Proposition 2.5.2 

satisfies (a) and (b). Hence, Y/Mi Y/sa = MSA in (4.11) giving us an alternative 

expression for MSA when sa > O. 

Next assume sa = 0, sb > 0, and to > 0. Let K be any matrix such that 

C(K) = C(X, VBN, VB) n C(X, VBN)' and N = I P(x,vA). Set 

M2 = K(K'VAK)±1('. 

One can show that M2 is n.n.d. and that M2 substituted for M in Proposition 2.5.3 

satisfies (a)-(c). Hence, Y'M2Y /ta = MSA in (4.12). 

Note also that the mean squares MSA and MSE defined in Section 2.4.1 for the 

completely nested model (4.1) are equivalent to MSA and MSE defined for the general 

model (3.1) when C(X) C C(VA) C C(VB). That is, if C(X) C C(VA) C C(VB) then, for 

example, MSA (4.4) is equivalent to MSA (4.12). Additionally, by interchanging VA 

and VB in this section, uniqueness propositions, similar to Propositions 2.5.2 and 2.5.3, 

as well as alternative expressions may be given for mean square MSB. 

2.6 Simulation Results 

In this section we give simulation results for the interval proposed in Section 2.4 

for two models based on (3.1). We obtained simulation results for additional models, 
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however, the examples given below illustrate the general properties and/or potential 

problems with this method. The performance of the confidence interval procedure is 

measured by the coverage probability. All of the reported intervals are two-sided 95% 

confidence intervals with equal tail probability. We also considered 99% confidence 

intervals and found that the performance of these intervals was similar to the 95% 

confidence intervals, and hence, the results are not reported. Different values of the 

2 2 2 2 2 2
ratios pa = o-a/(o-a + (yip+ o-L) and pb = ab/(0-b + ) are considered for each design. 

Each simulation result is based on 2000 pseudo-random data sets generated in S-PLUS. 

This results in a standard error of approximately 0.5% on the coverage probabilities 

given in the tables below. 

Example 2.6.1. Consider the following two-way additive model with interaction 

(6.2) Yzik = µ + Ti + + b,3 + euk 

(i = 1, , I, j = 1, . . . , J, k = 1, . . . , nu) where it and T, are fixed effects and a3, 

and eiik are mutually independent normal random variables with zero means and 

2
variances a, ab, and a2, respectively. Consider placing a confidence interval on a. 

When all of the nu > 0 the interval proposed in Section 2.4 is identical to the interval 

recommended by Hernandez and Burdick (1993a). Hernandez and Burdick considered 

several unbalanced designs where all nib > 0 and found that the proposed interval 

generally maintained the stated confidence level for the designs considered. The 

Hernandez-Burdick unweighted mean squares, however, cannot be defined when some 

nib = 0; whereas the definition of the generalized unweighted mean squares given in 

Section 2.3 does allow for missing cells. For example, consider a design where I = 3, 

J = 4, n11 = n12 = n21 = n24 = n32 = n34 = 10, n13 = n33 = 1, and 

n14 = n22 = n23 = n31 = 0. The degrees of freedom corresponding to the generalized 

unweighted mean squares MSA, MSB, and MSE are to = 3, sb = 2, and r = 54, 
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respectively. Note that for model (6.2), 5, = 0. The simulation results for confidence 

intervals on ca for this design are given in Table 2.1. 

We considered several designs of model (6.2), that is, different values of I and J 

and different f173 patterns, with and without missing cells and found that the proposed 

interval on a generally maintains the stated confidence level. We did find, however, 

that for some types of extremely unbalanced designs, the proposed method can produce 

liberal intervals for small values of pa. A prototype of such a design is given in the next 

example. In addition to confidence intervals on aa2, we considered intervals on 

aa
2 2 

a2 and obtained similar results. 

Table 2.1	 Confidence coefficients for intervals on 
in Example 2.6.1 with stated level of 95% 

Pa 

0.01 0.25 0.50 0.75 0.99 

0.01 94.6 95.0 95.0 95.6 94.0 

Pb 0.50 94.9 94.9 96.5 96.5 94.5 

0.99 93.4 95.6 95.7 96.5 94.5 

Example 2.6.3. Consider the following mixed model with n = E73 n, observations 
and a single covariate 

(6.4) Yuk = 00 + )31x, + a2 + b, + eijk 

(i = 1, j = 1, ...,m k = 1, , nu) where X30 and /31 are fixed effects, the x, 

are known constants and ai, bid and euk are mutually independent normal random 

variables with zero means and variances a2a, ab2, and a2, respectively. Let x be the n x 1 
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vector composed of the xis. Consider a design with I = 6, in, = 2, for i = 1, , 5, 

m6 = 50, 11,13 = 2 for all i, j, and the following covariate vector: 

x' = (1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, ... , 3) 

Then the degrees of freedom associated with the generalized unweighted mean squares 

MSA, MSB, and MSE are ta = 4, sb = 24, and r = 30, respectively. Note that for 

model (6.4), 5, = 0. Monte Carlo simulations of confidence intervals on aa
2 

yielded 

minimum and maximum coverage probabilities of 94.2 and 95.6, respectively. Hence, 

for this design the coverage probabilities are very close to the stated level. 

Now consider a design with I = 6, mi = 12, for i = 1, , 5, m6 = 2, and nib = 2 

for all i, j and with the same covariate values for xi, i = 1, ... 6, as in the previous 

design. The degrees of freedom associated with the generalized unweighted mean 

squares MSA, MSB, and MSE for this design are ta = 4, sb = 25, and r = 31, 

respectively. The simulation results, presented in Table 2.2, indicate that for this design 

the proposed method produces intervals with confidence levels close to the stated level 

except when pa = 0.01. We considered other designs with this type of pattern and 

obtained similar results; that is, the intervals tended to be liberal for small values of pa 

for this type of unbalanced design. 

Table 2.2 Confidence coefficients for intervals on as 
in Example 2.6.3 with stated level of 95% 

Pa 

0.01 0.25 0.50 0.75 0.99 

0.01 92.0 94.1 95.1 95.4 94.4 

0.50 91.9 94.2 95.7 94.4 94.6Pb 

0.99 91.9 94.7 94.3 94.6 95.4 
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2.7 Calculating the Mean Squares in SAS® 

Consider model (3.1) and assume sa = 0, sb > 0, and to > 0. Let A and B be any 

matrices such that VA = AA' and VB = BB'. The following SAS code can be used to 

generate the mean squares MSE, MSB, and MSA defined in Section 2.4.2. This code 

can be easily modified to compute MSE, MSB, and MSA when either sa > 0 and sb > 0 

or 5, > 0 and sb = 0. 

Proc IML; 

use Y; read all into Y; 

use X; read all into X; 

use A; read all into A; 

use B; read all into B; 

zero = 0.00000001; 

n = nrow(X); 

Nx = I(n) X*ginv(t(X)*X)*t(X); 

call eigen(e, Q, Nx); 

rankQ = sum(e > zero); 

Q = Q[1:n,ErankQ]; 

Z = t(Q)*Y; 

* Note E(Z) = 0 and Cov(Z) = vl*Q'*A*A'*Q + v2*Q'*B*B'*Q + v3*I; 

* Next compute matrices G and H with full column rank such that ; 

*	 G*G' = Q'*A*N*Q and H*H' = Q'*B*B'*Q; 

call eigen(e,V, t(Q)*A*t(A)*Q); 

rankG = sum(e > zero); 

V = V[1:n,1:rankG]; 

D = sqrt(diag(e[1:rankG,1])); 

G = V*D; 
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call eigen(e,V, t(Q)*B*t(B)*Q);
 

rankH = sum(e > zero);
 

V = V[1 :n,1 :rankH];
 

D = sqrt(diag(e [1 :ranIcH,1]));
 

H = V*D;
 

* Now calculate the mean squares as described in Section 2.4; 

L = H*inv(t(H)*H); 

N = I(nrow(H)) L*t(H); 

U = t(L)*Z; 

Atilda = t(L)*G; 

K = Atilda*inv(t(Atilda)*Atilda); 

Nb = I(nrow(Atilda)) K*t(Atilda); 

T = t(K)*U; 

r = rankQ rankH; 

sb = rankH rankG; 

ta = rankG; 

MSE = t(Z)*N*Z/r; 

MSB = t(U)*Nb*U/sb; 

MSA = t(T)* T/ta; 

create MSE from MSE; append from MSE; 

create MSB from MSB; append from MSB; 

create MSA from MSA; append from MSA; 

create r from r; append from r; 

create sb from sb; append from sb; 

create ta from ta; append from ta; 

quit; 
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2.8 Extensions 

In this section we consider models with four or more variance components and 

describe how to calculate the generalized unweighted mean squares for these models. 

Suppose Y	 MVNn with mean vector and covariance matrix
 

a2vB a21
(8.1) E(Y) = X13 and Cov(Y) 

2where 0, a2 > 0, and a, ab, ac > 0 are unknown parameters and X, VA, VB, and Vc 

are known matrices such that VA, VB, and Vc are n.n.d. Assume 

r = n rank(X, VA,VB,Vc) is positive, in which case MSE = Y' (I P(x,vA,vB,vc)) Y/r 

can be defined and has the property MSE /a2 x2(r)/r. Our objective is to define mean 

squares MSA, MSB, and MSC for model (8.1). 

We begin by describing cases where mean squares MSA, MSB, and MSC can be 

obtained using two variance component methods. For example, if 

se = rank(X, VA,VB,Vc) rank(X, VA,VB) is positive then MSC can be defined via two 

variance component methods. That is, we can transform the data vector to Z = Q'Y 

where Q is any matrix such that C(Q) = C(X, VA, VB)' and Q'Q = I. Then the resulting 

model has zero mean and covariance matrix 

(8.2)	 Cov(Z) = ac2WC g2I 

where WC = Q`VcQ. We can then apply the procedure described in Eubank et al. 

(1998) to obtain MSC. Similarly, if either sb = rank(X, VA,VB,Vc) rank(X, VA,Vc) 

or sa = rank(X, VA,VB,Vc) rank(X, VB,VC) is positive then MSB or MSA, 

respectively, can be obtained using two variance component methods described in 

Eubank et al. A model where all three mean squares MSC, MSB, and MSA can be 

defined via two variance component methods is the completely random additive four 

variance component model: 

yijkd = +b + Ck eijkd 
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Now if, say, sa is zero then we cannot convert Y to a two variance component 

model which depends on ca. Instead one would try to convert to a three variance 

component model and use the procedure described in Section 2.4 to define MSA. 

Instead of describing this generally, we illustrate this case with the following example. 

Example 2.8.3 Ofversten (1993) presented a data set consisting of the yield of two 

varieties of winter wheat from three locations and two years. He suggested the 

following model 

yijkd = Ti + a bkb Cjk + eijkd 

1, 2, j = 1, 2, 3, k = 1, 2, and d = 1, , nuk) where Ti is the (fixed) effect of 

variety, and a3, the random effect of location, bk, the random effect of year, clk, the 

interaction of location and year, and eukd, the random error, are mutually independent 

2 2 2
normal random variables with zero means and variances a, ab, ac, and a2, respectively. 

This model can be expressed in matrix form as 

Y = Xf3+ Aa + Bb -I- Cc + e 

where X includes both fixed effects. 

The mean square MSC can be obtained via two variance component methods. That 

is, we can convert to Zc = QicY where Qc is any matrix such that e(Qc) = C(X, A, B)-L 

and QicQ, = I. The resulting model is similar to model (8.2) above, and hence, we can 

define MSC using the procedure described in Eubank et al. 

The mean square MSB is obtained using three variance component methods. In 

particular, one would first calculate Zb = Qc,Y where Qb is any matrix such that 

C(Qb) = C(X, A)-L and Qc,Qb = I. The resulting model has three components of variance 

2 2
ab, ac, and a2 and is completely nested, so we can use the procedure described in 2.4 to 

obtain MSB. Similarly we can obtain the mean square MSA by transforming the data 

by qa where Qa is any matrix such that C(Qa) = C(X, B)-L- and qaQa = I. Note that 
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MSC can be alternatively be defined from either Zb or Za using the procedure described 

in Section 2.4. 

The resulting mean squares are MSE = 0.266, MSC = 0.461, MSB = 0.093, and 

MSA = 1.40 with degrees of freedom r = 8, se = 2, tb = 1, and ta = 2, respectively. 
2 2 2

An approximate two-sided confidence interval on -y = kao-a + kbo-b + kco- + ka2 for 

any constants ka, kb, ka, and k can be constructed by replacing the usual ANOVA mean 

squares in the procedure described in Ting et al. (1990) with mean squares MSA, MSB, 

MSC and MSE. For example, an interval on -y = as can be obtained by replacing Si, 

S2, S3, ql/ c12/ and q3 with MSA, MSC, MSE, ta, sc, and r, respectively, in the Ting et al. 

interval (3.5). The resulting 95% interval on -y is [0, 54.99]. 

Next suppose model (8.1) is such that 

(8.4) C(VA) C C(VB) C C(Vc) 

and assume 5,, tb, and pa = rank(X, VA) rank(X) are all positive. For this model, the 

mean square MSC can be obtained using either two or three variance component 

methods, similarly to the mean square MSC in the above example. The mean square 

MSB, however, must be defined via three variance component methods, similarly to 

MSB in the above example. The resulting mean squares have the properties 

MSC/o-c2 x2(s,)/s, when a2 = 0 and MSB/o-b X2(tb) /tb when a2 = ae2 = 0. 

Next consider the mean square MSA. To define this mean square we follow the 

procedure outlined in Section 2.4. That is, first we compute the least squares residuals 

giving us a completely nested model. Then we mimic the method used to define the 

unweighted mean squares in the completely random nested classification model with 

four variance components as described in Section 5.5 of Burdick and Graybill (1992). 

To illustrate, let Z = Q'Y where Q is any matrix such that C(Q) = C(X)-1- and Q'Q = I 

and let q = n rank(X). Note that Z r---, MVNg with mean zero and covariance matrix 

2 2
(8.5) Cov(Z) = cra WA + abWB + acWc + o-21 
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where WA = Q'VAQ, WB = Q'VBQ and We = Q'VcQ and that 

C(WA) C C(WB) C C(Wc). Hence, model (8.5) is completely nested. Let A, B, and C 

be any full rank matrices such that AN =- WA, BB' = WB, and CC' = Wc. The 

unweighted mean square corresponding to MSA in the completely random nested 

classification model with four variance components of Burdick and Graybill is based on 

the means of the means of the cell means and has the property MSA /a -- r,) (Pa)/Pa 

when a2 = as = a 0. Imitating this procedure we base MSA on G'Z where 

G = KLM, K = C(C'C)-1, 13' =10B, L =B (B 73' )-1 , = L'K'A, and 

M = A" (rik' frA' )-I. Then G'Z , MVNN with mean zero and 

e2 1,2

Cov(G'Z) -=--- 0-a2i + gb2M/M + ge2M/L/LM + 0-2G/G. Hence, if a2 = 0 then 

there exists a unique quadratic form in G'Z such that MSA/o-a
2 

X2(pa) /pa. For model 

(8.4), this quadratic from may be expressed as 

MSA = Z'GG'Z /pa. 

It can be shown that MSA satisfies the following properties and that, in fact, these 

properties uniquely characterize MSA. 

(a) MSA/0-a2 ,._, x2(pa)/pa for all 0, aa2 > 0, and 4, = o- a = o-2 = 0; 

2 2 2 2(b) MSA and MSE are independent for all 13, aa, ab, ac, a ; 

2 2 2
(c) MSA and MSC are independent for al113, aa, mob, ac, and o-2 = 0; 

2 2(d) MSA and MSB are independent for all /3, a, ab, and ac2 = a = 0. 

It is easy to see how one could further extend the definition of the generalized 

unweighted mean squares to any P-variance component mixed linear model with a 

nested covariance structure where P > 5. 

2.9 Concluding Remarks 

The unweighted means ANOVA as defined, for example, in Burdick and Graybill 

(1992) has been extended to the mixed linear model with three variance components, as 
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well as some models with more than three variance components. The definition of the 

mean squares from this ANOVA do not require that all cell sample sizes are positive and 

may be used with covariate or continuous type designs. In fact, the models need not 

even be classification type models. Additionally they are easy to compute using 

standard software and can be used with procedures developed by Graybill and Wang 

(1980) and Ting et al. (1990) to construct confidence intervals on linear combinations of 

variance components. Simulation studies indicate that the proposed intervals are 

generally consistent with the stated confidence level. However, for some extremely 

unbalanced designs the proposed method can produce liberal confidence intervals for 

some parameter values. 

2.10 Proofs 

In this section we give the proofs for Propositions 2.5.2 and 2.5.3 from Section 2.5. 

Proof of Proposition 2.5.2. (b) = C(M) C C(X,VA,VB). 

Thus, by (a), (b), and Lemma 2.4 in Seely and Eubank (1998), we have 

(i)	 rank(M) = t 

(ii)	 C(M) C C(X,VA,VB) n c(x)-L. 

2 2 2 2 2
(iii)	 M/cra2 (ga2VA + abV0M/a = M/a for all aa > 0 and o-b > 0 

(iii) = MVAM + ab2/Gra2VBM = M	 MVAM = M (by letting o-b2 = 0) 

M is n.n.d since MVAM is n.n.d. 

Since MVAM = M then by (iii) we also get, MVBM = 0 VBM = 0 (since VB and 

M are n.n.d.) > C(M) C C(VB)I. 

Hence, C(M) C C(X,VA,VB) n C(x)i- n C(VB)1= C(x,vA,vB) n C(X, vB)1 and 

rank(M) = t = dim{C(X,VA,VB) II C(X, VB)j- 1 

C(M) = C(X,VA,VB) 11 C(X, VB)I. 

Similarly if H = H' and R = Y'HY satisfies (a) and (b), then 
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C(H) = C(X,VA,VB) n NIB) . Thus, by Lemma 2.4a and Lemma 2.5 in Seely and 

Eubank, M = H. 

Therefore, M is unique and MSA = Y'MY/t. 

We prove the following lemma before establishing Proposition 2.5.3. 

Lemma 2.10.1. Suppose M is n.n.d. and satisfies (b) above and let Q be any 

matrix such that C(Q) = C(X)J- and Q'Q = I. Then C(Q'MQ) C C(Q'VBQ). 

Pf. M is n.n.d. = M = DD' for some matrix D and C(M) = C(D). 

Thus, C(Q'MQ) = C(Q'DD'Q) = C(Q'D). 

Let x E C(Q'D). Then x = Q'Dy for some y 

Now, by (b), C(D) = C(M) C C(X, VB) = C(VB) C(XX'NB) where NB = I PVB 

So, D = VBK + XX'NBL for some matrices K and L. 

x = Q'Ly = Q'(VBK + Q'VBKY C C(QYVB)
 

C(Q'MQ) c C(Q'VBQ).
 

Proof of Proposition 2.5.3. By the Lemma 2.3b in Seely and Eubank (1998), 

C(MX) C C(X)L = X'MX = 0 X'M = 0 since M is n.n.d. = C(M) C C(X)-L. 

(b) C(M) C C(X, VB) and (c) C(M) C C(VB(P(X,VB) P(X,VA)))I. 

So, C(M) C c(x)1 n c(x, vB) n c(vB(P(x,v.) P(x,vA)))1. 

Let Q be any matrix such that C(Q) = C(X)-- and Q'Q = I, and let A and B be full 

column rank matrices such as AA' = Q'VAQ and BB' = Q'VBQ. 

Y'MY Y'QQ'MQQ'Y since C(M) C C(X)-L- and QQ' = I Px 

Z'Q'MQZ where Z = Q'Y 

Z`PBQ'MQPBZ since C(Q'MQ) C C(Q'VBQ) = C(B) by Lemma 2.9.1 

U'KU where U = L'Z , L = B(13113)-', and K = B'Q'MQB 

Now, E(U) = 0 and Cov(U) = o-2aL'AA'L + o-b2I o-2L'L 

Hence, if o-2 = 0 then by Proposition 3.3 in Seely and El-Bassiouni (1983) there exists a 
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unique quadratic form MSB = U'(I PL'A)U = Y'QL(I PL,A)L'Q'Y such that 
2 

MS13/0-12 r-, X (S)/S for some s > 0. 

Now C(QL(I PuA)L'Q') C C(QL) = C(QB) = C(QQ'VBQ) = C((I PX)VB) 

C(X, VB) n C(X)' and QL(I PL,A)L'Q'VA = 0 since C(L'Q'VA) = C(L'A) 

C(QL(I PuA)L'Q') C C(VA)±. 

Therefore, C(QL(I PL'A)L'Q') C C(X, VB) n C(X, VA)'. So, by (c), MSB and 

Y'MY = U'KU are independent when cr2 = 0 C(K) C C(L'A). 

Also, (a) = U'KU/ aa2 N Xt when Cov(U) = o-L'AA'L and, by Lemma 2.4c in 

Seely and Eubank, rank(K) = t. 

Therefore, by Theorem 2.2 in Seely and Eubank, K = B'Q'MQB is unique. 

Hence, if MI and M2 satisfy all of the conditions in the statement of the proposition, 

then 

B'Q'M,QB = B'Q'M2QB
 

B(B'B)- BIQIM QB(B'B)- 1B' = B(13'13)- 1B/Q/M2QB(B'B)- 'B'
 

= Q'M2Q since C(Q'M,Q) C C(B) and M, = kri, for i = 1,2 

QQ'M,QQ' = QQ'M2QQ' 

M, = M2 since C(Mi) C C(Q) and M, = M', for i = 1,2, and QQ' = PQ 

M is unique, and hence, MSA = Y'MY/t. 
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Chapter 3
 

Confidence Intervals on Variance Components in Mixed Linear Models
 

Kathleen G. Purdy, Justus F. Seely, and Youngjo Lee 
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3.1 Abstract 

New statistics are developed that can be used for constructing a variance 

component confidence interval in a three variance component mixed linear model. 

These statistics are an alternative to the generalized unweighted mean squares in the 

interval procedure proposed by Ting, Burdick, Graybill, Jeyaratnam, and Lu (1990). 

This paper presents Monte Carlo simulations that compare the new interval to intervals 

based on the generalized unweighted and the Type III mean squares. The interval 

constructed with the new statistics has better coverage probability and is often narrower 

than the interval constructed with the generalized unweighted mean squares. 

3.2 Introduction 

Consider the productivity score data presented in Table 23.1 of Milliken and 

Johnson (1984 p. 285). The experiment was designed to evaluate the productivity of 

three different brands of machines when operated by the company's own personnel. Six 

employees from the company were randomly selected to participate in the study and 

each employee was to operate each machine a given number of times. The response 

variable is the overall score which is based on the number and quality of components 

produced. Milliken and Johnson suggested the following two-factor crossed 

classification model to analyze these data. 

(2.1) Yzik µ + Ti + aj + bid + euk, 

(i = 1, 2, 3, j = 1, , 6, and k = 1, . . . , nib > 0) where ,u, is an unknown constant, Tz 

is the (fixed) effect of machine i, ai is the random effect of operator j, b,3 is the random 

effect for the machine by operator interaction, and eijk is the random error. Further, aj, 

bid, and ezik are mutually independent normal random variables with zero means and 
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2
variances a, ab, and a2, respectively. Suppose the company is interested in obtaining a 

confidence interval on the operator to operator variance component a. 

Three methods that have been proposed for constructing a confidence interval on 

Ua
2 

when model (2.1) is balanced are the Satterthwaite method (1946), the Welch method 

(1956), and the Modified Large Sample (MLS) method of Ting et al. (1990). Each of 

these methods depends upon the ANOVA mean squares which are independent chi-

squared random variables and whose sum is a partition of the error space sum of squares, 

i.e., the sum of squares of the least squares residuals. However, if model (2.1) is 

unbalanced, then in most cases there does not exist a set of independent chi-squared 

random variables whose sum is a partition of the error space sum of squares. 

A technique for constructing confidence intervals in the unbalanced random 

one-way model was proposed by Thomas and Hultquist (1978). They suggested 

replacing the usual ANOVA mean squares in the balanced model procedures with mean 

squares from an unweighted means ANOVA. This idea was extended to other mixed 

models using unweighted mean squares in the MLS method as though they were mean 

squares from a balanced ANOVA. This work is summarized in Burdick and Graybill 

(1992). A limitation of these procedures is that an unweighted means ANOVA must be 

available which restricts the class of models that can be accommodated. Eubank, Seely 

and Lee (1998) showed how to overcome this limitation in two variance component 

models and in Chapter 2 we extended the Eubank et al. results to more general variance 

component models. Unfortunately, simulations indicate that for some unbalanced 

designs the procedures based on the unweighted mean squares or their generalization by 

Eubank et al. and from Chapter 2, do not maintain the stated confidence level when the 

intraclass correlation is small. In this paper we develop an alternative set of mean 

squares that can be used in the MLS method for constructing confidence intervals for 

variance components. These mean squares are defined for all the models that were 
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considered in Chapter 2, that is, models where the generalized unweighted mean squares 

are defined. Our simulation results indicate that the intervals constructed with these new 

mean squares have better coverage, except possibly for some unusual cases, and are 

often narrower than other proposed intervals. Additionally these intervals maintain the 

stated level for small values of the intraclass correlation unlike intervals based on the 

generalized unweighted mean squares. 

We will use the notation C(A) and C(A)1 to denote the column space of a matrix A 

and its orthogonal complement, respectively. We will also use the notation A+ to denote 

the Moore-Penrose inverse of A and PA to denote the orthogonal projection operator on 

the column space of A, i.e., PA = A(A'A)+A'. 

3.3 Existing Methods 

Let Y be an n-dimensional multivariate normal (MVNi,) random vector with mean 

and covariance matrix 

(3.1) E(Y) = X0 and Cov(Y) = VB 

where 0, o-2 > 0, a2a, ab2 > 0 are unknown parameters, X, VA, VB are known matrices 

such that VA and VB are nonnegative definite (n.n.d.). Assume that 

r = n rank(X, VA,VB) is positive. Let sa = rank(X, VA,VB) rank(X, VB), 

sb = rank(X, VA,VB) rank(X, VA), and to = rank(X, VA) rank(X). Consider the 

problem of constructing a confidence interval on the parameter 

kbab2
(3.2) y 

a2 

where ka, kb, and k are known constants and suppose there exists statistics Si, S2, and S3 

such that 

(3.3) (a) 7 = E(ci Si + c2S2 + c3S3) where ci, c2, c3 are known constants; 

(b) q,Sz/E(S,) ti x2(qi) for i = 1,2,3, where qi, q2, q3 are known integers; 

(c) Si, S2, and S3 are mutually independent. 
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Under these assumptions, three methods that have been developed for constructing a 

confidence interval on -y are the Satterthwaite (1946) method, the Welch (1956) method, 

and the MLS method of Ting et al. (1990). Based on simulation studies by Ting et al., 

the MLS method can be recommended. The formula for the Ting et al. MLS interval is 

given in Section 2.3 of Chapter 2. 

If model (3.1) is balanced then it is possible to partition the error sums of squares to 

obtain mean squares that satisfy conditions (3.3). However, if model (3.1) is unbalanced 

then generally there does not exist a partitioning that leads to independent chi-squared 

random variables. Several authors (see, for example, Thomas and Hultquist, 1978, 

Hernandez and Burdick, 1993a and 1993b, and Hernandez, Burdick, and Birch, 1992) 

have suggested replacing the Sis in (3.3) with mean squares from an unweighted means 

ANOVA and proceeding as though the unweighted mean squares satisfy conditions 

(3.3). It is well known (see Burdick and Graybill, 1992, p.70), however, that intervals 

based on the unweighted mean squares can be very liberal for some unbalanced designs. 

An alternative interval was proposed by Lee, Seely and Purdy (1998) for models with 

two variance components. Their simulation results indicated that the proposed interval 

generally maintains the stated confidence level and is often narrower than intervals based 

on the unweighted mean squares or their generalization. In this paper we extend the 

method proposed by Lee et al. to the three variance component mixed linear model. 

3.4 A New Class of Statistics for Constructing Intervals 

Consider model (3.1) and suppose one is interested in constructing a confidence 

interval on -y in (3.2). Set 

(4.1) MSE = P(x,vANB))Y/r.
 

It is well known that MSE/o-2 ti x2(r)/r. Note that if ka = kb = 0, then by standard
 

procedures we can place a confidence interval on -y.
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In the next section we develop a class of statistics defined when sb > 0 and 

demonstrate how one can use a statistic from this class along with MSE to construct 

confidence intervals on -y when ka = 0. A similar class of statistics was defined by Lee 

et al. for the two variance component model. Here we show how to extend their 

definition to model (3.1). The results of Section 3.4.1 can also be used for constructing 

confidence intervals on -y when kb = 0 and 5, > 0 and on -y when both sa and sb are 

positive. Then in Section 3.4.2 we consider the case when either sa or sb is equal to zero. 

Finally in Section 3.4.3, we propose an adaptive interval procedure that utilizes the 

statistics from the classes defined in the next two sections. 

3.4.1 Review of Two-way Methods 

Suppose our interest is in determining a confidence interval for 7 in (3.2) when 

ka = 0. That is, on linear combinations of ab and a2. Suppose sb > 0 and let 

7rb = a2 + ab and pb = ab2 irrb. Let Z = C'Y where C is any matrix such that the 

C(C) = C(X, VA)-1- and CC = I. Then Z ,--, MVN with zero mean and covariance matrix 

Cov(Z) = gb WB + 0-21 where WB = CVBC. Since Z is a two variance component 

model we can utilize the results of Lee et al. to get a confidence interval for -y when 

ka = 0. In particular, let G be any full column rank matrix such that WB = GO', let 

T = L'Z where L = G(G/G)-1 and set 

(4.2) MSB(c) = T'F 1T/sb , c E [0, 1], 

where Fc = cI + (1 c)L'L. As established in Lee et al., for c E [0, 1], 

(4.3) (a) MSB(c)/7b X2(sb) /sb when c = Pb; 

(b) MSE and MSB(c) are independent. 

To verify (a), note that T ,,-, MVN(0, 7rbrph) and that Fp, is nonsingular of rank sb. 

Property (b) follows from the fact that C(CL) C C(X, VA, VB). 
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Based on properties (4.3) and simulation studies, Eubank, et al. (1998) 

recommended using MSB(1) and MSE in the MLS procedure to construct a confidence 

interval for 'y when ka = 0. Other authors, such as Milliken and Johnson (1984), 

suggest using MSE and the Type III mean square V(13(x,vA,vB) P(x,vA))Y/sb which can 

be shown to equal MSB(0), and hence, follows a chi-squared distribution when pb is 

zero. Thus, as one would expect from (4.3a), procedures based on MSB(1) perform well 

for large values of pb, while procedures based on MSB(0) perform well for small values 

of pb. As an alternative to using MSB(0) or MSB(1), one might consider using MSB(c) 

for some value of c in the range (0, 1). For c E [0, 1], note that 

E(MSB(c)) = vco-b2 + weo-2 

where 

(4.4) = trace(rc 1)/sb and we = trace(Lre IL')/sb 

Then, 

(4.5) = ecMSB(c) + f.cMSE 

where ec kb/vc and fc = k kbwelve is unbiased for 7 = kbab2 
ka2. Hence, an 

interval on -y when ka = 0 can then be constructed with MSB(c) and MSE in the MLS 

interval formula. 

Example 3.4.6 Consider the unbalanced case of the productivity score data 

presented in Table 23.1 of Milliken and Johnson (1984 p. 285) and the suggested model 

(2.1). We can express model (2.1) in matrix form as 

Y= X0 + Aa + Bb + e. 

where X includes all fixed effects. Then E(Y) = X0 and Cov(Y) = aVa 
VB + 

where VA = AA' and VB = BB'. Suppose interest lies in getting a confidence interval 

on -y = ab, i.e., ka = k = 0 and kb = 1. There are 44 total observations, three machines, 

and six operators in the study; hence, sb = 10 and r = 26. Using definitions (4.1) and 

(4.2), we obtain MSE = 0.87, MSB(0) = 40.43, MSB(0.5) = 21.11, and 
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MSB(1) = 14.50. One approximate confidence interval for -y can be obtained by using 

MSB(0) and MSE in the MLS method. From (4.4) we get vo = 2.32 and wo =- 1 for a 

95% confidence interval of [8.89; 54.15]. Another approximate interval recommended 

by Eubank et al. can be obtained using MSB(1), MSE, v1 = 1, and w1 = 0.48. This 

gives the approximate 95% confidence interval [7.55; 45.15]. An alternative interval 

could be constructed using MSB(c) for some c E (0, 1) and MSE. For example, using 

MSB(0.5) and MSE with V0.5 = 1.37 and W0.5 = 0.63 gives the interval 

[7.12; 47.10]. 

If sa > 0, then we can define a class of statistics { MSA(d): d E [0, 1] } similar to 

the class {MSB(c): c E [0, 1]} by simply interchanging the roles of VA and VB and 

following the procedure in (4.2). An approximate interval on -y in (3.2) when kb = 0 can 

then be constructed with MSE and MSA(d) in the MLS procedure. Additionally, an 

interval on -y, for any ka, kb, and k, can be constructed with MSE, MSB(c) and MSA(d) 

when both sa and sb are positive. 

However, if sa = 0 (or sb = 0) then we cannot use the procedure described above 

2 2
to obtain a class of statistics corresponding to aa (ab) since there does not exist a 

transformation of the data that gives us a model with only two variance components, one 

being aa
2 

(ab2 ) . Hence, we need to define a new class of estimators. In the next section 

we consider the case when sa = 0 and define a new class of statistics that can be used 

with the statistics MSB(c) and MSE to construct intervals for any -y in (3.2). 

3.4.2 Three-way Methods 

Recall that if both saand sb are positive, then a confidence interval for any 7 in (3.2) 

can be constructed from the two-way methods of the previous section. Thus, let us 

consider the case when sa = 0 and sb > 0 and suppose interest is in placing a confidence 

interval on 7. If ka = 0 then an interval can be constructed using MSB(c) and MSE as 



39
 

described in the previous section. A problem occurs when ka 0. In this section we 

will develop a new class of statistics that can be used along with MSB(c) and MSE to 

construct confidence intervals on -y when ka 0. 

2To proceed we assume that ta is positive. Let 7 = a2 + ab + as and 1]a = as /7r 

and recall the definitions of 7rb and pb from the previous section. Following the 

procedure outlined in Section 2.4.2 of Chapter 2, let Z = Q'Y where Q is any matrix 

such that the columns of Q form an orthonormal basis for C(X). Then Z MVN with 

zero mean and covariance matrix Cov(Z) = aa2 WA + abWs + a21 where WA = Q'VAQ,
 

WB = Q'VBQ. Since sa = 0, it follows that C(VA) C C(X, VB) which implies
 

C(WA) C C(WB). Let H and G be any full column rank matrices such that WA = HH'
 

and WB = GG'. Let U = K'L'Z where L = G(G/G)-1, K = i'l (1-4 ig )-1, and
 

1-4 = L'H. For c, d E [0, 1], set 

(4.7) MSA(c, d) = U'AjU/ta 

where Ac,d = dI + c(1 d)K'K + (1 c)(1 d)K'L'LK. MSA(1,1) is equal to the 

statistic MSA in (4.12) of Chapter 2, and hence, has the properties given in Proposition 

2.5.3 of Section 2.5. It can be shown that for fixed c and d, MSA(c, d) has similar 

properties. In particular, if c, d E [0,1], then 

(4.8) (a) MSA(c,d) /7r ,-, x2(ta)/ta when pb = c and 7ia = d; 

(b) MSE and MSA(c,d) are independent; 

(c) MSB(c) and MSA(c,d) are independent when a2 = 0. 

Part (a) follows from the fact that U MVN(0, 7A,,,,,,h) and 

rank(Apwia) = raffle' ) = ta. Property (b) follows since C(QLK) C C(QL) C C(X, VB) 

and (c) follows since C(QLK) C C(VB(I P(X,VA))) -L. 

Now suppose one is interested in constructing a confidence interval on 7 in (3.2). 

Observe that 

2 2E(MSA(c,d)) = gc,c1aa + hc,dab + kc,da2 
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where 

(4.9) gc,d = trace(A,A)/ta, hc,d = trace(KAcd1W)/ta, 

and 

ke,d = trace(LKAc4IKV)/ta 

An unbiased estimator of -y can be obtained with MSE, MSB(c) and MSA(c,d). In 

particular, let 

(4.10) mc,dMSA(c, d) + ne,dMSB(c) + pc,dMSE 

where 

Mc,d = ka/gc,d, ric,d = (kbgc,d kahc,d)/(gc,dVc), 

and 

Pc,d = k [ka(hc,dwc kc,dv kbgc,dw Ag c,dv ), 

with ye and we defined in (4.4). Then yc d is unbiased for -y and an interval on 'y can 

then be constructed by using MSA(c,d), MSB(c), and MSE in the MLS procedure. 

Example 3.4.6 (Continued): Using definition (4.7), we obtain 

MSA(0,0) = 201.75, MSA(0.5, 0.5) = 44.22, and MSA(1,1) = 27.36. 

For c, d = 0, 0.5, 1, coefficients (4.9) are go,o = 7.22, h0,0 = 2.59, k0,0 = 1, 

g0.5,0.5 = 1.60, 110.5,0.5 = 0.53, 1(0.5,0.5 = 0.26, g1,1 = 1, h1,1= 0.333, and k1,1= 0.160. 

Based on (4.10), two unbiased estimates of -y = o-a
2 

are -y00 = 21.44 and 31i = 22.23. 

A 95% confidence interval on -y based on MSA(0,0), MSB(0) and MSE in the MLS 

methods is [0.77; 161.43]. The MLS interval based on MSA(1,1), MSB(1) and MSE is 

[3.47; 159.41] and the interval based on MSA(0.5, 0.5), MSB(0.5) and MSE is 

[2.93; 160.26]. 

3.4.3 The Adaptive Interval 

As mentioned previously, confidence intervals for 1/ in (3.2) based on MSA(0,0) 

and MSB(0) have good coverage probabilities for small values ofrya and pb, but the 
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intervals tend to be liberal for larger values of 7a and pb. Similarly intervals based on 

MSA(1,1) and MSB(1) perform well for ]a and pb near one, but for some unbalanced 

designs the intervals are too liberal for small values of ria and pb. To get better 

probability coverage for all values of na and pb, we follow Lee et al. (1998) and use an 

adaptive approach that allows the data to select the values of c and d. In particular, we 

recommend using 

MSA( pb, 71a) and MSB(Pb) where n and Pb are estimators for 11a and pb, respectively. 

Consider the class of estimators for rya defined by 

'ra(c,d) = fc±,c1/ M1-4 + '5%e+ + MSE) 

and the class of estimators for pb defined by 

pb(c) (YHe- + MSE), 

2 .
where "--ye+4 = max{0, '1,4}, -o max{0, 'I/cd is the estimator of as given by (4.9) 

(i.e., by setting ka = 1, kb = 0, and k = 0), and 'lc is the estimator of ab2 given by (4.5) 

(i.e., by setting kb = 1 and k = 0). We considered different estimators of na and pb from 

these classes and found that intervals based on iia(0,0) and Pb(0) performed the best 

over the complete range of parameter values. Therefore we propose constructing 

intervals with MSACPb, MSB(Pb), and MSE in the MLS method where = 

a(0 ,0 ) and Pb = ;31)(0) 

Example 3.4.6 (Continued): An additional confidence interval on -y = 2 can be 
as
 

obtained using MSA(pb, 17a) and MSB(Tob) in the MLS method where 

Ija = = 0.547 and pb = pb(0) = 0.951. These estimates give 

MSB(Pb) = 14.95 and MSA(Tob, -7/0 = 39.42. The computed 95% confidence interval 

on -y is [3.43; 159.47]. 
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3.5 Simulation Results 

In this section we give simulation results for three confidence intervals on o-a2 
in 

model (3.1) when 5, = 0 and sb > 0. We obtained simulation results for other designs, 

but the examples below illustrate the general properties of each method. The 

performance of the confidence interval procedures is measured by coverage probability 

and average interval length. All of the reported intervals are two-sided 95% confidence 

intervals with equal tail probability. We also ran simulations for 99% confidence 

intervals and found that the performance of these intervals was similar to the 95% 

confidence intervals, and hence, the results are not reported. Similarly, we considered 

other linear combinations of o-a2 , ab,
2 

and (3-2, and found the results to be similar to those 

given here. For each design we considered several values of 71a and pb; specifically, 

77a =- 0.01, 0.25, 0.5, 0.75, 0.99 and pb = 0.01, 0.5, 0.99. The simulation results are 

based on 2000 pseudo-random data sets generated in S-PLUS. This results in a standard 

error of approximately 0.5% on the coverage probabilities given in the tables below. 

The three methods reported are MLS(0,0) which is the MLS method using Type III 

mean squares, MLS(1,1) which is the MLS method using MSE, MSB(1), and MSA(1, 

1), and MLS(pb, rya) which is the MLS method using the adaptive statistics MSE, MSB( 

Pb), and MSA( Tob, -7)a) defined in the previous section. Note that for the models and 

designs where an unweighted means ANOVA can be constructed, MSB(1) and MSA(1, 

1) are the unweighted mean squares defined in Burdick and Graybill (1992). For 

models or designs where the unweighted means ANOVA is not defined, MSB(1) and 

MSA(1,1) are the generalized unweighted mean squares from Chapter 2. 

Example 3.5.1 Consider the unbalanced case of the productivity score data 

presented in Table 23.1 of Milliken and Johnson (1984 p. 285) and the recommended 

model 

(5.2) y,jk = p, Tz + + bj + e, 



43 

(i = 1, 2, 3, j = 1, , 6, k = 1, . . . , nO where tt and Tz are fixed effects and aj, 

and euk are mutually independent normal random variables with zero means and 

2
variances a, ab, and o-2, respectively. For this data set n11 = n13 = n21 = 1, n12 = 

n14 = n23 = n25 = 2, and the remaining ni3 are equal to 3. The degrees of freedom are 

to = 5, sb = 10, and r = 26. The confidence coefficients for intervals on ca are given in 

Table 3.1. The coefficients for other intermediate values of 71a and pb were similar to 

those given in the table, and hence, were omitted. Clearly, this design is not very 

unbalanced. Thus, it is not surprising that all three methods maintain the stated level. 

Additionally, the average interval widths are very similar for each of the methods. 

Table 3.1 Confidence coefficients for intervals on 
in Example 3.5.1 with stated level of 95% 

7/a Pb mLs(0,o) MLS(1,1) mLsCigb, 

0.01 0.01 94.65 94.70 95.05 

0.50 95.25 94.60 94.80 

0.99 94.70 94.55 94.55 

0.50 0.01 95.50 95.85 95.70 

0.50 95.25 95.60 95.65 

0.99 93.95 95.10 95.10 

0.99 0.01 94.40 94.95 94.95 

0.25 94.80 95.05 95.05 

0.99 95.00 95.65 95.65 
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Example 3.5.3 Consider model (5.2) from Example 3.5.1 and let 

nil = n12 = n21 n23 = n25 = n35 = 0, n16= n26 = n36 = 10, and all the remaining nu 

equal to 2. The degrees of freedom for this design are to = 5, sb = 4, and r = 36. The 

simulation results are summarized in Table 3.2. For this design we find that the MLS 

interval with the generalized unweighted mean squares are slightly liberal when qa is 

small but for the other parameter values it maintains the stated level. The MLS method 

based on the Type III mean squares gave very liberal intervals for large values of 11a, 

whereas the adaptive interval maintained the stated level for all parameter values. Also 

we found that for small values of 1]a, particularly T/a = 0.01 and 0.25, the proposed 

Table 3.2 Confidence coefficients for intervals on cra2 

in Example 3.5.3 with stated level of 95% 

Pb mLs(0, o) mLs(1 , 1) mLs( 

0.01 0.01 94.95 93.15 95.20 

0.50 94.50 93.05 94.85 

0.99 94.75 93.70 94.85 

0.50 0.01 91.60 95.50 94.75 

0.50 93.85 96.05 95.70 

0.99 93.60 95.20 95.30 

0.99 0.01 91.15 94.55 94.55 

0.25 89.45 94.30 94.35 

0.99 89.95 95.05 95.05 
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intervals MLS(Pb, ija) were 20% to 30% narrower than the intervals based on the 

generalized unweighted mean squares. 

Example 3.5.4 Consider the following completely random nested model 

(5.5) Yuk = µ + 3 + bii + euk 

(i = 1, , I, j = 1, , m k = 1, . . . , nu) where a bu, and euk are mutually 

independent normal random variables with zero means and variances aa2, ab, and a2, 

respectively. Consider a design with I = 5, mi = 20 for i = 1, , 4, m5 = 1, and 

nu = 2 for all i, j. Then the degrees of freedom are to = 4, sb = 76, and r = 81. The 

simulation results, presented in Table 3.3, indicate that for this design the proposed 

method MLS(Pb, Via) maintains the stated level for the complete range of the parameter 

Table 3.3 Confidence coefficients for intervals on a2a' 

in Example 3.5.4 with stated level of 95% 

17a pb MLS(0,0) mLso, 0 mLs(?ob, ria) 

0.01 0.01 94.50 86.80 94.05 

0.50 94.75 84.05 94.40 

0.99 95.10 83.75 94.85 

0.50 0.01 91.65 93.35 93.80 

0.50 91.80 93.95 93.90 

0.99 92.85 94.60 94.60 

0.99 0.01 92.10 94.85 94.70 

0.25 92.65 95.50 94.80 

0.99 91.50 95.45 94.45 
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values. However, the intervals based on the generalized unweighted mean squares 

MLS(1,1) are very liberal for small values of qa and the intervals based on the Type III 

mean squares MLS(0,0) are quite liberal for large values of rya. Additionally, for small 

values of 17a, the intervals based on the adaptive statistics are significantly narrower than 

intervals based on the generalized unweighted mean squares. In particular, when 

qa = 0.01 and pb = 0.01, 0.25, and 0.99, the ratios of the average lengths of the MLS( 

Pb , i)a) interval to the MLS(1, 1) interval are 0.389, 0.383, 0.356, indicating that the 

proposed interval is approximately one-third the width of the MLS interval with the 

generalized unweighted mean squares. As ria approaches one the two intervals have 

similar probability coverage and width. 

Example 3.5.6 Consider model (5.5) from Example 3.5.3 and let I = 7, m, = 2 

for i = 1, , 5, m6 = 100, and nu = 2 for all i, j. The degrees of freedom for this 

design are to = 6, sb = 49, and r = 56. The simulation results are given in Table 3.4. 

Once again the adaptive interval generally maintains the stated level and has better 

coverage than either of the other two methods. For this design we find the intervals 

based on the Type III mean squares to be very liberal for large values of pb and the 

intervals based on the generalized unweighted mean squares to be slightly liberal for 

small values of qa. Additionally, the adaptive interval is approximately 25% narrower 

than the interval based on the generalized unweighted mean squares for small values of 

1]a and it has approximately the same width as the interval based on the Type III mean 

squares. 

We considered other designs similar to those in Examples 3.5.4 and 3.5.6 and 

obtained comparable results. In particular, we found that for designs where there are 

several large groups and only a few small groups, as in Example 3.5.4, the MLS interval 

with the Type III mean squares can be moderately liberal for large values of na while the 
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Table 3.4 Confidence coefficients for intervals on o-2a 

in Example 3.5.6 with stated level of 95% 

rla Pb ML S(0, o) mLso 0 mLs(pb, IL) 

0.01 0.01 94.15 92.85 93.90 

0.50 94.95 93.25 94.05 

0.99 95.45 94.15 94.80 

0.50 0.01 90.75 94.15 93.20 

0.50 91.25 95.30 94.75 

0.99 91.55 94.40 93.15 

0.99 0.01 88.80 94.70 94.55 

0.25 88.90 95.50 94.50 

0.99 88.60 95.00 94.70 

MLS interval with the generalized unweighted mean squares are very liberal for small 

values of ria. For designs with several small groups and a few large groups, as in 

Example 3.5.6, the MLS interval with the generalized unweighted mean squares can be 

slightly liberal for small values of na and the Type III interval can be very liberal for 

large values of iia. However, for all of these designs we found that the interval based on 

the adaptive statistics is almost always consistent with the stated level and for small 

values of na it is narrower than the MLS interval based on the generalized unweighted 

mean squares. 



48 

3.6 Alternative Expressions 

Consider model (3.1). Let A and B be any matrices such that VA = AA' and 

VB = BB'. In this section we give alternative expressions for MSB(c) and MSA(c,d) 

that involve only X, A and B, and hence, are easier to calculate than the expressions 

given in Section 3.4. To demonstrate that the new expressions are equivalent to the 

formulas given in Section 3.4 we first state two propositions. 

at2) ab2
Recall that 7F = hr, and pb = 0-1)2/71). 

Before we state the first proposition, observe that the covariance matrix of Y can be 

parameterized via 7rb and pb. With this parameterization, Cov(Y) may be expressed as 

Cov(Y) = aa2 
VA + 7rb (pbVB + (1 pb)I). We use this parameterization when proving 

the following proposition. 

Proposition 3.6.1 Let c E [0, 1] and suppose M is a symmetric matrix such that 

(a) Y'MY /7rb ti x2(sb) when pb = c for all and 7rb > 0; 

(b) C(M) c C(X,B).
 

Then M is unique, and hence, MSB(c) = Y'MY/sb by (4.3).
 

Now observe that the covariance matrix of Y can be parameterized via 7, na and 

pb. With this parameterization, Cov(Y) may be expressed as 

Cov(Y) = 7r(77aVA + pb(1 7]a)VB + (1 pb)(1 Th)I). Again, this parameterization 

is used to prove the following proposition. 

Proposition 3.6.2 Let c, d E [0, 1] and assume N is a nonnegative definite matrix 

such that 

(a) Y'NY /rr ti x2(ta) when pb = c and ]a = d for all and 7 > 0; 

(b) C(N) c C(X,B); 

(c) Cov(NY, (P (X,B) P(x,A))Y) = 0 when a2 = 0. 

Then N is unique, and hence, MSA(c,d) = Y'NY/ta by (4.8). 
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The proofs for Propositions 3.6.1 and 3.6.2 are similar to the proofs for 

Propositions 2.5.2 and 2.5.3, respectively, in Chapter 2. 

Let Z = L'Y where L = (I Px)B. For c E [0, 1], set 

M(c) = ni±eZ/sb 

where Vc = c(L'L)2 + (1 c)L'L. It is easy to check that M(c) satisfies (a) and (b) in 

Proposition 3.6.1. Hence, the proposition implies M(c) = MSB(c) in (4.2). 

Let U = K'Y where K = [(I PH)X, (I PH)B] and H = (X, B13/(I P(x,A))). 

For c, d E [0, 1], set 

N(c,d) = U/T+cdU/tc, 

where Tc,d = dK'AA'K + c(1 d)1031311( + (1 c)(1 d)K'K. It can be easily shown 

that N(c,d) satisfies (a)-(c) in Proposition 3.6.2. Hence, N(c,d) = MSA(c,d) in (4.7). 

3.7 Concluding Remarks 

A set of statistics has been defined for constructing confidence intervals in three 

variance component mixed linear models. These statistics can be used as an alternative 

to the generalized unweighted mean squares in the MLS method and are easy to compute 

using standard software. Simulation studies indicate that the proposed interval has better 

coverage than intervals based on either the generalized unweighted or Type III mean 

squares. Additionally, the proposed interval is often narrower than the interval based on 

the generalized unweighted mean squares. 
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Chapter 4
 

Summary 

This thesis considers the problem of constructing confidence intervals on variance 

components in mixed linear models. In Chapter 2 of this thesis we generalized the 

unweighted means ANOVA to mixed models with more than two variance components. 

The mean squares from this ANOVA are defined for three variance component models, 

as well as, some models with more than three variance components. The definitions do 

not require that all cells are nonempty and allows for covariates. Under mild rank 

restrictions, these mean squares can be employed in the Modified Large Sample (MLS) 

procedure to construct confidence intervals on any linear combinations of variance 

components and are easy to compute using standard software. Simulation studies 

indicated that the MLS intervals with the generalized unweighted mean squares are 

usually consistent with the stated confidence level. However, for some extremely 

unbalanced designs these intervals may be quite liberal. 

In Chapter 3 we defined a set of adaptive statistics for constructing confidence 

intervals in three variance component mixed linear model. These statistics can be used 

as an alternative to the unweighted mean squares in the MLS method and are also easy 

to compute using standard software. Simulation studies indicate that the proposed 

interval has better coverage than intervals based on either the generalized unweighted or 

Type III mean squares. Additionally, the proposed interval is often narrower than the 

interval based on the generalized unweighted mean squares. 

The method in Chapter 3 also shows promise for testing variance components. 

Preliminary findings indicate that this method gives highly accurate results and has 

better power than some exact tests (e.g., Christensen 1996, Khuri and Littell 1987) that 

are non-unique. 



51 

BIBLIOGRAPHY
 

Boardman, T.J. (1974). Confidence intervals for variance components-A comparative
 
Monte Carlo study. Biometrics, 30, 251-262.
 

Bulmer, M.G. (1957). Approximate confidence limits for components of variance.
 
Biometrika, 44, 159-167.
 

Burdick, R.K. and Graybill, F.A. (1992). Confidence Intervals on Variance
 
Components, Marcel Dekker, New York.
 

Christensen R. (1996). Exact tests for variance components. Biometrics 52, 309-314. 

Eubank, L.E., Seely, J.F., and Lee, Y. (1998). Generalizing unweighted means for the
 
general two variance component mixed model. Unpublished manuscript.
 
Department of Statistics, Oregon State University, Corvallis, Oregon.
 

Graybill, F.A. and Wang, C.M. (1980). Confidence intervals on nonnegative linear 
combinations of variances. J. Amer. Stat. Assoc., 75, 869-873. 

Goodnight, J.H. (1976). Maximally-invariant quadratic unbiased estimators.
 
Biometrics, 32, 477-480.
 

Harville, D.A. and Fenech, A.P. (1985). Confidence intervals for a variance ratio, or for 
heritability, in an unbalanced mixed linear model. Biometrics, 41, 137-152. 

Hernandez, R.P. and Burdick, R.K. (1993a). Confidence intervals and tests of 
hypotheses on variance components in an unbalanced two-factor crossed design with 
interaction. J. Stat. Comput. Simul., 47, 67-77. 

Hernandez, R.P. and Burdick, R.K. (1993b). Confidence intervals on the total variance 
in an unbalanced two-fold nested design. Biom. J, 35, 515-522. 

Hernandez, R.P., Burdick, R.K., and Birch, N.J. (1992). Confidence intervals and tests 
of hypotheses on variance components in an unbalanced two-fold nested design. 
Biom. 1, 34, 387-402. 

Howe, W.G. (1974). Approximate confidence limits on the mean of X+Y where X and 
Y are two tabled independent random variables. J. Amer. Stat. Assoc., 69, 789-794. 

Khuri, A.I. and Littell, R.C. (1987). Exact tests for the main effects variance 
components in an unbalanced random two-way model. Biometrics 43, 545-560. 



52 

Lee, Y., Seely, J.F., and Purdy, K.G. (1998). Confidence intervals on variance
 
components in two variance component mixed linear models. Unpublished
 
manuscript. Department of Statistics, Oregon State University, Corvallis, Oregon.
 

Milliken, G.A. and Johnson, D.E. (1984). Analysis of Messy Data, Volume 1, Lifetime 
Learning Publications, Belmont, CA. 

Moriguti, S. (1954). Confidence limits for a variance component. Rep. Stat. Appl. Res., 
JUSE, 3, 7-19. 

Ofversten, J. (1993). Exact tests for variance components in unbalanced mixed linear
 
models. Biometrics, 49, 45-57.
 

Satterthwaite, F.E. (1946). An approximate distribution of estimates of variance
 
components. Biom. Bull., 2, 110-114.
 

Seely, J.F. and El-Bassiouni, Y. (1983). Applying Wald's variance component test.
 
Ann. Stat., 11, 197-201.
 

Seely, J.F. and Eubank, L.E. (1998). Uniqueness of chi-squared quadratic forms under a 
singular covariance matrix. Technical Report No. 169, Department of Statistics, 
Oregon State University, Corvallis, Oregon. 

Sokal R.R. and Rohlf, F.J. (1981). Biometry, Second Edition, W.H. Freedman and Co., 
San Francisco. 

Thomas, J.D. and Hultquist, R.A. (1978). Interval estimation for the unbalanced case of 
the one-way random effects model. Ann. Statist., 6, 582-587. 

Ting, N., Burdick, R.K., Graybill, F.A., Jeyaratnam, S., and Lu, T.-F.C. (1990). 
Confidence intervals on linear combinations of variance components that are 
unrestricted in sign. J Stat. Comp. Simul., 35, 135-143. 

Tukey, J.W. (1951). Components in regression. Biometrics 7, 33-69. 

Wang, C.M. (1990). On ranges of confidence coefficients for confidence intervals on 
variance components. Comm. Stat.-Simula., 19, 1165-1178. 

Welch, B.L. (1956). On linear combinations of several variances. J. Amer. Stat. Assoc., 
51, 132-148. 

Williams, J.S. (1962). A confidence interval for variance components. Biometrika, 49, 
278-281. 




